max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
test/conftest.py
uc-cdis/cirrus
1
2169948
import time from unittest.mock import MagicMock, patch import pytest from cirrus import GoogleCloudManager from cirrus.google_cloud.utils import get_valid_service_account_id_for_user def get_test_cloud_manager(): project_id = "test_project" manager = GoogleCloudManager(project_id) manager._authed_session = MagicMock() manager._admin_service = MagicMock() manager._storage_client = MagicMock() manager.credentials = MagicMock() return manager @pytest.fixture def test_cloud_manager(): patcher = patch( "cirrus.google_cloud.manager.ServiceAccountCredentials.from_service_account_file" ) patcher.start() yield get_test_cloud_manager() patcher.stop() @pytest.fixture def test_cloud_manager_group_and_service_accounts_mocked(): test_cloud_manager = get_test_cloud_manager() test_domain = "test-domain.net" new_member_1_id = "1" new_member_1_username = "testuser" primary_service_account = ( get_valid_service_account_id_for_user(new_member_1_id, new_member_1_username) + "@" + test_domain ) group_name = _get_proxy_group_name_for_user(new_member_1_id, new_member_1_username) group_email = group_name + "@" + test_domain mock_get_group(test_cloud_manager, group_name, group_email) mock_get_service_accounts_from_group(test_cloud_manager, primary_service_account) mock_get_service_account(test_cloud_manager, primary_service_account) return test_cloud_manager @pytest.fixture(autouse=True) def no_backoff_delay(monkeypatch): """ The ``backoff`` library uses ``time.sleep`` to implement the wait. Patch this to disable actually waiting at all in the tests. """ monkeypatch.setattr(time, "sleep", lambda _: None) def mock_get_group(test_cloud_manager, group_name, group_email): test_cloud_manager.get_group = MagicMock() test_cloud_manager.get_group.return_value = { "kind": "admin#directory#group", "id": group_name, "etag": "", "email": group_email, "name": "", "directMembersCount": 0, "description": "", "adminCreated": False, "aliases": [""], "nonEditableAliases": [""], } def mock_get_service_accounts_from_group(test_cloud_manager, primary_service_account): test_cloud_manager.get_service_accounts_from_group = MagicMock() test_cloud_manager.get_service_accounts_from_group.return_value = [ primary_service_account ] def mock_get_service_account(test_cloud_manager, primary_service_account): test_cloud_manager.get_service_account = MagicMock() test_cloud_manager.get_service_account.return_value = { "name": "", "projectId": "", "uniqueId": "", "email": primary_service_account, "displayName": "", "etag": "", "oauth2ClientId": "", }
2,885
shortcuts.py
nbio/nbio-django
1
2169903
__license__ = "Apache 2.0" __copyright__ = "Copyright 2008 nb.io" __author__ = "<NAME> - <EMAIL>" from django.template import loader, RequestContext from django.http import HttpResponse DEFAULT_CONTENT_TYPE = 'text/html;charset=UTF-8' def render_template(request, template, dictionary=None): if template.__class__ == str or template.__class__ == unicode: template = loader.get_template(template) context = RequestContext(request, dictionary) return template.render(context) def render_response(request, template, dictionary=None, content_type=DEFAULT_CONTENT_TYPE, response_class=HttpResponse): return response_class(render_template(request, template, dictionary), content_type) def build_url(request, is_secure=None, host=None, port=None, path=None, query_string=None): if is_secure is None: is_secure = request.is_secure() host = host or request.META['SERVER_NAME'] port = port or request.META['SERVER_PORT'] path = path or request.path scheme = is_secure and 'https' or 'http' if (is_secure and port == '443') or (not is_secure and port == '80') or not port: port = '' else: port = ':' + port if query_string: url = "%s://%s%s%s?%s" % (scheme, host, port, path, query_string) else: url = "%s://%s%s%s" % (scheme, host, port, path) return url
1,344
statesampling/utils/io.py
delemottelab/state-sampling
0
2170542
import os import re import shutil import time from .. import log _log = log.getLogger("utils-io") def sorted_alphanumeric(l): """ From https://arcpy.wordpress.com/2012/05/11/sorting-alphanumeric-strings-in-python/ Sorts the given iterable in the way that is expected. Required arguments: l -- The iterable to be sorted. """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(l, key=alphanum_key) def read_file(path): with open(path, "r") as myfile: data = myfile.read() return data def get_backup_name(path): return path.strip("/") + "#" + time.strftime('%Y%m%d-%H%M') def backup_path(oldpath): """Backups/Moves the path to a backup name""" if os.path.exists(oldpath): newpath = get_backup_name(oldpath) if os.path.exists(newpath): backup_path(newpath) shutil.move(oldpath, newpath) def makedirs(path, overwrite=False, backup=True): if os.path.exists(path): if overwrite: if backup: backup_path(path) else: shutil.rmtree(path) # beware, removes all the subdirectories! os.makedirs(path) else: os.makedirs(path) def make_parentdirs(filepath): try: os.makedirs(os.path.dirname(filepath)) except Exception as ex: pass # ok, exists already def copy_and_inject(infile, outfile, params, marker="$%s", start_index=0): text = read_file(infile) with open(outfile, "w") as out: out.write(inject(text, params, marker=marker, start_index=start_index)) def inject(text, params, marker="$%s", start_index=0): for i in range(start_index, len(params) + start_index): text = text.replace(marker % i, str(params[i - start_index])) return text def escape_to_filename(filename): return re.sub(r'[\W]', '', filename)
1,969
beancmd/bury.py
EasyPost/beancmd
7
2170338
import argparse import itertools from . import util import pystalk def setup_parser(parser=None): if parser is None: parser = argparse.ArgumentParser() parser.add_argument('-H', '--host', default='localhost', help='Host of beanstalk server (default %(default)s)') parser.add_argument('-p', '--port', default=11300, type=int, help='Port of beanstalk server (default %(default)s)') parser.add_argument('-n', '--num-jobs', default=None, type=int, help='How many jobs to bury (default all in tube)') parser.add_argument('tubes', nargs='*', help='Tubes to bury from (if not passed, defaults to all)') return parser def run(args): client = pystalk.BeanstalkClient(args.host, args.port) tubes = util.get_tubes(client, args.tubes) client.watch('unused-fake-tube') for tube in tubes: client.watch(tube) iterator = client.reserve_iter() if args.num_jobs is not None: iterator = itertools.islice(iterator, args.num_jobs) for job in iterator: client.bury_job(job.job_id) client.ignore(tube) return 0
1,112
Round #589 (Div 2)/A.py
julianferres/Codeforces
4
2169206
from collections import Counter ans = -1 l,r = map(int, input().split()) for i in range(l,r+1): c = Counter(str(i)) flag = True for j in c: if c[j]>1: flag = False if flag: ans= i print(ans)
207
part2.py
FishPain/DTRA-Assignment
0
2169565
def cal(n): if n < 2: return 1 elif n < 3: return 3 else: a = n + 1 b = n // 2 c = round((n + 1) / 2) return int(a * b + c) def f2(arr, c, n, t, counter): if n <= len(arr): # Check if the current index and the next index is the same if ~(arr[c] ^ arr[n]) == -1: # T increase by 1 everytime there is a match t += 1 # Check for the next index, current index no move. return f2(arr, c, n + 1, t, counter) else: # There are at least one matching index if t != 0: # use a loop to print out the matching index using "t" value. # e.i. if there are 4 of the same index, t = 4, loop's range will be 3+2+1 for i in range(cal(n - c - 1)): print(f"X={arr[c]}, Y={arr[n - 1]}") # counter increase by 1 to log the total matches counter += 1 # Index does not match, set this index to the current and the next index to current + 1 return f2(arr, n, n + 1, 0, counter) # Error occurs as list index out of range. # Catches the error. Error means this is the last index so we can return the answers alr. else: # use a loop to print out the matching index using "t" value. # e.i. if there are 4 of the same index, t = 4, loop's range will be 3+2+1 if t != 0: for i in range(cal(n - c - 1)): print(c, n) print(f"X={arr[c]}, Y={arr[n - 1]}") counter += 1 # Print the total count return f"Total match is {counter}." def f21(arr, c, n, t, counter, loop): # Paste it out if loop > 0: print(f"X={arr[c]}, Y={arr[n - 1]}") counter += 1 loop -= 1 return f21(arr, c, n, 0, counter, loop) if n < len(arr): # Check if the current index and the next index is the same if ~(arr[c] ^ arr[n]) == -1: # T increase by 1 everytime there is a match t += 1 # Check for the next index, current index no move. return f21(arr, c, n + 1, t, counter, loop=0) else: # There are at least one matching index if t != 0: # use a loop to print out the matching index using "t" value. # e.i. if there are 4 of the same index, t = 4, loop's range will be 3+2+1 # Index does not match, set this index to the current and the next index to current + 1 return f21(arr, c, n, 0, counter, loop=cal(n-c-1)) return f21(arr, n, n + 1, 0, counter, loop=0) # Error occurs as list index out of range. # Catches the error. Error means this is the last index so we can return the answers alr. else: # use a loop to print out the matching index using "t" value. # e.i. if there are 4 of the same index, t = 4, loop's range will be 3+2+1 if t != 0: return f21(arr, c, n, 0, counter, loop=cal(n-c-1)) # Print the total count return f"Total match is {counter}." def f3(arr, c, n, count): # [1, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 10] if n < len(arr): # Check if the current index and the next index is the same if ~(arr[c] ^ arr[n]) == -1: print(f"1) C => Index: {c}, Value: {arr[c]}\n" f" N => Index: {n}, Value: {arr[n]}\n") print(f"X={arr[c]}, Y={arr[n]}") count += 1 if n + 1 >= len(arr): return f3(arr, c + 1, c + 2, count) return f3(arr, c, n + 1, count) else: print(f"2) C => Index: {c}, Value: {arr[c]}\n" f" N => Index: {n}, Value: {arr[n]}\n") if n + 1 != len(arr): return f3(arr, c + 1, c + 2, count) return f3(arr, n, n+1, count) else: return f"Total match is {count}." def f4(arr, c, n, count): # [1, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 10] if n < len(arr): # if the current one and the next one the same number? if ~(arr[c] ^ arr[n]) == -1: print(f"1) C => Index: {c}, Value: {arr[c]}\n" f" N => Index: {n}, Value: {arr[n]}\n") print(f"X={arr[c]}, Y={arr[n]}") count += 1 return f4(arr, c, n + 1, count) # if it is not the same else: print(f"2) C => Index: {c}, Value: {arr[c]}\n" f" N => Index: {n}, Value: {arr[n]}\n") if n-c > 1: return f4(arr, c+1, c+2, count) pass # If not the same then go to the next pair return f4(arr, n, n+1, count) else: return f"Total match is {count}." # Python program to show # bitwise operators if __name__ == "__main__": arr = [1, 2, 3, 3, 4, 4, 4, 7, 7, 7] # print(f2(arr, 0, 1, 0, 0)) print(f21(arr, 0, 1, 0, 0, 0))
5,240
lnbits/extensions/example/__init__.py
sidahmedabdelillah/attigoBTC
0
2170323
from quart import Blueprint from lnbits.db import Database db = Database("ext_example") example_ext: Blueprint = Blueprint( "example", __name__, static_folder="static", template_folder="templates" ) from .views_api import * # noqa from .views import * # noqa
281
tests/standalone/data_products/search_data_products_synchronous.py
ucalgary-aurora/pyaurorax
0
2169183
import pyaurorax import datetime import pprint def main(): # set as staging API pyaurorax.api.set_base_url("https://api.staging.aurorax.space") # do search s = pyaurorax.data_products.search(datetime.datetime(2020, 1, 1, 0, 0, 0), datetime.datetime( 2020, 1, 1, 23, 59, 59), programs=["auroramax"], verbose=True) print() pprint.pprint(s.data) # ---------- if (__name__ == "__main__"): main()
585
tahoe-python/genolake/tahoe/test/__init__.py
genolake/tahoe
0
2169363
import os import sys import tempfile import unittest from pyspark.sql import SparkSession class SparkTestCase(unittest.TestCase): def resourceFile(self, file): tahoeRoot = os.path.dirname(os.getcwd()) return os.path.join(os.path.join(tahoeRoot, "tahoe-core/src/test/resources"), file) def exampleFile(self, file): tahoeRoot = os.path.dirname(os.getcwd()) return os.path.join(os.path.join(tahoeRoot, "example-files"), file) def tmpFile(self): tempFile = tempfile.NamedTemporaryFile(delete=True) tempFile.close() return tempFile.name def checkFiles(self, file1, file2): f1 = open(file1) f2 = open(file2) try: self.assertEquals(f1.read(), f2.read()) finally: f1.close() f2.close() def setUp(self): self._old_sys_path = list(sys.path) class_name = self.__class__.__name__ self.ss = SparkSession.builder.master('local[4]').appName(class_name).getOrCreate() self.sc = self.ss.sparkContext def tearDown(self): self.ss.stop() sys.path = self._old_sys_path
1,165
ui/pages/create_customer_page.py
lukehassel/hotel_management
0
2170256
import tkinter as tk from domain.entities.room.double_room import DoubleRoom from domain.entities.room.single_room import SingleRoom from domain.entities.room.suite import Suite from domain.usecase.reception_usecase import ReceptionUseCase from ui.pages.page import Page class CreateCustomerPage(Page): roomType = None def show_entry_fields(self): print("Dein Name ist %s" % (self.e1.get())) ReceptionUseCase().createReservation(self.e1.get(), self.e2.get(), self.roomType) def __init__(self, *args, **kwargs): Page.__init__(self, *args, **kwargs) label = tk.Label(self, text="This is page 1") # label.pack(side="top", fill="both", expand=True) self.frame = tk.Frame(self).pack() self.create_input_fields() self.create_radios() self.create_btn() title = tk.Label(self.frame, text="Neuer Kunde") title.config(font=("Courier", 44)) title.place(x=20, y=35) def create_btn(self): btnFrame = tk.Frame(self, borderwidth=20) tk.Button(btnFrame, text='Okay', command=self.show_entry_fields).grid(column=1, row=0) btnFrame.pack(side="bottom") def create_radios(self): radioFrame = tk.Frame(self.frame, borderwidth=40) var = tk.IntVar() rad1 = tk.Radiobutton(radioFrame, text='EinzelZimmer', value=1, command=lambda: self.s1()) rad2 = tk.Radiobutton(radioFrame, text='DoppelZimmer', value=2, command=lambda: self.s2()) rad3 = tk.Radiobutton(radioFrame, text='Suite', value=3, command=lambda: self.s3()) rad1.grid(sticky="W", column=0, row=0) rad2.grid(sticky="W", column=0, row=1) rad3.grid(sticky="W", column=0, row=2) radioFrame.place(x=200, y=175) def s1(self): print("asdf") self.roomType = SingleRoom() def s2(self): self.roomType = DoubleRoom() def s3(self): self.roomType = Suite() def create_input_fields(self): inputFrame = tk.Frame(self.frame) tk.Label(inputFrame, text="Name").grid(sticky="W", column=1, row=0) self.e1 = tk.Entry(inputFrame) self.e1.grid(sticky="W", column=2, row=0) tk.Label(inputFrame, text="Hotel Besuche").grid(sticky="W", column=1, row=1) self.e2 = tk.Entry(inputFrame) self.e2.grid(sticky="W", column=2, row=1) inputFrame.place(x=20, y=200)
2,488
pyvino/model/object_detection/person_detection/person_detection_retail_0013.py
hampen2929/openvino-python
62
2170610
from .person_detector import PersonDetector from ....util.logger import get_logger logger = get_logger(__name__) class PersonDetectorRetail0013(PersonDetector): model_name = 'person-detection-retail-0013' model_loc = 'intel' def __init__(self, xml_path=None, fp=None, conf=0.6, draw=False): super().__init__(xml_path, fp, conf, draw)
363
1-2.py
skittlesvampir/adventofcode2021
1
2170466
# Immer drei Zahlen der Eingabe zusammenaddieren, dann mit einen versetzt # weitermachen eingabe = [] while True: zeile = input() if zeile.isdigit(): eingabe.append(int(zeile)) else: break summen = 0 for i in range(len(eingabe)-3): if eingabe[i]+eingabe[i+1]+eingabe[i+2] < eingabe[i+1] + eingabe[i+2] + eingabe[i+3]: summen += 1 print(summen)
377
program_synthesis/naps/examples/seq2seq/executor.py
kavigupta/program_synthesis
123
2168880
import copy import collections from program_synthesis.naps import uast from program_synthesis.naps.uast import lisp_to_uast from program_synthesis.naps.uast import uast_test_config ExecutionResult = collections.namedtuple('ExecutionResult', ['result', 'trace']) class ExecutorSyntaxException(Exception): pass class ExecutorRuntimeException(Exception): pass class UASTExecutor(object): def execute(self, code, inputs): if not isinstance(code, dict): try: code = lisp_to_uast.lisp_to_uast(code) except lisp_to_uast.LispSyntaxException: raise ExecutorSyntaxException() e = uast.Executor(code) trace_ = None try: assert isinstance(inputs, list) inputs = copy.deepcopy(inputs) try: result = e.execute_func("__main__", inputs, True) except KeyboardInterrupt: print(code) print(inputs) raise except Exception as e: raise ExecutorRuntimeException(e) return ExecutionResult(result, trace_) def compare(self, gold, prediction): return uast_test_config.test_passed(gold, prediction) def evaluate_code(code, tests, executor_): stats = {'tests-executed': len(tests), 'tests-passed': 0, 'result-none': 0, 'syntax-error': 0, 'runtime-exception': 0, 'exceptions': []} if not code: return stats for test in tests: try: execution_result = executor_.execute(code, test['input']) except ExecutorSyntaxException as e: stats['syntax-error'] += 1 stats['exceptions'].append(str(e)) continue except ExecutorRuntimeException as e: stats['runtime-exception'] += 1 stats['exceptions'].append(str(e)) continue except Exception as e: stats['exceptions'].append(str(e)) continue if execution_result.result is None: stats['result-none'] += 1 if executor_.compare(test['output'], execution_result.result): stats['tests-passed'] += 1 return stats
2,198
poc/model/time-based-dbscan.py
An-Dang/clustinator
0
2169101
import re import numpy as np import pandas as pd from sklearn import preprocessing from scipy.sparse import csr_matrix from sklearn.cluster import DBSCAN import datetime import time states = ["INITIAL","login","View_Items","home","logout","View_Items_quantity","Add_to_Cart","shoppingcart", "remove","deferorder","purchasecart","inventory","sellinventory","clearcart","cancelorder","$"] #Data imports PATH = "../data/raw/" sessions_file = (PATH+'sessions.dat') def session_request_dict(sessions_file): s_r_dict = {} # Dict of sessions with open(sessions_file) as fn: sessions_raw = fn.readlines() for session in sessions_raw: key = re.search('([^.]+)', session).group() value = re.findall('\"(.*?)\"', session) s_r_dict[key] = value return s_r_dict def transition_matrix(sessions, states): markovchains = [] for key, value in sessions.items(): # labelEncoding le = preprocessing.LabelEncoder() le.fit(value) le.transform(value) # factorize factorize = pd.factorize(value)[0] # matrix n = 1 + max(factorize) # number of states m = [[0] * n for _ in range(n)] for (i, j) in zip(factorize, factorize[1:]): m[i][j] += 1 # now convert to probabilities: for row in m: s = sum(row) if s > 0: row[:] = [f / s for f in row] # unique array in the right order value = np.array(value) _, idx = np.unique(value, return_index=True) df = pd.DataFrame(data=m, index=value[np.sort(idx)], columns=value[np.sort(idx)]) df_1 = pd.DataFrame(index=states, columns=states, dtype='float64') df_1.update(df, join='left') merge = pd.concat([pd.concat([df_1, df], axis=1, sort=False)], axis=0).fillna(0).round(2).iloc[:, :-n] # convert into Vector merge = np.array(merge.values.flatten().tolist()) # 2-D array markovchains.append(merge) # csr sparse matrix csr = csr_matrix(markovchains) return csr data = session_request_dict(sessions_file) print(len(data)) set_1 = {k: data[k] for k in list(data)[:100]} set_2 = {k: data[k] for k in list(data)[10:110]} print('load data done', datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) #for X in tqdm(range(len(small_data_set))): X = transition_matrix(set_1, states) print('matrix done', datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S \n')) print('start clustering') clustering = DBSCAN(eps=1.5, min_samples=10).fit(X) labels = clustering.labels_ #print(labels) print(np.unique(labels, return_counts=True)) print(clustering, ) print("End clustering", datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))
2,869
child_management/migrations/0015_auto_20210305_1109.py
waicindia/clms-prototype
0
2170432
# Generated by Django 3.1.2 on 2021-03-05 11:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('child_management', '0014_auto_20210305_1104'), ] operations = [ migrations.AlterField( model_name='child', name='sex', field=models.IntegerField(choices=[(1, 'Male'), (2, 'Female'), (3, 'Transgender'), (4, 'Inter-sex'), (5, 'Other')]), ), migrations.AlterField( model_name='childshelterhomerelation', name='child', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='child_management.child', verbose_name='Case number'), ), ]
760
bloodhound_theme/bhtheme/tests/theme.py
beebopkim/bloodhound
84
2170471
# -*- coding: UTF-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from trac.test import EnvironmentStub from trac.web.chrome import Chrome from bhdashboard.web_ui import DashboardModule from bhtheme.theme import BloodhoundTheme from bhtheme.tests import unittest class ThemeTestCase(unittest.TestCase): def setUp(self): self.env = EnvironmentStub(enable=('trac.*', 'bhtheme.*'), default_data=True) self.bhtheme = BloodhoundTheme(self.env) def tearDown(self): self.env.reset_db() def test_templates_dirs(self): chrome = Chrome(self.env) self.assertFalse(self.env.is_component_enabled(DashboardModule)) for dir in self.bhtheme.get_templates_dirs(): self.assertIn(dir, chrome.get_all_templates_dirs()) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(ThemeTestCase)) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
1,756
tests/test_add_and_delete_contact_to_group.py
elenay/python_training
0
2170315
__author__ = 'eya' from model.contact import Contact from model.group import Group from fixture.orm import OrmFixture import random orm_db = OrmFixture(host="127.0.0.1", name="addressbook", user="root", password="") def test_add_contact_to_group(app, db): if len(db.get_group_list()) == 0: app.group.create(Group(name="GroupForContact")) if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname="NoOneWasHere")) old_contacts = db.get_contact_list() if app.contact.check_presence_contact_not_in_any_group() != 0: contacts_not_in_group = app.contact.contacts_not_in_group() added_contact = random.choice(contacts_not_in_group) else: added_contact = app.contact.create(Contact(firstname="EmptyGroup")) app.contact.add_contact_by_id_to_group(added_contact.id) assert len(old_contacts) == app.contact.count() new_contacts = db.get_contact_list() assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) def test_delete_contact_from_group(app, db): if len(db.get_group_list()) == 0: app.group.create(Group(name="GroupForContact")) if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname="NoOneWasHere")) old_contacts = db.get_contact_list() if app.contact.check_presence_contact_at_least_in_one_group() != 0: contacts_in_group = app.contact.contacts_in_group() deleted_contact = random.choice(contacts_in_group) else: deleted_contact = app.contact.add_contact_by_id_to_group(deleted_contact.id)
1,604
qaoa/vertex_cover.py
GiggleLiu/QAOA
18
2169357
from utils import get_bit def is_vertex_cover(graph, z): """ checks if z (an integer) represents a valid vertex cover for graph adjacency matrix graph, with n vertices """ for e in graph.es: if get_bit(z, e.source) == 0 and get_bit(z, e.target) == 0: return False return True def vertex_cover_loss(z, graph, mask): """ the objective function to minimize: -(# of 0 in a bit string), corresponding to maximising the number of vertices NOT in the vertex cover """ if not mask[z]: return 0 n = graph.vcount() s = 0 for i in range(n): s += get_bit(z, i) return s - n def get_vertex_cover_clauses(graph): ''' C = \sum -0.5*(Zi+1), mapping is 0->down, 1->up. ''' raise NotImplementedError() clause_list = [] for v in graph.vs: clause_list.append(-(0.5, (v.index,))) return clause_list
913
modules/feedback/migrations/0001_initial.py
heolin123/funcrowd
0
2170180
# Generated by Django 2.0.8 on 2018-11-22 22:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('tasks', '0001_initial'), ] operations = [ migrations.CreateModel( name='Feedback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.CreateModel( name='FeedbackField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='FeedbackScoreField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ], ), migrations.AddField( model_name='feedback', name='fields', field=models.ManyToManyField(to='feedback.FeedbackField'), ), migrations.AddField( model_name='feedback', name='score_fields', field=models.ManyToManyField(to='feedback.FeedbackScoreField'), ), migrations.AddField( model_name='feedback', name='task', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.SET_NULL, to='tasks.Task'), ), ]
1,646
birl.py
ppratikcr7/BHIRL
9
2170528
from mdp import * from copy import deepcopy from math import exp # Class for Bayesian Inverse Reinforcement learning class BIRL(): # Currently we are running BIRL for 2 iteration and step size of 2. The bounds of reward set her eis +10 and -10. def __init__(self, expert_trace, grid_size, terminals, error_func, birl_iteration=2, step_size=2, r_min=-10, r_max=10): self.n_rows, self.n_columns = grid_size self.r_min, self.r_max = r_min, r_max self.step_size = step_size self.expert_trace = expert_trace self.birl_iteration = birl_iteration self.terminals = terminals self.error_func = error_func # Run the main BIRL algorithm to calculate the posterior and prior probability of being in a state, # also it returns the reward error, which can be updated with each iteration. def run_birl(self): policy_error, reward_error = [], [] # This is the core BIRL algorithm mdp = self.create_rewards() pi, u = policy_iteration(mdp) q = get_q_values(mdp, u) posterior = calculate_posterior(mdp, q, self.expert_trace) for _ in range(self.birl_iteration): new_mdp = deepcopy(mdp) new_mdp.modify_rewards_randomly(self.step_size) new_u = policy_evaluation(pi, u, new_mdp, 1) if pi != best_policy(new_mdp, new_u): new_pi, new_u = policy_iteration(new_mdp) new_q = get_q_values(new_mdp, new_u) new_posterior = calculate_posterior(new_mdp, new_q, self.expert_trace) if probability(min(1, exp(new_posterior - posterior))): pi, u, mdp, posterior = new_pi, new_u, deepcopy(new_mdp), new_posterior else: new_q = get_q_values(new_mdp, new_u) new_posterior = calculate_posterior(new_mdp, new_q, self.expert_trace) if probability(min(1, exp(new_posterior - posterior))): mdp, posterior = deepcopy(new_mdp), new_posterior policy_error.append(0) reward_error.append(0) return pi, mdp, policy_error, reward_error #------------- Reward functions ------------ #TODO move priors out of the mdp def create_rewards(self, reward_function_to_call=None): # If no reward function is specified, sets all rewards as 0 if reward_function_to_call is None: return self.create_zero_rewards() return reward_function_to_call() def create_zero_rewards(self): return GridMDP([[0 for _ in range(self.n_columns)] for _ in range(self.n_rows)] , terminals=deepcopy(self.terminals)) def create_random_rewards(self): return GridMDP( [[random.uniform(self.r_min, self.r_max) for _ in range(self.n_columns)] for _ in range(self.n_rows)] , terminals=deepcopy(self.terminals)) def create_gaussian_rewards(self): mean, stdev = 0, self.r_max / 3 return GridMDP( [[self.bound_rewards(random.gauss(mean, stdev)) for _ in range(self.n_columns)] for _ in range(self.n_rows)] , terminals=deepcopy(self.terminals)) def bound_rewards(self, reward): if reward > self.r_max: reward = self.r_max elif reward < self.r_min: reward = self.r_min return reward def calculate_posterior(mdp, q, expert_pi, gamma=0.95): z = [] e = 0 for s in mdp.states: for a in mdp.actions(s): z.append(gamma * q[s, a]) if s in expert_pi: e += gamma * q[s, a] del z[:] #Removes contents of Z return e * calculate_prior(mdp.reward.values()) # return e def get_q_values(mdp, U): Q = {} for s in mdp.states: for a in mdp.actions(s): for (p, sp) in mdp.T(s, a): Q[s, a] = mdp.reward[s] + mdp.gamma * p * U[sp] return Q def calculate_prior(rewards): return sum([calculate_tri_prior(R) for R in rewards]) / 10 # return 1 def calculate_beta_prior(R, Rmax=10): R = abs(R) + 0.00001 Rmax += 0.000001 return 1 / (((R / Rmax) ** 0.5) * ((1 - R / Rmax) ** 0.5)) def calculate_tri_prior(R, Rmax= 10): R = abs(R) + 0.00001 Rmax += 0.000001 Rmin = -Rmax return 0.4 * exp(-0.1 * (R - Rmax) ** 2) + 0.4 * exp(-0.1 * (R - Rmin) ** 2) + exp(-0.1 * R ** 2) def uniform_prior(_): return 1
4,461
learn_python/codewars/sudoku_solver.py
PavliukKonstantin/learn-python
0
2168058
# Write a function that will solve a 9x9 Sudoku puzzle. The function will # take one argument consisting of the 2D puzzle array, with the value 0 # representing an unknown square. # The Sudokus tested against your function will be "easy" (i.e. determinable; # there will be no need to assume and test possibilities on unknowns) and # can be solved with a brute-force approach. puzzle = [[5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9], ] right_result = [ [5, 3, 4, 6, 7, 8, 9, 1, 2], [6, 7, 2, 1, 9, 5, 3, 4, 8], [1, 9, 8, 3, 4, 2, 5, 6, 7], [8, 5, 9, 7, 6, 1, 4, 2, 3], [4, 2, 6, 8, 5, 3, 7, 9, 1], [7, 1, 3, 9, 2, 4, 8, 5, 6], [9, 6, 1, 5, 3, 7, 2, 8, 4], [2, 8, 7, 4, 1, 9, 6, 3, 5], [3, 4, 5, 2, 8, 6, 1, 7, 9], ] def find_solution_digits(puzzle): solution_digits = {} for i, row in enumerate(puzzle): for j, elem in enumerate(row): if elem == 0: numbers = set(range(1, 10)) square = set() start_row = ((i//3) * 3) end_row = start_row + 3 start_elem = ((j//3) * 3) end_elem = start_elem + 3 for row in puzzle[start_row:end_row]: for elem in row[start_elem:end_elem]: square.add(elem) numbers -= set(puzzle[i]) | {i[j] for i in puzzle} | square if len(numbers) == 1: solution_digits[(i, j)] = numbers return solution_digits def sudoku(puzzle): while True: solution_digits = find_solution_digits(puzzle) if not solution_digits: break for k, v in solution_digits.items(): i, j = k puzzle[i][j] = v.pop() return puzzle print(sudoku(puzzle) == right_result)
2,132
project/save_as_text.py
ivanbaug/wn-scrape
0
2168092
import os from bs4 import BeautifulSoup from dotenv import load_dotenv from datetime import datetime as dt from shared_funcs import get_page_txt out_folder = "output/" load_dotenv() main_url = os.getenv("SITE_URL") print(main_url) def save_ch_txt(ch_num: int): # get entire page site_url = f"{main_url}{ch_num}" wn_webpage = get_page_txt(site_url) soup = BeautifulSoup(wn_webpage, "html.parser") # get chapter data ch_title = soup.find("p", class_="novel_subtitle") novel_honbun = soup.find(id="novel_honbun") novel_afterword = soup.find(id="novel_a") with open( f"output/CH{ch_num:03d}-{dt.now().strftime('%Y%m%d-%H%M%S')}.txt", "w", encoding="utf8", ) as myfile: # Write title myfile.write(f"CHAPTER {ch_num}: {ch_title.text}\n") # Write paragraphs keep_trying = 3 paragraph_id = 1 while keep_trying: paragraph = novel_honbun.find(id=f"L{paragraph_id}") if paragraph == None: keep_trying -= 1 else: myfile.write(paragraph.text + "\n") paragraph_id += 1 # Write afterwords keep_trying = 3 afterword_id = 1 myfile.write("----------\n") while keep_trying: aw = novel_afterword.find(id=f"La{afterword_id}") if aw == None: keep_trying -= 1 else: myfile.write(aw.text + "\n") afterword_id += 1 if __name__ == "__main__": # Save raw chapters # for i in range(1, 678): for i in range(1, 3): save_ch_txt(i)
1,641
python/074_search_a_2d_matrix.py
ufjfeng/leetcode-soln
0
2170143
""" Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: Integers in each row are sorted from left to right. The first integer of each row is greater than the last integer of the previous row. For example, Consider the following matrix: [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] Given target = 3, return true. """ class Solution(object): def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if matrix is None or matrix == []: return False for row in matrix: if target < row[0]: return False elif target > row[-1]: continue else: left, right = 0, len(row)-1 while left < right - 1: middle = (left + right) // 2 if row[middle] == target: return True elif row[middle] > target: right = middle else: left = middle if row[left] == target or row[right] == target: return True else: return False A=[[1,3,5,7],[10,11,16,20],[23,30,34,50]] a=Solution() print(a.searchMatrix(A,3))
1,433
datasets_tools/create_pascal_voc_tf_record.py
vghost2008/wml
6
2170057
#coding=utf-8 import os import functools import sys import random import time import numpy as np from multiprocessing import Pool import tensorflow as tf import object_detection.utils as odu import object_detection.npod_toolkit as npod import shutil import xml.etree.ElementTree as ET import sys from iotoolkit.pascal_voc_data import * from wml_tfutils import int64_feature,bytes_feature,floats_feature from iotoolkit.pascal_voc_data import TEXT_TO_ID import img_utils as wmli import wml_utils as wmlu SAMPLES_PER_FILES = 6000 def _category_id_filter(category_id): return True def _labels_text_to_labels(labels_text): for x in labels_text: if x not in TEXT_TO_ID: print(f"Error \"{x}\" not in target set.") return [TEXT_TO_ID[x] for x in labels_text] class VOCMaker(object): def __init__(self,filenames=None): if filenames is not None and isinstance(filenames,str): with open(filenames) as f: self.filenames = [x.strip() for x in f.readlines()] else: self.filenames = filenames self.category_id_filter = _category_id_filter self.image_preprocess = None #输入为list(str) self.labels_text_to_labels = _labels_text_to_labels ''' directory:图像目录路径 name:图像文件名,但不包含路径及文件名 返回图像数据,bbox(用[0,1]表示,bbox相对应的label ''' def _process_image(self,xml_file,img_file): if not os.path.exists(img_file): return None,None,None,None,None,None,None if self.image_preprocess is not None: img = wmli.imread(img_file) img = self.image_preprocess(img) image_data = wmli.encode_img(img) else: image_data = tf.gfile.FastGFile(img_file, 'rb').read() shape, _bboxes, _labels_text, _difficult, _truncated,_ = odu.read_voc_xml(xml_file, adjust=None) _labels = self.labels_text_to_labels(_labels_text) bboxes = [] labels_text = [] difficult = [] truncated = [] labels = [] for data in zip(_bboxes,_labels,_labels_text,_difficult,_truncated): if self.category_id_filter(data[1]): bboxes.append(data[0]) labels.append(data[1]) labels_text.append(data[2]) difficult.append(data[3]) truncated.append(data[4]) if len(labels) == 0: #print(f"Ignore {name}.") return None,None,None,None,None,None,None return image_data, shape, bboxes, labels, labels_text, difficult, truncated def _convert_to_example(self,image_data, labels, labels_text, bboxes, shape, difficult, truncated): xmin = [] ymin = [] xmax = [] ymax = [] for b in bboxes: #每一个bbox应当包含四个元素(ymin,xmin,ymax,xmax) assert len(b) == 4 # pylint: disable=expression-not-assigned #l依次为ymin,xmin,ymax,xmax,point依次为b.ymin,b.xmin,b.ymax,b.xmax [l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)] # pylint: enable=expression-not-assigned ''' 现在xmin,ymin,xmax,ymax包含了所有在bboxes中的数据 ''' image_format = b'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': int64_feature(shape[0]), 'image/width': int64_feature(shape[1]), 'image/channels': int64_feature(shape[2]), 'image/shape': int64_feature(shape), 'image/object/bbox/xmin': floats_feature(xmin), 'image/object/bbox/xmax': floats_feature(xmax), 'image/object/bbox/ymin': floats_feature(ymin), 'image/object/bbox/ymax': floats_feature(ymax), 'image/object/bbox/label': int64_feature(labels), 'image/object/bbox/label_text': bytes_feature(labels_text), 'image/object/bbox/difficult': int64_feature(difficult), 'image/object/bbox/truncated': int64_feature(truncated), 'image/format': bytes_feature(image_format), 'image/encoded': bytes_feature(image_data)})) return example ''' dataset_dir:图像目录路径 name:图像文件名,不包含路径及后辍 ''' def _add_to_tfrecord(self,img_file, tfrecord_writer): xml_file = wmlu.change_suffix(img_file,"xml") if not os.path.exists(img_file) or not os.path.exists(xml_file): print(f"Error file {xml_file}, {img_file}.") return False image_data, shape, bboxes, labels, labels_text, difficult, truncated = \ self._process_image(xml_file,img_file) if image_data is None: return False example = self._convert_to_example(image_data, labels, labels_text, bboxes, shape, difficult, truncated) tfrecord_writer.write(example.SerializeToString()) return True def _get_output_filename(self,output_dir, name, idx): return '%s/%s_%04d.tfrecord' % (output_dir, name, idx) def make_tfrecord(self,file_data,output_dir,name="train"): fidx,files = file_data tf_filename = self._get_output_filename(output_dir, name, fidx) with tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer: for file in files: self._add_to_tfrecord(file, tfrecord_writer) ''' 将所有图像文件按SAMPLES_PER_FILES(200)一批保存在tfrecored文件中 ''' def multi_thread_to_tfrecords(self,dataset_dir, output_dir, shuffling=False,fidx=0): files = wmlu.recurse_get_filepath_in_dir(dataset_dir,suffix=".jpg") return self.multi_thread_to_tfrecords_by_files(files,output_dir,shuffling,fidx) ''' 将所有图像文件按SAMPLES_PER_FILES(200)一批保存在tfrecored文件中 files: img file list ''' def multi_thread_to_tfrecords_by_files(self,files, output_dir,shuffling=False,fidx=0): wmlu.create_empty_dir(output_dir,remove_if_exists=True,yes_to_all=True) if shuffling: random.seed(time.time()) random.shuffle(files) wmlu.show_list(files[:100]) if len(files)>100: print("...") print(f"Total {len(files)} files.") sys.stdout.flush() files = wmlu.list_to_2dlist(files,SAMPLES_PER_FILES) files_data = list(enumerate(files)) if fidx != 0: _files_data = [] for fid,file_d in files_data: _files_data.append([fid+fidx,file_d]) files_data = _files_data sys.stdout.flush() pool = Pool(13) pool.map(functools.partial(self.make_tfrecord,output_dir=output_dir),files_data) #list(map(functools.partial(self.make_tfrecord,output_dir=output_dir),files_data)) pool.close() pool.join() print('\nFinished converting the dataset total %d examples.!'%(len(files))) if __name__ == "__main__": dataset_dir = "/media/vghost/Linux/constantData/MachineLearning/mldata/PASCAL/VOCdevkit/VOC2012" output_dir = "/home/vghost/ai/mldata/VOC2012_tfdata" output_name = "train" print('Dataset directory:', dataset_dir) print('Output directory:',output_dir) m = VOCMaker() m.to_tfrecords(dataset_dir, output_dir, output_name)
7,240
srfnef/corrections/normalization/normalization_correct.py
twj2417/srf
0
2170568
# encoding: utf-8 ''' @author: <NAME> @contact: <EMAIL> @software: nef @file: normalization_correct.py @date: 5/8/2019 @desc: ''' from srfnef import nef_class from srfnef.data import Image, Listmode from scipy import interpolate from .amp_x import AmplitudeX from .amp_z import AmplitudeZ import numpy as np @nef_class class NormalizationCorrect: amp_x: AmplitudeX amp_z: AmplitudeZ def __call__(self, image: Image) -> Image: fr = interpolate.interp1d(self.amp_x.ux, self.amp_x.ax, fill_value = 'extrapolate') x = np.arange(image.shape[0]) * image.unit_size[0] + image.center[0] - image.size[0] / 2 y = np.arange(image.shape[1]) * image.unit_size[1] + image.center[1] - image.size[1] / 2 x1, y1 = np.meshgrid(x, y, indexing = 'ij') r = np.sqrt(x1 ** 2 + y1 ** 2) mask_r = fr(r) mask_r = mask_r / np.mean(mask_r) fz = interpolate.interp1d(self.amp_z.uz, self.amp_z.az, fill_value = 'extrapolate') z = np.arange(image.shape[2]) * image.unit_size[2] + image.center[2] - image.size[2] / 2 mask_z = fz(np.abs(z)) mask_z = mask_z / np.mean(mask_z) image_out_data = image.data / mask_z ** 2 # image_out_data = (image_out_data.transpose() * mask_r).transpose() return image.update(data = image_out_data) @nef_class class NormalizationAngledCorrect: def __call__(self, listmode: Listmode) -> Listmode: lx = np.abs(listmode.lors.data[:, 0] - listmode.lors.data[:, 3]) ly = np.abs(listmode.lors.data[:, 1] - listmode.lors.data[:, 4]) lz = np.abs(listmode.lors.data[:, 2] - listmode.lors.data[:, 5]) cos_ = np.sqrt(lx ** 2 + ly ** 2 + lz ** 2) / np.sqrt(lx ** 2 + ly ** 2) return listmode * cos_.astype(np.float32)
1,779
Ago-Dic-2017/Ivan Carreon/OrdinarioEquipo/ResHotel/ResHotel/views.py
Arbupa/DAS_Sistemas
41
2167642
from django.shortcuts import render, redirect from django.http import HttpResponse def index(request): return render(request, 'base/index.html') def ee(request): return render(request, 'base/ee.html')
211
Server/src/quadradiusr_server/cron.py
kjarosh/QuadradiusR
6
2170439
import asyncio import logging from quadradiusr_server.config import CronConfig from quadradiusr_server.db.base import Lobby from quadradiusr_server.db.repository import Repository from quadradiusr_server.db.transactions import transaction_context from quadradiusr_server.notification import NotificationService, Notification class Cron: def __init__( self, config: CronConfig, repository: Repository, notification_service: NotificationService) -> None: self.config = config self.repository = repository self.ns = notification_service async def register(self): logging.info('Registering cron jobs') asyncio.create_task(self._cron_purge_game_invites()) asyncio.create_task(self._cron_purge_tokens()) logging.info('Cron jobs registered') async def _cron_purge_game_invites(self): logging.debug('Purging game invites') while True: await asyncio.sleep(self.config.purge_game_invites_delay) await self._purge_game_invites() async def _purge_game_invites(self): async with transaction_context(self.repository.database): gi_repo = self.repository.game_invite_repository old_invites = await gi_repo.get_old_invites() for invite in old_invites: await gi_repo.remove(invite) for subject_id in [invite.from_id_, invite.subject_id_]: await self.repository.synchronize_transaction_on_commit( self.ns.notify_now(Notification( topic='game.invite.removed', subject_id=subject_id, data={ 'game_invite_id': invite.id_, 'reason': 'expired', }, ))) async def _cron_purge_tokens(self): logging.debug('Purging game invites') while True: await asyncio.sleep(self.config.purge_tokens_delay) await self._purge_tokens() async def _purge_tokens(self): async with transaction_context(self.repository.database): at_repo = self.repository.access_token_repository await at_repo.remove_old_tokens() logging.debug('Tokens purged') class SetupService: def __init__( self, repository: Repository) -> None: self.repository = repository async def run_setup_jobs(self): logging.info('Running setup jobs') await self._create_main_lobby() logging.info('Setup jobs finished') async def _create_main_lobby(self): logging.debug('Creating main lobby') async with transaction_context(self.repository.database): lobby_repo = self.repository.lobby_repository if await lobby_repo.get_by_id('@main') is None: main = Lobby( id_='@main', name_='Main', ) await lobby_repo.add(main) logging.debug('Main lobby created')
3,113
ex046.py
thaisouza30/Exercicios-Python3-Curso-em-Video
1
2169698
from time import sleep print('Contagem regressiva para a queima de fogos ') print('-='*15) for contador in range(10, -1, -1): print(contador) sleep(1) print('-='*15) print('Feliz Ano Novo !!!')
208
torm/model/ModelMetaclass.py
cofepy/torm
2
2170437
import collections import urllib.parse from torm.utl.Config import config from torm.utl.Utl import to_snake_name from torm.field import * from torm.builder import MongoBuilder, MysqlBuilder from torm.connection import MongoConnection, MysqlConnection def _connection(config): if config['db_type'] == 'mongo': return MongoConnection(config) if config['db_type'] == 'mysql': return MysqlConnection(config) class ModelMetaclass(type): isinstance = False isclass = True @classmethod def __prepare__(cls, name, bases, **kws): return collections.OrderedDict() # 返回子类 def __new__(cls, name, bases, attrs): ''' name:类名 bases:父类 attrs:类的所有属性字典 ''' if name == 'Model': return type.__new__(cls, name, bases, attrs) # 返回Model类型 model_fields = dict() cls_keys = list(attrs.keys()) for k in cls_keys: if isinstance(attrs[k], Field): model_fields[k] = attrs[k] field = model_fields.keys() attrs['__fields__'] = model_fields # 保存字段的属性 attrs['__field__'] = list(field) # 保存字段名列表 attrs['__config__'] = cls.init_config(cls, name, attrs) # 连接配置 attrs['config'] = attrs['__config__'] attrs['db_name'] = attrs['__config__']['db'] # attrs['table_name'] = attrs['__config__']['table'] # attrs['connection'] = _connection(attrs['__config__']) # 根据数据库类型,继承各数据库的builder dbtype = attrs['__config__']['db_type'] bases = bases + (dict,) if dbtype == 'mongo': builder = MongoBuilder elif dbtype == 'mysql': builder = MysqlBuilder builder.__config__ = attrs['__config__'] builder.table_name = attrs['__config__']['table'] builder.connection = _connection(attrs['__config__']) attrs['builder'] = builder() # attrs['model']= # bases = bases + (builder,) # cls.builder = builder # 使Model同时继承builder return type.__new__(cls, name, bases, attrs) def __init__(self, *args, **kwargs): if self.__name__ != 'Model': self.builder.model = self super().__init__(*args, **kwargs) def init_config(cls, name, attrs): __config = {} # 环境变量配置名称 env_name = attrs.get("__config__", "default") db_type = attrs.get( "__dbtype__", config.env(env_name)('TORM_DB_TYPE')) # 配置名称 __config['config_name'] = env_name # 数据库类型 __config['db_type'] = db_type # 表名 __config['table'] = attrs.get( "__tablename__", to_snake_name(name) ) if db_type == "mysql": __config['charset'] = config.env(env_name)('TORM_CHARSET') __config['host'] = config.env(env_name)('TORM_HOST') __config['port'] = int(config.env(env_name)('TORM_PORT')) __config['db'] = attrs.get( "__dbname__", config.env(env_name)('TORM_DB') ) else: # 数据库连接参数 __config['url'] = config.env(env_name)('TORM_URL', default=None) if not __config['url']: __config['host'] = config.env(env_name)('TORM_HOST') __config['port'] = int(config.env(env_name)('TORM_PORT')) __config['db'] = attrs.get( "__dbname__", config.env(env_name)('TORM_DB') ) else: url_parts = urllib.parse.urlparse(__config['url']) path_parts = url_parts[2].rpartition('/') if path_parts[2]: __config['db'] = attrs.get( "__dbname__", path_parts[2] ) else: __config['db'] = attrs.get( "__dbname__", config.env(env_name)('TORM_DB') ) # 数据库用户名和密码配置 auth = config.env(env_name)("TORM_AUTH", default="off") if auth == "on": __config['user'] = config.env(env_name)('TORM_USER') __config['password'] = config.env(env_name)('<PASSWORD>') return __config def __getattribute__(self, key): if key == "__new__": # return object.__new__(self) # print(self) return dict.__new__(self) try: return object.__getattribute__(self, key) except: return self.builder.__getattribute__(key)
4,624
gdsort_test.py
rennomarcus/gdsort
0
2170517
import unittest from gdsort import SortScript from io import StringIO import sys class TestSortScript(unittest.TestCase): def setUp(self): self.filename = 'test.gd' self.sort_script = SortScript(self.filename) self.function_names = ['_ready', 'func1', 'func2', 'func3', 'process'] def test_get_func_name__should_return_function_name(self): self.assertEqual(self.sort_script.get_func_name('function1():\n'), 'function1', "Function name not returned correctly") def test_parse_script__should_return_functions(self): with open(self.filename, 'r') as f: self.sort_script.parse_script(f) functions = [f.name for f in self.sort_script.functions] self.assertCountEqual(functions, self.function_names, "Not all functions were captured") def test_write_script__output_should_return_as_golden_file(self): # Sort the functions before we write. This is done in exec() self.sort_script.sort_functions() # Capture the output of our function mock_output = StringIO() self.sort_script.write_script(mock_output) self.assertEqual(mock_output.getvalue(), self.get_golden_data()) def get_golden_data(self): data = '' with open('golden_file.gd', 'r') as f: data = f.read() return data if __name__ == '__main__': unittest.main()
1,412
args_det.py
idrispendisbey/cnn-surrogate
79
2169464
import argparse import torch import json import random from pprint import pprint from utils.misc import mkdirs # always uses cuda if avaliable class Parser(argparse.ArgumentParser): def __init__(self): super(Parser, self).__init__(description='Dense Convolutional Encoder-Decoder Networks') self.add_argument('--exp-name', type=str, default='deterministic', help='experiment name') self.add_argument('--exp-dir', type=str, default="./experiments", help='directory to save experiments') self.add_argument('--post', action='store_true', default=False, help='post training analysis') # network self.add_argument('--blocks', type=list, default=[3, 6, 3], help='list of number of layers in each dense block') self.add_argument('--growth-rate', type=int, default=16, help='number of output feature maps of each conv layer within each dense block') self.add_argument('--init-features', type=int, default=48, help='number of initial features after the first conv layer') self.add_argument('--drop-rate', type=float, default=0., help='dropout rate') self.add_argument('--bn-size', type=int, default=8, help='bottleneck size: bn_size * growth_rate') self.add_argument('--bottleneck', action='store_true', default=False, help='enables bottleneck design in the dense blocks') # data self.add_argument('--data-dir', type=str, default="./dataset", help='directory to dataset') self.add_argument('--kle', type=int, default=4225, help='num of KLE terms') self.add_argument('--ntrain', type=int, default=512, help="number of training data") self.add_argument('--ntest', type=int, default=500, help="number of test data") # training self.add_argument('--epochs', type=int, default=200, help='number of epochs to train (default: 200)') self.add_argument('--lr', type=float, default=3e-3, help='learnign rate') # self.add_argument('--lr-scheduler', type=str, default='plateau', help="scheduler, plateau or step") self.add_argument('--weight-decay', type=float, default=5e-4, help="weight decay") self.add_argument('--batch-size', type=int, default=16, help='input batch size for training (default: 16)') self.add_argument('--test-batch-size', type=int, default=100, help='input batch size for testing (default: 100)') self.add_argument('--seed', type=int, default=1, help='manual seed used in Tensor') # logging self.add_argument('--ckpt-epoch', type=int, default=None, help='which epoch of checkpoints to be loaded in post mode') self.add_argument('--ckpt-freq', type=int, default=200, help='how many epochs to wait before saving model') self.add_argument('--log-freq', type=int, default=2, help='how many epochs to wait before logging training status') self.add_argument('--plot-freq', type=int, default=100, help='how many epochs to wait before plotting test output') self.add_argument('--plot-fn', type=str, default='contourf', choices=['contourf', 'imshow'], help='plotting method') def parse(self): args = self.parse_args() args.run_dir = args.exp_dir + '/' + args.exp_name \ + '/kle{}/ntrain{}_blocks{}_growth{}_nif{}_drop{}_batch{}_lr{}_wd{}_epochs{}'.format( args.kle, args.ntrain, args.blocks, args.growth_rate, args.init_features, args.drop_rate, args.batch_size, args.lr, args.weight_decay, args.epochs ) args.ckpt_dir = args.run_dir + '/checkpoints' mkdirs([args.run_dir, args.ckpt_dir]) assert args.epochs % args.ckpt_freq == 0, 'epochs must'\ 'be dividable by ckpt_freq' # seed if args.seed is None: args.seed = random.randint(1, 10000) print("Random Seed: ", args.seed) random.seed(args.seed) torch.manual_seed(args.seed) print('Arguments:') pprint(vars(args)) if not args.post: with open(args.run_dir + "/args.txt", 'w') as args_file: json.dump(vars(args), args_file, indent=4) return args # global args = Parser().parse() device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
4,340
tools/tags_validator_main.py
vasudevgupta7/tfhub.dev
48
2170230
# Copyright 2021 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """YAML validator for tag definition files. 1) To validate all tag definition files, run: $ python tools/tags_validator.py 2) To validate selected files, pass their relative paths: $ python tools/tags_validator.py tags/dataset.yml [other_files] Use the --root_dir flag to validate tag files outside of the current project. TODO(b/182137324): Merge with test_tag_configs.py once `bazel test` can be used. """ import argparse import os import sys from absl import app from absl import logging import tags_validator FLAGS = None def main(_): root_dir = FLAGS.root_dir or os.getcwd() documentation_dir = os.path.join(root_dir, "tags") logging.info("Using %s for documentation directory.", documentation_dir) file_to_error = dict() if FLAGS.file: logging.info("Going to validate files %s in documentation directory %s.", FLAGS.file, documentation_dir) files_to_validate = [os.path.join(documentation_dir, f) for f in FLAGS.file] file_to_error = tags_validator.validate_tag_files(files_to_validate) else: logging.info("Going to validate all files in documentation directory %s.", documentation_dir) file_to_error = tags_validator.validate_tag_dir(documentation_dir) if file_to_error: logging.error("The following files contain issues: %s", file_to_error) else: logging.info("Successfully validated all files.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "file", type=str, default=None, help=("Path to files to validate. Path is relative to `--root_dir`."), nargs="*") parser.add_argument( "--root_dir", type=str, default=None, help=("Root directory that contains tag definition files under " "./tags. Defaults to current directory.")) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
2,621
example/migrations/0008_auto_20191125_1223.py
arturoless/django_rest
0
2169989
# Generated by Django 2.1.14 on 2019-11-25 18:23 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('example', '0007_career'), ] operations = [ migrations.RemoveField( model_name='career', name='delete', ), migrations.RemoveField( model_name='person', name='delete', ), ]
420
Algorithm Analysis and Design/fibonacci.py
tolgahanakgun/School-Projects
0
2170224
''' Created on 31 May 2016 @author: TOLGAHAN ''' def fib(x): if x == 0: return 0 if x == 1: return 1 else: return fib(x-1) + fib(x-2) print fib(50)
185
mooringlicensing/migrations/0160_auto_20210618_1609.py
jawaidm/mooringlicensing
0
2170150
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2021-06-18 08:09 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mooringlicensing', '0159_merge_20210617_1552'), ] operations = [ migrations.AlterModelOptions( name='numberofdayssetting', options={'ordering': ['-date_of_enforcement']}, ), migrations.AlterModelOptions( name='numberofdaystype', options={'verbose_name': 'Number of days Settings', 'verbose_name_plural': 'Number of days Settings'}, ), ]
651
Final_Project/Dashboard/py_files/plotly_bar_frequency.py
JKocher13/DataZCW-Final-Project
0
2168780
import sqlalchemy import pymysql from sqlalchemy import create_engine from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from dash_table import DataTable from dash_table.FormatTemplate import Format from matplotlib import rcParams from plotly.subplots import make_subplots from wordcloud import WordCloud, STOPWORDS import collections import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.graph_objs as go import plotly.express as px import re app1 = dash.Dash(__name__) app1 = dash.Dash(external_stylesheets=[dbc.themes.CYBORG]) # DARKLY, LUX, SOLAR, FLATLY, MINTY, CYBORG # ------------------------------------------------------------------------------ # Import and clean data (importing csv into pandas) engine = create_engine('mysql+pymysql://root:zipcoder@localhost/twitter') twitter_df = pd.read_sql("sentiments", con = engine) twitter_df = twitter_df.drop_duplicates() # ------------------------------------------------------------------------------ # App layout app1.layout = html.Div([ html.H1("Covid-19 Sentiment Dasboard", style={'text-align': 'center'}), dcc.Dropdown(id="select_count", options=[ {"label": "5 Most Freq. Words", "value": 5}, {"label": "10 Most Freq. Words", "value": 10}, {"label": "25 Most Freq. Words", "value": 25}, {"label": "50 Most Freq. Words", "value": 50}, {"label": "75 Most Freq. Words", "value": 75}, {"label": "100 Most Freq. Words", "value": 100}], multi=False, value=5, style={'width': "40%"} ), html.Div(id='output_container', children=[]), html.Br(), dcc.Graph(id='sentiment_map', figure={}) ]) # ------------------------------------------------------------------------------ # Connect the Plotly graphs with Dash Components @app1.callback( [Output(component_id='output_container', component_property='children'), Output(component_id='sentiment_map', component_property='figure')], [Input(component_id='select_count', component_property='value')] ) def update_graph(option_select): container = f"Current sentiment being shown: {option_select}" dff = twitter_df.copy() words = [] counts = [] # most_common word amout x = option_select # gather all tweets all_words = ' '.join(dff['text'].str.lower()) #remove links, #hashtags, @, : cleaned_words = re.sub(r'http\S+', '', all_words) cleaned_word1 = re.sub(r"#(\w+)", ' ', cleaned_words, flags=re.MULTILINE) cleaned_word2 = re.sub(r"@(\w+)", ' ', cleaned_word1, flags=re.MULTILINE) cleaned_tweets = re.sub(r" : (\w+)", ' ', cleaned_word2, flags=re.MULTILINE) # Stop Words stopwords = list(STOPWORDS) + ["made","-","&","covid19.", "coronavirus", "covid-19","#covid19","covid", "#coronavirus", "now", "rt", "covid19", 'to', 'say', 'sort', 'right', 'now'] # Filter Words filtered_words = [word for word in cleaned_words.split() if word not in stopwords] # Counted words counted_words = collections.Counter(filtered_words) # Four loop to count most common for letter, count in counted_words.most_common(x): words.append(letter) counts.append(count) #df to be read by px word_freq_df = pd.DataFrame(list(zip(words, counts)), columns =['word', 'count']) # most occuring word most_occuring = word_freq_df.nlargest(1, ['count']) # string m_o = most_occuring['word'].item() #containter to return call back container = f"{option_select} Most Frequently Used Words\n Most Frequent Word was {m_o}" # Bar Graph fig = px.bar(word_freq_df, x='word', y='count', hover_data=['count', 'word'], color='count', labels={'words':'Words'}, height=400, orientation='v') return container, fig # ------------------------------------------------------------------------------ if __name__ == '__main__': app1.run_server(port=8054,debug=True)
4,350
Python_Heapq.py
BrettLampson/its-python
0
2170203
import heapq from pprint import pprint # ---------------------------------------------------------------------------------------------- # # LIST of the largest or smallest N items in a collection # heapq module does exactly that nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] # print(heapq.nlargest(3, nums)) # Prints [42, 37, 23] # print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2] # Both functions also accept a key parameter that allows them to be used with more # complicated data structures. For example: # portfolio = [ # {'name': 'IBM', 'shares': 100, 'price': 91.1}, # {'name': 'AAPL', 'shares': 50, 'price': 543.22}, # {'name': 'FB', 'shares': 200, 'price': 21.09}, # {'name': 'HPQ', 'shares': 35, 'price': 31.75}, # {'name': 'YHOO', 'shares': 45, 'price': 16.35}, # {'name': 'ACME', 'shares': 75, 'price': 115.65} # ] # cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price']) # expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price']) # pprint(cheap) # print('-'*65) # pprint(expensive) # ---------------------------------------------------------------------------------------------- # # MAKING A PRIORITY QUEUE import heapq class PriorityQueue: def __init__(self): self._queue = [] self._index = 0 def push(self, item, priority): heapq.heappush(self._queue, (-priority, self._index, item)) self._index += 1 def pop(self): return heapq.heappop(self._queue)[-1] class Item: def __init__(self, name): self.name = name def __repr__(self): return 'Item({!r})'.format(self.name) q = PriorityQueue() q.push(Item('foo'), 3) q.push(Item('bar'), 5) q.push(Item('spam'), 4) q.push(Item('grok'), 1) for i in range(5): print(q.pop()) # print(q.pop()) # print(q.pop()) # print(q.pop()) # print(q.pop())
1,861
Code Forces/Problem Set/B/jeff_and_periods.py
mishrakeshav/Competitive-Programming
2
2169816
n = int(input()) a = list(map(int,input().split())) v = dict() for i in range(n): x = a[i] if x in v: v[x] = [i,-1 if v[x][1] and i - v[x][0] != v[x][1] else i - v[x][0]] else: v[x] = (i,0) b = [(x,v[x][1]) for x in sorted(v.keys()) if v[x][1] >=0] print(len(b)) for x,p in b: print(x,p)
319
classification/models/__init__.py
SACGF/variantgrid
5
2170561
from classification.models.discordance_models import * from classification.models.classification import * from classification.models.classification_allele_hooks import * # so we load the receivers from classification.models.classification_discordance_hooks import * # so we load the receivers from classification.models.classification_ref import * from classification.models.classification_share_flag_hooks import * # so we load the receivers from classification.models.classification_user_hooks import * # so we load the receivers from classification.models.classification_notification_hooks import * from classification.models.classification_variant_fields_validation import * # so we load the receivers from classification.models.variant_models import * from classification.models.condition_text_matching import * from classification.models.clinvar_export_models import * from classification.models.classification_report_models import * from classification.models.upload_file_lab import * from classification.models.clinvar_export_exclude_utils import * # so we load the receivers
1,090
demo2.py
scottslowe/2017-denver-npug-meeting
0
2170130
#!/usr/bin/env python # Import the necessary modules import napalm import json # Define dictionaries for devices veos01 = { 'hostname': '127.0.0.1', 'username': 'admin', 'password': '<PASSWORD>', 'optional_args': { 'port': 14431 } } veos02 = { 'hostname': '127.0.0.1', 'username': 'admin', 'password': '<PASSWORD>', 'optional_args': { 'port': 14432 } } # Create a list of all devices all_devices = [veos01, veos02] # Loop over all the devices, retrieve the configuration, and # write the configuration to a file for a_device in all_devices: driver = napalm.get_network_driver('eos') device = driver(**a_device) device.open() output = json.dumps(device.get_config(retrieve=u'running')) formatstr = '{ip}-{port}-{type}.json' filename = formatstr.format(ip=a_device['hostname'], port=a_device['optional_args']['port'], type='arista_eos') with open(filename,'w') as text_file: text_file.write(output) device.close()
989
jianzhi_offer_47.py
JasonLeeSJTU/Algorithms_Python
2
2168955
#!/usr/bin/env python # encoding: utf-8 ''' @author: <NAME> @license: (C) Copyright @ <NAME> @contact: <EMAIL> @file: jianzhi_offer_47.py @time: 2019/5/15 15:04 @desc: ''' class Solution: def Add(self, num1, num2): # 异或:两数相加,不考虑进位 # 与: 进位的位置(左移一位) while num2: sum = num1 ^ num2 carry = (num1 & num2) << 1 num1 = sum & 0xffffffff #转化为无符号二进制 num2 = carry & 0xffffffff # 负数的第32位是1,正数是0 return num1 if num1 >> 31 == 0 else ~(num1 ^ 0xffffffff) # 或者是 num1 - 0xffffffff - 1, 4294967296 if __name__ == '__main__': res = Solution() a = res.Add(111, 899) print(a)
671
src/data_analysis/retrievers.py
otimgren/centrex-data-analysis
0
2170548
""" Contains classes for retrieving data from file (or wherever it's stored) """ from abc import ABC, abstractmethod from dataclasses import dataclass from pathlib import Path from typing import List, Union import h5py import numpy as np import pandas as pd from pandas.core.frame import DataFrame @dataclass class Retriever(ABC): """ Abstract parent class for data retrievers """ @abstractmethod def retrieve_data(self) -> pd.DataFrame: """ Retrieves data from file """ class SPARetriever(Retriever): """ Retriever used with SPA test data """ def retrieve_data( self, filepath: Union[Path, str], run_name: Union[str, int], camera_path: str = "camera_test", NI_DAQ_path: str = "readout", scan_param: str = None, muwave_shutter=True, scan_param_new_name: str = None, ) -> pd.DataFrame: """ Reterieves SPA test data from file """ # Retrieve camera data df_CAM = self.retrieve_camera_data(filepath, run_name, camera_path) # Retrieve DAQ data df_DAQ = self.retrieve_NI_DAQ_data( filepath, run_name, NI_DAQ_path, scan_param, muwave_shutter ) # Merge dataframes df = df_CAM.merge(df_DAQ, left_index=True, right_index=True) # If needed, give scan parameter a new name if scan_param_new_name: df.rename(mapper={scan_param: scan_param_new_name}, inplace=True, axis=1) # Remove lines where camera returned all zeros df = df[~df["CameraData"].apply(lambda x: np.allclose(x, np.zeros(x.shape)))] # Store run name in metadata of dataframe df.attrs["run_name"] = run_name # Return merged dataframe return df def retrieve_camera_data( self, filepath: Union[Path, str], run_name: Union[str, int], camera_path: str ) -> pd.DataFrame: """ Loads camera data from hdf file. """ # Initialize containers for camera images and their timestamps camera_data = [] camera_time = [] # If run_name given as an index, get the string version if type(run_name) == int: run_name = self.get_run_names(filepath)[run_name] # Determine the path to data within the hdf file data_path = f"{run_name}/{camera_path}/PIProEM512Excelon" # Open hdf file with h5py.File(filepath, "r") as f: # Loop over camera images (1 image per molecule pulse) for dataset_name in f[data_path]: if "events" not in dataset_name: n = int(dataset_name.split("_")[-1]) camera_data.append(f[data_path][dataset_name][()]) camera_time.append(f[data_path][dataset_name].attrs[f"timestamp"]) # Convert lists into a dataframe and return it dataframe = pd.DataFrame( data={"CameraTime": camera_time, "CameraData": camera_data} ) return dataframe def retrieve_NI_DAQ_data( self, filepath: Union[Path, str], run_name: Union[str, int], NI_DAQ_path: str, scan_param: str = None, muwave_shutter=True, ) -> pd.DataFrame: """ Retrieves data obtained using the NI5171 PXIe DAQ """ # Define which channel on DAQ corresponds to which data yag_ch = 0 # Photodiode observing if YAG fired abs_pd_ch = 2 # Photodiode observing absorption outside cold cell abs_pd_norm_ch = ( 3 # Photodiode to normalize for laser intensity fluctuations in absorption ) rc_shutter_ch = 4 # Tells if rotational cooling laser shutter is open or closed rc_pd_ch = 5 # Photodiode for checking that rotaional cooling is on muwave_shutter_ch = 6 # Tells if SPA microwaves are on or off # Initialize containers for data DAQ_data = [] DAQ_time = [] DAQ_attrs = [] # If run_name given as an index, get the string version if type(run_name) == int: run_name = self.get_run_names(filepath)[run_name] # Determine path to data within the hdf file data_path = f"{run_name}/{NI_DAQ_path}/PXIe-5171" # Open hdf file with h5py.File(filepath, "r") as f: # Loop over camera images (1 image per molecule pulse) for dataset_name in f[data_path]: if "events" not in dataset_name: n = int(dataset_name.split("_")[-1]) DAQ_data.append(f[data_path][dataset_name][()]) DAQ_time.append(f[data_path][dataset_name].attrs["ch0 : timestamp"]) DAQ_attrs.append( { key: value for key, value in f[data_path][dataset_name].attrs.items() } ) # Convert lists to dataframes data_dict = { "YAGPD": [dataset[:, yag_ch] for dataset in DAQ_data], "AbsPD": [dataset[:, abs_pd_ch] for dataset in DAQ_data], "AbsNormPD": [dataset[:, abs_pd_norm_ch] for dataset in DAQ_data], "RCShutter": [dataset[:, rc_shutter_ch] for dataset in DAQ_data], "RCPD": [dataset[:, rc_pd_ch] for dataset in DAQ_data], "DAQTime": DAQ_time, } # If microwave shutter was used, need that if muwave_shutter: data_dict["MicrowaveShutter"] = [ dataset[:, muwave_shutter_ch] for dataset in DAQ_data ] # If scan parameter was specified, get data for that if scan_param: data_dict[scan_param] = [dataset[scan_param] for dataset in DAQ_attrs] # Convert dictionary to dataframe and return it dataframe = pd.DataFrame(data=data_dict) return dataframe def get_run_names(self, filepath: Union[Path, str]) -> List[str]: """ Gets the names of the datasets stored in a given file """ with h5py.File(filepath, "r") as f: keys = list(f.keys()) return keys def print_run_names(self, filepath: Union[Path, str]) -> None: """ Prints the names of the datasets stored in the given file """ # Get dataset names keys = self.get_run_names(filepath) # Print dataset names print("Dataset names:") for i, key in enumerate(keys): print(f"{i} -- {key}")
6,584
tests/00-pymod_basics/005-add_1_to_arg/test_add_1_to_arg.py
nandub/nim-pymod
256
2169568
def test_0_compile_pymod_test_mod(pmgen_py_compile): pmgen_py_compile(__name__) def test_cfloatAdd1ToArg(pymod_test_mod): arg = 1.0 res = pymod_test_mod.cfloatAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_cdoubleAdd1ToArg(pymod_test_mod): arg = 1.0 res = pymod_test_mod.cdoubleAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_cshortAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.cshortAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_cintAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.cintAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_clongAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.clongAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_cushortAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.cushortAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_cuintAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.cuintAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_culongAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.culongAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_floatAdd1ToArg(pymod_test_mod): arg = 1.0 res = pymod_test_mod.floatAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_float32Add1ToArg(pymod_test_mod): arg = 1.0 res = pymod_test_mod.float32Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_float64Add1ToArg(pymod_test_mod): arg = 1.0 res = pymod_test_mod.float64Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_intAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.intAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) # TODO #def test_int8Add1ToArg(pymod_test_mod): # arg = 1 # res = pymod_test_mod.int8Add1ToArg(arg) # assert res == (arg + 1) # assert type(res) == type(arg) def test_int16Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.int16Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_int32Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.int32Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_int64Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.int64Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_uintAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.uintAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_uint8Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.uint8Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_uint16Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.uint16Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_uint32Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.uint32Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_uint64Add1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.uint64Add1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) # TODO #def test_boolAdd1ToArg(pymod_test_mod): # arg = True # res = pymod_test_mod.boolAdd1ToArg(arg) # assert res == (arg + 1) # assert type(res) == type(arg) def test_byteAdd1ToArg(pymod_test_mod): arg = 1 res = pymod_test_mod.byteAdd1ToArg(arg) assert res == (arg + 1) assert type(res) == type(arg) def test_ccharAdd1ToArg(pymod_test_mod, python_major_version): # Python 3 or above: bytes vs strings, yay! arg = b"a" if python_major_version >= 3 else "a" expectedRes = b"b" if python_major_version >= 3 else "b" res = pymod_test_mod.ccharAdd1ToArg(arg) assert res == expectedRes assert type(res) == type(expectedRes) assert type(res) == type(arg) def test_charAdd1ToArg(pymod_test_mod, python_major_version): # Python 3 or above: bytes vs strings, yay! arg = b"a" if python_major_version >= 3 else "a" expectedRes = b"b" if python_major_version >= 3 else "b" res = pymod_test_mod.charAdd1ToArg(arg) assert res == expectedRes assert type(res) == type(expectedRes) assert type(res) == type(arg) def test_stringAdd1ToArg(pymod_test_mod): arg = "abc" expectedRes = arg + "def" res = pymod_test_mod.stringAdd1ToArg(arg) assert res == expectedRes assert type(res) == type(expectedRes) assert type(res) == type(arg) # TODO #def test_unicodeRuneAdd1ToArg(pymod_test_mod, python_major_version): # arg = "a" if python_major_version >= 3 else u"a" # expectedRes = "b" if python_major_version >= 3 else u"b" # res = pymod_test_mod.unicodeRuneAdd1ToArg(arg) # assert res == expectedRes # assert type(res) == type(expectedRes) # assert type(res) == type(arg) # TODO #def test_seqCharAdd1ToArg(pymod_test_mod, python_major_version): # # Python 3 or above: bytes vs strings, yay! # arg = b"abc" if python_major_version >= 3 else "abc" # expectedRes = (arg + b"def") if python_major_version >= 3 else (arg + "def") # res = pymod_test_mod.seqCharAdd1ToArg(arg) # assert res == expectedRes # assert type(res) == type(expectedRes) # assert type(res) == type(arg) # TODO #def test_seqRuneAdd1ToArg(pymod_test_mod, python_major_version): # arg = "abc" if python_major_version >= 3 else u"abc" # expectedRes = (arg + "def") if python_major_version >= 3 else (arg + u"def") # res = pymod_test_mod.seqRuneAdd1ToArg(arg) # assert res == expectedRes # assert type(res) == type(expectedRes) # assert type(res) == type(arg)
5,987
Leetcode/hard/regular-expression-matching.py
jen-sjen/data-structures-basics-leetcode
6
2170093
""" # REGULAR EXPRESSION MATCHING Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a" Output: false Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*" Output: true Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*" Output: true Explanation: ".*" means "zero or more (*) of any character (.)". Example 4: Input: s = "aab", p = "c*a*b" Output: true Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab". Example 5: Input: s = "mississippi", p = "mis*is*p*." Output: false Constraints: 0 <= s.length <= 20 0 <= p.length <= 30 s contains only lowercase English letters. p contains only lowercase English letters, '.', and '*'. It is guaranteed for each appearance of the character '*', there will be a previous valid character to match. """ class Solution: def isMatch(self, s: str, p: str) -> bool: table = [[None for _ in range(len(p) + 1)] for _ in range(len(s) + 1)] table[0][0] = True for row in range(1, len(s) + 1): table[row][0] = False for col in range(1, len(p) + 1): if p[col - 1] == "*": table[0][col] = table[0][col - 2] else: table[0][col] = False for row in range(1, len(s) + 1): for col in range(1, len(p) + 1): if p[col - 1] == ".": table[row][col] = table[row - 1][col - 1] elif p[col - 1] != "*": table[row][col] = table[row - 1][col - 1] and s[row - 1] == p[col - 1] else: if p[col - 2] == ".": table[row][col] = table[row][col - 1] or table[row][col - 2] or table[row - 1][col - 1] or table[row - 1][col] else: table[row][col] = table[row][col - 1] or table[row][col - 2] or (table[row - 1][col - 1] and p[col - 2] == s[row - 1]) for row in range(len(s) + 1): print(table[row]) return table[-1][-1]
2,498
apps/DeepFaceLive/ui/widgets/QErrorCSWError.py
kitiv/DeepFaceLive
4
2170635
from typing import Union from PyQt6.QtCore import * from PyQt6.QtGui import * from PyQt6.QtWidgets import * from resources.fonts import QXFontDB from resources.gfx import QXImageDB from xlib import qt as lib_qt from xlib.mp import csw as lib_csw from .QCSWControl import QCSWControl class QErrorCSWError(QCSWControl): """ Implements lib_csw.Error control as widget """ def __init__(self, csw_error : lib_csw.Error.Client): if not isinstance(csw_error, lib_csw.Error.Client): raise ValueError('csw_error must be an instance of Error.Client') super().__init__(csw_control=csw_error) self._csw_error = csw_error csw_error.call_on_error(self._on_csw_error) label_warning = self._label_warning = lib_qt.QXLabel(image=QXImageDB.warning_outline('red'), scaled_contents=True, size_policy=(QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Fixed), fixed_size=(32,32), ) label = self._label = lib_qt.QXLabel(font=QXFontDB.get_default_font(size=7), word_wrap=True) bar = lib_qt.QXFrame(layout=lib_qt.QXHBoxLayout( [ lib_qt.QXWidget(layout=lib_qt.QXHBoxLayout([label_warning]), size_policy=(QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Minimum)) , lib_qt.QXWidget(layout=lib_qt.QXHBoxLayout([label])) ], spacing=0) ) self.setLayout(lib_qt.QXHBoxLayout([bar])) self.hide() def _on_csw_state_change(self, state): super()._on_csw_state_change(state) if state == lib_csw.Control.State.DISABLED: self._label.setText(None) def _on_csw_error(self, text: Union[str,None]): self._label.setText(text)
1,976
codeforces/contests/313/D.py
harry-7/mycodes
1
2169868
def F(s): if len(s)%2==1:return s s1 = F(s[:len(s)//2]) s2 = F(s[len(s)//2:]) if s1 < s2:return s1 + s2 return s2 + s1 if F(input()) == F(input()): print("YES") else: print("NO")
207
src/losses.py
huyhoang17/kuzushiji_recognition
16
2170514
from tensorflow.keras import losses from tensorflow.keras import backend as K def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred = K.cast(y_pred, 'float32') y_pred_f = K.cast(K.greater(K.flatten(y_pred), 0.5), 'float32') intersection = y_true_f * y_pred_f score = 2. * K.sum(intersection) / (K.sum(y_true_f) + K.sum(y_pred_f)) return score def dice_loss(y_true, y_pred): smooth = 1. y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = y_true_f * y_pred_f score = (2. * K.sum(intersection) + smooth) / \ (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) return 1. - score def bce_dice_loss(y_true, y_pred): return losses.binary_crossentropy(y_true, y_pred) + \ dice_loss(y_true, y_pred) def bce_logdice_loss(y_true, y_pred): return losses.binary_crossentropy(y_true, y_pred) - \ K.log(1. - dice_loss(y_true, y_pred))
936
client/agc_monitor/instruction_register.py
vandersonpc/agc_monitor
14
2170268
from PySide2.QtWidgets import QWidget, QFrame, QVBoxLayout, QHBoxLayout, QGridLayout, QLineEdit, QLabel from PySide2.QtGui import QFont, QColor from PySide2.QtCore import Qt from collections import OrderedDict from indicator import Indicator import usb_msg as um import agc STATUS_INDS = OrderedDict([ ('iip', 'IIP'), ('inhl', 'INHL'), ('inkl', 'INKL'), ('ld', 'LD'), ('chld', 'CHLD'), ('rd', 'RD'), ('chrd', 'CHRD'), ]) class InstructionRegister(QWidget): def __init__(self, parent, usbif, color): super().__init__(parent) self._br_inds = [] self._st_inds = [] self._sq_inds = [] self._status_inds = {} self._setup_ui(color) usbif.poll(um.ReadMonRegI()) usbif.poll(um.ReadMonRegStatus()) usbif.poll(um.ReadStatusPeripheral()) usbif.listen(self) def handle_msg(self, msg): if isinstance(msg, um.MonRegI): self.set_i_values(msg.br, msg.st, msg.sqext, msg.sq) elif isinstance(msg, um.MonRegStatus): self._status_inds['iip'].set_on(msg.iip) self._status_inds['inhl'].set_on(msg.inhl) self._status_inds['inkl'].set_on(msg.inkl) elif isinstance(msg, um.StatusPeripheral): self._status_inds['ld'].set_on(msg.ld) self._status_inds['chld'].set_on(msg.chld) self._status_inds['rd'].set_on(msg.rd) self._status_inds['chrd'].set_on(msg.chrd) def set_i_values(self, br, st, sqext, sq): self._set_reg_value(self._br_inds, self._br_value, br) self._set_reg_value(self._st_inds, self._st_value, st) self._set_reg_value(self._sq_inds, self._sq_value, (sqext << 5) | sq) self._inst_value.setText(agc.disassemble_subinst(sqext, sq, st)) def _setup_ui(self, color): # Set up our basic layout layout = QHBoxLayout(self) self.setLayout(layout) layout.setSpacing(3) layout.setMargin(1) # Construct register groups for BR, ST, and SQ br_frame, self._br_value = self._create_reg(self._br_inds, 'BR', 2, color) st_frame, self._st_value = self._create_reg(self._st_inds, 'ST', 3, color) sq_frame, self._sq_value = self._create_reg(self._sq_inds, 'SQ', 7, color) layout.addWidget(br_frame) layout.addWidget(st_frame) layout.addWidget(sq_frame) stat_group = QWidget(self) layout.addWidget(stat_group) stat_layout = QGridLayout(stat_group) stat_layout.setMargin(0) stat_layout.setSpacing(0) col = 0 for name, label in STATUS_INDS.items(): self._status_inds[name] = self._create_status_light(label, stat_group, stat_layout, col) col += 1 # Create a grouping widget for the I label and decoded instruction value box label_value = QWidget(self) lv_layout = QHBoxLayout(label_value) lv_layout.setSpacing(3) lv_layout.setMargin(1) lv_layout.setContentsMargins(0, 32, 0, 0) label_value.setLayout(lv_layout) layout.addWidget(label_value) # Create a value box for displaying the overall decoded instruction self._inst_value = QLineEdit(label_value) self._inst_value.setReadOnly(True) self._inst_value.setMaximumSize(65, 32) self._inst_value.setText('TC0') font = QFont('Monospace') font.setStyleHint(QFont.TypeWriter) font.setPointSize(10) self._inst_value.setFont(font) self._inst_value.setAlignment(Qt.AlignCenter) lv_layout.addWidget(self._inst_value) # Create a label to show 'I' label = QLabel('I', label_value) font = label.font() font.setPointSize(14) font.setBold(True) label.setFont(font) lv_layout.addWidget(label) # Add some spacing to account for lack of parity indicators layout.addSpacing(52) def _set_reg_value(self, inds, value_box, x): # Generic function to display in octal the value of a register, with the # appropriate number of digits for i in range(0, len(inds)): inds[i].set_on((x & (1 << i)) != 0) fmt_string = '%%0%oo' % int((len(inds)+2)/3) value_box.setText(fmt_string % x) def _create_reg(self, ind_list, name, width, color): # Create a widget to hold the register's bits reg_widget = QWidget(self) reg_layout = QVBoxLayout(reg_widget) reg_widget.setLayout(reg_layout) reg_layout.setSpacing(0) reg_layout.setMargin(0) # Create a widget to hold the register's label and value textbox label_value = QWidget(reg_widget) lv_layout = QHBoxLayout(label_value) label_value.setLayout(lv_layout) lv_layout.setSpacing(1) lv_layout.setMargin(0) reg_layout.addWidget(label_value) # Create a label to show the register's name reg_label = QLabel(name, label_value) reg_label.setAlignment(Qt.AlignCenter) font = reg_label.font() font.setPointSize(8) reg_label.setFont(font) lv_layout.addWidget(reg_label) # Create a textbox to show the register's value in octal n_digits = int((width+2)/3) if n_digits == 1: value_width = 25 elif n_digits == 2: value_width = 30 else: value_width = 45 reg_value = QLineEdit(label_value) reg_value.setReadOnly(True) reg_value.setMaximumSize(value_width, 32) reg_value.setText(n_digits * '0') font = QFont('Monospace') font.setStyleHint(QFont.TypeWriter) font.setPointSize(10) reg_value.setFont(font) reg_value.setAlignment(Qt.AlignCenter) lv_layout.addWidget(reg_value) # Create a frame to hold the register's bits bit_frame = QFrame(reg_widget) bit_layout = QHBoxLayout(bit_frame) bit_layout.setSpacing(1) bit_layout.setMargin(0) bit_frame.setLayout(bit_layout) bit_frame.setFrameStyle(QFrame.StyledPanel | QFrame.Raised) # Add indicators for each bit in the register, from MSB to LSB for i in range(width, 0, -1): ind = Indicator(bit_frame, color) ind.setFixedSize(20, 32) bit_layout.addWidget(ind) ind_list.insert(0, ind) # Add separators between each group of 3 bits if (i > 1) and ((i % 3) == 1): sep = QFrame(bit_frame) sep.setFrameStyle(QFrame.VLine | QFrame.Raised) bit_layout.addWidget(sep) reg_layout.addWidget(bit_frame) return reg_widget, reg_value def _create_status_light(self, name, parent, layout, col): label = QLabel(name, parent) label.setAlignment(Qt.AlignBottom | Qt.AlignCenter) label.setFixedSize(30,20) font = label.font() font.setPointSize(8) label.setFont(font) layout.addWidget(label, 1, col) layout.setAlignment(label, Qt.AlignBottom) # Add an indicator to show inhibit state ind = Indicator(parent, QColor(0, 255, 255)) ind.setFixedSize(20, 20) layout.addWidget(ind, 2, col) layout.setAlignment(ind, Qt.AlignCenter) return ind
7,379
Python-For-Everyone-Horstmann/Chapter6-Lists/P6.20.py
islayy/Books-solutions
0
2168212
# Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3, . . ., square n is a # magic square if the sum of the elements in each row, in each column, and in the two # diagonals is the same value. # Write a program that reads in 16 values from the keyboard and tests whether they # form a magic square when put into a 4 × 4 table. You need to test two features: # 1. Does each of the numbers 1, 2, ..., 16 occur in the user input? # 2. When the numbers are put into a square, are the sums of the rows, columns, # and diagonals equal to each other? # IMPORT from sys import exit # FUNCTIONS # main def main(): square_list = [] # input print("Enter 16 values: ") for i in range(16): inputN = int(input()) square_list.append(inputN) # check if the numbers from 1 to 16 occur exactly once for i in range(1, 17): found = False for j in range(len(square_list)): if found == False: if square_list[j] == i: found = True if found == False: print(i, "not in the matrix") # magic square matrix magicSquare = [[0 for x in range(4)] for x in range(4) ] # construct a matrix from square_list for i in range(4): for j in range(4): magicSquare[i][j] = square_list[i * 4 + j] sumMatrix = 0 # sum each row for i in range(4): total = 0 for j in range(4): total += magicSquare[i][j] if i == 0: sumMatrix = total elif sumMatrix != total: exit("Not a magic square") # sum each column for i in range(4): total = 0 for j in range(4): total += magicSquare[j][i] if sumMatrix != 0: exit("Not a magic square") # sum first diagonal total = 0 for i in range(4): total += magicSquare[i][i] if sumMatrix != total: exit("Not a magic square") # sum second diagonal total = 0 for i in range(4): total += magicSquare[i][4 - 1 - i] if sumMatrix != total: exit("Not a magic square") # if nothing fails, then it's a square print("It's a magic square") # PROGRAM RUN main()
2,251
software/pynguin/pynguin/ga/operators/selection/selection.py
se2p/artifact-pynguin-ssbse2020
3
2170416
# This file is part of Pynguin. # # Pynguin is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pynguin is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pynguin. If not, see <https://www.gnu.org/licenses/>. """Provide abstract selection function.""" from abc import abstractmethod from typing import Generic, List, TypeVar import pynguin.ga.chromosome as chrom # pylint: disable=invalid-name T = TypeVar("T", bound=chrom.Chromosome) class SelectionFunction(Generic[T]): """Abstract base class for selection functions.""" def __init__(self) -> None: self._maximize = True @abstractmethod def get_index(self, population: List[T]) -> int: """Provide an index within the population.""" def select(self, population: List[T], number: int = 1) -> List[T]: """Return N parents.""" offspring: List[T] = [] for _ in range(number): offspring.append(population[self.get_index(population)]) return offspring @property def maximize(self): """Do we maximize fitness?""" return self._maximize @maximize.setter def maximize(self, new_value: bool) -> None: self._maximize = new_value
1,663
Datetime.py
code-lover636/Calendar-Analog-Clock-GUI
0
2170654
from tkinter import* import turtle from time import strftime from tkcalendar import Calendar # Setting up window root = Tk() root.config(bg="black") root.title("My Clock") root.iconbitmap("assets/icon.ico") def time_now(hands): Time = strftime("%I %M %S") Time = Time.split() hands[2].right(6*int(Time[2]) + 6) hands[1].right(6*int(Time[1])) hands[0].right(0.5*( 60*int(Time[0]) + int(Time[1]) )) def setup_hands( length:tuple, width:tuple, shape="arrow", colour=("white", "blue", "red")): try: hands = [] for x in range(3): hands.append(turtle.RawTurtle(screen,shape)) hands[x].hideturtle() hands[x].left(90) hands[x].color(colour[x]) hands[x].shapesize(stretch_len=length[x], stretch_wid=width[x]) hands[x].showturtle() time_now(hands) center.stamp() return hands except Exception: print("error0") def tick(): try: center.stamp() hands[2].right(6) hands[1].right(1/10) hands[0].right(1/120) center.stamp() analog_canvas.after(1000,tick) except Exception: print("error1") def show_time(): try: Time = strftime("%I:%M:%S %p") Date = strftime("%d %h %Y") digital_time.config(text=Time) digital_date.config(text=Date) digital_time.after(1000,show_time) digital_date.after(86400000, show_time) except Exception: print("error2") def cal(): cal_win = Toplevel(root, bg="black", cursor="dotbox") cal_win.title("My Calendar") calendar = Calendar(cal_win, selectmode='day', year=int(strftime("%Y")), month=int(strftime("%m")) , day=int(strftime("%d")), bg='black', fg='white') calendar.pack() # Widgets analog_canvas = Canvas(root, width=400, height=350, bg="black") digital_time = Label(root, bg="black", fg="blue", font=("ROG FONTS",30,"normal"), width=10, justify="center") digital_date = Label(root, bg="black", fg="red", font=("Algerian",30,"normal"), width=10, justify="left") calendar_but = Button(root, bg="black",activebackground="black", fg="grey", text="📆", font=("consolas",20,"normal"), bd=0, justify="left", command=cal) analog_canvas.grid(row=0, column=0, columnspan=2) digital_time.grid(row=1, column=0, columnspan=2) digital_date.grid(row=2, column=1, sticky="nw") calendar_but.grid(row=2, column=0) # Turtle screen screen = turtle.TurtleScreen(analog_canvas) screen.bgpic("assets\clock.png") screen.bgcolor("black") center = turtle.RawTurtle(screen,"circle") center.color("white") center.shapesize(0.5) hands = setup_hands(length=(5,10,14), width=(0.2,0.3,0.3)) try: show_time() tick() except Exception: print('error3') root.mainloop()
2,861
tools/losses/bce_loss.py
unademo/UNet_Nested4Tiny_Objects_Keypoints
6
2169106
# * Loss: BCE Loss # Referenced the 3rd-party codes. # Loss for heatmap (pixel-by-pixel) # # * Test Status: Not tested # #-*- coding: utf-8 -* import torch import torch.nn as nn def BCE_loss(results, labels, topk=10): # if len(results.shape) == 1: # results = results.view(1, -1) # batch_size, class_num = results.shape # labels = labels.view(-1, 1) # # one_hot_target = torch.zeros(batch_size, class_num + 1).cuda().scatter_(1, labels, 1)[:, :5004 * 2] # lovasz_loss = lovasz_hinge(results,labels )#one_hot_target error = torch.abs(labels - torch.sigmoid(results))#one_hot_target error = error.topk(topk, 1, True, True)[0].contiguous() target_error = torch.zeros_like(error).float().cuda() error_loss = nn.BCELoss(reduce=True)(error, target_error) # labels = labels.view(-1) # indexs_new = (labels != 5004 * 2).nonzero().view(-1) # if len(indexs_new) == 0: # return error_loss # results_nonew = results[torch.arange(0, len(results))[indexs_new], labels[indexs_new]].contiguous() # target_nonew = torch.ones_like(results_nonew).float().cuda() # nonew_loss = nn.BCEWithLogitsLoss(reduce=True)(results_nonew, target_nonew) return error_loss # nonew_loss + error_loss + lovasz_loss * 0.5 class BCELogitsLossWithMask(nn.Module): def __init__(self, size_average=True): super(BCELogitsLossWithMask, self).__init__() self.size_average = size_average def forward(self, input, target, mask=None): ''' :param input: Variable of shape (N, C, H, W) logits 0~1 :param target: Variable of shape (N, C, H, W) 0~1 float :param mask: Variable of shape (N, C) 0. or 1. float :return: ''' # print(target[0,0,1]) # target: N C 2 input: N C H W _,C,_ = target.shape if not (C == input.shape[1]): raise ValueError("Target channel ({}) must be the same as input channel ({})".format(C, input.shape[1])) N, C, H, W = input.shape # print(input.shape) # target_matrix = np.zeros((N, C, H, W)).astype(np.float32) #0.0~1.0 # for n in range(N): # for c in range(C): # target_matrix[n,c,int(target[n,c,1]/TARGET_SIZE),int(target[n,c,0]/TARGET_SIZE)] = 1.0 target_matrix = self.produceTargetHeatmap(target,H, W) # print(input, np.max(target_matrix)) target_matrix = torch.from_numpy(target_matrix) # BCELogitsLossWithMask max_val = (-input).clamp(min=0) loss = - input * target_matrix + max_val + ((-max_val).exp() + (-input - max_val).exp()).log() #TODO:Need to check #input if self.size_average: # w, h = input.shape return loss.sum() / (H*W) else: return loss.sum() # neg_abs = - input.abs() # loss = input.clamp(min=0) - input * target_matrix + (1 + neg_abs.exp()).log() # return loss.mean()
2,970
nutshell_config/nutshell_app/management/commands/bootstrap_data.py
josephdubon/shoe-store-api
0
2169885
""" Populate the ShoeType table with the following entries: sneaker boot sandal dress other Populate the ShoeColor table with the following entries: Red Orange Yellow Green Blue Indigo Violet White Black """ from django.core.management.base import BaseCommand from nutshell_config.nutshell_app.models import NSShoeType, NSShoeColor class Command(BaseCommand): help = 'Create data for database: NSShoeType and NSShowColor' def add_arguments(self, parser): parser.add_argument( 'style', nargs=5, choices=[ 'SNEAKER', 'BOOT', 'SANDAL', 'DRESS', 'OTHER' ] ) parser.add_argument( 'color_name', nargs=9, choices=[ 'RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE', 'INDIGO', 'VIOLET', 'BLACK', 'WHITE' ] ) def handle(self, *args, **options): for (k, v) in NSShoeType.TYPE_NAME_CHOICES: NSShoeType.objects.create(style=k) for (k, v) in NSShoeColor.COLOR_NAME_CHOICES: NSShoeColor.objects.create(color_name=k) self.stdout.write( self.style.SUCCESS( 'Successfully added newly created data to project database.' ) )
1,466
pkgname/cfg/parse.py
StoneT2000/rl-boilerplate
1
2168253
from omegaconf import OmegaConf import os import re def parse_cfg(cfg_path: str = None, default_cfg_path: str = None) -> OmegaConf: """Parses a config file and returns an OmegaConf object.""" if default_cfg_path is not None: base = OmegaConf.load(default_cfg_path) else: base = OmegaConf.create() cli = OmegaConf.from_cli() for k, v in cli.items(): if v is None: cli[k] = True base.merge_with(cli) if cfg_path is not None: cfg = OmegaConf.load(cfg_path) base.merge_with(cfg) return base
575
python/12_sorts/merge_sort.py
aiorosxul/algo
0
2170552
def merge_sort(list): if len(list) == 1: return list else: mid = len(list) // 2 left = list[:mid] right = list[mid:] l1 = merge_sort(left) r1 = merge_sort(right) return merge(l1, r1) def merge(left, right): result = [] while len(left) > 0 and len(right) > 0: if left[0] < right[0]: result.append(left.pop(0)) else: result.append(right.pop(0)) result += left result += right return result print(merge_sort(list))
540
product/migrations/0004_auto_20200427_0347.py
Medinaaz/Vodafone-Payment
0
2170016
# Generated by Django 3.0.1 on 2020-04-27 03:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0003_productproperty_is_main_property'), ] operations = [ migrations.AddField( model_name='product', name='description_en', field=models.TextField(blank=True, null=True, verbose_name='Description'), ), migrations.AddField( model_name='product', name='description_tr', field=models.TextField(blank=True, null=True, verbose_name='Description'), ), migrations.AddField( model_name='product', name='name_en', field=models.CharField(max_length=255, null=True, verbose_name='Name'), ), migrations.AddField( model_name='product', name='name_tr', field=models.CharField(max_length=255, null=True, verbose_name='Name'), ), migrations.AddField( model_name='productcategory', name='description_en', field=models.TextField(blank=True, null=True, verbose_name='Description'), ), migrations.AddField( model_name='productcategory', name='description_tr', field=models.TextField(blank=True, null=True, verbose_name='Description'), ), migrations.AddField( model_name='productcategory', name='name_en', field=models.CharField(max_length=100, null=True, verbose_name='Name'), ), migrations.AddField( model_name='productcategory', name='name_tr', field=models.CharField(max_length=100, null=True, verbose_name='Name'), ), migrations.AddField( model_name='productimages', name='title_en', field=models.CharField(max_length=255, null=True, verbose_name='Title'), ), migrations.AddField( model_name='productimages', name='title_tr', field=models.CharField(max_length=255, null=True, verbose_name='Title'), ), ]
2,195
sum_terms.py
adriennekarnoski/code-katas
0
2166418
"""Sum of the first nth term of Series A function which returns the sum of the series upto nth term(parameter). #1 Best Practices Solution by kevinplybon (plus 546 more warriors): def row_sum_odd_numbers(n): return n ** 3 """ def series_sum(n): """Takes in n and returns sum of values up to nth term.""" series_values = [0.00, 1.00] if n <= 1: return "%.2f" % round(series_values[n], 2) x = 4 while len(series_values) != n + 1: series_values.append(1 / x) x += 3 total = "%.2f" % round(sum(series_values), 2) return total
583
scripts/examples/rest_example_client.py
lalten/kreathon2018
0
2169664
#! /usr/bin/python # coding: utf8 import requests from here_connector import calc_route, route_to_image # url = 'http://10.13.144.90:5000/containers' # data_dict = {"user":"asddd"} # # response = requests.get(url, data_dict) # print response.json()['containers'][0] # url = 'http://10.13.144.90:5000/feedback' # data_dict = {"user_id": 123, "first_name": "horst", "lat": 51.312031, "lng": 6.558730, "clean": 3} # response = requests.post(url, data_dict) # ask for closest container and show route to it url = 'http://10.13.144.90:5000/get_closest' data_dict = {"lat": 51.33, 'lng': 6.6} response = requests.post(url, data_dict) js = response.json()['best_container'] pos = js['closest_container_pos'] dist = js['dist'] print js s = ["%f,%f" % (data_dict['lat'], data_dict['lng']), pos] route = calc_route(s, 'pedestrian') route_to_image(route)
854
hello_world/models/rise_classification/inflow_clasification.py
keenan-mckenzie-lqd/test_cd_azure_appservice
0
2170304
#!/usr/bin/env python # coding: utf-8 # In[1]: import re import string import numpy as np import pandas as pd from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import GradientBoostingClassifier from joblib import dump, load def df_run_CashInflow(json): #loading data of csv df = pd.json_normalize(json) # input, name of column values looked at x = df['Source Description'] # load model clf = load(r'hello_world/models/rise_classification/InflowClassification_model.joblib') # Make predictions, has to be looped through the array for more than 1 output y_pred = clf.predict(x) return str(y_pred) # In[ ]:
740
pd.py
corder-ybh/gpst
0
2170468
import tushare as ts import numpy as np import pandas as pd #df = ts.get_sina_dd('000799',date='2018-06-29') df = ts.profit_data(year=2018,top=60) print df
156
cart-service/service.py
piotrb5e3/sanic-uservices-demo
0
2169818
import asyncio from functools import reduce from sanic import Sanic from sanic.response import json from sanic.exceptions import NotFound from products_service_client import get_product_price app = Sanic('cart-service') cart = { 'id': 1234, 'products': [ { 'id': 0, 'amount': 2 }, { 'id': 2, 'amount': 5 }, { 'id': 3, 'amount': 7 }, ], } async def get_product_entry_price(product): return await get_product_price(product['id']) * product['amount'] @app.get('/<id:int>') async def cartDetail(request, id): if id != cart['id']: raise NotFound("Cart not found") return json(cart) @app.get('/<id:int>/getTotal') async def cartTotal(request, id): if id != cart['id']: raise NotFound("Cart not found") prices = await asyncio.gather( *map(get_product_entry_price, cart['products'])) price = reduce(lambda x, y: x + y, prices) return json({'price': price}) if __name__ == '__main__': app.run(host='0.0.0.0', port=8001)
1,116
time.py
darkless456/Python
0
2170557
# time.py class Time(object): def __str__(self): return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second) time = Time (9,45) print(time) # 有错误
165
utils/tuning_utils.py
INK-USC/Upstream-Bias-Mitigation
4
2170110
from .metric_utils import * import os def decide_checkpoints_with_early_stopping(df, key, by_lower, iter_per_epoch=None): def best_row(group): arr = group.loc[:, key]#.to_numpy().astype(np.float32) #print(arr) #print(np.isnan(arr)) #print('---') if iter_per_epoch: steps = [] for i, (index, row) in enumerate(arr.items()): if int(index[-1]) // iter_per_epoch == 0: steps.append(i) arr = arr.iloc[steps] arr = arr.to_numpy().astype(np.float32) if len(arr[~np.isnan(arr)]) == 0: best_lr_idx = 0 else: if by_lower: best_lr_idx = np.nanargmin(arr) else: best_lr_idx = np.nanargmax(arr) # return group.iloc[best_seed_idx] return group.iloc[best_lr_idx].name return df.groupby(level=['method','lr','seed']).apply(best_row) def get_early_stopping_step(df, key, early_stop): def get_truncate_step_by_group(group): global global_group steps = [] rows = [] for row_idx, row in group.iterrows(): global_group = group if row_idx[-1] != -1: steps.append(row_idx) rows.append(row) prev_best = -1e10 prev_best_step = None patience = early_stop for step in steps: if group.loc[step, key] < prev_best: patience -= 1 else: prev_best = group.loc[step, key] prev_best_step = step patience = early_stop if patience <= 0: break return prev_best_step return df.groupby(level=['method','lr','seed']).apply(get_truncate_step_by_group) def decide_checkpoints_to_keep(base, *steps_tab): ckpts_to_keep = set() model_bases = set() model_base_ckpt_dirs = set() kept_model = set() for steps in steps_tab: model_base = steps[:3] model_bases.add(model_base) for folder in os.listdir(os.path.join('base', model_base[0], model_base[1], model_base[2])): if folder.startswith('epoch'): model_base_ckpt_dirs.add(os.path.join('base', model_base[0], model_base[1], model_base[2], folder))
2,308
src/generative_playground/models/embedder/multi_embedder.py
ZmeiGorynych/generative_playground
9
2169147
import torch.nn as nn import torch class MultiEmbedder(nn.Module): ''' Multi-language embedder, uses the first index in each sequence to determine language ''' def __init__(self, languages, lang_mapping, input_dim, output_dim, index_offset=1, padding_idx=0): super().__init__() self.output_dim = output_dim self.language_map = {key: value - int(index_offset) for key, value in lang_mapping.items() if key in languages} self.language_embed = nn.Embedding(len(lang_mapping)-2,output_dim) # no padding index needed self.index_offset = index_offset self.embedders = nn.ModuleDict({lang: nn.Embedding(input_dim, output_dim, padding_idx=padding_idx) for lang in languages}) def forward(self, x): ''' Embed the sequences, using the first index to pick the embedder The output's first element embeds the language :param x: batch_size x num_steps long :return: batch_size x num_steps x output_dim float ''' language_codes = x[:,0] - int(self.index_offset) embed_languages = self.language_embed(language_codes.unsqueeze(1)) embed = torch.zeros(x.size()[0], x.size()[1]-1, self.output_dim, dtype=torch.float32, device=x.device) for lang, embedder in self.embedders.items(): i = self.language_map[lang] #if in language_codes: embed[language_codes == i, :, :] = embedder(x[:,1:][language_codes == i, :]) out = torch.cat([embed_languages, embed], dim=1) return out
1,864
pratt.py
bourguet/shunting_yard
43
2170591
#! /usr/bin/env python3 import sys import lexer from tree import Node, CompositeNode class SymbolDesc: def __init__(self, token, lprio, rprio, evaluator): self.token = token self.lprio = lprio self.rprio = rprio self.evaluator = evaluator def __repr__(self): return '<Symbol {} {}/{}>'.format(self.token.lexem, self.lprio, self.rprio) def identity_evaluator(parser, sym): result = Node(sym.token) return result def unary_prefix_evaluator(parser, sym): arg = parser.parse_to(sym.rprio) if arg is None: return CompositeNode(sym.token, [Node(lexer.Token('ERROR', 'MISSING VALUE'))]) else: return CompositeNode(sym.token, [arg]) def binary_evaluator(parser, left_arg, sym): right_arg = parser.parse_to(sym.rprio) if right_arg is None: return CompositeNode(sym.token, [left_arg, Node(lexer.Token('ERROR', 'MISSING VALUE'))]) else: return CompositeNode(sym.token, [left_arg, right_arg]) def unary_postfix_evaluator(parser, left_arg, sym): return CompositeNode('post' + sym.token, [left_arg]) class Parser: def __init__(self): self.lexer = None self.cur_token = None self.presymbols = {} self.postsymbols = {} def register_presymbol(self, oper, rprio, evaluator=unary_prefix_evaluator): if type(oper) is str: self.presymbols[oper] = SymbolDesc(oper, None, rprio, evaluator) else: for op in oper: self.presymbols[op] = SymbolDesc(op, None, rprio, evaluator) def register_postsymbol(self, oper, lprio, rprio, evaluator=binary_evaluator): if type(oper) is str: self.postsymbols[oper] = SymbolDesc(oper, lprio, rprio, evaluator) else: for op in oper: self.postsymbols[op] = SymbolDesc(op, lprio, rprio, evaluator) def reset(self, s): self.lexer = lexer.tokenize(s) self.advance() def advance(self): try: self.cur_token = self.lexer.__next__() except StopIteration: self.cur_token = None def prefix_sym(self): if self.cur_token is None: return None elif self.cur_token.kind == 'ID': return SymbolDesc(self.cur_token, None, None, identity_evaluator) elif self.cur_token.kind == 'NUMBER': return SymbolDesc(self.cur_token, None, None, identity_evaluator) elif self.cur_token.lexem in self.presymbols: return self.presymbols[self.cur_token.lexem] else: return None def postfix_sym(self): if self.cur_token is None: return None elif self.cur_token.lexem in self.postsymbols: return self.postsymbols[self.cur_token.lexem] else: return None def parse_to(self, prio): sym = self.prefix_sym() if sym is None: sym = self.postfix_sym() if sym is None: return None node = Node(lexer.Token('ERROR', 'MISSING VALUE')) else: self.advance() node = sym.evaluator(self, sym) while True: sym = self.postfix_sym() if sym is None or prio >= sym.lprio: if sym is None: sym = self.prefix_sym() if sym is not None: sym = SymbolDesc('MISSING OPERATOR', 1000, 1000, binary_evaluator) if sym is None or prio >= sym.lprio: break else: self.advance() node = sym.evaluator(self, node, sym) return node def parse(self, s): self.reset(s) res = self.parse_to(0) if self.cur_token is not None: res = CompositeNode('REMAINING INPUT', [res, self.cur_token]) return res def prefix_open_parenthesis_evaluator(parser, sym): result = parser.parse_to(sym.rprio) if parser.cur_token is not None: if parser.cur_token.lexem == ')': parser.advance() return result elif parser.cur_token.lexem == ']': parser.advance() return CompositeNode('(] ERROR', [result]) else: return CompositeNode('( ERROR', [result]) def postfix_open_parenthesis_evaluator(parser, left_arg, sym): if parser.cur_token is not None and parser.cur_token.lexem == ')': parser.advance() return CompositeNode('call '+str(left_arg), []) else: result = parser.parse_to(sym.rprio) if parser.cur_token is not None: if parser.cur_token.lexem == ')': parser.advance() if result.token == ',': return CompositeNode('call ' + str(left_arg), result.children) else: return CompositeNode('call ' + str(left_arg), [result]) elif parser.cur_token.lexem == ']': parser.advance() if result.token == ',': return CompositeNode('call (] ' + str(left_arg), result.children) else: return CompositeNode('call (] ' + str(left_arg), [result]) return CompositeNode('( ERROR', [result]) def postfix_close_parenthesis_evaluator(parser, left_arg, sym): return CompositeNode(') ERROR', [left_arg]) def postfix_open_bracket_evaluator(parser, left_arg, sym): result = parser.parse_to(sym.rprio) if parser.cur_token is not None: if parser.cur_token.lexem == ']': parser.advance() return CompositeNode('get ' + str(left_arg), [result]) elif parser.cur_token.lexem == ')': parser.advance() return CompositeNode('get [) ' + str(left_arg), [result]) return CompositeNode('[ ERROR', [left_arg, result]) def postfix_close_bracket_evaluator(parser, left_arg, sym): return CompositeNode('] ERROR', [left_arg]) def coma_evaluator(parser, left_arg, sym): args = [left_arg] while True: args.append(parser.parse_to(sym.rprio)) sym = parser.postfix_sym() if sym is None or sym.token != ',': break parser.advance() return CompositeNode(',', args) def question_evaluator(parser, left_arg, sym): true_exp = parser.parse_to(sym.rprio) sym = parser.postfix_sym() if sym is not None and sym.token == ':': parser.advance() false_exp = parser.parse_to(sym.rprio) return CompositeNode('?', [left_arg, true_exp, false_exp]) else: return CompositeNode('? ERROR', [left_arg, true_exp]) def colon_evaluator(parser, left_arg, sym): return CompositeNode(': ERROR', [left_arg]) def cexp_parser(): parser = Parser() parser.register_postsymbol(',', 2, 2, coma_evaluator) parser.register_postsymbol(['=', '*=', '/=', '%=', '+=', '-=', '<<=', '>>=', '&=', '|=', '^='], 5, 4) parser.register_postsymbol('?', 7, 1, question_evaluator) parser.register_postsymbol(':', 1, 6, colon_evaluator) parser.register_postsymbol('||', 8, 9) parser.register_postsymbol('&&', 10, 11) parser.register_postsymbol('|', 12, 13) parser.register_postsymbol('^', 14, 15) parser.register_postsymbol('&', 16, 17) parser.register_postsymbol(['==', '!='], 18, 19) parser.register_postsymbol(['<', '>', '<=', '>='], 20, 21) parser.register_postsymbol(['<<', '>>'], 22, 23) parser.register_postsymbol(['+', '-'], 24, 25) parser.register_postsymbol(['/', '%', '*'], 26, 27) parser.register_postsymbol('**', 29, 28) parser.register_presymbol(['+', '-', '++', '--', '~', '!', '&', '*'], 30) parser.register_postsymbol(['++', '--'], 32, 33, unary_postfix_evaluator) parser.register_postsymbol(['.', '->'], 32, 33) parser.register_presymbol('(', 1, prefix_open_parenthesis_evaluator) parser.register_postsymbol('(', 100, 1, postfix_open_parenthesis_evaluator) parser.register_postsymbol(')', 1, 100, postfix_close_parenthesis_evaluator) parser.register_postsymbol('[', 100, 1, postfix_open_bracket_evaluator) parser.register_postsymbol(']', 1, 100, postfix_close_bracket_evaluator) return parser def main(args): parser = cexp_parser() for s in args[1:]: try: exp = parser.parse(s) print('{} -> {}'.format(s, exp)) except RuntimeError as run_error: print('Unable to parse {}: {}'.format(s, run_error)) if __name__ == "__main__": main(sys.argv)
8,540
test_course_schedule_II.py
brigitteunger/katas
0
2169666
import unittest from typing import Dict, List from data_course_schedule import num_courses_2, prerequisites_2, schedule_2 class CircleFound(Exception): pass class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: courses_to_visit = self.collect_prerequisites_per_course( numCourses, prerequisites) try: schedule = [] for course in range(numCourses): if course in courses_to_visit: schedule = schedule + self.scheduleForCourse( course, courses_to_visit) return schedule except CircleFound: return [] def collect_prerequisites_per_course(self, numCourses: int, prerequisites: List[List[int]] ) -> Dict[int, List[int]]: courses_with_prerequisites = {i: [] for i in range(numCourses)} for prerequisite_pair in prerequisites: course = prerequisite_pair[0] prerequisite = prerequisite_pair[1] courses_with_prerequisites[course].append(prerequisite) return courses_with_prerequisites def scheduleForCourse(self, course: int, courses_to_visit: Dict[int, List[int]], visited: List[int] = []) -> List[int]: schedule = [] for pre in courses_to_visit[course]: if pre in courses_to_visit: if pre in visited: raise CircleFound schedule = schedule + self.scheduleForCourse( pre, courses_to_visit, visited + [course]) schedule.append(course) del courses_to_visit[course] return schedule class TestFindOrders(unittest.TestCase): def setUp(self): self.sol = Solution() def testFindOrder10(self): num_courses = 2 prerequisites = [[1, 0]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [0, 1]) def testFindOrder0123(self): num_courses = 4 prerequisites = [[1, 0], [2, 0], [3, 1], [3, 2]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [0, 1, 2, 3]) def testFindOrder01234(self): num_courses = 5 prerequisites = [[4, 1], [4, 2], [4, 3], [1, 0]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [0, 1, 2, 3, 4]) def testFindOrder1(self): num_courses = 1 prerequisites = [] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [0]) def testFindOrder013(self): num_courses = 4 prerequisites = [[3, 0], [0, 1]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [1, 0, 2, 3]) def testFindOrderCircle(self): num_courses = 4 prerequisites = [[1, 0], [2, 1], [3, 2], [0, 3]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, []) def testFindOrderCircle_3210(self): num_courses = 3 prerequisites = [[0, 1], [0, 2], [1, 2]] schedule = self.sol.findOrder(num_courses, prerequisites) self.assertEqual(schedule, [2, 1, 0]) def testFindOrderCircle_big(self): schedule = self.sol.findOrder(num_courses_2, prerequisites_2) self.assertEqual(schedule, schedule_2) if __name__ == "__main__": unittest.main()
3,616
tests/test-function/test_parametrize.py
qianchilang/learning-pytest
42
2168656
import pytest @pytest.mark.parametrize('passwd', ['<PASSWORD>', '<PASSWORD>', '<PASSWORD>']) def test_passwd_length(passwd): assert len(passwd) >= 8 @pytest.mark.parametrize('user, passwd', [('jack', '<PASSWORD>'), ('tom', '<PASSWORD>')]) def test_passwd_md5(user, passwd): db = { 'jack': '<PASSWORD>', 'tom': '<PASSWORD>' } import hashlib assert hashlib.md5(passwd.encode()).hexdigest() == db[user] @pytest.mark.parametrize('user, passwd', [pytest.param('jack', 'abcdefgh', id='User<Jack>'), pytest.param('tom', '<PASSWORD>', id='User<Tom>')]) def test_passwd_md5_id(user, passwd): db = { 'jack': '<PASSWORD>', 'tom': '<PASSWORD>' } import hashlib assert hashlib.md5(passwd.encode()).hexdigest() == db[user]
966
KurtGroup/Kurt/__init__.py
TheoBuchwald/UCPH-KVM
1
2169515
import os, sys sys.path.append(os.path.dirname(os.path.realpath(__file__))) from . import chemical_information from . import output_processing from . import structures from . import xyz
188
examples/mb_hbreps_hbvf/pole/pole.py
hanyas/reps
8
2169141
import numpy as np import gym import scipy as sc from scipy.special import comb import torch from sds.distributions.gamma import Gamma from sds.models import HybridController from reps.mb_hbreps_hbvf import hbREPS_hbVf # np.random.seed(1337) torch.set_num_threads(1) env = gym.make('Pole-RL-v0') env._max_episode_steps = 5000 env.unwrapped.dt = 0.01 env.unwrapped.sigma = 1e-8 # env.seed(1337) state_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] dyn = torch.load(open('rarhmm_pole.pkl', 'rb')) nb_modes = dyn.nb_states # ctl type ctl_type = 'ard' ctl_degree = 1 # ctl_prior feat_dim = int(comb(ctl_degree + state_dim, ctl_degree)) - 1 input_dim = feat_dim + 1 output_dim = act_dim likelihood_precision_prior = Gamma(dim=1, alphas=np.ones((1,)) + 1e-8, betas=25. * np.ones((1,))) parameter_precision_prior = Gamma(dim=input_dim, alphas=np.ones((input_dim,)) + 1e-8, betas=1e1 * np.ones((input_dim,))) ctl_prior = {'likelihood_precision_prior': likelihood_precision_prior, 'parameter_precision_prior': parameter_precision_prior} ctl_kwargs = {'degree': ctl_degree} ctl = HybridController(dynamics=dyn, ctl_type=ctl_type, ctl_prior=ctl_prior, ctl_kwargs=ctl_kwargs) # init controller Ks = np.stack([np.zeros((output_dim, input_dim))] * nb_modes, axis=0) lmbdas = np.stack([1. / 25. * np.eye(output_dim)] * nb_modes, axis=0) ctl.controls.params = Ks, lmbdas from reps.mb_hbreps_hbvf import RFFVfunction, PolyVfunction # vfunc = RFFVfunction(nb_modes, state_dim, nb_feat=25, # scale=[0.25, 1.5], mult=0.5) vfunc = PolyVfunction(nb_modes, state_dim, degree=2) hbreps = hbREPS_hbVf(env=env, dyn=dyn, ctl=ctl, kl_bound=0.25, discount=0.98, vfunc=vfunc, vf_reg=1e-8) ctl_mstep_kwargs = {'nb_iter': 5} hbreps.run(nb_iter=10, nb_train_samples=2500, nb_eval_rollouts=25, nb_eval_steps=100, ctl_mstep_kwargs=ctl_mstep_kwargs) rollouts, _ = hbreps.evaluate(nb_rollouts=25, nb_steps=250) import matplotlib.pyplot as plt fig, ax = plt.subplots(nrows=1, ncols=hbreps.state_dim + hbreps.act_dim, figsize=(12, 4)) for roll in rollouts: for k, col in enumerate(ax[:-1]): col.plot(roll['x'][:, k]) ax[-1].plot(roll['uc']) plt.show() # def beautify(ax): # ax.set_frame_on(True) # ax.minorticks_on() # # ax.grid(True) # ax.grid(linestyle=':') # # ax.tick_params(which='both', direction='in', # bottom=True, labelbottom=True, # top=True, labeltop=False, # right=True, labelright=False, # left=True, labelleft=True) # # ax.tick_params(which='major', length=6) # ax.tick_params(which='minor', length=3) # # ax.autoscale(tight=True) # # ax.set_aspect('equal') # # if ax.get_legend(): # ax.legend(loc='best') # # return ax # # # xlim = (-0.25, 0.25) # ylim = (-1.5, 1.5) # # npts = 18 # # x = np.linspace(*xlim, npts) # y = np.linspace(*ylim, npts) # # X, Y = np.meshgrid(x, y) # XYi = np.stack((X, Y)) # XYn = np.zeros((2, npts, npts)) # # hr = 3 # XYh = np.zeros((hr, 2, npts, npts)) # # ## # env.reset() # for i in range(npts): # for j in range(npts): # XYh[0, :, i, j] = XYi[:, i, j] # for t in range(1, hr): # XYh[t, :, i, j] = env.unwrapped.fake_step(XYh[t - 1, :, i, j], np.array([0.0])) # # env.reset() # for i in range(npts): # for j in range(npts): # hist_obs, hist_act = XYh[..., i, j], np.zeros((hr, act_dim)) # u = hbreps.ctl.action(hist_obs, hist_act, False, False)[-1] # XYn[:, i, j] = env.unwrapped.fake_step(XYh[-1, :, i, j], u) # # dXY = XYn - XYh[-1, ...] # # # re-interpolate data for streamplot # xh, yh = XYh[-1, 0, 1, :], XYh[-1, 1, :, 0] # xi = np.linspace(xh.min(), xh.max(), x.size) # yi = np.linspace(yh.min(), yh.max(), y.size) # # from scipy.interpolate import interp2d # # dxh, dyh = dXY[0, ...], dXY[1, ...] # dxi = interp2d(xh, yh, dxh)(xi, yi) # dyi = interp2d(xh, yh, dyh)(xi, yi) # # import matplotlib.pyplot as plt # # fig = plt.figure(figsize=(5, 5), frameon=True) # ax = fig.gca() # # ax.streamplot(xi, yi, dxi, dyi, # color='magenta', linewidth=1, density=1.25, # arrowstyle='-|>', arrowsize=1., # minlength=0.25) # # ax = beautify(ax) # ax.grid(False) # # ax.set_xlim((xh.min(), xh.max())) # ax.set_ylim((yh.min(), yh.max())) # # plt.show() # # # # from tikzplotlib import save # # save("hbreps_pole_rl.tex")
4,604
geneticalgorithm2/classes.py
PasaOpasen/geneticalgorithm
0
2168730
from __future__ import annotations from typing import Dict, Any, List, Optional, Union, Callable, Tuple from dataclasses import dataclass import warnings import numpy as np from .crossovers import Crossover from .mutations import Mutations from .selections import Selection from .utils import can_be_prob, union_to_matrix class DictLikeGetSet: def __getitem__(self, item): return getattr(self, item) def __setitem__(self, key, value): setattr(self, key, value) def get(self, item): return getattr(self, item) _algorithm_params_slots = { 'max_num_iteration', 'max_iteration_without_improv', 'population_size', 'mutation_probability', 'mutation_discrete_probability', 'elit_ratio', 'crossover_probability', 'parents_portion', 'crossover_type', 'mutation_type', 'mutation_discrete_type', 'selection_type' } @dataclass class AlgorithmParams(DictLikeGetSet): max_num_iteration: Optional[int] = None max_iteration_without_improv: Optional[int] = None population_size: int = 100 mutation_probability: float = 0.1 mutation_discrete_probability: Optional[float] = None # deprecated crossover_probability: Optional[float] = None elit_ratio: float = 0.04 parents_portion: float = 0.3 crossover_type: Union[str, Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]] = 'uniform' mutation_type: Union[str, Callable[[float, float, float], float]] = 'uniform_by_center' mutation_discrete_type: Union[str, Callable[[int, int, int], int]] = 'uniform_discrete' selection_type: Union[str, Callable[[np.ndarray, int], np.ndarray]] = 'roulette' def _check_if_valid(self): assert int(self.population_size) > 0, f"population size must be integer and >0, not {self.population_size}" assert (can_be_prob(self.parents_portion)), "parents_portion must be in range [0,1]" assert (can_be_prob(self.mutation_probability)), "mutation_probability must be in range [0,1]" assert (can_be_prob(self.elit_ratio)), "elit_ratio must be in range [0,1]" if self.max_iteration_without_improv is not None and self.max_iteration_without_improv < 1: warnings.warn(f"max_iteration_without_improv is {self.max_iteration_without_improv} but must be None or int > 0") self.max_iteration_without_improv = None def get_CMS_funcs(self) -> Tuple[ Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]], Callable[[float, float, float], float], Callable[[int, int, int], int], Callable[[np.ndarray, int], np.ndarray] ]: """ returns gotten crossover, mutation, discrete mutation, selection as necessary functions """ result = [] for name, value, dct in ( ('crossover', self.crossover_type, Crossover.crossovers_dict()), ('mutation', self.mutation_type, Mutations.mutations_dict()), ('mutation_discrete', self.mutation_discrete_type, Mutations.mutations_discrete_dict()), ('selection', self.selection_type, Selection.selections_dict()) ): if type(value) == str: if value not in dct: raise Exception( f"unknown name of {name}: '{value}', must be from {tuple(dct.keys())} or a custom function" ) result.append(dct[value]) else: assert callable(value), f"{name} must be string or callable" result.append(value) return tuple(result) @staticmethod def from_dict(dct: Dict[str, Any]): result = AlgorithmParams() for name, value in dct.items(): if name not in _algorithm_params_slots: raise AttributeError(f"name '{name}' does not exists in AlgorithmParams fields") setattr(result, name, value) return result @dataclass class Generation(DictLikeGetSet): variables: Optional[np.ndarray] = None scores: Optional[np.ndarray] = None def __check_dims(self): if self.variables is not None: assert len(self.variables.shape) == 2, f"'variables' must be matrix with shape (objects, dimensions), not {self.variables.shape}" if self.scores is not None: assert len(self.scores.shape) == 1, f"'scores' must be 1D-array, not with shape {self.scores.shape}" assert self.variables.shape[0] == self.scores.size, f"count of objects ({self.variables.shape[0]}) must be equal to count of scores ({self.scores.size})" @property def size(self): return self.scores.size @property def dim_size(self): return self.variables.shape[1] def as_wide_matrix(self): # should not be used in main code -- was needed for old versions return union_to_matrix(self.variables, self.scores) def save(self, path: str): np.savez(path, population=self.variables, scores=self.scores) @staticmethod def load(path: str): try: st = np.load(path) except Exception as err: raise Exception( f"if generation object is a string, it must be path to npz file with needed content, but raised exception {repr(err)}" ) assert 'population' in st and 'scores' in st, "saved generation object must contain 'population' and 'scores' fields" return Generation(variables=st['population'], scores=st['scores']) @staticmethod def from_object( dim: int, object: Union[ str, Dict[str, np.ndarray], Generation, np.ndarray, Tuple[ Optional[np.ndarray], Optional[np.ndarray] ] ] ): obj_type = type(object) if obj_type == str: generation = Generation.load(object) elif obj_type == np.ndarray: assert len(object.shape) == 2 and (object.shape[1] == dim or object.shape[1] == dim + 1), f"if start_generation is numpy array, it must be with shape (samples, dim) or (samples, dim+1), not {object.shape}" generation = Generation(object, None) if object.shape[1] == dim else Generation.from_pop_matrix(object) elif obj_type == tuple: assert len(object) == 2, f"if start_generation is tuple, it must be tuple with 2 components, not {len(object)}" variables, scores = object assert ( (variables is None or scores is None) or ( variables.shape[0] == scores.size)), "start_generation object must contain variables and scores components which are None or 2D- and 1D-arrays with same shape" generation = Generation(variables=variables, scores=scores) elif obj_type == dict: assert (('variables' in object and 'scores' in object) and ( object['variables'] is None or object['scores'] is None) or ( object['variables'].shape[0] == object[ 'scores'].size)), "start_generation object must contain 'variables' and 'scores' keys which are None or 2D- and 1D-arrays with same shape" generation = Generation(variables=object['variables'], scores=object['scores']) elif obj_type == Generation: generation = Generation(variables=object['variables'], scores=object['scores']) else: raise TypeError(f"invalid type of generation! Must be in (Union[str, Dict[str, np.ndarray], Generation, np.ndarray, Tuple[Optional[np.ndarray], Optional[np.ndarray]]]), not {obj_type}") generation.__check_dims() if generation.variables is not None: assert generation.dim_size == dim, f"generation dimension size {generation.dim_size} does not equal to target size {dim}" return generation @staticmethod def from_pop_matrix(pop: np.ndarray): warnings.warn("depricated! pop matrix style will be removed at version 7, use samples and scores separetly") return Generation( variables=pop[:, :-1], scores=pop[:, -1] ) @dataclass class GAResult(DictLikeGetSet): last_generation: Generation @property def variable(self): return self.last_generation.variables[0] @property def score(self): return self.last_generation.scores[0] @property def function(self): warnings.warn(f"'function' field is deprecated, will be removed in version 7, use 'score' to get best population score") return self.score @dataclass class MiddleCallbackData(DictLikeGetSet): """ data object using with middle callbacks """ reason_to_stop: Optional[str] last_generation: Generation current_generation: int report_list: List[float] mutation_prob: float mutation_discrete_prob: float mutation: Callable[[float, float, float], float] mutation_discrete: Callable[[int, int, int], int] crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] selection: Callable[[np.ndarray, int], np.ndarray] current_stagnation: int max_stagnation: int parents_portion: float elit_ratio: float set_function: Callable[[np.ndarray], np.ndarray]
9,440
accounts/migrations/0002_user_phone.py
Naveendata-ux/tor_redesign
0
2168795
# Generated by Django 3.0.5 on 2020-04-10 14:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='phone', field=models.CharField(blank=True, max_length=20, verbose_name='Contact number'), ), ]
414
src/cryptocurrencyeda/retrieve_data.py
flor14/cryptocurrencyeda
0
2170701
import requests import json import pandas as pd import datetime def retrieve_data(symbol:str="BTC-USDT", time_period:str="1day", start_date:str="2018-01-01", end_date:str="2022-01-10", ): """ Retrieves historical data from the KuCoin API. Using open API adress "https://openapi-v2.kucoin.com/api/v1/market/history/trade" Parameters ---------- name : array-like Inputted cryptocurrency symbol. time_period : str Inputted time period. 1min, 3min, 5min, 15min, 30min, 1hour, 2hour, 4hour, 6hour, 8hour, 12hour, 1day, 1week start_date : string "%Y-%m-%d" Inputted datetime. Minimum is 2018-01-01 end_date : string "%Y-%m-%d" Inputted time frame. Returns ------- pandas.DataFrame Historical data of the cryptocurrency. """ if not isinstance(symbol, str): raise TypeError("The input symbol must be of string type") date = datetime.datetime.strptime(start_date, "%Y-%m-%d") start_date = int(datetime.datetime.timestamp(date)) date = datetime.datetime.strptime(end_date, "%Y-%m-%d") end_date = int(datetime.datetime.timestamp(date)) # Define the API URL urllink = f"https://api.kucoin.com/api/v1/market/candles?type={time_period}&symbol={symbol}&startAt={start_date}&endAt={end_date}" # Make the API call and convert the JSON response to a Python dictionary response = requests.get(urllink).json() assert type(response) == dict, "It is not a dictionary response" # Convert the JSON response to a Python dictionary data = response["data"] # Create a pandas dataframe from the Python dictionary cols = ["Date", "Open", "Close", "High", "Low", "Volume", "Turnover"] df = pd.DataFrame(data, columns=cols) df['Symbol'] = symbol df['Date'] = pd.to_datetime(df['Date'], unit='s') df['Close'] = df['Close'].astype(float) assert len(df) >= 1, "Empty dataframe" # Test whether output data is of pd.DataFrame type if not isinstance(df, pd.DataFrame): raise TypeError("The output dataframe must be of pd.DataFrame type") # Return the dataframe return df[['Symbol','Date','Close']]
2,321
Adversary/attacks.py
Ezaldeen99/artificial-adversary
0
2168725
import json import os from random import choice, randint, sample, randrange from string import punctuation import spacy from regex import search from spacy import displacy from constants import * '''These act on a single text''' def emojis_attack(text): text = text.lower() words = text.split() # get the emojis path script_dir = os.path.dirname(__file__) rel_path = "assets/emoji.json" abs_file_path = os.path.join(script_dir, rel_path) with open(abs_file_path, 'r') as emojis: # load emojis as lists json_data = json.load(emojis) for emoji in json_data: # extract each emoji tags tags_list = emoji['tags'] + emoji['aliases'] + [emoji['description']] # check if there are any possible keywords in the text emojis_in_text = set(words) & set(tags_list) if len(emojis_in_text) > 0: # source https://stackoverflow.com/questions/15658187/replace-all-words-from-word-list-with-another-string-in-python big_regex = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, emojis_in_text))) text = big_regex.sub(emoji['emoji'], str(text)) return text def advanced_emojis_attack(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text.lower()) # get the emojis path script_dir = os.path.dirname(__file__) rel_path = "assets/emoji.json" abs_file_path = os.path.join(script_dir, rel_path) with open(abs_file_path, 'r') as emojis: # load emojis as lists json_data = json.load(emojis) for emoji in json_data: # extract each emoji tags tags_list = emoji['tags'] + emoji['aliases'] + [emoji['description']] for token in doc: if (token.pos_ == "PROPN" or token.pos_ == "VERB" or token.pos_ == "SYM" or token.pos_ == "NOUN") \ and token.text in tags_list: # source https://stackoverflow.com/questions/15658187/replace-all-words-from-word-list-with-another-string-in-python big_regex = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, [token.text]))) text = big_regex.sub(emoji['emoji'], str(text.lower())) # uncomment to launch analysis in browser # displacy.serve(doc, style="dep") return text def surrounding_chars(text): text = text.lower() # get the spam texts file path script_dir = os.path.dirname(__file__) rel_path = "assets/spam_data.txt" abs_file_path = os.path.join(script_dir, rel_path) with open(abs_file_path, 'r') as spam: spam_list = spam.read().split(",") spam_list_lowered = list(map(str.lower, spam_list)) for spam_word in spam_list_lowered: # start surrounding to text if it is in spam if search(spam_word, text): # source https://stackoverflow.com/questions/15658187/replace-all-words-from-word-list-with-another-string-in-python big_regex = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, [spam_word]))) surround_char = ' '.join('("' + item + '")' for item in spam_word if item != " ") text = big_regex.sub(surround_char, str(text.lower())) return text def homophones_chars(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text.lower()) # get the spam texts file path script_dir = os.path.dirname(__file__) rel_path = "assets/homophones.json" abs_file_path = os.path.join(script_dir, rel_path) with open(abs_file_path, 'r') as homophones: # load homophones as list json_data = json.load(homophones) for token in doc: if (token.pos_ == "PROPN" or token.pos_ == "VERB" or token.pos_ == "SYM" or token.pos_ == "NOUN") \ and token.text in json_data: # source https://stackoverflow.com/questions/15658187/replace-all-words-from-word-list-with-another-string-in-python big_regex = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, [token.text]))) text = big_regex.sub(json_data[token.text][0], str(text.lower())) return text def good_word_attack(text): if randint(1, 2) == 1: return text + ' ' + ' '.join(sample(NEUTRAL_WORDS, randint(5, 15))) else: return ' '.join(sample(NEUTRAL_WORDS, randint(2, 10))) + ' ' + text def swap_words(text): words = text.split() if len(words) <= 3: return ' '.join(words) swapped = list(range(len(words))) idxs = sample(range(1, len(words) - 2), randint(1, min(3, len(words) // 2 - 1))) for i in idxs: swapped[i], swapped[i + 1] = swapped[i + 1], swapped[i] return ' '.join([words[i] for i in swapped]) def remove_spacing(text): chars = list(text) for i, c in enumerate(chars): if c == ' ' and randint(1, 3) == 1: chars[i] = choice(',.-'"`*") return ''.join(chars) '''These act on a single word within a text''' def synonym(word): return choice(SYNONYMS.get(word, [word])) def letter_to_symbol(word): return ''.join([choice(HOMOGLPYH_MAP.get(c.lower(), [c])) for c in word]) def swap_letters(word): if len(word) < 4: return word swapped = list(range(len(word))) max_swap = randint(1, min(3, len(word) // 2 - 1)) idxs = sample(range(1, len(word) - 2), max_swap) for i in idxs: swapped[i], swapped[i + 1] = swapped[i + 1], swapped[i] return ''.join([word[i] for i in swapped]) def insert_punctuation(word): word_with_punct = list(word) for _ in range(2): word_with_punct.insert(randrange(len(word_with_punct)), choice(punctuation)) return ''.join(word_with_punct) def insert_duplicate_characters(word): word_with_dupes = list(word) for _ in range(2): i = randrange(len(word_with_dupes)) word_with_dupes.insert(i, word_with_dupes[i]) return ''.join(word_with_dupes) def delete_characters(word): if len(word) < 4: return word max_del = 1 if len(word) <= 5 else 2 idxs_delete = sample(range(1, len(word) - 1), max_del) return ''.join([c for i, c in enumerate( list(word)) if i not in idxs_delete]) def change_case(word): word_with_changed_case = list(word) idx = sample(range(len(word)), randint(1, len(word))) for i in idx: c = word[i] word_with_changed_case[i] = c.upper() if c.lower() == c else c.lower() return ''.join(word_with_changed_case) def num_to_word(word): return NUM_TO_WORD.get(word, word) '''Keeps track of all attacks and their types''' ATTACK_MAP = { 'text': { 'good_word_attack': good_word_attack, 'emoji_attack': emojis_attack, 'swap_words': swap_words, 'remove_spacing': remove_spacing, }, 'word': { 'synonym': synonym, 'letter_to_symbol': letter_to_symbol, 'swap_letters': swap_letters, 'insert_punctuation': insert_punctuation, 'insert_duplicate_characters': insert_duplicate_characters, 'delete_characters': delete_characters, 'change_case': change_case, 'num_to_word': num_to_word } }
7,242
locking/tests/forms.py
liberation/django-locking
0
2169744
# -*- coding: utf-8 -*- from locking.forms import LockableForm import models class StoryAdminForm(LockableForm): class Meta: model = models.Story
161
ScriptEngine/logging.py
daizhaolin/scriptengine
0
2168542
# -*- coding: UTF-8 -*- ''' Created on 2020-03-08 @author: daizhaolin ''' import sys import logging def create_logger(app): logger = logging.getLogger(app.name) if app.debug: handler = logging.StreamHandler(sys.stderr) handler.setFormatter( logging.Formatter( "[%(asctime)s] %(levelname)s in %(module)s: %(message)s" ) ) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger
492
mira/core/training.py
faustomorales/odtk
0
2167706
import types import typing import random import logging import tqdm try: import timm import timm.optim import timm.scheduler except ImportError: timm = None # type: ignore try: import torch except ImportError: torch = None # type: ignore import numpy as np LOGGER = logging.getLogger() DEFAULT_SCHEDULER_PARAMS = dict( sched="cosine", min_lr=1e-3, warmup_lr=0, warmup_epochs=0, cooldown_epochs=0, epochs=10, lr_cycle_decay=1, lr_cycle_limit=1e5, lr_cycle_mul=1, ) DEFAULT_OPTIMIZER_PARAMS = dict(lr=1e-2, opt="sgd", weight_decay=4e-5) InputType = typing.TypeVar("InputType") def train( model: "torch.nn.Module", loss: typing.Callable[[typing.List[InputType]], "torch.Tensor"], training: typing.List[InputType], validation: typing.List[InputType] = None, batch_size: int = 1, augment: typing.Callable[[typing.List[InputType]], typing.List[InputType]] = None, epochs=100, on_epoch_start: typing.Callable = None, on_epoch_end: typing.Callable[[typing.List[dict]], dict] = None, shuffle=True, optimizer_params=None, scheduler_params=None, clip_grad_norm_params=None, ): """Run training job. Args: model: The model that we're training. loss: A function to compute the loss for a batch. training: The collection of training images validation: The collection of validation images batch_size: The batch size to use for training augmenter: The augmenter for generating samples epochs: The number of epochs to train. on_epoch_start: A callback to run when starting a new epoch. on_epoch_end: A callback to run when finishing an epoch. shuffle: Whether to shuffle the training data on each epoch. optimizer_params: Passed to timm.optim.create_optimizer_v2 to build the optimizer. scheduler_params: Passed to timm.scheduler.create_scheduler to build the scheduler. """ assert timm is not None, "timm is required for this function" assert torch is not None, "torch is required for this function." optimizer = timm.optim.create_optimizer_v2( model, **(optimizer_params or DEFAULT_OPTIMIZER_PARAMS) ) scheduler, _ = timm.scheduler.create_scheduler( types.SimpleNamespace(**(scheduler_params or DEFAULT_SCHEDULER_PARAMS)), optimizer=optimizer, ) train_index = np.arange(len(training)).tolist() summaries: typing.List[typing.Dict[str, typing.Any]] = [] terminated = False try: for epoch in range(epochs): with tqdm.trange(len(training) // batch_size) as t: model.train() t.set_description(f"Epoch {epoch + 1} / {epochs}") scheduler.step( epoch=epoch, metric=None if not summaries else summaries[-1].get("val_loss", summaries[-1]["loss"]), ) if on_epoch_start: on_epoch_start() cum_loss = 0 for batchIdx, start in enumerate(range(0, len(training), batch_size)): if batchIdx == 0 and shuffle: random.shuffle(train_index) end = min(start + batch_size, len(train_index)) batch = [training[train_index[idx]] for idx in range(start, end)] if augment: batch = augment(batch) optimizer.zero_grad() batch_loss = loss(batch) batch_loss.backward() if clip_grad_norm_params is not None: torch.nn.utils.clip_grad_norm_( model.parameters(), **clip_grad_norm_params ) cum_loss += batch_loss.detach().cpu().numpy() avg_loss = cum_loss / end optimizer.step() t.set_postfix(loss=avg_loss) t.update() summaries.append({"loss": avg_loss}) if validation: summaries[-1]["val_loss"] = np.sum( [ loss( [ validation[idx] for idx in range( vstart, min(vstart + batch_size, len(validation)), ) ] ) .detach() .cpu() .numpy() for vstart in range(0, len(validation), batch_size) ] ) / len(validation) summaries[-1]["lr"] = next(g["lr"] for g in optimizer.param_groups) if on_epoch_end: try: summaries[-1] = {**summaries[-1], **on_epoch_end(summaries)} except StopIteration: terminated = True t.set_postfix(**summaries[-1]) if terminated: break except KeyboardInterrupt: LOGGER.warning("Terminating early due to keyboard interrupt.") return summaries return summaries
5,480
wiki_music/library/lyrics.py
marian-code/wikipedia-music-tags
5
2169822
r"""Get lyrics from. Anime Lyrics, AZLyrics, Genius, Lyricsmode, \ Lyrical Nonsense, Musixmatch, darklyrics """ import logging from typing import TYPE_CHECKING, Dict, List, Optional, Union, Tuple import rapidfuzz.fuzz as fuzz # lazy loaded from wiki_music.constants import GREEN, NO_LYRIS, RESET from wiki_music.external_libraries import lyricsfinder # lazy loaded from wiki_music.utilities import (GoogleApiKey, ThreadPool, caseless_equal, exception, normalize) if TYPE_CHECKING: from wiki_music.external_libraries.lyricsfinder import LyricsManager from typing_extensions import TypedDict LyrData = TypedDict("LyrData", {"track": List[int], "lyrics": str, "source_url": str}) LyrDict = Dict[str, LyrData] from wiki_music.external_libraries.lyricsfinder.models.lyrics import ( LyricsDict) log = logging.getLogger(__name__) log.debug("lyrics imports done") __all__ = ["save_lyrics"] def save_lyrics(tracks: List[str], types: List[str], band: str, album: str, GUI: bool, multi_threaded: bool ) -> Tuple[List[str], List[Union[str, None]]]: """Searches and downloads lyrics for each track. Does some preprocessing before it starts the lyricsfinder module and downloads the lyrics. In preproces, tracks which will have same lyrics are identified so the same lyrics are not downloaded twice. The lyrics are then downloaded asynchronously each in separate thread for speed. See also -------- :mod:`wiki_music.external_libraries.lyricsfinder` module used to download lyrics :class:`wiki_music.utilities.parser_utils.ThreadPool` async download Parameters ---------- tracks: List[str] list of album tracks types: List[str] list of album types, to infer which tracks have same lyrics, e.g. <track> and <track (acoustic)> are considered to have same lyrics. Instrumental and Orchestral types are set to no lyrics band: str album artist name album: str album name GUI: bool whether app is running in GUI mode multi_threaded: bool whether to download lyrics in parallel of in orderely fasion Returns ------- List[str] list of track lyrics in same order as tracks list was passed in List[Union[str, None]] list of lyrics source urls """ log.info("starting save lyrics") GOOGLE_API_KEY = GoogleApiKey.value(GUI) lyrics: List[str] sources: List[Union[str, None]] tracks_dict: "LyrDict" raw_lyrics: List["LyricsDict"] lyrics = [] sources = [] for i, tp in enumerate(types): sources.append(None) for nl in NO_LYRIS: if caseless_equal(nl, tp): lyrics.append(nl) break else: lyrics.append("") log.info("Initialize duplicates") tracks_dict = dict() for i, (tr, lyr) in enumerate(zip(tracks, lyrics)): # TODO might be able to use defaultdict here with custom factory # defaultdict(lambda x: something...) if not lyr: for tr_k in tracks_dict.keys(): if fuzz.token_set_ratio(tr, tr_k, score_cutoff=90): tracks_dict[tr_k]["track"].append(i) break else: tracks_dict[tr] = {"track": [i], "lyrics": "", "source_url": ""} log.info("Download lyrics") # manager must be initialized in main thread manager = lyricsfinder.LyricsManager() # run search t = ThreadPool(target=_get_lyrics, args=[(manager, band, album, t, GOOGLE_API_KEY) for t in tracks_dict.keys()]) if multi_threaded: t.run() else: t.run_serial() raw_lyrics = t.results() log.info("Assign lyrics to tracks_dict") # report results for i, l in enumerate(raw_lyrics): if l["lyrics"]: print(GREEN + "Saved lyrics for:" + RESET, f"{l['artist']} - {l['title']} " + GREEN + f"({l['origin']['source_name']})") else: print(GREEN + "Couldn't find lyrics for:" + RESET, f"{l['artist']} - {l['title']}") tracks_dict[l["title"]]["lyrics"] = l["lyrics"] tracks_dict[l["title"]]["source_url"] = l["origin"]["source_url"] for track in tracks_dict.values(): for i in track["track"]: lyrics[i] = track["lyrics"] sources[i] = track["source_url"] return lyrics, sources @exception(log) def _get_lyrics(manager: 'LyricsManager', artist: str, album: str, song: str, GOOGLE_API_KEY: str ) -> "LyricsDict": """Find and download lyrics for specified song. See also -------- :meth:`wiki_music.external_libraries.lyricsfinder.LyricsManager` low level lyricsfinding implementation Parameters ---------- manager: lyricsfinder.LyricsManager instance of LyricsManager which encapsulates the lyrics finding and downloading methods artist: str artist name album: str album name song: str song name Returns ------- dict dictionary with lyrics and information where it was downloaded from """ lyrics = next(manager.search_lyrics(song, album, artist, google_api_key=GOOGLE_API_KEY), None) if not lyrics: log.info(f"Couldn't find lyrics for: {artist} - {song}") return {"lyrics": "", "artist": artist, "title": song, "release_date": None, "origin": {"source_name": "", "query": "", "url": "", "source_url": ""}} else: log.info(f"Saved lyrics for: {artist} - {song}") response = lyrics.to_dict() response["title"] = song return response
6,079
quaddicted/packages/migrations/0001_initial.py
hemebond/quaddicted
8
2169451
# Generated by Django 3.1.1 on 2020-11-01 14:02 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion import quaddicted.packages.models import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('taggit', '0003_taggeditem_add_unique_index'), ] operations = [ migrations.CreateModel( name='Package', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(max_length=256, upload_to=quaddicted.packages.models.package_upload_to, validators=[quaddicted.packages.models.validate_package_file])), ('file_name', models.CharField(blank=True, editable=False, max_length=128)), ('file_hash', models.CharField(blank=True, editable=False, max_length=64, unique=True)), ('file_size', models.BigIntegerField(blank=True, editable=False, null=True)), ('name', models.CharField(max_length=128)), ('created', models.DateTimeField(auto_now_add=True)), ('rating', models.FloatField(blank=True, editable=False, null=True)), ('game', models.CharField(choices=[('q1', 'Quake 1'), ('q2', 'Quake 2'), ('q3', 'Quake 3')], default='q1', max_length=2)), ('description', models.TextField(blank=True)), ('type', models.IntegerField(choices=[(1, 'Single BSP File(s)'), (2, 'Partial conversion'), (3, 'Total conversion'), (4, 'Speedmapping'), (5, 'Misc. Files'), (6, 'undefined, please tell Spirit')], default=6)), ('published', models.BooleanField(default=False)), ('uploaded_on', models.DateTimeField(auto_now_add=True)), ('base_dir', models.CharField(blank=True, help_text='directory where this package should be extracted to', max_length=256, null=True)), ('command_line', models.CharField(blank=True, help_text='command-line arguments for running the package', max_length=256, null=True)), ], options={ 'ordering': ('name',), }, ), migrations.CreateModel( name='PackageAuthor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, unique=True, verbose_name='name')), ('slug', models.SlugField(max_length=100, unique=True, verbose_name='slug')), ], options={ 'verbose_name': 'Package Author', 'verbose_name_plural': 'Package Authors', }, ), migrations.CreateModel( name='PackageUrl', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=32)), ('url', models.URLField()), ('package', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='urls', to='quaddicted_packages.package')), ], ), migrations.CreateModel( name='PackageScreenshot', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(help_text='A 16x9 resolution image at least 1024x576', max_length=256, upload_to=quaddicted.packages.models.screenshot_upload_to)), ('package', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='screenshots', to='quaddicted_packages.package')), ], ), migrations.CreateModel( name='PackageFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('last_modified', models.DateTimeField(auto_now_add=True)), ('size', models.BigIntegerField(blank=True, editable=False, null=True)), ('package', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='files', to='quaddicted_packages.package')), ], ), migrations.AddField( model_name='package', name='authors', field=models.ManyToManyField(help_text='A comma-separated list of authors.', related_name='packages', to='quaddicted_packages.PackageAuthor'), ), migrations.AddField( model_name='package', name='dependencies', field=models.ManyToManyField(to='quaddicted_packages.Package'), ), migrations.AddField( model_name='package', name='tags', field=taggit.managers.TaggableManager(blank=True, help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags'), ), migrations.AddField( model_name='package', name='uploaded_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), migrations.CreateModel( name='PackageRating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(blank=True, max_length=32, null=True)), ('score', models.PositiveSmallIntegerField(validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(5)])), ('created', models.DateTimeField(auto_now_add=True)), ('package', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ratings', to='quaddicted_packages.package')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('user', 'package'), ('username', 'package')}, }, ), ]
6,455
drf_jwt_2fa/sending.py
trendlee/drf-jwt-2fa
21
2170385
from django.conf import settings from django.core.mail import send_mail from django.utils.translation import ugettext as _ from .settings import api_settings class CodeSendingFailed(Exception): pass def send_verification_code(user, code): sender = api_settings.CODE_SENDER return sender(user, code) def send_verification_code_via_email(user, code): user_email_address = getattr(user, 'email', None) if not user_email_address: raise CodeSendingFailed(_("No e-mail address known")) subject_template = _( api_settings.EMAIL_SENDER_SUBJECT_OVERRIDE or _("{code}: Your verification code")) body_template = ( api_settings.EMAIL_SENDER_BODY_OVERRIDE or _("{code} is the verification code needed for the login.")) messages_sent = send_mail( subject=subject_template.format(code=code), message=body_template.format(code=code), from_email=settings.DEFAULT_FROM_EMAIL, recipient_list=[user_email_address], fail_silently=True) if not messages_sent: raise CodeSendingFailed(_("Unable to send e-mail"))
1,124
skml/datasets/sample_down_label_space.py
ChristianSch/skml
5
2170374
import numpy as np from scipy.sparse import issparse from operator import itemgetter def sample_down_label_space(y, k, method='most-frequent'): """ Samples down label space, such that the returned label space retains order of the original labels, but removes labels which do not meet certain criteria (see `method`). Parameters ---------- y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes] Multi-label targets k : number Number of returned labels, has to be smaller than the number of distinct labels in `y` method : string, default = 'most-frequent' Method to sample the label space down. Currently supported is only by top k most frequent labels. """ if k > y.shape[1]: raise ValueError('Cannot sample more labels than given') if method == 'most-frequent': # create mapping of frequencies per column (label) if issparse(y): # sum of sparse matrix returns a matrix. A1 holds the matrix as # a one dimensional array, just like if y was dense freqs = list(map(lambda x: (x[0], x[1]), enumerate(np.sum(y, axis=0).A1))) else: freqs = list(map(lambda x: (x[0], x[1]), enumerate(np.sum(y, axis=0)))) freqs.sort(key=itemgetter(1), reverse=True) # select top k labels, restore original order # if we wouldn't restore the original order, the labels would # be ordered not by original column, but by "most frequent occuring" sampled_indices = sorted(list(map(lambda x: x[0], freqs[:k]))) return y[:, sampled_indices] else: raise ValueError('No such sample method {0}'.format(method))
1,793
anonboard/settings_production.sample.py
anehx/anonboard-backend
0
2170316
from settings import * DEBUG = False STATIC_ROOT = '/var/www/anonboard/django-static/static' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'anonboard', 'USER': 'anonboard', 'PASSWORD': '*********', 'HOST': 'localhost' } }
328
2019/ml/notebook/mydata/data/__init__.py
hyeyoom/Study-Note
0
2170581
__description__ = 'Dataset loader' from .artificial import make_linear_regression_data from .artificial import make_polynomial_regression_data from .io import readtxt from .io import load_pima_indians_data from .io import load_drink_data
239
python/muonPrep.py
chadfreer/monoZ_Analysis
0
2170070
import FWCore.ParameterSet.Config as cms ''' Produces "preppedMuons" Uses the MET uncertainty variations from runMETCorrectionsAndUncertainties() function See L768 of PhysicsTools/PatUtils/python/tools/runMETCorrectionsAndUncertainties.py ''' def muonPrep(process, isMC): # TODO: corrections # KaMuCa? Rochester? MuscleFit? process.preppedMuons = cms.EDProducer("MuonPrep", muonSrc = cms.InputTag("slimmedMuons"), vertexSrc = cms.InputTag("offlineSlimmedPrimaryVertices"), kinematicCutAnyVariation = cms.string('pt > 10 && abs(eta) < 2.4'), finalCut = cms.string('isLooseMuon'), )
631
jamf/models/computer_operating_system.py
jensenbox/python-jamf
1
2169335
# coding: utf-8 """ Jamf Pro API ## Overview This is a sample Jamf Pro server which allows for usage without any authentication. The Jamf Pro environment which supports the Try it Out functionality does not run the current beta version of Jamf Pro, thus any newly added endpoints will result in an error and should be used soley for documentation purposes. # noqa: E501 The version of the OpenAPI document: 10.25.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from jamf.configuration import Configuration class ComputerOperatingSystem(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'str', 'version': 'str', 'build': 'str', 'active_directory_status': 'str', 'master_password_set': 'bool', 'file_vault2_status': 'str', 'extension_attributes': 'list[ComputerExtensionAttribute]' } attribute_map = { 'name': 'name', 'version': 'version', 'build': 'build', 'active_directory_status': 'activeDirectoryStatus', 'master_password_set': '<PASSWORD>', 'file_vault2_status': 'fileVault2Status', 'extension_attributes': 'extensionAttributes' } def __init__(self, name=None, version=None, build=None, active_directory_status=None, master_password_set=None, file_vault2_status=None, extension_attributes=None, local_vars_configuration=None): # noqa: E501 """ComputerOperatingSystem - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._version = None self._build = None self._active_directory_status = None self._master_password_set = None self._file_vault2_status = None self._extension_attributes = None self.discriminator = None if name is not None: self.name = name if version is not None: self.version = version if build is not None: self.build = build if active_directory_status is not None: self.active_directory_status = active_directory_status if master_password_set is not None: self.master_password_set = master_password_set if file_vault2_status is not None: self.file_vault2_status = file_vault2_status if extension_attributes is not None: self.extension_attributes = extension_attributes @property def name(self): """Gets the name of this ComputerOperatingSystem. # noqa: E501 :return: The name of this ComputerOperatingSystem. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ComputerOperatingSystem. :param name: The name of this ComputerOperatingSystem. # noqa: E501 :type name: str """ self._name = name @property def version(self): """Gets the version of this ComputerOperatingSystem. # noqa: E501 :return: The version of this ComputerOperatingSystem. # noqa: E501 :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this ComputerOperatingSystem. :param version: The version of this ComputerOperatingSystem. # noqa: E501 :type version: str """ self._version = version @property def build(self): """Gets the build of this ComputerOperatingSystem. # noqa: E501 :return: The build of this ComputerOperatingSystem. # noqa: E501 :rtype: str """ return self._build @build.setter def build(self, build): """Sets the build of this ComputerOperatingSystem. :param build: The build of this ComputerOperatingSystem. # noqa: E501 :type build: str """ self._build = build @property def active_directory_status(self): """Gets the active_directory_status of this ComputerOperatingSystem. # noqa: E501 :return: The active_directory_status of this ComputerOperatingSystem. # noqa: E501 :rtype: str """ return self._active_directory_status @active_directory_status.setter def active_directory_status(self, active_directory_status): """Sets the active_directory_status of this ComputerOperatingSystem. :param active_directory_status: The active_directory_status of this ComputerOperatingSystem. # noqa: E501 :type active_directory_status: str """ self._active_directory_status = active_directory_status @property def master_password_set(self): """Gets the master_password_set of this ComputerOperatingSystem. # noqa: E501 :return: The master_password_set of this ComputerOperatingSystem. # noqa: E501 :rtype: bool """ return self._master_password_set @master_password_set.setter def master_password_set(self, master_password_set): """Sets the master_password_set of this ComputerOperatingSystem. :param master_password_set: The master_password_set of this ComputerOperatingSystem. # noqa: E501 :type master_password_set: bool """ self._master_password_set = master_password_set @property def file_vault2_status(self): """Gets the file_vault2_status of this ComputerOperatingSystem. # noqa: E501 :return: The file_vault2_status of this ComputerOperatingSystem. # noqa: E501 :rtype: str """ return self._file_vault2_status @file_vault2_status.setter def file_vault2_status(self, file_vault2_status): """Sets the file_vault2_status of this ComputerOperatingSystem. :param file_vault2_status: The file_vault2_status of this ComputerOperatingSystem. # noqa: E501 :type file_vault2_status: str """ allowed_values = ["NOT_APPLICABLE", "NOT_ENCRYPTED", "BOOT_ENCRYPTED", "SOME_ENCRYPTED", "ALL_ENCRYPTED"] # noqa: E501 if self.local_vars_configuration.client_side_validation and file_vault2_status not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `file_vault2_status` ({0}), must be one of {1}" # noqa: E501 .format(file_vault2_status, allowed_values) ) self._file_vault2_status = file_vault2_status @property def extension_attributes(self): """Gets the extension_attributes of this ComputerOperatingSystem. # noqa: E501 :return: The extension_attributes of this ComputerOperatingSystem. # noqa: E501 :rtype: list[ComputerExtensionAttribute] """ return self._extension_attributes @extension_attributes.setter def extension_attributes(self, extension_attributes): """Sets the extension_attributes of this ComputerOperatingSystem. :param extension_attributes: The extension_attributes of this ComputerOperatingSystem. # noqa: E501 :type extension_attributes: list[ComputerExtensionAttribute] """ self._extension_attributes = extension_attributes def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ComputerOperatingSystem): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ComputerOperatingSystem): return True return self.to_dict() != other.to_dict()
9,276
setup.py
mytab0r/RaveGen-Telegram-bot-generator
1
2170600
import setuptools with open("README.rst", "r") as fh: long_description = fh.read() setuptools.setup( name="ravegen", version="0.3.1", scripts=['ravegen/ravegen'], author="<NAME>", author_email="<EMAIL>", license='MIT', description="Program for generate, create and deploy telegram bots readable way.", long_description=long_description, install_requires=[ 'python-telegram-bot', ], package_data={'ravegen': ["LICENSE", "rave_compl.bash", "ravegen/commands", "ravegen/version"]}, include_package_data=True, url="https://github.com/ChrisChV/RaveGen-Telegram-bot-generator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 2.7", 'License :: OSI Approved :: MIT License', "Operating System :: OS Independent", ], )
851
jcms/templatetags/get_object_attr.py
jessielaf/jcms-pip
0
2170310
from django import template register = template.Library() @register.filter def get_object_attr(use_object, name): return getattr(use_object, name)
154
textvinf/modules/callbacks.py
vikigenius/textvinf
0
2168196
# -*- coding: utf-8 -*- import logging import random from typing import Any, Dict from allennlp.common.util import END_SYMBOL, START_SYMBOL from allennlp.training.trainer import EpochCallback, GradientDescentTrainer logger = logging.getLogger(__name__) @EpochCallback.register('print_reconstruction_example') class PrintReconstructionExample(EpochCallback): """Callback that prints an example reconstruction.""" def __call__( self, trainer: GradientDescentTrainer, metrics: Dict[str, Any], epoch: int, is_master: bool, ): """Callback call implementation.""" batch = next(iter(trainer._validation_data_loader)) outputs = trainer.model.make_output_human_readable( trainer.batch_outputs(batch, for_training=False), )['predicted_sentences'] idx = random.randrange(0, len(outputs)) vocab = trainer.model.vocab removal_tokens = {START_SYMBOL, END_SYMBOL, vocab._padding_token} pred_sentence = outputs[idx] source_sentence = ' '.join( [ vocab.get_token_from_index(tidx.item()) for tidx in batch['source_tokens']['tokens']['tokens'][idx] if vocab.get_token_from_index(tidx.item()) not in removal_tokens ], ) logger.info('{0} -> {1}'.format(source_sentence, pred_sentence)) @EpochCallback.register('print_generation_example') class PrintGenerationExample(EpochCallback): """Callback that prints an example reconstruction.""" def __call__( self, trainer: GradientDescentTrainer, metrics: Dict[str, Any], epoch: int, is_master: bool, ): """Callback call implementation.""" pred_sentence = random.choice(trainer.model.generate()['predicted_sentence']) logger.info(pred_sentence)
1,883
neolight/api/migrations/0001_initial.py
Bleno/django-light
0
2169349
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-24 01:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='LBBase', fields=[ ('id_base', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=120, unique=True)), ('struct', models.CharField(max_length=120)), ('dt_base', models.DateTimeField()), ('idx_exp', models.BooleanField()), ('idx_exp_url', models.CharField(max_length=120, null=True)), ('idx_exp_time', models.IntegerField()), ('file_ext', models.BooleanField()), ('file_ext_time', models.IntegerField(null=True)), ('txt_mapping', models.CharField(max_length=120, null=True)), ], options={ 'db_table': 'lb_base', }, ), ]
1,109
Console_Interface/variants_generator.py
El-Dios/exam-paper-variants-generator-
0
2169952
import random from colorama import init, Fore, Back, Style from os import system def generate_unique_variants(students_count, exam_papers_count): """ Случайным образом генерирует и выводит на экран номера билетов для каждого студента """ # check if exam papers number more than students amount if exam_papers_count < students_count: for val in range(students_count): print(f'{val+1:2}й студент - вариант № {random.randrange(exam_papers_count)+1}') return None # define list of exam papers numbers number_list = [] # fulfill list by numbers for i in range(1, exam_papers_count+1): number_list.append(i) # randomly shuffle fulfilled list random.shuffle(number_list) # formatting print exam papers number in order of students number for val in range(students_count): print(f'{val+1:2}й студент - вариант № {number_list[val]}') return None init() flag = True # console interface in while cycle while(flag): system('cls') print(Back.GREEN, Style.BRIGHT, Fore.WHITE + "Здравствуйте! Добро пожаловать в генератор билетов!") # Input values for function print(Back.CYAN) count_stud = int(input('Введите количество студентов: ')) count_exam_papers = int(input('Введите количество билетов: ')) # Execute function print(Back.RESET, Fore.GREEN) generate_unique_variants(count_stud, count_exam_papers) decision = input("\nПовторить?[Да/Нет]") if (decision.lower() != 'да'): flag = False
1,531
yoi/storage_factory.py
zhzLuke96/Yoi
0
2170277
from .utils import getId import time class factory_simple(dict): def __init__(self, MaxAge=3600): self.max_age = MaxAge def is_alive(self, id): obj, t = self.get(id, (None, 0)) if time.time() - t > self.max_age: return False return True def save(self, obj, id=getId()): self[id] = (obj, int(time.time())) return id def load(self, id): if self.is_alive(id): return self.get(id, (None,None))[0] return None
514
seriouslylib/cp437.py
Mego/Seriously
104
2170287
#!/usr/bin/env python3 class CP437(): table = ( '\x00\u263a\u263b\u2665\u2666\u2663\u2660\u2022\u25d8\u25cb\u25d9' '\u2642\u2640\u266a\u266b\u263c\u25ba\u25c4\u2195\u203c\xb6\xa7' '\u25ac\u21a8\u2191\u2193\u2192\u2190\u221f\u2194\u25b2\u25bc !"' +r"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]" +'^_`abcdefghijklmnopqrstuvwxyz{|}~\u2302\xc7\xfc\xe9\xe2\xe4\xe0' '\xe5\xe7\xea\xeb\xe8\xef\xee\xec\xc4\xc5\xc9\xe6\xc6\xf4\xf6\xf2' '\xfb\xf9\xff\xd6\xdc\xa2\xa3\xa5\u20a7\u0192\xe1\xed\xf3\xfa\xf1' '\xd1\xaa\xba\xbf\u2310\xac\xbd\xbc\xa1\xab\xbb\u2591\u2592\u2593' '\u2502\u2524\u2561\u2562\u2556\u2555\u2563\u2551\u2557\u255d' '\u255c\u255b\u2510\u2514\u2534\u252c\u251c\u2500\u253c\u255e' '\u255f\u255a\u2554\u2569\u2566\u2560\u2550\u256c\u2567\u2568' '\u2564\u2565\u2559\u2558\u2552\u2553\u256b\u256a\u2518\u250c' '\u2588\u2584\u258c\u2590\u2580\u03b1\xdf\u0393\u03c0\u03a3\u03c3' '\xb5\u03c4\u03a6\u0398\u03a9\u03b4\u221e\u03c6\u03b5\u2229\u2261\xb1' '\u2265\u2264\u2320\u2321\xf7\u2248\xb0\u2219\xb7\u221a\u207f\xb2\u25a0\xa0' ) @staticmethod def ord(c): return CP437.table.find(c) @staticmethod def chr(o): if not 0 <= o < 256: raise ValueError return CP437.table[o] @staticmethod def from_Unicode(s): res = [] for c in s: if c in CP437.table: res.append(CP437.ord(c)) else: res.extend(c.encode('utf-8')) return res
1,550
answerdiff/serializers.py
saganshul/django-portals
0
2170139
from rest_framework import serializers from .models import Question, Submission, Profile, Comment class QuestionSerializer(serializers.ModelSerializer): class Meta: model = Question fields = ('question_level', 'question_number', 'question_title', 'question_desc', 'question_image') class SubmissionSerializer(serializers.ModelSerializer): class Meta: model = Submission fields = ('id','submission_string','submission_storage') class ScoreboardSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('user_nick','user_score') class CommentSerializer(serializers.ModelSerializer): class Meta: model = Comment fields = ('comment_message',) class SubmissionSerializerforMySubmission(serializers.ModelSerializer): class Meta: model = Submission fields = ('submission_user', 'submission_question', 'submission_question', 'submission_state' ) depth = 2
1,045
Text2Handwriting.py
pavitra14/Text2Handwriting
0
2170601
from flask import Flask, render_template, flash, request, redirect from TokenManagement import TokenManager import utils from werkzeug.utils import secure_filename import os app = Flask(__name__) app.config.from_object(__name__) app.config['SECRET_KEY'] = "<KEY>" UPLOAD_FOLDER = './static/uploads/' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER #WSGI Module application = app tk = TokenManager() @app.route("/", methods=["GET"]) def home(): handwriting_list = utils.get_handwriting_list() hw_json = utils.list_to_json(handwriting_list) return render_template('index.html', handwriting_list=hw_json) @app.route("/custom_handwriting", methods=['GET','POST']) def showCustomHandwritingPage(): if request.method == 'GET': return render_template('custom_handwriting.html') form = request.form token = form['token'] if not tk.checkToken(token): return render_template('custom_handwriting.html', msg="Invalid Token") print(request.files) if 'file' not in request.files: return render_template('custom_handwriting.html', msg="No file selected") file = request.files['file'] if (not file) and not utils.allowed_file(file.filename): return render_template('custom_handwriting.html', msg="Invalid File selected") filename = secure_filename(file.filename) path = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(path) # Start Training image = utils.load_image(path) if image is False: return render_template('custom_handwriting.html', msg="Some Error Occured with image, try again") boxes = utils.get_boxes(image) b64 = utils.boxes_web(boxes, image) return render_template('custom_progress.html',img=b64, token=token, filename=path) @app.route("/extract_handwriting", methods=["POST"]) def extractHandwriting(): form = request.form filename = form['filename'] token = form['token'] correct = form['correct'] if correct != "Yes": return redirect("/custom_handwriting") if not tk.checkToken(token): return "Invalid token" # Extract each letter and save it in it's folder print(filename) image = utils.load_image(filename) boxes = utils.get_boxes(image) processed = {} for char,status in utils.extract_letters(image,boxes,token): processed[char] = status print("Processing {} ".format(char)) utils.add_custom_handwriting(tk.getTokenName(token)) return processed @app.route("/ajax/load_token", methods=["POST"]) def load_token(): token = request.form['token'] if tk.checkToken(token): key = tk.getTokenName(token) return {"status":"valid","hw_name":key} return {"status":"invalid","hw_name":""} if __name__ == '__main__': app.run(debug=True)
2,790
data_load.py
zhouliupku/LGtagging_LSTM
3
2170409
# -*- coding: utf-8 -*- """ Created on Mon Nov 4 22:59:19 2019 Load from unstructured data and produce datasets @author: Zhou """ import os import pickle import numpy as np from bs4 import BeautifulSoup as BS import lg_utils import config from config import NULL_TAG, PADDING_CHAR, MAX_LEN from DataStructures import Page, Record class DataLoader(object): def __init__(self, size="small"): ''' size: "small" or "full" ''' self.datapath = os.path.join(os.getcwd(), "logart_html", size) def load_data(self, interested_tags, train_perc=0.6, cv_perc=0.2): ''' return a tuple containing lists of pages or records, depending on mode ''' pages = [] records = [] for file in self.get_file(): try: ps, rs = self.load_section(file, interested_tags) pages.extend(ps) records.extend(rs) except ValueError: print("VALUE ERROR!") print(file) pages_train, pages_cv, pages_test = lg_utils.random_separate(pages, [train_perc, cv_perc]) records_train, records_cv, records_test = lg_utils.random_separate(records, [train_perc, cv_perc]) print("Loaded {} pages for training.".format(len(pages_train))) print("Loaded {} pages for cross validation.".format(len(pages_cv))) print("Loaded {} pages for testing.".format(len(pages_test))) return pages_train, pages_cv, pages_test, records_train, records_cv, records_test def load_section(self, files, interested_tags): """ return a list of Page instances and Record instances """ html_filename = files with open(html_filename, 'r', encoding = "utf8") as file: lines = file.readlines() pages = [] records = [] all_text, all_tags = self.format_raw_data(lines) rest_tags = all_tags # list of tag, together page page_texts = all_text.split('【') # list of str, except the first str, all other str starts with "】" rest_tags = rest_tags[len(page_texts[0]):] for page_text in page_texts[1:]: candi = page_text.split('】') if len(candi) != 2: raise ValueError if len(candi[1]) == 0: # print("Page {} is empty!".format(candi[0])) continue if len(candi[1]) >= MAX_LEN: print("Page {} is too long!".format(candi[0])) continue pid, txt = int(candi[0]), candi[1] page_tags = rest_tags[(len(candi[0]) + 2):(len(candi[0]) + 2 + len(txt))] rest_tags = rest_tags[(len(candi[0]) + 2 + len(txt)):] eos_idx = [] for i, tag in enumerate(page_tags): # EOS is the index just before a name' beginning if i == 0 and tag == self.get_person_begin_tag(): continue if tag == self.get_person_begin_tag() \ and not self.is_person_tag(page_tags[i-1]): # avoid consecutive person names eos_idx.append(i-1) eos_idx.append(len(txt)-1) page = Page(pid, txt, eos_idx) record_txt_len = page.get_sep_len() head_char_idx = 0 records_in_page = [] for sent_len in record_txt_len: text = page.txt[head_char_idx : (head_char_idx + sent_len)] tags = page_tags[head_char_idx : (head_char_idx + sent_len)] # substitution record_tag = [] for tag in tags: # None means take all if (interested_tags is None) or (tag in interested_tags): record_tag.append(tag) else: record_tag.append(NULL_TAG) records_in_page.append(Record(text, record_tag)) head_char_idx += sent_len records.extend(records_in_page) pages.append(page) return pages, records def get_file(self): input_path = os.path.join(self.datapath, "train") tagged_filelist = [os.path.join(input_path, x) for x in os.listdir(input_path)] return tagged_filelist def format_raw_data(self, lines): """ return (all_text, all_tags) for a given section represented as list of str all_text: a long str representing whole text for the section all_tags: list of tags (each tag as a str) with same len as all_text """ Xs, Ys = [], [] for line in lines: line = line.replace(PADDING_CHAR, '') # line = line.replace(' ', '') # line = line.replace('[T4]', '') soup = BS(line, "html.parser") with_tag_item = list(soup.find_all(recursive=False)) result = [] without_tag_item = [] rest_contents = str(soup) for item in with_tag_item: item_str = str(item) title_flag = '〉' in item.text or '〈' in item.text item_start_idx = rest_contents.find(item_str) if not title_flag: # white space around non-tagged string str_before_tag = rest_contents[:item_start_idx].strip() without_tag_item.append(str_before_tag) # Step 1. if there is non-trivial string before tag, add as null tag if len(str_before_tag) > 0: null_tag = soup.new_tag(NULL_TAG) null_tag.string = str_before_tag.replace(' ', '') result.append(null_tag) # Step 2. add the tag itself to result, with modification w.r.t. spaces item.string = item.text.replace(' ', '') result.append(item) # Step 3. update rest_contents so that it contains the part after this tag rest_contents = rest_contents[(item_start_idx + len(item_str)):] # Lastly, if there is anything left, these should be with null tag. Add it rest_contents = rest_contents.strip().replace(' ', '') if len(rest_contents) > 0: null_tag = soup.new_tag(NULL_TAG) null_tag.string = rest_contents result.append(null_tag) without_tag_item.append(rest_contents) X = ''.join([t.text for t in result]) Y = lg_utils.concat_lists([self.get_bio(t) for t in result]) # hierarchy: section -> page -> record -> char Xs.append(X) # Xs is list of str, each str: record Ys.append(Y) # Ys is list of list of tag return ''.join(Xs), lg_utils.concat_lists(Ys) def get_bio(self, t): """ input t: BS tag instance output: BIO style tags as list of string special treatment: due to historical reasons, entry_addr should be biog_addr """ if len(t.text) == 0: return [] elif t.name == NULL_TAG: return [NULL_TAG] * len(t.text) else: tag_name = "biog_addr" if t.name == "entry_addr" else t.name return [config.BEG_PREFIX + tag_name] + [config.IN_PREFIX + tag_name] * (len(t.text) - 1) def get_person_begin_tag(self): return config.BEG_PREFIX + "person" def is_person_tag(self, tag): return tag in [config.BEG_PREFIX + "person", config.IN_PREFIX + "person"] def dump_data_to_pickle(d, filename, size): path = os.path.join(os.getcwd(), "data", size) if not os.path.exists(path): os.mkdir(path) pickle.dump(d, open(os.path.join(path, filename), "wb")) if __name__ == "__main__": np.random.seed(0) for size in ["small", "medium", "full"]: loader = DataLoader(size) # Model hyper-parameter definition interested_tags = ["person", "post_time", "jiguan", "entry_way", "post_type", "office", "entry_addr", "next_office", "prev_office", "zi", "kins", "entry_time", "post_address", "source_tag", "othername", "hao", "biog_addr"] interested_tags = lg_utils.concat_lists([[config.BEG_PREFIX + t, config.IN_PREFIX + t] for t in interested_tags]) data = loader.load_data(interested_tags, train_perc=0.6, cv_perc=0.2) dump_data_to_pickle(data[0], "pages_train.p", size) dump_data_to_pickle(data[1], "pages_cv.p", size) dump_data_to_pickle(data[2], "pages_test.p", size) dump_data_to_pickle(data[3], "records_train.p", size) dump_data_to_pickle(data[4], "records_cv.p", size) dump_data_to_pickle(data[5], "records_test.p", size)
9,307
problems/meeting_room.py
smartdolphin/recommandation-tutorial
1
2167834
# 252. Meeting Rooms # https://leetcode.com/problems/meeting-rooms import unittest # Definition for an interval. class Interval: def __init__(self, s=0, e=0): self.start = s self.end = e class Solution: def canAttendMeetings(self, intervals): """ :type intervals: List[Interval] :rtype: bool """ if not intervals or len(intervals) <= 1: return True intervals = sorted(intervals, key=lambda x: x.start) size = len(intervals) for i in range(size - 1): if intervals[i].end > intervals[i + 1].start: return False return True class TestMeetingRoom(unittest.TestCase): def test(self): sol = Solution() intervals = [Interval(i, j) for i, j in [[0, 30], [5, 10], [15, 20]]] self.assertFalse(sol.canAttendMeetings(intervals)) intervals = [Interval(i, j) for i, j in [[7, 10], [2, 4]]] self.assertTrue(sol.canAttendMeetings(intervals)) if __name__ == '__main__': unittest.TestCase()
1,065
edx_6.00.1x_python/problem2_2.py
TimothyDJones/learn-python
0
2170153
# problem2_2.py # Paying debt off in a year import math def balance_remaining(bal, ir, pmt): """ bal: float, starting account balance ir: float, annual interest rate pmt: int, minimum fixed monthly payment Returns the remaining balance as a float, rounded to 2 decimal points, after applying the minimum monthly payment. """ unpaid_bal = bal - pmt return (1 + (ir / 12.0)) * unpaid_bal balance = 3926 annualInterestRate = 0.2 # Strategy: Divide total balance by 12 to find lower bound for monthly payment. # Then increment monthly payment by 10 until we find payment amount that # results in zero or negative unpaid balance after 12 months. min_payment = math.floor(balance/(12 * 10)) * 10 - 10 initial_balance = balance while balance >= 0.0: balance = initial_balance min_payment += 10 for m in range(0, 12): balance = balance_remaining(balance, annualInterestRate, min_payment) print("With minimum payment of " + str(min_payment) + ", remaining balance: " + str(round(balance, 2))) print("Lowest Payment: " + str(min_payment))
1,105
python/oneflow/nn/modules/distributed_partial_fc_sample.py
L-Net-1992/oneflow
1
2170303
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings import oneflow as flow import oneflow._oneflow_internal._C as _C from oneflow.nn.module import Module class DistributedPariticalFCSample(Module): def __init__(self, num_sample): super().__init__() self.num_sample = num_sample self._op = ( flow.stateful_op("distributed_partial_fc_sample") .Input("weight") .Input("label") .Output("mapped_label") .Output("sampled_label") .Output("sampled_weight") .Build() ) def forward(self, weight, label): res = _C.dispatch_distributed_partial_fc_sample( self._op, weight=weight, label=label, num_sample=self.num_sample ) return res def distributed_partial_fc_sample_op(weight, label, num_sample): warnings.warn( "oneflow.distributed_partial_fc_sample is deprecated. Please use nn.DistributedPariticalFCSample module instead.", DeprecationWarning, ) return DistributedPariticalFCSample(num_sample)(weight, label)
1,648
openpype/plugins/publish/extract_jpeg_exr.py
Tilix4/OpenPype
0
2170229
import os import pyblish.api from openpype.lib import ( get_ffmpeg_tool_path, get_oiio_tools_path, is_oiio_supported, run_subprocess, path_to_subprocess_arg, execute, ) class ExtractThumbnail(pyblish.api.InstancePlugin): """Create jpg thumbnail from sequence using ffmpeg""" label = "Extract Thumbnail" order = pyblish.api.ExtractorOrder families = [ "imagesequence", "render", "render2d", "source", "plate", "take" ] hosts = ["shell", "fusion", "resolve"] enabled = False # presetable attribute ffmpeg_args = None def process(self, instance): self.log.info("subset {}".format(instance.data['subset'])) # skip crypto passes. # TODO: This is just a quick fix and has its own side-effects - it is # affecting every subset name with `crypto` in its name. # This must be solved properly, maybe using tags on # representation that can be determined much earlier and # with better precision. if 'crypto' in instance.data['subset'].lower(): self.log.info("Skipping crypto passes.") return # Skip if review not set. if not instance.data.get("review", True): self.log.info("Skipping - no review set on instance.") return filtered_repres = self._get_filtered_repres(instance) for repre in filtered_repres: repre_files = repre["files"] if not isinstance(repre_files, (list, tuple)): input_file = repre_files else: file_index = int(float(len(repre_files)) * 0.5) input_file = repre_files[file_index] stagingdir = os.path.normpath(repre["stagingDir"]) full_input_path = os.path.join(stagingdir, input_file) self.log.info("input {}".format(full_input_path)) filename = os.path.splitext(input_file)[0] if not filename.endswith('.'): filename += "." jpeg_file = filename + "jpg" full_output_path = os.path.join(stagingdir, jpeg_file) thumbnail_created = False # Try to use FFMPEG if OIIO is not supported (for cases when # oiiotool isn't available) if not is_oiio_supported(): thumbnail_created = self.create_thumbnail_ffmpeg(full_input_path, full_output_path) # noqa else: # Check if the file can be read by OIIO oiio_tool_path = get_oiio_tools_path() args = [ oiio_tool_path, "--info", "-i", full_output_path ] returncode = execute(args, silent=True) # If the input can read by OIIO then use OIIO method for # conversion otherwise use ffmpeg if returncode == 0: self.log.info("Input can be read by OIIO, converting with oiiotool now.") # noqa thumbnail_created = self.create_thumbnail_oiio(full_input_path, full_output_path) # noqa else: self.log.info("Converting with FFMPEG because input can't be read by OIIO.") # noqa thumbnail_created = self.create_thumbnail_ffmpeg(full_input_path, full_output_path) # noqa # Skip the rest of the process if the thumbnail wasn't created if not thumbnail_created: self.log.warning("Thumbanil has not been created.") return new_repre = { "name": "thumbnail", "ext": "jpg", "files": jpeg_file, "stagingDir": stagingdir, "thumbnail": True, "tags": ["thumbnail"] } # adding representation self.log.debug("Adding: {}".format(new_repre)) instance.data["representations"].append(new_repre) def _get_filtered_repres(self, instance): filtered_repres = [] src_repres = instance.data.get("representations") or [] for repre in src_repres: self.log.debug(repre) tags = repre.get("tags") or [] valid = "review" in tags or "thumb-nuke" in tags if not valid: continue if not repre.get("files"): self.log.info(( "Representation \"{}\" don't have files. Skipping" ).format(repre["name"])) continue filtered_repres.append(repre) return filtered_repres def create_thumbnail_oiio(self, src_path, dst_path): self.log.info("outputting {}".format(dst_path)) oiio_tool_path = get_oiio_tools_path() oiio_cmd = [oiio_tool_path, "-a", src_path, "-o", dst_path ] subprocess_exr = " ".join(oiio_cmd) self.log.info(f"running: {subprocess_exr}") try: run_subprocess(oiio_cmd, logger=self.log) return True except Exception: self.log.warning( "Failed to create thubmnail using oiiotool", exc_info=True ) return False def create_thumbnail_ffmpeg(self, src_path, dst_path): self.log.info("outputting {}".format(dst_path)) ffmpeg_path = get_ffmpeg_tool_path("ffmpeg") ffmpeg_args = self.ffmpeg_args or {} jpeg_items = [] jpeg_items.append(path_to_subprocess_arg(ffmpeg_path)) # override file if already exists jpeg_items.append("-y") # flag for large file sizes max_int = 2147483647 jpeg_items.append("-analyzeduration {}".format(max_int)) jpeg_items.append("-probesize {}".format(max_int)) # use same input args like with mov jpeg_items.extend(ffmpeg_args.get("input") or []) # input file jpeg_items.append("-i {}".format( path_to_subprocess_arg(src_path) )) # output arguments from presets jpeg_items.extend(ffmpeg_args.get("output") or []) # we just want one frame from movie files jpeg_items.append("-vframes 1") # output file jpeg_items.append(path_to_subprocess_arg(dst_path)) subprocess_command = " ".join(jpeg_items) try: run_subprocess( subprocess_command, shell=True, logger=self.log ) return True except Exception: self.log.warning( "Failed to create thubmnail using ffmpeg", exc_info=True ) return False
6,752
controller_node/reset_db.py
tsm55555/NCU-HASS
1
2168680
import pymysql dbIP = "192.168.4.14" # IP address of the MySQL database server dbUserName = "root" # User name of the database server dbUserPassword = "<PASSWORD>" # Password for the database user databaseForDeletion = "hass" # Name of the database that is to be deleted charSet = "utf8mb4" # Character set cusrorType = pymysql.cursors.DictCursor connection = pymysql.connect(host=dbIP, user=dbUserName, password=<PASSWORD>,charset=charSet,cursorclass=cusrorType) try: # Create a cursor object dbCursor = connection.cursor() # SQL Statement to delete a database sql = "DROP DATABASE "+databaseForDeletion # Execute the create database SQL statment through the cursor instance dbCursor.execute(sql) # SQL query string sqlQuery = "CREATE DATABASE hass" # Execute the sqlQuery dbCursor.execute(sqlQuery) print 'db reset done' except Exception as e: print("Exeception occured:{}".format(e)) finally: connection.close()
1,177
Volume analysis/volume-stats.py
akac0297/PETLAB
0
2169317
from scipy import stats import pandas as pd import scikit_posthocs as sp """ Kruskal-Wallis test - volume analysis """ volume_data=pd.read_csv("/home/alicja/PET-LAB Code/PET-LAB/Volume analysis/tumour_volume_analysis_new.csv") timepoints=[1,2,3] def runKW(image_type,timepoints,volume_data): subset1=volume_data[volume_data["TIMEPOINT"]==timepoints[0]] subset1=subset1[subset1["IMAGE_TYPE"]==image_type] tp1=subset1["TUMOUR VOLUME_CM3"].to_list() subset2=volume_data[volume_data["TIMEPOINT"]==timepoints[1]] subset2=subset2[subset2["IMAGE_TYPE"]==image_type] tp2=subset2["TUMOUR VOLUME_CM3"].to_list() subset3=volume_data[volume_data["TIMEPOINT"]==timepoints[2]] subset3=subset3[subset3["IMAGE_TYPE"]==image_type] tp3=subset3["TUMOUR VOLUME_CM3"].to_list() _, pvalue = stats.kruskal(tp1,tp2,tp3) if pvalue!=1: print(image_type, stats.kruskal(tp1,tp2,tp3)) def runDunn(image_type,timepoints,volume_data): subset1=volume_data[volume_data["TIMEPOINT"]==timepoints[0]] subset1=subset1[subset1["IMAGE_TYPE"]==image_type] tp1=subset1["TUMOUR VOLUME_CM3"].to_list() subset2=volume_data[volume_data["TIMEPOINT"]==timepoints[1]] subset2=subset2[subset2["IMAGE_TYPE"]==image_type] tp2=subset2["TUMOUR VOLUME_CM3"].to_list() subset3=volume_data[volume_data["TIMEPOINT"]==timepoints[2]] subset3=subset3[subset3["IMAGE_TYPE"]==image_type] tp3=subset3["TUMOUR VOLUME_CM3"].to_list() data=[tp1, tp2, tp3] result=sp.posthoc_dunn(data,p_adjust='bonferroni') #result.to_csv(f"/home/alicja/PET-LAB Code/PET-LAB/Volume analysis/Dunn dataframes/{image_type}_vol_dataframe_Dunn.csv") return(result) image_types = ["MPE MRI", "T2w MRI", "B50T MRI", "B800T MRI"] for image_type in image_types: runKW(image_type,timepoints,volume_data) result=runDunn(image_type,timepoints,volume_data) print(image_type) print(result) PET_data=volume_data[volume_data["IMAGE_TYPE"]=="PET"] PET_data=PET_data.drop([195,200,205,210,215,220,225,230,235]) runKW("PET",timepoints,PET_data) result=runDunn("PET",timepoints,PET_data) print("PET") print(result)
2,143