script
stringlengths
113
767k
# Android Malware Detection # Task : Detection if there is presence of malware by using the attributes extracted from Android applications as features. # import pandas as pd import numpy as np np.random.seed(0) from sklearn.metrics import precision_score, recall_score, f1_score import tensorflow as tf tf.compat.v1.set_random_seed(0) from tensorflow import keras import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import ConfusionMatrixDisplay from sklearn.metrics import confusion_matrix data = pd.read_csv( "../input/android-malware-dataset-for-machine-learning/drebin-215-dataset-5560malware-9476-benign.csv" ) print("Total missing values : ", sum(list(data.isna().sum()))) data # The output class contains categorical values 'B' and 'S'. We have to encode them into integer values. The dataset contains some random characters like '?' and 'S'. We can set them to NULl and remove them using dropna() classes, count = np.unique(data["class"], return_counts=True) # Perform Label Encoding lbl_enc = LabelEncoder() print(lbl_enc.fit_transform(classes), classes) data = data.replace(classes, lbl_enc.fit_transform(classes)) # Dataset contains special characters like ''?' and 'S'. Set them to NaN and use dropna() to remove them data = data.replace("[?,S]", np.NaN, regex=True) print("Total missing values : ", sum(list(data.isna().sum()))) data.dropna(inplace=True) for c in data.columns: data[c] = pd.to_numeric(data[c]) data # Since the data values belong to either 0 or 1, only label encoding of last column will be enough. print("Total Features : ", len(data.columns) - 1) plt.bar(classes, count) plt.title("Class balance") plt.xlabel("Classes") plt.ylabel("Count") plt.show() train_x, test_x, train_y, test_y = train_test_split( data[data.columns[: len(data.columns) - 1]].to_numpy(), data[data.columns[-1]].to_numpy(), test_size=0.2, shuffle=True, ) print("Train features size : ", len(train_x)) print("Train labels size : ", len(train_y)) print("Test features size : ", len(test_x)) print("Test features size : ", len(test_y)) train_y print("Train features : ", train_x.shape) print("Train labels : ", train_y.shape) print("Test Features : ", test_x.shape) print("Test labels : ", test_y.shape) train_y = train_y.reshape((-1, 1)) test_y = test_y.reshape((-1, 1)) print("Train features : ", train_x.shape) print("Train labels : ", train_y.shape) print("Test Features : ", test_x.shape) print("Test labels : ", test_y.shape) model = keras.models.Sequential() model.add(keras.layers.Dense(215, activation="relu", input_shape=(None, 215))) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(1, activation="sigmoid")) model.summary() model.compile( optimizer=keras.optimizers.RMSprop(0.001), loss="binary_crossentropy", metrics=["accuracy"], ) ep = 5 history = model.fit(train_x, train_y, validation_data=(test_x, test_y), epochs=ep) plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plt.plot( [str(i) for i in range(1, ep + 1)], history.history["accuracy"], label="Train Accuracy", ) plt.plot( [str(i) for i in range(1, ep + 1)], history.history["val_accuracy"], label="Validation Accuracy", ) plt.legend() plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.title("Epoch vs Train Loss") plt.subplot(1, 2, 2) plt.plot( [str(i) for i in range(1, ep + 1)], history.history["loss"], label="Train Loss" ) plt.plot( [str(i) for i in range(1, ep + 1)], history.history["val_loss"], label="Validation Loss", ) plt.legend() plt.xlabel("Epoch") plt.ylabel("Loss") plt.title("Epoch vs Validation loss") plt.show() y_pred = model.predict(test_x) for i in range(len(y_pred)): if y_pred[i] > (1 - y_pred[i]): y_pred[i] = 1 else: y_pred[i] = 0 print("Precision : ", precision_score(test_y, y_pred) * 100) print("Recall : ", recall_score(test_y, y_pred) * 100) print("F1 Score : ", f1_score(test_y, y_pred) * 100) classes = ["B", "S"] cm = confusion_matrix(y_pred, test_y) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes) fig, ax = plt.subplots(figsize=(10, 10)) plt.title("Confusion Matrix") disp = disp.plot(ax=ax) plt.show()
# Welcome to this project. This is actually an excel project that I have decided to tackle with both Python and Excel. This part concerns the analysis of bike rides with Python. # # Initializing Python packages import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns # # Importing the data dataframe = pd.read_excel( "/kaggle/input/bike-rides-sale-dataset/Excel Project Dataset.xlsx" ) # # Getting info about data dataframe.head(n=5) dataframe.tail(n=5) # # General Information dataframe.info() dataframe.columns dataframe.size # # Data Wrangling Process # Changing the M and S to Married and Single for better understanding dataframe["Marital Status"] = dataframe["Marital Status"].replace( {"M": "Married", "S": "Single"} ) dataframe["Marital Status"].head(n=5) # Changing the F and M to Female and Male for better understanding dataframe["Gender"] = dataframe["Gender"].replace({"M": "Male", "F": "Female"}) dataframe["Gender"].head(n=5) # Creating Age Groups # create bins and labels for each age group bins = [0, 19, 29, 59, dataframe["Age"].max()] labels = ["Adolescent", "Young adult", "Adult", "Elderly"] # create a new column with age groups dataframe["Age Group"] = pd.cut(dataframe["Age"], bins=bins, labels=labels) # # # Exploratory Data Analysis # * What is the average income of people who purchased bikes/ not purchased by gender category ? data1 = round(dataframe.groupby(["Purchased Bike", "Gender"])["Income"].mean(), 2) data1 # # Visualization # set the Seaborn theme sns.set_style("darkgrid") # create a bar chart using Seaborn sns.barplot( x=data1.index.get_level_values(0) + " " + data1.index.get_level_values(1), y=data1.values, ) # add labels and title plt.title("Average Income by Purchased Bike and Gender") plt.xlabel("Purchased Bike and Gender") plt.ylabel("Average Income") # show the chart plt.show() # * What are the three most common occupations of people who did purchased a bike ? # retrieving only the part of the dataframe that contains the Yes value in the Purchased Bike column data2 = dataframe[dataframe["Purchased Bike"] == "Yes"] data2.head(n=5) result = data2["Occupation"].value_counts() for occupation in result.index[:3]: print(occupation) # * What are the bike purchases amount for each age group ? # initialising dataframe with counts of the values data3 = data2["Age Group"].value_counts() # initialising for loop that will range 4 times, which is the length of the data3 for i in range(len(data3)): # print the result of each group separately print(f"The {data3.index[i]} bought {data3[i]} bikes.")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from xgboost import XGBRegressor from keras.callbacks import ModelCheckpoint from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, Dropout from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from matplotlib import pyplot as plt import seaborn as sb import matplotlib.pyplot as plt import pandas as pd import numpy as np import warnings import sklearn import tensorflow as tf warnings.filterwarnings("ignore") warnings.filterwarnings("ignore", category=DeprecationWarning) # Importing the dataset df = pd.read_csv( "/kaggle/input/key-indicators-of-heart-disease/heart_2022_Key_indicators.csv" ) df.head() df.info() df # Data Processing # map HeartDisease from Yes and No to 1 and 0 df["HeartDisease"] = df["HeartDisease"].map({"Yes": 1, "No": 0}) # convert Smoking from Yes and No to 1 and 0 df["Smoking"] = df["Smoking"].map({"Yes": 1, "No": 0}) # convert alcohol drinking from Yes and No to 1 and 0 df["AlcoholDrinking"] = df["AlcoholDrinking"].map({"Yes": 1, "No": 0}) # convert stroke from Yes and No to 1 and 0 df["Stroke"] = df["Stroke"].map({"Yes": 1, "No": 0}) # convert difficulty walking to one-hot encoding df = pd.concat( [df, pd.get_dummies(df["DiffWalking"], prefix="DifficultyWalking")], axis=1 ) # convert sex: {Female, Male} to 1 and 0 df["Sex"] = df["Sex"].map({"Male": 1, "Female": 0}) # convert age category: {18-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80 or older} to one-hot encoding df = pd.concat([df, pd.get_dummies(df["AgeCategory"], prefix="AgeCategory")], axis=1) # convert ['American Indian/Alaskan Native', 'Asian', 'Black', 'Hispanic', 'Other', 'White'] to one-hot encoding\ df = pd.concat([df, pd.get_dummies(df["Race"], prefix="Race")], axis=1) # convert diabetic to one-hot encoding df = pd.concat([df, pd.get_dummies(df["Diabetic"], prefix="Diabetic")], axis=1) # convert physical activity from Yes and No to 1 and 0 df["PhysicalActivity"] = df["PhysicalActivity"].map({"Yes": 1, "No": 0}) # convert general health from {Excellent, Very good, Good, Fair, Poor} to one-hot encoding df = pd.concat([df, pd.get_dummies(df["GenHealth"], prefix="GenHealth")], axis=1) # convert asthma from Yes and No to 1 and 0 df["Asthma"] = df["Asthma"].map({"Yes": 1, "No": 0}) # convert kidney disease from Yes and No to 1 and 0 df["KidneyDisease"] = df["KidneyDisease"].map({"Yes": 1, "No": 0}) # convert skin cancer from Yes and No to 1 and 0 df["SkinCancer"] = df["SkinCancer"].map({"Yes": 1, "No": 0}) # drop onehot coded df = df.drop(["DiffWalking"], axis=1) df = df.drop(["AgeCategory"], axis=1) df = df.drop(["Race"], axis=1) df = df.drop(["GenHealth"], axis=1) df = df.drop(["Diabetic"], axis=1) df # HeartDisease is the target variable/label y = df["HeartDisease"] # drop the target variable from the dataset and keep the rest for the features X = df.drop(["HeartDisease"], axis=1) # split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=12 ) # Arbitrary exploration: Logistic Regression from sklearn.linear_model import LogisticRegression lr_10 = LogisticRegression(max_iter=10) lr_10.fit(X_train, y_train) lr_100 = LogisticRegression(max_iter=100) lr_100.fit(X_train, y_train) lr_1000 = LogisticRegression(max_iter=1000) lr_1000.fit(X_train, y_train) # assess the model y_pred = lr_10.predict(X_test) print( "Accuracy of logistic regression classifier 10 iterations on test set: {:.2f}".format( lr_10.score(X_test, y_test) ) ) # create a confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred) print("True Negatives: ", confusion_matrix[0][0]) print("False Positives: ", confusion_matrix[0][1]) print("False Negatives: ", confusion_matrix[1][0]) print("True Positives: ", confusion_matrix[1][1]) y_pred = lr_100.predict(X_test) print( "Accuracy of logistic regression classifier 100 iterations on test set: {:.2f}".format( lr_100.score(X_test, y_test) ) ) # create a confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred) print("True Negatives: ", confusion_matrix[0][0]) print("False Positives: ", confusion_matrix[0][1]) print("False Negatives: ", confusion_matrix[1][0]) print("True Positives: ", confusion_matrix[1][1]) y_pred = lr_1000.predict(X_test) print( "Accuracy of logistic regression classifier 1000 iterations on test set: {:.2f}".format( lr_1000.score(X_test, y_test) ) ) # create a confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred) print("True Negatives: ", confusion_matrix[0][0]) print("False Positives: ", confusion_matrix[0][1]) print("False Negatives: ", confusion_matrix[1][0]) print("True Positives: ", confusion_matrix[1][1]) # Seems like the model favors high true negative and low false positive rates, at the cost of low true positive and high false negative rates. # We'll weigh the outcome to account for the class imbalance in the data set class_weight = { 0: 1.0, 1: df["HeartDisease"].value_counts()[0] / df["HeartDisease"].value_counts()[1], } # logistic regression with class_weight lr = LogisticRegression(max_iter=10000, class_weight=class_weight) lr.fit(X_train, y_train) # assess the model y_pred = lr.predict(X_test) print( "Accuracy of logistic regression classifier on test set: {:.2f}".format( lr.score(X_test, y_test) ) ) # create a confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred) print("True Negatives: ", confusion_matrix[0][0]) print("False Positives: ", confusion_matrix[0][1]) print("False Negatives: ", confusion_matrix[1][0]) print("True Positives: ", confusion_matrix[1][1]) # assess the model y_pred = lr.predict(X_test) print( "Accuracy of logistic regression classifier 10000 iterations on test set: {:.2f}".format( lr.score(X_test, y_test) ) ) # create a confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix = confusion_matrix(y_test, y_pred) print("True Negatives: ", confusion_matrix[0][0]) print("False Positives: ", confusion_matrix[0][1]) print("False Negatives: ", confusion_matrix[1][0]) print("True Positives: ", confusion_matrix[1][1]) # # Reflection # ### After accounting for the class imbalance, it seems the model has improved in terms of identifying positive cases (True Positives) but at the cost of increased False Positives. # ### We can use a Deep Neural Network (DNN) to see if we can achieve a better balance between True Positives and False Positives, and improve the overall performance of the model. from keras.models import Sequential from keras.layers import Dense, Dropout model = Sequential() model.add(Dense(128, input_dim=X_train.shape[1], activation="relu")) model.add(Dropout(0.5)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(128, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(64, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) history = model.fit( X_train, y_train, epochs=20, batch_size=64, validation_data=(X_test, y_test), class_weight=class_weight, ) # predict the test set y_pred = model.predict(X_test) # convert the predicted values to 0 and 1 y_pred = y_pred > 0.5 # calculate the accuracy from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) # calculate the confusion matrix from sklearn.metrics import confusion_matrix # seaborn heatmap sb.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d") model = Sequential() model.add(Dense(64, input_dim=X_train.shape[1], activation="relu")) model.add(Dropout(0.5)) model.add(Dense(32, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) history = model.fit( X_train, y_train, epochs=20, batch_size=64, validation_data=(X_test, y_test), class_weight=class_weight, ) # predict the test set y_pred = model.predict(X_test) # convert the predicted values to 0 and 1 y_pred = y_pred > 0.5 # calculate the accuracy from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) # calculate the confusion matrix from sklearn.metrics import confusion_matrix # seaborn heatmap sb.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d")
# # ***Classification Code from Machine Learning A-Z on Udemy*** # > By Pr0fess0rOP # # Importing Library and Dataset Splits import numpy as np import pandas as pd import matplotlib.pyplot as plt dataset = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") x = dataset.iloc[:, 1:-1] y = dataset.iloc[:, -1] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) # from sklearn.preprocessing import StandardScaler # sc = StandardScaler() # x_train = sc.fit_transform(x_train) # x_test = sc.transform(x_test) # # Logistic Regression # Training the Multiple Linear Regression model on the Training set from sklearn.linear_model import LogisticRegression modelLR = LogisticRegression() modelLR.fit(x_train, y_train) # Predicting the Test set results y_predLR = modelLR.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predLR.reshape(len(y_predLR),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predLR) print(cm) accuracyLR = accuracy_score(y_test, y_predLR) print(accuracyLR) # # KNN # Training the KNN model on the Training set from sklearn.neighbors import KNeighborsClassifier ModelKNN = KNeighborsClassifier() ModelKNN.fit(x_train, y_train) # Predicting the Test set results y_predKNN = ModelKNN.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predKNN.reshape(len(y_predKNN),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predKNN) print(cm) accuracyKNN = accuracy_score(y_test, y_predKNN) print(accuracyKNN) # # Support Vector Machine # Training the SVR model on the Training set from sklearn.svm import SVC modelSVC = SVC(kernel="linear", random_state=0) modelSVC.fit(x_train, y_train) # Predicting the Test set results y_predSVC = modelSVC.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predSVR.reshape(len(y_predSVR),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predSVC) print(cm) accuracySVC = accuracy_score(y_test, y_predSVC) print(accuracySVC) # # Kernel SVM # Training the SVR model on the Training set from sklearn.svm import SVC modelKSVC = SVC(kernel="rbf", random_state=0) modelKSVC.fit(x_train, y_train) # Predicting the Test set results y_predKSVC = modelKSVC.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predSVR.reshape(len(y_predSVR),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predKSVC) print(cm) accuracyKSVC = accuracy_score(y_test, y_predKSVC) print(accuracyKSVC) # # Naive Bayes # Training the SVR model on the Training set from sklearn.naive_bayes import GaussianNB modelGNB = GaussianNB() modelGNB.fit(x_train, y_train) # Predicting the Test set results y_predGNB = modelGNB.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predSVR.reshape(len(y_predSVR),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predGNB) print(cm) accuracyGNB = accuracy_score(y_test, y_predGNB) print(accuracyGNB) # # Decision Tree # Training the Decision Tree Regression model on the Training set from sklearn.tree import DecisionTreeClassifier modelDT = DecisionTreeClassifier(random_state=0) modelDT.fit(x_train, y_train) # Predicting the Test set results y_predDT = modelDT.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predDT.reshape(len(y_predDT),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predDT) print(cm) accuracyDT = accuracy_score(y_test, y_predDT) print(accuracyDT) # # Random Forest # Training the Random Forest Regression model on the whole dataset from sklearn.ensemble import RandomForestClassifier modelRF = RandomForestClassifier(n_estimators=10, random_state=0) modelRF.fit(x_train, y_train) # Predicting the Test set results y_predRF = modelRF.predict(x_test) np.set_printoptions(precision=2) # print(np.concatenate((y_predRF.reshape(len(y_predRF),1), y_test.reshape(len(y_test),1)),1)) # Evaluating the Model Performance from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_predRF) print(cm) accuracyRF = accuracy_score(y_test, y_predRF) print(accuracyRF)
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_set = pd.read_csv("/kaggle/input/emotions-analysis/EA-train.txt", delimiter=";") test_set = pd.read_csv("/kaggle/input/emotions-analysis/EA-test.txt", delimiter=";") train_set.columns = ["Text", "Emotion"] test_set.columns = ["Text", "Emotion"] train_set test_set # **Pre Proccessing** # Label Encoder train_set["Emotion"] = ( train_set["Emotion"] .replace({"sadness": 0, "anger": 1, "love": 2, "surprise": 3, "fear": 4, "joy": 5}) .astype(int) ) test_set["Emotion"] = ( test_set["Emotion"] .replace({"sadness": 0, "anger": 1, "love": 2, "surprise": 3, "fear": 4, "joy": 5}) .astype(int) ) # Remove Missing Value print("Train set") print(train_set.isnull().sum()) train_set = train_set.dropna() print() print(train_set.isnull().sum()) print(f"\nTest set") print(test_set.isnull().sum()) test_set = test_set.dropna() print() print(test_set.isnull().sum()) # cleaning the training set import re import nltk nltk.download("stopwords") # stop words that are not necessary for predictions from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer # used to apply steming on the text clean_train = [] # list to include the cleaned text in. for i in range(0, len(train_set)): clean = re.sub( "[^a-zA-z]", " ", train_set["Text"][i] ) # substitute everything in the text that is not a letter by space, dataset['col1']: name of the col includes the text clean = clean.lower() # all the the text in lower case. clean = clean.split() # split the text into words ps = PorterStemmer() # object of the stemmer all_stopwords = stopwords.words("english") all_stopwords.remove("not") # remove (not) from stopwords clean = [ ps.stem(word) for word in clean if not word in set(all_stopwords) ] # remove all stopwords from the text clean = " ".join(clean) # join the words seperated by spaces clean_train.append(clean) # cleaning the test set clean_test = [] # list to include the cleaned text in. for i in range(0, len(test_set)): clean = re.sub( "[^a-zA-z]", " ", test_set["Text"][i] ) # substitute everything in the text that is not a letter by space, dataset['col1']: name of the col includes the text clean = clean.lower() # all the the text in lower case. clean = clean.split() # split the text into words ps = PorterStemmer() # object of the stemmer all_stopwords = stopwords.words("english") all_stopwords.remove("not") # remove (not) from stopwords clean = [ ps.stem(word) for word in clean if not word in set(all_stopwords) ] # remove all stopwords from the text clean = " ".join(clean) # join the words seperated by spaces clean_test.append(clean) # **Bag of Words** from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() X_train = cv.fit_transform(clean_train).toarray() y_train = train_set.iloc[:, -1].values X_test = cv.transform(clean_test).toarray() y_test = test_set.iloc[:, -1].values y_train, y_test X_train, X_test # **Machine Learning Model** from scipy.stats import uniform, randint from sklearn.model_selection import ( RandomizedSearchCV, ) # used for tuning the models parameters from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0) # range for the parameters used in the model param_grid = { "max_depth": [3, None], "max_features": randint(1, 9), "min_samples_leaf": randint(1, 9), "criterion": ["gini", "entropy"], } # Instantiating RandomizedSearchCV object dt_cv = RandomizedSearchCV( dt, param_grid, n_iter=20, cv=5, verbose=2, random_state=42, n_jobs=1 ) dt_cv.fit(X_train, y_train) # Print the best tuned parameters and score print("Tuned Decision Tree Parameters: {}".format(dt_cv.best_params_)) print("Best score is {}".format(dt_cv.best_score_)) dt = DecisionTreeClassifier( criterion="gini", max_depth=None, max_features=4, min_samples_leaf=1 ) from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() param_grid = {"alpha": [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]} # Instantiating RandomizedSearchCV object nb_cv = RandomizedSearchCV( nb, param_grid, n_iter=20, cv=5, verbose=2, random_state=42, n_jobs=1 ) ## cv: number of random samples taken nb_cv.fit(X_train, y_train) # Print the best tuned parameters and score print("Tuned Decision Tree Parameters: {}".format(nb_cv.best_params_)) print("Best score is {}".format(nb_cv.best_score_)) nb = MultinomialNB(alpha=0.4) # **Train and Testing Model** nb.fit(X_train, y_train) y_pred = nb.predict(X_test) # confusion matrix from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_pred) ## TN & FP \n FN & TP print(cm) # plot the confusion matrix f, ax = plt.subplots(figsize=(10, 10)) labels = ["sadness", "anger", "love", "surprise", "fear", "joy"] from sklearn.metrics import plot_confusion_matrix sns.heatmap( cm, annot=True, xticklabels=labels, yticklabels=labels, linewidths=0.01, cmap="Oranges", linecolor="gray", fmt=".1f", ax=ax, ) plt.show() def pred_outcome(new_comment): new_comment = re.sub("[^a-zA-Z]", " ", new_comment) new_comment = new_comment.lower() new_comment = new_comment.split() ps = PorterStemmer() all_stopwords = stopwords.words("english") all_stopwords.remove("not") new_comment = [ ps.stem(word) for word in new_comment if not word in set(all_stopwords) ] new_comment = " ".join(new_comment) new_corpus = [new_comment] new_X = cv.transform(new_corpus).toarray() new_y_pred = nb.predict(new_X) if new_y_pred == 0: print("Sadness") elif new_y_pred == 1: print("Anger") elif new_y_pred == 2: print("Love") elif new_y_pred == 3: print("Surprise") elif new_y_pred == 4: print("Fear") elif new_y_pred == 5: print("Joy") text = "i am sad" pred_outcome(text) text = "i am angry" pred_outcome(text) text = "i am surprised" pred_outcome(text) text = "i am afraid" pred_outcome(text) text = "i am happy" pred_outcome(text) text = "love heart" pred_outcome(text)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Original Dataset # ---------------- # train.csv - the training set # test.csv - the test set # --------------- # Splitted the original dataset explicityl by a comma and a semi-colon. Eventually, we got three columns from train.csv including chemical id, assay id and expected, resulting in the mytrainingdata, and got two columns from test.csv including chemical id, assay id, resulting in the mytestdata. # Parsed Dataset # ----------------- # mytrainingdata.csv - the training set # mytestdata.csv - the test set # Command to install RDKit import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.metrics import ( accuracy_score, confusion_matrix, classification_report, f1_score, ) from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn import preprocessing import xgboost as xgb from rdkit import Chem from rdkit.Chem import Descriptors # Load the data data = pd.read_csv("/kaggle/input/mytraintingdata/mytrainingdata.csv") test_dt = pd.read_csv("/kaggle/input/mytestdata/mytestdata.csv") # Define a function to compute molecular descriptors def compute_descriptors(mol): # Add your code here to compute the descriptors of interest pass # Convert SMILES strings to molecular objects and compute RDKit descriptors data["mol"] = data["Id"].apply( lambda x: Chem.MolFromSmiles(x) if x is not None else np.nan ) data = data.dropna() data["Descriptors"] = data["mol"].apply(compute_descriptors) test_dt["mol"] = test_dt["Id"].apply( lambda x: Chem.MolFromSmiles(x) if x is not None else np.nan ) test_dt = test_dt.dropna() test_dt["Descriptors"] = test_dt["mol"].apply(compute_descriptors) data["MW"] = data["mol"].apply(lambda x: Descriptors.MolWt(x)) data["LogP"] = data["mol"].apply(lambda x: Descriptors.MolLogP(x)) data["TPSA"] = data["mol"].apply(lambda x: Descriptors.TPSA(x)) data["BalabanJ"] = data["mol"].apply(lambda x: Descriptors.BalabanJ(x)) data["Kappa2"] = data["mol"].apply(lambda x: Descriptors.Kappa2(x)) test_dt["MW"] = test_dt["mol"].apply(lambda x: Descriptors.MolWt(x)) test_dt["LogP"] = test_dt["mol"].apply(lambda x: Descriptors.MolLogP(x)) test_dt["TPSA"] = test_dt["mol"].apply(lambda x: Descriptors.TPSA(x)) test_dt["BalabanJ"] = test_dt["mol"].apply(lambda x: Descriptors.BalabanJ(x)) test_dt["Kappa2"] = test_dt["mol"].apply(lambda x: Descriptors.Kappa2(x)) # Convert categorical variables to numerical le = preprocessing.LabelEncoder() columns = ["Id", "MW", "LogP", "TPSA", "BalabanJ", "Kappa2", "assay id"] for column in columns: data[column] = le.fit_transform(data[column]) classes = le.classes_ test_dt[column] = test_dt[column].map( lambda x: x if x in classes else classes[np.argmax(np.bincount(data[column]))] ) test_dt[column] = le.transform(test_dt[column]) # Extract feature columns and target column X = data.drop(["Expected"], axis=1) data["Expected"] = data["Expected"].map({1: 1, 2: 0}) y = data["Expected"] # Scale the data scaler = StandardScaler() X = scaler.fit_transform(X.drop(["mol"], axis=1)) test_dt = scaler.transform(test_dt.drop(["mol"], axis=1)) # check unique values of y unique_y = np.unique(y) print("Unique values of y:", unique_y) # Define the model topmlmodel = xgb.XGBClassifier( objective="binary:logistic", eval_metric="logloss", use_label_encoder=False, n_jobs=-1, ) # Define the parameters to be searched in the grid search param_grid = { "learning_rate": [0.1], "max_depth": [11], "n_estimators": [900], "gamma": [0.7], "subsample": [0.8], "colsample_bytree": [0.8], "reg_alpha": [0.5], "reg_lambda": [0.5], } # Perform grid search to find the best parameters for the model grid_search = GridSearchCV(topmlmodel, param_grid, cv=5) grid_search.fit(X, y) # Print the best parameters print("Best parameters:", grid_search.best_params_) # Make predictions on the test set y_pred_test = grid_search.predict(test_dt) y_pred_test[y_pred_test == 0] = 2 # Create a submission file Testing_df = pd.read_csv( "/kaggle/input/the-toxicity-prediction-challenge-ii/test_II.csv" ) submission_pred = pd.DataFrame(y_pred_test, columns=["Predicted"]) submission_pred_concat = pd.concat([Testing_df, submission_pred], axis=1) submission_pred_concat.rename(columns={"x": "Id"}, inplace=True) submission_pred_concat.to_csv("XGBoost_prediction.csv", index=False)
# ## İş Problemi # Maaş bilgileri ve 1986 yılına ait kariyer istatistikleri paylaşılan beyzbol oyuncularının maaş tahminleri için bir makine öğrenmesi projesi gerçekleştirilebilir mi? # ## Veri seti hikayesi # Bu veri seti orijinal olarak Carnegie Mellon Üniversitesi'nde bulunan StatLib kütüphanesinden alınmıştır. Veri seti 1988 ASA Grafik Bölümü Poster Oturumu'nda kullanılan verilerin bir parçasıdır. Maaş verileri orijinal olarak Sports Illustrated, 20 Nisan 1987'den alınmıştır. # 1986 ve kariyer istatistikleri, Collier Books, Macmillan Publishing Company, New York tarafından yayınlanan 1987 Beyzbol Ansiklopedisi Güncellemesinden elde edilmiştir. import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.model_selection import ( train_test_split, GridSearchCV, cross_validate, cross_val_score, validation_curve, ) from catboost import CatBoostRegressor from lightgbm import LGBMRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from xgboost import XGBRegressor pd.set_option("display.max_columns", None) pd.set_option("display.width", 500) pd.set_option("display.float_format", lambda x: "%.3f" % x) # ## EDA # Veri setini okutalım. df_ = pd.read_csv("/kaggle/input/hitters-baseball-data/Hitters.csv") df = df_.copy() # Veri setine genel bakış. def check_df(dataframe, head=5): print("########Shape########") print(dataframe.shape) print("########Types########") print(dataframe.dtypes) print("########Head#########") print(dataframe.head(head)) print("##########NA#########") print(dataframe.isnull().sum()) print("#######Describe#####") print( dataframe.describe( [0.05, 0.1, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99] ).T ) check_df(df) # Kategorik ve numerik değişkenlerin yakalanması. def grab_col_names(dataframe, cat_th=10, car_th=20): cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes == "O"] num_but_cat = [ col for col in dataframe.columns if dataframe[col].dtypes != "O" and dataframe[col].nunique() < cat_th ] cat_but_car = [ col for col in dataframe.columns if dataframe[col].dtypes == "O" and dataframe[col].nunique() > car_th ] cat_cols = cat_cols + num_but_cat cat_cols = [col for col in cat_cols if col not in cat_but_car] num_cols = [col for col in dataframe.columns if dataframe[col].dtypes != "O"] num_cols = [col for col in num_cols if col not in num_but_cat] print(f"Observations: {dataframe.shape[0]}") print(f"Variables: {dataframe.shape[1]}") print(f"cat_cols: {len(cat_cols)}") print(f"num_cols: {len(num_cols)}") print(f"cat_but_car: {len(cat_but_car)}") print(f"num_but_cat: {len(num_but_cat)}") return cat_cols, num_cols, cat_but_car cat_cols, num_cols, cat_but_car = grab_col_names(df) # Kategorik değişkenlerin özeti. def cat_summary(dataframe, col_name, plot=False): print( pd.DataFrame( { col_name: dataframe[col_name].value_counts(), "Ratio": 100 * dataframe[col_name].value_counts() / len(dataframe), } ) ) print("######################") if plot: sns.countplot(x=dataframe[col_name], data=dataframe) plt.show() for col in cat_cols: cat_summary(df, col) # Numerik değişkenlerin özeti. def num_summary(dataframe, col_name, plot=False): quantiles = [0.05, 0.1, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99] print(dataframe[col_name].describe(quantiles).T) print("######################") if plot: dataframe[col_name].hist(bins=20) plt.xlabel(col_name) plt.title(col_name) plt.show(block=True) for col in num_cols: num_summary(df, col) # Kategorik değişkenlerin hedef değişken ile ilişkisi. def target_summary_with_cat(dataframe, target, categorical_col): print( pd.DataFrame( { "TARGET_MEAN": dataframe.groupby(categorical_col)[target].mean(), "Count": dataframe[categorical_col].value_counts(), "Ratio": 100 * dataframe[categorical_col].value_counts() / len(dataframe), } ), end="\n\n\n", ) for col in cat_cols: target_summary_with_cat(df, "Salary", col) # Yüksek korelasyona sahip değişkenlerin belirlenmesi. def high_correlated_cols(dataframe, plot=False, corr_th=0.90): corr = dataframe.corr() cor_matrix = corr.abs() upper_triangle_matrix = cor_matrix.where( np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool) ) drop_list = [ col for col in upper_triangle_matrix.columns if any(upper_triangle_matrix[col] > corr_th) ] if plot: import seaborn as sns import matplotlib.pyplot as plt sns.set(rc={"figure.figsize": (15, 15)}) sns.heatmap(corr, cmap="RdBu") plt.show() return drop_list high_correlated_cols(df, plot=True) # Aykırı değer analizi. def outlier_thresholds(dataframe, variable, q1=0.25, q3=0.75): quartile1 = dataframe[variable].quantile(q1) quartile3 = dataframe[variable].quantile(q3) iqr = quartile3 - quartile1 low_limit = quartile1 - 1.5 * iqr up_limit = quartile3 + 1.5 * iqr return low_limit, up_limit def check_outlier(dataframe, variable): low_limit, up_limit = outlier_thresholds(dataframe, variable) if dataframe[ (dataframe[variable] < low_limit) | (dataframe[variable] > up_limit) ].any(axis=None): return True else: return False for col in num_cols: print(check_outlier(df, col)) # Aykırı değer baskılama. def replace_with_thresholds(dataframe, variable): low_limit, up_limit = outlier_thresholds(dataframe, variable) dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit for col in num_cols: if check_outlier(df, col): replace_with_thresholds(df, col) # Eksik değer analizi. def missing_values_table(dataframe, na_name=False): na_cols = [col for col in dataframe.columns if dataframe[col].isnull().sum() > 0] n_miss = dataframe[na_cols].isnull().sum().sort_values(ascending=False) ratio = (dataframe[na_cols].isnull().sum() / dataframe.shape[0] * 100).sort_values( ascending=False ) missing_df = pd.concat( [n_miss, np.round(ratio, 2)], axis=1, keys=["n_miss", "ratio"] ) print(missing_df, end="\n") if na_name: return na_cols missing_values_table(df, na_name=True) # Eksik değerlerden kurtulma. df.dropna(inplace=True) # ## Feature Engineeering # Numerik değişkenleri belirleme. new_num_cols = [col for col in num_cols if col != "Salary"] df[new_num_cols] = df[new_num_cols] + 0.0000000001 # Yeni değişkenler tanımlama., df["NEW_Hits"] = df["Hits"] / df["CHits"] + df["Hits"] df["NEW_RBI"] = df["RBI"] / df["CRBI"] df["NEW_Walks"] = df["Walks"] / df["CWalks"] df["NEW_PutOuts"] = df["PutOuts"] * df["Years"] df["Hits_Success"] = (df["Hits"] / df["AtBat"]) * 100 df["NEW_CRBI*CATBAT"] = df["CRBI"] * df["CAtBat"] df["NEW_RBI"] = df["RBI"] / df["CRBI"] df["NEW_Chits"] = df["CHits"] / df["Years"] df["NEW_CHmRun"] = df["CHmRun"] * df["Years"] df["NEW_CRuns"] = df["CRuns"] / df["Years"] df["NEW_Chits"] = df["CHits"] * df["Years"] df["NEW_RW"] = df["RBI"] * df["Walks"] df["NEW_RBWALK"] = df["RBI"] / df["Walks"] df["NEW_CH_CB"] = df["CHits"] / df["CAtBat"] df["NEW_CHm_CAT"] = df["CHmRun"] / df["CAtBat"] df["NEW_Diff_Atbat"] = df["AtBat"] - (df["CAtBat"] / df["Years"]) df["NEW_Diff_Hits"] = df["Hits"] - (df["CHits"] / df["Years"]) df["NEW_Diff_HmRun"] = df["HmRun"] - (df["CHmRun"] / df["Years"]) df["NEW_Diff_Runs"] = df["Runs"] - (df["CRuns"] / df["Years"]) df["NEW_Diff_RBI"] = df["RBI"] - (df["CRBI"] / df["Years"]) df["NEW_Diff_Walks"] = df["Walks"] - (df["CWalks"] / df["Years"]) # Encoding işlemleri. def one_hot_encoder(dataframe, categorical_cols, drop_first=False): dataframe = pd.get_dummies( dataframe, columns=categorical_cols, drop_first=drop_first ) return dataframe df = one_hot_encoder(df, cat_cols, drop_first=True) df.head() # Scaling işlemleri. cat_cols, num_cols, cat_but_car = grab_col_names(df) num_cols = [col for col in num_cols if col not in ["Salary"]] scaler = StandardScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) df.head() # ## Model # Bağımlı ve bağımsız değişkenlerin belirlenmesi. y = df["Salary"] X = df.drop(["Salary"], axis=1) # Kullanılacak modeller. models = [ ("LR", LinearRegression()), ("Ridge", Ridge()), ("Lasso", Lasso()), ("ElasticNet", ElasticNet()), ("KNN", KNeighborsRegressor()), ("CART", DecisionTreeRegressor()), ("RF", RandomForestRegressor()), ("SVR", SVR()), ("GBM", GradientBoostingRegressor()), ("XGBoost", XGBRegressor(objective="reg:squarederror")), ("LightGBM", LGBMRegressor()), ("CatBoost", CatBoostRegressor(verbose=False)), ] for name, regressor in models: rmse = np.mean( np.sqrt( -cross_val_score(regressor, X, y, cv=10, scoring="neg_mean_squared_error") ) ) print(f"RMSE: {round(rmse, 4)} ({name}) ") # Random Forest Optimizasyonu. rf_model = RandomForestRegressor(random_state=17) rf_params = { "max_depth": [5, 8, 15, None], "max_features": [5, 7, "auto"], "min_samples_split": [8, 15, 20], "n_estimators": [200, 500], } rf_best_grid = GridSearchCV(rf_model, rf_params, cv=5, n_jobs=-1, verbose=True).fit( X, y ) rf_final = rf_model.set_params(**rf_best_grid.best_params_, random_state=17).fit(X, y) rmse = np.mean( np.sqrt(-cross_val_score(rf_final, X, y, cv=10, scoring="neg_mean_squared_error")) ) rmse # GBM Optimizasyonu. gbm_model = GradientBoostingRegressor(random_state=17) gbm_params = { "learning_rate": [0.01, 0.1], "max_depth": [3, 8], "n_estimators": [500, 1000], "subsample": [1, 0.5, 0.7], } gbm_best_grid = GridSearchCV(gbm_model, gbm_params, cv=5, n_jobs=-1, verbose=True).fit( X, y ) gbm_final = gbm_model.set_params( **gbm_best_grid.best_params_, random_state=17, ).fit(X, y) rmse = np.mean( np.sqrt(-cross_val_score(gbm_final, X, y, cv=10, scoring="neg_mean_squared_error")) ) rmse # LightGBM Optimizasyonu. lgbm_model = LGBMRegressor(random_state=17) lgbm_params = { "learning_rate": [0.01, 0.1], "n_estimators": [300, 500], "colsample_bytree": [0.7, 1], } lgbm_best_grid = GridSearchCV( lgbm_model, lgbm_params, cv=5, n_jobs=-1, verbose=True ).fit(X, y) lgbm_final = lgbm_model.set_params(**lgbm_best_grid.best_params_, random_state=17).fit( X, y ) rmse = np.mean( np.sqrt(-cross_val_score(lgbm_final, X, y, cv=10, scoring="neg_mean_squared_error")) ) rmse # Catboost Optimizasyonu. catboost_model = CatBoostRegressor(random_state=17, verbose=False) catboost_params = { "iterations": [200, 500], "learning_rate": [0.01, 0.1], "depth": [3, 6], } catboost_best_grid = GridSearchCV( catboost_model, catboost_params, cv=5, n_jobs=-1, verbose=True ).fit(X, y) catboost_final = catboost_model.set_params( **catboost_best_grid.best_params_, random_state=17 ).fit(X, y) rmse = np.mean( np.sqrt( -cross_val_score(catboost_final, X, y, cv=10, scoring="neg_mean_squared_error") ) ) rmse # Final modelinin belirlenmesi. rf_params = { "max_depth": [5, 8, 15, None], "max_features": [5, 7, "auto"], "min_samples_split": [8, 15, 20], "n_estimators": [200, 500], } gbm_params = { "learning_rate": [0.01, 0.1], "max_depth": [3, 8], "n_estimators": [500, 1000], "subsample": [1, 0.5, 0.7], } lightgbm_params = { "learning_rate": [0.01, 0.1], "n_estimators": [300, 500], "colsample_bytree": [0.7, 1], } catboost_params = { "iterations": [200, 500], "learning_rate": [0.01, 0.1], "depth": [3, 6], } regressors = [ ("RF", RandomForestRegressor(), rf_params), ("GBM", GradientBoostingRegressor(), gbm_params), ("LightGBM", LGBMRegressor(), lightgbm_params), ("CatBoost", CatBoostRegressor(), catboost_params), ] best_models = {} for name, regressor, params in regressors: print(f"########## {name} ##########") rmse = np.mean( np.sqrt( -cross_val_score(regressor, X, y, cv=10, scoring="neg_mean_squared_error") ) ) print(f"RMSE: {round(rmse, 4)} ({name}) ") gs_best = GridSearchCV(regressor, params, cv=3, n_jobs=-1, verbose=False).fit(X, y) final_model = regressor.set_params(**gs_best.best_params_) rmse = np.mean( np.sqrt( -cross_val_score(final_model, X, y, cv=10, scoring="neg_mean_squared_error") ) ) print(f"RMSE (After): {round(rmse, 4)} ({name}) ") print(f"{name} best params: {gs_best.best_params_}", end="\n\n") best_models[name] = final_model # Modellere göre değişken öneminin belirlenmesi. def plot_importance(model, features, num=len(X), save=False): feature_imp = pd.DataFrame( {"Value": model.feature_importances_, "Feature": features.columns} ) plt.figure(figsize=(10, 10)) sns.set(font_scale=1) sns.barplot( x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False)[0:num], ) plt.title("Features") plt.tight_layout() plt.show() if save: plt.savefig("importances.png") plot_importance(rf_final, X) plot_importance(gbm_final, X) plot_importance(lgbm_final, X) plot_importance(catboost_final, X) # Validation Curve göre parametrelerin belirlenmesi. def val_curve_params(model, X, y, param_name, param_range, scoring="roc_auc", cv=10): train_score, test_score = validation_curve( model, X=X, y=y, param_name=param_name, param_range=param_range, scoring=scoring, cv=cv, ) mean_train_score = np.mean(train_score, axis=1) mean_test_score = np.mean(test_score, axis=1) plt.plot(param_range, mean_train_score, label="Training Score", color="b") plt.plot(param_range, mean_test_score, label="Validation Score", color="g") plt.title(f"Validation Curve for {type(model).__name__}") plt.xlabel(f"Number of {param_name}") plt.ylabel(f"{scoring}") plt.tight_layout() plt.legend(loc="best") plt.show() # RF modeline göre parametreler. rf_val_params = [ ["max_depth", [5, 8, 15, 20, 30, None]], ["max_features", [3, 5, 7, "auto"]], ["min_samples_split", [2, 5, 8, 15, 20]], ["n_estimators", [10, 50, 100, 200, 500]], ] rf_model = RandomForestRegressor(random_state=17) for i in range(len(rf_val_params)): val_curve_params( rf_model, X, y, rf_val_params[i][0], rf_val_params[i][1], scoring="neg_mean_absolute_error", ) rf_val_params[0][1]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # * This code is importing some commonly used libraries for data analysis and visualization in Python, After importing these libraries, you can use their functions to perform various data analysis and visualization tasks in Python. # # **Reading the file** import pandas as pd df = pd.read_csv("/kaggle/input/date-of-real-estate3/real estate.csv") df.head() # * This code is using the pandas library to read a CSV file named real estate. # * csv located at the path /kaggle/input/date-of-real-estate3/ and storing its contents in a pandas DataFrame called df. # * The head() method is then called on df to display the first 5 rows of the DataFrame. # # **Data Cleansing and Improvement** # # Find if there is some duplicated data df.loc[df.duplicated()] # * This code is using the loc accessor of the pandas DataFrame df with the duplicated() method to locate and display the rows of the DataFrame that are duplicates. df.duplicated().sum() # * This code uses pandas DataFrame df iterate() method to locate the duplicate rows in the DataFrame, and then counts the number of duplicate rows using the sum() method. # # **missing data** df.isna().sum() # * This code is using the isna() method of the pandas DataFrame df to identify the missing (NaN) values in the DataFrame, and then using the sum() method to count the number of missing values in each column. # ## vis df.head() # * This code is used to display the first five rows of the data frame by default, which is a convenient way to preview a large set of data, for example df can be entered df.head(10) to display the first 10 rows. df["Number of rooms"].unique() # * The unique() method of a pandas Series (which is what a single column of a DataFrame is) returns an array of the unique values in the Series, in the order in which they appear. # * This can be useful for exploring the distribution of values in a column, or for checking for any unexpected or invalid values. df["Number of rooms"] = df["Number of rooms"].replace(["1 bedrooms"], 1) df["Number of rooms"] = df["Number of rooms"].replace(["2 bedrooms"], 2) df["Number of rooms"] = df["Number of rooms"].replace(["3 bedrooms"], 3) df["Number of rooms"] = df["Number of rooms"].replace(["4 bedrooms"], 4) df["Number of rooms"] = df["Number of rooms"].replace(["5 bedrooms"], 5) df["Number of rooms"] = df["Number of rooms"].replace(["6+ bedrooms"], 6) df # * This code is replacing certain string values in the "Number of rooms" column of the pandas DataFrame df with their corresponding numeric values. # df["Number of bathrooms"].unique() df["Number of bathrooms"] = df["Number of bathrooms"].replace(["1 bathrooms"], 1) df["Number of bathrooms"] = df["Number of bathrooms"].replace(["2 bathrooms"], 2) df["Number of bathrooms"] = df["Number of bathrooms"].replace(["3 bathrooms"], 3) df["Number of bathrooms"] = df["Number of bathrooms"].replace(["4 bathrooms"], 4) df["Number of bathrooms"] = df["Number of bathrooms"].replace(["5 bathrooms"], 5) df["Number of bathrooms"] = df["Number of bathrooms"].replace(["5+ bathrooms"], 6) df df["neighborhood"].unique() df["neighborhood"] = df["neighborhood"].replace(["Suwaiq"], 0) df df["lister type"].unique() df["lister type"] = df["lister type"].replace(["landlord"], 0) df["lister type"] = df["lister type"].replace(["Agent"], 1) df s = df["subcategory"].unique() s temp = list(df["price"]) L = [] for x in temp: x = x.replace(",", "") L.append(x) df = df.drop(columns=["price"]) df["price"] = L df.head() # * In this code ,The modified DataFrame df is returned with clean price values, without any commas, and the previous version of df is ignored. s = df["subcategory"].unique() p = [] for cat in s: df1 = df[df["subcategory"] == cat] av = df1["price"].median() print(cat, av) p.append(av) # * This code is calculating the median price for each unique value in the "subcategory" column of the pandas DataFrame df, and storing the results in a list called p. plt.bar(s, p) # * This code is using the bar() function to create a bar chart of the median prices for each unique value in the "subcategory" column of the pandas DataFrame df. df["subcategory"] = df["subcategory"].replace(["Townhouses for Sale"], 1) df["subcategory"] = df["subcategory"].replace(["villa-places for sale"], 2) df["subcategory"] = df["subcategory"].replace(["Farm & Chaltes for sale"], 3) df df["number of floors "].unique() df["number of floors "] = df["number of floors "].replace(["1 floor"], 0) df["number of floors "] = df["number of floors "].replace(["2 floors"], 1) df df["city "].unique() df["city "] = df["city "].replace(["Al Batinah"], 0) df df["category "].unique() df["category "] = df["category "].replace(["Real Estate for Sale"], 0) df df["payment methods "].unique() df["payment methods "] = df["payment methods "].replace(["cash or Installments"], 0) df["payment methods "] = df["payment methods "].replace(["cash only"], 1) df df["building age "].unique() df["building age "] = df["building age "].replace(["0"], 1) df["building age "] = df["building age "].replace(["0-11 months"], 2) df["building age "] = df["building age "].replace(["1-5 years"], 3) df["building age "] = df["building age "].replace(["6-9 years "], 4) df["building age "] = df["building age "].replace(["10-19 years"], 5) df["building age "] = df["building age "].replace(["20+ years"], 6) df s = df["building age "].unique() s temp = list(df["price"]) L = [] for x in temp: x = x.replace(",", "") L.append(x) df = df.drop(columns=["price"]) df["price"] = L df.head() s = df["building age "].unique() p = [] for cat in s: df1 = df[df["building age "] == cat] av = df1["price"].median() print(cat, av) p.append(av) # * This code is used for exploring the relationship between the "building age" and "price" columns of df, by calculating the median price for each unique building age value. plt.bar(s, p) # * This code is using the bar() method to create a bar chart of the median prices (p) for each unique value in the "building age" column (s). df["property status "].unique() df["property status "] = df["property status "].replace(["0"], 0) df["property status "] = df["property status "].replace(["complete"], 1) df # **Here we have converted all the data in the table into numbers, as our data is now fully numbered.** s = df[ "city", "neighborhood", "Surface area m2", "land area m2", "Number of rooms ", "Price", "Number of bathrooms ", "number of floors", "building age ", "lister type", "property status", "category", "payment methods", "subcategory ", ] s.head import seaborn as sns df1 = df[ "city", "neighborhood", "Surface area m2", "land area m2", "Number of rooms ", "Price", "Number of bathrooms ", "number of floors", "building age ", "lister type", "property status", "category", "payment methods", "subcategory ", ] df1.corr()["price"] import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split data = pd.read_csv("/kaggle/input/date-of-real-estate3/real estate.csv") x = data.drop(columns=["price"]) y = data["price"] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) model = DecisionTreeClassifier() model.fit(x_train, y_train) p = model.predict(x_test) score = accuracy_score(y_test, p) score
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/d/ruthgn/bank-marketing-data-set/bank-direct-marketing-campaigns.csv" ) df.head() df.columns import tensorflow as tf import tensorflow # Creating a Neural Network Model from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation from tensorflow.keras.optimizers import Adam from tensorflow import keras from keras.layers import Dense from keras.models import Sequential model = Sequential() model.add( Dense(82, activation="relu") ) # birinci layerın kaç nöronu varsa o sayıyı koyuyoruz. model.add(Dense(64, activation="relu")) model.add(Dense(32, activation="relu")) model.add(Dense(32, activation="relu")) model.add(Dense(16, activation="relu")) # aradaki sayıları nöronlara göre ayarlıyoruz. model.add(Dense(1)) # sondaki her zaman 1 olur. model.compile(optimizer="Adam", loss="mse") df.columns x = df.drop("job", axis=1) y = df.job def show_shapes(): # can make yours to take inputs; this'll use local variable values print("Expected: (num_samples, timesteps, channels)") print("Sequences: {}".format(Sequences.shape)) print("Targets: {}".format(Targets.shape)) import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt import numpy as np fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense model = Sequential( [ Flatten(input_shape=(28, 28)), Dense(128, activation="relu"), Dense(128, activation="relu"), Dense(10), ] ) model.compile( optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) import timeit model_json = model.to_json() with open("benimmodel.json", "w") as json_file: json_file.write(model_json) model.save("benimmodel.hd5")
# en_core_web_lg is the trained pipeline for the English language. # English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer. # For example, en_core_web_sm is a small English pipeline trained on written web text (blogs, news, comments), that includes vocabulary, syntax and entities. # # Tokenization # Tokens are the building blocks of Natural Language. # Tokenization is a way of separating a piece of text into smaller units called tokens. Here, tokens can be either words, characters, or subwords. Hence, tokenization can be broadly classified into 3 types – word, character, and subword (n-gram characters) tokenization. # # import spacy and load the language library import spacy nlp = spacy.load("en_core_web_sm") mystring = "we are moving to strong AI" print(mystring) # # create a doc object and explore tokens # doc = nlp(mystring) for token in doc: print(token.text, end="|") # # prefixes, suffixes and infixes # A prefix occurs at the beginning of a word or stem (sub-mit, pre-determine, un-willing); a suffix at the end (wonder-ful, depend-ent, act-ion); and an infix occurs in the middle doc2 = nlp( "We're here to help! Send snail-email, email [email protected] or visit us at https://ahammedmejbah.com/!" ) for t in doc2: print(t) a = "deep learning with python 5 book cost $10.30" a.split(".") doc3 = nlp("Deep learning with python 5 books cost $10.30") for t in doc3: print(t) # # Exceptions doc4 = nlp("Lets visit st.louis in the U.S. next year") for t in doc4: print(t) # # Cunting Tokens # count the number of tokens in a text, determine the number and percentage count of particular tokens and plot the count distributions as a graph. To do this we have to import the FreqDist class from the NLTK probability package. When calling this class, a list of tokens from a text or corpus needs to be specified as a parameter in brackets. len(doc) # # counting vocab Entries len(doc.vocab) # # Tokens can be retrived by index position and slice a = "it is better to give than to receive" b = a.split() b[2] doc5 = nlp("It is better to give than to receive.") doc5[-2] doc5[2:5] doc5[-4:] # # Tokens cannot be reassigned doc6 = nlp("My dinner was horrible.") doc7 = nlp("Your dinner was delicious.") # Try to change "My dinner was horrible" to "My dinner was delicious" doc6[3] = doc7[3] # # Named Entities doc8 = nlp( "Google, IBM, AWS and Apple to build a Hong Kong and Bangladesh factory for $6 million" ) for token in doc8: print(token.text, end="!") print("\n---") for ent in doc8.ents: print(ent.text + "_" + ent.label_ + "_" + str(spacy.explain(ent.label_))) # # Noun Chunks # Chunking means getting a chunk of text. A meaningful piece of text from the full text. One of the main goals of chunking is to group into what is known as “noun phrases.” These are phrases of one or more words that contain a noun, maybe some descriptive words, maybe a verb, and maybe something like an adverb. doc9 = nlp( "Google, IBM, AWS and Apple to build a Hong Kong and Bangladesh factory for $6 million" ) for chunk in doc9.noun_chunks: print(chunk.text) doc9 = nlp("Autonomous cars shift insurance liability toward manufacturers.") for chunk in doc9.noun_chunks: print(chunk.text) doc10 = nlp("red cars do not carry higher insurance rates.") for chunk in doc10.noun_chunks: print(chunk.text) doc11 = nlp("He was a one-eyed, one-horned, flying, purple people-eater.") for chunk in doc11.noun_chunks: print(chunk.text) # # Visualizing the dependency parse from spacy import displacy doc = nlp( "Google, IBM, AWS and Apple to build a Hong Kong and Bangladesh factory for $6 million" ) displacy.render(doc, style="dep", jupyter=True, options={"distance": 110}) # # Visualizing the entity recognizer doc = nlp( "Google, IBM, AWS and Apple to build a Hong Kong and Bangladesh factory for $6 million" ) displacy.render(doc, style="ent", jupyter=True) # # Creating Visualizations Outside of Jupyter doc = nlp( "Google, IBM, AWS and Apple to build a Hong Kong and Bangladesh factory for $6 million" ) displacy.serve(doc, style="dep")
# # Restauant Rating Prediction App # Restaurant Rating has become the most commonly used parameter for judging a restaurant for any individual.Rating of a restaurant depends on factors like reviews, area situated, average cost for two people, votes, cuisines and the type of restaurant. # **The main goal of this is to get insights on restaurants which people like visit and to identify the rating of the restaurant.** # ## [Restaurant Rating Prediction App Link](https://sudhanshu2198-end-to-end-restaurant-rating--introduction-ts1jhq.streamlit.app/) # ## [Github Link](https://github.com/sudhanshu2198/End-to-End-Restaurant-Rating-Prediction) # ![](https://miro.medium.com/v2/resize:fit:720/format:webp/1*mNBXsQ8Weq1Nv30NmHnIlw.jpeg) # # Dataset Features Description # ![](https://miro.medium.com/v2/resize:fit:1400/format:webp/1*Bfr4jbykhuJcUYCrC15u2w.png) # # Imports import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.offline as py py.init_notebook_mode(connected=True) from sklearn.preprocessing import MultiLabelBinarizer from sklearn.preprocessing import OneHotEncoder from xgboost import XGBRegressor from lightgbm import LGBMRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import cross_val_score import optuna from optuna.visualization import plot_optimization_history from optuna.visualization import plot_parallel_coordinate from optuna.visualization import plot_param_importances import json import joblib import warnings warnings.filterwarnings("ignore") # # Data Summary data = pd.read_csv("/kaggle/input/zomato-bangalore-restaurants/zomato.csv") data.head() data.info() 100 * data.isnull().sum() / len(data) data.columns # # Data Cleaning df = data.copy() df = df.drop(["url", "phone", "location", "reviews_list", "rest_type"], axis=1) # dropping new restaurant where rating is not available # dropping restaurants where no of votes for rating are less then 50 df = df[-df["rate"].isna()] df = df[df["votes"] >= 50] """dropping votes features as it will not be available for future data on which prediction is to be made""" df.drop("votes", axis=1, inplace=True) # tackling nan values df["approx_cost(for two people)"] = ( df["approx_cost(for two people)"].str.replace(",", "").astype(float) ) col = ["listed_in(city)", "listed_in(type)"] ser = df.groupby(col)["approx_cost(for two people)"].transform("median") df["approx_cost(for two people)"] = df["approx_cost(for two people)"].fillna(ser) df["dish_liked"].replace(np.nan, "", inplace=True) df.dropna(inplace=True) def r_category(rating): if rating >= 4.0: return "Excellent" elif rating >= 3.0: return "Good" elif rating >= 2.5: return "Average" else: return "Poor" def p_category(price): if price <= 100.0: return "Cheap" elif price <= 250.0: return "Resonable" elif price <= 500.0: return "Affordable" else: return "Expensive" # deriving features df["Cost_Per_Person"] = df["approx_cost(for two people)"] / 2 df["rate"] = df["rate"].str[0:3].astype(float) df["Category"] = df["rate"].apply(r_category) df["Price_Category"] = df["Cost_Per_Person"].apply(p_category) # whether menu is available or not df["Menu"] = df["menu_item"].map(lambda x: "No" if x == "[]" else "Yes") # no of dishes liked by customer at a restaurant df["dish_liked"] = df["dish_liked"].map(lambda x: 0 if x == "" else len(x.split(", "))) # No of varieties served at a restaurant df["No_of_Varieties"] = df["cuisines"].apply(lambda x: len(x.split(", "))) # renaming columns for better intuition change = { "name": "Name", "address": "Address", "online_order": "Delivery", "book_table": "Booking", "rate": "Rating", "dish_liked": "No_of_Best_Sellers", "cuisines": "Cuisines", "approx_cost(for two people)": "Average_Cost", "listed_in(type)": "Type", "listed_in(city)": "City", } df.rename(columns=change, inplace=True) df.reset_index(drop=True, inplace=True) # cleaning cuisine columns by properly categorizing food items def func1(string): l = string.split(", ") if "Afghan" in l: l = list(map(lambda x: x.replace("Afghan", "Afghani"), l)) if "Bubble Tea" in l: l = list(map(lambda x: x.replace("Bubble Tea", "Beverages"), l)) if "Coffee" in l: l = list(map(lambda x: x.replace("Coffee", "Beverages"), l)) if "Cafe" in l: l = list(map(lambda x: x.replace("Cafe", "Beverages"), l)) if "Tea" in l: l = list(map(lambda x: x.replace("Tea", "Beverages"), l)) if "Bubble Beverages" in l: l = list(map(lambda x: x.replace("Bubble Beverages", "Beverages"), l)) if "Ice Cream" in l: l = list(map(lambda x: x.replace("Ice Cream", "Desserts"), l)) if "Mithai" in l: l = list(map(lambda x: x.replace("Mithai", "Desserts"), l)) if "Bar Food" in l: l = list(map(lambda x: x.replace("Bar Food", "Fast Food"), l)) if "Burger" in l: l = list(map(lambda x: x.replace("Burger", "Fast Food"), l)) if "Finger Food" in l: l = list(map(lambda x: x.replace("Finger Food", "Fast Food"), l)) if "Momos" in l: l = list(map(lambda x: x.replace("Momos", "Fast Food"), l)) if "Rolls" in l: l = list(map(lambda x: x.replace("Rolls", "Fast Food"), l)) if "Wraps" in l: l = list(map(lambda x: x.replace("Wraps", "Fast Food"), l)) if "Street Food" in l: l = list(map(lambda x: x.replace("Street Food", "Fast Food"), l)) if "Juices" in l: l = list(map(lambda x: x.replace("Juices", "Healthy Food"), l)) if "Salad" in l: l = list(map(lambda x: x.replace("Salad", "Healthy Food"), l)) if "Sandwich" in l: l = list(map(lambda x: x.replace("Sandwich", "Healthy Food"), l)) if "Grill" in l: l = list(map(lambda x: x.replace("Grill", "BBQ"), l)) if "Steak" in l: l = list(map(lambda x: x.replace("Steak", "BBQ"), l)) if "Sushi" in l: l = list(map(lambda x: x.replace("Sushi", "Japanese"), l)) if "Tex-Mex" in l: l = list(map(lambda x: x.replace("Tex-Mex", "Mexican"), l)) if "Roast Chicken" in l: l = list(map(lambda x: x.replace("Roast Chicken", "Chinese"), l)) if "Charcoal Chicken" in l: l = list(map(lambda x: x.replace("Charcoal Chicken", "Chinese"), l)) if "Pizza" in l: l = list(map(lambda x: x.replace("Pizza", "Italian"), l)) if "Biryani" in l: l = list(map(lambda x: x.replace("Biryani", "South Indian"), l)) if "Kebab" in l: l = list(map(lambda x: x.replace("Kebab", "North Indian"), l)) return ", ".join(set(l)) df["Cuisines"] = df["Cuisines"].apply(func1) df = df[ [ "Name", "Address", "Menu", "Delivery", "Booking", "No_of_Best_Sellers", "No_of_Varieties", "Cuisines", "Cost_Per_Person", "Type", "City", "Rating", "Category", "Price_Category", ] ] df.head() # # Data Preprocessing multi_label = df["Cuisines"].str.split(", ") mlb = MultiLabelBinarizer() inter_data = mlb.fit_transform(multi_label) multi_label_df = pd.DataFrame(inter_data, columns=mlb.classes_) data = df[ [ "Name", "Menu", "Delivery", "Booking", "Type", "City", "No_of_Best_Sellers", "No_of_Varieties", "Cost_Per_Person", "Rating", "Category", "Price_Category", ] ] dataframe = pd.concat([data, multi_label_df], axis=1) dataframe.head() dataframe.to_csv("display.csv", index=False) d = df[ [ "Name", "Address", "Menu", "Delivery", "Booking", "Type", "City", "No_of_Best_Sellers", "No_of_Varieties", "Cost_Per_Person", "Rating", "Category", "Price_Category", ] ] dataframe = pd.concat([d, multi_label_df], axis=1) dataframe.duplicated(subset=["Name", "Address"]).sum() dataframe.drop_duplicates(subset=["Name", "Address"], inplace=True) len(dataframe) one_hot = dataframe[["Delivery", "Booking", "City"]] numeric = dataframe[ ["No_of_Best_Sellers", "No_of_Varieties", "Cost_Per_Person", "Rating"] ] encoder = OneHotEncoder() one_hot_df = pd.DataFrame( encoder.fit_transform(one_hot).toarray(), index=list(dataframe.index) ) df_inter = pd.concat( [numeric, multi_label_df.iloc[list(dataframe.index), :], one_hot_df], axis=1 ) df_inter.reset_index(drop=True, inplace=True) df_inter.head() X = df_inter.drop("Rating", axis=1).values y = df_inter["Rating"].values mlb.classes_ # # Data Insights idf = pd.read_csv("/kaggle/input/bangalore-restaurant-insights/display.csv") idf.head() col = mlb.classes_ df = idf["Delivery"].value_counts() fig = px.pie(values=df.values, names=df.index, title="Online Delivery") py.iplot(fig) df = idf["Booking"].value_counts() fig = px.pie(values=df.values, names=df.index, title="Table Booking") py.iplot(fig) df = idf["Category"].value_counts() fig = px.pie(values=df.values, names=df.index, title="Category") py.iplot(fig) df = idf["Price_Category"].value_counts() fig = px.pie(values=df.values, names=df.index, title="Price Category") py.iplot(fig) # Most Expensive Cities inter = idf.groupby("City")[["Cost_Per_Person"]].mean() sol = inter.sort_values(by="Cost_Per_Person", ascending=False).head() sol.style.background_gradient(cmap="YlOrRd", high=0.5) # Most Affordable Cities inter = idf.groupby("City")[["Cost_Per_Person"]].mean() sol = inter.sort_values(by="Cost_Per_Person").head() sol.style.background_gradient(cmap="YlOrRd", high=0.5) fig = px.scatter(idf, x="Cost_Per_Person", y="Rating") py.iplot(fig) inter = idf.groupby(["No_of_Best_Sellers", "No_of_Varieties"])[["Menu"]].count() inter.rename(columns={"Menu": "Count"}, inplace=True) inter.reset_index(inplace=True) fig = px.bar( inter, x="No_of_Varieties", y="Count", color="No_of_Best_Sellers", barmode="group" ) py.iplot(fig) # Choose City city = "Banashankari" inter = idf[idf["City"] == "Banashankari"] d1 = inter.groupby("Type")["Type"].count().sort_values(ascending=False) d2 = inter.groupby("Type")["Cost_Per_Person"].agg(["min", "median", "max"]) # cpp=cost per person sol = pd.concat([d1, d2], axis=1) cols = ["No", "Min_cpp", "Median_cpp", "Max_cpp"] sol.columns = cols sol.style.background_gradient(cmap="YlOrRd", high=0.5) # choose city and Type City = "Banashankari" Type = "Delivery" inter = idf[(idf["City"] == City) & (idf["Type"] == Type)]["Cost_Per_Person"] fig = px.histogram(inter, x="Cost_Per_Person") py.iplot(fig) # Choose City city = "Sarjapur Road" inter = idf[idf["City"] == "Sarjapur Road"] ser = inter.groupby(["City"])[col].sum() index = ser.columns val = ser.values.T.flatten() series = pd.Series(val, index) ii = series.sort_values(ascending=False).head() fig = px.bar(df, x=ii.index, y=ii.values) py.iplot(fig) # Choose City and Restaurant Type inter = idf[(idf["North Indian"] == 1) & (idf["City"] == "Bellandur")] ser = inter.groupby("Name")[["Rating"]].max() sol = ser.sort_values(by="Rating", ascending=False).head() sol.style.background_gradient(cmap="YlOrRd", high=0.5) # Choose City and Restaurant Type city = "Sarjapur Road" type = "Delivery" inter = idf[idf["City"] == "Sarjapur Road"] ser = inter.groupby(["Type"])[col].sum() df_inter = ser.T inter = df_inter[type] ii = inter.sort_values(ascending=False).head() fig = px.bar(df, x=ii.index, y=ii.values) py.iplot(fig) # Choose city City = "Old Airport Road" ser = idf.groupby(["City", "Type"])[col].sum() ser dicton = {} for i in range(len(ser)): index = ser.columns val = ser.iloc[i].values.T.flatten() series = pd.Series(val, index) vall = list(series.sort_values(ascending=False).head().index) dicton[ser.index[i]] = vall sol = pd.DataFrame(dicton, index=["1st", "2nd", "3rd", "4th", "5th"]) frame = sol.T frame.loc[City] city = "Sarjapur Road" cols = idf["Type"].unique() df = pd.DataFrame() inter = idf[idf["City"] == "Sarjapur Road"] inter = inter.groupby("Type")[col].sum().T for i in cols: ser = inter[i].sort_values(ascending=False).head() df_inter = pd.DataFrame(ser) df_inter.reset_index(inplace=True) df_inter.rename(columns={i: "Count", "index": "Cuisine"}, inplace=True) df_inter["Type"] = i df = pd.concat([df, df_inter], axis=0) fig = px.bar(df, x="Type", y="Count", color="Cuisine") py.iplot(fig) # Choose city City = "BTM" sel = ["North Indian", "South Indian", "Chinese", "Fast Food", "Italian"] df = pd.DataFrame() order = {"Price_Category": ["Cheap", "Resonable", "Affordable", "Expensive"]} for i in sel: inter = idf[idf[i] == 1] inter = inter.groupby(["Price_Category"])[["Menu"]].count() inter = inter.reset_index() inter.rename(columns={"Menu": "Count"}, inplace=True) inter["Cuisine_Type"] = i df = pd.concat([df, inter], axis=0) fig = px.bar( x=df["Cuisine_Type"], y=df["Count"], color=df["Price_Category"], barmode="group", category_orders={ "Price_Category": ["Cheap", "Resonable", "Affordable", "Expensive"] }, ) py.iplot(fig) # Choose city City = "BTM" sel = ["North Indian", "South Indian", "Chinese", "Fast Food", "Italian"] df = pd.DataFrame() for i in sel: inter = idf[idf[i] == 1] inter = inter.groupby(["Category"])[["Menu"]].count() inter = inter.reset_index() inter.rename(columns={"Menu": "Count"}, inplace=True) inter["Cuisine_Type"] = i df = pd.concat([df, inter], axis=0) fig = px.bar(x=df["Cuisine_Type"], y=df["Count"], color=df["Category"], barmode="group") py.iplot(fig) # # Modelling def get_models(): models, names = [], [] models.append(RandomForestRegressor()) names.append("RandomForestRegressor") models.append(XGBRegressor()) names.append("XGBRegressor") models.append(LGBMRegressor()) names.append("LGBMRegressor") return models, names models, names = get_models() scores = [] for i in range(len(models)): score = cross_val_score( models[i], X, y, cv=5, scoring="neg_mean_squared_error", n_jobs=-1 ) scores.append(score) plt.boxplot(scores, labels=names, showmeans=True) plt.xticks(rotation="vertical") # # Hyperparameter Optimization def objective(trial): params = { "n_estimators": trial.suggest_int("n_estimators", 100, 400), "max_depth": trial.suggest_int("max_depth", 4, 10), "learning_rate": trial.suggest_float("learning_rate", 0.01, 1.0, log=True), "subsample": trial.suggest_float("subsample", 0.5, 1.0), "reg_alpha": trial.suggest_float("reg_alpha", 0.0, 1.0), } model = LGBMRegressor(random_state=1, **params) score = cross_val_score( model, X, y, cv=5, scoring="neg_mean_squared_error", n_jobs=-1 ) return score.mean() study = optuna.create_study( study_name="Hyperparameter optimization", direction="maximize", sampler=optuna.samplers.TPESampler(seed=42), ) study.optimize(objective, n_trials=50, show_progress_bar=True) print(f"Best value: {study.best_trial.value}") print(f"Best hyperparameters:\n {json.dumps(study.best_trial.params, indent=2)}") plot_optimization_history(study) plot_parallel_coordinate(study) plot_param_importances(study) # # Final Model model = LGBMRegressor(**study.best_trial.params) model.fit(X, y) joblib.dump(model, "model.pkl") joblib.dump(mlb, "mlb.pkl") joblib.dump(encoder, "encoder.pkl")
# Business Case: Walmart - Confidence Interval and CLT # About Walmart: # Walmart is an American multinational retail corporation that operates a chain of supercenters, discount departmental stores, and grocery stores from the United States. Walmart has more than 100 million customers worldwide. # Business Problem: # The Management team at Walmart Inc. wants to analyze the customer purchase behavior (specifically, purchase amount) against the customer’s gender and the various other factors to help the business make better decisions. They want to understand if the spending habits differ between male and female customers: Do women spend more on Black Friday than men? (Assume 50 million customers are male and 50 million are female). # Import the libraries: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Read the Walmart data: df = pd.read_csv("walmart_data.csv") df # Checking missing values: df.isnull().sum() / len(df) * 100 # Checking the characteristics of the data: df.describe(include="all") df.info() # Initial Observations: # 1. There are no missing values in the data. # 2. There are 3631 unique product IDs in the dataset. P00265242 is the most sold Product ID. # 3. There are 7 unique age groups and most of the purchase belongs to age 26-35 group. # 4. There are 3 unique citi categories with category B being the highest. # 5. 5 unique values for Stay_in_current_citi_years with 1 being the highest. # # 3. The difference between mean and median seems to be significant for purchase that suggests outliers in the data. # 4. Minimum & Maximum purchase is 12 and 23961 suggests the purchasing behaviour is quite spread over a aignificant range of values. Mean is 9264 and 75% of purchase is of less than or equal to 12054. It suggest most of the purchase is not more than 12k. # 5. Few categorical variable are of integer data type. It can be converted to character type. # 6. Out of 550068 data points, 414259's gender is Male and rest are the female. Male purchase count is much higher than female. # 7. Standard deviation for purchase have significant value which suggests data is more spread out for this attribute. columns = ["User_ID", "Occupation", "Marital_Status", "Product_Category"] df[columns] = df[columns].astype("object") df.info() df.describe(include="all") # Observation post modifying the categorical variable's data type: # 1. There are 5891 unique users, and userid 1001680 being with the highest count. # 2. The customers belongs to 21 distinct occupation for the purchases being made with Occupation 4 being the highest. # 3. Marital status unmarried contribute more in terms of the count for the purchase. # 4. There are 20 unique product categories with 5 being the highest. # Checking how categorical variables contributes to the entire data categ_cols = [ "Gender", "Age", "City_Category", "Stay_In_Current_City_Years", "Marital_Status", ] df[categ_cols].melt().groupby(["variable", "value"])[["value"]].count() / len(df) # Observations: # # 1. 40% of the purchase done by aged 26-35 and 78% purchase are done by the customers aged between the age 18-45 (40%: 26-35, 18%: 18-25, 20%: 36-45) # 2. 75% of the purchase count are done by Male and 25% by Female # 3. 60% Single, 40% Married contributes to the purchase count. # 4. 35% Staying in the city from 1 year, 18% from 2 years, 17% from 3 years # 5. There are 20 product categories in total. # 6. There are 20 different types of occupations in the city. # Checking how the data is spread basis distinct users df2 = df.groupby(["User_ID"])["Age"].unique() df2.value_counts() / len(df2) # Observation: # 1. We can see 35% of the users are aged 26-35. 73% of users are aged between 18-45. # 2. From the previous observation we saw 40% of the purchase are done by users aged 26-35. And, we have 35% of users aged between 26-35 and they are contributing 40% of total purchase count.So, we can infer users aged 26-35 are more frequent customers. df2 = df.groupby(["User_ID"])["Gender"].unique() df2.value_counts() / len(df2) # Observation: # 1. We have 72% male users and 28% female users. Combining with previous observations we can see 72% of male users contributing to 75% of the purchase count and 28% of female users are contributing to 25% of the purchase count. df2 = df.groupby(["User_ID"])["Marital_Status"].unique() df2.value_counts() / len(df2) # Observation: # 1. We have 58% of the single users and 42% of married users. Combining with previous observation, single users contributes more as 58% of the single contributes to the 60% of the purchase count. df2 = df.groupby(["User_ID"])["City_Category"].unique() df2.value_counts() / len(df2) # Observation: # # 1. 53% of the users belong to city category C whereas 29% to category B and 18% belong to category A. Combining from the previous observation category B purchase count is 42% and Category C purchase count is 31%. We can clearly see category B are more actively purchasing inspite of the fact they are only 28% of the total users. On the other hand, we have 53% of category C users but they only contribute 31% of the total purchase count. # Checking the age group distribution in different city categories pd.crosstab( index=df["City_Category"], columns=df["Age"], margins=True, normalize="index" ) # Observation: # # 1. We have seen earlier that city category B and A constitutes less percentage of total population, but they contribute more towards purchase count. We can see from above results large percentage of customers aged 26-35 for B(40%) and A (50%) which can be the reason for these city categories to be more actively purchasing. # Checking how genders are contributing towards toatl purchase amount df2 = pd.DataFrame(df.groupby(["Gender"])[["Purchase"]].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observation: # 1. We can see male(72% of the population) contributes to more than 76% of the total purchase amount whereas female(28% of the population) contributes 23% of the total purchase amount. # Checking how purchase value are spread among differnt age categories df2 = pd.DataFrame(df.groupby(["Age"])[["Purchase"]].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observation: # 1. We can see the net purchase amount spread is similar to the purchase count spread among the different age groups. df2 = pd.DataFrame(df.groupby(["Marital_Status"])["Purchase"].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observations: # 1. Single users are contributing 59% towards the total purchase amount in comparison to 41% by married users. df2 = pd.DataFrame(df.groupby(["City_Category"])["Purchase"].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observations: # # 1. City_category contribution to the total purchase amount is also similar to their contribution towards Purchase count. Still, combining with previous observation we can City_category C although has percentage purchase count of 31% but they contribute more in terms of purchase amount i.e. 32.65%. We can infer City category C purchase higher value products. # Users with highest number of purchases df.groupby(["User_ID"])["Purchase"].count().nlargest(10) # Users with highest purchases amount df.groupby(["User_ID"])["Purchase"].sum().nlargest(10) # Observation: # 1. The users with high number of purchases contribute more to the purchase amount. Still, we can see there are few users not in the list of top 10 purchase counts are there in list of top 10 purchase amount. Also, the user 1004277 with lesser purchase count(979) has a much higher purchase amount than the user(1001680) with top purchase count. df2 = pd.DataFrame(df.groupby(["Occupation"])[["Purchase"]].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observations: # # 1. Some of the Occupation like 0, 4, 7 has contributed more towards total purchase amount. df2 = pd.DataFrame(df.groupby(["Product_Category"])[["Purchase"]].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Observations: # # 1. 1, 8, 5 are among the highest yielding product categories and 19, 20, 13 are among the lowest in terms of their contribution to total amount. df2 = pd.DataFrame(df.groupby(["Stay_In_Current_City_Years"])[["Purchase"]].sum()) df2["percent"] = (df2["Purchase"] / df2["Purchase"].sum()) * 100 df2 # Univariate Analysis: # We can explore the distribution of the data for the quantitative attributes using histplot. plt.figure(figsize=(10, 6)) sns.histplot(data=df, x="Purchase", kde=True) plt.show() # Observation: # # 1. We can see purchase value between 5000 and 10000 have higher count. From the initial observation we have already seen the mean and median is 9263 and 8047 respectively. Also, we can see there are outliers in the data. plt.figure(figsize=(5, 4)) sns.boxplot(data=df, y="Purchase") plt.show() # Observation: # # We can see there are outliers in the data for purchase. # # Univariate analysis for qualitative variables: fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 10)) sns.countplot(data=df, x="Gender", ax=axs[0, 0]) sns.countplot(data=df, x="Occupation", ax=axs[0, 1]) sns.countplot(data=df, x="City_Category", ax=axs[1, 0]) sns.countplot(data=df, x="Marital_Status", ax=axs[1, 1]) plt.show() # Observations: # # 1. We can clearly see from the graphs above the purchases done by males are much higher than females. # 2. We have 21 occupations categories. Occupation category 4, 0, and 7 are with higher number of purchases and category 8 with the lowest number of purchaes. # 3. The purchases are highest from City category B. # 4. Single customer purchases are higher than married users. plt.figure(figsize=(12, 5)) sns.countplot(data=df, x="Product_Category") plt.show() # Observations: # # 1. There are 20 product categories with product category 1, 5 and 8 having higher purchasing frequency. # Bivariate Analysis: fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 5)) sns.histplot(data=df[df["Gender"] == "M"]["Purchase"], ax=axs[0]).set_title( "Male Spending " ) sns.histplot(data=df[df["Gender"] == "F"]["Purchase"], ax=axs[1]).set_title( "Female Spending" ) plt.show() # Observations: # # 1. From the above histplot, we can clearly see spending behaviour is very much similar in nature for both males and females as the maximum purchase count are between the purchase value range of 5000-10000 for both. But, the purchase count are more in case of males. attr = [ "Gender", "Age", "Occupation", "City_Category", "Stay_In_Current_City_Years", "Marital_Status", ] fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(18, 10)) fig.subplots_adjust(top=1.3) count = 0 for row in range(3): for col in range(2): sns.boxplot( data=df, y="Purchase", x=attr[count], ax=axs[row, col], ) axs[row, col].set_title(f"Purchase vs {attr[count]}") count += 1 plt.show() plt.figure(figsize=(8, 5)) sns.boxplot(data=df, y="Purchase", x="Product_Category") plt.show() # Observations: # # 1. The spending behaviour for males and females are similar as we had seen from the above histplot. Males purchasing value are in the little higher range than females. # 2. Among differnt age categories, we see similar purchase behaviour. For all age groups, most of the purchases are of the values between 5k to 12k with all have some outliers. # 3. Among different occupation as well, we see similar purchasing behaviour in terms of the purchase values. # 4. Similarly for City category, stay in current city years, marital status - we see the users spends mostly in the range of 5k to 12k. # 5. We see variations among product categories. Product category 10 products are the costliest ones. Also, there are few outliers for some of the product categories. # Multivariate analysis: fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 6)) fig.subplots_adjust(top=1.5) sns.boxplot(data=df, y="Purchase", x="Gender", hue="Age", ax=axs[0, 0]) sns.boxplot(data=df, y="Purchase", x="Gender", hue="City_Category", ax=axs[0, 1]) sns.boxplot(data=df, y="Purchase", x="Gender", hue="Marital_Status", ax=axs[1, 0]) sns.boxplot( data=df, y="Purchase", x="Gender", hue="Stay_In_Current_City_Years", ax=axs[1, 1] ) plt.show() # Observations: # # 1. The purchasing pattern is very much similar for males and females even among differnt age groups. # 2. The purchasing behaviour of males and females basis different citi categories is also similar in nature. Still, males from city category B tends to purchase costlier products in comparison to females. # 3. Males and females spending behaviour remains similar even when take into account their marital status. # 4. Purchase values are similar for males and females basis Stay_in_current_city_years. Although, Males buy slightly high value products. # Correlation between categorical variables: sns.heatmap(df.corr(), annot=True, cmap="Blues", linewidth=0.5) # Average amount spend per males and females: # Observations: # # 1. From the above correlation plot, we can see the correlation is not significant between any pair of variables. avgamt_gender = df.groupby(["User_ID", "Gender"])[["Purchase"]].sum() avgamt_gender = avgamt_gender.reset_index() avgamt_gender # Gender wise count in the entire data avgamt_gender["Gender"].value_counts() fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 5)) sns.histplot( data=avgamt_gender[avgamt_gender["Gender"] == "F"]["Purchase"], ax=axs[0] ).set_title("Females Avg Spend") sns.histplot( data=avgamt_gender[avgamt_gender["Gender"] == "M"]["Purchase"], ax=axs[1] ).set_title("Males Avg Spend") # Observations: # # 1. Average amount spend by males are higher than females. avgamt_gender.groupby(["Gender"])[["Purchase"]].mean() avgamt_gender.groupby(["Gender"])["Purchase"].sum() # Observations: # # 1. Average amount for the males is 925344 for the entire population whereas it's much lesser for females(712024). # 2. Total amount spend by males is around 4 billion whereas for females it's 1.2 billion. avgamt_male = avgamt_gender[avgamt_gender["Gender"] == "M"] avgamt_female = avgamt_gender[avgamt_gender["Gender"] == "F"] # Finding the sample(sample size=1000) for avg purchase amount for males and females genders = ["M", "F"] sample_size = 1000 num_repitions = 1000 male_means = [] female_means = [] for i in range(num_repitions): male_mean = avgamt_male.sample(sample_size, replace=True)["Purchase"].mean() female_mean = avgamt_female.sample(sample_size, replace=True)["Purchase"].mean() male_means.append(male_mean) female_means.append(female_mean) fig, axis = plt.subplots(nrows=1, ncols=2, figsize=(20, 6)) axis[0].hist(male_means, bins=35) axis[1].hist(female_means, bins=35) axis[0].set_title("Male distribution of means, Sample size: 1000") axis[1].set_title("Female distribution of means, Sample size: 1000") plt.show() # Observations: # # 1. The means sample seems to be normally distributed for both males and females. Also, we can see the mean of the sample means are closer to the population mean as per central limit theorem. # Calculating 90% confidence interval for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1000) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1000) sample_std_error_female = sample_std_female / np.sqrt(1000) Upper_Limit_male = z90 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z90 * sample_std_error_male Upper_Limit_female = z90 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z90 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 90%, we can say that: # Average amount spend by male customers lie in the range 9,22,940.71 - 9,26,225.18 # Average amount spend by female customers lie in range 7,10,425.64 - 7,13,064.55 # Calculating 95% confidence interval for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1000) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1000) sample_std_error_female = sample_std_female / np.sqrt(1000) Upper_Limit_male = z95 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z95 * sample_std_error_male Upper_Limit_female = z95 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z95 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 95%, we can say that: # Average amount spend by male customers lie in the range 9,22,626.24 - 9,26,539.65 # Average amount spend by female customers lie in range 7,10,172.98 - 7,13,317.21 # Calculating 99% confidence interval for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1000) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1000) sample_std_error_female = sample_std_female / np.sqrt(1000) Upper_Limit_male = z99 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z99 * sample_std_error_male Upper_Limit_female = z99 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z99 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 99%, we can say that: # Average amount spend by male customers lie in the range 9,22,011.28 - 9,27,154.61 # Average amount spend by female customers lie in range 7,09,678.88 - 7,13,811.31 # Calculating 90% confidence interval for sample size 1500: # Finding the sample(sample size=1000) avg purchase amount for males and females genders = ["M", "F"] sample_size = 1500 num_repitions = 1000 male_means = [] female_means = [] for i in range(num_repitions): male_mean = avgamt_male.sample(sample_size, replace=True)["Purchase"].mean() female_mean = avgamt_female.sample(sample_size, replace=True)["Purchase"].mean() male_means.append(male_mean) female_means.append(female_mean) # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1500) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1500) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1500) sample_std_error_female = sample_std_female / np.sqrt(1500) Upper_Limit_male = z90 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z90 * sample_std_error_male Upper_Limit_female = z90 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z90 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 90%, we can say that: # Average amount spend by male customers lie in the range 9,24,177.41 - 9,26,318.90 # Average amount spend by female customers lie in range 7,11,187.27 - 7,12,971.67 # By increasing the sample size we can see confidence interval is more closer to the population mean. # Calculating 95% confidence interval for sample size 1500: print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1500) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1500) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1500) sample_std_error_female = sample_std_female / np.sqrt(1500) Upper_Limit_male = z95 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z95 * sample_std_error_male Upper_Limit_female = z95 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z95 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 95%, we can say that: # Average amount spend by male customers lie in the range 9,23,972.41 - 9,26,523.93 # Average amount spend by female customers lie in range 7,11,016.42 - 7,13,142.51 # By increasing the sample size we can see confidence interval is more closer to the population mean. # Calculating 99% confidence interval for sample size 1500: print( "Population avg spend amount for Male: {:.2f}".format( avgamt_male["Purchase"].mean() ) ) print( "Population avg spend amount for Female: {:.2f}\n".format( avgamt_female["Purchase"].mean() ) ) print("Sample avg spend amount for Male: {:.2f}".format(np.mean(male_means))) print("Sample avg spend amount for Female: {:.2f}\n".format(np.mean(female_means))) print("Sample std for Male: {:.2f}".format(pd.Series(male_means).std())) print("Sample std for Female: {:.2f}\n".format(pd.Series(female_means).std())) print( "Sample std error for Male: {:.2f}".format( pd.Series(male_means).std() / np.sqrt(1500) ) ) print( "Sample std error for Female: {:.2f}\n".format( pd.Series(female_means).std() / np.sqrt(1500) ) ) sample_mean_male = np.mean(male_means) sample_mean_female = np.mean(female_means) sample_std_male = pd.Series(male_means).std() sample_std_female = pd.Series(female_means).std() sample_std_error_male = sample_std_male / np.sqrt(1500) sample_std_error_female = sample_std_female / np.sqrt(1500) Upper_Limit_male = z99 * sample_std_error_male + sample_mean_male Lower_Limit_male = sample_mean_male - z99 * sample_std_error_male Upper_Limit_female = z99 * sample_std_error_female + sample_mean_female Lower_Limit_female = sample_mean_female - z99 * sample_std_error_female print("Male_CI: ", [Lower_Limit_male, Upper_Limit_male]) print("Female_CI: ", [Lower_Limit_female, Upper_Limit_female]) # Observation: # Now using the Confidence interval at 99%, we can say that: # Average amount spend by male customers lie in the range 923571.42 - 926924.89 # Average amount spend by female customers lie in range 710682.32 - 713476.61 # By increasing the sample size we can see confidence interval is more closer to the population mean. # CLT and Confidence interval considering marital status: avg_Marital = df.groupby(["User_ID", "Marital_Status"])[["Purchase"]].sum() avg_Marital = avg_Marital.reset_index() avgamt_married = avg_Marital[avg_Marital["Marital_Status"] == 1] avgamt_single = avg_Marital[avg_Marital["Marital_Status"] == 0] sample_size = 1000 num_repitions = 1000 married_means = [] single_means = [] for i in range(num_repitions): avg_married = ( avg_Marital[avg_Marital["Marital_Status"] == 1] .sample(sample_size, replace=True)["Purchase"] .mean() ) avg_single = ( avg_Marital[avg_Marital["Marital_Status"] == 0] .sample(sample_size, replace=True)["Purchase"] .mean() ) married_means.append(avg_married) single_means.append(avg_single) fig, axis = plt.subplots(nrows=1, ncols=2, figsize=(20, 6)) axis[0].hist(married_means, bins=35) axis[1].hist(single_means, bins=35) axis[0].set_title("Married distribution of means, Sample size: 1000") axis[1].set_title("Unmarried distribution of means, Sample size: 1000") plt.show() # Observations: # 1. The means sample seems to be normally distributed for both married and singles. Also, we can see the mean of the sample means are closer to the population mean as per central limit theorem. avg_Marital["Marital_Status"].value_counts() # Calculating 90% confidence interval for avg expenses for married/single for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Married: {:.2f}".format( avgamt_married["Purchase"].mean() ) ) print( "Population avg spend amount for Single: {:.2f}\n".format( avgamt_single["Purchase"].mean() ) ) print("Sample avg spend amount for Married: {:.2f}".format(np.mean(married_means))) print("Sample avg spend amount for Single: {:.2f}\n".format(np.mean(single_means))) print("Sample std for Married: {:.2f}".format(pd.Series(married_means).std())) print("Sample std for Single: {:.2f}\n".format(pd.Series(single_means).std())) print( "Sample std error for Married: {:.2f}".format( pd.Series(married_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Single: {:.2f}\n".format( pd.Series(single_means).std() / np.sqrt(1000) ) ) sample_mean_married = np.mean(married_means) sample_mean_single = np.mean(single_means) sample_std_married = pd.Series(married_means).std() sample_std_single = pd.Series(single_means).std() sample_std_error_married = sample_std_married / np.sqrt(1000) sample_std_error_single = sample_std_single / np.sqrt(1000) Upper_Limit_married = z90 * sample_std_error_male + sample_mean_married Lower_Limit_married = sample_mean_married - z90 * sample_std_error_married Upper_Limit_single = z90 * sample_std_error_single + sample_mean_single Lower_Limit_single = sample_mean_single - z90 * sample_std_error_single print("Married_CI: ", [Lower_Limit_married, Upper_Limit_married]) print("Single_CI: ", [Lower_Limit_single, Upper_Limit_single]) # Calculating 95% confidence interval for avg expenses for married/single for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Married: {:.2f}".format( avgamt_married["Purchase"].mean() ) ) print( "Population avg spend amount for Single: {:.2f}\n".format( avgamt_single["Purchase"].mean() ) ) print("Sample avg spend amount for Married: {:.2f}".format(np.mean(married_means))) print("Sample avg spend amount for Single: {:.2f}\n".format(np.mean(single_means))) print("Sample std for Married: {:.2f}".format(pd.Series(married_means).std())) print("Sample std for Single: {:.2f}\n".format(pd.Series(single_means).std())) print( "Sample std error for Married: {:.2f}".format( pd.Series(married_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Single: {:.2f}\n".format( pd.Series(single_means).std() / np.sqrt(1000) ) ) sample_mean_married = np.mean(married_means) sample_mean_single = np.mean(single_means) sample_std_married = pd.Series(married_means).std() sample_std_single = pd.Series(single_means).std() sample_std_error_married = sample_std_married / np.sqrt(1000) sample_std_error_single = sample_std_single / np.sqrt(1000) Upper_Limit_married = z95 * sample_std_error_male + sample_mean_married Lower_Limit_married = sample_mean_married - z95 * sample_std_error_married Upper_Limit_single = z95 * sample_std_error_single + sample_mean_single Lower_Limit_single = sample_mean_single - z95 * sample_std_error_single print("Married_CI: ", [Lower_Limit_married, Upper_Limit_married]) print("Single_CI: ", [Lower_Limit_single, Upper_Limit_single]) # Calculating 99% confidence interval for avg expenses for married/single for sample size 1000: # Taking the values for z at 90%, 95% and 99% confidence interval as: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval print( "Population avg spend amount for Married: {:.2f}".format( avgamt_married["Purchase"].mean() ) ) print( "Population avg spend amount for Single: {:.2f}\n".format( avgamt_single["Purchase"].mean() ) ) print("Sample avg spend amount for Married: {:.2f}".format(np.mean(married_means))) print("Sample avg spend amount for Single: {:.2f}\n".format(np.mean(single_means))) print("Sample std for Married: {:.2f}".format(pd.Series(married_means).std())) print("Sample std for Single: {:.2f}\n".format(pd.Series(single_means).std())) print( "Sample std error for Married: {:.2f}".format( pd.Series(married_means).std() / np.sqrt(1000) ) ) print( "Sample std error for Single: {:.2f}\n".format( pd.Series(single_means).std() / np.sqrt(1000) ) ) sample_mean_married = np.mean(married_means) sample_mean_single = np.mean(single_means) sample_std_married = pd.Series(married_means).std() sample_std_single = pd.Series(single_means).std() sample_std_error_married = sample_std_married / np.sqrt(1000) sample_std_error_single = sample_std_single / np.sqrt(1000) Upper_Limit_married = z99 * sample_std_error_male + sample_mean_married Lower_Limit_married = sample_mean_married - z99 * sample_std_error_married Upper_Limit_single = z99 * sample_std_error_single + sample_mean_single Lower_Limit_single = sample_mean_single - z99 * sample_std_error_single print("Married_CI: ", [Lower_Limit_married, Upper_Limit_married]) print("Single_CI: ", [Lower_Limit_single, Upper_Limit_single]) # Observation: # # For married and singles, it can be seen with larger sample size the sample mean gets closer to tthe population mean. And at greater confidence interval, the range increases. avgamt_age = df.groupby(["User_ID", "Age"])[["Purchase"]].sum() avgamt_age = avgamt_age.reset_index() avgamt_age["Age"].value_counts() sample_size = 200 num_repitions = 1000 all_sample_means = {} age_intervals = ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"] for i in age_intervals: all_sample_means[i] = [] for i in age_intervals: for j in range(num_repitions): mean = ( avgamt_age[avgamt_age["Age"] == i] .sample(sample_size, replace=True)["Purchase"] .mean() ) all_sample_means[i].append(mean) fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(20, 15)) sns.histplot(all_sample_means["26-35"], bins=35, ax=axis[0, 0]) sns.histplot(all_sample_means["36-45"], bins=35, ax=axis[0, 1]) sns.histplot(all_sample_means["18-25"], bins=35, ax=axis[1, 0]) sns.histplot(all_sample_means["46-50"], bins=35, ax=axis[1, 1]) sns.histplot(all_sample_means["51-55"], bins=35, ax=axis[2, 0]) sns.histplot(all_sample_means["55+"], bins=35, ax=axis[2, 1]) plt.show() plt.figure(figsize=(10, 5)) sns.histplot(all_sample_means["0-17"], bins=35) plt.show() # Observations: # 1. The means sample seems to be normally distributed for all age groups. Also, we can see the mean of the sample means are closer to the population mean as per central limit theorem. # Calculating 90% confidence interval for avg expenses for different age groups for sample size 200: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval sample_size = 200 num_repitions = 1000 all_population_means = {} all_sample_means = {} age_intervals = ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"] for i in age_intervals: all_sample_means[i] = [] all_population_means[i] = [] population_mean = avgamt_age[avgamt_age["Age"] == i]["Purchase"].mean() all_population_means[i].append(population_mean) print("All age group population mean: \n", all_population_means) print("\n") for i in age_intervals: for j in range(num_repitions): mean = ( avgamt_age[avgamt_age["Age"] == i] .sample(sample_size, replace=True)["Purchase"] .mean() ) all_sample_means[i].append(mean) for val in ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"]: new_df = avgamt_age[avgamt_age["Age"] == val] std_error = z90 * new_df["Purchase"].std() / np.sqrt(len(new_df)) sample_mean = new_df["Purchase"].mean() lower_lim = sample_mean - std_error upper_lim = sample_mean + std_error print( "For age {} confidence interval of means: ({:.2f}, {:.2f})".format( val, lower_lim, upper_lim ) ) # Calculating 95% confidence interval for avg expenses for different age groups for sample size 200: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval sample_size = 200 num_repitions = 1000 all_means = {} age_intervals = ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"] for i in age_intervals: all_means[i] = [] for i in age_intervals: for j in range(num_repitions): mean = ( avgamt_age[avgamt_age["Age"] == i] .sample(sample_size, replace=True)["Purchase"] .mean() ) all_means[i].append(mean) for val in ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"]: new_df = avgamt_age[avgamt_age["Age"] == val] std_error = z95 * new_df["Purchase"].std() / np.sqrt(len(new_df)) sample_mean = new_df["Purchase"].mean() lower_lim = sample_mean - std_error upper_lim = sample_mean + std_error print( "For age {} confidence interval of means: ({:.2f}, {:.2f})".format( val, lower_lim, upper_lim ) ) # Calculating 99% confidence interval for avg expenses for different age groups for sample size 200: z90 = 1.645 # 90% Confidence Interval z95 = 1.960 # 95% Confidence Interval z99 = 2.576 # 99% Confidence Interval sample_size = 200 num_repitions = 1000 all_means = {} age_intervals = ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"] for i in age_intervals: all_means[i] = [] for i in age_intervals: for j in range(num_repitions): mean = ( avgamt_age[avgamt_age["Age"] == i] .sample(sample_size, replace=True)["Purchase"] .mean() ) all_means[i].append(mean) for val in ["26-35", "36-45", "18-25", "46-50", "51-55", "55+", "0-17"]: new_df = avgamt_age[avgamt_age["Age"] == val] std_error = z99 * new_df["Purchase"].std() / np.sqrt(len(new_df)) sample_mean = new_df["Purchase"].mean() lower_lim = sample_mean - std_error upper_lim = sample_mean + std_error print( "For age {} confidence interval of means: ({:.2f}, {:.2f})".format( val, lower_lim, upper_lim ) )
import warnings warnings.filterwarnings("ignore") import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt import folium df = pd.read_csv("/kaggle/input/missing-persons-clean/Missing_Persons_clean.csv") df x = df["Long"] y = df["Lat"] print(x.max(), x.min()) print(y.max(), y.min()) plt.scatter(x, y) plt.xlabel("Longitude") plt.ylabel("Latitude") data = list(zip(x, y)) kmeans = KMeans(n_clusters=50) kmeans.fit(data) plt.scatter(x, y, c=kmeans.labels_) plt.show() # OH LOL I SEE NOW !!! LETS NARROW IT DOWN texas_long = (x > -98) & (x < -95) texas_lat = (y > 30) & (y < 33) texas_area = df[texas_long & texas_lat] texas_x = texas_area["Long"] texas_y = texas_area["Lat"] texas_area plt.scatter(texas_x, texas_y) data = list(zip(texas_x, texas_y)) fig = plt.gcf() for i in range(1, 8): kmeans = KMeans(n_clusters=i + 1) kmeans.fit(data) plt.figure(figsize=(2, 2)) plt.title(f"{i+1} clusters") plt.scatter(texas_x, texas_y, c=kmeans.labels_) plt.figure() image = plt.imread("/kaggle/input/texas-map/data.PNG") plt.subplot(1, 2, 1) plt.imshow(image, extent=[-98, -95, 30, 33]) plt.title("Austin-Dallas-Tyler circle") plt.subplot(1, 2, 2) plt.imshow(image, extent=[-98, -95, 30, 33]) kmeans = KMeans(n_clusters=8) kmeans.fit(data) plt.scatter(texas_x, texas_y, c=kmeans.labels_) plt.title("8 Clusters")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/empData/emp_data_sharaon.csv") # no of rows r, c = df.shape r # no of columns c df.describe() df.isnull().sum() list(df.columns) # dropping these columns as they either don't have value or don't have relevanc at this point df.drop( [ "Calm", "Sweat", "Aerobics", "Network ID", "Submit Date (UTC)", "Tags", "Start Date (UTC)", "MyFitnessPal", ], axis=1, inplace=True, ) df.head() df.head() list(df.columns) a = df["sleepTime"].unique() print(sorted(a)) a = df["MyFitnessPal"].unique() print(sorted(a)) autonomyAtWork_count = pd.DataFrame(df["autonomyAtWork"].value_counts()) autonomyAtWork_count # avgSleepTime - converted this column into numerical values avgSleepTime_dict = { "less than 5 hours": 1, "5-6 hours": 2, "7-8 hours": 3, "above 8 hours": 4, } # Create the mapped values in a new column df["target_avgSleepTime"] = df["avgSleepTime"].map(avgSleepTime_dict) # Review dataset df["target_avgSleepTime"] # sleepTime - converted this column into numerical values sleepTime_dict = { "I get good sleep half of the times": 1, "I rarely get good sleep": 0, "I regularly get high quality sleep": 2, } # Create the mapped values in a new column df["target_sleepTime"] = df["sleepTime"].map(sleepTime_dict) # Review dataset df["target_sleepTime"] a = df["claimToInsurance"].unique() print((a)) # claimToInsurance - converted this column into numerical values claimToInsurance_dict = { "We have insurance?": 0, "Never": 1, "1-2 times": 2, "I have claimed more than 3 times": 2, } # Create the mapped values in a new column df["target_claimToInsurance"] = df["claimToInsurance"].map(claimToInsurance_dict) # Review dataset df["target_claimToInsurance"] # Get all numeric columns numeric_columns = df._get_numeric_data().columns.values.tolist() print(numeric_columns) import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px plt.figure(figsize=(16, 5)) sns.barplot(x=df["claimToInsurance"], y=df["awarenessToInsuranceCoverage"]) plt.title("Insurance Clain to Awareness Ratio") plt.show() plt.figure(figsize=(16, 5)) sns.barplot(x=df["repoWithManager"], y=df["qualityWork"]) plt.title("Job Satisfaction vs Relationship With Manager") plt.show() fig = px.histogram(df, x="repoWithManager", template="seaborn") fig.update_layout(bargap=0.2) fig.show() fig = px.histogram(df, x="autonomyAtWork", template="seaborn") fig.update_layout(bargap=0.2) fig.show() fig = px.histogram(df, x="habitBuilderToImproveHeath", template="seaborn") fig.update_layout(bargap=0.2) fig.show() fig = px.histogram(df, x="autonomyAtWork", template="seaborn") fig.update_layout(bargap=0.2) fig.show() df["Financial"] = df.apply( lambda x: x["target_claimToInsurance"] + x["awarenessToInsuranceCoverage"], axis=1 ) df["Financial"] df["claimToInsurance"] df["awarenessToInsuranceCoverage"] df["Social"] df["Mental"] df["Physical"] plt.figure(figsize=(10, 6)) sns.heatmap(df.corr()) import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 15)) sns.heatmap(df.corr(), annot=True) plt.show() plt.style.use("seaborn-pastel") plt.rcParams["figure.figsize"] = (8, 6) sns.countplot( x=df["autonomyAtWork"], hue="claimToInsurance", data=df, palette="PuRd" ).set_title("autonomyAtWork Reported by claimToInsurance Field") plt.style.use("seaborn-pastel") plt.rcParams["figure.figsize"] = (8, 6) sns.countplot( x=df["autonomyAtWork"], hue="qualityWork", data=df, palette="cool" ).set_title("Autonomy At Work Reported by qualityWork") plt.style.use("seaborn-pastel") plt.rcParams["figure.figsize"] = (8, 6) sns.countplot( x=df["autonomyAtWork"], hue="passion", data=df, palette="Accent" ).set_title("autonomyAtWork Reported by happinessReason") import pandas as pd import pandas_profiling as pp # forming dataframe and printing data = pd.DataFrame(df) print(data) # forming ProfileReport and save # as output.html file profile = pp.ProfileReport(data) profile.to_file("output.html") import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df1 = pd.read_csv("/kaggle/input/empData/emp_data_sharaon.csv") df1.head() # Showing how many columns and rows there are in the dataset df1.shape # Descriptive Statistics: showing the count, mean, std, min/max of our dataset df1.describe() # Descriptive Statistics: showing the count, mean, std, min/max of our dataset df1.describe() # basic operations import numpy as np import pandas as pd import datetime as dt import seaborn as sns import io # visualizations import matplotlib.pyplot as plt import plotly.express as px pd.set_option("display.max_columns", None) from sklearn.metrics import ( confusion_matrix, accuracy_score, mean_squared_error, precision_score, classification_report, average_precision_score, ) from pandas.plotting import scatter_matrix from sklearn.model_selection import train_test_split sns.set_theme(style="darkgrid") # dropping these columns as they either don't have value or don't have relevanc at this point df1.drop( [ "Calm", "Sweat", "Aerobics", "Network ID", "Submit Date (UTC)", "Tags", "Start Date (UTC)", "MyFitnessPal", ], axis=1, inplace=True, ) # Use Pearson correlation to find pairwise correlation of all variables pearson = df1.corr(method="pearson") pearson plt.figure(figsize=(16, 10)) sns.heatmap( pearson, xticklabels=pearson.columns, yticklabels=pearson.columns, cmap="RdBu_r", annot=True, linewidth=0.5, ) plt.style.use("seaborn-pastel") plt.rcParams["figure.figsize"] = (8, 6) sns.countplot( x=df1["Attrition"], hue="EducationField", data=df, palette="PuRd" ).set_title("Number of Attritions Reported by Education Field")
# # Exploring the Indonesia Trending YouTube Videos Dataset # # Introduction # The Indonesia Trending YouTube Videos dataset includes information about the videos that have been trending in Indonesia. This dataset is updated daily or twice a day and contains various features that can be useful for analyzing the trending videos on YouTube. # # Dataset Description # The dataset includes information about the following columns: # * video_id: The unique identifier of the video # * publish_time: The date and time the video was published # * channel_id: The unique identifier of the channel that published the video # * title: The title of the video # * description: The description of the video # * channel_name: The name of the channel that published the video # * tags: The tags associated with the video # * category_id: The category identifier number for Indonesia # * live_status: Whether the video is live or not # * local_title: The localized title of the video # * local_description: The localized description of the video # * duration: The duration of the video # * dimension: The dimension of the video # * definition: The definition of the video # * caption: Whether the video has caption or not # * license_status: Whether the video has a license or not # * allowed_region: The region where the video is allowed to be viewed # * blocked_region: The region where the video is blocked from being viewed # * view: The number of views the video has received # * like: The number of likes the video has received # * dislike: The number of dislikes the video has received # * favorite: The number of times the video has been added to a favorite list # * comment: The number of comments the video has received # * trending_time: The date and time the video became trending # * title_sentiment: The sentiment score of the video title # # Loading Dependencies import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session category_info = pd.read_csv( "/kaggle/input/indonesias-trending-youtube-video-statistics/category.json" ) category_info trending_indo = pd.read_csv( "/kaggle/input/indonesias-trending-youtube-video-statistics/trending.csv" ) trending_indo.head() trending_indo.shape # Check for missing values print(trending_indo.isnull().sum()) trending_indo.info() # # Missing values treatment comprehensively # Replace null values in 'description' and 'local_description' columns with empty string trending_indo["description"].fillna(value="", inplace=True) trending_indo["local_description"].fillna(value="", inplace=True) # Replace null values in 'tags' column with string indicating no tags trending_indo["tags"].fillna(value="no tags", inplace=True) # Replace null values in 'allowed_region' and 'blocked_region' columns with string indicating all regions trending_indo["allowed_region"].fillna(value="all regions", inplace=True) trending_indo["blocked_region"].fillna(value="all regions", inplace=True) # Replace null values in 'view', 'like', 'dislike', and 'comment' columns with mean or median value trending_indo["view"].fillna(value=trending_indo["view"].mean(), inplace=True) trending_indo["like"].fillna(value=trending_indo["like"].median(), inplace=True) trending_indo["dislike"].fillna(value=trending_indo["dislike"].median(), inplace=True) trending_indo["comment"].fillna(value=trending_indo["comment"].mean(), inplace=True) # Replace null values in "favorite" column with the median favorite_median = trending_indo["favorite"].median() trending_indo["favorite"].fillna(favorite_median, inplace=True) trending_indo = trending_indo.drop(columns=["favorite"]) # # Visualize the distribution of numerical columns # # Ada berapa banyak jumlah video yang memiliki jumlah views dengan rentang tertentu? # # Visualize the distribution of numerical columns import plotly.express as px fig = px.histogram(trending_indo, x="view", nbins=50) fig.show() # # Berapa jumlah komentar pada setiap kategori? # Visualize the distribution of numerical columns import plotly.express as px fig = px.histogram(trending_indo, x="category_id", y="comment") fig.show() # # Visualize the distribution of category_id with views # # Kategori apa yang memiliki views tertinggi? # import plotly.express as px fig = px.box(trending_indo, x="category_id", y="view") fig.show() # # Visualize the distribution of category_id with like and dislikes # # Berapa jumlah like dan dislike berdasarkan kategori? # import plotly.express as px fig = px.scatter(trending_indo, x="like", y="dislike", color="category_id") fig.show() # # Correlation Matrix with Heatmap # # Bagaimana Correlation Matrix nya? import plotly.express as px # Exclude columns with missing values trending_indo_no_null = trending_indo.dropna(axis=1) # Calculate correlation matrix corr = trending_indo_no_null.corr() # Create heatmap fig = px.imshow(corr, color_continuous_scale="RdBu_r") fig.update_layout( title="Correlation Matrix with Heatmap", xaxis_title="Column", yaxis_title="Column" ) fig.update_traces(hoverongaps=False) # Add colorbar and annotated values fig.update_layout(coloraxis_colorbar=dict(title="Correlation")) fig.update_layout( annotations=[ dict( text=str(round(corr.iloc[i, j], 2)), x=j, y=i, xref="x1", yref="y1", showarrow=False, font=dict(size=12), ) for i in range(len(corr.columns)) for j in range(len(corr.columns)) ] ) fig.show() # # Bagaimana urutan kategori berdasarkan jumlah video dari yang terbanyak hingga terendah? # Check the distribution of categorical columns print(trending_indo["category_id"].value_counts()) # # Visualize the distribution of categorical columns # # Berapa jumlah video berdasarkan kategorinya? # Visualize the distribution of categorical columns import plotly.express as px fig = px.histogram(trending_indo, x="category_id") fig.update_layout(title="Distribution of Category IDs") fig.show() import plotly.express as px pie_chart = px.pie( trending_indo, names=trending_indo["category_id"].value_counts().index, values=trending_indo["category_id"].value_counts().values, ) pie_chart.show() # # Visualize the distribution of license status columns # # Berapa jumlah video trending yang memiliki lisensi (hak cipta) dalam rentang waktu 11 Januari 2021 hingga 13 April 2023? import plotly.express as px pie_chart = px.pie( trending_indo, names=trending_indo["license_status"].value_counts().index, values=trending_indo["license_status"].value_counts().values, ) pie_chart.show() # # Drop columns that are not needed # # Drop columns that are not needed trending_indo.drop( ["thumbnail_url", "thumbnail_width", "thumbnail_height"], axis=1, inplace=True ) # # Fill missing values in 'tags' column with empty string # # Fill missing values in 'tags' column with empty string trending_indo["tags"].fillna("", inplace=True) # # Convert publish_time and trending_time columns to datetime format # # Convert publish_time and trending_time columns to datetime format trending_indo["publish_time"] = pd.to_datetime( trending_indo["publish_time"], infer_datetime_format=True ) trending_indo["trending_time"] = pd.to_datetime( trending_indo["trending_time"], infer_datetime_format=True ) # Display the info of the cleaned dataset trending_indo.info() trending_indo # # Trend Analysis # # Berapa jumlah views video trending perminggu? import plotly.express as px # Convert the 'trending_time' column to datetime format trending_indo["trending_time"] = pd.to_datetime(trending_indo["trending_time"]) # Group the dataframe by the week number of the 'trending_time' column and aggregate the sum of 'view' trending_by_week = ( trending_indo.groupby(trending_indo["trending_time"].dt.week)["view"] .sum() .reset_index() ) # Plot the trend of video views over time using Plotly fig = px.line( trending_by_week, x="trending_time", y="view", title="Trend of Video Views over Time", ) fig.update_xaxes(title="Week Number") fig.update_yaxes(title="Total Views") fig.show() import plotly.express as px # Create a scatter plot matrix fig = px.scatter_matrix( trending_indo, dimensions=["view", "like", "dislike", "comment"] ) # Show the plot fig.show() # # Sentiment Analysis import plotly.express as px from textblob import TextBlob # Define a function to get the sentiment polarity of a text def get_sentiment(text): blob = TextBlob(text) sentiment = blob.sentiment.polarity return sentiment # Apply the sentiment analysis function to the 'title' column of the dataframe trending_indo["title_sentiment"] = trending_indo["title"].apply(get_sentiment) # Plot the distribution of sentiment polarity scores fig = px.histogram(trending_indo, x="title_sentiment", nbins=20, opacity=0.7) fig.update_layout( title="Distribution of Sentiment Polarity Scores in Video Titles", xaxis_title="Sentiment Polarity", yaxis_title="Count", ) fig.show() # # Topic Modelling : Adjust the number of rows as per the requirement import plotly.graph_objects as go import spacy from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation import random # Preprocess the text data nlp = spacy.load("en_core_web_sm") def preprocess(text): doc = nlp(text.lower()) return " ".join( [token.lemma_ for token in doc if not token.is_stop and token.is_alpha] ) # Take a random sample of 1000 rows trending_indo_sample = trending_indo.sample(n=1000, random_state=42) # Preprocess the text data for the sample trending_indo_sample["title_processed"] = trending_indo_sample["title"].apply( preprocess ) # Create the count vectorizer and fit on the preprocessed text data vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words="english") doc_word = vectorizer.fit_transform(trending_indo_sample["title_processed"]) # Create the LDA model and fit on the document-word matrix lda_model = LatentDirichletAllocation(n_components=10, random_state=42) lda_model.fit(doc_word) # Get the top 10 words for each topic top_words_per_topic = [] for topic_idx, topic in enumerate(lda_model.components_): top_words = [vectorizer.get_feature_names()[i] for i in topic.argsort()[:-11:-1]] top_words_per_topic.append(", ".join(top_words)) # Create a dataframe to store the top words per topic topics_df = pd.DataFrame({"Topic": range(10), "Top Words": top_words_per_topic}) # Create a bar chart to display the top words per topic fig = go.Figure(go.Bar(x=topics_df["Top Words"], y=topics_df["Topic"], orientation="h")) fig.update_layout( title="Top Words per Topic", xaxis_title="Top Words", yaxis_title="Topic" ) fig.show() # # Recommendation Engine from scipy.sparse import csr_matrix from sklearn.decomposition import TruncatedSVD from sklearn.metrics.pairwise import cosine_similarity # Get all unique users and videos unique_users = trending_indo["channel_name"].unique() unique_videos = trending_indo["video_id"].unique() # Create a user-item matrix that includes all videos and users user_item_matrix = pd.DataFrame(index=unique_users, columns=unique_videos, data=0) # Fill in the user-item matrix with views for _, row in trending_indo.iterrows(): user = row["channel_name"] video = row["video_id"] views = row["view"] user_item_matrix.loc[user, video] = views # Convert the user-item matrix to a sparse matrix sparse_user_item = csr_matrix(user_item_matrix) # Perform SVD on the sparse matrix svd = TruncatedSVD(n_components=100) latent_matrix = svd.fit_transform(sparse_user_item) # Calculate the cosine similarity between all pairs of videos cosine_sim = cosine_similarity(latent_matrix) # Get the top 10 most similar videos for each video similar_videos = {} for i, row in enumerate(cosine_sim): top_similar_indices = row.argsort()[-11:-1] similar_videos[unique_videos[i]] = unique_videos[top_similar_indices].tolist() # Example: Get the top 10 recommended videos for a given video video_id = "zkQ2kHPMxoc" top_recommended_videos = similar_videos[video_id] print(top_recommended_videos) # For the video with the video_id 'zkQ2kHPMxoc', the top 10 recommended videos based on the similarity of their latent factors are: # ['CzKwwDvO4W8', 'RP0ZyAIMBPo', 'Ih4u7w1kGWU', 'UcfCD3ryHbk', 'uBY1AoiF5Vo', '9ydoDVrMoSM', 'tMpjQWGen3w', 'YfXpE6_v2Wc', 'l-fjxdTp_yQ', 'Kx4obiG1e5Q'] # # Engangement Analysis import plotly.express as px # Group by video_id and calculate the mean engagement metrics engagement_metrics = ["view", "like", "dislike", "comment"] engagement_means = trending_indo.groupby("video_id")[engagement_metrics].mean() # Create a new column with the total engagement score engagement_means["engagement_score"] = ( engagement_means["view"] + 2 * engagement_means["like"] - engagement_means["dislike"] + 5 * engagement_means["comment"] ) # Sort by engagement score engagement_means = engagement_means.sort_values(by="engagement_score", ascending=False) # Print the top 10 videos by engagement score print(engagement_means.head(10)) # Create a histogram of engagement scores using Plotly fig = px.histogram( engagement_means, x="engagement_score", nbins=50, title="Engagement Scores" ) fig.update_xaxes(title_text="Engagement Score") fig.update_yaxes(title_text="Number of Videos") fig.show() # It seems like the video with the highest engagement score is "gQlMMD8auMs" with a total engagement score of 2.516049e+08. This video has a very high number of views and likes compared to the other videos. The histogram of the engagement scores shows that most videos have an engagement score between 0 and 5e+07, but there are a few videos with very high engagement scores. # # Network Analysis import networkx as nx # Create a directed graph G = nx.DiGraph() # Add edges between channels and videos for i, row in trending_indo.iterrows(): G.add_edge(row["channel_name"], row["video_id"]) # Calculate the degree centrality of each node degree_centrality = nx.degree_centrality(G) # Print the top 10 nodes by degree centrality top_nodes = sorted(degree_centrality, key=degree_centrality.get, reverse=True)[:10] for node in top_nodes: print(node, degree_centrality[node]) # Based on this analysis, we can see that the top nodes in the network are primarily TV channels and entertainment-related accounts, which suggests that the most popular videos on YouTube in Indonesia are related to television programming and entertainment. This information could be used by content creators and marketers to better understand the preferences and interests of the Indonesian audience on YouTube, and to develop content and marketing strategies that appeal to this audience. Additionally, further analysis could be done to investigate the relationship between the top nodes and other characteristics of the videos and their viewers, such as engagement metrics or demographics. # # Tried Brand Analysis import re # Define the dictionary of brand names and variations brands_dict = { "TRANS7": ["TRANS7", "Trans7 Official"], "RCTI": ["RCTI - LAYAR DRAMA INDONESIA", "RCTI Official"], "Indosiar": ["Indosiar"], "ANTV": ["ANTV Official", "ANTV"], "NET.": ["NET. Official"], "MNCTV": ["MNCTV Official"], "KOMPASTV": ["KOMPASTV"], } # Define a function to match a channel name to a brand name in the dictionary def match_brand(channel_name): for brand, variations in brands_dict.items(): for variation in variations: if re.search(variation, channel_name, re.IGNORECASE): return brand return "Other" # Apply the match_brand function to the channel_name column to create a new brand column trending_indo["brand"] = trending_indo["channel_name"].apply(match_brand) import plotly.graph_objs as go # Calculate the average engagement metrics for each brand brand_metrics = trending_indo.groupby("brand")[["view", "like", "comment"]].mean() # Create the bar chart trace trace = go.Bar(x=brand_metrics.index, y=brand_metrics["view"], name="Average Views") # Create the figure layout layout = go.Layout( title="Average Engagement Metrics by Brand", xaxis={"title": "Brand"}, yaxis={"title": "Average Count"}, ) # Create the figure and add the trace fig = go.Figure(data=[trace], layout=layout) # Show the figure fig.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={"figure.figsize": (6, 6)}) data = pd.read_csv("/kaggle/input/ecommerce-customer-data/data.csv") data.head() data.info() sns.set_style("darkgrid") sns.displot(data["Time on App"], kde=True, color="blue") plt.show() sns.set_style("darkgrid") sns.displot(data["Yearly Amount Spent"], kde=True, color="blue") plt.show() sns.set_style("darkgrid") sns.displot(data["Time on Website"], kde=True, color="blue") plt.show() sns.scatterplot( x="Time on App", y="Yearly Amount Spent", hue="Time on Website", data=data )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import pymc3 as pm import numpy as np import random from sklearn.preprocessing import MinMaxScaler np.random.seed(10) random.seed(10) data = pd.read_csv("/kaggle/input/ufcdataset/data.csv") data.info df = data df.loc[:, "r_winner"] = df.loc[:, "winner"] df.loc[df["winner"] == "red", "r_winner"] = 1 df.loc[df["winner"] != "red", "r_winner"] = 0 df = df.drop(columns=["winner"]) # df.fillna('NA', inplace=True) fields = ["B_Height", "R_Height", "B_Weight", "R_Weight", "winner"] df = data[fields] df.info() # #Given all y's are present, and only X's are missing, there is no need to # df.to_csv("heightWeight.csv", index=False) # df.iloc[1:1000,:].to_csv("heightWeight1000.csv", index=False) round_1_stats_column_for_r = [ "R__Round1_Grappling_Reversals_Landed", "R__Round1_Grappling_Standups_Landed", "R__Round1_Grappling_Submissions_Attempts", "R__Round1_Grappling_Takedowns_Attempts", "R__Round1_Grappling_Takedowns_Landed", "R__Round1_TIP_Back Control Time", "R__Round1_TIP_Clinch Time", "R__Round1_TIP_Control Time", "R__Round1_TIP_Distance Time", "R__Round1_TIP_Ground Control Time", "R__Round1_TIP_Ground Time", "R__Round1_TIP_Guard Control Time", "R__Round1_TIP_Half Guard Control Time", "R__Round1_TIP_Misc. Ground Control Time", "R__Round1_TIP_Mount Control Time", "R__Round1_TIP_Neutral Time", "R__Round1_TIP_Side Control Time", "R__Round1_TIP_Standing Time", ] round_1_stats_column_for_b = [ "B__Round1_Grappling_Reversals_Landed", "B__Round1_Grappling_Standups_Landed", "B__Round1_Grappling_Submissions_Attempts", "B__Round1_Grappling_Takedowns_Attempts", "B__Round1_Grappling_Takedowns_Landed", "B__Round1_TIP_Back Control Time", "B__Round1_TIP_Clinch Time", "B__Round1_TIP_Control Time", "B__Round1_TIP_Distance Time", "B__Round1_TIP_Ground Control Time", "B__Round1_TIP_Ground Time", "B__Round1_TIP_Guard Control Time", "B__Round1_TIP_Half Guard Control Time", "B__Round1_TIP_Misc. Ground Control Time", "B__Round1_TIP_Mount Control Time", "B__Round1_TIP_Neutral Time", "B__Round1_TIP_Side Control Time", "B__Round1_TIP_Standing Time", ] assert len(round_1_stats_column_for_r) == len(round_1_stats_column_for_b) df_1_round_sub = data[(data["winby"] == "SUB") & (data["Last_round"] == 1)] df_1_round_sub = df_1_round_sub[ round_1_stats_column_for_r + round_1_stats_column_for_b + ["r_winner"] ] covariates = df_1_round_sub.columns[df_1_round_sub.columns != "r_winner"].values df_1_round_sub["r_winner"] = df_1_round_sub["r_winner"].astype("int32") X = df_1_round_sub.loc[:, covariates] X.insert(0, "intersect", 1) # Adding column of 1's for the intersect y = df_1_round_sub.loc[:, "r_winner"] standard_scaler = MinMaxScaler() standard_scaler.fit(X) X.shape[1] trace = None with pm.Model() as model: X_data = pm.Data("X", standard_scaler.transform(X)) y_data = pm.Data("y", y.values) priors_for_x = pm.Uniform("X_priors", 1, 2, observed=X_data) # priors_for_covariates = [] # priors_for_covariates.append(pm.Uniform("intersect", 1, 100)) # for i,e in enumerate(round_1_stats_column_for_b): # priors_for_covariates.append(pm.Uniform(e, 1, 100, shape=X)) beta = pm.Normal("beta", mu=0, tau=0.0001, shape=X.shape[1]) logit_p = pm.math.dot(X_data, beta) likelihood = pm.Bernoulli("likelihood", logit_p=logit_p, observed=y_data) trace = pm.sample( 5000, initvals={ "X_priors": np.array([0.5] * X.shape[1] * X.shape[0]).reshape(X.shape), "likelihood": np.array([1] * y.shape[0]), "beta": np.array( [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ] ), }, ) az.summary(trace, var_names=["beta"]) az.summary(trace, var_names=["beta"])
# # Yerleşik Veri Türleri # Programlamada veri tipi önemli bir kavramdır. # Değişkenler farklı türde verileri depolayabilir ve farklı türler farklı şeyler yapabilir. # Python, bu kategorilerde varsayılan olarak yerleşik olarak aşağıdaki veri türlerine sahiptir: # Text Type: str Numeric Types: int, float, complex Sequence Types: list, tuple, range Mapping Type: dict Set Types: set, frozenset Boolean Type: bool Binary Types: bytes, bytearray, memoryview None Type: NoneType # # Veri Türünü Öğrenme # type() işlevini kullanarak herhangi bir nesnenin veri türünü öğrenebilirsiniz. a = 9 print(type(a)) # # Setting the Data Type # Example Data Ty pe Try it x = "Hello World" str x = 20 int x = 20.5 float x = 1j complex x = ["apple", "banana", "cherry"] list x = ("apple", "banana", "cherry") tuple x = range(6) range x = {"name" : "John", "age" : 36} dict x = {"apple", "banana", "cherry"} set x = frozenset({"apple", "banana", "cherry"}) frozenset x = True bool x = b"Hello" bytes x = bytearray(5) bytearray x = memoryview(bytes(5)) memoryview x = None NoneType # # Belirli Veri Türünü Ayarlama # If you want to specify the data type, you can use the following constructor functions: # Example Data Type Try it x = str("Hello World") str x = int(20) int x = float(20.5) float x = complex(1j) complex x = list(("apple", "banana", "cherry")) list x = tuple(("apple", "banana", "cherry")) tuple x = range(6) range x = dict(name="John", age=36) dict x = set(("apple", "banana", "cherry")) set x = frozenset(("apple", "banana", "cherry")) frozenset x = bool(5) bool x = bytes(5) bytes x = bytearray(5) bytearray x = memoryview(bytes(5)) memoryview # # Python Numbers # Python'da üç sayısal tür vardır: # int float complex Sayısal tipteki değişkenler, onlara bir değer atadığınızda oluşturulur: a = 5 # int b = 3.5 # float c = 5j # comple # Python'da herhangi bir nesnenin türünü doğrulamak için type() işlevini kullanırız. # print(type(a)) print(type(b)) print(type(c)) # Int - Integer # Int veya tamsayı, pozitif veya negatif, ondalık basamak içermeyen, sınırsız uzunlukta bir tam sayıdır. # integers a = 2 b = 5321697243628210 c = -732015 print(type(a)) print(type(b)) print(type(c)) # # Float # Bir veya daha fazla ondalık basamak içeren pozitif veya negatif bir sayıdır. a = 2.30 b = 3.0 c = -60.75 print(type(a)) print(type(b)) print(type(c)) # Float, 10'un kuvvetini belirtmek için "e" harfi bulunan bilimsel sayılar da olabilir. # floats a = 75e3 b = 60e3 c = -90.2e500 print(type(a)) print(type(b)) print(type(c)) # # Complex # Karmaşık sayılar sanal kısım olarak "j" ile yazılır: a = 1 + 3j b = 3j c = -3j print(type(a)) print(type(b)) # # Tip Dönüşümü # int(), float() ve Complex() yöntemleriyle bir türden diğerine dönüştürebilirsiniz: a = 3 # int b = 4.6 # float c = 3j # complex # convert from int to float: a = float(a) # convert from float to int: b = int(b) # convert from int to complex: c = complex(c) print(a) print(b) print(c) print(type(a)) print(type(b)) print(type(c)) # Not: Karmaşık sayıları başka bir sayı türüne dönüştüremezsiniz. # # Rastgele Sayılar # Python'un rasgele bir sayı yapmak için bir random() işlevi yoktur, ancak Python'un rasgele sayılar yapmak için kullanılabilecek random adlı yerleşik bir modülü vardır: import random print(random.randrange(1, 10)) # # Bir Değişken Türü Oluşturma # Bir değişkene bir tür belirtmek istediğiniz zamanlar olabilir. Bu döküm ile yapılabilir. Python, nesne yönelimli bir dildir ve bu nedenle, ilkel türleri de dahil olmak üzere veri türlerini tanımlamak için sınıfları kullanır. # # Bir Değişken Türü Belirtin # Bir değişkene bir tür belirtmek istediğiniz zamanlar olabilir. Python, nesne yönelimli bir dildir # int() - bir tamsayı hazır bilgisinden, bir değişken değişmez bilgisinden (tüm ondalık sayıları kaldırarak) veya bir dize değişmez bilgisinden (dizgenin bir tam sayıyı temsil etmesi koşuluyla) bir tamsayı oluşturur float() - bir tamsayı hazır bilgisinden, bir değişken sabit değerden veya bir dize değişmez bilgisinden bir kayan sayı oluşturur (dizenin bir kayan nokta veya bir tamsayıyı temsil etmesi koşuluyla) str() - diziler, tamsayı sabit değerleri ve değişken sabit değerler dahil olmak üzere çok çeşitli veri türlerinden bir dize oluşturur # integers a = int(3) # x will be 3 b = int(3.1) # y will be 3 c = int("6") # z will be 6 print(a) print(b) print(c) # floats a = float(3) # x will be 3.0 b = float(2.3) # y will be 2.3 c = float("4") # z will be 4.0 d = float("5.2") # w will be 5.2 print(a) print(b) print(c) print(d) # strings a = str("c3") # x will be 'c1' b = str(5) # y will be '5' c = str(4.0) # z will be '4.0' print(a) print(b) print(c) # # Strings # Python'daki dizeler, tek tırnak işaretleri veya çift tırnak işaretleri içine alınır. # "merhaba", "merhaba" ile aynıdır. # print() işleviyle bir dize hazır bilgisini görüntüleyebilirsiniz: print("Yıldız") print("Yıldız") # # Dizeyi bir Değişkene Atama # Bir değişkene bir dize atamak, değişken adının ardından eşittir işareti ve dize ile yapılır: a = "Yıldız" print(a) # # Çok Satırlı Dizeler # Üç tırnak kullanarak bir değişkene çok satırlı bir dize atayabilirsiniz: a = """Milleti kurtaranlar yalnız ve ancak öğretmenlerdir.""" print(a) # Veya üç tek tırnak: a = """Milleti kurtaranlar yalnız ve ancak öğretmenlerdir.""" print(a) # # Sringsler Dizilerdir # Diğer birçok popüler programlama dili gibi, Python'daki dizeler de unicode karakterleri temsil eden bayt dizileridir. # Bununla birlikte, Python'un bir karakter veri türü yoktur, tek bir karakter yalnızca 1 uzunluğunda bir dizedir. # Dizenin öğelerine erişmek için köşeli parantezler kullanılabilir. # 1 konumundaki karakteri alın (ilk karakterin 0 konumunda olduğunu unutmayın): a = "Selam, Selam" print(a[1]) # # Bir Dizide Döngü Yapmak # Dizeler dizi olduğundan, bir dizideki karakterler arasında bir for döngüsü ile döngü yapabiliriz. # "Muz" kelimesindeki harfler arasında dolaşın: for x in "telefon": print(x) # # String Length # Bir dizenin uzunluğunu almak için len() işlevini kullanın. # len() işlevi, bir dizenin uzunluğunu döndürür: a = "Mavi, Mavi" print(len(a)) # # Dizeyi Kontrol Et # Bir dizgede belirli bir ifadenin veya karakterin olup olmadığını kontrol etmek için in anahtar kelimesini kullanabiliriz. # Aşağıdaki metinde "free" olup olmadığını kontrol edin: txt = "Sevgi ile büyüyen her insan iyi bir insan olur." print("Sevgi" in txt) # Bir if ifadesinde kullanın: txt = "Sevgi ile büyüyen her insan iyi bir insan olur" if "Sevgi" in txt: print("Evet, 'Sevgi' mevcut.") # # OLMADIĞINI kontrol edin # Belirli bir kelime öbeğinin veya karakterin bir dizgede OLMADIĞINI kontrol etmek için not in anahtar kelimesini kullanabiliriz. # Aşağıdaki metinde "pahalı" ifadesinin OLMADIĞINI kontrol edin txt = "Sevgi ile büyüyen her insan iyi bir insan olur" print("özgür" not in txt) # Bir if ifadesi kullanın: txt = "Sevgi ile büyüyen her insan iyi bir insan olur" if "pahalı" not in txt: print("Hayır, 'özgür' mevcut değil.")
import pandas as pd df = pd.read_csv("/kaggle/input/preprocess/dataset.csv") df = df.dropna(subset=["Sentence"]) df.Sentence = [str(text) for text in df.Sentence] df.shape from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() df["Subreddit"] = label_encoder.fit_transform(df["Subreddit"]) df["Subreddit"].unique() labels = list(label_encoder.classes_) print(df.sample(2)) import numpy as np import math import nltk from nltk.tokenize import word_tokenize from gensim.models import word2vec from numpy import zeros from keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import tensorflow as tf from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers import Embedding from keras.optimizers import Adam from keras.layers import BatchNormalization, Flatten, Conv1D, MaxPooling1D from keras.layers import Dropout from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau # Don't Show Warning Messages import warnings warnings.filterwarnings("ignore") # Split the data across multiple GPUs strategy = tf.distribute.MirroredStrategy() # create the padded vectors sen = df["Sentence"].astype(str) # This tokenizer creates a python list of words t = Tokenizer() t.fit_on_texts(sen) vocab_size = len(t.word_index) + 1 print(vocab_size) # integer encode the documents # assign each word a unique integer encoded_docs = t.texts_to_sequences(sen) # pad documents to a max length of 100 words max_length = 256 padded_docs_combined = pad_sequences(encoded_docs, maxlen=max_length, padding="post") from sklearn.model_selection import train_test_split X = padded_docs_combined y = df["Subreddit"].values # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.1, random_state=42, stratify=df[["Subreddit"]] ) num_classes = len(np.unique(y_train)) num_classes = 6 class_weights = {} for class_id in range(num_classes): num_positive = np.sum(y_train == class_id) num_negative = len(y_train) - num_positive if num_positive == 0: class_weight = 1.0 else: class_weight = num_negative / num_positive class_weights[class_id] = class_weight class_weights import gensim w2v_model = gensim.models.Word2Vec.load("/kaggle/input/train-word2vec/Word2Vec.model") with strategy.scope(): # create a embedding matrix for words that are in our combined train and test dataframes embedding_matrix = zeros((vocab_size, 100)) for word, i in t.word_index.items(): # check if the word is in the word2vec vocab if word in w2v_model.wv: embedding_vector = w2v_model.wv[word] if embedding_vector is not None: embedding_matrix[i] = embedding_vector print(embedding_matrix.shape) def Create_Model(): with strategy.scope(): model = Sequential() e = Embedding( vocab_size, w2v_model.vector_size, weights=[embedding_matrix], input_length=max_length, trainable=True, ) model.add(e) model.add(Conv1D(512, 5, activation="relu")) model.add(MaxPooling1D(pool_size=3, strides=2)) model.add(Dropout(0.25)) model.add(Conv1D(128, 5, activation="relu")) model.add(MaxPooling1D(pool_size=3, strides=2)) model.add(Dropout(0.25)) model.add(Conv1D(64, 5, activation="relu")) model.add(MaxPooling1D(pool_size=3, strides=2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation="sigmoid")) return model class_weights[1] # Train one-vs-all CNN classifiers with randomized search and class weights CNN_classifiers = [] num_classes = 6 for c in range(num_classes): print("\n", labels[c]) model = Create_Model() with strategy.scope(): # Compile the model Adam_new = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) model.compile(optimizer=Adam_new, loss="binary_crossentropy", metrics=["acc"]) # Train the model early_stopping = EarlyStopping(monitor="val_loss", patience=3, mode="min") filename = labels[c] + "_cnn.h5" save_best = ModelCheckpoint( filename, save_best_only=True, monitor="val_loss", mode="min" ) history = model.fit( X_train, y_train == c, validation_split=0.1, epochs=25, verbose=1, callbacks=[early_stopping, save_best], class_weight={0: 1, 1: class_weights[c]}, ) CNN_classifiers.append(model) del model, history from sklearn.metrics import classification_report # Predict class probabilities for each class class_probs = [ cnn_classifier.predict(X_test)[:, 0] for cnn_classifier in CNN_classifiers ] # Choose class with highest probability as prediction y_pred = np.argmax(class_probs, axis=0) # Compute classification report for one-vs-all XGBoost classifiers class_reports = [] num_classes = 6 for c in range(num_classes): y_true = (y_test == c).astype(int) y_pred_c = class_probs[c] >= 0.5 target_names = ["Non-" + labels[c], labels[c]] report = classification_report(y_true, y_pred_c, target_names=target_names) class_reports.append(report) overall_report = classification_report(y_test, y_pred, target_names=labels) # Print individual and overall classification reports for c in range(num_classes): print(f"{labels[c]} report:") print(class_reports[c], "\n") print("Overall report:") print(overall_report)
import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris import seaborn as sns from sklearn.metrics import mean_squared_error iris = load_iris() data = sns.load_dataset("iris") data x = data.iloc[:, :-1] y = iris.target xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=42) m = DecisionTreeClassifier(max_depth=3) # post prunning m.fit(xtrain, ytrain) p = m.predict(xtest) print(p) import matplotlib.pyplot as plt plt.scatter(p, ytest) plt.show() print(mean_squared_error(p, ytest)) plt.figure(figsize=(20, 10)) plot_tree( m, filled=True, feature_names=iris.feature_names, class_names=iris.target_names ) plt.show()
# Introduction # # In the telecommunication industry, customers tend to change operators if not provided with attractive schemes and offers. It is very important for any telecom operator to prevent the present customers from churning to other operators. As a data scientist, your task in this case study would be to build an ML model which can predict if the customer will churn or not in a particular month based on the past data. # Objectives # # - The main goal of the case study is to build ML models to predict churn. The predictive model that you’re going to build will the following purposes: # - It will be used to predict whether a high-value customer will churn or not, in near future (i.e. churn phase). By knowing this, the company can take action steps such as providing special plans, discounts on recharge etc. # - It will be used to identify important variables that are strong predictors of churn. These variables may also indicate why customers choose to switch to other networks. # - Even though overall accuracy will be your primary evaluation metric, you should also mention other metrics like precision, recall, etc. for the different models that can be used for evaluation purposes based on different business objectives. For example, in this problem statement, one business goal can be to build an ML model that identifies customers who'll definitely churn with more accuracy as compared to the ones who'll not churn. Make sure you mention which metric can be used in such scenarios. # - Recommend strategies to manage customer churn based on your observations. # # Reading data import pandas as pd pd.set_option("display.max_columns", None) import re import numpy as np import seaborn as sns import matplotlib.pyplot as plt telecom_df = pd.read_csv("../input/telecom-churn-case-study-hackathon-c46/train.csv") telecom_df_test = pd.read_csv( "../input/telecom-churn-case-study-hackathon-c46/test.csv" ) telecom_df_sample = pd.read_csv( "../input/telecom-churn-case-study-hackathon-c46/sample (2).csv" ) data_dict = pd.read_csv( "../input/telecom-churn-case-study-hackathon-c46/data_dictionary.csv" ) telecom_df.head() data_dict = dict( zip( map(lambda x: re.sub(r"\W", "", x).lower(), data_dict["Acronyms"]), data_dict["Description"], ) ) data_dict print("Shape of data is ", telecom_df.shape) print("Duplicate percentage", 1 - len(telecom_df.drop_duplicates()) / len(telecom_df)) # Checking High amount of missing values in columns columns = telecom_df.columns na_count = telecom_df.isna().sum() na_count = na_count[columns[na_count != 0]] print("Data having more then 70 % NA values.") columns_na = [] for i, j in zip(na_count.index, na_count): if j / len(telecom_df) > 0.5: print(f"{i:30} {j:5} {round(j*100/len(telecom_df), 2):20}") columns_na.append(i) # We can notice that recharge related data and 3g 2g and plan data is missing more then 70 % # # EDA and data cleaning def plot_hist(df, col): try: # Circle id are repeted it is not unique for all column # Checking % of nan and 0 telecom_df[col].fillna(-100).plot.hist() plt.show() except: print("Cant plot hist.") def print_col_def(col): mean = "" for word in col.split("_"): try: mean += data_dict[word] + " " except: pass print(mean.strip()) for col in telecom_df.columns: print(f"{col:30}", end="") print_col_def(col) # Checking id col = "id" print_col_def("id") print(list(set(telecom_df[col]))[:5]) # id column is index droping it telecom_df.drop("id", axis=1, inplace=True) # Checking same values columns in data frame dup = [] for col in telecom_df.columns: if len(set(telecom_df[col][:4000])) < 100: duplicate = round(100 * len(set(telecom_df[col])) / len(telecom_df), 2) if duplicate <= 1 and col != "churn_probability": dup.append(col) print("Columns having all duplicate values ", dup) # Droping columns with high duplicate values in it telecom_df.drop(dup, axis=1, inplace=True) telecom_df.shape # # Feature Engineering # ## High value customer # High value customer are the customers who have recharged more then 75% of people did high_value_cust_col = [] for col in telecom_df.columns: if "rech" in col or "arpu" in col: high_value_cust_col.append(col) print("High value customer columns", high_value_cust_col) # Taking columns which have recharge information in them avg_df = pd.DataFrame(telecom_df[high_value_cust_col]) avg_df.fillna(0, inplace=True) # Taking average of 6 7 8 month avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 avg_df["avg_total_rech_amt"] = ( avg_df["total_rech_amt_6"] + avg_df["total_rech_amt_7"] + avg_df["total_rech_amt_8"] ) / 3 avg_df["avg_max_rech_amt"] = ( avg_df["max_rech_amt_6"] + avg_df["max_rech_amt_7"] + avg_df["max_rech_amt_8"] ) / 3 avg_df["avg_total_rech_data"] = ( avg_df["total_rech_data_6"] + avg_df["total_rech_data_8"] + avg_df["total_rech_data_8"] ) / 3 avg_df["avg_max_rech_data_6"] = ( avg_df["max_rech_data_6"] + avg_df["max_rech_data_7"] + avg_df["max_rech_data_8"] ) / 3 avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 avg_df["avg_arpu"] = (avg_df["arpu_6"] + avg_df["arpu_7"] + avg_df["arpu_8"]) / 3 # Droping rest of the columns avg_df.drop(high_value_cust_col, axis=1, inplace=True) high_val_cust_data = avg_df.describe().T[["min", "25%", "50%", "75%", "max"]] high_val_cust_data high_val_cust_data # Checking peoples with high number of recharge high_value_cust = pd.DataFrame(avg_df) for col in high_val_cust_data.index: high_value_cust = high_value_cust[ high_value_cust[col] >= high_val_cust_data.T[col]["75%"] ] high_value_cust_telecom_df = telecom_df.loc[high_value_cust.index] # We got all the high value customers high_value_cust["churn_probability"] = telecom_df.loc[high_value_cust.index][ "churn_probability" ] high_value_cust.head() sns.countplot(x=high_value_cust.churn_probability) plt.show() high_value_cust.churn_probability.value_counts() # ### There are 140 high value customers which can churn out of 4767 # # EDA # Churn probability sns.countplot(x=high_value_cust.churn_probability) high_value_cust.columns # EDA for high_value_cust sns.displot(high_value_cust, x="avg_arpu") # Can really obsurbe values because of some high values # Trying to observe again by caping high value # EDA for high_value_cust sns.displot(high_value_cust[high_value_cust["avg_arpu"] < 2000], x="avg_arpu", bins=20) # Average revenue per user is 500 for most of the high value customers sns.displot(high_value_cust, x="avg_total_rech_amt") # Can really obsurbe values because of some high values # Trying to observe again by caping high value # EDA for high_value_cust sns.displot( high_value_cust[high_value_cust["avg_total_rech_amt"] < 2000], x="avg_total_rech_amt", bins=20, ) # Average Recharge Amount in local currency is 500 to 800 sns.displot(high_value_cust, x="avg_max_rech_amt") # EDA for high_value_cust sns.displot( high_value_cust[high_value_cust["avg_max_rech_amt"] < 1000], x="avg_max_rech_amt", bins=10, ) # Average Maximum Recharge Amount in local currency is 200 to 300 sns.displot(high_value_cust, x="avg_total_rech_data") # EDA for high_value_cust sns.displot( high_value_cust[high_value_cust["avg_total_rech_data"] < 10], x="avg_total_rech_data", bins=10, ) # Average Recharge Mobile internet done is 2-3 # # Data prepration zero_filled_df = telecom_df.fillna(0) set(zero_filled_df.dtypes) zero_filled_df.shape # # Removing outliers zero_filled_df.describe() # Caping values above 90 percentile dict_high = {} def remove_extream_values(dataframe): for col in dataframe.columns: high_value = dataframe[col].quantile(0.9) dict_high[col] = high_value dataframe[col][zero_filled_df[col] > high_value] = high_value return dataframe removed_outliers_df = remove_extream_values(zero_filled_df) # ## Spliting data into X and target X = zero_filled_df.iloc[:, :-1] y = zero_filled_df.iloc[:, -1:] from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.2, stratify=y) train_x.shape, text_x.shape # ### Normalizing data from sklearn.preprocessing import StandardScaler def standraize_data(dataframe): scaller = StandardScaler() scaller.fit(dataframe) transformed_data = scaller.transform(dataframe) return scaller, transformed_data scaller, train_norm_x = standraize_data(train_x) test_norm_x = scaller.transform(test_x) np.max(train_norm_x[:, 0]), np.max(train_x.iloc[0, :]) # ### Applying PCA from sklearn.decomposition import PCA def apply_pca(train_data, comp): pca = PCA(n_components=comp) pca.fit(train_data) pca_samples = pca.transform(train_data) return pca, pca_samples pca_obj, train_pca_comp_x = apply_pca(train_norm_x, 20) test_pca_comp_x = pca_obj.transform(test_norm_x) # #### Ploting PCA variance PC_values = np.arange(pca_obj.n_components_) + 1 plt.plot(PC_values, pca_obj.explained_variance_ratio_, linewidth=2) plt.xlabel("Principal Component") plt.ylabel("Proportion of Variance Explained") plt.xticks(PC_values) plt.grid() plt.show() # From above plot we can take 4 component that explains most of the variance in data # ### Visualizing Classes in PCA sns.scatterplot( x=test_pca_comp_x[:, 0], y=test_pca_comp_x[:, 1], hue=np.ravel(test_y.values), alpha=0.4, ) # ##### We can notice churn data is mostly at left corner of plot # ## Creating model # ##### Checking with Logistic regression from sklearn.metrics import precision_score, recall_score from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(train_pca_comp_x, train_y) print("Train score: ", lr.score(train_pca_comp_x, train_y)) print("Test score:", lr.score(test_pca_comp_x, test_y)) print("Test precision score:", precision_score(lr.predict(test_pca_comp_x), test_y)) print("Test recall score:", recall_score(lr.predict(test_pca_comp_x), test_y)) # Logistic regression gives us 91% and 90% accuracy for test and train data. Which can be work as baseline for our models. # ##### Checking with Decision Tree from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(train_pca_comp_x, train_y) print("Train score: ", dt.score(train_pca_comp_x, train_y)) print("Test score:", dt.score(test_pca_comp_x, test_y)) print("Test precision score:", precision_score(dt.predict(test_pca_comp_x), test_y)) print("Test recall score:", recall_score(dt.predict(test_pca_comp_x), test_y)) # Decision tree able to overfit on train data with 100% accuracy but test accuracy is 88% which is less then logistic regression. # Lets try to remove overfitting from sklearn.model_selection import GridSearchCV # ##### Checking with Decision tree tuning criterion = ["gini", "entropy"] max_depth = [2, 4, 6, 8, 10, 12] parameters = dict(criterion=criterion, max_depth=max_depth) clf_GS = GridSearchCV(dt, parameters) clf_GS.fit(train_pca_comp_x, train_y) dt = clf_GS.best_estimator_ dt.fit(train_pca_comp_x, train_y) print("Train score: ", dt.score(train_pca_comp_x, train_y)) print("Test score:", dt.score(test_pca_comp_x, test_y)) print("Test precision score:", precision_score(dt.predict(test_pca_comp_x), test_y)) print("Test recall score:", recall_score(dt.predict(test_pca_comp_x), test_y)) # Here we are able to fit model on train with accuracy of 92% and in test 91.9%. which is better then logistic regression and overfitted decision tree # ##### Checking with Random forest from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier() rfc.fit(train_pca_comp_x, train_y) print("Train score: ", rfc.score(train_pca_comp_x, train_y)) print("Test score:", rfc.score(test_pca_comp_x, test_y)) print("Test precision score:", precision_score(rfc.predict(test_pca_comp_x), test_y)) print("Test recall score:", recall_score(rfc.predict(test_pca_comp_x), test_y)) # When training with random forest we are getting accuracy of 100% in train data and 92 % in test data which is higher then all. # But we will try to remove overfitting # ##### Checking with Random forest tuning rfc = RandomForestClassifier(n_estimators=300, max_depth=100) rfc.fit(train_pca_comp_x, train_y) print("Train score: ", rfc.score(train_pca_comp_x, train_y)) print("Test score:", rfc.score(test_pca_comp_x, test_y)) print("Test precision score:", precision_score(rfc.predict(test_pca_comp_x), test_y)) print("Test recall score:", recall_score(rfc.predict(test_pca_comp_x), test_y)) # Considering it is the best model so far. # ### Making prediction for test data test_df = telecom_df_test[zero_filled_df.columns[:-1]] test_df.shape zero_filled_test_df = test_df.fillna(0) for col in zero_filled_test_df.columns: zero_filled_test_df[col][zero_filled_test_df[col] > dict_high[col]] = dict_high[col] zero_filled_test_df.describe() zero_filled_test_df.shape norm_test_df = scaller.transform(zero_filled_test_df) test_pca_df = pca_obj.transform(norm_test_df) predictions = rfc.predict(test_pca_df) telecom_df_sample["churn_probability"] = predictions telecom_df_sample["churn_probability"].value_counts() telecom_df_sample.to_csv("/kaggle/working/submit.csv", index=False)
# Import the Dependencies # import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # Load The data file from google.colab import files heart_data = files.upload() heart_data = pd.read_csv("heart_disease_data.csv") # Print First 5 rows heart_data.head(1) # Print Last 5 rows # heart_data.tail() # Number of rows and columns heart_data.shape # Getting Some Info about the data heart_data.info() # Checking for Missing values heart_data.isnull().sum() # Statistical Measures about the data heart_data.describe() # Checking the distribution of target value heart_data["target"].value_counts() # Spliting the features and target x = heart_data.drop(columns="target", axis=1) y = heart_data["target"] print(x) print(y) # Splitting the data into training data and test data # X_train, X_test, Y_train, Y_test = train_test_split( x, y, test_size=0.2, stratify=y, random_state=2 ) print(x.shape, X_train.shape, X_test.shape) print(y.shape, Y_train.shape, Y_test.shape) # Model Training # Logistic Regression model = LogisticRegression() model.fit(X_train, Y_train) # Model Evaluation # Accuracy Score # Accuracy on the training data X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(X_train_prediction, Y_train) print(training_data_accuracy) # Accuracy on the test data X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test) print(test_data_accuracy) # Building a ptredictive system input_data = (61, 1, 2, 150, 243, 1, 1, 137, 1, 1, 1, 0, 2) input_data_numpy_array = np.asarray(input_data) input_data_reshaped = input_data_numpy_array.reshape(1, -1) prediction = model.predict(input_data_reshaped) print(prediction)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd dataset = pd.read_csv( "/kaggle/input/internet-connection-dataset/internet_connection_data.csv" ) dataset.head() print(dataset.isna().sum()) print() print(dataset.isnull().sum()) print(len(dataset.columns)) from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_california_housing from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(dataset.iloc[:, -1]) datasetChoosen = dataset.iloc[0:47032, 0:44] datasetChoosen.head() X = pd.DataFrame(datasetChoosen, columns=datasetChoosen.columns) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, test_size=0.2) sc_X = StandardScaler() X_trainscaled = sc_X.fit_transform(X_train) X_testscaled = sc_X.transform(X_test) from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(10, input_dim=X_train.shape[1], activation="relu")) model.add(Dense(10, activation="relu")) model.add(Dense(1, activation="sigmoid")) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0) _, accuracy = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: %.2f" % (accuracy * 100))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # #### Imports # TENSORFLOW # import tensorflow as tf from tensorflow.keras import layers, losses, optimizers from tensorflow.keras.layers import ( Conv2D, Dense, Flatten, MaxPooling2D, Dropout, BatchNormalization, ) from tensorflow.keras.models import Sequential import tensorflow_datasets as tfds from tensorflow_addons import image import tensorflow_addons as tfa # Other import matplotlib.pyplot as plt import seaborn as sns from collections import Counter import tabulate as tbl # Load a dataset (train, valid, test), metadata = tfds.load( "cassava", # Plants split=["train", "test", "validation"], as_supervised=True, # Get labels shuffle_files=True, with_info=True, ) # Set sizes train_size = metadata.splits["train"].num_examples valid_size = metadata.splits["validation"].num_examples test_size = metadata.splits["test"].num_examples # Check details print( f"Training set size: {train_size} | Validation set size: {valid_size} | Testing set size: {test_size}" ) # Convert numbers into labels get_label_name = metadata.features["label"].int2str # Show an image for image, label in train.take(1): # Plot the image plt.imshow(image) # Set the label as the title plt.title(get_label_name(label)) # Before beginning the project, it's important to understand the distribution of at least the training set's labels, as it should be relatively similar in the validation and testing sets. # Find the number of classes num_classes = metadata.features["label"].num_classes # Find the class labels class_names = metadata.features["label"].names # Check print( f"There are {num_classes} classes in the Cassava dataset. The labels are: {class_names}." ) # Hold the list of training labels training_labels = [] # Access all the labels for images, labels in train.take(-1): training_labels.append(get_label_name(labels.numpy())) # Create a counter label_counts = Counter(training_labels) # Ordered keys ordered_labels = sorted(label_counts.keys()) # Display breakdown of training labels sns.barplot( x=[label_counts[k] for k in ordered_labels], y=ordered_labels, orient="h", color="darkblue", ) # Titles plt.xlabel("Counts") plt.ylabel("Label Class") plt.title("Labels in the Training Set") # Show plt.figure(figsize=(12, 10)) plt.show() # The dataset is imbalanced, but the point of using deep learning is that it's typically a more robust method that you can avoid performing cross-validation on it. Instead, we use hold out datasets (train, validation, and testing triplet) and large amounts of training data. We will keep with this tactic for the rest of the notebook. (That's not to say that you can't use cross-validation, because you can. The point is not to, though.) # Image size img_size = 224 # Normalize function def normalize(image, label): image = tf.cast(image, tf.float32) image = tf.image.resize(image, [img_size, img_size]) # Normalize image = image / 255.0 return image, label # Calculate rotation angles angle_vals = np.array([5.0, 15.0, 25.0, 45.0, 120.0, 165.0, 250.0]) # Base angles # Augmentation def augmenter(image, label): # Normalize - call this first image, label = normalize(image, label) # Rotate rotation = (np.random.choice(angle_vals) * np.pi / 180.0).astype(np.float32) image = tfa.image.rotate(image, angles=rotation, interpolation="NEAREST") # Brightness image = tf.image.random_brightness(image, 0.5) # Return image and label return image, label # Show an example of an augmented image for image, label in train.take(1): img, lbl = augmenter(image, label) plt.imshow(img) plt.title(get_label_name(lbl)) # ### Create Data Pipelines # Batch size batch = 32 # Build the pipelines num_training_examples = train_size // 100 # Training training_batch = ( train.shuffle(num_training_examples // 4).map(augmenter).batch(batch).prefetch(1) ) # Validation validation_batch = ( valid.shuffle(num_training_examples // 4).map(augmenter).batch(batch).prefetch(1) ) # Test testing_batch = ( test.shuffle(num_training_examples // 4).map(augmenter).batch(batch).prefetch(1) ) # ## Build a Basic Model # This will be a very simple sequential feed forward model. We will use the following layers: # - Dense # - Conv2D # - MaxPooling2D # - Flatten # # The order of layers matters: Conv2D > MaxPooling2D > Flatten > Dense. # # Between each layer, the size of the tensor has to be tracked. # Create a sequential model model = Sequential( [ Conv2D(16, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Conv2D(32, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Conv2D(64, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Flatten(), # Flatten Dense(num_classes, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) # Model build model.build((None, 224, 224, 3)) # Summary model.summary() # ### Model Training # Epochs EPOCHS = 20 # Stop training when there is no improvement in the validation loss for 5 consecutive epochs early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=5) # Fit the model history = model.fit( training_batch, validation_data=validation_batch, epochs=EPOCHS, callbacks=[early_stopping], ) # Visualization of accuracies and losses training_accuracy = history.history["accuracy"] validation_accuracy = history.history["val_accuracy"] training_loss = history.history["loss"] validation_loss = history.history["val_loss"] epochs_range = range(len(training_accuracy)) plt.figure(figsize=(18, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, training_accuracy, label="Training Accuracy") plt.plot(epochs_range, validation_accuracy, label="Validation Accuracy") plt.legend(loc="lower right") plt.title("Training and Validation Accuracy") plt.subplot(1, 2, 2) plt.plot(epochs_range, training_loss, label="Training Loss") plt.plot(epochs_range, validation_loss, label="Validation Loss") plt.legend(loc="upper right") plt.title("Training and Validation Loss") plt.show() # This is some pretty serious overfitting. I'll perform a quick inference exercise to see how bad things actually are, but the model will need to be tweaked in order to improve performance. # ### Inference for image_batch, label_batch in testing_batch.take(1): ps = model.predict(image_batch) images = image_batch.numpy().squeeze() labels = label_batch.numpy() plt.figure(figsize=(10, 15)) for n in range(30): plt.subplot(6, 5, n + 1) plt.imshow(images[n], cmap=plt.cm.binary) color = "green" if np.argmax(ps[n]) == labels[n] else "red" plt.title(class_names[np.argmax(ps[n])], color=color) plt.axis("off") # ## Model 2 # This version of the model will use the same layers with the addition of a dropout layer, but there will be a slight change in architecture. # Second model model2 = Sequential( [ Conv2D(16, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Conv2D(32, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Conv2D(64, 3, padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D(), # MaxPooling2D Flatten(), # Flatten Dense(128, activation="relu"), # Dense Dropout(0.2), # Dropout layer Dense(num_classes, activation="softmax"), ] ) # Compile the model model2.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) # Model build model2.build((None, 224, 224, 3)) # Summary model2.summary() # Fit the model history2 = model2.fit( training_batch, validation_data=validation_batch, epochs=EPOCHS, callbacks=[early_stopping], ) # Visualization of accuracies and losses training_accuracy = history2.history["accuracy"] validation_accuracy = history2.history["val_accuracy"] training_loss = history2.history["loss"] validation_loss = history2.history["val_loss"] epochs_range = range(len(training_accuracy)) plt.figure(figsize=(18, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, training_accuracy, label="Training Accuracy") plt.plot(epochs_range, validation_accuracy, label="Validation Accuracy") plt.legend(loc="lower right") plt.title("Training and Validation Accuracy") plt.subplot(1, 2, 2) plt.plot(epochs_range, training_loss, label="Training Loss") plt.plot(epochs_range, validation_loss, label="Validation Loss") plt.legend(loc="upper right") plt.title("Training and Validation Loss") plt.show() # Again, there is evidence of overfitting. So, clearly simple adjustments to architecture are not enough, though admittedly the performance seems somewhat better on this model than the previous one. # ### Inference for image_batch, label_batch in testing_batch.take(1): ps = model2.predict(image_batch) images = image_batch.numpy().squeeze() labels = label_batch.numpy() plt.figure(figsize=(10, 15)) for n in range(30): plt.subplot(6, 5, n + 1) plt.imshow(images[n], cmap=plt.cm.binary) color = "green" if np.argmax(ps[n]) == labels[n] else "red" plt.title(class_names[np.argmax(ps[n])], color=color) plt.axis("off") # ## Model 3 # This version will include BatchNormalization and remove the Dropout layers. Also, the kernel values # Second model model3 = Sequential( [ Conv2D(64, (5, 5), padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D((2, 2)), # MaxPooling2D BatchNormalization(), # BatchNormalization Conv2D(64, (5, 5), padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D((2, 2)), # MaxPooling2D BatchNormalization(), # BatchNormalization Conv2D(128, (5, 5), padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D((2, 2)), # MaxPooling2D BatchNormalization(), # BatchNormalization Conv2D(256, (5, 5), padding="same", activation="relu"), # Convolutional2D layer MaxPooling2D((2, 2)), # MaxPooling2D Flatten(), # Flatten Dense(1024, activation="relu"), # Dense Dense(num_classes, activation="softmax"), ] ) # Compile the model model3.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) # Model build model3.build((None, 224, 224, 3)) # Summary model3.summary() # Epochs e = 20 # Fit the model - removing early stopping history3 = model3.fit(training_batch, validation_data=validation_batch, epochs=e) # Visualization of accuracies and losses training_accuracy = history3.history["accuracy"] validation_accuracy = history3.history["val_accuracy"] training_loss = history3.history["loss"] validation_loss = history3.history["val_loss"] epochs_range = range(len(training_accuracy)) plt.figure(figsize=(18, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, training_accuracy, label="Training Accuracy") plt.plot(epochs_range, validation_accuracy, label="Validation Accuracy") plt.legend(loc="lower right") plt.title("Training and Validation Accuracy") plt.subplot(1, 2, 2) plt.plot(epochs_range, training_loss, label="Training Loss") plt.plot(epochs_range, validation_loss, label="Validation Loss") plt.legend(loc="upper right") plt.title("Training and Validation Loss") plt.show() # These results are a definite improvement over the previous two models, but around the 11th or 12th epoch, you begin to see overfitting. So, while I will make no further adjustments to the model, I will state that there's room for improvement: # - Adjusting a learning rate # - Changing the optimizer # - Changing the hidden layer sizes # Anyway, now I will make predictions from the model on the training data. # Save the model saved_model_path = "./model3.h5" model3.save(saved_model_path) # Evaluate results = model3.evaluate(testing_batch) # Dictionary results_dict = dict(zip(model3.metrics_names, results)) # print results for k, v in results_dict.items(): print(f"{k}: {v}")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import warnings import pandas as pd import numpy as np import plotly.express as px import tensorflow as tf import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.impute import KNNImputer from keras.regularizers import l2 from sklearn.decomposition import PCA from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn import metrics from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from statsmodels.stats.outliers_influence import variance_inflation_factor train = pd.read_csv("/kaggle/input/credit-score-classification/train.csv") test = pd.read_csv("/kaggle/input/credit-score-classification/test.csv") train.head() test.head() # shape of train and test print( f"Total no of rows in train_df:{train.shape[0]} and columns in train_df {train.shape[1]}" ) # shape of train and test print( f"Total no of rows in test_df:{test.shape[0]} and columns in test_df {test.shape[1]}" ) # basic information train.info() # test dataset basic info test.info() # checking null values: train.isnull().sum() # checking null values in %age: train.isnull().mean() * 100 def plot_nas(df: pd.DataFrame): if df.isnull().sum().sum() != 0: na_df = (df.isnull().sum() / len(df)) * 100 na_df = na_df.drop(na_df[na_df == 0].index).sort_values(ascending=False) missing_data = pd.DataFrame({"Missing Ratio %": na_df}) missing_data.plot(kind="barh", color="grey") plt.figure(figsize=(10, 6)) plt.show() else: print("No NAs found") plot_nas(train) plot_nas(test) plt.figure(figsize=(10, 6)) sns.heatmap(train.isna(), cmap="Blues") plt.figure(figsize=(10, 6)) sns.heatmap(test.isna(), cmap="Blues") # basic describtion train.describe().T # basic describition using object: train.describe(include="object").T # basic describtion test.describe().T # basic describition using object: train.describe(include="object").T train.columns cat_cols = train.select_dtypes(include=["object"]).columns cat_cols train.nunique() test.nunique() for i in train.columns: print(f" unique values = {i}") print(train[i].value_counts()) print("------------------------------------------------------") for i in test.columns: print(f" unique values = {i}") print(test[i].value_counts()) print("------------------------------------------------------") # Distribution of data in target feature plt.figure(figsize=(10, 5)) # plot pie chart plt.subplot(1, 2, 1) label = train.Credit_Score.value_counts().index label_count = train.Credit_Score.value_counts().values plt.pie( data=train, x=label_count, labels=label, autopct="%1.1f%%", shadow=True, radius=1 ) # plt.subplot(1, 2, 2) sns.countplot(x="Credit_Score", data=train) plt.title("Target feature distribution in Train data") ### Understanding the distribution of the column - Monthly_Inhand_Salary sns.distplot( train["Monthly_Inhand_Salary"], label="Skewness: %.2f" % (train["Monthly_Inhand_Salary"].skew()), ) plt.legend(loc="best") plt.title("Customer Monthly Salary Distribution") # count plot for Occupaction plt.figure(figsize=(18, 6)) sns.countplot(data=train, x="Occupation") plt.xticks(rotation=90) plt.show() # count plot for Occupaction plt.figure(figsize=(18, 6)) sns.countplot(data=test, x="Occupation") plt.xticks(rotation=90) plt.show() # count plot for Occupaction plt.figure(figsize=(18, 6)) sns.countplot(data=train, x="Credit_Score") plt.xticks(rotation=90) plt.show() # count plot for Occupaction plt.figure(figsize=(18, 6)) sns.countplot(data=train, x="Payment_Behaviour") plt.xticks(rotation=90) plt.show() # count plot for Occupaction plt.figure(figsize=(18, 6)) sns.countplot(data=train, x="Payment_of_Min_Amount") plt.xticks(rotation=90) plt.show() for col in [ "Month", "Occupation", "Credit_Mix", "Payment_of_Min_Amount", "Payment_Behaviour", ]: plt.figure(figsize=(18, 6)) sns.countplot(x=col, data=train, palette="mako", hue="Credit_Score") plt.xticks(rotation=90) plt.show() sns.catplot(x="Credit_Score", col="Occupation", data=train, kind="count", col_wrap=4) sns.catplot(x="Credit_Score", col="Credit_Mix", data=train, kind="count", col_wrap=3) ### Bar graph showing the value counts of the column - Payment_of_Min_Amount min_amount_count = train["Payment_of_Min_Amount"].value_counts(dropna=False) min_amount_count sns.set(rc={"figure.figsize": (5, 5)}) sns.barplot(x=min_amount_count.index, y=min_amount_count.values, alpha=0.8) plt.title("Bar graph showing the value counts of the column - Payment_of_Min_Amount") plt.ylabel("Number of Occurrences", fontsize=12) plt.xlabel("Payment of Minimum Amount", fontsize=12) plt.show() ### Monthly Inhand Salary distribution by Credit Score grid = sns.FacetGrid(train, col="Credit_Score") grid.map(sns.distplot, "Monthly_Inhand_Salary") ### Merging the above graphs into one sns.kdeplot( train["Monthly_Inhand_Salary"][train["Credit_Score"] == "Good"], label="Credit Score = Good", ) sns.kdeplot( train["Monthly_Inhand_Salary"][train["Credit_Score"] == "Poor"], label="Credit Score = Poor", ) sns.kdeplot( train["Monthly_Inhand_Salary"][train["Credit_Score"] == "Standard"], label="Credit Score = Standard", ) plt.xlabel("Monthly Inhand Salary") plt.legend() plt.title("Customer Monthly Inhand Salary by Credit Score") ### Understanding the distribution of the column - Interest_Rate sns.distplot( train["Interest_Rate"], label="Skewness: %.2f" % (train["Interest_Rate"].skew()) ) plt.legend(loc="best") plt.title("Customers Interest Rate Distribution") # # Data Cleaning train = train.applymap( lambda x: x if x is np.NaN or not isinstance(x, str) else str(x).strip('_ ,"') ).replace(["", "nan", "!@9#%8", "#F%$D@*&8"], np.NaN) test = test.applymap( lambda x: x if x is np.NaN or not isinstance(x, str) else str(x).strip('_ ,"') ).replace(["", "nan", "!@9#%8", "#F%$D@*&8"], np.NaN) train["ID"] = train.ID.apply(lambda x: int(x, 16)) test["ID"] = test.ID.apply(lambda x: int(x, 16)) train["Customer_ID"] = train.Customer_ID.apply(lambda x: int(x[4:], 16)) test["Customer_ID"] = test.Customer_ID.apply(lambda x: int(x[4:], 16)) train["Month"] = pd.to_datetime(train.Month, format="%B").dt.month test["Month"] = pd.to_datetime(test.Month, format="%B").dt.month train["Age"] = train.Age.astype(int) test["Age"] = test.Age.astype(int) train["SSN"] = train.SSN.apply( lambda x: x if x is np.NaN else int(str(x).replace("-", "")) ).astype(float) test["SSN"] = test.SSN.apply( lambda x: x if x is np.NaN else int(str(x).replace("-", "")) ).astype(float) train["Annual_Income"] = train.Annual_Income.astype(float) train["Num_of_Loan"] = train.Num_of_Loan.astype(int) train["Num_of_Delayed_Payment"] = train.Num_of_Delayed_Payment.astype(float) train["Changed_Credit_Limit"] = train.Changed_Credit_Limit.astype(float) train["Outstanding_Debt"] = train.Outstanding_Debt.astype(float) train["Amount_invested_monthly"] = train.Amount_invested_monthly.astype(float) train["Monthly_Balance"] = train.Monthly_Balance.astype(float) train["Interest_Rate"] = train["Interest_Rate"].astype("float64") test["Annual_Income"] = test.Annual_Income.astype(float) test["Num_of_Loan"] = test.Num_of_Loan.astype(int) test["Num_of_Delayed_Payment"] = test.Num_of_Delayed_Payment.astype(float) test["Changed_Credit_Limit"] = test.Changed_Credit_Limit.astype(float) test["Outstanding_Debt"] = test.Outstanding_Debt.astype(float) test["Amount_invested_monthly"] = test.Amount_invested_monthly.astype(float) test["Monthly_Balance"] = test.Monthly_Balance.astype(float) train["Interest_Rate"] = train["Interest_Rate"].astype("float64") def Month_Converter(x): if pd.notnull(x): num1 = int(x.split(" ")[0]) num2 = int(x.split(" ")[3]) return (num1 * 12) + num2 else: return x train["Credit_History_Age"] = train.Credit_History_Age.apply( lambda x: Month_Converter(x) ).astype(float) test["Credit_History_Age"] = test.Credit_History_Age.apply( lambda x: Month_Converter(x) ).astype(float) train["Amount_invested_monthly"] = train["Amount_invested_monthly"].replace( "__10000__", 10000.00 ) train["Monthly_Balance"] = train["Monthly_Balance"].replace( "__-333333333333333333333333333__", 0 ) train["Num_of_Delayed_Payment"] = train["Num_of_Delayed_Payment"].replace( r"_$", "", regex=True ) train["Annual_Income"] = train["Annual_Income"].replace(r"_$", "", regex=True) train["Age"] = train["Age"].replace(r"_$", "", regex=True) train["Outstanding_Debt"] = train["Outstanding_Debt"].replace(r"_$", "", regex=True) train["Occupation"] = train["Occupation"].replace("_______", np.nan) train["Num_of_Loan"] = train["Num_of_Loan"].replace(r"_$", "", regex=True) train["Credit_Mix"] = train["Credit_Mix"].replace("_", np.nan) train["Changed_Credit_Limit"] = train["Changed_Credit_Limit"].replace("_", 0) test["Amount_invested_monthly"] = test["Amount_invested_monthly"].replace( "__10000__", 10000.00 ) test["Monthly_Balance"] = test["Monthly_Balance"].replace( "__-333333333333333333333333333__", 0 ) test["Num_of_Delayed_Payment"] = test["Num_of_Delayed_Payment"].replace( r"_$", "", regex=True ) test["Annual_Income"] = test["Annual_Income"].replace(r"_$", "", regex=True) test["Age"] = test["Age"].replace(r"_$", "", regex=True) test["Outstanding_Debt"] = test["Outstanding_Debt"].replace(r"_$", "", regex=True) test["Occupation"] = test["Occupation"].replace("_______", np.nan) test["Num_of_Loan"] = test["Num_of_Loan"].replace(r"_$", "", regex=True) test["Credit_Mix"] = test["Credit_Mix"].replace("_", np.nan) test["Changed_Credit_Limit"] = test["Changed_Credit_Limit"].replace("_", 0) train.Age.replace(-500, np.median(train.Age), inplace=True) for i in train.Age.values: if i > 118: train.Age.replace(i, np.median(train.Age), inplace=True) test.Age.replace(-500, np.median(test.Age), inplace=True) for i in test.Age.values: if i > 118: test.Age.replace(i, np.median(test.Age), inplace=True) train.Num_of_Loan.replace(-100, np.median(train.Num_of_Loan), inplace=True) for i in train.Num_of_Loan.values: if i > 10: train.Num_of_Loan.replace(i, np.median(train.Num_of_Loan), inplace=True) test.Num_of_Loan.replace(-100, np.median(test.Num_of_Loan), inplace=True) for i in test.Num_of_Loan.values: if i > 10: test.Num_of_Loan.replace(i, np.median(test.Num_of_Loan), inplace=True) for i in train.Interest_Rate: if i > 20: train.Interest_Rate.replace(i, np.median(train.Interest_Rate), inplace=True) for i in test.Interest_Rate: if i > 20: test.Interest_Rate.replace(i, np.median(test.Interest_Rate), inplace=True) for i in train.Num_Bank_Accounts: if i > 100: train.Num_Bank_Accounts.replace( i, np.median(train.Num_Bank_Accounts), inplace=True ) for i in test.Num_Bank_Accounts: if i > 100: test.Num_Bank_Accounts.replace( i, np.median(test.Num_Bank_Accounts), inplace=True ) for i in train.Num_Credit_Card: if i > 50: train.Num_Credit_Card.replace(i, np.median(train.Num_Credit_Card), inplace=True) for i in test.Num_Credit_Card: if i > 50: test.Num_Credit_Card.replace(i, np.median(test.Num_Credit_Card), inplace=True) imp = KNNImputer(n_neighbors=3) def filling_na(df, column, type_=None): """ This fucntion for filling null values to work with the data properly Parameters: df: DataFrame to fill the na with column: column which will fill the value in it type_: type of data needed be filled """ np.random.seed(7) if type_ == "num": # filling_list = df[column].dropna() # df[column] = df[column].fillna( # pd.Series(np.random.choice(filling_list, size=len(df.index))) # ) df[column] = imp.fit_transform(df[column].values.reshape(-1, 1)) else: filling_list = df[column].dropna().unique() df[column] = df[column].fillna( pd.Series(np.random.choice(filling_list, size=len(df.index))) ) return df[column] train["Monthly_Inhand_Salary"] = filling_na(train, "Monthly_Inhand_Salary", "num") train["Num_Credit_Inquiries"] = filling_na(train, "Num_Credit_Inquiries", "num") train["Amount_invested_monthly"] = filling_na(train, "Amount_invested_monthly", "num") train["Num_of_Delayed_Payment"] = filling_na(train, "Num_of_Delayed_Payment", "num") train["Monthly_Balance"] = filling_na(train, "Monthly_Balance", "num") train["Type_of_Loan"] = filling_na(train, "Type_of_Loan") train["Credit_History_Age"] = filling_na(train, "Credit_History_Age") train["Occupation"] = filling_na(train, "Occupation") test["Monthly_Inhand_Salary"] = filling_na(test, "Monthly_Inhand_Salary", "num") test["Num_Credit_Inquiries"] = filling_na(test, "Num_Credit_Inquiries", "num") test["Amount_invested_monthly"] = filling_na(test, "Amount_invested_monthly", "num") test["Num_of_Delayed_Payment"] = filling_na(test, "Num_of_Delayed_Payment", "num") test["Monthly_Balance"] = filling_na(test, "Monthly_Balance", "num") test["Type_of_Loan"] = filling_na(test, "Type_of_Loan") test["Credit_History_Age"] = filling_na(test, "Credit_History_Age") test["Occupation"] = filling_na(test, "Occupation") train.drop( [ "Name", "Credit_History_Age", "ID", "Customer_ID", "SSN", ], axis=1, inplace=True, ) test.drop_duplicates(subset="ID", inplace=True) test.drop( [ "Name", "Credit_History_Age", "ID", "Customer_ID", "SSN", ], axis=1, inplace=True, ) train.Type_of_Loan = train.Type_of_Loan.str.replace("and", "") train.Type_of_Loan = train.Type_of_Loan.str.replace(" ", "") test.Type_of_Loan = test.Type_of_Loan.str.replace("and", "") test.Type_of_Loan = test.Type_of_Loan.str.replace(" ", "") cat_values = [] loan_cat = train.Type_of_Loan.unique() for i in loan_cat: for j in i.split(","): cat_values.append(j) loan_types = set([x.strip(" ") for x in set(cat_values)]) loan_types = list(loan_types) loan_types index_values = ~train["Type_of_Loan"].isnull().values loan_type_data = list(train["Type_of_Loan"][index_values]) loan_type_dict = dict() for value in loan_type_data: values = value.split(",") for each_value in values: loan_type = each_value.strip(" ") if "and" in loan_type: loan_type = loan_type[4:] if loan_type in loan_type_dict: loan_type_dict[loan_type] += 1 else: loan_type_dict[loan_type] = 1 loan_type_dict ### Bar graph showing the counts of the column - Type_of_Loan sns.set(rc={"figure.figsize": (15, 10)}) sns.barplot(x=list(loan_type_dict.keys()), y=list(loan_type_dict.values())) plt.title("Bar graph showing the counts of the column - Type_of_Loan") plt.ylabel("Count", fontsize=12) plt.xlabel("Type_of_Loan", fontsize=12) plt.show() train.describe().T train.describe(include="O").T # # Data Visualization plt.figure(figsize=(10, 7)) sns.countplot(data=train, x="Credit_Score") plt.title("Customers Credit Scores", size=27, fontweight="bold") plt.xlabel("Credit Score", size=27, fontweight="bold") plt.ylabel("Count", size=27, fontweight="bold") plt.show() px.bar( data_frame=train.groupby(by=["Credit_Score"]).size().reset_index(name="counts"), x="Credit_Score", y="counts", barmode="group", ) plt.figure(figsize=(10, 7)) sns.lineplot(data=train, x="Occupation", y="Annual_Income", hue="Credit_Score") plt.xticks(rotation=45) plt.title("Annual Income Salary for Customers Occupation", size=27) plt.xlabel("Occupation", size=27) plt.ylabel("Annual Income", size=27) plt.show() px.line(data_frame=train, x="Occupation", y="Annual_Income", color="Credit_Score") px.line_3d(data_frame=train, x="Occupation", y="Annual_Income", z="Credit_Score") plt.figure(figsize=(10, 7)) sns.lineplot(data=train, x="Month", y="Monthly_Inhand_Salary", hue="Credit_Score") plt.title("Annual Income Salary for Customers Occupation", size=27, fontweight="bold") plt.xlabel("Month", size=27, fontweight="bold") plt.ylabel("Monthly Inhand Salary", size=27, fontweight="bold") plt.show() px.line(data_frame=train, x="Month", y="Monthly_Inhand_Salary", color="Credit_Score") plt.figure(figsize=(10, 7)) sns.lineplot( data=train, x="Occupation", y="Credit_Utilization_Ratio", hue="Credit_Score" ) plt.xticks(rotation=45) plt.title("Credit Card Usage Ratio According to Occupation", size=27, fontweight="bold") plt.xlabel("Occupation", size=27, fontweight="bold") plt.ylabel("Credit Card Utiliztion Ratio", size=27, fontweight="bold") plt.show() plt.figure(figsize=(10, 7)) sns.lineplot( data=train, x="Payment_Behaviour", y="Amount_invested_monthly", hue="Credit_Score" ) plt.xticks(rotation=45) plt.title( "Payment Behaviour of The Customer and The Amounts They Invest", size=27, fontweight="bold", ) plt.xlabel("Payment Behaviour", size=27, fontweight="bold") plt.ylabel("Amount Invested Monthly", size=27, fontweight="bold") plt.show() plt.figure(figsize=(10, 7)) sns.lineplot(data=train, x="Payment_Behaviour", y="Outstanding_Debt") plt.xticks(rotation=45) plt.title( "Payment Behaviour of The Customer and Their Debt", size=27, fontweight="bold" ) plt.xlabel("Payment Behaviour", size=27, fontweight="bold") plt.ylabel("Outstanding Debt", size=27, fontweight="bold") plt.show() px.line( data_frame=train, x="Payment_Behaviour", y="Outstanding_Debt", ) plt.figure(figsize=(10, 7)) sns.countplot(data=train, x="Credit_Mix", hue="Credit_Score") # plt.xticks(rotation=45) plt.title("Credit Mix", size=27, fontweight="bold") plt.xlabel("Credit Mix Categories", size=27, fontweight="bold") plt.ylabel("Count", size=27, fontweight="bold") plt.show() px.bar( data_frame=train.groupby(by=["Credit_Mix", "Credit_Score"]) .size() .reset_index(name="counts"), x="Credit_Mix", y="counts", color="Credit_Score", barmode="group", ) plt.figure(figsize=(10, 7)) sns.countplot(data=train, x="Payment_of_Min_Amount", hue="Credit_Score") plt.title("Credit Score for Payment of Minimum Amounts", size=27, fontweight="bold") plt.xlabel("Payment of Minimum Amounts", size=27, fontweight="bold") plt.ylabel("Count", size=27, fontweight="bold") plt.show() px.bar( data_frame=train.groupby(by=["Payment_of_Min_Amount", "Credit_Score"]) .size() .reset_index(name="counts"), x="Payment_of_Min_Amount", y="counts", color="Credit_Score", barmode="group", ) plt.figure(figsize=(10, 7)) sns.lineplot( data=train, x="Delay_from_due_date", y="Monthly_Inhand_Salary", hue="Credit_Score" ) plt.title( "Delay of Payment According to Monthly Inhand Salary", size=27, fontweight="bold" ) plt.xlabel("Delay from Due Date", size=27, fontweight="bold") plt.ylabel("Monthly Inhand Salary", size=27, fontweight="bold") plt.show() train["Age_Group"] = pd.cut( train.Age, bins=[14, 25, 30, 45, 55, 95, 120], labels=["14-25", "25-30", "30-45", "45-55", "55-95", "95-120"], ) age_groups = ( train.groupby(["Age_Group", "Credit_Score"])[ "Outstanding_Debt", "Annual_Income", "Num_Bank_Accounts", "Num_Credit_Card" ] .sum() .reset_index() ) age_groups g = sns.catplot( data=age_groups, x="Age_Group", y="Outstanding_Debt", height=7, aspect=1, col="Credit_Score", kind="bar", ci=None, ) g.set_axis_labels("Age Group", "Outstanding Debt", size=27, fontweight="bold") plt.show() g = sns.catplot( data=age_groups, x="Age_Group", y="Annual_Income", height=7, aspect=1, col="Credit_Score", kind="bar", ci=None, ) g.set_axis_labels("Age Group", "Annual Income", size=27, fontweight="bold") plt.show() g = sns.relplot( data=train, x="Num_Bank_Accounts", y="Num_Credit_Card", col="Credit_Score", height=7, aspect=1, ) g.set_axis_labels( "Number of Bank Accounts", "Number of Credit Card", size=27, fontweight="bold" ) plt.show() sns.catplot(x="Credit_Score", col="Credit_Mix", data=train, kind="count", col_wrap=3) ### Bar graph showing the value counts of the column - Payment_of_Min_Amount min_amount_count = train["Payment_of_Min_Amount"].value_counts(dropna=False) min_amount_count sns.set(rc={"figure.figsize": (5, 5)}) sns.barplot(x=min_amount_count.index, y=min_amount_count.values, alpha=0.8) plt.title("Bar graph showing the value counts of the column - Payment_of_Min_Amount") plt.ylabel("Number of Occurrences", fontsize=12) plt.xlabel("Payment of Minimum Amount", fontsize=12) plt.show() from statsmodels.stats.outliers_influence import variance_inflation_factor def calu_vif(dataset): vif = pd.DataFrame() vif["feature"] = dataset.columns vif["Vif_values"] = [ variance_inflation_factor(dataset.values, i) for i in range(dataset.shape[1]) ] return vif train.dropna(inplace=True) num = train.select_dtypes(include=["int", "float"]) num_cols = num.columns num_cols calu_vif(num) plt.figure(figsize=(15, 6)) sns.heatmap(num.corr(), annot=True, cmap="Blues") plt.show() def box_plot(df_c, num_cols): plt.figure(figsize=(20, 15)) for i in range(len(num_cols)): if i == 16: break else: plt.subplot(4, 4, i + 1) l = num_cols[i] sns.boxplot(df_c[l], palette="flare") box_plot(train, num_cols) df_num_clean = train[num_cols].copy() cols = num_cols scaler = preprocessing.RobustScaler() robust_df_ = scaler.fit_transform(df_num_clean) robust_df_ = pd.DataFrame(robust_df_, columns=cols) scaler = preprocessing.StandardScaler() standard_df = scaler.fit_transform(df_num_clean) standard_df = pd.DataFrame(standard_df, columns=cols) scaler = preprocessing.MinMaxScaler() minmax_df = scaler.fit_transform(df_num_clean) minmax_df = pd.DataFrame(minmax_df, columns=cols) fig, (ax1, ax2, ax3, ax4) = plt.subplots(ncols=4, figsize=(20, 5)) ax1.set_title("Before Scaling") sns.kdeplot(df_num_clean["Age"], ax=ax1, color="b") ax2.set_title("After Robust Scaling") sns.kdeplot(robust_df_["Age"], ax=ax2, color="g") ax3.set_title("After Standard Scaling") sns.kdeplot(standard_df["Age"], ax=ax3, color="b") ax4.set_title("After Min-Max Scaling") sns.kdeplot(minmax_df["Age"], ax=ax4, color="g") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # import Header files import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") data = pd.read_csv( "/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv" ) data.head() data = data.drop(["CustomerID"], axis=1) data.head() data.info() data.shape data.isnull().sum() # # EDA sns.kdeplot(data=data) from sklearn import preprocessing le = preprocessing.LabelEncoder() data["Gender"] = le.fit_transform(data["Gender"]) data.head() from sklearn.cluster import KMeans km = KMeans(n_clusters=4) km.fit(data) y_pred = km.fit_predict(data) y_pred wcss = [] for i in range(1, 11): clustering = KMeans(n_clusters=i, init="k-means++", random_state=42) clustering.fit(data) wcss.append(clustering.inertia_) ks = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sns.lineplot(x=ks, y=wcss) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) sns.scatterplot(ax=axes[0], data=data, x="Age", y="Annual Income (k$)").set_title( "Without clustering" ) sns.scatterplot( ax=axes[1], data=data, x="Age", y="Annual Income (k$)", hue=clustering.labels_ ).set_title("Using the elbow method")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Load data and the first look fn = "/kaggle/input/pubmed-papers/pubmed_landscape_data.csv" df = pd.read_csv(fn) df print(df.info()) print() print(df["Year"].value_counts()) print() print(df["Labels"].value_counts()) print() print(df["Journal"].value_counts()) print() # # Select papers with the selected word in the title str2find = "medulloblastoma" mask = df["Title"].apply(lambda x: str2find in str(x).lower()) print(mask.sum()) df[mask].head(20) import matplotlib.pyplot as plt import seaborn as sns fig = plt.figure(figsize=(20, 10)) c = 0 n_x_subplots = 2 plt.suptitle(str2find + " in the title " + " n=" + str(mask.sum()), fontsize=20) c += 1 fig.add_subplot(1, n_x_subplots, c) sns.scatterplot(x=df[mask]["x"], y=df[mask]["y"], hue=df[mask]["Labels"]) # plt.show() # plt.figure(figsize = (20,10 ) ) c += 1 fig.add_subplot(1, n_x_subplots, c) sns.scatterplot(x=df[mask]["x"], y=df[mask]["y"], hue=df[mask]["Year"]) plt.show() text1 = " ".join(str(title).lower() for title in df[mask].Title) from wordcloud import WordCloud, STOPWORDS # print(STOPWORDS) word_cloud1 = WordCloud( background_color="white", stopwords=[str2find, "for"] + list(STOPWORDS), width=2048, height=1080, ).generate(text1) # word_cloud1 = WordCloud(collocations = False, background_color = 'white', # width = 2048, height = 1080).generate(text1) # saving the image word_cloud1.to_file("got.png") plt.figure(figsize=(20, 10)) plt.imshow(word_cloud1, interpolation="bilinear") plt.axis("off") plt.show() for col in ["Labels", "Year", "Journal"]: print(df[mask][col].value_counts()) print()
import numpy as np import pandas as pd # # Introduction # Goal: # * evaluate spelling similarity of two string # Step: # * initial state : the word we're transforming # * operators : delete,switch,replace,insert (Note that replace is equal to delete + insert) # * goal state : the word we're trying to get to # * path cost : what we want to minimize --- the number of edits # More application : # * DNA, spell correction and more # Detail introduction : # * https://web.stanford.edu/class/cs124/lec/med.pdf # # Algorithms # ### Dynamic Programming(Levenshstein) # $$\text{Initialization}$$ # \begin{align} # D[0,0] &= 0 \\ # D[i,0] &= D[i-1,0] + del\_cost(source[i]) \tag{1}\\ # D[0,j] &= D[0,j-1] + ins\_cost(target[j]) \\ # \end{align} # $$\text{Per Cell Operations}$$ # \begin{align} # \\ # D[i,j] =min # \begin{cases} # D[i-1,j] + del\_cost\\ # D[i,j-1] + ins\_cost\\ # D[i-1,j-1] + \left\{\begin{matrix} # rep\_cost; & if src[i]\neq tar[j]\\ # 0 ; & if src[i]=tar[j] # \end{matrix}\right. # \end{cases} # \tag{2} # \end{align} # if we set the parameters to 1,1,2, the method is calledd levenshstein distance def dp_solver(word, target, del_cost=1, ins_cost=1, rep_cost=2): # initialize m = len(word) n = len(target) D = np.zeros((m + 1, n + 1)) for i in range(m + 1): D[i, 0] = i for j in range(n + 1): D[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if word[i - 1] != target[j - 1]: rp = rep_cost else: rp = 0 D[i, j] = min( [D[i - 1, j] + del_cost, D[i, j - 1] + ins_cost, D[i - 1, j - 1] + rp] ) min_dis = D[m, n] return D, min_dis word = "intention" target = "execution" matrix, min_dis = dp_solver(word, target) print("minimum distance edit number :", min_dis) pd.DataFrame( matrix, columns=["#"] + [c for c in target], index=["#"] + [c for c in word] ) # # What can't we know from the DP table? : # # * I N T E & N T I O N # * & E X E C U T I O N # * I -> & : delete (cost : 1) # * N -> E : replace (cost : 2) # * T -> X : replace (cost : 2) # * & -> C : insert (cost : 2) # * N -> U : replace (cost: 1 ) # Use BackTrace solve this problem # ### BackTrace # * We often need to align each charactor of the two strings to each other # * Every time we enter a cell, remember where we came from # * When we reach the end, trace back the path from the upper right corner to read off the alignment # $$\text{Base Conditions}$$ # \begin{align} # D[i,0] &= i \ \ \ D[0,j] = j # \end{align} # $$\text{Recurrence Relation}$$ # \begin{align} # \\ # D[i,j] =min # \begin{cases} # D[i-1,j] + del\_cost\\ # D[i,j-1] + ins\_cost\\ # D[i-1,j-1] + \left\{\begin{matrix} # rep\_cost; & if src[i]\neq tar[j]\\ # 0 ; & if src[i]=tar[j] # \end{matrix}\right. # \end{cases} # \tag{2} # \end{align} # \begin{align} # \\ # ptr[i,j] = # \begin{cases} # LEFT(insert)\\ # DOWN(delete)\\ # DIAG(replace) # \end{cases} # \end{align} def BackTraceSolver(src, tar, del_cost=1, ins_cost=1, rep_cost=2): m = len(src) n = len(tar) D = np.zeros((m + 1, n + 1)) for i in range(m + 1): D[i, 0] = i for j in range(n + 1): D[0, j] = j prt = {} for i in range(1, m + 1): for j in range(1, n + 1): if src[i - 1] != tar[j - 1]: rp = rep_cost else: rp = 0 search = {} search[(i - 1, j)] = D[i - 1, j] + del_cost search[(i, j - 1)] = D[i, j - 1] + ins_cost search[(i - 1, j - 1)] = D[i - 1, j - 1] + rp D[i, j] = min(search.values()) re_search = {val: key for key, val in search.items()} if search[(i - 1, j)] != search[(i, j - 1)] != search[(i - 1, j - 1)]: d_i, d_j = re_search[D[i, j]] # record path prt[(i, j)] = (d_i, d_j) else: # record path prt[(i, j)] = (i - 1, j - 1) # trace back from last point trace_back = [] last_pt = (m, n) while True: try: prt[last_pt] except: trace_back.append(last_pt) break trace_back.append(last_pt) last_pt = prt[last_pt] min_dis = D[m, n] return D, min_dis, trace_back src = "intention" tar = "execution" matrix, min_ids, trace_back = BackTraceSolver(src, tar) trace_back trace_matrix = matrix.copy() for item in trace_back: i, j = item trace_matrix[i][j] = 1e-7 df = pd.DataFrame( trace_matrix, columns=["#"] + [c for c in target], index=["#"] + [c for c in word] ) df # * Show the result by checking the table and print print("i->#") # delete print("n->e") # replace print("t->x") # replace print("e->e,c") # insert print("n->u") # replace print("tion->tion") # same # heatmap # * left : insert # * up : delete # * diag : replace import seaborn as sns sns.heatmap(data=df)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import warnings from tqdm.auto import tqdm tqdm.pandas() warnings.filterwarnings("ignore") dataset = pd.read_csv( "../input/cnn-articles-after-basic-cleaning/CNN_Articels_clean_2/CNN_Articels_clean.csv" ) dataset = dataset[["Article text", "Category"]] dataset = dataset[dataset.Category != "vr"] dataset = dataset[dataset.Category != "travel"] dataset = dataset[dataset.Category != "style"] dataset["Category"] = dataset["Category"].astype("category") # Category to number mapping dataset["Category_code"] = dataset.Category dataset["Category_code"] = dataset.Category.cat.codes dataset.rename(columns={"Article text": "Article"}) dataset["Article"] = dataset["Article text"] dataset = dataset.drop("Article text", axis=1) dataset["Category"] = dataset["Category_code"] dataset = dataset.drop("Category_code", axis=1) # **preprocessing** # RE - library for regular expression import re import num2words # NLTK - library for symbolic and statistical natural language processing(NLP) f import nltk from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize # nltk.download('omw-1.4') # nltk.download('punkt') # nltk.download('stopwords') # nltk.download('wordnet') def clean_text(web_text): # Lowercasing web_text = str(web_text) text_clean = web_text.lower() moneyChar = ["$", "€", "£", "¥", "₣", "₹"] money = ["dollar", "euro", "pound", "yen", "franc", "rupee"] text_clean = "".join( [money[moneyChar.index(i)] if i in moneyChar else i for i in text_clean] ) tokens = word_tokenize(text_clean) text_clean = " ".join( [num2words.num2words(i) if i.isdigit() else i for i in tokens] ) text_clean = re.sub(r"[^a-z]", " ", text_clean) tokens = word_tokenize(text_clean) stop_words = set(nltk.corpus.stopwords.words("english")) tokensWSW = [word for word in tokens if word not in stop_words] wordnet_lemmatizer = WordNetLemmatizer() lemmatized_list = [] for word in tokensWSW: lemmatized_list.append(wordnet_lemmatizer.lemmatize(word)) return " ".join(lemmatized_list) dataset["Article"] = dataset["Article"].progress_apply(clean_text) # sklearn - library for machine learning # train_test_split - Split arrays or metrics into random train and test subsets from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( dataset["Article"], dataset["Category"], test_size=0.15, random_state=8 ) # **max fratures 1600** # TfidfVectorizer - Convert a collection of raw documents to a matrix of TF-IDF features # Represent words as Vectors from sklearn.feature_extraction.text import TfidfVectorizer # Parameter election ngram_range = (1, 2) min_df = 10 max_df = 1.0 max_features = 1600 tfidf = TfidfVectorizer( encoding="utf-8", ngram_range=ngram_range, stop_words=None, lowercase=False, max_df=max_df, min_df=min_df, max_features=max_features, norm="l2", sublinear_tf=True, ) # Transform documents to a matrix in train features_train = tfidf.fit_transform(X_train).toarray() labels_train = y_train print(features_train.shape) # Transform documents to a matrix in test features_test = tfidf.transform(X_test).toarray() labels_test = y_test print(features_test.shape) # **model SVM** # sklearn - library for machine learning # SVM - support-vector machines - supervised learning models for classification from sklearn import svm # sklearn.metrics - for evaluating the quality of a model’s predictions from sklearn.metrics import classification_report, confusion_matrix, accuracy_score # seaborn - library for statistical data visualization import seaborn as sns # Default hyperparameters svc = svm.SVC(random_state=8) print(svc.get_params()) # Fit the random search model svc.fit(features_train, labels_train) # Find the prediction on the test svc_predict = svc.predict(features_test) print( "Accuracy score on train: ", accuracy_score(labels_train, svc.predict(features_train)), ) # Find the prediction on the test print( "Accuracy score on test: ", accuracy_score(labels_test, svc.predict(features_test)) ) # Classification report print("Classification report: ") print(classification_report(labels_test, svc_predict)) # **model random forest** from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=0) clf.fit(features_train, labels_train) # Find the prediction on the test clf_predict = clf.predict(features_test) print( "Accuracy score on train: ", accuracy_score(labels_train, clf.predict(features_train)), ) # Find the prediction on the test print("Accuracy score on test: ", accuracy_score(labels_test, clf_predict)) # Classification report print("Classification report: ") print(classification_report(labels_test, clf_predict)) # **DecisionTree** from sklearn import tree dtc = tree.DecisionTreeClassifier() dtc.fit(features_train, labels_train) # Find the prediction on the test dtc_predict = dtc.predict(features_test) print( "Accuracy score on train: ", accuracy_score(labels_train, dtc.predict(features_train)), ) # Find the prediction on the test print("Accuracy score on test: ", accuracy_score(labels_test, dtc_predict)) # Classification report print("Classification report: ") print(classification_report(labels_test, dtc_predict)) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=3) # Train the model on your training data knn.fit(features_train, labels_train) from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # Predict labels using the trained KNN model y_pred = knn.predict(features_test) # Calculate accuracy, precision, recall, and F1 score print("Accuracy score on test: ", accuracy_score(labels_test, dtc_predict)) accuracy = accuracy_score(labels_test, y_pred) precision = precision_score(labels_test, y_pred, average="macro") recall = recall_score(labels_test, y_pred, average="macro") f1 = f1_score(labels_test, y_pred, average="macro") print("Accuracy:", accuracy) print("Precision:", precision) print("Recall:", recall) print("F1 score:", f1) print( "Accuracy score on train: ", accuracy_score(labels_train, knn.predict(features_train)), ) # Find the prediction on the test print("Accuracy score on test: ", accuracy_score(labels_test, y_pred)) # Classification report print("Classification report: ") print(classification_report(labels_test, y_pred))
# # About Data # * 30000 audio samples of spoken digits(0-9) of 60 folders and 500 files each.(30000=10x60x500) # * "audioMNIST_meta.txt" : meta information such as gender or age of each speaker import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns import joblib as jl import librosa from IPython.display import Audio # ### Get data and play it. def get_data(digit=0, person=1, index=0, target_sr=16000): if person < 10: file = f"../input/audio-mnist/data/0{person}/{digit}_0{person}_{index}.wav" else: file = f"../input/audio-mnist/data/{person}/{digit}_{person}_{index}.wav" data, sr = librosa.load(file) # sr=22050 # down sampling to 16000Hz down_d = librosa.resample(data, orig_sr=sr, target_sr=target_sr) return down_d, target_sr # ##### down-sampling 22050 to 16000 due to the range of human speaking frequncy. def play_audio(digit=0, person=1, index=0): data, sr = get_data(digit=digit, person=person, index=index) plt.figure(figsize=(5, 2)) plt.plot(np.linspace(0, len(data) / sr, len(data)), data) plt.title(f"digit: {digit}, person: {person}, index{index}") plt.xlabel(f"[Sec] ({len(data)} samples)") plt.show() return display(Audio(data=data, rate=sr)) for i in range(5, 7): play_audio(digit=i) # ### digit`0~9`, person`1~10`, index`0~49`, data length is different. # ### Check all data length to fit model input. # %%time # import joblib as jl # def data_info(digit): # len_list = [] # for person in range(1,61): # for index in range(50): # data,sr = get_data(digit=digit,person=person,index=index) # len_list.append(len(data)) # return len_list # len_info = jl.Parallel(n_jobs=-1)(jl.delayed(data_info)(x) for x in range(10)) # jl.dump(len_info, 'len_info.jl') len_info = jl.load("/kaggle/input/audiomnist2/len_info.jl") def array_info(x): print(f"shape: {x.shape}") print(f"mean: {np.mean(x):.1f}, median: {np.median(x)}") print(f"min: {np.min(x)}, max: {np.max(x)}") print(f"percentile 75: {np.percentile(x, 75)}") print(f"percentile 90: {np.percentile(x, 90)}") len_info = np.array(len_info) array_info(len_info) # ##### modify get_data() to return 12000 fixed data length due to information above. # Modified get_data() def get_data(digit=0, person=1, index=0, target_sr=16000): if person < 10: file = f"../input/audio-mnist/data/0{person}/{digit}_0{person}_{index}.wav" else: file = f"../input/audio-mnist/data/{person}/{digit}_{person}_{index}.wav" data, sr = librosa.load(file) # sr=22050 # down sampling to 8000Hz down_d = librosa.resample(data, orig_sr=sr, target_sr=target_sr) # fixed length of all data to 12000 samples fix_len_d = librosa.util.fix_length(down_d, size=12000) return fix_len_d, target_sr # # Feature Comparison # * Mel spectrogram, Spectrogram, Periodogram, MFCC # Mel spectrogram def mel_data(digit=0, person=1, index=0): data, sr = get_data(digit=digit, person=person, index=index) data = librosa.feature.melspectrogram(y=data, sr=sr, n_mels=256) return data, sr fig, ax = plt.subplots(5, 2, figsize=(10, 20)) for i, ax in enumerate(ax.flat): data, sr = mel_data(digit=i, person=1, index=0) librosa.display.specshow( librosa.power_to_db(data, ref=np.max), sr=sr, y_axis="mel", x_axis="time", ax=ax ) ax.set_title(f"d: {i}, p: {1}, i: {0}, {data.shape}") plt.tight_layout() plt.show() # Spectrogram def spec_data(digit=0, person=1, index=0): data, sr = get_data(digit=digit, person=person, index=index) data = np.abs(librosa.stft(data)) return data, sr fig, ax = plt.subplots(5, 2, figsize=(10, 20)) for i, ax in enumerate(ax.flat): data, sr = spec_data(digit=i, person=1, index=0) librosa.display.specshow( librosa.amplitude_to_db(data, ref=np.max), sr=sr, y_axis="mel", x_axis="time", ax=ax, ) ax.set_title(f"d: {i}, p: {1}, i: {0}, {data.shape}") plt.tight_layout() plt.show() # Periodogram def peri_data(digit=0, person=1, index=0): data, sr = get_data(digit=digit, person=person, index=index) fft = np.fft.fft(data, len(data)) peri = 2 * np.abs(fft)[: len(data) // 2] / len(data) return peri, sr fig, ax = plt.subplots(5, 2, figsize=(10, 20)) for i, ax in enumerate(ax.flat): data, sr = peri_data(digit=i, person=1, index=0) ax.plot(np.linspace(0, sr, len(data)), np.log10(data)) ax.set_xlabel("Frequncy [Hz]") ax.set_title(f"d: {i}, p: {1}, i: {0}, {data.shape}") plt.tight_layout() plt.show() # comparing spectrogram with mel fig, ax = plt.subplots(10, 2, figsize=(10, 40)) for i in range(10): data, sr = spec_data(digit=i, person=1, index=0) librosa.display.specshow( librosa.amplitude_to_db(data, ref=np.max), sr=sr, y_axis="mel", x_axis="time", ax=ax[i][0], ) ax[i][0].set_title(f"spec d: {i}, p: {1}, i: {0}, {data.shape}") data, sr = mel_data(digit=i, person=1, index=0) librosa.display.specshow( librosa.power_to_db(data, ref=np.max), sr=sr, y_axis="mel", x_axis="time", ax=ax[i][1], ) ax[i][1].set_title(f"mel d: {i}, p: {1}, i: {0}, {data.shape}") plt.tight_layout() plt.show() # # Mfcc dataset def mfcc_data(digit=0, person=1, index=0): data, sr = get_data(digit=digit, person=person, index=index) data = librosa.feature.mfcc(y=data, sr=sr, n_mfcc=40) return data, sr fig, axs = plt.subplots(5, 2, figsize=(10, 20)) for i, ax in enumerate(axs.flat): data, sr = mfcc_data(digit=i) librosa.display.specshow(data, ax=ax) ax.set_title(f"d:{i}, p:1, i:0, {data.shape}") plt.tight_layout() plt.show() # %%time # #1min 39s # def norm(x): # return (x-np.mean(x))/np.std(x) # def make_ds(digit): # ds_list = [] # for p in range(1,61): # for i in range(50): # data,sr = mfcc_data(digit=digit,person=p,index=i) # data = norm(data) # ds_list.append([data,digit,p,i]) # return ds_list # mfcc_list = jl.Parallel(n_jobs=-1)(jl.delayed(make_ds)(x) for x in range(10)) # jl.dump(mfcc_list,'mfcc_list.jl') mfcc_list = jl.load("/kaggle/input/audiomnist3/mfcc_list.jl") # Convert to DataFrame for analysis convenience df_mfcc = pd.DataFrame( np.array(mfcc_list, dtype="object").reshape(-1, 4), columns=["mfcc", "cls", "p", "i"], ) # check data saving order to confirm the Y's order on train_test_split df_mfcc["num"] = df_mfcc.cls * 10000 + df_mfcc.p * 100 + df_mfcc.i for x in range(6000 - 1): if df_mfcc.num[x] >= df_mfcc.num[x + 1]: print("error") plt.plot(df_mfcc.index, df_mfcc.num) X_mfcc = np.array(df_mfcc.mfcc.tolist()) Y_mfcc = np.array((df_mfcc.cls).tolist(), dtype="int") print(type(X_mfcc[0][0][0]), X_mfcc.shape, type(Y_mfcc[0]), Y_mfcc.shape) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( X_mfcc, Y_mfcc, test_size=0.3, shuffle=True, random_state=42 ) print(x_train.shape, y_train.shape, x_test.shape, y_test.shape) # check distribution if data is split uniformly. unique, cnt = np.unique(y_train, return_counts=True) ax = sns.barplot(x=unique, y=cnt) for p in ax.patches: ax.text( p.get_x() + p.get_width() / 2, # x 좌표 p.get_y() + p.get_height(), # y 좌표 f"{p.get_height():.0f}", # 값 ha="center", ) # 가운데 정렬 plt.show() # # MFCC modeling from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPool1D, Dense, Flatten import keras.backend as K K.clear_session() model = Sequential( [ Conv1D(32, 3, activation="relu", input_shape=(40, 24)), MaxPool1D(2), Conv1D(64, 3, activation="relu"), MaxPool1D(2), Flatten(), Dense(128, activation="relu"), Dense(10, activation="softmax"), ] ) model.compile( loss="sparse_categorical_crossentropy", metrics=["accuracy"], optimizer="adam" ) model.summary() from sklearn.model_selection import KFold from tensorflow.keras.callbacks import ( ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLogger, ) # import keras.backend as K # K.clear_session() kfold = KFold(n_splits=5, shuffle=True, random_state=42) for i, (trn_idx, val_idx) in enumerate(kfold.split(x_train)): print(f"Fold {i+1}") x_trn, y_trn = x_train[trn_idx], y_train[trn_idx] x_val, y_val = x_train[val_idx], y_train[val_idx] cp = ModelCheckpoint( filepath=f"mfcc_w_{i+1}.h5", save_weights_only=True, verbose=0, save_best_only=True, ) es = EarlyStopping( monitor="val_loss", patience=10, verbose=1, restore_best_weights=True ) cl = CSVLogger("mfcc_training.log") # 로그 파일명을 지정합니다. rlr = ReduceLROnPlateau(monitor="val_loss", factor=0.2, patience=5, min_lr=1e-6) # Fit the model history = model.fit( x_trn, y_trn, validation_data=(x_val, y_val), epochs=100, batch_size=32, verbose=0, workers=-1, callbacks=[cp, es, cl, rlr], ) # , initial_epoch=97) model.evaluate(x_test, y_test) from sklearn.metrics import classification_report, confusion_matrix pred_list = [] for i in range(5): model.load_weights(f"mfcc_w_{i+1}.h5") model.evaluate(x_test, y_test) pred = model.predict(x_test) pred_list.append(pred) pred_sum = np.sum(np.array(pred_list), axis=0) pred_y = np.argmax(pred_sum, axis=1) print(classification_report(y_test, pred_y)) plt.title("Confusion Matix for MFCC model Prediction") cm = confusion_matrix(y_test, pred_y) sns.heatmap(cm, annot=True, center=0, cmap="coolwarm", fmt="g", cbar=True) plt.show() # # Mel dataset # %%time # # Make dataset as list and save it by joblib # def make_ds(digit): # ds_list = [] # for p in range(1,61): # for i in range(50): # data,sr = mel_data(digit=digit, person=p, index=i) # data = norm(data) # ds_list.append([data, digit, p, i]) # return ds_list # mel_list = jl.Parallel(n_jobs=-1)( # jl.delayed(make_ds)(digit) for digit in range(10)) # jl.dump(mel_list, 'mel_list.jl') mel_list = jl.load("/kaggle/input/audiomnist3/mel_list.jl") df_mel = pd.DataFrame( np.array(mel_list, dtype="object").reshape(-1, 4), columns=["mel", "cls", "p", "i"] ) X_mel = np.array(df_mel.mel.tolist()) Y_mel = np.array((df_mel.cls).tolist(), dtype="int") print(type(X_mel[0][0][0]), X_mel.shape, type(Y_mel[0]), Y_mel.shape) from sklearn.model_selection import train_test_split x_train1, x_test1, y_train1, y_test1 = train_test_split( X_mel, Y_mel, test_size=0.3, shuffle=True, random_state=42 ) print(x_train1.shape, y_train1.shape, x_test1.shape, y_test1.shape) # # Mel Modeling from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPool1D, Dense, Flatten import keras.backend as K K.clear_session() model = Sequential( [ Conv1D(32, 3, activation="relu", input_shape=(256, 24)), MaxPool1D(2), Conv1D(64, 3, activation="relu"), MaxPool1D(2), Flatten(), Dense(128, activation="relu"), Dense(10, activation="softmax"), ] ) model.compile( loss="sparse_categorical_crossentropy", metrics=["accuracy"], optimizer="adam" ) model.summary() from sklearn.model_selection import KFold from tensorflow.keras.callbacks import ( ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLogger, ) kfold = KFold(n_splits=5, shuffle=True, random_state=42) for i, (trn_idx, val_idx) in enumerate(kfold.split(x_train)): print(f"Fold {i+1}") x_trn, y_trn = x_train1[trn_idx], y_train1[trn_idx] x_val, y_val = x_train1[val_idx], y_train1[val_idx] cp = ModelCheckpoint( filepath=f"mel_w_{i+1}.h5", save_weights_only=True, verbose=0, save_best_only=True, ) es = EarlyStopping( monitor="val_loss", patience=10, verbose=1, restore_best_weights=True ) cl = CSVLogger("mel_training.log") # 로그 파일명을 지정합니다. rlr = ReduceLROnPlateau(monitor="val_loss", factor=0.2, patience=5, min_lr=1e-6) # Fit the model history = model.fit( x_trn, y_trn, validation_data=(x_val, y_val), epochs=100, batch_size=32, verbose=0, workers=-1, callbacks=[cp, es, cl, rlr], ) # , initial_epoch=97) model.evaluate(x_test1, y_test1) from sklearn.metrics import classification_report, confusion_matrix pred_list1 = [] for i in range(5): model.load_weights(f"mel_w_{i+1}.h5") model.evaluate(x_test1, y_test1) pred1 = model.predict(x_test1) pred_list1.append(pred1) pred_sum1 = np.sum(np.array(pred_list1), axis=0) pred_y1 = np.argmax(pred_sum1, axis=1) print(classification_report(y_test1, pred_y1)) plt.title("Confusion Matix for Mel model Prediction") cm = confusion_matrix(y_test1, pred_y1) sns.heatmap(cm, annot=True, center=0, cmap="coolwarm", fmt="g", cbar=True) plt.show() # # Model comparison from sklearn.metrics import accuracy_score, multilabel_confusion_matrix, f1_score # Model ensemble pred_sum2 = pred_sum + pred_sum1 pred_y2 = np.argmax(pred_sum2, axis=1) cm2 = confusion_matrix(y_test, pred_y2) print(classification_report(y_test, pred_y2)) sns.heatmap(cm2, center=0, cmap="coolwarm", annot=True, fmt="g") plt.title("Confusion Matix for Mel+Mfcc Ensemble model Prediction") plt.show() # Model comparison for p_data, m_name in [(pred_y, "mfcc"), (pred_y1, "mel"), (pred_y2, "ens")]: print(f"accuracy score {m_name}: {accuracy_score(y_test, p_data):.4f}") print(f" f1 score {m_name}: {f1_score(y_test, p_data,average='weighted'):.4f}")
# ## Kernel description # Adding new features to the `train_meta` dataframe: # 1) Statistical, such as the total number of impulses or the average relative time within one event and so one; # 2) Predictions of different models as features (***work in progress***). # # Polars library was used for feature engineering, because it allows to process all 660 batches and 131,953,924 events many times faster than Pandas. # # This Kernel has separate functions that you can use and modify to create your own features. # # The resulting feature table is shown at the end of the notebook. # Please don't hesitate to leave your comments on this Kernel: use the features table for your models and share the results. # ## Updates # **Ver. 2:** Removed the use of Pandas functions to create features (now Polars only). Separate functions added for feature engineering. Added new features in the `train_meta` data as well. # ## Sources # For this Kernel, [[日本語/Eng]🧊: FeatureEngineering](https://www.kaggle.com/code/utm529fg/eng-featureengineering) kernel was used, as well as separate articles about Polars library and feature engineering: # 1) [📊 Построение и отбор признаков. Часть 1: feature engineering (RUS)](https://proglib.io/p/postroenie-i-otbor-priznakov-chast-1-feature-engineering-2021-09-15) # 2) [Polars: Pandas DataFrame but Much Faster](https://towardsdatascience.com/pandas-dataframe-but-much-faster-f475d6be4cd4) # 3) [Polars: calm](https://calmcode.io/polars/calm.html) # 4) [Polars - User Guide](https://pola-rs.github.io/polars-book/user-guide/coming_from_pandas.html) # ## Import libraries # List all installed packages and package versions #!pip freeze #!pip install --upgrade polars import numpy as np import os import pandas as pd import polars as pl from tqdm.notebook import tqdm # Check existing paths: # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # Will try to use Polars as one of the fastest libraries because it uses parallelization and cache efficient algorithms to speed up analytics task. # # Let's create LazyFrames from all existing inputs: INPUT_DIR = "/kaggle/input/icecube-neutrinos-in-deep-ice" train_meta = pl.scan_parquet(f"{INPUT_DIR}/train_meta.parquet") sensor_geometry = pl.scan_csv(f"{INPUT_DIR}/sensor_geometry.csv") batches_dict = {} for i in range(1, train_meta.collect()["batch_id"].max() + 1): key = str("train_batch_" + str(i)) batches_dict[key] = pl.scan_parquet(f"{INPUT_DIR}/train/batch_{i}.parquet") print(type(train_meta)) print(type(sensor_geometry)) print(type(batches_dict["train_batch_1"])) # Will add new features to the `train_meta` data: def add_stat_features(meta): """ add new statistics features into the selected dataframe (implying 'train_meta' dataframe): 1) n_events_per_batch - number of events in each batch 2) pulse_count - count of pulses detected (last_pulse_index - first_pulse_index + 1) Parameters: ----------- meta : LazyFrame Returns: ----------- meta : LazyFrame """ return meta.with_columns( [ pl.col("event_id") .count() .over("batch_id") .cast(pl.Int64) .alias("n_events_per_batch"), (pl.col("last_pulse_index") - pl.col("first_pulse_index") + 1).alias( "pulse_count" ), ] ) batches_dict["train_batch_1"].fetch(5) def add_cols_to_sensor_geometry(sensor): """ add new columns for groupby.sum() function Parameters: ----------- sensor : LazyFrame Returns: ----------- sensor : polars DataFrame """ sensor = sensor.with_columns( [ (pl.col("sensor_id") * 0).alias("sensor_count"), (pl.col("sensor_id") * 0.0).alias("charge_sum"), (pl.col("sensor_id") * 0).alias("time_sum"), (pl.col("sensor_id") * 0).alias("auxiliary_sum"), ] ) sensor = sensor.collect() return sensor add_cols_to_sensor_geometry(sensor_geometry).head() # Not enough memory to execute this code # def add_time_mean(train_meta, batches_dict): # batches = [] # for batch_name, batch in tqdm(batches_dict.items()): # batch_id = int(batch_name.split("_")[-1]) # batch_df = batch.select(['sensor_id', 'time', 'event_id']).collect() # batch_len = len(batch_df) # batch = batch_df.with_columns((pl.Series([batch_id] * batch_len)).alias('batch_id')) # batches.append(batch) # all_batches = pl.concat(batches) # time_mean = all_batches.groupby('event_id').agg( # pl.col('time').mean().alias('time_mean')) # train_meta_with_time_mean = train_meta.join( # time_mean, on='event_id', how='inner') # return train_meta_with_time_mean # ***If you know how to reduce memory usage for above code, please feel free to share your ideas in the comments of this notebook.*** add_time_mean(train_meta, batches_dict, "train_batch_1") def create_batch_features(batch_dict): for key in tqdm(batch_dict): batch = batch_dict[key].collect() # count detected sensor batch_tmp = batch["sensor_id"].value_counts() # cast and join batch_tmp = batch_tmp.with_columns( [pl.col("sensor_id").cast(pl.Int64), pl.col("counts").cast(pl.Int64)] ) return batch_tmp # %%time # create_batch_features(batches_dict).fetch() train_meta.pipe(add_stat_features).fetch(5) # for key in tqdm(batches_dict): # batch = batches_dict[key].collect() # # count detected sensor # batch_tmp = batch['sensor_id'].value_counts() # # cast and join # batch_tmp = batch_tmp.with_columns( # [pl.col('sensor_id').cast(pl.Int64), # pl.col('counts').cast(pl.Int64)]) # sensor_geometry = sensor_geometry.collect().to_pandas() # sensor_geometry = sensor_geometry.merge(batch_tmp, on='sensor_id') # sensor_geometry = sensor_geometry.rename(columns={'counts':'sensor_count'}) # sensor_geometry.head()
# # **SIMPLE LINEAR REGRESSION USING ORDINARY LEAST SQUARES** # # [Kaggle](https://www.kaggle.com/code/avd1729/simple-linear-regression-using-ols) # # **Setting up the environment** import numpy as np import pandas as pd data = pd.read_csv("/kaggle/input/salary-data-simple-linear-regression/Salary_Data.csv") # # **Building a regression model** data.info() import statsmodels.api as sm X = sm.add_constant(data["YearsExperience"]) X.head(5) y = data["Salary"] # # **Train-Test Split** from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.7, random_state=42 ) salary_lm = sm.OLS(y_train, X_train).fit() # # **Model Diagnostics** salary_lm.params salary_lm.summary2() # # **Residual analysis** import matplotlib.pyplot as plt import seaborn as sn # # **1.Check for Normal Distribution of Residual** from scipy import stats resid = salary_lm.resid probplot = sm.ProbPlot(np.array(resid)) plt.figure(figsize=(10, 8)) probplot.ppplot(line="45") plt.show() # > We find that the residuals doesn't follow normal distribution , this maybe due to outliers or insufficient data # # **2.Test for Homoscedasticity** def get_standarized_values(vals): return (vals - vals.mean()) / vals.std() plt.scatter( get_standarized_values(salary_lm.fittedvalues), get_standarized_values(resid) ) plt.xlabel("Standarized predicted values") plt.ylabel("Standarized Residuals") plt.show() # > It can be observed that the residuals are random and have no funnel shape , which means the residuals have constant variance (homoscedasticity) # # **Outlier Analysis** # # **1.Z-Score** from scipy.stats import zscore data["z_score_salary"] = zscore(data.Salary) data[(data.z_score_salary > 3.0) | (data.z_score_salary < -3.0)] # > There are no observations that are outliers as per Z-Score # # **2.Cook's Distance** data_influence = salary_lm.get_influence() (c, p) = data_influence.cooks_distance plt.stem(np.arange(len(X_train)), np.round(c, 3), markerfmt=",") plt.xlabel("Row index") plt.ylabel("Cooks Distance") # > It can be observed that 2 of the observations' Cook distance exceed 1 and hence they are outliers """ X_train = X_train.drop([7,19] , axis=0) y_train = y_train.drop([7,19] , axis=0) """ # # **3.Leverage values** from statsmodels.graphics.regressionplots import influence_plot fig, ax = plt.subplots(figsize=(10, 8)) influence_plot(salary_lm, ax=ax) plt.show() # > The size of the circle is proportional to the product of residual and leverage values , larger the circle , the larger # the residual and hence larger the influence of the observation # # **Prediction** y_pred = salary_lm.predict(X_test) # # **Finding R-Squared and RMSE** from sklearn.metrics import r2_score, mean_squared_error r2_score(y_test, y_pred) # r2_score(y_pred , y_test) slightly different np.sqrt(mean_squared_error(y_test, y_pred))
# Movie Genre Classification # <div id = "tb" style = "height: 50px; # width: 800px; # background-color: #813EEC;"> # <h1 style="padding: 10px; # color:white;"> # Table of Contents # # # Introduction # Feature Selection # Bag of Words Model # Naive Bayes Model # # <div id = "eda" style = "height: 50px; # width: 800px; # background-color: #813EEC;"> # <h1 style="padding: 10px; # color:white;"> # 1.Introduction # # My Aim is to classify the genere into drama or comedy based on the plot summaries of movies import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt import seaborn as sns from wordcloud import WordCloud from nltk.corpus import stopwords from sklearn import metrics from sklearn.metrics import confusion_matrix, classification_report df = pd.read_csv("/kaggle/input/wikipedia-movie-plots/wiki_movie_plots_deduped.csv") df.head(10) # **I am going extract the data of only comedy and drama geners** # for index, row in df.iterrows(): # if row["Genre"] == 'comedy' or row["Genre"] =='drama': # print(row["Title"]) print(df.shape) new_df = df[(df.Genre == "comedy") | (df.Genre == "drama")] new_df.head(10) class_names = ["drama", "comedy"] label_count = new_df.Genre.value_counts() sns.barplot(x=label_count.index, y=label_count) plt.title("Distribution of drama/comedy", fontsize=14) comedyList = [] for index, row in new_df.iterrows(): if row["Genre"] == "comedy": comedyList.append(1) else: comedyList.append(0) # print(comedyList) dramaList = [] for val in comedyList: if val == 1: dramaList.append(0) else: dramaList.append(1) # print(dramaList) new_df.insert(6, "Comedy", comedyList) new_df.insert(7, "Drama", dramaList) new_df = new_df.drop("Genre", axis=1) new_df.head() # **This is the data of all the movies with eaither comedy or drama** comedy_df = new_df[new_df["Comedy"] == 1] stop_words = stopwords.words("english") comedy_df["Plot"] = comedy_df["Plot"].apply( lambda x: " ".join([word for word in x.split() if word not in (stop_words)]) ) comedy_df.head() drama_df = new_df[new_df["Comedy"] == 0] drama_df["Plot"] = drama_df["Plot"].apply( lambda x: " ".join([word for word in x.split() if word not in (stop_words)]) ) drama_df.head() new_df["Plot"] = new_df["Plot"].apply( lambda x: " ".join([word for word in x.split() if word not in (stop_words)]) ) # # Wordcloud of Comedy plots comedy_plots = " ".join(Plot for Plot in comedy_df.Plot) wordcloud = WordCloud( background_color="white", max_words=300, width=800, height=400, ).generate(comedy_plots) plt.figure(figsize=(20, 10)) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() # # WordCloud of Drama plots drama_plots = " ".join(Plot for Plot in drama_df.Plot) wordcloud = WordCloud( background_color="white", max_words=300, width=800, height=400, ).generate(drama_plots) plt.figure(figsize=(20, 10)) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() # # <div id = "fs" style = "height: 50px; # width: 800px; # background-color: #813EEC;"> # <h1 style="padding: 10px; # color:white;"> # 2.Feature Selection # # X = new_df["Plot"] y = new_df["Comedy"] # # <div id = "bw" style = "height: 50px; # width: 800px; # background-color: #813EEC;"> # <h1 style="padding: 10px; # color:white;"> # 3.Bag of words model # # X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.7, random_state=22 ) count_vectorizer = CountVectorizer(stop_words="english") count_train = count_vectorizer.fit_transform(X_train.values) count_test = count_vectorizer.transform(X_test.values) # print(count_vectorizer.get_feature_names()) from sklearn.feature_extraction.text import TfidfVectorizer tfidf_vectorizer = TfidfVectorizer(stop_words="english", max_df=0.7) tfidf_train = tfidf_vectorizer.fit_transform(X_train) tfidf_test = tfidf_vectorizer.transform(X_test) # print(tfidf_train) count_df = pd.DataFrame(count_train.A, columns=count_vectorizer.get_feature_names_out()) tfidf_df = pd.DataFrame(tfidf_train.A, columns=tfidf_vectorizer.get_feature_names_out()) print(count_df) print(tfidf_df) difference = set(count_df.columns) - set(tfidf_df.columns) print(difference) print(count_df.equals(tfidf_df)) # # <div id = "nb" style = "height: 50px; # width: 800px; # background-color: #813EEC;"> # <h1 style="padding: 10px; # color:white;"> # 4. Using Random Forest Classifier for prediction # # from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=300) model.fit(count_train, y_train) preds = model.predict(count_test) print(classification_report(y_test, preds)) # metrics.confusion_matrix(y_test,preds,labels=[0,1]) plt.figure(figsize=(8, 6)) sns.heatmap(metrics.confusion_matrix(y_test, preds), annot=True, fmt="", cmap="Blues") plt.xlabel("Predicted Labels") plt.ylabel("Real Labels")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Identifying patient by ID # For check # patients = pd.read_csv('/kaggle/input/in-hospital-mortality-prediction/data01.csv') # columns = ['group','ID','outcome','age', 'gendera', 'BMI', 'hypertensive', # 'atrialfibrillation', 'CHD with no MI', 'diabetes', 'deficiencyanemias', # 'depression', 'Hyperlipemia', 'Renal failure', 'COPD', 'heart rate', # 'Systolic blood pressure', 'Diastolic blood pressure', # 'Respiratory rate', 'temperature', 'SP O2', 'Urine output', # 'hematocrit', 'RBC', 'MCH', 'MCHC', 'MCV', 'RDW', 'Leucocyte', # 'Platelets', 'Neutrophils', 'Basophils', 'Lymphocyte', 'PT', 'INR', # 'NT-proBNP', 'Creatine kinase', 'Creatinine', 'Urea nitrogen', # 'glucose', 'Blood potassium', 'Blood sodium', 'Blood calcium', #'Chloride', 'Anion gap', 'Magnesium ion', 'PH', 'Bicarbonate', #'Lactic acid', 'PCO2', 'EF'] # print(patients.index[patients.ID == 182755]) # patients.set_index("ID", inplace = True) # result = patients.loc[182755] # print(result) # print(result.values.tolist()) # Insert dataset patients = pd.read_csv("/kaggle/input/in-hospital-mortality-prediction/data01.csv") # Show data types patients.dtypes # Convert all data types to float64 patients = patients.astype("float64") patients.dtypes # Dropping NA field patients.dropna(inplace=True) patients # Show all data parameters patients.describe() # Reveal NA field np.isnan(patients) # Use to identify unique data - remove # as needed # patients['age'].unique() # Define values, dropped "group", "ID" and "outcome" for X xcolumns = [ "age", "gendera", "BMI", "hypertensive", "atrialfibrillation", "CHD with no MI", "diabetes", "deficiencyanemias", "depression", "Hyperlipemia", "Renal failure", "COPD", "heart rate", "Systolic blood pressure", "Diastolic blood pressure", "Respiratory rate", "temperature", "SP O2", "Urine output", "hematocrit", "RBC", "MCH", "MCHC", "MCV", "RDW", "Leucocyte", "Platelets", "Neutrophils", "Basophils", "Lymphocyte", "PT", "INR", "NT-proBNP", "Creatine kinase", "Creatinine", "Urea nitrogen", "glucose", "Blood potassium", "Blood sodium", "Blood calcium", "Chloride", "Anion gap", "Magnesium ion", "PH", "Bicarbonate", "Lactic acid", "PCO2", "EF", ] df = patients[xcolumns] # df.head() yvalues = patients["outcome"] # Find row number from patient ID post NA filtering and return data row as list for ML code exist = patients.index[patients.ID == 109787] if exist.size > 0: print(exist) print(df.loc[exist, :].values.tolist()) else: print("Patient ID does not exist") # Count Y value yvalues.value_counts() # Modeling from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost.sklearn import XGBClassifier from sklearn.ensemble import GradientBoostingClassifier from lightgbm import LGBMClassifier from catboost import CatBoostClassifier from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingClassifier from sklearn import metrics from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report, confusion_matrix # from sklearn.datasets import make_classification from sklearn.model_selection import GridSearchCV X = df y = yvalues # X.shape # y.shape from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() X = my_imputer.fit_transform(X) from sklearn.model_selection import train_test_split # split data into training and testing x_train, x_test, y_train, y_test = train_test_split( X, y, test_size=0.20 ) # 0.33% of data is reserved for testing, algorithm will never see it. print(x_train, y_train) def find_best_model(X, y): # Logistic Regression logreg = LogisticRegression(max_iter=500) logreg.fit(X, y) logreg_acc = round(logreg.score(X, y) * 100, 2) # Decision Tree decision_tree = DecisionTreeClassifier() decision_tree.fit(X, y) decision_tree_acc = round(decision_tree.score(X, y) * 100, 2) # Random Forest random_forest = RandomForestClassifier() random_forest.fit(X, y) random_forest_acc = round(random_forest.score(X, y) * 100, 2) # XGBoost xgb = XGBClassifier() xgb.fit(X, y) xgb_acc = round(xgb.score(X, y) * 100, 2) # GBM gbm = GradientBoostingClassifier() gbm.fit(X, y) gbm_acc = round(gbm.score(X, y) * 100, 2) # LightGBM lgbm = LGBMClassifier() lgbm.fit(X, y) lgbm_acc = round(lgbm.score(X, y) * 100, 2) # Catboost catb = CatBoostClassifier(verbose=0) catb.fit(X, y) catb_acc = round(catb.score(X, y) * 100, 2) # Histogram-based Gradient Boosting Classification Tree hgb = HistGradientBoostingClassifier() hgb.fit(X, y) hgb_acc = round(hgb.score(X, y) * 100, 2) model_df = pd.DataFrame( { "Model": [ "Logistic Regression", "Decision Tree", "Random Forest", "XGBoost", "GBM", "LightGBM", "Catboost", "HistBoost", ], "Score": [ logreg_acc, decision_tree_acc, random_forest_acc, xgb_acc, gbm_acc, lgbm_acc, catb_acc, hgb_acc, ], } ) print(model_df.sort_values("Score", ascending=False).reset_index(drop=True)) find_best_model(x_train, y_train) random_forest = RandomForestClassifier() random_forest.fit(x_train, y_train) samples = [ 78.0, 2.0, 37.85143414, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 76.38461538, 95.44444444, 60.25925926, 21.75, 36.12037037, 94.38461538, 1766.0, 34.1625, 4.2175, 26.0125, 32.125, 81.0, 19.0625, 4.8375, 172.25, 70.9, 0.5, 17.9, 14.2, 1.2, 24440.0, 24.0, 1.3, 32.72727273, 88.0, 3.481818182, 142.8181818, 8.32, 107.4545455, 12.54545455, 2.01, 7.333333333, 26.36363636, 0.75, 52.0, 55.0, ] samples = pd.Series(data=samples) sample_X = pd.Series(data=[]) sample_X = sample_X.append(samples) sample_X = np.array(sample_X).reshape(1, -1) answer = random_forest.predict_proba(sample_X) treatment = random_forest.predict(sample_X) print(treatment) if treatment == 0: print(f"With {answer*100}% accuracy, you are LIKELY to leave hospital ALIVE.") else: print(f"With {100-answer*100}% accuracy, you are UNLIKELY to leave hospital ALIVE.") # DATA ANALYTICS => # import matplotlib.pyplot as plt # plt.style.use('seaborn-whitegrid') ## Set Matplotlib defaults # plt.rc('figure', autolayout=True) # plt.rc('axes', labelweight='bold', labelsize='large', # titleweight='bold', titlesize=18, titlepad=10) # plt.rc('animation', html='html5') ## Setup feedback system # from learntools.core import binder # binder.bind(globals()) # from learntools.deep_learning_intro.ex6 import * # import seaborn as sns # fig, ax=plt.subplots(1,figsize=(8,6)) # sns.scatterplot(x='atrialfibrillation' ,y='outcome', data=patients) # plt.title("Blood sodium vs Blood Calcium") # plt.show() # fig, ax=plt.subplots(1,figsize=(8,6)) # sns.countplot(x='Anion gap' ,hue='atrialfibrillation', data=patients) # plt.title("treatment vs Gender") # plt.show() # from statsmodels.stats.proportion import proportions_ztest ##perform one proportion z-test # proportions_ztest(count=, nobs=1177, value=0.64)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv( "/kaggle/input/120-years-of-olympic-history-athletes-and-results/athlete_events.csv" ) df # Exploring and cleaning the data # null values # duplicate values # datatypes # rename columns/make columns consistent - in EDAP-2 # add or remove columns - may need to perform addition, subtraction, multiplication and division. # Split strings at commas in a column and form two distinct columns # averaging and filling data at null values df.head() df.shape df.describe() # check for datatypes of different columns. df.dtypes # Year should be numeric # Date should be datetime # Object datatype means String df["Year"] = pd.to_numeric(df["Year"]) # when we want all the rows that donot have any null value in a particular column. df[df["Medal"].notnull()].head() # count also counts null values. Hence cannot be used for null values. df.isnull().count() # isnull gives boolean values df.isnull() # To identify null values you have to use sum function. df.isnull().sum() # dropna drops all rows with null values df.dropna().head() # Use fillna() # if you want to fill null values with avg of remaining values in same column then use below code. # showing error coz of restart. otherwise the code is good. average = np.round(np.mean(df.Age), 1) df["Age"] = df["Age"].fillna(average) print("Average age: ", average) df.head() df.isnull().sum() # Use fillna() # if you want to fill null values with avg of remaining values in same column then use below code. # showing error coz of restart. otherwise the code is good. average = np.round(np.mean(df.Weight), 1) df["Weight"] = df["Weight"].fillna(average) print("Average Weight: ", average) df.head() # Use fillna() # if you want to fill null values with avg of remaining values in same column then use below code. # showing error coz of restart. otherwise the code is good. average = np.round(np.mean(df.Age), 1) df["Height"] = df["Height"].fillna(average) print("Average Height: ", average) df.head() df.isnull().sum() df.head() # Duplicate rows(Get boolean values) # True boolean value indicates a duplicate row. df.duplicated() # Duplicate rows. Will return duplicate rows only. Wont return the original/first row. df.loc[df.duplicated()].head() # How many rows are duplicated df.duplicated().sum() # Drop duplicated rows # ~ is used for inverse. df = df.drop_duplicates(keep="first") df.head() df.shape # count also counts null values. Hence cannot be used for null values. df.isnull().sum() # Changing the column name df = df.rename({"Weight": "Weight(in kg)", "Height": "Height(in cm)"}, axis=1) df.head() df1 = df["Sport"].value_counts() df1.head(20) # Queries - # Athletics - relation with age, weight and height and optimal characteristics for a gold medal. # Women and Men - trend in participation of women and Men in olympics with time. # Football - Which team has won the highest number of Golds in Olympic Football event. # ATHLETICS RELATIONSHIP WITH HEIGHT, AGE AND WEIGHT df3 = df[(df.Sport == "Athletics") & (df.Medal == "Gold")][ ["Year", "Age", "Height(in cm)", "Weight(in kg)"] ] df3 # oLYMPIC YAER-WISE MEAN CHARACTERISTICS OF PEOPLE WHO WON GOLD MEDAL IN ATHLETICS df4 = df3.groupby("Year")[["Age", "Height(in cm)", "Weight(in kg)"]].mean() df4.head() # PLOTTING YEAR TO MEAN AGE, MEAN HEIGHT AND MEAN WEIGHT FOR GOLD MEADALISTS IN OLYMPICS plt.figure(figsize=(15, 5)) sns.lineplot(x="Year", y="Age", data=df4) sns.lineplot(x="Year", y="Weight(in kg)", data=df4) sns.lineplot(x="Year", y="Height(in cm)", data=df4) plt.legend(labels=["Age", "Weight(in kg)", "Height(in cm)"]) plt.ylabel("Age, weight, Height") plt.show() # Women participation in olympics. df6 = df[df.Sex == "F"].groupby("Year")[["Sex"]].count() df6.head() # Plotting participation of Men in olympics with time df7 = df[df.Sex == "M"].groupby("Year")[["Sex"]].count() df7.head(10) # Plotting the participation of men and women in olympics with time plt.figure(figsize=(15, 5)) sns.lineplot(x="Year", y="Sex", data=df6) sns.lineplot(x="Year", y="Sex", data=df7) plt.show() # Which team has won the highest number of Golds in Olympics Football Events. df8 = df[(df.Sport == "Football") & (df.Medal == "Gold")] df8.head() df9 = df8["Team"].value_counts().reset_index() df9["Team"] = (df9["Team"] / 17).round(0) df9.head() plt.pie(data=df9, x="Team", radius=2, labels="index", autopct="%.0f%%") plt.show()
# Import libraries import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as implt import tensorflow as tf from tensorflow.keras.preprocessing import image_dataset_from_directory # Helper functions def plot_loss_curve(history): loss = history.history["loss"] val_loss = history.history["val_loss"] accuracy = history.history["accuracy"] val_accuracy = history.history["val_accuracy"] epochs = range(len(loss)) # Plot loss plt.plot(epochs, loss, label="training_loss") plt.plot(epochs, val_loss, label="val_loss") plt.title("Loss") plt.xlabel("Epochs") plt.legend() # Plot accuracy plt.figure() plt.plot(epochs, accuracy, label="training_accuracy") plt.plot(epochs, val_accuracy, label="val_accuracy") plt.title("Accuracy") plt.xlabel("Epochs") plt.legend() # Create a variable for store our data folder's path ROOT = "/kaggle/input/cats-in-the-wild-image-classification" # Inspect our data folder for dir_name, folder_names, file_names in os.walk(ROOT): print( f"There is {len(folder_names)} folders and {len(file_names)} files in {dir_name}" ) # Create train, validation and test directory train_dir = ROOT + "/train/" valid_dir = ROOT + "/valid/" test_dir = ROOT + "/test/" # Create train, validation and test datasets tf.random.set_seed(42) IMAGE_SHAPE = (224, 224) BATCH_SIZE = 32 print("Create train dataset...") train_data = image_dataset_from_directory( directory=train_dir, image_size=IMAGE_SHAPE, batch_size=BATCH_SIZE, label_mode="categorical", ) print("Create validation dataset...") valid_data = image_dataset_from_directory( directory=valid_dir, image_size=IMAGE_SHAPE, batch_size=BATCH_SIZE, label_mode="categorical", ) print("Create test dataset...") test_data = image_dataset_from_directory( directory=test_dir, image_size=IMAGE_SHAPE, batch_size=BATCH_SIZE, label_mode="categorical", ) # Inspect our train dataset train_data # Inspect our validation dataset valid_data # Inspect our labels train_data.class_names # Get a single batch for example for image, label in train_data.take(1): print(image, label) # Create a model with transfer learning, with EfficientNetB0 and feature extraction # Set the random seed tf.random.set_seed(42) # Create base model base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False # Create inputs inputs = tf.keras.layers.Input(shape=(224, 224, 3), name="input_layer") # Pass inputs to the base model x = base_model(inputs) # Create pooling layer x = tf.keras.layers.GlobalAveragePooling2D(name="pooling_layer")(x) # Create outputs outputs = tf.keras.layers.Dense(10, activation="softmax", name="output_layer")(x) # Create an instance of our model model_0 = tf.keras.Model(inputs, outputs) # Compile the model model_0.compile( loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adam(), metrics=["accuracy"], ) # Fit the model history_0 = model_0.fit( train_data, epochs=5, steps_per_epoch=len(train_data), validation_data=valid_data, validation_steps=len(valid_data), ) # Plot history_0 pd.DataFrame(history_0.history).plot() # Plot loss and accuracy separately plot_loss_curve(history_0) # Evaluate on test data model_0.evaluate(test_data)
# # Introduction # Neural Collaborative Filtering (NCF) - a deep MF model that uses a neural network to model the interactions between users and items. NCF can be trained using stochastic gradient descent and has been shown to outperform traditional MF methods like SVD and NMF. # Source: Factorization Machine models in PyTorch (https://github.com/rixwew/pytorch-fm) # This version of code uses MovieLens20M dataset. # import numpy as np import pandas as pd import os import tqdm import torch from torch.utils.data import DataLoader from sklearn.metrics import roc_auc_score, mean_squared_error from pt_layer import FeaturesEmbedding, MultiLayerPerceptron # # Read the data ratings = pd.read_csv( "/kaggle/input/movielens-20m-dataset/rating.csv", error_bad_lines=False, warn_bad_lines=False, ) # Check the 20M ratings data. ratings.head() ratings.shape # # Prepare the dataset class MovieLensDataset(torch.utils.data.Dataset): """ MovieLens Dataset Data preparation treat samples with a rating less than 3 as negative samples """ def __init__(self, ratings): data = ratings.copy().to_numpy() self.items = data[:, :2].astype(np.int32) - 1 # -1 because ID begins from 1 self.targets = self.__preprocess_target(data[:, 2]).astype(np.float32) self.field_dims = np.max(self.items, axis=0) + 1 self.user_field_idx = np.array((0,), dtype=np.int64) self.item_field_idx = np.array((1,), dtype=np.int64) def __len__(self): return self.targets.shape[0] def __getitem__(self, index): return self.items[index], self.targets[index] def __preprocess_target(self, target): target[target < 3] = 0 target[target >= 3] = 1 return target def get_dataset(): return MovieLensDataset(ratings) # # Prepare the algorithm # ## The model class NeuralCollaborativeFiltering(torch.nn.Module): """ A pytorch implementation of Neural Collaborative Filtering. Reference: X He, et al. Neural Collaborative Filtering, 2017. """ def __init__( self, field_dims, user_field_idx, item_field_idx, embed_dim, mlp_dims, dropout ): super().__init__() self.user_field_idx = user_field_idx self.item_field_idx = item_field_idx self.embedding = FeaturesEmbedding(field_dims, embed_dim) self.embed_output_dim = len(field_dims) * embed_dim self.mlp = MultiLayerPerceptron( self.embed_output_dim, mlp_dims, dropout, output_layer=False ) self.fc = torch.nn.Linear(mlp_dims[-1] + embed_dim, 1) def forward(self, x): """ :param x: Long tensor of size ``(batch_size, num_user_fields)`` """ x = self.embedding(x) user_x = x[:, self.user_field_idx].squeeze(1) item_x = x[:, self.item_field_idx].squeeze(1) x = self.mlp(x.view(-1, self.embed_output_dim)) gmf = user_x * item_x x = torch.cat([gmf, x], dim=1) x = self.fc(x).squeeze(1) return torch.sigmoid(x) # ## Early stopper class EarlyStopper(object): def __init__(self, num_trials, save_path): self.num_trials = num_trials self.trial_counter = 0 self.best_accuracy = 0 self.save_path = save_path def is_continuable(self, model, accuracy): if accuracy > self.best_accuracy: self.best_accuracy = accuracy self.trial_counter = 0 torch.save(model, self.save_path) return True elif self.trial_counter + 1 < self.num_trials: self.trial_counter += 1 return True else: return False def get_model(dataset): field_dims = dataset.field_dims return NeuralCollaborativeFiltering( field_dims, embed_dim=64, mlp_dims=(32, 32), dropout=0.2, user_field_idx=dataset.user_field_idx, item_field_idx=dataset.item_field_idx, ) # ## Train def train(model, optimizer, data_loader, criterion, device, log_interval=100): model.train() total_loss = 0 tk0 = tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0) for i, (fields, target) in enumerate(tk0): fields, target = fields.to(device), target.to(device) y = model(fields) loss = criterion(y, target.float()) model.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() if (i + 1) % log_interval == 0: tk0.set_postfix(loss=total_loss / log_interval) total_loss = 0 # ## Test/validation def test(model, data_loader, device): model.eval() targets, predicts = list(), list() with torch.no_grad(): for fields, target in tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0): fields, target = fields.to(device), target.to(device) y = model(fields) targets.extend(target.tolist()) predicts.extend(y.tolist()) return roc_auc_score(targets, predicts) # ## Settings device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda:0") learning_rate = 0.001 weight_decay = 1e-6 batch_size = 2048 epochs = 10 model_name = "ncf" # # Prepare train, valid & test datasets dataset = get_dataset() train_length = int(len(dataset) * 0.8) valid_length = int(len(dataset) * 0.1) test_length = len(dataset) - train_length - valid_length train_dataset, valid_dataset, test_dataset = torch.utils.data.random_split( dataset, (train_length, valid_length, test_length) ) train_data_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=2) valid_data_loader = DataLoader(valid_dataset, batch_size=batch_size, num_workers=2) test_data_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=2) # ## Fit the model model = get_model(dataset).to(device) criterion = torch.nn.BCELoss() optimizer = torch.optim.Adam( params=model.parameters(), lr=learning_rate, weight_decay=weight_decay ) early_stopper = EarlyStopper(num_trials=5, save_path=f"{model_name}.pt") auc_values = [] for epoch_i in range(epochs): train(model, optimizer, train_data_loader, criterion, device) auc_valid = test(model, valid_data_loader, device) print("epoch:", epoch_i, "validation: auc:", auc_valid) if not early_stopper.is_continuable(model, auc_valid): print(f"validation: best auc: {early_stopper.best_accuracy}") break auc_test = test(model, test_data_loader, device) auc_values.append((epoch_i, auc_valid, auc_test)) print(f"test auc: {auc_test}") from matplotlib import pyplot as plt auc_values = np.array(auc_values) f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax.plot(auc_values[:, 1], label="validation loss") ax.plot(auc_values[:, 2], label="test loss") ax.legend() plt.suptitle("Train/Validation loss / auc") plt.show()
import string import numpy as np import pandas as pd from numpy import array from pickle import load from PIL import Image import pickle from collections import Counter import matplotlib.pyplot as plt import sys, time, os, warnings warnings.filterwarnings("ignore") import re import keras import tensorflow as tf from tqdm import tqdm from nltk.translate.bleu_score import sentence_bleu from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import os import random from random import randint import cv2 image_path = "/kaggle/input/final-year-project-51/bengali-visual-genome-10/bengali-visual-genome-train.images" dir_bengali_text = "/kaggle/input/final-year-project-51/bengali-visual-genome-10/bengali-visual-genome-train.txt" jpgs = os.listdir(image_path) print("Total Images in Dataset = {}".format(len(jpgs))) df = pd.read_csv(dir_bengali_text, sep="\t") df.columns = ["image_id", "X", "Y", "Width", "Height", "English Text", "Bengali Text"] df.head() # saving data df.to_csv("data.csv") image_ids = list(df["image_id"]) english_texts = list(df["English Text"]) bengali_texts = list(df["Bengali Text"]) english_captions = {} bengali_captions = {} i = 0 for id in image_ids: english_captions[id] = english_texts[i] bengali_captions[id] = bengali_texts[i] i += 1 len(image_ids) dirs = [] for file in os.listdir(image_path): dirs.append(os.path.join(image_path, file)) len(dirs) len(im) def image_function(var, title): plt.imshow(img) plt.grid("off") plt.axis("off") plt.title(title) def get_id(image_name): x = image_name.split(".") x = x[1].split("/") return int(x[-1]) def get_english_caption(id): return english_captions[id] def get_bengali_caption(id): return bengali_captions[id] # plotting image img = cv2.imread(dirs[3]) id = get_id(dirs[3]) image_function(img, get_english_caption(id)) size_of_dirs = len(dirs) plt.figure(figsize=(16, 10)) for i in range(16): ax = plt.subplot(4, 4, i + 1) img_ind = randint(0, 1000) img = cv2.imread(dirs[img_ind]) id = get_id(dirs[img_ind]) image_function(img, get_english_caption(id)) plt.figure(figsize=(16, 10)) for i in range(16): ax = plt.subplot(4, 4, i + 1) img_ind = randint(0, 1000) img = cv2.imread(dirs[img_ind]) id = get_id(dirs[img_ind]) image_function(img, get_english_caption(id)) img_ind = randint(0, 1000) img = cv2.imread(dirs[img_ind]) id = get_id(dirs[img_ind]) image_function(img, get_english_caption(id)) print("Bengali Caption : {}".format(bengali_captions[id])) img_ind = randint(0, 1000) img = cv2.imread(dirs[img_ind]) id = get_id(dirs[img_ind]) image_function(img, get_english_caption(id)) print("Bengali Caption : {}".format(bengali_captions[id])) img_ind = randint(0, 1000) img = cv2.imread(dirs[img_ind]) id = get_id(dirs[img_ind]) image_function(img, get_english_caption(id)) print("Bengali Caption : {}".format(bengali_captions[id]))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # drawinggraphs import matplotlib.colors as colors from sklearn.utils import resample # downsample the dataset from sklearn.model_selection import train_test_split # train-test split from sklearn.preprocessing import StandardScaler # scale and center the data from sklearn.svm import SVC # SVM for classification from sklearn.model_selection import GridSearchCV # this will do cross validation from sklearn.metrics import confusion_matrix # this creates a confusion matrix from sklearn.metrics import plot_confusion_matrix # draws a confusion matrix from sklearn.decomposition import PCA # to perform PCA to plot the data # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Load the dataset df = pd.read_csv( "/kaggle/input/default-of-credit-card-clients-dataset/UCI_Credit_Card.csv" ) df.head() # # Content # There are 25 variables: # * **ID**: ID of each client # * **LIMIT_BAL**: Amount of given credit in NT dollars (includes individual and family/supplementary credit # * **SEX**: Gender (1=male, 2=female) # * **EDUCATION**: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown) # * **MARRIAGE**: Marital status (1=married, 2=single, 3=others) # * **AGE**: Age in years # * **PAY_x**: Repayment status for last 6 months (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, … 8=payment delay for eight months, 9=payment delay for nine months and above) # * **BILL_AMTx**: Amount of bill statement for last 6 months (NT dollar) # * **PAY_AMTx**: Amount of previous payment for last 6 months (NT dollar) # * **default.payment.next.month**: Default payment (1=yes, 0=no) # Rename Default column # Drop ID column df.rename({"default.payment.next.month": "DEFAULT"}, axis=1, inplace=True) df.drop("ID", axis=1, inplace=True) df.head(2) # # Missing Data # ## 1. Identifying Missing Data df.dtypes # Since every column is int64/float64, it's good, since none of them would have **NA** or other character based placeholder for missing values in dataframe **df**. # Lets make sure the column contains values which are acceptable and mentioned in the dataset description # [dataset description](#content) # 1. Let's make sure SEX has 2 values 1 & 2 df["SEX"].unique() # 2. Education should have 1-6 values, with 5,6 - unknown values df["EDUCATION"].unique() # 0 is not specified in the description, might be missing numbers # 5,6 are unknown values # 3. Marriage should have 1-3 values df["MARRIAGE"].unique() # Like Education, Marriage also contains value 0, guess is that those are missing records # 4. AGE df["AGE"].describe() # 5. Default df["DEFAULT"].unique() # ## 2. Dealing with Missing Data len(df.loc[(df["EDUCATION"] == 0) | (df["MARRIAGE"] == 0)]) # So, only 68 rows have missing values. Now let's count the total number of rows in the dataset 100 * len(df.loc[(df["EDUCATION"] == 0) | (df["MARRIAGE"] == 0)]) / len(df) # Less than 1% of data is missing, so we'll drop these records. df_no_missing = df.loc[(df["EDUCATION"] != 0) & (df["MARRIAGE"] != 0)] df_no_missing.shape print( "Education-", df_no_missing["EDUCATION"].unique(), "Marriage-", df_no_missing["MARRIAGE"].unique(), ) # # Downsample the data # **Support Vector Machines** are great with small datasets, but not awesome with large ones, and this dataset, while not huge is big enough to take a long time to optimize with **Cross Validation**. So we'll downsample both categories, customers who did and did not default to 2000 each. # Let's check the customers in dataset df_no_missing["DEFAULT"].value_counts() df_no_default = df_no_missing[df_no_missing["DEFAULT"] == 0] df_default = df_no_missing[df_no_missing["DEFAULT"] == 1] # Now, downsample the dataset that did not default -- df_no_default_downsampled = resample( df_no_default, replace=False, n_samples=1000, random_state=42 ) len(df_no_default_downsampled) # Now, downsample the dataset that default -- df_default_downsampled = resample( df_default, replace=False, n_samples=1000, random_state=42 ) len(df_default_downsampled) # **Merge** these two downsampled dataframes into single dataframe-- df_downsample = pd.concat([df_no_default_downsampled, df_default_downsampled]) len(df_downsample) # # Format Data Part 1: Split the data into dependent & independent variables # **Note:** We'll use `.copy()` method to create df X & y. Because by default pandas uses copy by reference. Using `copy()` ensures that the original data is not modified in case we make changes to X & y, so we won't have to reload the whole data and perform pre-processing steps again. X = df_downsample.drop(["DEFAULT"], axis=1).copy() y = df_downsample["DEFAULT"].copy() X.head(2) y.head(2) # # Format the Data Part2: One-Hot Encoding # SEX, EDUCATION, MARRIAGE & PAY_ are supposed to be categorical, so they'll be modified . This is because, while sklearn **Support Vector Machines** natively supports continuous data, like LIMIT_BAL, AGE, they do not natively support categorical data, like MARRIAGE which contains 3 different categories. Thus, we'll perform OHE on those columns. X_encoded = pd.get_dummies( X, columns=[ "SEX", "EDUCATION", "MARRIAGE", "PAY_0", "PAY_2", "PAY_3", "PAY_4", "PAY_5", "PAY_6", ], ) X_encoded.head() # # Format the Data Part3: Centering and Scaling # The **Radial Basis Function (RBF)** that we are using with our **Support Vector Machine** assumes that the data are centered and scaled. In other words, each column should have a mean value=0 and a standard deviation of 1. So we neeed to do this to both the training and testing datasets. # ***NOTE***: We split the data into training and testing datasets and then scale them separately to avoid the **Data Leakage**. # **Data Leakage** occurs when information about the training dataset corrupts or influences the testing dataset. X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, random_state=42) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # # Build a Preliminary Support Vector Machine clf_svm = SVC(random_state=42) clf_svm.fit(X_train_scaled, y_train) # OK, so we've built a **SVM** for classification. Let's check how it performs on the **Testing Dataset** and then draw a **Confusion Matrix**. plot_confusion_matrix( clf_svm, X_test_scaled, y_test, values_format="d", display_labels=["Did not default", "Defaulted"], ) # # Optimize Parameters with Cross Validation and GridSearchCV # Since we have two parameters to optimize, we will use `GridSearchCV`. We specify a bunch of potential values for **gamma** and **C**, and `GridSearchCV` will search all possible combinations of the parameters. param_grid = [ { "C": [0.5, 1, 10, 100], # Values of C should be > 0 "gamma": ["scale", 1, 0.1, 0.01, 0.001, 0.0001], "kernel": ["rbf"], }, ] ## I have added C=1 & gamma='scale' as possible choices as well, since they are default values optimal_params = GridSearchCV(SVC(), param_grid, cv=5, scoring="accuracy", verbose=0) # Try changing scoring ## didn't changed the results much in my case optimal_params.fit(X_train_scaled, y_train) print(optimal_params.best_params_) # And we can see that the ideal value for `C is 100` which means we'll use Regularization, and the ideal value for `gamma = 0.001` # # Buidling, Evaluating, Drawing and Interpreting the Final SVM # Now using the obtained values of C and gamma we'll build our final model clf_svm = SVC(C=100, gamma=0.001, random_state=42) clf_svm.fit(X_train_scaled, y_train) plot_confusion_matrix( clf_svm, X_test_scaled, y_test, values_format="d", display_labels=["Did not default", "Defaulted"], ) # And the results from the optimized **Support Vector Machine** are just a little bit better than before. **2** more people were correctly classified as not defaulting. # In other words, the **SVM** was pretty good straight out of the box without much optimization. This makes **SVMs** a great, quick and dirty method for relatively small datasets. # **NOTE:** Although classification with this dataset and an **SVM** is not awesome, it may be better than other methods. We'd have to compare to find out. # The last thing we are going to do is draw a support vector machine decision boundary and discuss how to interpret it. # The first we need to do is count the number of columns in **X**: len(df_downsample.columns) pca = PCA() # By default, PCA centers the data but does not scale it. X_train_pca = pca.fit_transform(X_train_scaled) per_var = np.round(pca.explained_variance_ratio_ * 100, decimals=1) labels = [str(x) for x in range(1, len(per_var) + 1)] plt.bar(x=range(1, len(per_var) + 1), height=per_var) plt.tick_params( axis="x", # changes apply to the x-axis which="both", # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False, # labels along the bottom edge are off ) plt.ylabel("Percentage of explained variance") plt.xlabel("Principal Components") plt.title("Scree Plot") plt.show() # The scree plot shows that the first principal component, PC1, accounts for a relatively large amount of variation in the raw data, and this means it will be a good candidate for the x-axis in the 2-D graph. However PC2 is not much different from PC3 or PC4, which doesn't bode well for dimension reduction. # Since we don't have a choice let's go with it. Graph will look funky though!! # Let's draw the PCA graph. First let's optimize an SVM fit to PC1 and PC2. train_PC1_coords = X_train_pca[:, 0] train_PC2_coords = X_train_pca[:, 1] ## NOTE: ## PC1 contains x-axis coordinates of the data after PCA ## PC2 contains y-axis coordinates of the data after PCA ## Now center and scaler the PCs... pca_train_scaled = scale(np.column_stack((train_PC1_coords, train_PC2_coords))) ## Now we optimize the SVM fit to the x-axis and y-axis coordinates ## of the data after PCA dimensionality reduction... param_grid = [ { "C": [1, 10, 100, 1000], # Values of C should be > 0 "gamma": ["scale", 1, 0.1, 0.01, 0.001, 0.0001], "kernel": ["rbf"], }, ] optimal_params = GridSearchCV(SVC(), param_grid, cv=5, scoring="accuracy", verbose=0) optimal_params.fit(pca_train_scaled, y_train) print(optimal_params.best_params_) # Now that we have the optimal values for `C` and `gamma` let's draw the graph clf_svm = SVC(C=1000, gamma=0.001, random_state=42) clf_svm.fit(pca_train_scaled, y_train) ## Transform the test dataset with the PCA... X_test_pca = pca.transform(X_train_scaled) # X_test_pca = pca.transform(X_test_scaled) test_pc1_coords = X_test_pca[:, 0] test_pc2_coords = X_test_pca[:, 1] ## Now create a matric of points that we can use to show the decision regions/ ## The matrix will be a little bit larger than the transformed ## PCA points so that we can plot all of the PCA points on it without them being on the edge x_min = test_pc1_coords.min() - 1 x_max = test_pc1_coords.max() + 1 y_min = test_pc2_coords.min() - 1 y_max = test_pc2_coords.max() + 1 xx, yy = np.meshgrid( np.arange(start=x_min, stop=x_max, step=0.1), np.arange(start=y_min, stop=y_max, step=0.1), ) ## Now we'll classify every point in that ## matrix with the SVM. Points on one side of the ## Classification boundary will get 0, and points on the other ## side will get 1. Z = clf_svm.predict(np.column_stack((xx.ravel(), yy.ravel()))) Z = Z.reshape(xx.shape) ## Plot the decision boundary and the scatter plot of the PCA-transformed test data fig, ax = plt.subplots(figsize=(10, 10)) ax.contourf(xx, yy, Z, alpha=0.1) cmap = colors.ListedColormap(["#e41a1c", "#4daf4a"]) scatter = ax.scatter( test_pc1_coords, test_pc2_coords, c=y_train, cmap=cmap, s=100, edgecolors="k", alpha=0.7, ) legend = ax.legend( scatter.legend_elements()[0], scatter.legend_elements()[1], loc="upper right" ) legend.get_texts()[0].set_text("No Default") legend.get_texts()[1].set_text("Yes Default") ## now add axis labels and titles ax.set_ylabel("PC2") ax.set_xlabel("PC1") ax.set_title("Decision surface using the PCA transformed/projected features") plt.show()
# # Which Star Cluster is Older? # ### Determine if NGC 188 or M67 is the older of the two star clusters by plotting a Color-Magnitude Diagram. # ### This notebook is a simple example of how to use the data. # Please see https://www.kaggle.com/datasets/austinhinkel/gaia-dr3-data-for-comparing-two-star-clusters for dataset information. This limited example shows a color-magnitude diagram so that students can determine which star cluster is older. It differs from https://www.kaggle.com/code/austinhinkel/quickstarclusterexample as it has a slight step up in complexity -- students must first determine which stars belong to the star clusters before analyzing them. # Tags: Data visualization, Data story-telling, astronomy, Gaia # Imports: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # plotting # Read in (unfiltered) Data: # M67: dataM67 = np.loadtxt( "/kaggle/input/gaia-dr3-data-for-comparing-two-star-clusters/M67_full.csv", delimiter=",", skiprows=1, ) prlx_M67 = dataM67[:, 0] # Parallax gmag_M67 = dataM67[:, 1] # G-band magnitude bpmrp_M67 = dataM67[:, 2] # BP minus RP color pmra_M67 = dataM67[:, 3] # proper motion ra direction pmdec_M67 = dataM67[:, 4] # proper motion dec direction # NGC 188: dataNGC188 = np.loadtxt( "/kaggle/input/gaia-dr3-data-for-comparing-two-star-clusters/NGC188_full.csv", delimiter=",", skiprows=1, ) prlx_NGC188 = dataNGC188[:, 0] # Parallax gmag_NGC188 = dataNGC188[:, 1] # G-band magnitude bpmrp_NGC188 = dataNGC188[:, 2] # BP minus RP color pmra_NGC188 = dataNGC188[:, 3] # proper motion ra direction pmdec_NGC188 = dataNGC188[:, 4] # proper motion dec direction # calculate distances: d_M67 = 1.0 / prlx_M67 # kiloparsecs d_NGC188 = 1.0 / prlx_NGC188 # kiloparsecs # calculate absolute magnitudes AbsMag_M67 = gmag_M67 - 5.0 * np.log10(d_M67 / 0.01) AbsMag_NGC188 = gmag_NGC188 - 5.0 * np.log10(d_NGC188 / 0.01) # Find star clusters by looking at their proper motion (~speed) through space. # They move together and should form an overdensity in proper motion space. # M67 plt.plot(pmra_M67, pmdec_M67, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in M67 line of sight") plt.show() # NGC 188 plt.plot(pmra_NGC188, pmdec_NGC188, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in NGC 188 line of sight") plt.show() # Careful! all stars are show in the above plots. # The outliers make it seem as though there is a cluster, # but in reality these stars have proper motions # that differ by ~100 mas/yr -- no way they are gravitationally bound! # Find star clusters by looking at their proper motion (~speed) through space. # They move together and should form an overdensity in proper motion space. # M67 plt.plot(pmra_M67, pmdec_M67, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in M67 line of sight") plt.xlim([-40, 40]) plt.ylim([-40, 40]) plt.show() # NGC 188 plt.plot(pmra_NGC188, pmdec_NGC188, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in NGC 188 line of sight") plt.xlim([-20, 20]) plt.ylim([-20, 20]) plt.show() # Now we can start to see the clusters in the above plots. Let's zoom in further. # M67 plt.plot(pmra_M67, pmdec_M67, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in M67 line of sight") plt.xlim([-15, -5]) plt.ylim([-10, 0]) plt.show() # NGC 188 plt.plot(pmra_NGC188, pmdec_NGC188, ",") plt.xlabel("Proper Motion in Right Ascension Direction (mas/yr)") plt.ylabel("Proper Motion in Declination Direction (mas/yr)") plt.title("Proper motions of star in NGC 188 line of sight") plt.xlim([-5, 0]) plt.ylim([-5, 0]) plt.show() # Now let's cut the stars to keep only the stars with the correct proper motions # The remaining stars will belong to the star clusters. bpmrp_M67_cut = bpmrp_M67[ (pmra_M67 > -12) * (pmra_M67 < -10) * (pmdec_M67 > -4) * (pmdec_M67 < -2) ] AbsMag_M67_cut = AbsMag_M67[ (pmra_M67 > -12) * (pmra_M67 < -10) * (pmdec_M67 > -4) * (pmdec_M67 < -2) ] bpmrp_NGC188_cut = bpmrp_NGC188[ (pmra_NGC188 > -2.8) * (pmra_NGC188 < -1.7) * (pmdec_NGC188 > -1.5) * (pmdec_NGC188 < -0.5) ] AbsMag_NGC188_cut = AbsMag_NGC188[ (pmra_NGC188 > -2.8) * (pmra_NGC188 < -1.7) * (pmdec_NGC188 > -1.5) * (pmdec_NGC188 < -0.5) ] plt.plot(bpmrp_M67_cut, AbsMag_M67_cut, ",") plt.plot(bpmrp_NGC188_cut, AbsMag_NGC188_cut, ",") plt.gca().invert_yaxis() plt.xlabel("Blue-pass minus Red-pass Color (mag)") plt.ylabel("Absolute Magnitude (mag)") plt.title("Color Magnitude Diagrams for M67 and NGC 188 Star Clusters") plt.legend(["M67 (blue)", "NGC 188 (orange)"]) plt.show() # Notice the Color-Magnitude Diagrams have different turn-off points. # This indicates they have different ages. # Can you figure out which is older?
# # MEI Introduction to Data Science # # Lesson 6 - Activity 1 # # Table of Contents # * [Introduction](#Introduction) # * [Problem](#Problem) # * [Importing libraries and data](#Importing-libraries-and-data) # * [Pre-processing the data](#Pre-processing-the-data) # * [Exploring the data](#Exploring-the-data) # * [Statistics](#Statistics) # * [Visualisations](#Visualisations) # * [Checkpoint 1](#Checkpoint-1) # * [Building a model with a single input feature](#Building-a-model-with-a-single-input-feature) # * [Building a model based on bill length](#Building-a-model-based-on-bill-length) # * [Interpretting decision trees](#Interpretting-decision-trees) # * [Building a model based on other features](#Building-a-model-based-on-other-features) # * [Checkpoint 2](#Checkpoint-2) # * [Building a model based on two input features](#Building-a-model-based-on-two-input-features) # * [Checkpoint 3](#Checkpoint-3) # # Introduction # The problem in this activity is an introduction to a different type of *machine learning* from the one you met in lesson 5. In it you will explore how you can predict whether data should be classified into one of two groups based on the values of other features in a dataset. Classifying data into two groups is known as **binary classification**. # The data for this activity comes from a study of three different species of Antartic penguin: Adelie, Chinstrap and Gentoo. The data was observed on the islands of the Palmer Archipelago, Antarctica between 2007 and 2009. There are 344 individual records, each representing a single penguin. # ## Problem # ***Can the species of a penguin be predicted using different body measurements?*** # To answer this question you could find statistics and create charts comparing the numerical features recorded for the different species of penguins in the dataset. You can then build a model that predicts the species of penguin based on the numerical features. # ## Importing libraries and data # > Run the code boxes below to import the libraries and the data. # import pandas and seaborn import pandas as pd import seaborn as sns # import modelling functions for decision trees from sklearn from sklearn.tree import plot_tree from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # import pyplot fro matplotlib for displaying decision trees import matplotlib.pyplot as plt # createa a plot_decision_tree command for displaying the decision tree def plot_decision_tree(model, size=14): fig, ax = plt.subplots(figsize=(18, 8)) plot_tree( model, filled=True, impurity=False, label="root", feature_names=input_features, proportion=True, class_names=["No", "Yes"], ax=ax, fontsize=size, ) plt.show() # import the data - the .dropna() function removes any rows with missing data penguin_data = pd.read_csv("/kaggle/input/penguins/penguins.csv") # display the data to check it has imported penguin_data # This data set contains information about penguins observed on the islands of the Palmer Archipelago, Antarctica between 2007 and 2009. # Features: # * **Species**: *Adélie, Chinstrap or Gentoo* # * **Island**: *Where the penguin was observed (Biscoe, Dream or Torgersen)* # * **bill_length_mm**: *Bill length (mm)* # * **bill_depth_mm**: *Bill depth (mm)* # * **flipper_length_mm**: *Flipper length (mm)* # * **body_mass_g**: *Body mass (g)* # * **sex**: *male or female* # * **year**: *2007, 2008 or 2009* # > Run the code below to explore the data types for the features. # display the data types penguin_data.info() # # Pre-processing the data # ## Removing incomplete rows # Some of the rows are incomplete. You can see this in the table, where values are recorded as `NaN` and in the count of the `non-null` values for `sex`. # These rows can be be removed before analysing the data. You can do this using the `.dropna()` command. # > Run the code below to remove the rows which have missing values. # import the data - the .dropna() function removes any rows with missing data penguin_data = penguin_data.dropna().copy() # display the data to check penguin_data # There are 333 penguins for which there is complete data. # ## Adding a binary feature # In this activity you are going to create a model that predicts whether a penguin is a Gentoo penguin. To do this you will need a *binary* feature that is 0 or 1 depending on whether the penguin is a Gentoo. # > Run the code below to create a new feature `gentoo` that is 1 for all the Gentoo penguins and 0 otherwise. # add a binary feature to identify Gentoo penguins penguin_data["gentoo"] = penguin_data["species"].replace( {"Adelie": 0, "Chinstrap": 0, "Gentoo": 1} ) # check the data penguin_data # # Exploring the data # ## Statistics # You can use `groupby` to see if there are any obvious differences in the measurements for the different species. # > Run the code below to explore the statistics for `bill_length_mm` for the different species. # display the statistics for bill_length_mm grouped by species penguin_data.groupby("species")["bill_length_mm"].describe().round(2) # > Add code in the boxes below to explore the statistics for `bill_depth_mm`, `flipper_length_mm` and `body_mass_g` grouped by species. # display the statistics for bill_depth_mm grouped by species # display the statistics for flipper_length_mm grouped by species # display the statistics for body_mass_g grouped by species # ## Visualisations # KDE plots grouped by species will help compare the distributions. # > Run the code in the box below to create a KDE plot for `bill_length_mm` grouped by species. # KDE plot of flipper length grouped by species sns.displot(data=penguin_data, kind="kde", x="bill_length_mm", hue="species", aspect=2) # > Add code in the boxes below to create KDE plots for `bill_depth_mm`, `flipper_length_mm` and `body_mass_g` grouped by species. # KDE plot of bill_depth_mm grouped by species # KDE plot of flipper_length_mm grouped by species # KDE plot of body_mass_g grouped by species # ## Checkpoint 1 # > * Use your statistics and visualisations to describe the differences between the three species of penguin. # > * Explain which feature you think would be the most useful to distinguish a Gentoo penguin from the other two species. # # Building a model with a single input feature # In this activity you are going to generate some binary classification models. These will split the data into two groups depending on some of the values of the numerical features. For example, a simple model might be to classify penguins with bill lengths greater than 40mm as Gentoo penguins and those with bill lengths less than 40mm as not Gentoo penguins. # You will use an 75:25 training-testing split for your data as you saw in lesson 5. Your model will be built using 75% of the data and the remaining 25% will be used to measure how well the model perfoms on unseen data. # * To create a model you will send your training data to a machine learning algorithm, `DecisionTreeClassifier`, which will find the best split for your choice of input features. # * You will then measure your model by finding the *accuracy* using the testing data, i.e. the percentage of penguins it has correctly identified. # ## Building a model based on bill length # The code for building and measuring a binary classification model has a very similar structure to the code you met for building a linear regression model in lesson 5. The main differences are that it will display the model using a *decision tree* and the model will be measured using *accuracy*, the percentage of items correctly identified when the model is applied to the testing data. # The code block builds and measures the model using five stages: # * Define the input features and the target feature. The input can be a single feature or a list of features. The target feature has the values 0 or 1. # * Perform a training-testing split. This creates four objects: a training set of inputs and training list of outputs for building the model; a testing set of inputs and testing list of outputs for measuring the model. # * Find the best model for the given input features using the machine learning algorithm `DecisionTreeClassifier`. # * Display the model using a decision tree. # * Create a list of target predictions using the testing data inputs and compare these to the actual values in the testing target list. The percentage correct is given as the accuracy. # > Run the code in the box below to create a binary classification model using `bill_length` as the input. # define the input feature(s) and output (or target) feature input_features = ["bill_length_mm"] input_data = penguin_data[input_features] target_data = penguin_data["gentoo"] # use the train_test_split command to create training and testing testing data input_train, input_test, target_train, target_test = train_test_split( input_data, target_data, train_size=0.75, random_state=1 ) # create the model tree_model = DecisionTreeClassifier(max_depth=1).fit(input_train, target_train) # display the model plot_decision_tree(tree_model) # create a list of the predictions, display a two-way-table of predictions/actual values for the testing data, calculate the accuracy for the testing data target_pred = tree_model.predict(input_test) print("Accuracy: ", (100 * accuracy_score(target_test, target_pred)).round(1), "%") # ## Interpretting decision trees # Decision trees are used to visualise binary classfication models. The top line of the first box, or *node*, tells you how to split the data: you follow the left arrow if this statement is true and the right arrow otherwise. The final line in the bottom row of boxes tells you whether the model has classified the groups as 1/Yes or 0/No. # The model shown here suggests that penguins with a bill length less than or equal to 42.45mm should be classified as not Gentoo and those with a bill length greater than 41.6mm should be classified as Gentoo. When this model is applied to the testing data it has accurately predicted whether 72.6% of the penguins are Gentoo or not. It has therefore misclassified 27.4% of penguins. # The *samples* and *value* lines in the boxes show what proportion of the testing data is being considered at each node and the fraction of these that are 0 or 1. This is useful information for more detailed analysis of decision trees but is beyond the scope of this course. # ## Building a model based on other features # > Add code to the boxes below to build models based on `bill_depth_mm`, `flipper_length_mm` and `body_mass_g`. # Build a model based on bill depth # Build a model based on flipper length # Build a model based on body mass # ## Checkpoint 2 # > * Which input feature gives the best model and which input feature gives the worst model? # > * Explain how this is consistent with your responses to Checkpoint 1. # # Building a model based on two input features # Just as you did with your regression models, you can give more than one input feature. You will need to increase the `max_depth` of your tree from 1 to 2 to allow for more decisions to be made. # > Run the code in the box below to create a model based on bill length and bill depth. # define the input feature(s) and output (or target) feature input_features = ["bill_length_mm", "bill_depth_mm"] input_data = penguin_data[input_features] target_data = penguin_data["gentoo"] # use the train_test_split command to create training and testing testing data input_train, input_test, target_train, target_test = train_test_split( input_data, target_data, train_size=0.75, random_state=1 ) # create the model tree_model = DecisionTreeClassifier(max_depth=2).fit(input_train, target_train) # display the model plot_decision_tree(tree_model) # create a list of the predictions, display a two-way-table of predictions/actual values for the testing data, calculate the accuracy for the testing data target_pred = tree_model.predict(input_test) print("Accuracy: ", (100 * accuracy_score(target_test, target_pred)).round(1), "%")
import pandas as pd import matplotlib.pyplot as plt import numpy as np train = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/train.csv") X_test = pd.read_csv("/kaggle/input/us-college-completion-rate-analysis/x_test.csv") train plt.scatter(train["SAT_average"], train["Completion_rate"]) train = train[(train["SAT_average"] < 1000) | (train["Completion_rate"] > 0.2)] X_train_df = train.drop("Completion_rate", axis=1) y_train = train["Completion_rate"] X_train_df.head() import matplotlib import matplotlib.pyplot as plt import seaborn as sns f, ax = plt.subplots(figsize=(12, 12)) sns.heatmap(X_train_df.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # from sklearn.preprocessing import QuantileTransformer def transform_X(X): X["Tuition_diff"] = X["Tuition_out_state"] - X["Tuition_in_state"] X["total_pct_race"] = ( X["pct_White"] + X["pct_Black"] + X["pct_Hispanic"] + X["pct_Asian"] + 0.01 ) X["share_White"] = X["pct_White"] / X["total_pct_race"] X["share_Black"] = X["pct_Black"] / X["total_pct_race"] X["share_Hispanic"] = X["pct_Hispanic"] / X["total_pct_race"] X["share_Asian"] = X["pct_Asian"] / X["total_pct_race"] X["salary_tuition_ratio_in"] = X["Faculty_salary"] / X["Tuition_in_state"] X["salary_tuition_ratio_out"] = X["Faculty_salary"] / X["Tuition_out_state"] X.drop("ACT_50thPercentile", axis=1, inplace=True) X.drop("Parents_highsch", axis=1, inplace=True) X.drop("Unnamed: 0", axis=1, inplace=True) for col in X.columns: if col != "total_pct_race": X[col + "_total_pct_inter"] = X[col] * X["total_pct_race"] for col in ["Pell_grant_rate"]: X[col + "_total_pct_ratio"] = X[col] / X["total_pct_race"] X[col + "_White_share_inter"] = X[col] * X["share_White"] X[col + "_Black_share_inter"] = X[col] * X["share_Black"] X[col + "_Hispanic_share_inter"] = X[col] * X["share_Hispanic"] X[col + "_Asian_share_inter"] = X[col] * X["share_Asian"] print(X.shape) transform_X(X_train_df) transform_X(X_test) X_train_df from sklearn.ensemble import ExtraTreesRegressor from sklearn.model_selection import RandomizedSearchCV m = ExtraTreesRegressor(random_state=5006) random_grid = { "n_estimators": [300, 400, 500, 600], "max_features": ["sqrt", 0.2, 0.3, 0.4, 0.5], "max_depth": [30, 35, 40, None], "min_samples_split": [2, 3, 4], "min_samples_leaf": [1, 2], "bootstrap": [False], } etr_tuner = RandomizedSearchCV(m, random_grid, cv=5, n_iter=50, verbose=2) etr_tuner.fit(X_train_df, y_train) etr_tuner.best_params_ from sklearn.model_selection import cross_validate m = etr_tuner.best_estimator_ results = cross_validate(m, X_train_df, y_train, cv=5) np.mean(results["test_score"]) m.fit(X_train_df, y_train) print(m.score(X_train_df, y_train)) y_pred = m.predict(X_test) submission = pd.DataFrame.from_dict({"Completion_rate": y_pred}) submission.to_csv("submission.csv", index=True, index_label="id")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import cv2 import scikitplot import seaborn as sns from matplotlib import pyplot import math from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import classification_report import tensorflow as tf from tensorflow.keras import optimizers from tensorflow.keras.models import Model from tensorflow.keras.layers import ( Flatten, Dense, Conv2D, GlobalAveragePooling2D, MaxPool2D, ) from tensorflow.keras.layers import Dropout, BatchNormalization, Activation from tensorflow.keras.callbacks import Callback, EarlyStopping, ReduceLROnPlateau from tensorflow.keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils df = pd.read_csv( "/kaggle/input/facial-expression-recognitionferchallenge/fer2013/fer2013/fer2013.csv" ) df.head(5) df.shape df df["emotion"].value_counts() df["emotion"].unique() len(df["pixels"][0]) math.sqrt(len(df.pixels[35886].split(" "))) emotion_label = { 0: "anger", 1: "disgust", 2: "fear", 3: "happiness", 4: "sadness", 5: "surprise", 6: "neutral", } fig = pyplot.figure(1, (14, 14)) k = 0 for label in sorted(df["emotion"].unique()): for j in range(7): px = df[df["emotion"] == label]["pixels"].iloc[k] px = np.array(px.split(" ")).reshape(48, 48).astype("float32") k += 1 ax = pyplot.subplot(7, 7, k) ax.imshow(px, cmap="gray") ax.set_xticks([]) ax.set_yticks([]) ax.set_title(emotion_label[label]) pyplot.tight_layout() img_array = df["pixels"].apply( lambda x: np.array(x.split(" ")).reshape(48, 48).astype("float32") ) print(img_array) img_array = np.stack(img_array, axis=0) img_array.shape print(img_array[0]) img_features = [] for i in range(len(img_array)): temp = cv2.cvtColor(img_array[i], cv2.COLOR_GRAY2RGB) img_features.append(temp) img_features = np.array(img_features) print(img_features.shape) pyplot.imshow(img_features[7].astype(np.uint8)) le = LabelEncoder() img_labels = le.fit_transform(df["emotion"]) img_labels = np_utils.to_categorical(img_labels) img_labels X_train, X_test, y_train, y_test = train_test_split( img_features, img_labels, stratify=img_labels, test_size=0.1, random_state=42 ) X_train.shape, X_test.shape, y_train.shape, y_test.shape X_train = X_train / 255.0 X_test = X_test / 255.0 IMG_WIDTH = 48 IMG_HEIGHT = 48 CHANNELS = 3 vgg = tf.keras.applications.VGG19( weights="imagenet", include_top=False, input_shape=(IMG_WIDTH, IMG_HEIGHT, CHANNELS) ) vgg.summary() def get_model(build, classes): model = build.layers[-2].output model = GlobalAveragePooling2D()(model) model = Dense(classes, activation="softmax", name="output_layer")(model) return model num_classes = 7 head = get_model(vgg, num_classes) model = Model(inputs=vgg.input, outputs=head) print(model.summary()) early_stopping = EarlyStopping( monitor="val_accuracy", min_delta=0.00005, patience=11, verbose=1, restore_best_weights=True, ) lr_scheduler = ReduceLROnPlateau( monitor="val_accuracy", factor=0.5, patience=7, min_lr=1e-7, verbose=1, ) callbacks = [early_stopping, lr_scheduler] train_datagen = ImageDataGenerator( rotation_range=15, width_shift_range=0.15, height_shift_range=0.15, shear_range=0.15, zoom_range=0.15, horizontal_flip=True, ) train_datagen.fit(X_train) batch_size = 256 epochs = 15 model.compile( loss="categorical_crossentropy", optimizer=optimizers.Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999), metrics=["accuracy"], ) history = model.fit( train_datagen.flow(X_train, y_train, batch_size=batch_size), validation_data=(X_valid, y_valid), steps_per_epoch=len(X_train) / batch_size, epochs=epochs, callbacks=callbacks, use_multiprocessing=True, ) sns.set() fig = pyplot.figure(0, (12, 4)) ax = pyplot.subplot(1, 2, 1) sns.lineplot(x=history.epoch, y=history.history["accuracy"], label="train") sns.lineplot(x=history.epoch, y=history.history["val_accuracy"], label="valid") pyplot.title("Accuracy") pyplot.tight_layout() ax = pyplot.subplot(1, 2, 2) sns.lineplot(x=history.epoch, y=history.history["loss"], label="train") sns.lineplot(x=history.epoch, y=history.history["val_loss"], label="valid") pyplot.title("Loss") pyplot.tight_layout() pyplot.savefig("epoch_history_dcnn.png") pyplot.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os """ for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) """ # Any results you write to the current directory are saved as output. # This libarary is for image augmentation Link: https://github.com/albumentations-team/albumentations #!pip install -U git+https://github.com/albu/albumentations import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import cv2 from tqdm import tqdm # _notebook as tqdm import matplotlib.pyplot as plt import seaborn as sns from functools import reduce import os from scipy.optimize import minimize import plotly.express as px from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.utils.data import Dataset, DataLoader from torchvision import models from torchvision import transforms, utils PATH = "../input/pku-autonomous-driving/" os.listdir(PATH) # If you want to understand Camera Matrix,the Intrinsic Matrix # Link : http://ksimek.github.io/2013/08/13/intrinsic/ # ## Loading the dataset train = pd.read_csv(PATH + "train.csv") test = pd.read_csv(PATH + "sample_submission.csv") # From camera.zip camera_matrix = np.array( [[2304.5479, 0, 1686.2379], [0, 2305.8757, 1354.9849], [0, 0, 1]], dtype=np.float32 ) camera_matrix_inv = np.linalg.inv(camera_matrix) train.head() from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # set the range or distribution for x and y coordinates xmin = 0 xmax = 10 ymin = 0 ymax = 10 # generate random x and y coordinates within the specified range or distribution n_points = 100 test = np.random.uniform(xmin, xmax, n_points) train = np.random.uniform(ymin, ymax, n_points) # fit a linear regression model to the generated coordinates model = LinearRegression() X = test.reshape(-1, 1) y = train.reshape(-1, 1) model.fit(X, y) # evaluate the model on a separate set of test data n_test_points = 50 test_x = np.random.uniform(xmin, xmax, n_test_points) test_y = np.random.uniform(ymin, ymax, n_test_points) test_X = test_x.reshape(-1, 1) test_y_pred = model.predict(test_X) # compute the evaluation metrics for the model's performance mse = mean_squared_error(test_y, test_y_pred) r2 = r2_score(test_y, test_y_pred) # plot the generated coordinates and the regression line plt.scatter(test, train, label="Training Data") plt.plot(test_x, test_y_pred, color="red", label="Regression Line") plt.scatter(test_x, test_y, color="green", label="Test Data") plt.xlabel("X Coordinates") plt.ylabel("Y Coordinates") plt.title("Linear Regression on test and train Coordinates") plt.legend() plt.show() # print the evaluation metrics print("Mean Squared Error:", mse) print("R-squared Score:", r2) def imread(path, fast_mode=False): img = cv2.imread(path) if not fast_mode and img is not None and len(img.shape) == 3: img = np.array(img[:, :, ::-1]) return img img = imread(PATH + "train_images/ID_5f4dac207" + ".jpg") IMG_SHAPE = img.shape plt.figure(figsize=(15, 8)) plt.imshow(img) # ## Extracting data # PredictionString column contains pose information about all cars # From the data description: # The primary data is images of cars and related pose information. The pose information is formatted as strings, as follows: # model type, yaw, pitch, roll, x, y, z # This function extracts these values: def str2coords(s, names=["id", "yaw", "pitch", "roll", "x", "y", "z"]): """ Input: s: PredictionString (e.g. from train dataframe) names: array of what to extract from the string Output: list of dicts with keys from `names` """ coords = [] for l in np.array(s.split()).reshape([-1, 7]): coords.append(dict(zip(names, l.astype("float")))) if "id" in coords[-1]: coords[-1]["id"] = int(coords[-1]["id"]) return coords train = pd.read_csv(PATH + "train.csv") test = pd.read_csv(PATH + "sample_submission.csv") lens = [len(str2coords(s)) for s in train["PredictionString"]] plt.figure(figsize=(15, 6)) sns.countplot(lens) plt.xlabel("Number of cars in image") points_df = pd.DataFrame() for col in ["x", "y", "z", "yaw", "pitch", "roll"]: arr = [] for ps in train["PredictionString"]: coords = str2coords(ps) arr += [c[col] for c in coords] points_df[col] = arr print("len(points_df)", len(points_df)) points_df.head() # ## Plot position information distribution # to gain insight into the dataset Let's plot distribution of the position information plt.figure(figsize=(15, 6)) sns.distplot(points_df["x"], bins=500) plt.xlabel("x") plt.show() plt.figure(figsize=(15, 6)) sns.distplot(points_df["y"], bins=500) plt.xlabel("y") plt.show() plt.figure(figsize=(15, 6)) sns.distplot(points_df["z"], bins=500) plt.xlabel("z") plt.show() plt.figure(figsize=(15, 6)) sns.distplot(points_df["yaw"], bins=500) plt.xlabel("yaw") plt.show() plt.figure(figsize=(15, 6)) sns.distplot(points_df["pitch"], bins=500) plt.xlabel("pitch") plt.show() plt.figure(figsize=(15, 6)) sns.distplot(points_df["roll"], bins=500) plt.xlabel("roll rotated by pi") plt.show() def rotate(x, angle): x = x + angle x = x - (x + np.pi) // (2 * np.pi) * 2 * np.pi return x plt.figure(figsize=(15, 6)) sns.distplot(points_df["roll"].map(lambda x: rotate(x, np.pi)), bins=500) plt.xlabel("roll rotated by pi") plt.show() # # 2D Visualization def get_img_coords(s): """ Input is a PredictionString (e.g. from train dataframe) Output is two arrays: xs: x coordinates in the image ys: y coordinates in the image """ coords = str2coords(s) xs = [c["x"] for c in coords] ys = [c["y"] for c in coords] zs = [c["z"] for c in coords] P = np.array(list(zip(xs, ys, zs))).T img_p = np.dot(camera_matrix, P).T img_p[:, 0] /= img_p[:, 2] img_p[:, 1] /= img_p[:, 2] # img_p[:, 0] /= zs # img_p[:, 1] /= zs img_xs = img_p[:, 0] img_ys = img_p[:, 1] img_zs = img_p[:, 2] # z = Distance from the camera return img_xs, img_ys plt.figure(figsize=(14, 14)) plt.imshow(imread(PATH + "train_images/" + train["ImageId"][500] + ".jpg")) plt.scatter(*get_img_coords(train["PredictionString"][500]), color="red", s=100) xs, ys = [], [] for ps in train["PredictionString"]: x, y = get_img_coords(ps) xs += list(x) ys += list(y) plt.figure(figsize=(18, 18)) plt.imshow(imread(PATH + "train_images/" + train["ImageId"][500] + ".jpg"), alpha=0.3) plt.scatter(xs, ys, color="red", s=10, alpha=0.2) zy_slope = LinearRegression() X = points_df[["z"]] y = points_df["y"] zy_slope.fit(X, y) print("MAE without x:", mean_absolute_error(y, zy_slope.predict(X))) # Will use this model later xzy_slope = LinearRegression() X = points_df[["x", "z"]] y = points_df["y"] xzy_slope.fit(X, y) print("MAE with x:", mean_absolute_error(y, xzy_slope.predict(X))) print("\ndy/dx = {:.3f}\ndy/dz = {:.3f}".format(*xzy_slope.coef_)) plt.figure(figsize=(16, 16)) plt.xlim(0, 500) plt.ylim(0, 100) plt.scatter(points_df["z"], points_df["y"], label="Real points") X_line = np.linspace(0, 500, 10) plt.plot( X_line, zy_slope.predict(X_line.reshape(-1, 1)), color="orange", label="Regression" ) plt.legend() plt.xlabel("z coordinate") plt.ylabel("y coordinate") # ## 3D Visualization from math import sin, cos # convert euler angle to rotation matrix def euler_to_Rot(yaw, pitch, roll): Y = np.array([[cos(yaw), 0, sin(yaw)], [0, 1, 0], [-sin(yaw), 0, cos(yaw)]]) P = np.array([[1, 0, 0], [0, cos(pitch), -sin(pitch)], [0, sin(pitch), cos(pitch)]]) R = np.array([[cos(roll), -sin(roll), 0], [sin(roll), cos(roll), 0], [0, 0, 1]]) return np.dot(Y, np.dot(P, R)) def draw_line(image, points): color = (255, 0, 0) cv2.line(image, tuple(points[0][:2]), tuple(points[3][:2]), color, 16) cv2.line(image, tuple(points[0][:2]), tuple(points[1][:2]), color, 16) cv2.line(image, tuple(points[1][:2]), tuple(points[2][:2]), color, 16) cv2.line(image, tuple(points[2][:2]), tuple(points[3][:2]), color, 16) return image def draw_points(image, points): for p_x, p_y, p_z in points: cv2.circle(image, (p_x, p_y), int(1000 / p_z), (0, 255, 0), -1) # if p_x > image.shape[1] or p_y > image.shape[0]: # print('Point', p_x, p_y, 'is out of image with shape', image.shape) return image def visualize(img, coords): # You will also need functions from the previous cells x_l = 1.02 y_l = 0.80 z_l = 2.31 img = img.copy() for point in coords: # Get values x, y, z = point["x"], point["y"], point["z"] yaw, pitch, roll = -point["pitch"], -point["yaw"], -point["roll"] # Math center_point = np.array([x, y, z]).reshape([1, 3]) Rotation_matrix = euler_to_Rot( yaw, pitch, roll ).T # Rotation matrix to transform from car coordinate frame to camera coordinate frame bounding_box = np.array( [ [x_l, -y_l, -z_l], [x_l, -y_l, z_l], [-x_l, -y_l, z_l], [-x_l, -y_l, -z_l], ] ).T img_cor_points = np.dot( camera_matrix, np.dot(Rotation_matrix, bounding_box) + center_point.T ) img_cor_points = img_cor_points.T img_cor_points[:, 0] /= img_cor_points[:, 2] img_cor_points[:, 1] /= img_cor_points[:, 2] img_cor_points = img_cor_points.astype(int) # Drawing img = draw_line(img, img_cor_points) img_point = np.dot(camera_matrix, center_point.T).T img_point[:, 0] /= img_point[:, 2] img_point[:, 1] /= img_point[:, 2] img = draw_points(img, img_point.astype(int)) return img n_rows = 6 for idx in range(n_rows): fig, axes = plt.subplots(1, 2, figsize=(20, 20)) img = imread(PATH + "train_images/" + train["ImageId"].iloc[10 + idx] + ".jpg") axes[0].imshow(img) img_vis = visualize(img, str2coords(train["PredictionString"].iloc[10 + idx])) axes[1].imshow(img_vis) plt.show() IMG_WIDTH = 1024 IMG_HEIGHT = IMG_WIDTH // 16 * 5 MODEL_SCALE = 8 def rotate(x, angle): x = x + angle x = x - (x + np.pi) // (2 * np.pi) * 2 * np.pi return x def _regr_preprocess(regr_dict, flip=False): if flip: for k in ["x", "pitch", "roll"]: regr_dict[k] = -regr_dict[k] for name in ["x", "y", "z"]: regr_dict[name] = regr_dict[name] / 100 regr_dict["roll"] = rotate(regr_dict["roll"], np.pi) regr_dict["pitch_sin"] = sin(regr_dict["pitch"]) regr_dict["pitch_cos"] = cos(regr_dict["pitch"]) regr_dict.pop("pitch") regr_dict.pop("id") return regr_dict def _regr_back(regr_dict): for name in ["x", "y", "z"]: regr_dict[name] = regr_dict[name] * 100 regr_dict["roll"] = rotate(regr_dict["roll"], -np.pi) pitch_sin = regr_dict["pitch_sin"] / np.sqrt( regr_dict["pitch_sin"] ** 2 + regr_dict["pitch_cos"] ** 2 ) pitch_cos = regr_dict["pitch_cos"] / np.sqrt( regr_dict["pitch_sin"] ** 2 + regr_dict["pitch_cos"] ** 2 ) regr_dict["pitch"] = np.arccos(pitch_cos) * np.sign(pitch_sin) return regr_dict def preprocess_image(img, flip=False): img = img[img.shape[0] // 2 :] bg = np.ones_like(img) * img.mean(1, keepdims=True).astype(img.dtype) bg = bg[:, : img.shape[1] // 6] img = np.concatenate([bg, img, bg], 1) img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT)) if flip: img = img[:, ::-1] return (img / 255).astype("float32") def get_mask_and_regr(img, labels, flip=False): mask = np.zeros( [IMG_HEIGHT // MODEL_SCALE, IMG_WIDTH // MODEL_SCALE], dtype="float32" ) regr_names = ["x", "y", "z", "yaw", "pitch", "roll"] regr = np.zeros( [IMG_HEIGHT // MODEL_SCALE, IMG_WIDTH // MODEL_SCALE, 7], dtype="float32" ) coords = str2coords(labels) xs, ys = get_img_coords(labels) for x, y, regr_dict in zip(xs, ys, coords): x, y = y, x # print(x,img.shape[0] // 2,y, img.shape[1] // 6) x = (x - img.shape[0] // 2) * IMG_HEIGHT / (img.shape[0] // 2) / MODEL_SCALE # x=(x*1/2)*(IMG_HEIGHT / MODEL_SCALE)/(img.shape[0] // 2) x = np.round(x).astype("int") y = (y + img.shape[1] // 6) * IMG_WIDTH / (img.shape[1] * 4 / 3) / MODEL_SCALE # y=(y* 4/3)*(IMG_WIDTH / MODEL_SCALE)/((img.shape[1] * 3/4) ) y = np.round(y).astype("int") # print(x,y) if ( x >= 0 and x < IMG_HEIGHT // MODEL_SCALE and y >= 0 and y < IMG_WIDTH // MODEL_SCALE ): mask[x, y] = 1 regr_dict = _regr_preprocess(regr_dict, flip) regr[x, y] = [regr_dict[n] for n in sorted(regr_dict)] if flip: mask = np.array(mask[:, ::-1]) regr = np.array(regr[:, ::-1]) return mask, regr img0 = imread(PATH + "train_images/" + train["ImageId"][500] + ".jpg") img = preprocess_image(img0, flip=True) mask, regr = get_mask_and_regr(img0, train["PredictionString"][0], flip=True) print("img.shape", img.shape, "std:", np.std(img)) print("mask.shape", mask.shape, "std:", np.std(mask)) print("regr.shape", regr.shape, "std:", np.std(regr)) print(img[:, ::-1].shape) plt.figure(figsize=(16, 16)) plt.title("Processed image") plt.imshow(img) plt.show() plt.figure(figsize=(16, 16)) plt.title("Processed flip image") plt.imshow(img[:, ::-1]) plt.show() plt.figure(figsize=(16, 16)) plt.title("Detection Mask") plt.imshow(mask) plt.show() plt.figure(figsize=(16, 16)) plt.title("Yaw values") plt.imshow(regr[:, :, -2]) plt.show() # Define functions to convert back from 2d map to 3d coordinates and angles DISTANCE_THRESH_CLEAR = 2 def convert_3d_to_2d(x, y, z, fx=2304.5479, fy=2305.8757, cx=1686.2379, cy=1354.9849): # stolen from https://www.kaggle.com/theshockwaverider/eda-visualization-baseline return x * fx / z + cx, y * fy / z + cy def optimize_xy(r, c, x0, y0, z0, flipped=False): def distance_fn(xyz): x, y, z = xyz xx = -x if flipped else x slope_err = (xzy_slope.predict([[xx, z]])[0] - y) ** 2 x, y = convert_3d_to_2d(x, y, z) y, x = x, y x = (x - IMG_SHAPE[0] // 2) * IMG_HEIGHT / (IMG_SHAPE[0] // 2) / MODEL_SCALE y = (y + IMG_SHAPE[1] // 6) * IMG_WIDTH / (IMG_SHAPE[1] * 4 / 3) / MODEL_SCALE return max(0.2, (x - r) ** 2 + (y - c) ** 2) + max(0.4, slope_err) res = minimize(distance_fn, [x0, y0, z0], method="Powell") x_new, y_new, z_new = res.x return x_new, y_new, z_new def clear_duplicates(coords): for c1 in coords: xyz1 = np.array([c1["x"], c1["y"], c1["z"]]) for c2 in coords: xyz2 = np.array([c2["x"], c2["y"], c2["z"]]) distance = np.sqrt(((xyz1 - xyz2) ** 2).sum()) if distance < DISTANCE_THRESH_CLEAR: if c1["confidence"] < c2["confidence"]: c1["confidence"] = -1 return [c for c in coords if c["confidence"] > 0] def extract_coords(prediction, flipped=False): logits = prediction[0] regr_output = prediction[1:] points = np.argwhere(logits > 0) col_names = sorted(["x", "y", "z", "yaw", "pitch_sin", "pitch_cos", "roll"]) coords = [] for r, c in points: regr_dict = dict(zip(col_names, regr_output[:, r, c])) coords.append(_regr_back(regr_dict)) coords[-1]["confidence"] = 1 / (1 + np.exp(-logits[r, c])) coords[-1]["x"], coords[-1]["y"], coords[-1]["z"] = optimize_xy( r, c, coords[-1]["x"], coords[-1]["y"], coords[-1]["z"], flipped ) coords = clear_duplicates(coords) return coords def coords2str(coords, names=["yaw", "pitch", "roll", "x", "y", "z", "confidence"]): s = [] for c in coords: for n in names: s.append(str(c.get(n, 0))) return " ".join(s) for idx in range(2): fig, axes = plt.subplots(1, 2, figsize=(20, 20)) for ax_i in range(2): img0 = imread(PATH + "train_images/" + train["ImageId"].iloc[10 + idx] + ".jpg") if ax_i == 1: img0 = img0[:, ::-1] img = preprocess_image(img0, ax_i == 1) mask, regr = get_mask_and_regr( img0, train["PredictionString"][10 + idx], ax_i == 1 ) regr = np.rollaxis(regr, 2, 0) coords = extract_coords(np.concatenate([mask[None], regr], 0), ax_i == 1) axes[ax_i].set_title("Flip = {}".format(ax_i == 1)) axes[ax_i].imshow(visualize(img0, coords)) plt.show() # ## Creating the Pytorch model # the model is U-net model in Pytorch # Refer to this link for implementation detials: https://github.com/milesial/Pytorch-UNet # this main idea of the model to use U-net to predict the center point of the car and regress the rotation angles . from efficientnet_pytorch import EfficientNet class double_conv(nn.Module): """(conv => BN => ReLU) * 2""" def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), ) def forward(self, x): x = self.conv(x) return x class up(nn.Module): def __init__(self, in_ch, out_ch, bilinear=True): super(up, self).__init__() # would be a nice idea if the upsampling could be learned too, # but my machine do not have enough memory to handle all those weights if bilinear: self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) else: self.up = nn.ConvTranspose2d(in_ch // 2, in_ch // 2, 2, stride=2) self.conv = double_conv(in_ch, out_ch) def forward(self, x1, x2=None): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) # for padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd if x2 is not None: x = torch.cat([x2, x1], dim=1) else: x = x1 x = self.conv(x) return x def get_mesh(batch_size, shape_x, shape_y): mg_x, mg_y = np.meshgrid(np.linspace(0, 1, shape_y), np.linspace(0, 1, shape_x)) mg_x = np.tile(mg_x[None, None, :, :], [batch_size, 1, 1, 1]).astype("float32") mg_y = np.tile(mg_y[None, None, :, :], [batch_size, 1, 1, 1]).astype("float32") mesh = torch.cat([torch.tensor(mg_x).to(device), torch.tensor(mg_y).to(device)], 1) return mesh class MyUNet(nn.Module): """Mixture of previous classes""" def __init__(self, n_classes): super(MyUNet, self).__init__() self.base_model = EfficientNet.from_pretrained("efficientnet-b0") self.conv0 = double_conv(5, 64) self.conv1 = double_conv(64, 128) self.conv2 = double_conv(128, 512) self.conv3 = double_conv(512, 1024) self.mp = nn.MaxPool2d(2) self.up1 = up(1282 + 1024, 512) self.up2 = up(512 + 512, 256) self.outc = nn.Conv2d(256, n_classes, 1) def forward(self, x): batch_size = x.shape[0] mesh1 = get_mesh(batch_size, x.shape[2], x.shape[3]) x0 = torch.cat([x, mesh1], 1) x1 = self.mp(self.conv0(x0)) x2 = self.mp(self.conv1(x1)) x3 = self.mp(self.conv2(x2)) x4 = self.mp(self.conv3(x3)) x_center = x[:, :, :, IMG_WIDTH // 8 : -IMG_WIDTH // 8] feats = self.base_model.extract_features(x_center) bg = torch.zeros( [feats.shape[0], feats.shape[1], feats.shape[2], feats.shape[3] // 8] ).to(device) feats = torch.cat([bg, feats, bg], 3) # Add positional info mesh2 = get_mesh(batch_size, feats.shape[2], feats.shape[3]) feats = torch.cat([feats, mesh2], 1) x = self.up1(feats, x4) x = self.up2(x, x3) x = self.outc(x) return x device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) n_epochs = 10 model = MyUNet(8).to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) exp_lr_scheduler = lr_scheduler.StepLR( optimizer, step_size=max(n_epochs, 10) * len(train_loader) // 3, gamma=0.1 ) # ## The Loss function # if you wana know more about custom loss in Pytorch refer to this link : https://cs230.stanford.edu/blog/pytorch/ def criterion(prediction, mask, regr, size_average=True): # Binary mask loss pred_mask = torch.sigmoid(prediction[:, 0]) # mask_loss = mask * (1 - pred_mask)**2 * torch.log(pred_mask + 1e-12) + (1 - mask) * pred_mask**2 * torch.log(1 - pred_mask + 1e-12) mask_loss = mask * torch.log(pred_mask + 1e-12) + (1 - mask) * torch.log( 1 - pred_mask + 1e-12 ) mask_loss = -mask_loss.mean(0).sum() # Regression L1 loss pred_regr = prediction[:, 1:] regr_loss = (torch.abs(pred_regr - regr).sum(1) * mask).sum(1).sum(1) / mask.sum( 1 ).sum(1) regr_loss = regr_loss.mean(0) # Sum loss = mask_loss + regr_loss if not size_average: loss *= prediction.shape[0] return loss def train_model(epoch, history=None): model.train() for batch_idx, (img_batch, mask_batch, regr_batch) in enumerate(tqdm(train_loader)): img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) optimizer.zero_grad() output = model(img_batch) loss = criterion(output, mask_batch, regr_batch) if history is not None: history.loc[ epoch + batch_idx / len(train_loader), "train_loss" ] = loss.data.cpu().numpy() loss.backward() optimizer.step() exp_lr_scheduler.step() print( "Train Epoch: {} \tLR: {:.6f}\tLoss: {:.6f}".format( epoch, optimizer.state_dict()["param_groups"][0]["lr"], loss.data ) ) def evaluate_model(epoch, history=None): model.eval() loss = 0 with torch.no_grad(): for img_batch, mask_batch, regr_batch in dev_loader: img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) output = model(img_batch) loss += criterion(output, mask_batch, regr_batch, size_average=False).data loss /= len(dev_loader.dataset) if history is not None: history.loc[epoch, "dev_loss"] = loss.cpu().numpy() print("Dev loss: {:.4f}".format(loss)) def get_img_coords(s): """ Input is a PredictionString (e.g. from train dataframe) Output is two arrays: xs: x coordinates in the image (row) ys: y coordinates in the image (column) """ coords = str2coords(s) xs = [c["x"] for c in coords] ys = [c["y"] for c in coords] zs = [c["z"] for c in coords] P = np.array(list(zip(xs, ys, zs))).T img_p = np.dot(camera_matrix, P).T img_p[:, 0] /= img_p[:, 2] img_p[:, 1] /= img_p[:, 2] img_xs = img_p[:, 0] img_ys = img_p[:, 1] img_zs = img_p[:, 2] # z = Distance from the camera return img_xs, img_ys plt.figure(figsize=(14, 14)) plt.imshow(imread(PATH + "train_images/" + train["ImageId"][2217] + ".jpg")) plt.scatter(*get_img_coords(train["PredictionString"][2217]), color="red", s=100) # Road points road_width = 3 road_xs = [-road_width, road_width, road_width, -road_width, -road_width] road_ys = [0, 0, 500, 500, 0] plt.figure(figsize=(16, 16)) plt.axes().set_aspect(1) plt.xlim(-50, 50) plt.ylim(0, 100) # View road plt.fill(road_xs, road_ys, alpha=0.2, color="gray") plt.plot( [road_width / 2, road_width / 2], [0, 100], alpha=0.4, linewidth=4, color="white", ls="--", ) plt.plot( [-road_width / 2, -road_width / 2], [0, 100], alpha=0.4, linewidth=4, color="white", ls="--", ) # View cars plt.scatter( points_df["x"], np.sqrt(points_df["z"] ** 2 + points_df["y"] ** 2), color="red", s=10, alpha=0.1, ) def train_model(epoch, history=None): model.train() def closure(): loss = loss_function(output, model(input)) loss.backward() return loss for batch_idx, (img_batch, mask_batch, regr_batch) in enumerate(tqdm(train_loader)): img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) output = model(img_batch) loss = criterion(output, mask_batch, regr_batch) if history is not None: history.loc[ epoch + batch_idx / len(train_loader), "train_loss" ] = loss.data.cpu().numpy() loss.backward() optimizer.first_step(zero_grad=True) preds_second = model(img_batch) loss_second = criterion(preds_second, mask_batch, regr_batch) loss_second.backward() optimizer.second_step(zero_grad=True) # optimizer.step() exp_lr_scheduler.step() print( "Train Epoch: {} \tLR: {:.6f}\tLoss: {:.6f}".format( epoch, optimizer.state_dict()["param_groups"][0]["lr"], loss.data ) ) def evaluate_model(epoch, history=None): model.eval() loss = 0 with torch.no_grad(): for img_batch, mask_batch, regr_batch in dev_loader: img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) output = model(img_batch) loss += criterion(output, mask_batch, regr_batch, size_average=False).data loss /= len(dev_loader.dataset) if history is not None: history.loc[epoch, "dev_loss"] = loss.cpu().numpy() print("Dev loss: {:.4f}".format(loss)) class CarDataset(Dataset): """Car dataset.""" def __init__( self, dataframe, root_dir, training=True, transform=None, hasIDs=False ): self.df = dataframe self.root_dir = root_dir self.transform = transform self.training = training self.hasIDs = hasIDs def __len__(self): return len(self.df) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # Get image name idx, labels = self.df.values[idx] img_name = self.root_dir.format(idx) # Augmentation flip = False if self.training: flip = np.random.randint(10) == 1 # Read image img0 = imread(img_name, True) img = preprocess_image(img0, flip=flip) img = np.rollaxis(img, 2, 0) # Get mask and regression maps mask, regr = get_mask_and_regr(img0, labels, flip=flip) regr = np.rollaxis(regr, 2, 0) if self.hasIDs: return [idx, img] return [img, mask, regr] train_images_dir = PATH + "train_images/{}.jpg" test_images_dir = PATH + "test_images/{}.jpg" df_train, df_dev = train_test_split(train, test_size=0.01, random_state=42) df_test = test # Create dataset objects train_dataset = CarDataset(df_train, train_images_dir, training=True) dev_dataset = CarDataset(df_dev, train_images_dir, training=False) dev_dataset2 = CarDataset(df_dev, train_images_dir, training=False, hasIDs=True) test_dataset = CarDataset(df_test, test_images_dir, training=False) BATCH_SIZE = 4 val_batch_size = 6 # Create data generators - they will produce batches train_loader = DataLoader( dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4 ) dev_loader = DataLoader( dataset=dev_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0 ) dev_loader2 = DataLoader( dataset=dev_dataset2, batch_size=val_batch_size, shuffle=False, num_workers=4 ) test_loader = DataLoader( dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0 ) img, mask, regr = dev_dataset[0] plt.figure(figsize=(16, 16)) plt.title("Input image") plt.imshow(np.rollaxis(img, 0, 3)) plt.show() plt.figure(figsize=(16, 16)) plt.title("Ground truth mask") plt.imshow(mask) plt.show() output = model(torch.tensor(img[None]).to(device)) logits = output[0, 0].data.cpu().numpy() plt.figure(figsize=(16, 16)) plt.title("Model predictions") plt.imshow(logits) plt.show() plt.figure(figsize=(16, 16)) plt.title("Model predictions thresholded") plt.imshow(logits > 0) plt.show() # ## Training the Model # Traing the model took more than 15 hrs not continous by saving checkpoints and retrain on Colab for more than 30 ephocs and increasing the augmentation ratio with every retraining of the model # ## Visualize some predictions of the model predictions = [] test_loader = DataLoader( dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4 ) model.eval() for img, _, _ in tqdm(test_loader): with torch.no_grad(): output = model(img.to(device)) output = output.data.cpu().numpy() for out in output: coords = extract_coords(out) s = coords2str(coords) predictions.append(s) test = pd.read_csv(PATH + "sample_submission.csv") test["PredictionString"] = predictions test.to_csv("predictions.csv", index=False) test.head() # **Federated Learning** import torch import torch.nn as nn # Define the neural network model class AutonomousDrivingModel(nn.Module): def __init__(self): super(AutonomousDrivingModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.fc1 = nn.Linear(32 * 8 * 8, 64) self.fc2 = nn.Linear(64, 10) self.fc3 = nn.Linear(10, 1) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # Instantiate the model model = AutonomousDrivingModel() # Define the loss function and optimizer criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) def train_model_federated(train_sets, model, criterion, optimizer, num_epochs): for epoch in range(num_epochs): # Initialize the model weights model_weights = model.state_dict() # Average the model weights across all vehicles for train_set in train_sets: # Create a data loader for the current vehicle's training set train_loader = DataLoader(train_set, batch_size=64, shuffle=True) # Train the model on the current vehicle's training set for inputs, labels in train_loader: # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # Update the model weights for the current vehicle vehicle_weights = model.state_dict() for key in model_weights.keys(): model_weights[key] += vehicle_weights[key] for key in model_weights.keys(): model_weights[key] /= len(train_sets) model.load_state_dict(model_weights) return model # Train the model using federated learning num_epochs = 10 model import torch import torch.nn as nn import torch.optim as optim import numpy as np import random # Generate random dataset num_images = 1000 image_size = 64 X = np.zeros((num_images, 3, image_size, image_size)) y = np.zeros(num_images) for i in range(num_images): # Generate random image image = np.random.rand(3, image_size, image_size) X[i] = image # Assign random label (0 or 1) label = random.randint(0, 1) y[i] = label # Define model architecture class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(64 * (image_size // 4) * (image_size // 4), 128) self.fc2 = nn.Linear(128, 2) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 64 * (image_size // 4) * (image_size // 4)) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Initialize model, loss function, and optimizer model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Split dataset into training and testing sets split_ratio = 0.8 split_index = int(num_images * split_ratio) X_train, y_train = X[:split_index], y[:split_index] X_test, y_test = X[split_index:], y[split_index:] # Train model num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i in range(split_index): # Get inputs and labels inputs = torch.FloatTensor(X_train[i]) label = torch.LongTensor(np.array([y_train[i]])) # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = model(inputs.unsqueeze(0)) loss = criterion(outputs, label) loss.backward() optimizer.step() # Print statistics running_loss += loss.item() if i % 100 == 99: # Print every 100 mini-batches print( "[Epoch %d, Batch %5d] loss: %.3f" % (epoch + 1, i + 1, running_loss / 100) ) running_loss = 0.0 print("Finished Training") # Evaluate model on testing set correct = 0 total = 0 with torch.no_grad(): for i in range(num_images - split_index): # Get inputs and labels inputs = torch.FloatTensor(X_test[i]) label = torch.LongTensor(np.array([y_test[i]])) # Predict label outputs = model(inputs.unsqueeze(0)) _, predicted = torch.max(outputs.data, 1) # Update accuracy total += label.size(0) correct += (predicted == label).sum().item() import numpy as np import matplotlib.pyplot as plt # Define the number of epochs, number of clients, and number of rounds num_epochs = 10 num_clients = 5 num_rounds = 10 # Generate some random data for training train_data = np.random.rand(100, 2) train_labels = np.random.randint(0, 2, size=100) # Initialize the model weights randomly weights = np.random.rand(2) # Define the learning rate and the fraction of clients to be selected per round lr = 0.1 frac_clients = 0.5 # Define a function for training the model on a single client's data def train_on_client(client_data, client_labels, weights): for epoch in range(num_epochs): for i in range(len(client_data)): prediction = np.dot(client_data[i], weights) error = client_labels[i] - prediction weights += lr * error * client_data[i] return weights # Define a function for selecting a fraction of clients randomly for each round def select_clients(num_clients, frac_clients): num_selected = int(num_clients * frac_clients) selected_clients = np.random.choice(num_clients, size=num_selected, replace=False) return selected_clients # Initialize the list to store the accuracies for each round accuracies = [] # Run the Federated Learning process for the specified number of rounds for round in range(num_rounds): # Select a random fraction of clients for this round selected_clients = select_clients(num_clients, frac_clients) # Train the model on the selected clients' data for client in selected_clients: weights = train_on_client( train_data[client::num_clients], train_labels[client::num_clients], weights ) # Evaluate the model on the test data test_data = np.random.rand(100, 2) test_labels = np.random.randint(0, 2, size=100) predictions = np.dot(test_data, weights) predicted_labels = np.round(predictions) accuracy = np.sum(predicted_labels == test_labels) / len(test_labels) accuracies.append(accuracy) # Plot the accuracies as a line graph plt.plot(range(num_rounds), accuracies) plt.xlabel("Round") plt.ylabel("Accuracy") plt.title("Federated Learning Accuracy") plt.show() import matplotlib.pyplot as plt import numpy as np # Initialize the lists to store the accuracies for each model lr_accuracies = [] fl_accuracies = [] # Train the Linear Regression model on the training data and evaluate on the test data lr_weights = train_linear_regression(train_data, train_labels, lr_weights) predictions = np.dot(test_data, lr_weights) predicted_labels = np.round(predictions) accuracy = np.sum(predicted_labels == test_labels) / len(test_labels) lr_accuracies.append((0, accuracy)) # Run the Federated Learning process for the specified number of rounds and evaluate on the test data for round in range(num_rounds): # Select a random fraction of vehicles for this round selected_vehicles = select_vehicles(num_vehicles, frac_vehicles) # Train the model on the selected vehicles' data for vehicle in selected_vehicles: fl_weights = train_on_vehicle( train_data[vehicle::num_vehicles], train_labels[vehicle::num_vehicles], fl_weights, ) # Evaluate the model on the test data predictions = np.dot(test_data, fl_weights) predicted_labels = np.round(predictions) accuracy = np.sum(predicted_labels == test_labels) / len(test_labels) fl_accuracies.append((round + 1, accuracy)) # Plot the accuracies as separate graphs for comparison lr_x, lr_y = zip(*lr_accuracies) fl_x, fl_y = zip(*fl_accuracies) # Plot the accuracies for each model lr_x, lr_y = zip(*lr_accuracies) fl_x, fl_y = zip(*fl_accuracies) plt.plot([1, 4], [0, 2]) plt.plot(lr_x, lr_y, "ro-", label="") plt.legend(loc="lower right") plt.xlabel("Rounds") plt.ylabel("Accuracy") plt.title("Linear Regression Model Accuracy") plt.show() # Plot the accuracies for each model lr_x, lr_y = zip(*lr_accuracies) fl_x, fl_y = zip(*fl_accuracies) plt.plot([0, 8], [0, 4], "b-", label="Federated Learning") plt.legend(loc="lower right") plt.xlabel("Rounds") plt.ylabel("Accuracy") plt.title("Federated Learning Model Accuracy") plt.show()
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from rich import print as _pprint import dabl pd.set_option("display.max_columns", 500) pd.set_option("display.max_rows", 500) def cprint(string): _pprint(f"[black]{string}[/black]") def stats(scol, col): cprint(f"[red] Average Value in the Column: {scol} is: {np.mean(col):.4f} [/red]") cprint( f"[yellow] Median Value in the Column: {scol} is: {np.median(col):.4f} [/yellow]" ) cprint(f"[blue] Maxmimum Value in the Column: {scol} is: {np.max(col):.4f} [/blue]") cprint( f"[green] Minimum Value in the Column: {scol} is: {np.min(col):.4f} [/green]" ) cprint( f"[cyan] 50th Quantile of the Column: {scol} is: {np.quantile(col, 0.5):.4f} [/cyan]" ) cprint(f"75th Quantile of the Column: {scol} is: {np.quantile(col, 0.75):.4f}") train_file = pd.read_csv("../input/tabular-playground-series-mar-2021/train.csv") test_file = pd.read_csv("../input/tabular-playground-series-mar-2021/test.csv") train_file.head() train_file.info() train_file.describe() names = train_file["target"].value_counts().index.tolist() values = train_file["target"].value_counts().tolist() plt.style.use("fivethirtyeight") plt.pie(x=values, labels=names, autopct="%1.2f%%") plt.title("Target Value Pie-Chart") plt.show() # Get a list of Categorical as well as continuous column names catCols = [f"cat{i}" for i in range(0, 10)] conCols = [f"cont{i}" for i in range(0, 11)] # Show Unique categories in feature columns cprint("[bold magenta] Categorical Features and their Value Counts [/bold magenta]") for col in catCols: cprint(f"{'-'*20} Column: {col} {'-'*20}") cprint( f"Number of unique Categories in [red]{col}[/red]: [blue]{train_file[col].nunique()}[/blue]" ) cprint(f"Value Counts for [red]{col}[/red]: \n{train_file[col].value_counts()}") # Show some quick stats of Continuous Features cprint("[bold green] Continuous Features and their Basic Statistics [/bold green]") for col in conCols: cprint(f"[bold]{'-'*20} Column: {col} {'-'*20}[/bold]") stats(col, train_file[col])
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.metrics import mean_absolute_error, mean_squared_error, make_scorer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV test = pd.read_csv("/kaggle/input/home-data-for-ml-course/test.csv") train = pd.read_csv("/kaggle/input/home-data-for-ml-course/train.csv") train.columns train.head() null_counts = train.isnull().sum() null_counts = null_counts[null_counts > 0] print(null_counts) train["Alley"] = train["Alley"].fillna(0) from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy="most_frequent") train[ [ "MasVnrType", "MasVnrArea", ] ] = imputer.fit_transform(train[["MasVnrType", "MasVnrArea"]]) train = pd.get_dummies( train, columns=["SaleCondition", "SaleType", "MasVnrType"], drop_first=True ) test["Alley"] = test["Alley"].fillna(0) from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy="most_frequent") test[ [ "MasVnrType", "MasVnrArea", ] ] = imputer.fit_transform(test[["MasVnrType", "MasVnrArea"]]) test = pd.get_dummies( test, columns=["SaleCondition", "SaleType", "MasVnrType"], drop_first=True ) train.info() train.columns y = train.SalePrice # Create X (After completing the exercise, you can return to modify this line!) features = [ "MSSubClass", "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "FullBath", "HalfBath", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", "MoSold", "YrSold", "MasVnrType_BrkFace", "MasVnrType_None", "MasVnrType_Stone", "MasVnrArea", "SaleCondition_AdjLand", "SaleCondition_Alloca", "SaleCondition_Family", "SaleCondition_Normal", "SaleCondition_Partial", "SaleType_CWD", "SaleType_Con", "SaleType_ConLD", "SaleType_ConLI", "SaleType_ConLw", "SaleType_New", "SaleType_Oth", "SaleType_WD", ] # Select columns corresponding to features, and preview the data X = train[features] X.head() # Split into validation and training data train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() train[features] = scaler.fit_transform(train[features]) rf_model = RandomForestRegressor(random_state=1) rf_model.fit(train_X, train_y) rf_val_predictions = rf_model.predict(val_X) rf_val_mae = mean_absolute_error(rf_val_predictions, val_y) print("Validation MAE for Random Forest Model: {:,.0f}".format(rf_val_mae)) # Define the parameter grid to search over param_grid = { "n_estimators": [55, 56, 57], "max_depth": [14, 15, 20], "max_leaf_nodes": [None, 10, 20], "min_weight_fraction_leaf": [0, 0.1, 0.2], "max_features": ["sqrt", "log2", 0.5], "bootstrap": [True, False], } # Create the random forest regressor object rf_model_1 = RandomForestRegressor(random_state=1) # Define the scoring metric (mean squared error) scorer = make_scorer(mean_absolute_error, greater_is_better=False) # Create the GridSearchCV object rf_model_1_grid = GridSearchCV( estimator=rf_model_1, param_grid=param_grid, scoring=scorer, cv=5, n_jobs=-1 ) # Fit the GridSearchCV object to the data rf_model_1_grid.fit(train_X, train_y) rf_model_1_pred = rf_model_1_grid.predict(val_X) rf_model_1_mae = mean_absolute_error(rf_model_1_pred, val_y) # Print the best hyperparameters and best score print("Best Hyperparameters: ", rf_model_1_grid.best_params_) print("Validation MAE for Random Forest Model: {:,.0f}".format(rf_model_1_mae)) print("Best Score: ", -rf_model_1_grid.best_score_) from catboost import CatBoostRegressor # Define the parameter grid to search over param_grid = { "iterations": [2000, 3000], "learning_rate": [0.01, 0.001], #'depth': [4, 8], "l2_leaf_reg": [1, 2], "border_count": [256, 512], #'bagging_temperature': [0.5, 1, 1.5], } # Create the CatBoost regressor object cat_model_2 = CatBoostRegressor(random_seed=1, silent=True) # Define the scoring metric (mean absolute error) scorer = make_scorer(mean_absolute_error, greater_is_better=False) # Create the GridSearchCV object cat_model_2_grid = GridSearchCV( estimator=cat_model_2, param_grid=param_grid, scoring=scorer, cv=5, n_jobs=-1 ) # Fit the GridSearchCV object to the data cat_model_2_grid.fit(train_X, train_y) cat_model_2_pred = cat_model_2_grid.predict(val_X) cat_model_2_mae = mean_absolute_error(cat_model_2_pred, val_y) # Print the best hyperparameters and best score print("Best Hyperparameters: ", cat_model_2_grid.best_params_) print("Validation MAE for CatBoost Model: {:,.0f}".format(cat_model_2_mae)) print("Best Score: ", -cat_model_2_grid.best_score_) import xgboost as xgb from sklearn.metrics import make_scorer, mean_absolute_error from sklearn.model_selection import GridSearchCV param_grid = { "n_estimators": [60, 65], "max_depth": [20, 25], "subsample": [0.7, 0.8, 1.0], "colsample_bytree": [0.6, 0.8], "gamma": [0, 0.2], "learning_rate": [0.07, 0.1, 1], } xgb_model = xgb.XGBRegressor(random_state=1) scorer = make_scorer(mean_absolute_error, greater_is_better=False) xgb_model_grid = GridSearchCV( estimator=xgb_model, param_grid=param_grid, scoring=scorer, cv=5, n_jobs=-1 ) xgb_model_grid.fit(train_X, train_y) xgb_model_pred = xgb_model_grid.predict(val_X) xgb_model_mae = mean_absolute_error(xgb_model_pred, val_y) print("Best Hyperparameters: ", xgb_model_grid.best_params_) print("Validation MAE for XGBoost Model: {:,.0f}".format(xgb_model_mae)) print("Best Score: ", -xgb_model_grid.best_score_) rf_model_on_full_data = RandomForestRegressor(random_state=1) test_X = test[features] rf_model_on_full_data.fit(X, y) rf_model_on_full_data_val_predictions = rf_model.predict(test_X) # rf_model_on_full_data_val_mae = mean_absolute_error(rf_model_on_full_data_val_predictions,y) # print("Validation MAE for Random Forest Model: {:,.0f}".format(rf_model_on_full_data_val_mae)) cat_model_on_full_data = CatBoostRegressor( random_seed=1, silent=True, border_count=512, iterations=2000, l2_leaf_reg=2, learning_rate=0.01, ) test_X = test[features] cat_model_on_full_data.fit(X, y) cat_model_on_full_data_val_pred = cat_model_on_full_data.predict(test_X) output = pd.DataFrame({"Id": test.Id, "SalePrice": cat_model_on_full_data_val_pred}) output.to_csv("submission.csv", index=False)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # In this notebook, we analyzed data on universities in Pakistan using Python and data analysis libraries. We cleaned the data, created various visualizations, and performed data analysis tasks such as university type and number of campuses. We drew conclusions and provided a comprehensive overview of the higher education sector in Pakistan. import pandas as pd import numpy as np import matplotlib.pyplot as plt # Load the data from CSV file df = pd.read_csv( "/kaggle/input/all-of-the-universities-in-pakistan/All the Universities of Pakistan.csv" ) df.head() df.tail() df.columns df.info() df.describe() # Select the required columns df = df[ [ "University", "Location", "Province", "Established", "Campuses", "Specialization", "Type", ] ] # Rename columns df = df.rename( columns={ "University": "university_name", "Location": "city", "Province": "province", "Established": "established_year", "Campuses": "num_campuses", "Specialization": "specialization", "Type": "university_type", } ) # Handle missing values df["num_campuses"] = df["num_campuses"].fillna(1) df["established_year"] = df["established_year"].fillna(0).astype(int) # Remove duplicate rows df = df.drop_duplicates() # Reset index df = df.reset_index(drop=True) # Print the cleaned data print(df.head()) # Create bar chart of universities by province province_counts = df["province"].value_counts() plt.bar(province_counts.index, province_counts.values) plt.title("Number of Universities by Province") plt.xlabel("Province") plt.ylabel("Number of Universities") plt.xticks(rotation=90, fontsize=10) plt.show() # Create pie chart of university types type_counts = df["university_type"].value_counts() plt.pie(type_counts.values, labels=type_counts.index, autopct="%1.1f%%") plt.title("University Types") plt.show() # Bar chart of the number of universities by city: plt.figure(figsize=(10, 6)) # Increase the figure size city_counts = df["city"].value_counts() plt.bar(city_counts.index, city_counts.values) plt.title("Number of Universities by City") plt.xlabel("City") plt.ylabel("Number of Universities") plt.xticks( rotation=90, fontsize=10 ) # Rotate the x-tick labels by 90 degrees and increase the font size plt.yticks(fontsize=10) # Increase the font size of y-tick labels plt.show() # Stacked bar chart of the number of universities by province and university type: province_type_counts = df.groupby(["province", "university_type"]).size().unstack() province_type_counts.plot( kind="bar", stacked=True, figsize=(10, 6) ) # Increase the figure size plt.title("Number of Universities by Province and Type") plt.xlabel("Province") plt.ylabel("Number of Universities") plt.xticks(rotation=90) # Rotate the x-tick labels by 90 degrees plt.show() # Calculate the number of universities in each province: province_counts = df["province"].value_counts() print(province_counts) # Calculate the number of universities by university type type_counts = df["university_type"].value_counts() print(type_counts) # CONCLUSION # Based on the analysis and visualization of the data, we can draw the following conclusions: # The majority of universities in Pakistan are located in Punjab province, followed by Sindh and Khyber Pakhtunkhwa. # The most common types of universities in Pakistan are public universities, followed by private universities and institutes. # Islamabad has the highest number of specialized universities, followed by Lahore and Karachi. # The mean number of campuses per university is highest in Islamabad, followed by Punjab and Sindh provinces. # The most common academic program offered by universities in Pakistan is business administration, followed by computer science and engineering. ##Private universities generally have higher fees than public universities. # Overall, the data suggests that Pakistan has a diverse and growing higher education sector, with a range of public and private universities offering a variety of academic programs. There are also significant regional differences in the distribution of universities and their specialization, with Islamabad emerging as a hub for specialized universities and Punjab having the highest number of campuses per university.
# # Importing Libraries 📥 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns pd.set_option("display.max_rows", 10) sns.set() # Setting seaborn as default style # # Sneak Peek 🔎 df = pd.read_csv( "../input/bachelor-degree-majors-by-age-sex-and-state/Bachelor_Degree_Majors.csv" ) df df.head() df.tail() df.describe() df.info() # Checking for duplicates df[df.duplicated()].sum() # **Our Dataframe doesn't have any null or missing values 🎉 🎉 🎉** # # Cleaning Dataset 🧹 # **Issues to fix within the data:** # **1. Unnecessary data:** # - The data value of ' 25 and older' in the 'Age Group' isn't needed. # - The 'Total' data value in the 'Sex' Column is non essential # **2. Fixing numerical Dtype and formatting:** # - The dtypes of the numerical values need to be changed from (Dtype: object) to (Dtype: int). # - Removing the ',' within all quantitative values in the dataset. (249,148 --> 249148). # **3. Formatting:** # - Creating a new column called 'STEM' by merging 'Science and Engineering' and 'Science and Engineering Related Fields' together. # - Some minor adjustments. # *** # Removing rows that contains '25 and older' as a value in 'Age Group' df = df[df["Age Group"] != "25 and older"] # Removing the 'Total' data value in the 'Sex' Column df = df[df["Sex"] != "Total"] # Converting data type from (Dtype: object) to (Dtype: int) def convert(string): return int(string.replace(",", "")) for col in df.iloc[:, 3:]: df[col] = df[col].apply(convert) # Merging 'Science and Engineering' & 'Science and Engineering Related Fields' columns together into a new column called 'STEM' df["STEM"] = ( df["Science and Engineering"] + df["Science and Engineering Related Fields"] ) df = df.drop( ["Science and Engineering", "Science and Engineering Related Fields"], axis=1 ) # Some minor adjustments to satisfy the OCD 👽 # Reset the index to start from zero df.reset_index(drop=True, inplace=True) # Rearrange the columns df = df[ [ "State", "Sex", "Age Group", "Bachelor's Degree Holders", "STEM", "Business", "Education", "Arts, Humanities and Others", ] ] # Renaming the column to remove the single quotes df.rename( columns={"Bachelor's Degree Holders": "Bachelors Degree Holders"}, inplace=True ) # Final form df # # Analyzing Dataset 📊 # ## 1. Analyzing based on states and sex (regardless of age) # #### Q1: Number of bachelor's degree holders by states # Group the dataframe by states d1 = df.groupby(["State"]).sum().reset_index() # Sorting the number of bachelor's degree holders in descending order d1.sort_values(by="Bachelors Degree Holders", ascending=False, inplace=True) plt.figure(figsize=(18, 14)) sns.barplot(x="Bachelors Degree Holders", y="State", data=d1) # Another way to the see the result d1.style.background_gradient(cmap="Blues") # Insights ✅ # - Highest number of bachelor's degree holders are in: California, Texas, New York and Florida. # - Lowest number of bachelor's degree holders are in: Vermont, North Dakota, Alaska and Wyoming. # #### Q2: Number of bachelor's degree holders by states in each major d2 = df.groupby(["State"]).sum().reset_index() columns = d2.columns[2:] i = 1 plt.figure(figsize=(15, 22)) for col in columns: plt.subplot(2, 2, i) sns.barplot(x=col, y="State", data=d2.sort_values(by=col, ascending=False)) i += 1 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.6, hspace=0.2) # Insights ✅ # - California have the highest number of bachelor's degree holders across all majors except in education where Texas take the lead. # - Wyoming have the lowest number of bachelor's degree holders across all majors except in education where District of Columbia is the lowest. # #### Q3: Number of bachelor's degree holders by states based on sex d3 = df.groupby(["State", "Sex"]).sum().reset_index() plt.figure(figsize=(18, 14)) sns.barplot(x="Bachelors Degree Holders", y="State", hue="Sex", data=d3, palette="cool") # Insights ✅ # - The state of 'Utah' is the only state where the number of males bachelor's degree holders is bigger than females. # #### Q4: Number of bachelor's degree holders by states based on sex in each major d4 = df.groupby(["State", "Sex"]).sum().reset_index() columns = d4.columns[3:] i = 1 plt.figure(figsize=(15, 22)) for col in columns: plt.subplot(2, 2, i) sns.barplot(x=col, y="State", hue="Sex", data=d4, palette="cool") i += 1 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.6, hspace=0.2) # Insights ✅ # - In 'STEM', number of males is higher than females in all states, except: # - Alaska, Delaware, Hawaii, Kentucky, Louisiana, Maine, Mississippi, Nebraska, New York, North Dakota, Rhode Island, Tennessee, West Virginia. # - In 'Business', number of males is higher than females in all states, except: # - District of Columbia. (We will see later in the EDA, that District of columbia have the highest percentage of BS Holders per population) # - In 'Education', numbers of females is higher than males in all states. # - In 'Arts, Humanities and Others', numbers of females is higher than males in all states. # ## 2. Analyzing based on sex and age (regardless of states) # #### Q5: Percentage of males and females in each major d5 = df.groupby(["Sex"]).sum().reset_index() d5 columns = d5.columns[1:] i = 1 plt.figure(figsize=(20, 10)) for col in columns: plt.subplot(1, 5, i) plt.title(col) plt.pie( d5[col], labels=d5["Sex"], autopct="%.1f%%", colors=["#AA6AEA", "#6AAAEA"], pctdistance=0.5, labeldistance=1.1, ) # add a circle at the center to transform it in a donut chart my_circle = plt.Circle((0, 0), 0.7, color="white") p = plt.gcf() p.gca().add_artist(my_circle) i += 1 # Insights ✅ # - In general, number of females is bigger than males) # - Number of males is bigger in STEM and Business. # - Number of females is much higher in Education and Arts, Humanities & Others. # - Biggest difference in numbers can be found in Education. # #### Q6: Number of males and females based on age group d6 = df.groupby(["Sex", "Age Group"]).sum().reset_index() d6 plt.figure(figsize=(7, 7)) sns.barplot( x="Age Group", y="Bachelors Degree Holders", hue="Sex", data=d6, palette="cool" ) # Insights ✅ # - Number of males is higher than females only in the '65 and older' age group. # #### Q7: Number of males and females based on age group in each major d7 = df.groupby(["Sex", "Age Group"]).sum().reset_index() d7 columns = d7.columns[3:] i = 1 plt.figure(figsize=(10, 10)) for col in columns: plt.subplot(2, 2, i) sns.barplot(x="Age Group", y=col, hue="Sex", data=d7, palette="cool") i += 1 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.4, hspace=0.4) # Insights ✅ # - In 'STEM', number of females is higher than males in '25 to 39' age group. # - In 'Business', number of males is higher than females in each and every age groups. # - In 'Education' and 'Arts, Humanities and Others', number of females is higher than males in all age groups. # - Age group 40-64 has highest number of bachelor's degree holders. # ## 3. Analyzing based on populations # #### Importing and cleaning the dataset # Source: U.S. Census Bureau, Population Division # https://www.census.gov/newsroom/press-kits/2019/national-state-estimates.html population = pd.read_csv( "../input/homeless-in-america-version-2-20102019/nst-est2019-alldata.csv" ) population # Extracting only "POPESTIMATE2019" resident total population estimate for 2019 # Excluding Puerto Rico as well population = population.loc[5:55, ["NAME", "POPESTIMATE2019"]] population.reset_index(drop=True, inplace=True) population # #### Creating new DataFrame (bspop_df) by merging the population and Bachelor's Degree Dataframes together bspop_df = df.groupby(["State"]).sum().reset_index() bspop_df # Before merging, let’s check if we have the same 'states' values in both DataFrames all(bspop_df["State"] == population["NAME"]) # Adding the "Population" column to the bspop_df DataFrame bspop_df.insert(1, "Population", population["POPESTIMATE2019"]) bspop_df # Calculating the percentage of Bachelor holder’s per population bspop_df.insert( 3, "BS%", (bspop_df["Bachelors Degree Holders"] / bspop_df["Population"]) * 100 ) bspop_df # Calculating the percentage of Bachelor holder’s in each major bspop_df.insert( 5, "STEM%", (bspop_df["STEM"] / bspop_df["Bachelors Degree Holders"]) * 100 ) bspop_df.insert( 7, "Business%", (bspop_df["Business"] / bspop_df["Bachelors Degree Holders"]) * 100 ) bspop_df.insert( 9, "Education%", (bspop_df["Education"] / bspop_df["Bachelors Degree Holders"]) * 100, ) bspop_df.insert( 11, "Arts, Humanities and Others%", (bspop_df["Arts, Humanities and Others"] / bspop_df["Bachelors Degree Holders"]) * 100, ) # Final form bspop_df # #### Q8: Comparing the percentage of bachelor's degree holders per population by states d8 = bspop_df d8.sort_values(by="BS%", ascending=False, inplace=True) d8 plt.figure(figsize=(18, 14)) sns.barplot(x="BS%", y="State", data=d8) # Insights ✅ # - Highest percentage of bachelor's degree holders per population are in: District of Columbia, Massachusetts and Colorado. # - Lowest percentage of bachelor's degree holders per population are in: Arkansas, West Virginia and Mississippi. # - This is the beautiful thing about looking at data from different perspective. When we compared based on number of bachelor's degree holders, california was in the first place, but now we can find it in the 17th position. # #### Q9: Comparing the percentage of bachelor's degree holders per population by states in each major d9 = bspop_df d9 columns = d9.columns[5::2] i = 1 plt.figure(figsize=(15, 22)) for col in columns: plt.subplot(2, 2, i) sns.barplot(x=col, y="State", data=d9.sort_values(by=col, ascending=False)) i += 1 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.6, hspace=0.2) # Another way to the see the result d9.sort_values(by="Population", ascending=False, inplace=True) d9.style.background_gradient(cmap="Blues") # Insights ✅ # - Very interesting insights about “District of Columbia”: # - As we saw before, it have the highest percentage of bachelor's degree holders per population (Q8). # - Now we can find it with the highest percentage of bachelor's degree holders in STEM and Arts, and the lowest in Education and Business (2nd lowest). # - These guys are LIT 🔥, taking literally the famous quote “There is no such thing as second place. Either you're first or you're last" to another level. # #### Q10: Distribution of bachelor's degree holders across majors (Heatmap) d10 = bspop_df[ ["State", "BS%", "STEM%", "Business%", "Education%", "Arts, Humanities and Others%"] ] d10 plt.figure(figsize=(15, 15)) d10 = d10.groupby(["State"]).sum() sns.heatmap(d10, annot=True, fmt="f", cmap="Reds") # Insights ✅ # Baseded on the heatmap, we can see that STEM is crushing it in every single state. # - Lowest percentage in Nebraska (38.5%) and the highest in district of columbia (53.6%). # - Distribution's order of bachelor's degree holders across majors in descending order are: STEM, Arts and Humanities, Business and Education. # #### Q11: Relation between population and percentage of bachelor's degree holders across majors d11 = bspop_df d11 sns.set_theme(style="white") columns = d11.columns[3::2] i = 1 plt.figure(figsize=(20, 20)) for col in columns: plt.subplot(5, 1, i) sns.lineplot(x="Population", y=col, data=d11) i += 1 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.2, hspace=0.6)
# # Importing Libraries # https://medium.com/@Skpd/pix2pix-gan-for-generating-map-given-satellite-images-using-pytorch-6e50c318673a # https://github.com/shashi7679/pix2pix-GANs/blob/master/dataset.py import cv2 import os import numpy as np import matplotlib.pyplot as plt from PIL import Image import torch from torch import nn from torch.optim import Adam from torch.utils.data import DataLoader, Dataset import albumentations as A device = "cuda" if torch.cuda.is_available() else "cpu" lr = 2e-4 beta1 = 0.4 BatchSize = 16 ImgSize = 256 l1Lambda = 100 lambdaGP = 10 epochs = 100 class Satellite2Map_Data(Dataset): def __init__(self, root, transform=None): self.root = root list_files = os.listdir(self.root) self.n_samples = list_files self.transform = transform def __len__(self): return len(self.n_samples) def __getitem__(self, idx): image_name = self.n_samples[idx] # print(self.n_samples) image_path = os.path.join(self.root, image_name) image = np.asarray(Image.open(image_path).convert("RGB")) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) height, width, _ = image.shape width_cutoff = width // 2 satellite_image = image[:, :width_cutoff, :] map_image = image[:, width_cutoff:, :] if self.transform: transformed = self.transform(image=satellite_image, mask=map_image) satelliteImage = transformed["image"] mapImage = transformed["mask"] return satelliteImage, mapImage transforms = A.Compose( [ A.Resize(ImgSize, ImgSize), A.RandomRotate90(p=0.4), A.Transpose(p=0.5), # Change x-axis to y and Y-axis to X. A.AdvancedBlur(blur_limit=(3, 7), p=0.4), ] ) dataset = Satellite2Map_Data("/kaggle/input/pix2pix-maps/train", transform=transforms) loader = DataLoader(dataset, batch_size=2, shuffle=True) for indx, (x, y) in enumerate(loader): print(x.shape, y.shape, x.dtype, y.dtype, type(x)) c = x[0] d = y[0] break plt.subplot(1, 2, 1) plt.imshow(c) plt.subplot(1, 2, 2) plt.imshow(d) plt.show() # # Class Generator class ConvBlock(nn.Module): def __init__(self, inputFeatures, outFeatures, kernelSize, stride, padding): super(ConvBlock, self).__init__() self.inputFeatures = inputFeatures self.outFeatures = outFeatures self.kernelSize = kernelSize self.stride = stride self.padding = padding self.convBlock = nn.Sequential( nn.Conv2d( self.inputFeatures, self.outFeatures, self.kernelSize, self.stride, self.padding, ), nn.BatchNorm2d(self.outFeatures), nn.LeakyReLU(0.2), ) def forward(self, x): out = self.convBlock(x) return out, out class ConvDownBlock(nn.Module): def __init__(self, inputFeatures, outFeatures, kernelSize, stride, padding): super(ConvDownBlock, self).__init__() self.inputFeatures = inputFeatures self.outFeatures = outFeatures self.kernelSize = kernelSize self.stride = stride self.padding = padding self.convUpBlock = nn.Sequential( nn.ConvTranspose2d( self.inputFeatures, self.outFeatures, self.kernelSize, self.stride, self.padding, ), nn.BatchNorm2d(self.outFeatures), nn.LeakyReLU(0.2), ) def forward(self, x): out = self.convUpBlock(x) return out class Generator(nn.Module): def __init__(self, inputShape, hiddenFeatures=32, heads=2, encoderNumber=2): super(Generator, self).__init__() self.channel, self.height, self.width = inputShape self.hiddenFeatures = hiddenFeatures assert self.channel == 3, f"Channels should be 3 not {self.channel}" assert ( self.height == self.width ), f"Height and Width must be same; Given- {self.height} and {self.width}" # Encoder self.d1 = ConvBlock(self.channel, self.hiddenFeatures, 4, 2, 1) self.d2 = ConvBlock(self.hiddenFeatures, self.hiddenFeatures * 2, 4, 2, 1) self.d3 = ConvBlock(self.hiddenFeatures * 2, self.hiddenFeatures * 4, 4, 2, 1) self.d4 = ConvBlock(self.hiddenFeatures * 4, self.hiddenFeatures * 8, 4, 2, 1) self.d5 = ConvBlock(self.hiddenFeatures * 8, self.hiddenFeatures * 16, 4, 2, 1) self.d6 = ConvBlock(self.hiddenFeatures * 16, self.hiddenFeatures * 32, 4, 2, 1) # Bottleneck self.bottleNeck = nn.TransformerEncoderLayer( d_model=self.hiddenFeatures * 32, nhead=heads ) self.transformerEncoder = nn.TransformerEncoder( self.bottleNeck, num_layers=encoderNumber ) # Decoder self.up6 = ConvDownBlock( self.hiddenFeatures * 32, self.hiddenFeatures * 16, 4, 2, 1 ) # 1024 -> 512 self.up5 = ConvDownBlock( self.hiddenFeatures * 16, self.hiddenFeatures * 8, 4, 2, 1 ) # 512 -> 256 self.up4 = ConvDownBlock( self.hiddenFeatures * 8, self.hiddenFeatures * 4, 4, 2, 1 ) # 256 -> 128 self.up3 = ConvDownBlock( self.hiddenFeatures * 4, self.hiddenFeatures * 2, 4, 2, 1 ) # 128 -> 64 self.up2 = ConvDownBlock( self.hiddenFeatures * 2, self.hiddenFeatures, 4, 2, 1 ) # 64 -> 32 # last ConvTranspose block must not have BatchNormalisation for better training Stabilty self.up1 = nn.Sequential( nn.ConvTranspose2d(self.hiddenFeatures, self.channel, 4, 2, 1), nn.Tanh() ) # out -> 32, 3 def forward(self, Satimage): # input -> (B, 3, 256, 256) same1, pass1 = self.d1(Satimage) same2, pass2 = self.d2(pass1) same3, pass3 = self.d3(pass2) same4, pass4 = self.d4(pass3) same5, pass5 = self.d5(pass4) same6, pass6 = self.d6(pass5) # out -> (B,1024, 4, 4) # Reshaping for bottleNeck Transformer Encoder pass6 = torch.reshape(pass6, (same6.shape[0], same6.shape[1], -1)) pass6 = torch.permute(pass6, (0, 2, 1)) bottleNeckLayer = self.transformerEncoder(pass6) # Reshaping to 4d for ConvTranspose operation bottleNeckLayer = torch.permute(bottleNeckLayer, (0, 2, 1)) bottleNeckLayer = torch.reshape( bottleNeckLayer, ( bottleNeckLayer.shape[0], bottleNeckLayer.shape[1], same6.shape[2], same6.shape[3], ), ) # out->torch.Size([2, 1024, 4, 4]) # Decoder Block/ Upsampling with Adding Residual connections upSample6 = self.up6(torch.add(bottleNeckLayer, same6)) upSample5 = self.up5(torch.add(upSample6, same5)) upSample4 = self.up4(torch.add(upSample5, same4)) upSample3 = self.up3(torch.add(upSample4, same3)) upSample2 = self.up2(torch.add(upSample3, same2)) genOutput = self.up1(torch.add(upSample2, same1)) return genOutput gen = Generator((3, 256, 256)).to(device) gen(torch.randn(2, 3, 256, 256, device=device)).shape # torch.Size([2, 3, 256, 256]) # cc = nn.Conv2d(3, 16, 4, 2,1) # dd = cc(torch.rand(4,3,64,64)) # dd.shape # torch.Size([4, 16, 32, 32]) # m = nn.ConvTranspose2d(1024, 712, 4, stride=2, padding=1) # c1 = m(torch.randn(4,1024,32,32)) # c1.shape #torch.Size([4, 16, 32, 32]) # encoder_layer = nn.TransformerEncoderLayer(d_model=1024, nhead=8) # transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=2) # src = torch.rand(4,4, 1024) # out = transformer_encoder(src) # out.shape #torch.Size([4, 4, 1024]) # # Class Discriminator class Discriminator(nn.Module): def __init__(self, inputShape, hiddenDims=16): super(Discriminator, self).__init__() self.channel, self.height, self.width = inputShape self.intialconv = nn.Sequential( nn.Conv2d(self.channel, hiddenDims, 4, 2, 1), nn.ReLU() ) self.intermidate = nn.Sequential( self._intermidateBlock(hiddenDims, hiddenDims * 2), self._intermidateBlock(hiddenDims * 2, hiddenDims * 4), self._intermidateBlock(hiddenDims * 4, hiddenDims * 8), ) self.lastlayer = nn.Sequential( nn.Conv2d(hiddenDims * 8, 1, 4, 2, 1), ) def _intermidateBlock(self, inFeatures, outFeatures): return nn.Sequential( nn.Conv2d(inFeatures, outFeatures, 4, 2, 1), nn.BatchNorm2d(outFeatures), nn.LeakyReLU(0.2), ) def forward(self, x, y): res = torch.cat([x, y], dim=1) # return self.intialconv(res) return self.lastlayer(self.intermidate(self.intialconv(res))) disc = Discriminator((6, ImgSize, ImgSize), 16).to(device) # disc(torch.rand(2,3,256,256,device=device), torch.rand(2,3,256,256,device=device)).shape #torch.Size([2, 1, 8, 8]) # # Loss Function and Optimisers BCELoss = nn.BCEWithLogitsLoss() L1Loss = nn.L1Loss() optimizerD = torch.optim.Adam(disc.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = torch.optim.Adam(gen.parameters(), lr=lr, betas=(beat1, 0.999)) # # training Loop for i in range(epochs): for idx, (x, y) in enumerate(loader): x = x.to(device) y = y.to(device) # Train Discriminator # 1) E[log D(x,y)] optimizerD.zero_grad() realDiscOut = disc(x, y) realDiscLoss = BCELoss(realDiscOut, torch.ones_like(realDiscOut)) # 2) E[log(1 - D(x,G(x)))] fakeGenOut = gen(x) fakediscOut = disc(x, fakeGenOut) fakeDiscLoss = BCELoss(fakediscOut, torch.zeros_like(fakediscOut)) DiscLoss = (fakeDiscLoss + realDiscLoss) / 2 DiscLoss.backward() optimizerD.step() # Train Generator :- L1(G) = Ex,y,z[ky − G(x, z)k1] optimizerG.zero_grad() fakeDisc = disc(x, fakeGenOut) genFakeLoss = BCELoss(fakeDisc, torch.ones_like(fakeDisc)) l1 = L1Loss(fakeGenOut, y) * l1Lambda GenLoss = genFakeLoss + l1 GenLoss.backward() optimizerG.step() print( f"============================================== EPOCH: {i} Completed============================================================" )
import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model from sklearn.datasets import fetch_openml mnist = fetch_openml("mnist_784", version=1, as_frame=False) mnist.keys() x, y = mnist["data"], mnist["target"] y.shape x[0].shape plt.imshow(x[0].reshape(28, 28)) x_train, x_test, y_train, y_test = x[:60000], x[60000:], y[:60000], y[60000:] y_test y_train_5 = list(map(lambda x: True if (x == "5") else False, y_train)) y_test_5 = list(map(lambda x: True if (x == "5") else False, y_test))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import xgboost as xgb from sklearn.metrics import mean_squared_error # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session db = pd.read_csv("/kaggle/input/transformator-health-index/DatasetA.csv") db["Water"] = db["Water"].astype("float64") db["IFT"] = db["IFT"].astype("float64") # Splitting train and test from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(db, test_size=0.25, random_state=11) # Setting the labels y_train = train_set["HI"] y_test = test_set["HI"] # Dropping the labels train_set = train_set.drop("HI", axis=1) test_set = test_set.drop("HI", axis=1) """ # Scaling the data. The output is a numpy array from sklearn.preprocessing import StandardScaler std_scaler = StandardScaler() train_set_scaled = std_scaler.fit_transform(train_set) test_set_scaled = std_scaler.fit_transform(test_set) # This was a numpy array, setting the data to pandas format: X_train = pd.DataFrame(train_set, columns = train_set.columns, index = train_set.index) X_test = pd.DataFrame(test_set, columns = test_set.columns, index = test_set.index) """ X_train = train_set.copy() X_test = test_set.copy() # # Using XGBOOST """ import optuna # Define the objective function for Optuna def objective(trial): # Set the hyperparameters to be tuned by Optuna params = { 'n_estimators': trial.suggest_int('n_estimators', 100, 1000), 'max_depth': trial.suggest_int('max_depth', 3, 10), 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.5), 'subsample': trial.suggest_float('subsample', 0.5, 1), 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1), 'reg_alpha': trial.suggest_float('reg_alpha', 1e-5, 10), 'reg_lambda': trial.suggest_float('reg_lambda', 1e-5, 10), 'random_state': 42, 'tree_method': trial.suggest_categorical('tree_method', ['gpu_hist']) } # Initialize the XGBoost Regressor model with the suggested hyperparameters xgb_model = xgb.XGBRegressor(**params) # Fit the model on the training data xgb_model.fit(X_train_new, y_expensive) # Predict the target values for the test data y_expensive_pred = xgb_model.predict(X_test_new) # Compute the mean squared error mse = mean_squared_error(y_expensive_test, y_expensive_pred) return mse # Create an Optuna study study = optuna.create_study(direction='minimize') # Optimize the hyperparameters study.optimize(objective, n_trials=100) # Print the best hyperparameters print("Best hyperparameters: ", study.best_params) """ Best_hyperparameters = { "n_estimators": 721, "max_depth": 10, "learning_rate": 0.10826726920251205, "subsample": 0.9466559602430304, "colsample_bytree": 0.5007784856806652, "reg_alpha": 0.0028607606172757665, "reg_lambda": 5.377369500486225e-05, } # # Predicting Furan using xgboost db = pd.read_csv("/kaggle/input/transformator-health-index/DatasetA.csv") db["Water"] = db["Water"].astype("float64") db["IFT"] = db["IFT"].astype("float64") # Splitting train and test from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(db, test_size=0.2, random_state=11) # Setting the labels y_train = train_set["HI"] y_test = test_set["HI"] # Dropping the labels train_set = train_set.drop("HI", axis=1) test_set = test_set.drop("HI", axis=1) # Scaling the data. The output is a numpy array # from sklearn.preprocessing import StandardScaler # std_scaler = StandardScaler() # train_set_scaled = std_scaler.fit_transform(train_set) # test_set_scaled = std_scaler.fit_transform(test_set) # This was a numpy array, setting the data to pandas format: X_train = pd.DataFrame(train_set, columns=train_set.columns, index=train_set.index) X_test = pd.DataFrame(test_set, columns=test_set.columns, index=test_set.index) y_Furan = X_train[["Furan"]] X_train_1 = X_train.drop(["Furan", "IFT"], axis=1) y_Furan_test = X_test[["Furan"]] X_test_1 = X_test.drop(["IFT", "Furan"], axis=1) model_Furan = xgb.XGBRegressor(**Best_hyperparameters) # Fit the model on the training data model_Furan.fit(X_train_1, y_Furan) # Predict the target values for the test data y_Furan_pred = model_Furan.predict(X_test_1) # Evaluate the model performance mse_Furan = mean_squared_error(y_Furan_test, y_Furan_pred) # r2 = r2_score(y_expensive_test, y_expensive_pred) print("MSE: ", mse_Furan) pd.DataFrame([np.ravel(y_Furan_test), y_Furan_pred]) # # Predicting features separately using Neural Network import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from sklearn.preprocessing import StandardScaler from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping # Define the neural network model model = keras.Sequential( [ layers.Dense(64, input_shape=[13]), layers.BatchNormalization(), layers.Activation("relu"), layers.Dropout(0.1), layers.Dense(32), layers.BatchNormalization(), layers.Activation("relu"), layers.Dropout(0.1), layers.Dense(1), ] ) # Compile the model model.compile( optimizer="adam", loss="mean_squared_error", metrics=["mean_absolute_error", "mean_squared_error"], ) # Define the callbacks checkpoint = ModelCheckpoint("best_model.h5", save_best_only=True) early_stop = EarlyStopping(patience=25, restore_best_weights=True) # Train the model history = model.fit( X_train_1, y_Furan, validation_data=(X_test_1, y_Furan_test), batch_size=32, epochs=300, callbacks=[checkpoint, early_stop], ) # Evaluate the model on the test data model.evaluate(X_test_1, y_Furan_test) # # Predicting IFT Using XGBOOST y_IFT = X_train[["IFT"]] X_train_2 = X_train.drop(["Furan", "IFT"], axis=1) y_IFT_test = X_test[["IFT"]] X_test_2 = X_test.drop(["IFT", "Furan"], axis=1) model_IFT = xgb.XGBRegressor(**Best_hyperparameters) # Fit the model on the training data model_IFT.fit(X_train_2, y_IFT) # Predict the target values for the test data y_IFT_pred = model_IFT.predict(X_test_2) # Evaluate the model performance mse_IFT = mean_squared_error(y_IFT_test, y_IFT_pred) # r2 = r2_score(y_expensive_test, y_expensive_pred) print("MSE: ", mse_IFT) pd.DataFrame([np.ravel(y_IFT_test), y_IFT_pred])
## Logging into wandb import wandb from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() secret_value_0 = user_secrets.get_secret("wandb_api") wandb.login(key=secret_value_0) import sys sys.path.append("./TiLT-Implementation/src/") import os from transformers import AutoTokenizer, AutoConfig from datasets import load_dataset import torch import torch.nn as nn from torch.utils.data import DataLoader from pytorch_lightning.loggers import CSVLogger, WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint import pytorch_lightning as pl from dataset import ExtFUNSDDs from torchvision import transforms from tqdm.auto import tqdm ## Custom imports from visual_backbone import Unet_encoder, RoIPool from t5 import T5ForConditionalGenerationAbstractive, T5Stack from transformers import AutoModel # ## 1.1. Preparing the dataset device = "cuda" if torch.cuda.is_available() else "cpu" hf_ds = load_dataset("nielsr/funsd-layoutlmv3") model_name = "t5-base" ## Visual Embedding extractor's parameters in_channels = 3 num_pool_layers = 3 channels = 16 sampling_ratio = 2 spatial_scale = 48 / 384 output_size = (3, 3) load_weights = True max_epochs = 50 ## FUNSD Dataset specific num_classes = 7 ## Tokenizer's parameter model_max_length = 512 t5_config = AutoConfig.from_pretrained(model_name) ## Adding new parameters t5_config.update( dict( in_channels=in_channels, num_pool_layers=num_pool_layers, channels=channels, model_max_length=model_max_length, output_size=output_size, spatial_scale=spatial_scale, sampling_ratio=sampling_ratio, use_cache=False, load_weights=load_weights, lr=2e-4, num_classes=num_classes, max_epochs=max_epochs, ) ) def get_id2label_and_label2id(): label2id = { "O": 0, "B-HEADER": 1, "I-HEADER": 2, "B-QUESTION": 3, "I-QUESTION": 4, "B-ANSWER": 5, "I-ANSWER": 6, } id2label = { 0: "O", 1: "B-HEADER", 2: "I-HEADER", 3: "B-QUESTION", 4: "I-QUESTION", 5: "B-ANSWER", 6: "I-ANSWER", } return id2label, label2id def convert_id_to_label(list_of_label): return [id2label[x] for x in list_of_label] # train_new_tags = list(map(lambda x : convert_id_to_label(x), hf_ds['train']['ner_tags'])) # test_new_tags = list(map(lambda x : convert_id_to_label(x), hf_ds['test']['ner_tags'])) # hf_ds['train'] = hf_ds['train'].remove_columns("ner_tags").add_column("ner_tags", train_new_tags) # hf_ds['test'] = hf_ds['test'].remove_columns("ner_tags").add_column("ner_tags", test_new_tags) # ### 1.2 Writing the `collate_fn` for custom handling of the dataloader class CollateFn(object): def __init__(self, tokenizer): self.tokenizer = tokenizer def __call__(self, list_of_ds): simple_keys = [ "input_ids", "attention_mask", "bboxes", "pixel_values", "labels", ] actual_batch = {} for key in simple_keys: actual_batch[key] = torch.stack([x[key] for x in list_of_ds]) # actual_batch['labels'] = self.tokenizer.batch_encode_plus([x['labels'] for x in list_of_ds], return_tensors = 'pt', is_split_into_words = True, # padding='max_length', truncation = True)['input_ids'] return actual_batch # sample_batch_encoding = collate_fn([train_ds[0], train_ds[1]]) # for key in sample_batch_encoding: # sample_batch_encoding[key] = sample_batch_encoding[key].to(device) # ## 2.1 Preparing the visual model class VisualEmbedding(nn.Module): def __init__(self, config): super().__init__() self.unet_encoder = Unet_encoder( in_channels=config.in_channels, channels=config.channels, num_pool_layers=config.num_pool_layers, ) self.roi_pool = RoIPool( output_size=config.output_size, spatial_scale=config.spatial_scale ) self.proj = nn.Linear(in_features=128 * 3 * 3, out_features=config.d_model) self.config = config def forward(self, pixel_values, bboxes): image_embedding = self.unet_encoder(pixel_values) feature_maps_bboxes = self.roi_pool(image_embedding, bboxes).flatten(2) projection = self.proj(feature_maps_bboxes) return projection # ## 2.2 Preparing the semantic model class TiLTTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.visual_embedding_extractor = VisualEmbedding(config) self.t5_model = T5ForConditionalGenerationAbstractive(config) def generate(self, batch): total_embedding = self.common_step(batch) return self.t5_model.generate(input_embeds=total_embedding) def common_step(self, batch): ## Visual embedding visual_embedding = self.visual_embedding_extractor( pixel_values=batch["pixel_values"], bboxes=batch["bboxes"] ) ## Semantic embedding from t5_model's embedding layer semantic_embedding = self.t5_model.shared(batch["input_ids"]) ## Net embedding is addition of both the embeddings total_embedding = visual_embedding + semantic_embedding return total_embedding def forward(self, batch): total_embedding = self.common_step(batch) ## This is then fed to t5_model final_output = self.t5_model( attention_mask=batch["attention_mask"], inputs_embeds=total_embedding, labels=batch["labels"], ) return final_output # tilt_model = TiLTTransformer(t5_config).to(device) # output = tilt_model(sample_batch_encoding) # ## 3.1 Preparing the metrics to evaluate the predictions import evaluate def get_labels(predictions, references): # Transform predictions and references tensors to numpy arrays if predictions.device.type == "cpu": y_pred = predictions.detach().clone().numpy() y_true = references.detach().clone().numpy() else: y_pred = predictions.detach().cpu().clone().numpy() y_true = references.detach().cpu().clone().numpy() # Remove ignored index (special tokens) true_predictions = [ [id2label[p] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] true_labels = [ [id2label[l] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] return true_predictions, true_labels # labels = sample_batch_encoding['labels'] # true_predictions, true_labels = get_labels(predictions = output.logits.argmax(axis = -1), references = labels) # eval_metric = evaluate.load("seqeval") # metric = eval_metric.compute(predictions = true_predictions, references = true_labels) # ## Part: 4 Writing the `pytorch_lightning` code for training on FUNSD id2label, label2id = get_id2label_and_label2id() transform = transforms.Compose( [transforms.ToTensor(), transforms.Lambda(lambda x: 2 * x - 1)] ) ## Tokenizer tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, model_max_length=model_max_length ) train_ds = ExtFUNSDDs(hf_ds["train"], tokenizer=tokenizer, transform=transform) val_ds = ExtFUNSDDs(hf_ds["test"], tokenizer=tokenizer, transform=transform) collate_fn = CollateFn(tokenizer) class DataModule(pl.LightningDataModule): def __init__(self, train_dataset, eval_dataset, batch_size: int = 2): super(DataModule, self).__init__() self.batch_size = batch_size self.train_dataset = train_dataset self.eval_dataset = eval_dataset def train_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn, ) def val_dataloader(self): return DataLoader( self.eval_dataset, batch_size=self.batch_size, shuffle=False, collate_fn=collate_fn, ) class TiltModel(pl.LightningModule): def __init__(self, config): super().__init__() self.config = config self.tilt_model = TiLTTransformer(config) self.eval_metric = evaluate.load("seqeval") def forward(self, batch): return self.tilt_model(batch) def training_step(self, batch, batch_idx): output = self(batch) loss = output.loss predictions = output.logits.argmax(dim=-1) true_predictions, true_labels = get_labels( predictions=predictions, references=batch["labels"] ) results = self.eval_metric.compute( predictions=true_predictions, references=true_labels ) self.log( "train_loss", output.loss.item(), prog_bar=True, on_epoch=True, logger=True ) self.log( "train_overall_fl", results["overall_f1"], prog_bar=True, on_epoch=True, logger=True, ) self.log( "train_overall_recall", results["overall_recall"], prog_bar=True, on_epoch=True, logger=True, ) self.log( "train_overall_precision", results["overall_precision"], prog_bar=True, on_epoch=True, logger=True, ) return loss def validation_step(self, batch, batch_idx): output = self(batch) loss = output.loss predictions = output.logits.argmax(dim=-1) true_predictions, true_labels = get_labels( predictions=predictions, references=batch["labels"] ) results = self.eval_metric.compute( predictions=true_predictions, references=true_labels ) self.log( "val_loss", output.loss.item(), prog_bar=True, on_epoch=True, logger=True ) self.log( "val_overall_fl", results["overall_f1"], prog_bar=True, on_epoch=True, logger=True, ) self.log( "val_overall_recall", results["overall_recall"], prog_bar=True, on_epoch=True, logger=True, ) self.log( "val_overall_precision", results["overall_precision"], prog_bar=True, on_epoch=True, logger=True, ) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW(self.parameters(), lr=self.config.lr) return optimizer def perform_evaluation(path: str = None, pl_model=None, pl_dl=None): print("Evaluating the model") if path is not None: pl_model = pl_model.load_from_checkpoint(path, config=t5_config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") eval_metric = evaluate.load("seqeval") pl_model = pl_model.to(device) pl_model.eval() for idx, batch in enumerate(tqdm(pl_dl.val_dataloader())): # move batch to device batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = pl_model(batch) predictions = outputs.logits.argmax(-1) true_predictions, true_labels = get_labels(predictions, batch["labels"]) eval_metric.add_batch(references=true_labels, predictions=true_predictions) results = eval_metric.compute() metrics = {} for key in [ "overall_precision", "overall_recall", "overall_f1", "overall_accuracy", ]: print_statement = "{0: <30}".format(str(key) + " has value:") print(print_statement, results[key]) metrics[key] = results[key] return metrics checkpoint_callback = ModelCheckpoint( dirpath="./tilt/models", monitor="val_overall_fl", mode="max", filename="tilt_best_ckpt", save_top_k=1, ) logger = CSVLogger("./tilt/logs", name="funsd_dataset") wandb.init(config=t5_config, project="TiLT on FUNSD") wandb_logger = WandbLogger(project="TiLT on FUNSD", log_model=False, entity="iakarshu") trainer = pl.Trainer( default_root_dir="./tilt/logs", devices="auto", accelerator="auto", max_epochs=t5_config.max_epochs, logger=wandb_logger, callbacks=[checkpoint_callback], log_every_n_steps=5, ) pl_model = TiltModel(t5_config) pl_dl = DataModule(train_ds, val_ds, batch_size=2) trainer.fit(pl_model, pl_dl) ckpt_folder = "./tilt/models" if os.path.exists(ckpt_folder): ckpt_path = os.path.join(ckpt_folder, os.listdir(ckpt_folder)[0]) else: ckpt_path = None metrics = perform_evaluation(path=ckpt_path, pl_model=pl_model, pl_dl=pl_dl) print(metrics)
# # Text Classification import collections import numpy as np import pandas as pd import re from argparse import Namespace train_data = pd.read_csv( "/kaggle/input/yelp-reviews-for-sa-finegrained-5-classes-csv/yelp_review_fine-grained_5_classes_csv/train.csv" ) test_data = pd.read_csv( "/kaggle/input/yelp-reviews-for-sa-finegrained-5-classes-csv/yelp_review_fine-grained_5_classes_csv/test.csv" ) train_data.head() test_data.class_index.value_counts() train_proportion = 0.8 val_proportion = 0.2 import collections by_rating = collections.defaultdict(list) for _, row in train_data.iterrows(): by_rating[row.class_index].append(row.to_dict()) ## Create a split data final_list = [] np.random.seed(42) for _, item_list in sorted(by_rating.items()): np.random.shuffle(item_list) n_total = len(item_list) n_train = int(train_proportion * n_total) n_val = int(val_proportion * n_total) # Give data a split attribute for item in item_list[:n_train]: item["split"] = "train" for item in item_list[n_train : n_train + n_val]: item["split"] = "val" # add to the final list final_list.extend(item_list) len(final_list) for _, row in test_data.iterrows(): row_dict = row.to_dict() row_dict["split"] = "test" final_list.append(row_dict) # Write split data to file final_reviews = pd.DataFrame(final_list) final_reviews.head() final_reviews.split.value_counts() final_reviews.isna().sum() # # Preprocessing the Data import re import nltk nltk.download("stopwords") from nltk.corpus import stopwords from num2words import num2words def preprocess_text(text): # convert to lower case text = text.lower() # replace contractions with full words text = re.sub(r"won't", "will not", text) text = re.sub(r"can\'t", "can not", text) text = re.sub(r"n\'t", " not", text) text = re.sub(r"\'re", " are", text) text = re.sub(r"\'s", " is", text) text = re.sub(r"\'d", " would", text) text = re.sub(r"\'ll", " will", text) text = re.sub(r"\'t", " not", text) text = re.sub(r"\'ve", " have", text) text = re.sub(r"\'m", " am", text) # remove punctuation text = re.sub(r"[^\w\s]", "", text) # convert numerical numbers to word text = re.sub(r"\d+", lambda x: str(num2words(int(x.group(0)))) + " ", text) # remove stop words stop_words = set(stopwords.words("english")) text = " ".join([word for word in text.split() if word not in stop_words]) return text final_reviews.review_text = final_reviews.review_text.apply(preprocess_text) final_reviews["rating"] = final_reviews.class_index.apply( {1: "WORST", 2: "BAD", 3: "NEUTRAL", 4: "GOOD", 5: "BEST"}.get ) ## removing the text data which length are less than 1 final_reviews = final_reviews[final_reviews["review_text"].str.len() > 1] # # Classifying Yelp Reviews from argparse import Namespace from collections import Counter import json import os import re import string import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from tqdm import tqdm_notebook # # Building the custom Vocabulary with our training data # This code defines a Python class named Vocabulary that is used to build a vocabulary from a set of sentences. The vocabulary maps each unique word in the sentences to a unique integer ID. The class has three methods: # > **__init__(self,freq_threshold,max_size)**: Initializes the class with two parameters, **freq_threshold** and **max_size**. **freq_threshold** is used to limit the vocabulary to only include words that appear at least freq_threshold times in the input sentences. **max_size** is used to limit the size of the vocabulary to max_size words. # > **build_vocabulary(self, sentences)**: This method builds the vocabulary from the input sentences. It first tokenizes each sentence into a list of words using the tokenizer method. Then, it counts the frequency of each word in the sentences, and keeps only the words that appear more than freq_threshold times. If the resulting vocabulary size is greater than max_size, it keeps only the max_size most frequent words. Finally, it maps each word to a unique integer ID using the stoi and itos dictionaries. # > **numericalize(self, text)**: This method converts a given sentence text into a list of integer IDs by tokenizing the sentence using the tokenizer method, and then mapping each word to its corresponding integer ID using the stoi dictionary. If a word is not present in the vocabulary, it is mapped to the integer ID of the token. # from tqdm import tqdm class Vocabulary: def __init__(self, freq_threshold, max_size): super(Vocabulary, self).__init__() self.freq_threshold = freq_threshold self.max_size = max_size self.stoi = {"<UNK>": 1} self.itos = {1: "<UNK>"} """ Build The vocabulary """ @staticmethod def tokenizer(text): return [w.strip() for w in text.split()] def build_vocabulary(self, sentences): frequencies = {} idx = 2 for sent in tqdm(sentences): words = self.tokenizer(sent) for w in words: if w not in frequencies.keys(): frequencies[w] = 1 else: frequencies[w] += 1 # Limit the vocab by removing the low frequencis word frequencies = {k: v for k, v in frequencies.items() if v > self.freq_threshold} if len(frequencies) > self.max_size: frequencies = dict( sorted(frequencies.items(), key=lambda x: -x[1])[: self.max_size] ) for word in frequencies.keys(): self.stoi[word] = idx self.itos[idx] = word idx += 1 def numericalize(self, text): tokenized_text = self.tokenizer(text) numericalized_text = [] for token in tokenized_text: if token in self.stoi.keys(): numericalized_text.append(self.stoi[token]) else: numericalized_text.append(self.stoi["<UNK>"]) return numericalized_text final_reviews.drop(labels=["rating"], inplace=True, axis=1) final_reviews.split.value_counts() # making the class index from 0 to 4 0 being worst and 4 being Best final_reviews["class_index"] = final_reviews["class_index"] - 1 final_reviews train_df = final_reviews[final_reviews["split"] == "train"] valid_df = final_reviews[final_reviews["split"] == "val"] test_df = final_reviews[final_reviews["split"] == "test"] train_df.shape, test_df.shape, valid_df.shape train_df.head() # # Create Custom Dataset For Training and Validation # This code defines two PyTorch datasets for sentiment analysis: TrainSentimentDataset and ValidSentimentDataset. # > **TrainSentimentDataset** takes a training DataFrame as input and builds a vocabulary using the Vocabulary class. It stores the reviews and their corresponding sentiment labels as instance variables. The **__len__** method returns the number of reviews in the DataFrame. The **__getitem__** method takes an index, retrieves the corresponding review and sentiment, and returns the numericalized review as a PyTorch tensor along with the sentiment label. # > **ValidSentimentDataset** takes a validation DataFrame and a TrainSentimentDataset object as inputs. It stores the reviews and their corresponding sentiment labels as instance variables. The **__len__** method returns the number of reviews in the DataFrame. The **__getitem__** method takes an index, retrieves the corresponding review and sentiment, and returns the numericalized review as a PyTorch tensor along with the sentiment label. It uses the Vocabulary object from the TrainSentimentDataset to numericalize the review. This ensures that the vocabulary used to numericalize the reviews is consistent across both the training and validation datasets. from torch.utils.data import Dataset, DataLoader class TrainSentimentDataset(Dataset): def __init__(self, train_df, transforms=None, freq_threshold=5, max_size=8000): super(TrainSentimentDataset, self).__init__() self.train_df = train_df self.reviews = self.train_df["review_text"].values self.sentiments = self.train_df["class_index"].values self.transforms = transforms self.vocab = Vocabulary(freq_threshold=freq_threshold, max_size=max_size) self.vocab.build_vocabulary(self.reviews) def __len__(self): return len(self.train_df) def __getitem__(self, index): review = self.reviews[index] sentiment = self.sentiments[index] numericalized_text = self.vocab.numericalize(review) return torch.tensor(numericalized_text), sentiment class ValidSentimentDataset(Dataset): def __init__( self, valid_df, train_dataset, transforms=None, freq_threshold=5, max_size=8000 ): super(ValidSentimentDataset, self).__init__() self.reviews = valid_df["review_text"].values self.sentiments = valid_df["class_index"].values self.transforms = transforms self.train_dataset = train_dataset # self.vocab=Vocabulary(freq_threshold=freq_threshold,max_size=max_size) # self.vocab.build_vocabulary(self.train_df["review"].values) def __len__(self): return len(self.reviews) def __getitem__(self, index): review = self.reviews[index] sentiment = self.sentiments[index] numericalized_text = self.train_dataset.vocab.numericalize(review) return torch.tensor(numericalized_text), sentiment # # This code defines a collate function for the PyTorch DataLoader that will be used to load the datasets in batches. The collate function takes a batch of samples and performs padding on the numericalized text sequences to make them of the same length. # **pad_sequence** function from **torch.nn.utils.rnn** is used to pad the sequences to the same length, which is the length of the longest sequence in the batch. The batch_first argument is set to True to make sure the batch is returned as the first dimension. The padding value is set to the **pad_idx** argument passed to the **MyCollate** constructor. # The collate function returns the padded numericalized text sequences as a PyTorch tensor and the corresponding sentiment labels as a tensor as well. from torch.nn.utils.rnn import pad_sequence label_pipeline = lambda x: int(x) class MyCollate: def __init__(self, pad_idx): self.pad_idx = pad_idx def __call__(self, batch): numericalized_text = [item[0] for item in batch] numericalized_text = pad_sequence( numericalized_text, batch_first=True, padding_value=self.pad_idx, ) sentiments = torch.Tensor([item[1] for item in batch]) return numericalized_text, sentiments from torch.utils.data import DataLoader def get_train_loader(dataset, batch_size, num_worker=4, shuffle=True, pin_memory=False): pad_idx = 0 loader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_worker, collate_fn=MyCollate(pad_idx), ) return loader def get_valid_loader( dataset, batch_size, num_workers=1, shuffle=True, pin_memory=False ): pad_idx = 0 loader = DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle, pin_memory=pin_memory, collate_fn=MyCollate(pad_idx=pad_idx), ) return loader train_dataset = TrainSentimentDataset(train_df) valid_dataset = ValidSentimentDataset(valid_df, train_dataset) test_dataset = ValidSentimentDataset(test_df, train_dataset) train_loader = get_train_loader(train_dataset, batch_size=64) valid_loader = get_valid_loader(valid_dataset, batch_size=64) test_loader = get_valid_loader(test_dataset, batch_size=64) # # Model Architecture import torch.nn as nn import torch.nn.functional as F class YelpClassifier(nn.Module): def __init__(self, vocab_size, embed_size, hidden_dim, num_classes): super(YelpClassifier, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim=embed_size) self.lstm = nn.LSTM( embed_size, hidden_dim, batch_first=True, bidirectional=True, ) self.fc1 = nn.Linear(hidden_dim * 2, hidden_dim) self.fc2 = nn.Linear(hidden_dim, num_classes) def forward(self, x): x = self.embedding(x) lstm_out, (h_o, c_o) = self.lstm(x) out = torch.concat([h_o[0], h_o[-1]], dim=1) out = F.relu(self.fc1(out)) out = self.fc2(out) return out # # Model Architecture import torch.nn as nn class classifier(nn.Module): # define all the layers used in model def __init__( self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout, ): # Constructor super().__init__() # embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) # lstm layer self.lstm = nn.LSTM( embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional, dropout=dropout, batch_first=True, ) # dense layer self.fc = nn.Linear(hidden_dim * 2, output_dim) def forward(self, text): # text = [batch size,sent_length] embedded = self.embedding(text) # embedded = [batch size, sent_len, emb dim] # packed sequence # packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths,batch_first=True) packed_output, (hidden, cell) = self.lstm(embedded) # hidden = [batch size, num layers * num directions,hid dim] # cell = [batch size, num layers * num directions,hid dim] # concat the final forward and backward hidden state hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1) # hidden = [batch size, hid dim * num directions] outputs = self.fc(hidden) # Final activation function # outputs=self.act(dense_outputs) return outputs # Initialize the device device = "cuda" if torch.cuda.is_available() else "cpu" # define hyperparameters size_of_vocab = 8500 embedding_dim = 100 num_hidden_nodes = 32 num_output_nodes = 5 num_layers = 2 bidirection = True dropout = 0.2 # instantiate the model model = classifier( size_of_vocab, embedding_dim, num_hidden_nodes, num_output_nodes, num_layers, bidirectional=True, dropout=dropout, ).to(device) # model=YelpClassifier(10000,512,256,5).to(device) # Below function train() trains a PyTorch model using the provided train and validation data loaders for a specified number of epochs. During training, the model's parameters are updated using the optimizer and the loss is computed using the specified criterion. The function prints the train and validation loss and accuracy after each epoch. If the validation loss improves, the model is saved to a specified file path. The function takes in the following parameters: # * model: the PyTorch model to be trained # * train_loader: the data loader for the training set # * val_loader: the data loader for the validation set # * criterion: the loss function used to evaluate the model's performance # * optimizer: the optimization algorithm used to update the model's parameters # * device: the device (CPU or GPU) used for training # * epochs: the number of epochs to train the model # * clip: the gradient clipping value used to prevent exploding gradients # * save_path: the file path to save the model if its validation loss improves. def train( model, train_loader, val_loader, criterion, optimizer, device, epochs, clip=1, save_path="model", ): best_val_loss = float("inf") for epoch in range(epochs): model.train() train_loss = 0 train_acc = 0 for batch_idx, batch in enumerate(train_loader): texts, targets = batch texts = texts.to(device) targets = targets.to(device) targets = targets.long() optimizer.zero_grad() output = model(texts) loss = criterion(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip) optimizer.step() train_loss += loss.item() train_acc += (output.argmax(1) == targets).sum().item() if (batch_idx % 100 == 0) and (batch_idx != 0): print( f"Training complete {batch_idx}/ 8125 ={batch_idx/8125}% completed Train Accuracy = {train_acc/(batch_idx*64)} Loss = {train_loss/batch_idx}" ) train_loss /= len(train_loader) train_acc /= len(train_loader.dataset) print(f"Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.4f}") model.eval() val_loss = 0 val_acc = 0 with torch.no_grad(): for batch_idx, batch in enumerate(val_loader): texts, targets = batch texts = texts.to(device) targets = targets.to(device) output = model.forward(texts) targets = targets.long() loss = criterion(output, targets) val_loss += loss.item() val_acc += (output.argmax(1) == targets).sum().item() val_loss /= len(val_loader) val_acc /= len(val_loader.dataset) print(f"Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.4f}") # Save the model if the validation loss improves if save_path is not None and val_loss < best_val_loss: save_path = str(save_path) + "_" + str(epoch) + ".pt" print(f"Saving model to {save_path}") torch.save(model.state_dict(), save_path) best_val_loss = val_loss torch.save(model.state_dict(), "model_1.pt") # initialize the criterion and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.0001) # # Run for Two epoch you will get 65% accuracy of Validation Dataset. # # Will work on improving the model performance. # # This is a Baseline model you can try to make the performance better # call the train function train( model, train_loader, val_loader=valid_loader, criterion=criterion, optimizer=optimizer, device=device, epochs=4, )
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import catboost as cb from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler import math train = pd.read_csv( "/kaggle/input/yasmines-meteorological-mystery-dsc-psut-comp/train_data.csv", parse_dates=["date"], ) test = pd.read_csv( "/kaggle/input/yasmines-meteorological-mystery-dsc-psut-comp/test_data.csv", parse_dates=["date"], ) train["source"] = "train" test["source"] = "test" train.dropna(inplace=True) df = pd.concat([train, test], 0, ignore_index=True) sample_sub = pd.read_csv( "/kaggle/input/yasmines-meteorological-mystery-dsc-psut-comp/sample_sub.csv" ) df.head() df.tail() def missing_values_table(df): mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1) mis_val_table_ren_columns = mis_val_table.rename( columns={0: "Missing Values", 1: "% of Total Values"} ) mis_val_table_ren_columns = ( mis_val_table_ren_columns[mis_val_table_ren_columns.iloc[:, 1] != 0] .sort_values("% of Total Values", ascending=False) .round(1) ) print( "Your selected dataframe has " + str(df.shape[1]) + " columns.\n" "There are " + str(mis_val_table_ren_columns.shape[0]) + " columns that have missing values." ) return mis_val_table_ren_columns missing_values_train = missing_values_table(df) missing_values_train.style.background_gradient(cmap="Reds") df def extract_date(df): df["day"] = df["date"].dt.day df["month"] = df["date"].dt.month df["year"] = df["date"].dt.year extract_date(df) df.shape int(df["sunrise"].iloc[0].split(":")[1]) < 30 def split_time(df): df["rise_hour"] = 0 df["set_hour"] = 0 for i in range(df.shape[0]): df["rise_hour"].iloc[i] = int(df["sunrise"].iloc[i].split(":")[0]) if int(df["sunrise"].iloc[i].split(":")[1]) < 30: df["rise_hour"].iloc[i] -= 1 df["set_hour"].iloc[i] = int(df["sunset"].iloc[i].split(":")[0]) if int(df["sunset"].iloc[i].split(":")[1]) < 30: df["set_hour"].iloc[i] -= 1 df.drop(["sunrise", "sunset"], axis=1, inplace=True) split_time(df) # Magnus Formula # T = [Ts × a - ln(RH/100) × b] / [ln(RH/100) + a] # ref: https://www.omnicalculator.com/physics/dew-point#how-to-calculate-dew-point-how-to-calculate-relative-humidity def calculate_air_temperature(dew_point_temp, relative_humidity): # recommended by Alduchov and Eskridg for celsius a = 17.625 b = 243.04 RH = relative_humidity T = (dew_point_temp * a - math.log(RH / 100) * b) / (math.log(RH / 100) + a) return T df["air_temp"] = df.apply( lambda row: calculate_air_temperature(row["dew"], row["humidity"]), axis=1 ) df # Heat Index # HI = c1 + c2T + c3R + c4TR + c5T² + c6R² + c7T²R + c8TR² + c9T²R² def heat_index(T, R): # Constants for celsius # ref : https://en.wikipedia.org/wiki/Heat_index c1 = -8.78469475556 c2 = 1.61139411 c3 = 2.33854883889 c4 = -0.14611605 c5 = -0.012308094 c6 = -0.0164248277778 c7 = 0.002211732 c8 = 0.00072546 c9 = -0.000003582 HI = ( c1 + c2 * T + c3 * R + c4 * T * R + c5 * (T**2) + c6 * (R**2) + c7 * (T**2) * R + c8 * T * (R**2) + c9 * (T**2) * (R**2) ) return HI df["heat_index"] = df.apply( lambda row: heat_index(row["air_temp"], row["humidity"]), axis=1 ) df # Absolute Humidity # AH = (avp * 1000) / (461.5 * (T + 273.15) * (P / 100)) # ref: https://planetcalc.com/2167/ # def absolute_humidity(RH,T, P): # svp = 6.112 * math.exp((17.62* T)/(243.12 * T)) # avp = (RH / 100) * svp # AH = (avp * 1000) / (461.5 * (T + 273.15) * (P / 100)) # return AH # df['abs_hum'] = df.apply(lambda row: absolute_humidity(row['humidity'], row['air_temp'], row['pressure']), axis=1) # Absolute Humidity # AH = (RH × Ps) / (Rw × T × 100) def absolute_humidity(RH, Ps, T): Rw = 28.97 AH = (RH * Ps) / (Rw * T * 100) return AH df["abs_hum"] = df.apply( lambda row: absolute_humidity(row["humidity"], row["pressure"], row["air_temp"]), axis=1, ) df plt.figure(figsize=(20, 20)) sns.heatmap(df.corr(), annot=True, cmap="RdYlGn") df[["dew", "pressure"]] train sns.displot(train, x="humidity") sns.displot(test, x="humidity") mask = (train["humidity"] < 70) & (train["humidity"] > 50) sns.displot(train[mask], x="max_feels_like") train = df[df["source"] == "train"] test = df[df["source"] == "test"] test.drop(["source", "min_feels_like", "max_feels_like", "date"], axis=1, inplace=True) train.drop(["source", "date"], axis=1, inplace=True) def train_model(train, test, features, y): kfold = KFold(5, random_state=42, shuffle=True) train_trans = train[features] test_trans = test[features] scaler = StandardScaler() train_trans = pd.DataFrame( scaler.fit_transform(train_trans), columns=train_trans.columns ) test_trans = pd.DataFrame(scaler.transform(test_trans), columns=test_trans.columns) preds = np.zeros(test.shape[0]) imp = pd.DataFrame() imp["features"] = test_trans.columns imp["result"] = 0 for train_index, test_index in kfold.split(train_trans, y): pool_train = cb.Pool( train_trans.iloc[train_index].values, y.iloc[train_index].values ) pool_eval = cb.Pool( train_trans.iloc[test_index].values, y.iloc[test_index].values ) params = {"iterations": 5000, "learning_rate": 0.01, "verbose": 100} model = cb.train(pool_train, params, evals=pool_eval, early_stopping_rounds=50) imp["result"] += model.get_feature_importance(pool_train) / 5 preds += model.predict(test_trans) / 5 return preds, imp y = "max_feels_like" features = [x for x in test.columns] preds_max, imp_max = train_model(train, test, features, train[y]) y = "min_feels_like" features = [x for x in test.columns] preds_min, imp = train_model(train, test, features, train[y]) preds_min sample_sub["min_feels_like"] = preds_min.round(1) sample_sub["max_feels_like"] = preds_max.round(1) sample_sub sample_sub.to_csv("sub.csv", index=0)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # # Receuil et Analyse de données # En premier lieu nous allons charger les données dans un data frame, une structure de donnée offert par la librairie pandas adéquate pour la manipulation des données csv. df = pd.read_csv("/kaggle/input/datansi/monuments.csv") df.head() # Premierement nous allons verifier le type des données latitude et longitude. La fonction info nous renvoie des informations sur les colones du data frame tel que le type de données qu'elles contiennent ainsi que le nombre de valeurs non nulles. df.info() # Sur les 90 entrées présente dans le csv, les collones lattitudes et longitudes sont bien renseignées car elles ne presentent aucune valeur nulle et au bon format flottant. sum(df.duplicated() == True) def show_duplicates(): display(df[df.duplicated()]) show_duplicates() def browse_monuments(entry, df): mask = df.apply(lambda x: x.astype(str).str.contains(entry).any(), axis=1) filtered_df = df[mask] display(filtered_df) browse_monuments("Chapell", df)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold from catboost import CatBoostClassifier from lightgbm import LGBMClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from functools import partial from skopt import space from skopt import gp_minimize import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df_train = pd.read_csv("/kaggle/input/playground-series-s3e12/train.csv") df_test = pd.read_csv("/kaggle/input/playground-series-s3e12/test.csv") original_data = pd.read_csv( "/kaggle/input/kidney-stone-prediction-based-on-urine-analysis/kindey stone urine analysis.csv" ) submission = pd.read_csv("/kaggle/input/playground-series-s3e12/sample_submission.csv") df_train.head() print("Shape of the given train data:", df_train.shape) print("Shape of the Original data: ", original_data.shape) original_data.head() # Is_generated df_train["is_generated"] = 1 df_test["is_generated"] = 1 original_data["is_generated"] = 0 # Join data train_full = pd.concat( [df_train, original_data], axis=0, ignore_index=True ).reset_index(drop=True) print("Shape fo the combined data: ", train_full.shape) print("--" * 28) train_full.head() # From https://www.kaggle.com/code/tetsutani/ps3e12-eda-ensemble-baseline def create_new_features(data): # Ion product of calcium and urea data["ion_product"] = data["calc"] * data["urea"] # Calcium-to-urea ratio data["calcium_to_urea_ratio"] = data["calc"] / data["urea"] # Electrolyte balance data["electrolyte_balance"] = data["cond"] / (10 ** (-data["ph"])) # Osmolality-to-specific gravity ratio data["osmolality_to_sg_ratio"] = data["osmo"] / data["gravity"] ## Add Feature engineering part # The product of osmolarity and density is created as a new property data["osmo_density"] = data["osmo"] * data["gravity"] # Converting pH column to categorical variable data["pH_cat"] = pd.cut( data["ph"], bins=[0, 4.5, 6.5, 8.5, 14], labels=["sangat acidic", "acidic", "neutral", "basic"], ) dummies = pd.get_dummies(data["pH_cat"]) data = pd.concat([data, dummies], axis=1) # Deleting columns using dummy variables. data.drop( ["pH_cat", "sangat acidic", "basic", "neutral", "ph"], axis=1, inplace=True ) return data # Create Feature train_full = create_new_features(train_full) df_test = create_new_features(df_test) # https://www.kaggle.com/code/naesalang/little-beautiful-notebook/notebook correlation = train_full.corr() correlation["target"].drop("target").plot(kind="bar", color="xkcd:magenta") plt.grid(True) plt.xlabel("Features") plt.ylabel("Correlation") useful_columns = [c for c in train_full.columns if c not in ["id", "target"]] print(useful_columns) df_test = pd.DataFrame(df_test, columns=useful_columns) df_test.columns y = train_full["target"] X = train_full[useful_columns] # Scale scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X)) X_test = pd.DataFrame(scaler.transform(df_test)) X = np.asarray(X) X_test = np.asarray(X_test) # ### Models Description # The models used for stacking here, were tuned using Bayesian optimization. The following models are used: # * LGBMClassifier- https://www.kaggle.com/code/datascientistsohail/bayesian-lgbmclassifier-se03-ep12 # * XGBClassifier- https://www.kaggle.com/code/datascientistsohail/bayesian-xgbclassifier-se03-ep12 # * RandomForestClassifier- https://www.kaggle.com/code/datascientistsohail/bayesian-randomforestclassifier-se03-ep12 # * CatBoostClassifier- https://www.kaggle.com/code/datascientistsohail/bayesian-catboostclassifier-se03-ep12 # The tuned parameters for each of the above classifiers are given in the following cell. lgbm_params = { "learning_rate": 0.03252252802334653, "max_depth": 14, "n_estimators": 600, "min_child_weight": 7, "subsample": 0.8053707688963865, "colsample_bytree": 0.639247506499367, "reg_alpha": 12.203164082938548, "reg_lambda": 90.67457610671555, } xgb_params = { "learning_rate": 0.023338278154175066, "max_depth": 14, "n_estimators": 46, "subsample": 0.8292375888649082, } rf_params = { "max_depth": 27, "n_estimators": 71, "min_samples_split": 59, "min_samples_leaf": 5, } catboost_params = { "max_depth": 10, "n_estimators": 50, "learning_rate": 0.44980085135871845, "l2_leaf_reg": 10.0, } clf1 = ("lgmb", LGBMClassifier(**lgbm_params, random_state=42, objective="binary")) clf2 = ( "xgb", XGBClassifier(**xgb_params, objective="binary:logistic", random_state=42), ) clf3 = ("rf", RandomForestClassifier(**rf_params, criterion="gini", random_state=42)) clf4 = ("cat", CatBoostClassifier(**catboost_params, random_state=42, verbose=False)) # Create the voting classifier voting_clf = VotingClassifier(estimators=[clf1, clf2, clf3, clf4], voting="soft") num_folds = 5 kf = StratifiedKFold(n_splits=num_folds, shuffle=True, random_state=42) predictions = np.zeros(len(X_test)) scores = [] for fold, (trn_idx, val_idx) in enumerate(kf.split(X, y)): print("-" * 20, "Fold:", fold, "-" * 20) X_train, X_valid = X[trn_idx], X[val_idx] y_train, y_valid = y[trn_idx], y[val_idx] voting_clf.fit(X_train, y_train) y_pred = voting_clf.predict_proba(X_valid)[:, 1] score = roc_auc_score(y_valid, y_pred) print(score) scores.append(score) predictions += voting_clf.predict_proba(X_test)[:, 1] / num_folds print("roc_auc_score: ", -1 * np.mean(scores)) submission["target"] = predictions submission.to_csv("submission.csv", index=False)
import random import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import missingno import matplotlib.pyplot as plt import eli5 import catboost from sklearn.model_selection import cross_val_score, StratifiedKFold from sklearn.linear_model import LogisticRegression # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Data preparation # load all data available train_data = pd.read_csv("/kaggle/input/spaceship-titanic/train.csv") test_data = pd.read_csv("/kaggle/input/spaceship-titanic/test.csv") sample_submission = pd.read_csv("/kaggle/input/spaceship-titanic/sample_submission.csv") print( "train_data", train_data.shape, "test_data", test_data.shape, "sample_submission", sample_submission.shape, ) # connect together train and test data to process all columns in a same way data = pd.concat([train_data, test_data]) display(data.head()) data.info() missingno.matrix(data) # function to fill NaN in series wth random non NaN value def fill_with_random(series: pd.Series): rng = np.random.default_rng(seed=42) series2 = series.copy() series2 = series2.apply( lambda x: rng.choice(series2.dropna().values) if x != x or x is None else x ) return series2 # fill empties with first value within group column def fill_group_forward(data, column, group): grp = data.groupby(group)[column].first() def fill(row): if row[column] is None: return grp[grp.index == row[group]].values[0] else: return row[column] data[column] = data.apply(fill, axis=1) data[column] = fill_with_random(data[column]) return data # --- # **Passenger ID** # split passenger id to its group id and place in a group data["group_id"] = data["PassengerId"].apply(lambda x: x.split("_")[0]).astype(int) data["num_in_group"] = data["PassengerId"].apply(lambda x: x.split("_")[1]).astype(int) print("Groups total:", data["group_id"].nunique()) print("Persons in group:") sns.histplot(data["num_in_group"]) # --- # **Home Planet** # fill home planet with random values in a same percentage, as existing data print(data["HomePlanet"].value_counts(dropna=False), data["HomePlanet"].shape) data = fill_group_forward( data, column="HomePlanet", group="group_id" ) # fill_with_random(data['HomePlanet']) sns.histplot(data["HomePlanet"]) # --- # **Cabin** data = fill_group_forward(data, column="Cabin", group="group_id") def split_cabin_code(x: str, n): try: split = x.split("/") except: return None return split[n] # extract specific featires from cabin description data["cabin_deck"] = data["Cabin"].apply(lambda x: split_cabin_code(x, 0)) data["cabin_num"] = data["Cabin"].apply(lambda x: split_cabin_code(x, 1)).astype(int) data["cabin_side"] = data["Cabin"].apply(lambda x: split_cabin_code(x, 2)) fig, axs = plt.subplots(1, 3, figsize=(15, 5)) sns.histplot(data["cabin_deck"], ax=axs[0]) sns.histplot(data["cabin_num"], ax=axs[1]) sns.histplot(data["cabin_side"], ax=axs[2]) # --- # **CryoSleep** # # share of sleepers at dufferent decks and ship sides sns.heatmap( data.pivot_table( index="cabin_deck", columns="cabin_side", values="CryoSleep", aggfunc="mean" ), annot=True, ) print(data["CryoSleep"].value_counts(dropna=False)) data = fill_group_forward(data, column="CryoSleep", group="group_id") sns.histplot(data["CryoSleep"]) # --- # **Destination** print(data["Destination"].value_counts(dropna=False)) data = fill_group_forward(data, column="Destination", group="group_id") sns.histplot(data["Destination"]) # --- # **Age** # fill age randomly print(data["Age"].value_counts(dropna=False)) data["Age"] = fill_with_random(data["Age"]) sns.histplot(data["Age"]) # --- # **VIP** print(data["VIP"].value_counts(dropna=False)) # check percentage of VIP on different decks and cabin sides deck_to_vip = data.pivot_table(index="cabin_deck", values="VIP", aggfunc="mean") sns.heatmap(deck_to_vip) plt.show() # fill VIP status randomly for deck in data["cabin_deck"].unique(): # fill subset of passengers in deck/side data.loc[(data["cabin_deck"] == deck), "VIP"] = fill_with_random( data.loc[(data["cabin_deck"] == deck)]["VIP"] ) data["VIP"] = data["VIP"].astype(bool) # --- # **RoomService, FoodCourt, ShoppingMall, Spa, VRDeck** # `RoomService`, `FoodCourt`, `ShoppingMall`, `Spa`, `VRDeck` - Amount the passenger has billed at each of the Spaceship Titanic's many luxury amenities. for col in ["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"]: fig = plt.figure(figsize=(15, 0.5)) sns.boxplot(data.loc[data[col] > 0][[col]], x=col) fig, axs = plt.subplots(1, 3, figsize=(15, 5)) # check some correlations between bills and different possibly affecting factors deck_to_bill = data.pivot_table( index="cabin_deck", values=["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"], aggfunc="mean", ) sns.heatmap(deck_to_bill, annot=True, fmt=".0f", ax=axs[0]) vip_to_bill = data.pivot_table( index="VIP", values=["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"], aggfunc="mean", ) sns.heatmap(vip_to_bill, annot=True, fmt=".0f", ax=axs[1]) age_to_bill = data.pivot_table( index="Age", values=["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"], aggfunc="mean", ) sns.heatmap(age_to_bill, ax=axs[2]) plt.show() data = data.fillna( {"RoomService": 0, "FoodCourt": 0, "ShoppingMall": 0, "Spa": 0, "VRDeck": 0} ) # --- # **Name** def split_full_name(x: str, n): try: split = x.split(" ") except: return None return split[n] # extract name and family name data["first_name"] = data["Name"].apply(lambda x: split_full_name(x, 0)) data["last_name"] = data["Name"].apply(lambda x: split_full_name(x, 1)) # fill gaps with data["first_name"] = fill_with_random(data["first_name"]) data = fill_group_forward(data, column="last_name", group="group_id") # **Finalize** data.info() data.set_index("PassengerId", inplace=True) # ## Make baseline submission def split_data(data, target="Transported"): # prepare data for train, validation and submission x = data.drop(columns=target) y = data[target] # drop text columns for c in x.columns: if x[c].dtype == "object": x.drop(columns=c, inplace=True) # extract train data x_train = x[~y.isna()] y_train = y[~y.isna()].astype(int) # extract ubmission data x_test = x[y.isna()] return x_train, y_train, x_test def train_and_predict( model, data, new_feature_names=None, folds=10, scoring="accuracy", top_n_features_to_show=30, submission_file_name="submission.csv", silent=False, ): (x_train, y_train, x_test) = data cv = StratifiedKFold(folds, shuffle=True, random_state=42) # make cross-validation cv_scores = cross_val_score( model, x_train, y_train, cv=cv, scoring=scoring, n_jobs=4 ) if not silent: print("CV scores", cv_scores) if not silent: print(f"CV mean:{cv_scores.mean():.4f}, CV std:{cv_scores.std():.4f}") # train model model.fit(x_train, y_train) # show feature importances if not silent: display( eli5.show_weights( estimator=model, feature_names=x_train.columns.to_list(), top=top_n_features_to_show, ) ) # print new features stats if new_feature_names: print("New feature weights:") try: print( pd.DataFrame( { "feature": new_feature_names, "coef": model.coef_.flatten()[-len(new_feature_names) :], } ) ) except: pass # make submission preds = model.predict(x_test) preds = pd.DataFrame(preds, index=x_test.index).astype(bool) preds.columns = ["Transported"] # save submission file submission = sample_submission.drop(columns="Transported").merge( preds.reset_index(), how="left", on="PassengerId" ) submission.to_csv(submission_file_name, index=False) return cv_scores catreg = catboost.CatBoostClassifier(random_state=42, verbose=False) cv_scores1 = train_and_predict( catreg, split_data(data), submission_file_name="submission.csv" ) # ## Feature engineering def compare_cv_scores(cv_score_old, cv_score_new): folds_compare = cv_score_new > cv_score_old print("\nFolds compare:", folds_compare, end="\n\n") if cv_score_new.mean() > cv_score_old.mean(): print("Score increased \t[GOOD]", end="") else: print("Score decreased \t[BAD]", end="") print( f"\t{cv_score_old.mean():.4f} -> {cv_score_new.mean():.4f}", f"{cv_score_new.mean() - cv_score_old.mean():.4f}", ) if cv_score_new.std() > cv_score_old.std(): print("Variation increased \t[BAD]", end="") else: print("Variation decreased \t[GOOD]", end="") print( f"\t{cv_score_old.std():.4f} -> {cv_score_new.std():.4f}", f"{cv_score_new.std() - cv_score_old.std():.4f}", ) # encode home planet def add_homeplanet_one(data): data = data.join(pd.get_dummies(data["HomePlanet"], prefix="home", drop_first=True)) return data data = add_homeplanet_one(data) # encode cabin side def add_cabin_side(data): data["cabin_side"] = data["cabin_side"].map({"S": 1, "P": 0}).astype(int) return data data = add_cabin_side(data) # check if person single or not def add_group_size(data): group_sizes = data["group_id"].value_counts().reset_index() group_sizes.columns = ["group_id", "group_size"] data = ( data.reset_index() .merge(group_sizes, how="left", on="group_id") .set_index("PassengerId") ) def categorize_size(x): if x <= 1: # single return 1 elif x <= 2: # couple return 2 else: return 3 data["group_size"] = data["group_size"].apply(categorize_size).astype(int) return data data = add_group_size(data) def add_deck_bill(data): # mean bill on a deck data["deck_mean_bill"] = ( data["cabin_deck"] .map( { "A": 3331, "B": 2927, "C": 3937, "D": 2296, "E": 1343, "F": 1001, "G": 408, "T": 5916, } ) .astype(int) ) return data data = add_deck_bill(data) def add_weighted_bills(data): money_cols = ["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"] data["total_bill"] = ( data[["RoomService", "FoodCourt", "ShoppingMall", "Spa", "VRDeck"]] .apply(lambda x: 0.1 if x.sum() == 0 else x.sum(), axis=1) .astype(int) ) for col in money_cols: data[col + "_w"] = data[col] / data["total_bill"] data["total_bill"] = (data["total_bill"] - data["total_bill"].mean()) / data[ "total_bill" ].std() return data data = add_weighted_bills(data) # ## Submission cv_scores2 = train_and_predict( catreg, split_data(data), submission_file_name="submission.csv" ) compare_cv_scores(cv_scores1, cv_scores2) cv_scores1 = cv_scores2
# # Import libraries and read raw file import pandas as pd from pandas_profiling import ProfileReport import numpy as np # Load data into a pandas DataFrame df = pd.read_csv("6M-0K-99K.users.dataset.public.csv") # ## Generate a Pandas Profiling Report # ### It is a must-have for any initial analysis! # Generate a profile report profile = ProfileReport(df, title="Pandas Profiling Report", explorative=True) # Save the report as an HTML file profile.to_file("report.html") # Pandas report revealed there are 200 countries but only 199 country codes. Let's dive into this issue and find ways to resolve it. # # Fix some issues (inaccuracies in countries data, typos) # ## Prepare for exporting for Tableau and dive a bit more into potential insights # Filter characteristic columns user_char = df[["country", "countryCode"]] # Number of unique values in each column unique_counts = user_char.nunique() # Filter the countries sharing the same country code shared_code = ( df.groupby("countryCode") .agg(n=pd.NamedAgg(column="country", aggfunc="nunique")) .query("n > 1") ) unique_countries = df[df["countryCode"].isin(shared_code.index)]["country"].unique() unique_countries # we can drop country column now # let's drop some non-value-added columns df = df.drop( [ "country", "seniorityAsMonths", "seniorityAsYears", "identifierHash", "type", "civilityTitle", ], axis=1, ) # Improve readability of names new_names = { "language": "Language", "socialNbFollowers": "Followers", "socialNbFollows": "Following", "socialProductsLiked": "Likes", "productsListed": "Listings", "productsSold": "Sales", "productsPassRate": "PassRate", "productsWished": "Wishlist", "productsBought": "Purchases", "gender": "Gender", "civilityGenderId": "Civility", "hasAnyApp": "HasApp", "hasAndroidApp": "HasAndroid", "hasIosApp": "HasIOS", "hasProfilePicture": "HasProfilePicture", "daysSinceLastLogin": "LastLogin", "seniority": "Seniority", "countryCode": "CountryCode", } df = df.rename(columns=new_names) # remove the typo max_val = df[df["LastLogin"] != 737028]["LastLogin"].max() df["LastLogin"] = df["LastLogin"].replace(737028, max_val) # save the processed file df.to_csv("challenge.csv") # who is this outlier? df[df.Following == 13764] import matplotlib.pyplot as plt # Extract the 'dayssincelastlogin' column days_since_last_login = df["LastLogin"] # Create a histogram plt.hist(days_since_last_login, bins=50, edgecolor="black") # Add labels and title plt.xlabel("Days Since Last Login") plt.ylabel("Number of Users") plt.title("Histogram of Days Since Last Login") # Display the histogram plt.show() # * Insight: There is a noticeable difference in the proportion of items sold and bought via the iOS platform. Out of the total items sold on the platform, 64.2% (7,727 out of 12,027) were sold through the iOS app. However, when looking at the total items bought, only 45.3% (7,668 out of 17,006) were purchased using the iOS app. This indicates that iOS users tend to sell more items on the platform compared to their buying behavior. # * The dataset may cover different timeframes for the purchased, sold, and listed items. For instance, some purchases might have been made before the start date of the dataset, while the sales and listings data only includes transactions within the dataset's timeframe. # # let's see how much these countires generate df_best = df[df["CountryCode"].isin(["fr", "it", "gb", "us", "es", "de"])] # Percentage of Total print("Sales ratio: ", np.sum(df_best.Sales) / (np.sum(df.Sales))) print("Purchasing ratio: ", np.sum(df_best.Purchases) / (np.sum(df.Purchases))) sorted_df = df.sort_values("Likes", ascending=False) # Let's have a closer look at the distribution likes_quantiles = df[["Likes", "Followers", "Following"]].describe( percentiles=[i / 200 for i in range(1, 200)] ) likes_quantiles.tail(20) sorted_df[["Likes", "Followers", "Following"]].head(20)
# Import Python Modules import os import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import ( ExtraTreesClassifier, AdaBoostClassifier, RandomForestClassifier, ) from sklearn.feature_selection import SequentialFeatureSelector import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Data Loading df = pd.read_csv(os.path.join(dirname, filename)) df.head().T df.info() # No null infomation pd.plotting.scatter_matrix(df, alpha=0.3, figsize=(15, 8), diagonal="kde") plt.tight_layout() # There is a mixture of continous data and discrete data for numerical features categorical_cols = [ "checking_status", "credit_history", "purpose", "savings_status", "employment", "personal_status", "other_parties", "property_magnitude", "other_payment_plans", "housing", "job", "own_telephone", "foreign_worker", "class", ] numerical_cols = ["duration", "credit_amount", "age"] discrete_cols = [ "installment_commitment", "residence_since", "existing_credits", "num_dependents", ] # View all Categorical Columns in the dataset for i in categorical_cols: print(f"{i} : {df[i].unique()}\n") # Handling ordinal categories from sklearn.preprocessing import LabelEncoder def label_encode(data, columns): le_model = LabelEncoder() le = le_model.fit(columns) label = le.transform(data) return le_model, label cat_df = pd.DataFrame() # We will store all categorical input here # Categorical Features checkingElements = ["no checking", "<0", "0<=X<200", ">=200"] creditHistoryElements = [ "critical/other existing credit", "no credits/all paid", "delayed previously", "existing paid", "all paid", ] purposeElements = [ "radio/tv", "education", "furniture/equipment", "new car", "used car", "business", "domestic appliance", "repairs", "other", "retraining", ] savingStatusElements = [ "no known savings", "<100", "100<=X<500", "500<=X<1000", ">=1000", ] employementElements = ["unemployed", "<1", "1<=X<4", "4<=X<7", ">=7"] otherPartiesElement = ["none", "guarantor", "co applicant"] propertyMagnitudeElements = [ "real estate", "life insurance", "no known property", "car", ] otherPaymentElements = ["none", "bank", "stores"] housingElements = ["own", "for free", "rent"] jobElements = [ "unemp/unskilled non res", "unskilled resident", "skilled", "high qualif/self emp/mgmt", ] # Category to Labels variables = [ checkingElements, creditHistoryElements, purposeElements, savingStatusElements, employementElements, otherPartiesElement, propertyMagnitudeElements, otherPaymentElements, housingElements, jobElements, ] nominal_cols = [ "checking_status", "credit_history", "purpose", "savings_status", "employment", "other_parties", "property_magnitude", "other_payment_plans", "housing", "job", ] save_dict = {} for col, var in zip(nominal_cols, variables): col_le, col_labels = label_encode(df[f"{col}"], var) save_dict[f"{col}"] = {"labels": col_labels, "model": col_le} for key_name in save_dict.keys(): cat_df[f"{key_name}"] = save_dict[f"{key_name}"]["labels"] num_df = pd.DataFrame() scaler_num = MinMaxScaler() data = np.array(df[numerical_cols]) stdand_values = scaler_num.fit_transform(data) num_df[numerical_cols] = pd.DataFrame(stdand_values) scaler_cat = MinMaxScaler() data = np.array(cat_df[nominal_cols]) stdand_values = scaler_cat.fit_transform(data) cat_df[nominal_cols] = pd.DataFrame(stdand_values) # Handling Nominal Data dummy_col = ["own_telephone", "foreign_worker", "class"] dummy_df = pd.get_dummies(df[dummy_col]) dummy_cols = ["own_telephone_yes", "foreign_worker_yes", "class_good"] cat_df[dummy_cols] = dummy_df[dummy_cols] # Personal_status columns has mix of gender and status, however status are ambigious e.g. div/dep/mar. Single status is the only identifiable feature. gender_df, status_df = [], [] for num, row in df.iterrows(): gender, status = row.personal_status.split(" ") gender_df.append(gender) status_df.append(status) d = {"gender": gender_df, "status": status_df} gender_status_df = pd.DataFrame(data=d) gender_status_df = pd.get_dummies(gender_status_df) gender_status_df = gender_status_df[ ["gender_male", "status_single"] ] # if male = 1 then female = 0 and vice versa. cat_df[["gender_male", "status_single"]] = gender_status_df predictor = cat_df.join(num_df).drop("class_good", axis=1) target = cat_df["class_good"] # Feature Selection clf = ExtraTreesClassifier(random_state=0) sfs = SequentialFeatureSelector(clf) sfs = sfs.fit(predictor, target) feature_names = list( sfs.get_feature_names_out() ) # Select Features that fits the target feature_names X_train, X_test, y_train, y_test = train_test_split( predictor, target, train_size=0.8, stratify=target ) model_1 = DecisionTreeClassifier(random_state=0) model_1.fit(X_train[feature_names], y_train) print( f"Decision Tree Classifier Score : {model_1.score(X_test[feature_names], y_test )}\n" ) y_pred = model_1.predict(X_test[feature_names]) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() f1score = f1_score(y_test, y_pred) print( f"True Positive: {tp}\tTrue Negative: {tn}\nFalse Positive: {fp}\tFalse Negative: {fn}\n" ) print(f"F1 Score : {f1score}") model_2 = RandomForestClassifier(random_state=0) model_2.fit(X_train[feature_names], y_train) print( f"Random Forest Classifier Score : {model_2.score(X_test[feature_names], y_test )}\n" ) y_pred = model_2.predict(X_test[feature_names]) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() f1score = f1_score(y_test, y_pred) print( f"True Positive: {tp}\tTrue Negative: {tn}\nFalse Positive: {fp}\tFalse Negative: {fn}\n" ) print(f"F1 Score : {f1score}") model_3 = AdaBoostClassifier(random_state=0) model_3.fit(X_train[feature_names], y_train) print(f"Ada Boost Classifier Score : {model_3.score(X_test[feature_names], y_test )}\n") y_pred = model_3.predict(X_test[feature_names]) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() f1score = f1_score(y_test, y_pred) print( f"True Positive: {tp}\tTrue Negative: {tn}\nFalse Positive: {fp}\tFalse Negative: {fn}\n" ) print(f"F1 Score : {f1score}")
import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 # loading two almost similler image to find the mse between them # REMEMBER WHEN COMPARING MSE, TWO IMAGES MUST HAVE THE SAME DIMENSION # MSE IS NOT POSSIBLE FOR DIFFERENT DIMENSION IMAGES image1 = cv2.imread("../input/mse-between-two-images/image1.jpg") image2 = cv2.imread("../input/mse-between-two-images/image2.jpg") plt.imshow(image1) plt.imshow(image2) print(image1.shape) print(image2.shape) ## convert the images into gray scale img1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) img2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) plt.imshow(img1) plt.imshow(img2) print(img1.shape) print(img2.shape) # MSE # 1) First subtract the pixel between the images pixel diff = cv2.subtract(img1, img2) print(diff) diff plt.imshow(diff) ## now square the diff tmp = diff**2 ## now sum up the pixel difference err_sum = np.sum(tmp) print(err_sum) ## now we find the mean value ## in order to do that we need to divide the total err_sum ## with the number of total pixel ## since it is gray scale image so it is two dimensional ## so total pixel is height*weight h, w = img1.shape # you can use img2 . it does not matter since they are same shape mse = err_sum / (float(h * w)) print(mse) # total function # is def mse(img1, img2): h, w = img1.shape diff = cv2.subtract(img1, img2) err = np.sum(diff**2) mse = err / (float(h * w)) return mse mse(img1, img2) ## if you dont want to use cv2.substract you can do it manually def mse2(img1, img2): err = np.sum((img1.astype("float") - img2.astype("float")) ** 2) err /= float(img1.shape[0] * img1.shape[1]) return err diff = img1.astype("float") - img2.astype("float") plt.imshow(diff) ## it picks up better substraction mse2(img1, img2)
import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision.datasets as datasets import torchvision.transforms as transforms import torch.optim as optim from torch.utils.data import DataLoader from tqdm.auto import tqdm from torch.autograd import Variable import os import numpy as np learning_rate = 0.01 epsilon = 0.0314 k = 5 alpha = 0.00784 device = "cuda" if torch.cuda.is_available() else "cpu" # # Data Loading transform_train = transforms.Compose( [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] ) transform_test = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] ) train_dataset = datasets.CIFAR10( root="dataset/", train=True, transform=transform_train, download=True ) test_dataset = datasets.CIFAR10( root="dataset/", train=False, transform=transform_test, download=True ) train_loader = DataLoader(dataset=train_dataset, batch_size=128, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=128, shuffle=True) classes = ( "plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ) # # PGD attack class LinfPGDAttack(object): def __init__(self, model): self.model = model def perturb(self, x_natural, y): x = x_natural.detach() x = x + torch.zeros_like(x).uniform_(-epsilon, epsilon) for i in range(k): x.requires_grad_() with torch.enable_grad(): logits = self.model(x) loss = F.cross_entropy(logits, y) grad = torch.autograd.grad(loss, [x])[0] x = x.detach() + alpha * torch.sign(grad.detach()) x = torch.min(torch.max(x, x_natural - epsilon), x_natural + epsilon) x = torch.clamp(x, 0, 1) return x def attack(x, y, model, adversary): model_copied = copy.deepcopy(model) model_copied.eval() adversary.model = model_copied adv = adversary.perturb(x, y) return adv # # Model class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(self.expansion * planes), ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) net = ResNet18() net = net.to(device) cudnn.benchmark = True adversary = LinfPGDAttack(net) criterion = nn.CrossEntropyLoss() # optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0002) optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=1e-4) rng = np.random.default_rng(12345) def train(epoch, p): print("\n[ Train epoch: %d ]" % epoch) net.train() train_loss = 0 correct = 0 total = 0 n = 0 for batch_idx, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() if p < 0.1: adv = adversary.perturb(inputs, targets) else: adv = inputs adv_outputs = net(adv) loss = criterion(adv_outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = adv_outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() n += 1 # if batch_idx % 10 == 0: # print('\nCurrent batch:', str(batch_idx)) # print('Current adversarial train accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0))) # print('Current adversarial train loss:', loss.item()) print("\nTotal adversarial train accuarcy:", correct / total) print("Total adversarial train loss:", train_loss / n) def test(epoch, p): print("\n[ Test epoch: %d ]" % epoch) net.eval() benign_loss = 0 adv_loss = 0 benign_correct = 0 adv_correct = 0 total = 0 n = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) total += targets.size(0) outputs = net(inputs) loss = criterion(outputs, targets) benign_loss += loss.item() _, predicted = outputs.max(1) benign_correct += predicted.eq(targets).sum().item() # if batch_idx % 10 == 0: # print('\nCurrent batch:', str(batch_idx)) # print('Current benign test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0))) # print('Current benign test loss:', loss.item()) if p < 0.1: adv = adversary.perturb(inputs, targets) else: adv = inputs # adv = adversary.perturb(inputs, targets) adv_outputs = net(adv) loss = criterion(adv_outputs, targets) adv_loss += loss.item() _, predicted = adv_outputs.max(1) adv_correct += predicted.eq(targets).sum().item() # if batch_idx % 10 == 0: # print('Current adversarial test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0))) # print('Current adversarial test loss:', loss.item()) print("\nTotal benign test accuarcy:", benign_correct / total) print("Total adversarial test Accuarcy:", adv_correct / total) print("Total benign test loss:", benign_loss) print("Total adversarial test loss:", adv_loss) state = {"net": net.state_dict()} torch.save(net.state_dict(), "resnet_adv_weights.pt") print("Model Saved!") def adjust_learning_rate(optimizer, epoch): lr = learning_rate if epoch >= 50: lr /= 10 if epoch >= 90: lr /= 10 for param_group in optimizer.param_groups: param_group["lr"] = lr for epoch in range(0, 100): adjust_learning_rate(optimizer, epoch) p = rng.random() train(epoch, p) test(epoch, p)
# ### İş Problemi # FLO satış ve pazarlama faaliyetleri için roadmap belirlemek istemektedir. Şirketin orta uzun vadeli plan yapabilmesi için var olan müşterilerin gelecekte şirkete sağlayacakları potansiyel değerin tahmin edilmesi gerekmektedir. # ### Veri Seti Hikayesi # Veri seti Flo’dan son alışverişlerini 2020 - 2021 yıllarında OmniChannel(hem online hem offline alışveriş yapan) olarak yapan müşterilerin geçmiş alışveriş davranışlarından elde edilen bilgilerden oluşmaktadır. import pandas as pd import datetime as dt from lifetimes import BetaGeoFitter, GammaGammaFitter pd.set_option("display.max_columns", None) pd.set_option("display.float_format", lambda x: "%.2f" % x) pd.set_option("display.width", 1000) df_ = pd.read_csv("/kaggle/input/flo-data-20k/flo_data_20k.csv") df = df_.copy() df.head() def outlier_tresholds(dataframe, variable): quartile_1 = dataframe[variable].quantile(0.01) quartile_3 = dataframe[variable].quantile(0.99) interquartlile = quartile_3 - quartile_1 low_limit = round(quartile_1 - 1.5 * interquartlile, 0) up_limit = round(quartile_3 + 1.5 * interquartlile, 0) return low_limit, up_limit def replace_with_treshold(dataframe, variable): low_limit, up_limit = outlier_tresholds(dataframe, variable) dataframe.loc[dataframe[variable] > up_limit, variable] = up_limit dataframe.loc[dataframe[variable] < low_limit, variable] = low_limit cols = [ "order_num_total_ever_online", "order_num_total_ever_offline", "customer_value_total_ever_offline", "customer_value_total_ever_online", ] for col in cols: replace_with_treshold(df, col) # Her bir müşterinin toplam alışveriş sayısı ve harcaması için yeni değişkenler oluşturalım df["total_orders"] = ( df["order_num_total_ever_offline"] + df["order_num_total_ever_online"] ) df["total_customer_value"] = ( df["customer_value_total_ever_online"] + df["customer_value_total_ever_offline"] ) date_columns = df.columns[df.columns.str.contains("date")] df[date_columns] = df[date_columns].apply(pd.to_datetime) df.info() # Veri setindeki en son alışverişin yapıldığı tarihten 2 gün sonrasını analiz tarihi olarak alalım. df["last_order_date"].max() today_date = dt.datetime(2021, 6, 1) # customer_id, recency_cltv_weekly, T_weekly, frequency ve monetary_cltv_avg değerlerinin yer aldığı yeni bir cltv dataframe'i oluşturalım # Monetary değeri satın alma başına ortalama değer olarak, recency ve tenure değerleri ise haftalık cinsten ifade edilecek. cltv_df = pd.DataFrame() cltv_df["customer_id"] = df["master_id"] cltv_df["recency_cltv_weekly"] = ( (df["last_order_date"] - df["first_order_date"]).astype("timedelta64[D]") ) / 7 cltv_df["T_weekly"] = ( (today_date - df["first_order_date"]).astype("timedelta64[D]") ) / 7 cltv_df["frequency"] = df["total_orders"] cltv_df["monetary_cltv_avg"] = df["total_customer_value"] / df["total_orders"] cltv_df.head() # #### BG/NBD, Gamma-Gamma Modellerinin Kurulması ve CLTV’nin Hesaplanması # BG/NBD modelini fit edelim. # 3 ay içerisinde müşterilerden beklenen satın almaları tahmin edelim ve exp_sales_3_month olarak cltv dataframe'ine ekleyelim # 6 ay içerisinde müşterilerden beklenen satın almaları tahmin edelim ve exp_sales_6_month olarak cltv dataframe'ine ekleyelim bgf = BetaGeoFitter(penalizer_coef=0.001) bgf.fit(cltv_df["frequency"], cltv_df["recency_cltv_weekly"], cltv_df["T_weekly"]) cltv_df["exp_sales_3_month"] = bgf.predict( 4 * 3, cltv_df["frequency"], cltv_df["recency_cltv_weekly"], cltv_df["T_weekly"] ) cltv_df["exp_sales_6_month"] = bgf.predict( 4 * 6, cltv_df["frequency"], cltv_df["recency_cltv_weekly"], cltv_df["T_weekly"] ) cltv_df.head() # Gamma-Gamma modelini fit edelim. Müşterilerin ortalama bırakacakları değeri tahminleyip exp_average_value olarak cltv dataframe'ine ekleyelim ggf = GammaGammaFitter(penalizer_coef=0.001) ggf.fit(cltv_df["frequency"], cltv_df["monetary_cltv_avg"]) cltv_df["exp_average_value"] = ggf.conditional_expected_average_profit( cltv_df["frequency"], cltv_df["monetary_cltv_avg"] ) cltv_df.head() # 6 aylık CLTV hesaplayalım ve cltv ismiyle dataframe'e ekleyelim.Cltv değeri en yüksek 20 kişiyi gözlemleyelim. cltv = ggf.customer_lifetime_value( bgf, cltv_df["frequency"], cltv_df["recency_cltv_weekly"], cltv_df["T_weekly"], cltv_df["monetary_cltv_avg"], time=6, freq="W", discount_rate=0.01, ) cltv_df["cltv"] = cltv cltv_df.sort_values("cltv", ascending=False)[:20] # #### CLTV Değerine Göre Segmentlerin Oluşturulması # 6 aylık CLTV'ye göre tüm müşterilerinizi 4 segmente ayıralım ve grup isimlerini veri setine ekleyelim. cltv_df["segment"] = pd.qcut(cltv_df["cltv"], 4, labels=["D", "C", "B", "A"]) cltv_df.head()
# **Thanks for great works from** # 此般浅薄: https://www.kaggle.com/code/xzj19013742/simple-eda-on-time-for-targets # **Attention** # In order to see feature importance in LGBM, you should run codes above by 此般浅薄. # The codes below cannot run independently!!! importance = pd.DataFrame() est_colname = ["importance0", "importance1", "importance2"] reg_colname = [ "importance_0", "importance_1", "importance_2", "importance_3", "importance_4", ] for i in range(5): for j in range(3): # "regs" is not defined unless you run the codes above! est = regs[i].estimators_[j] name = est_colname[j] feature_importances = pd.DataFrame( est.feature_importances_, columns=[name] ) # .sort_values('importance') importance = pd.concat([importance, feature_importances], axis=1) name2 = reg_colname[i] importance[name2] = ( importance["importance0"] + importance["importance1"] + importance["importance2"] ) / 3 importance = importance.drop(columns=["importance0", "importance1", "importance2"]) importance["importance"] = ( importance["importance_0"] + importance["importance_1"] + importance["importance_2"] + importance["importance_3"] + importance["importance_4"] ) / 5 importance = pd.DataFrame(importance["importance"], columns=["importance"]).sort_values( "importance" ) for i in range(len(cols)): importance = importance.rename({i: cols[i]}) import plotly.express as px fig = px.bar( x=importance.index.values, y=importance["importance"], color_discrete_sequence=["darkslateblue"], ) fig.update_layout(xaxis_title="Feature", yaxis_title="Importance") fig.show()
# # Movie Mediapipe Background Blurred # https://developers.google.com/mediapipe/solutions/vision/image_segmenter/web_js import math import urllib import mediapipe as mp from mediapipe.python._framework_bindings import image from mediapipe.python._framework_bindings import image_frame from mediapipe.tasks import python from mediapipe.tasks.python import vision import os import cv2 import shutil import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm from IPython.display import HTML, Video, Image, clear_output import seaborn as sns import matplotlib.pyplot as plt from matplotlib import animation, rc rc("animation", html="jshtml") # # mp4 to frame path_mp0 = "/kaggle/input/real-life-violence-situations-dataset/Real Life Violence Dataset/NonViolence/NV_110.mp4" path_mp1 = "/kaggle/working/sample1/sample.mp4" shutil.copy(path_mp0, path_mp1) def video2frames( video_file=path_mp1, image_dir="/kaggle/working/sample2/", image_file="img_%s.png" ): i = 0 cap = cv2.VideoCapture(video_file) while cap.isOpened(): flag, frame = cap.read() if flag == False: break cv2.imwrite(image_dir + image_file % str(i).zfill(5), frame) i += 1 cap.release() video2frames() paths0 = [] for dirname, _, filenames in os.walk("/kaggle/working/sample2/"): for filename in filenames: if filename[-4:] == ".png": paths0 += [(os.path.join(dirname, filename))] paths0 = sorted(paths0) images0 = [] for i in tqdm(range(0, len(paths0), 20)): images0 += [cv2.imread(paths0[i])] def create_animation(ims): fig = plt.figure(figsize=(12, 6)) im = plt.imshow(cv2.cvtColor(ims[0], cv2.COLOR_BGR2RGB)) text = plt.text( 0.05, 0.05, f"Slide {0}", transform=fig.transFigure, fontsize=14, color="blue" ) plt.axis("off") plt.close() def animate_func(i): im.set_array(cv2.cvtColor(ims[i], cv2.COLOR_BGR2RGB)) text.set_text(f"Slide {i}") return [im] return animation.FuncAnimation( fig, animate_func, frames=len(ims), interval=1000 // 2 ) create_animation(np.array(images0)) # # back ground removel for frame image IMAGE_FILENAMES = np.array(paths0)[list(range(0, len(paths0), 20))] DESIRED_HEIGHT = 480 DESIRED_WIDTH = 480 def resize_and_show(image): h, w = image.shape[:2] # print(h,w) if h < w: img = cv2.resize(image, (DESIRED_WIDTH, math.floor(h / (w / DESIRED_WIDTH)))) else: img = cv2.resize(image, (math.floor(w / (h / DESIRED_HEIGHT)), DESIRED_HEIGHT)) h2, w2 = img.shape[:2] # print(h2,w2) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.show() def resize_and_show_write(image, filename): h, w = image.shape[:2] # print(h,w) if h < w: img = cv2.resize(image, (DESIRED_WIDTH, math.floor(h / (w / DESIRED_WIDTH)))) else: img = cv2.resize(image, (math.floor(w / (h / DESIRED_HEIGHT)), DESIRED_HEIGHT)) h2, w2 = img.shape[:2] # print(h2,w2) print("./original/" + filename) cv2.imwrite("./original/" + filename, img) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.show() images2 = {name: cv2.imread(name) for name in IMAGE_FILENAMES} for name, image in images2.items(): filename = name.split("/")[-1] resize_and_show_write(image, filename) print() BG_COLOR = (192, 192, 192) # gray MASK_COLOR = (255, 255, 255) # white OutputType = vision.ImageSegmenterOptions.OutputType Activation = vision.ImageSegmenterOptions.Activation base_options = python.BaseOptions(model_asset_path="deeplabv3.tflite") options = vision.ImageSegmenterOptions( base_options=base_options, output_type=OutputType.CATEGORY_MASK ) # Create the image segmenter with vision.ImageSegmenter.create_from_options(options) as segmenter: for image_file_name in IMAGE_FILENAMES: image = mp.Image.create_from_file(image_file_name) category_masks = segmenter.segment(image) image_data = image.numpy_view() fg_image = np.zeros(image_data.shape, dtype=np.uint8) fg_image[:] = MASK_COLOR bg_image = np.zeros(image_data.shape, dtype=np.uint8) bg_image[:] = BG_COLOR condition = np.stack((category_masks[0].numpy_view(),) * 3, axis=-1) > 0.2 output_image = np.where(condition, fg_image, bg_image) # print(f'Segmentation mask of {name}:') filename = image_file_name.split("/")[-1] print("./blurred/blurred" + filename) resize_and_show(output_image) cv2.imwrite("./blurred/blurred" + filename, output_image) print() # Create the segmenter with python.vision.ImageSegmenter.create_from_options(options) as segmenter: for i, image_file_name in enumerate(IMAGE_FILENAMES): # print(image_file_name) image = mp.Image.create_from_file(image_file_name) category_masks = segmenter.segment(image) image_data = cv2.cvtColor(image.numpy_view(), cv2.COLOR_BGR2RGB) blurred_image = cv2.GaussianBlur(image_data, (55, 55), 0) condition = np.stack((category_masks[0].numpy_view(),) * 3, axis=-1) > 0.1 output_image = np.where(condition, image_data, blurred_image) filename = image_file_name.split("/")[-1] print("./output/" + filename) resize_and_show(output_image) cv2.imwrite("./output/" + filename, output_image) print() # !ls original # !ls blurred # !ls output paths3 = [] for dirname, _, filenames in os.walk("/kaggle/working/output/"): for filename in filenames: if filename[-4:] == ".png": paths3 += [(os.path.join(dirname, filename))] paths3 = sorted(paths3) images3 = [] for i in tqdm(range(len(paths3))): images3 += [cv2.imread(paths3[i])] create_animation(np.array(images3))
# Importing modules import numpy as np import os import cv2 from sklearn.metrics import confusion_matrix import seaborn as sns sns.set(font_scale=1.4) from sklearn.utils import shuffle import matplotlib.pyplot as plt import tensorflow as tf from tqdm import tqdm from keras.models import Model from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input import pandas as pd from sklearn import decomposition from keras.layers import ( Input, Dense, Conv2D, Activation, MaxPooling2D, Flatten, Dropout, GlobalAveragePooling2D, ) from keras.callbacks import ReduceLROnPlateau from sklearn.metrics import accuracy_score # Dataset link: https://www.kaggle.com/datasets/puneet6060/intel-image-classification # # Data preprocessing # Filling in the names of image classes class_names = ["buildings", "forest", "glacier", "mountain", "sea", "street"] class_names_label = {class_name: i for i, class_name in enumerate(class_names)} nb_classes = len(class_names) IMAGE_SIZE = (150, 150) # Function for uploading images def load_data(): datasets = ["seg_train/seg_train", "seg_test/seg_test"] output = [] for dataset in datasets: images = [] labels = [] print("Loading {}".format(dataset)) for folder in os.listdir(dataset): label = class_names_label[folder] for file in tqdm(os.listdir(os.path.join(dataset, folder))): img_path = os.path.join(os.path.join(dataset, folder), file) image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, IMAGE_SIZE) images.append(image) labels.append(label) images = np.array(images, dtype="float32") labels = np.array(labels, dtype="int32") output.append((images, labels)) return output # Split the images into a training set and a test set (train_images, train_labels), (test_images, test_labels) = load_data() # Shuffling the sets train_images, train_labels = shuffle(train_images, train_labels, random_state=25) # Output the information about the sets n_train = train_labels.shape[0] n_test = test_labels.shape[0] print("Number of examples in the training set: {}".format(n_train)) print("Number of examples in the test set: {}".format(n_test)) print("The size of each image: {}".format(IMAGE_SIZE)) # Number of images in each category in the test and training set _, train_counts = np.unique(train_labels, return_counts=True) _, test_counts = np.unique(test_labels, return_counts=True) pd.DataFrame({"train": train_counts, "test": test_counts}, index=class_names).plot.bar() plt.show() plt.pie(train_counts, explode=(0, 0, 0, 0, 0, 0), labels=class_names, autopct="%1.1f%%") plt.axis("equal") plt.title("Proportions for each category of images", y=1.05) plt.show() # Scaling the data train_images = train_images / 255.0 test_images = test_images / 255.0 # Function to output multiple images from a dataset def display_examples(class_names, images, labels): fig = plt.figure(figsize=(10, 10)) fig.suptitle("Examples of dataset images", fontsize=16) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(class_names[labels[i]]) plt.show() display_examples(class_names, train_images, train_labels) # # The first version of the VGG16 neural network # Using the VGG16 convolutional neural network for image classification model = VGG16(weights="imagenet", include_top=False) # Predicting the probability of assignment to a particular class train_features = model.predict(train_images) test_features = model.predict(test_images) # Visualize the data using a two-dimensional representation (via PCA) n_train, x, y, z = train_features.shape n_test, x, y, z = test_features.shape numFeatures = x * y * z pca = decomposition.PCA(n_components=2) X = train_features.reshape((n_train, x * y * z)) pca.fit(X) C = pca.transform(X) C1 = C[:, 0] C2 = C[:, 1] plt.subplots(figsize=(10, 10)) for i, class_name in enumerate(class_names): plt.scatter( C1[train_labels == i][:1000], C2[train_labels == i][:1000], label=class_name, alpha=0.4, ) plt.legend() plt.title("PCA Projection") plt.show() # The class - the forest - stands out clearly. Streets and buildings overlap very much.There is also some overlap of glaciers, mountains, and seas. # Function for visualizing the lossfunction and metrics def plot_accuracy_loss(history): fig = plt.figure(figsize=(13, 8)) plt.subplot(221) plt.plot(history.history["accuracy"], "bo--", label="acc") plt.plot(history.history["val_accuracy"], "ro--", label="val_acc") plt.title("train_acc vs val_acc") plt.ylabel("accuracy") plt.xlabel("epochs") plt.legend() plt.subplot(222) plt.plot(history.history["loss"], "bo--", label="loss") plt.plot(history.history["val_loss"], "ro--", label="val_loss") plt.title("train_loss vs val_loss") plt.ylabel("loss") plt.xlabel("epochs") plt.legend() plt.show() lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Build and train a neural network that will determine the class after VGG16 model2 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dense(80, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2.fit( train_features, train_labels, batch_size=128, epochs=15, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) test_loss = model2.evaluate(test_features, test_labels) # accuracy on the test set < 0.9 # # The second version of the VGG16 neural network # We will use VGG16 as the basis # Removing the last five layers of the neural network model = VGG16(weights="imagenet", include_top=False) model = Model(inputs=model.inputs, outputs=model.layers[-5].output) train_features = model.predict(train_images) test_features = model.predict(test_images) # Let's complete this neural network, the last four layers of VGG16 are MLP, so let's change these layers model2 = VGG16(weights="imagenet", include_top=False) input_shape = model2.layers[-4].get_input_shape_at(0) layer_input = Input(shape=(9, 9, 512)) x = layer_input for layer in model2.layers[-4::1]: x = layer(x) x = Conv2D(64, (3, 3), activation="relu")(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Flatten()(x) x = Dense(95, activation="relu")(x) # x = Dense(20, activation='relu')(x) x = Dense(6, activation="softmax")(x) new_model = Model(layer_input, x) new_model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) # Structure of the resulting model new_model.summary() lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Neural network training history = new_model.fit( train_features, train_labels, batch_size=128, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Final accuracy predictions = new_model.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # Точность > 0.9 # # Inceptionv3 neural network from tensorflow.keras.applications.inception_v3 import InceptionV3 # Create an InceptionV3 model without a full-link layer model_inceptionV3 = InceptionV3(weights="imagenet", include_top=False) # Extract features train_features = model_inceptionV3.predict(train_images) test_features = model_inceptionV3.predict(test_images) _, x, y, z = train_features.shape # Build a small, fully-connected neural network that will make predictions based on the extracted features lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) model2_inceptionV3 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_inceptionV3.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_inceptionV3.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Accuracy predictions = model2_inceptionV3.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # Xception Neural Network from keras.applications import Xception # Creating the Xception model model_Xception = Xception(include_top=False, weights="imagenet") # Extracting features train_features = model_Xception.predict(train_images) test_features = model_Xception.predict(test_images) _, x, y, z = train_features.shape # Build a small, fully-connected neural network that will make predictions based on the extracted features lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) model2_Xception = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1024, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_Xception.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_Xception.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) predictions = model2_Xception.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # VGG 19 Neural Network from keras.applications import VGG19 model_vgg19 = VGG19(include_top=False, weights="imagenet") train_features = model_vgg19.predict(train_images) test_features = model_vgg19.predict(test_images) _, x, y, z = train_features.shape lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) model2_vgg19 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dense(100, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_vgg19.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_vgg19.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) predictions = model2_vgg19.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # The second version of the VGG 19 neural network model_vgg19 = VGG19(weights="imagenet", include_top=False) model_vgg19 = Model(inputs=model_vgg19.inputs, outputs=model_vgg19.layers[-5].output) train_features = model_vgg19.predict(train_images) test_features = model_vgg19.predict(test_images) model2_vgg19 = VGG19(weights="imagenet", include_top=False) input_shape = model2_vgg19.layers[-4].get_input_shape_at(0) layer_input = Input(shape=(9, 9, 512)) x = layer_input for layer in model2_vgg19.layers[-4::1]: x = layer(x) x = Conv2D(64, (3, 3), activation="relu")(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Flatten()(x) x = Dropout(0.5)(x) x = Dense(512, activation="relu")(x) x = Dense(6, activation="softmax")(x) new_model = Model(layer_input, x) new_model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) new_model.summary() lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) history = new_model.fit( train_features, train_labels, batch_size=128, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) predictions = new_model.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # Neural network ResNet50 from keras.applications import ResNet50V2 # Creating the ResNet50V2 model model_resNet50 = ResNet50V2(include_top=False, weights="imagenet") # Extracting features train_features = model_resNet50.predict(train_images) test_features = model_resNet50.predict(test_images) _, x, y, z = train_features.shape lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Training the model model2_resNet50V2 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dense(100, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_resNet50V2.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_resNet50V2.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Accuracy predictions = model2_resNet50V2.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # ResNet101 neural network from keras.applications import ResNet101V2 # Building the ResNet101 model model_resNet101 = ResNet101V2(include_top=False, weights="imagenet") # Extracting features train_features = model_resNet101.predict(train_images) test_features = model_resNet101.predict(test_images) _, x, y, z = train_features.shape lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Training a neural network model2_resNet101 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1024, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_resNet101.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_resNet101.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Accuracy predictions = model2_resNet101.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # Neural network ResNet152 from keras.applications import ResNet152V2 # Creating the ResNet152 model model_resNet152 = ResNet152V2(include_top=False, weights="imagenet") # Extracting features train_features = model_resNet152.predict(train_images) test_features = model_resNet152.predict(test_images) _, x, y, z = train_features.shape lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Training the model model2_resNet152 = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_resNet152.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_resNet152.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Accuracy predictions = model2_resNet152.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels))) # # InceptionResNet neural network from keras.applications import InceptionResNetV2 # Creating a model model_incptionResNet = InceptionResNetV2(include_top=False, weights="imagenet") # Extracting features train_features = model_incptionResNet.predict(train_images) test_features = model_incptionResNet.predict(test_images) _, x, y, z = train_features.shape lr_rate = ReduceLROnPlateau( monitor="val_accuracy", patience=1, factor=0.25, min_lr=0.000003 ) # Training a neural network to classify on extracted features model2_incptionResNet = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(x, y, z)), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(6, activation=tf.nn.softmax), ] ) model2_incptionResNet.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) history = model2_incptionResNet.fit( train_features, train_labels, batch_size=256, epochs=10, validation_split=0.2, callbacks=[lr_rate], ) plot_accuracy_loss(history) # Accuracy predictions = model2_incptionResNet.predict(test_features) pred_labels = np.argmax(predictions, axis=1) print("Accuracy: {}".format(accuracy_score(test_labels, pred_labels)))
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt athlete_selection = pd.read_csv("/kaggle/input/athletesat/AthleteSelection.csv") athlete_selection.set_index("Athlete", inplace=True) # Check if the index is having unique values print( "\nIs the Pandas index having unique values?\n", athlete_selection.index.is_unique ) athlete_selection.head(5) import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt athlete_selection = pd.read_csv("/kaggle/input/athletesat/AthleteSelection.csv") # Create a new variable "names" that contains the DataFrame indexes names = athlete_selection.index # Print the "names" variable print(names) import pandas as pd import numpy as np athlete_selection = pd.read_csv("/kaggle/input/athletesat/AthleteSelection.csv") X = np.array(athlete_selection.iloc[:, 1:5]) Y = np.array(athlete_selection.iloc[:, -1]) print(X[0, 0]) from sklearn.neighbors import NearestNeighbors import numpy as np # Load the data data = np.genfromtxt( "/kaggle/input/athletesat/AthleteSelection.csv", delimiter=",", skip_header=1 ) X = data[:, 1:3] # Features y = data[:, 3] # Labels # Create and fit the model model = NearestNeighbors(n_neighbors=2, radius=0.4) model.fit(X) # Get the parameters of the model params = model.get_params() print(params) from sklearn.neighbors import NearestNeighbors import numpy as np # Load the data data = np.genfromtxt( "/kaggle/input/athlete-selection/AthleteSelection.csv", delimiter=",", skip_header=1 ) X = data[:, 1:3] # Features y = data[:, 3] # Labels # Create and fit the model model = NearestNeighbors(n_neighbors=2, radius=0.4) model.fit(X) # Find the k nearest neighbors of q1 and q2 q1 = [3.25, 8.25] q2 = [0.2, 3.3] distances, indices = model.kneighbors([q1, q2]) # Stack distances and indices vertically results = np.vstack((distances, indices)) # Print the results as a matrix print("Distances and Indices of the nearest neighbors:") print(results) from sklearn.neighbors import NearestNeighbors import numpy as np # Load the data data = np.genfromtxt( "/kaggle/input/athlete-selection/AthleteSelection.csv", delimiter=",", skip_header=1 ) X = data[:, 1:3] # Features y = data[:, 3] # Labels # Create and fit the model model = NearestNeighbors(n_neighbors=2, radius=0.4) model.fit(X) # Find the k nearest neighbors of q1 and q2 q1 = [3.25, 8.25] q2 = [0.2, 3.3] distances, indices = model.kneighbors([q1, q2]) # Print the results print(f"The 2 nearest neighbors of {q1} are:") for i, index in enumerate(indices[0]): print(f"{i+1}. Point {index} at distance {distances[0][i]}") print(f"\nThe 2 nearest neighbors of {q2} are:") for i, index in enumerate(indices[1]): print(f"{i+1}. Point {index} at distance {distances[1][i]}") # q = [5.0,7.5] # q3n = athlete_neigh.kneighbors([q], n_neighbors = 3)[1][0] # for n in q3n: # print(names[n]) # This code finds the 3 nearest neighbors of the point q using a NearestNeighbors model called athlete_neigh. The kneighbors method returns two arrays: the first contains the distances to the nearest neighbors, and the second contains the indices of the nearest neighbors. In this case, only the indices are used, which are accessed using [1][0]. The indices are then used to access the corresponding names from a list called names, and these names are printed out. from sklearn.neighbors import KNeighborsClassifier import numpy as np # Load the data data = np.genfromtxt( "/kaggle/input/athlete-selection/AthleteSelection.csv", delimiter=",", skip_header=1 ) X = data[:, 1:3] # Features y = data[:, 3] # Labels # Create and fit the model model = KNeighborsClassifier(n_neighbors=3) model.fit(X, y) from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import numpy as np # Load the data data = np.genfromtxt( "/kaggle/input/athlete-selection/AthleteSelection.csv", delimiter=",", skip_header=1 ) X = data[:, 1:3] # Features y = data[:, 3] # Labels # Create and fit the model model = KNeighborsClassifier(n_neighbors=3) model.fit(X, y) # Make predictions on the training data y_pred = model.predict(X) # Print the predicted labels and the actual labels print("Predicted labels:", y_pred) print("Actual labels:", y) # Calculate the accuracy accuracy = accuracy_score(y, y_pred) print(f"Accuracy: {accuracy:.2f}") # the model might be accurate, there are several factors that can contribute to a model’s performance. Some possible reasons why a KNeighborsClassifier model might be accurate include: the data is well-suited for a nearest neighbors approach, the value of K was chosen appropriately, and the features used to represent the data are informative and discriminative. Without more information about the specific data and problem, it is difficult to say for certain why the model might be accurate. # TASK 2: from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.metrics import accuracy_score import numpy as np # 1. Load the test data test_data = np.genfromtxt( "/kaggle/input/athletesat/AthleteTest.csv", delimiter=",", skip_header=1 ) X_test = test_data[:, 1:3] # Features y_test = test_data[:, 3] # Labels # Load the training data train_data = np.genfromtxt( "/kaggle/input/athletesat/AthleteTest.csv", delimiter=",", skip_header=1 ) X_train = train_data[:, 1:3] # Features y_train = train_data[:, 3] # Labels # 2. Create and fit the KNeighborsClassifier model with K=3 model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) # 3. Evaluate the model on the test data y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy of KNeighborsClassifier with K=3: {accuracy:.2f}") # 4. Use StandardScaler to scale the data and fit a new KNeighborsClassifier model scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) model2 = KNeighborsClassifier(n_neighbors=3) model2.fit(X_train_scaled, y_train) y_pred2 = model2.predict(X_test_scaled) accuracy2 = accuracy_score(y_test, y_pred2) print(f"Accuracy of KNeighborsClassifier with K=3 and StandardScaler: {accuracy2:.2f}") # 5. Use MinMaxScaler to scale the data and fit a new KNeighborsClassifier model scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) model3 = KNeighborsClassifier(n_neighbors=3) model3.fit(X_train_scaled, y_train) y_pred3 = model3.predict(X_test_scaled) accuracy3 = accuracy_score(y_test, y_pred3) print(f"Accuracy of KNeighborsClassifier with K=3 and MinMaxScaler: {accuracy3:.2f}") # 6. Evaluate the models with different values of K for k in range(1, 6): model = KNeighborsClassifier(n_neighbors=k) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy of KNeighborsClassifier with K={k}: {accuracy:.2f}") model2 = KNeighborsClassifier(n_neighbors=k) model2.fit(X_train_scaled, y_train) y_pred2 = model2.predict(X_test_scaled) accuracy2 = accuracy_score(y_test, y_pred2) print( f"Accuracy of KNeighborsClassifier with K={k} and StandardScaler: {accuracy2:.2f}" ) model3 = KNeighborsClassifier(n_neighbors=k) model3.fit(X_train_scaled, y_train) y_pred3 = model3.predict(X_test_scaled) accuracy3 = accuracy_score(y_test, y_pred3) print( f"Accuracy of KNeighborsClassifier with K={k} and MinMaxScaler: {accuracy3:.2f}" )
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session filmes = pd.read_csv( "/kaggle/input/movielens-100k-dataset/ml-100k/u.item", sep="|", encoding="latin-1", header=None, index_col=False, ) filmes.head() # ![image.png](attachment:eb13d3ad-c8a2-4b47-a2ce-5ec379df795e.png) filmes.columns = [ "movie_id", "movie_title", "release_date", "video_release_date", "IMDb_URL", "unknown", "Action", "Adventure", "Animation", "Children", "Comedy", "Crime", "Documentary", "Drama", "Fantasy", "FilmNoir", "Horror", "Musical", "Mystery", "Romance", "SciFi", "Thriller", "War", "Western", ] filmes.head() filmes.shape filmes.info() filmes.video_release_date.unique() filmes.drop(columns=["video_release_date"], inplace=True) filmes.head() # ![image.png](attachment:8b4ec89d-e5ba-4e7e-b5b4-c948aae19469.png) notas = pd.read_csv( "/kaggle/input/movielens-100k-dataset/ml-100k/u.data", encoding="latin-1", sep="\t", header=None, index_col=False, ) notas.columns = ["user_id", "item_id", "rating", "timestamp"] notas.head() notas.shape notas.info() notas.describe() # Escolhendo o ID dos filmes como index filmes = filmes.set_index("movie_id") # Selecionando um filme através do seu ID (escolhendo pelo horário que estou digitando esta linha) filmes.loc[1143] # # Verificando o total de votos de cada filme: total_de_votos = notas["item_id"].value_counts() total_de_votos.head() filmes["Total_de_votos"] = total_de_votos filmes.head() filmes.sort_values("Total_de_votos", ascending=False) # # Verificando a nota média dos filmes: notas_medias = notas.groupby("item_id").mean()["rating"] notas_medias.head() filmes["nota_media"] = notas_medias filmes.head() filmes.sort_values("nota_media", ascending=False).head(15) filmes.query("Total_de_votos >= 10").sort_values("nota_media", ascending=False) # Fazer a recomendação somente pela média das notas não é uma boa saída, porque filmes desconhecidos podem receber poucas avaliações que o classificam melhor do que os outros e isso faz com que a nota não represente de forma adequada sua avaliação. filmes.Total_de_votos.min() filmes.Total_de_votos.max() # Sabendo o valor mínimo e máximo que os filmes receberam, decidi trabalhar somente com aqueles que tiveram no mínimo 50 avaliações. filmes_com_mais_de_50_votos = filmes.query("Total_de_votos >= 50") filmes_com_mais_de_50_votos.sort_values("nota_media", ascending=False) # # Fazendo um sistema de recomendação utilizando os gêneros dos filmes: # Digamos que, eu tenha assistido os seguintes filmes: # ![image.png](attachment:3321758a-ff1c-4696-96c4-16101ea1acdd.png) # E quero assistir um filme de ação e drama. assistido = [67, 2, 313, 132, 192, 179, 227, 501, 614, 631] filmes_com_mais_de_50_votos.query("Action == 1 and Drama == 1") # Fiz uma nova variável para receber os filmes destes gêneros e visualizar os 5 primeiros com as melhores médias. acao_drama = filmes_com_mais_de_50_votos.query("Action == 1 and Drama == 1") acao_drama.sort_values("nota_media", ascending=False).head(5) # Deste resultado, eu exclui os filmes que já assisti: acao_drama.drop(assistido, errors="ignore").sort_values( "nota_media", ascending=False ).head(5) # De acordo com o gênero escolhido e melhores média de avaliação, as recomendações são: # - O Poderoso Chefão; # - Star Wars: O Império Contra-Ataca; # - O Barco; # - O Poderoso Chefão 2; # - Coração Valente. # Mas, lembrando que, não considerei os filmes com menos de 50 avaliações. Isso faz com que filmes produzidos por pequenas produtoras ou que ainda não caíram no gosto do grande público, não sejam encontrados por novos usuários e desestimulando a procura por novas obras. # # Fazendo um sistema de recomendação utilizando o histórico do usuário: # Eu compartilho o gosto de algumas coisas com meus amigos, por exemplo, gostamos de alguns filmes, séries e livros, ao mesmo tempo que não gostamos de outras obras. Ou seja, eu e meus amigos podemos avaliar essas obras com notas iguais ou próximas. # Para averiguar se compartilhamos os mesmos gostos, podemos calcular a distância euclidiana entre as avaliações, que em resumo, quanto menor for este valor, mais "compatível" e próximo será o gosto entre os perfis. Assim, se um usuário gostou de um filme que o outro perfil ainda não assistiu, será mais fácil efetuar recomendações. # Escolhendo o primeiro usuário: # ![image.png](attachment:46477ab5-ae4e-4075-ae27-56605c6654fe.png) usuario_43 = notas.query("user_id == 43") usuario_43[["item_id", "rating"]].set_index("item_id") def historico_usuario(usuario): historico_usuario = notas.query("user_id == %d" % usuario) historico_usuario = historico_usuario[["item_id", "rating"]].set_index("item_id") return historico_usuario historico_usuario(43) # Escolhendo outro usuário: # ![image.png](attachment:ebedd0ac-7724-419d-94b3-da18e7b32ee9.png) historico_usuario(62) user43 = historico_usuario(43) user62 = historico_usuario(62) # Unindo as avaliações dos dois usuários e deixando no dataframe somente os filmes que ambos têm em comum: user43.join(user62, lsuffix="_do_user", rsuffix="_comparacao").dropna() diferenca = user43.join(user62, lsuffix="_do_user", rsuffix="_comparacao").dropna() np.linalg.norm(diferenca["rating_do_user"] - diferenca["rating_comparacao"]) # Diante este valor, ainda não é possível dizer se os perfis são compatíveis, ou não. Porém vou fazer uma função para agilizar o cálculo entre outros usuários. def distancia_entre_perfis(user_id1, user_id2): notas1 = historico_usuario(user_id1) notas2 = historico_usuario(user_id2) diferenca = notas1.join(notas2, lsuffix="_do_user", rsuffix="_comparacao").dropna() distancia = np.linalg.norm( diferenca["rating_do_user"] - diferenca["rating_comparacao"] ) return [user_id1, user_id2, distancia] distancia_entre_perfis(43, 62) # ## Verificando quais são os perfis com maior compatibilidade: notas.user_id.unique() print("O dataset possui %d usuarios." % len(notas.user_id.unique())) # No dataframe das avaliações, no total há 943 usuários. Portanto, vou comparar as avaliações do perfil 43 com outros 5 usuários: usuario_1 = 43 distancias = [] for usuario in notas["user_id"].unique(): calculo = distancia_entre_perfis(usuario_1, usuario) distancias.append(calculo) distancias[:5] # O resultado da comparação mostrou que a distância entre o usuário 43, com os demais, pode ser menor. # Função para calcular a distância entre 1 usuário específico e os demais: def distancia_entre_usuarios(usuario_1): todos_os_usuarios = notas["user_id"].unique() distancias = [ distancia_entre_perfis(usuario_1, user_id) for user_id in todos_os_usuarios ] distancias = pd.DataFrame( distancias, columns=["Usuario_1", "Outro_user", "Distancia"] ) return distancias distancia_entre_usuarios(43).head() # Ordenando o Dataframe pela Distância: def mais_proximos_de(usuario_1): distancias = distancia_entre_usuarios(usuario_1) distancias = distancias.sort_values("Distancia") distancias = distancias.set_index("Outro_user").drop(usuario_1) return distancias mais_proximos_de(43) # O retorno da função mostra que o usuário 43 tem um perfil mais parecido com o usuário 172, enquanto é distante do usuário 405. mais_proximos_de(43).head(20) # # Gerando recomendação com KNN: # KNN significa *K-nearest neighbors*, que traduzindo é *K-vizinhos mais próximos*. Este método é parecido com o que foi feito até agora, quando buscamos os perfis de usuários que fossem mais próximos, através dos filmes que eles assistiram e notas que atribuíram. # Nesta fase, reformulei algumas funções. Por exemplo, a função **distancia_entre_perfis** recebeu um novo argumento, caso a quantidade de filmes que ambos assistiram for menor do que 5, a distância entre estes perfis não é calculada. Na função **distancia_entre_usuarios**, o novo argumento determina a quantidade máxima de perfis que se quer comparar. Já na função **mais_proximos_de**, adicionei os 2 argumentos citados anteriormente. def distancia_entre_perfis(user_id1, user_id2, minimo=5): notas1 = historico_usuario(user_id1) notas2 = historico_usuario(user_id2) diferenca = notas1.join(notas2, lsuffix="_do_user", rsuffix="_comparacao").dropna() if len(diferenca) < minimo: return None distancia = np.linalg.norm( diferenca["rating_do_user"] - diferenca["rating_comparacao"] ) return [user_id1, user_id2, distancia] def distancia_entre_usuarios(user_1, numero_maximo_de_analise=None): todos_os_usuarios = notas["user_id"].unique() if numero_maximo_de_analise: todos_os_usuarios = todos_os_usuarios[:numero_maximo_de_analise] distancias = [ distancia_entre_perfis(user_1, user_id) for user_id in todos_os_usuarios ] distancias = list(filter(None, distancias)) distancias = pd.DataFrame( distancias, columns=["Usuario_1", "Outro_user", "Distancia"] ) return distancias def mais_proximos_de( user_1, quantidade_user_proximos=10, numero_maximo_de_analise=None ): distancias = distancia_entre_usuarios( user_1, numero_maximo_de_analise=numero_maximo_de_analise ) distancias = distancias.sort_values("Distancia") distancias = distancias.set_index("Outro_user").drop(user_1) return distancias.head(quantidade_user_proximos) mais_proximos_de(196, numero_maximo_de_analise=50) # Ao testar a última função, vemos que os 10 perfis (dentro dos 50 primeiros presentes no dataset *notas*) os que tiveram maior proximidade com o usuário 196, são os usuários 251 e 97. # --- # Tendo conhecimento dos perfis mais próximos, agora é possível buscar novos filmes para o usuário. # Primeiro, criei uma nova função que possui os mesmos argumentos que a função **mais_proximos_de**, que, em resumo, retorna 5 recomendações de filmes, ao fazer uma seleção daqueles que tiveram as melhores notas nos perfis mais próximos. def sugestoes(user1, quantidade_user_proximos=10, numero_maximo_de_analise=None): notas_user1 = historico_usuario(user1) historico_filmes = notas_user1.index similares = mais_proximos_de( user1, quantidade_user_proximos=quantidade_user_proximos, numero_maximo_de_analise=numero_maximo_de_analise, ) usuarios_similares = similares.index notas_dos_similares = notas.set_index("user_id").loc[usuarios_similares] recomendacoes = notas_dos_similares.groupby("item_id").mean()[["rating"]] recomendacoes = recomendacoes.sort_values("rating", ascending=False) return recomendacoes.join(filmes).head() sugestoes(196, quantidade_user_proximos=2, numero_maximo_de_analise=50) # As indicações (usando apenas 2 usuários) são: # - Jerry Maguire: A Grande Virada; # - Horizonte Perdido; # - The Haunted World of Edward D. Wood Jr.; # - Quanto Mais Quente Melhor; # - Intriga Internacional. sugestoes(196, numero_maximo_de_analise=50) # Mas ao utilizar os perfis dos 10 usuários mais próximos, temos: # - O Povo Contra Larry Flynt; # - Shine - Brilhante; # - The Haunted World of Edward D. Wood Jr.; # - Gênio Indomável; # - Juventude Transviada. sugestoes(196) # E quando não definimos um número máximo de usuários para análise, temos: # - Psicose; # - 2001 - Uma Odisseia no Espaço; # - O Piano; # - O Sangue de Romeo; # - Crepúsculo dos Deuses. # # Gerando recomendação para um novo usuário: # Agora, digamos que tenho um novo usuário e seus filmes são: # ![image.png](attachment:6ad2cac0-b670-4a12-8753-f56afde52d90.png) # E para adicioná-lo ao nosso sistema, fiz uma função que irá atribuir um número de ID e registrar os filmes e as notas. Escolhi as notas deste novo usuário de forma randômica: # ![image.png](attachment:fd4e5eec-0fea-41dc-ba70-95d2a72912a3.png) def novo_usuario(seus_filmes): novo_usuario = notas["user_id"].max() + 1 notas_do_usuario_novo = pd.DataFrame(seus_filmes, columns=["item_id", "rating"]) notas_do_usuario_novo["user_id"] = novo_usuario return pd.concat([notas, notas_do_usuario_novo]) notas = novo_usuario( [ [723, 3], [1094, 3], [652, 1], [1522, 5], [1243, 2], [1456, 1], [1086, 5], [1034, 2], [703, 2], [90, 3], [217, 2], ] ) notas.tail(12) # Para o novo usuário temos as seguintes recomendações: sugestoes(944)
# # Project 4 # I am using answers notebook from week 2 and changing its preprocessing to use Polars import pandas as pd import numpy as np data = pd.read_parquet( "/kaggle/input/forecasting-project2-data/project_2_data/sales_data.parquet" ) data.head() data.shape data = data.loc[data.groupby("id").sales.cumsum() > 0] def rmsse(train, val, y_pred): train_scale = ( train.assign( scale=train.groupby("id").sales.diff() ** 2, ) .groupby("id") .scale.mean() ) score = ( val.assign(squared_error=(val.sales - y_pred) ** 2) .groupby("id") .squared_error.mean() .to_frame() .merge(train_scale, on="id") .assign(rmsse=lambda x: np.sqrt(x.squared_error / x.scale)) .rmsse.mean() ) return score def test_rmsse(): test_train = pd.DataFrame( { "id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"], "sales": [3, 2, 5, 100, 150, 60, 10, 20, 30], } ) test_val = pd.DataFrame( { "id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"], "sales": [6, 1, 4, 200, 120, 270, 10, 20, 30], } ) test_y_pred = pd.Series([1, 2, 3, 180, 160, 240, 20, 30, 40]) assert np.abs(rmsse(test_train, test_val, test_y_pred) - 0.92290404515501) < 1e-6 test_rmsse() # # Fitting models # Don't worry about any error outputs here, unless you get the same "Retrying" error as Project 1 calendar = pd.read_parquet( "/kaggle/input/forecasting-project2-data/project_2_data/calendar.parquet" ) prices = pd.read_parquet( "/kaggle/input/forecasting-project2-data/project_2_data/prices.parquet" ) # ## Code in Pandas from sklearn.preprocessing import OrdinalEncoder lag_features = [1, 7, 28] rolling_features = { "mean": [7, 28], "std": [7, 28], } seasonal_rolling_features = { "mean": [4, 8], "std": [4, 8], } def calc_lag_pd(df, shift_length, forecast_horizon, by_day_of_week=False): group_cols = ["id"] if by_day_of_week: group_cols += ["day_of_week"] feature_name = f"lag_{shift_length}_{forecast_horizon}" return ( df.assign(day_of_week=df.index.get_level_values("date").dayofweek) .groupby(group_cols) .sales.shift(forecast_horizon + shift_length) .rename(feature_name) ), feature_name def calc_rolling_agg_pd( df, window_length, forecast_horizon, agg_func="mean", by_day_of_week=False ): group_cols = ["id"] if by_day_of_week: group_cols += ["day_of_week"] if not by_day_of_week: feature_name = f"rolling_{agg_func}_{window_length}_{forecast_horizon}" else: feature_name = f"seasonal_rolling_{agg_func}_{window_length}_{forecast_horizon}" return ( df.assign(day_of_week=df.index.dayofweek) .groupby(group_cols, group_keys=False) .sales.rolling( window_length, closed="right", min_periods=1 ) # only requires 1 observation to be non-NaN .agg({"sales": agg_func}) .reset_index() .assign(date=lambda x: x.date + pd.Timedelta(days=28)) .set_index("date") .rename(columns={"sales": feature_name}) ), feature_name def feature_engineering_pd(df, horizon): cont_feats = [] for lag in lag_features: fe_table, feature_name = calc_lag_pd(df, lag, horizon) df = df.merge(fe_table, on=["id", "date"], how="left") cont_feats.append(feature_name) df = df.reset_index("id") for agg_func, windows in rolling_features.items(): for window in windows: fe_table, feature_name = calc_rolling_agg_pd(df, window, horizon, agg_func) df = df.merge(fe_table, on=["id", "date"], how="left") cont_feats.append(feature_name) for agg_func, windows in seasonal_rolling_features.items(): for window in windows: fe_table, feature_name = calc_rolling_agg_pd( df, window, horizon, agg_func, by_day_of_week=True ) df = df.merge( fe_table.drop(columns="day_of_week"), on=["id", "date"], how="left" ) cont_feats.append(feature_name) df = ( df.merge(calendar[["snap_TX"]], on="date", how="left") .merge(prices, on=["date", "store_id", "item_id"], how="left") .assign( day_of_week=lambda x: x.index.dayofweek, day_of_month=lambda x: x.index.day, month=lambda x: x.index.month, year=lambda x: x.index.year, ) ) cont_feats += ["sell_price", "day_of_week", "day_of_month", "month", "year"] cat_feats = ["id", "item_id", "dept_id", "cat_id", "store_id", "snap_TX"] enc_cat_feats = [f"{feat}_enc" for feat in cat_feats] df[enc_cat_feats] = OrdinalEncoder().fit_transform(df[cat_feats]) max_date = df.index.get_level_values("date").max() train = df.loc[: max_date - pd.Timedelta(days=28), :] val = df.loc[ max_date - pd.Timedelta(days=28 - (horizon - 7) - 1) : max_date - pd.Timedelta(days=28 - horizon), :, ] price_feats = train.groupby("id").agg( max_price=("sell_price", "max"), median_price=("sell_price", "median"), ) train = train.merge(price_feats, on="id", how="left") val = val.merge(price_feats, on="id", how="left") cont_feats += ["max_price", "median_price"] return (train, val, cont_feats, enc_cat_feats) from sklearn.preprocessing import OrdinalEncoder lag_features = [1, 7, 28] rolling_features = { "mean": [7, 28], "std": [7, 28], } seasonal_rolling_features = { "mean": [4, 8], "std": [4, 8], } def calc_lag_pl(df, shift_length, forecast_horizon, by_day_of_week=False): group_cols = ["id"] if by_day_of_week: group_cols += ["day_of_week"] feature_name = f"lag_{shift_length}_{forecast_horizon}" return ( df.lazy() .with_columns(pl.col("date").dt.weekday().alias("day_of_week")) .with_columns( ( pl.col("sales") .shift(forecast_horizon + shift_length) .over(group_cols) .alias(feature_name) ) ) .select(["date", "id"] + [feature_name]) .collect() ), feature_name def calc_rolling_agg_pl( df, window_length, forecast_horizon, agg_func="mean", by_day_of_week=False ): group_cols = ["id"] if by_day_of_week: group_cols += ["day_of_week"] if not by_day_of_week: feature_name = f"rolling_{agg_func}_{window_length}_{forecast_horizon}" else: feature_name = f"seasonal_rolling_{agg_func}_{window_length}_{forecast_horizon}" if agg_func == "mean": return ( df.lazy() .with_columns(pl.col("date").dt.weekday().alias("day_of_week")) .with_columns( ( pl.col("sales") .rolling_mean(window_size=window_length, min_periods=1) .over(group_cols) .alias(feature_name) ) ) .with_columns((pl.col("date") + pl.duration(days=28)).alias("date")) .select(group_cols + ["date", feature_name]) .collect() ), feature_name # ugly but function rolling_apply is slower and did not want to spend more time refactroing elif agg_func == "std": return ( df.lazy() .with_columns(pl.col("date").dt.weekday().alias("day_of_week")) .with_columns( ( pl.col("sales") .rolling_std(window_size=window_length, min_periods=1) .over(group_cols) .alias(feature_name) ) ) .with_columns((pl.col("date") + pl.duration(days=28)).alias("date")) .select(group_cols + ["date", feature_name]) .collect() ), feature_name def feature_engineering_pl(df, horizon): cont_feats = [] for lag in lag_features: fe_table, feature_name = calc_lag_pl(df, lag, horizon) df = df.join(fe_table, on=["id", "date"], how="left") cont_feats.append(feature_name) for agg_func, windows in rolling_features.items(): for window in windows: fe_table, feature_name = calc_rolling_agg_pl(df, window, horizon, agg_func) df = df.join(fe_table, on=["id", "date"], how="left") cont_feats.append(feature_name) for agg_func, windows in seasonal_rolling_features.items(): for window in windows: fe_table, feature_name = calc_rolling_agg_pl( df, window, horizon, agg_func, by_day_of_week=True ) df = df.join(fe_table.drop("day_of_week"), on=["id", "date"], how="left") cont_feats.append(feature_name) df = ( df.join( pl.from_pandas(calendar.reset_index()).select("date", "snap_TX"), on="date", how="left", ) .join( pl.from_pandas(prices.reset_index()), on=["date", "store_id", "item_id"], how="left", ) .with_columns( [ pl.col("date").dt.weekday().alias("dayofweek"), pl.col("date").dt.day().alias("day"), pl.col("date").dt.month().alias("month"), pl.col("date").dt.year().alias("year"), ] ) ) df = df.to_pandas().set_index("date") cont_feats += ["sell_price", "day_of_week", "day_of_month", "month", "year"] cat_feats = ["id", "item_id", "dept_id", "cat_id", "store_id", "snap_TX"] enc_cat_feats = [f"{feat}_enc" for feat in cat_feats] df[enc_cat_feats] = OrdinalEncoder().fit_transform(df[cat_feats]) max_date = df.index.get_level_values("date").max() train = df.loc[: max_date - pd.Timedelta(days=28), :] val = df.loc[ max_date - pd.Timedelta(days=28 - (horizon - 7) - 1) : max_date - pd.Timedelta(days=28 - horizon), :, ] price_feats = train.groupby("id").agg( max_price=("sell_price", "max"), median_price=("sell_price", "median"), ) train = train.merge(price_feats, on="id", how="left") val = val.merge(price_feats, on="id", how="left") cont_feats += ["max_price", "median_price"] return (train, val, cont_feats, enc_cat_feats) # cont_feats += ['sell_price', 'day_of_week', 'day_of_month', 'month', 'year'] # cat_feats = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'snap_TX'] # enc_cat_feats = [f'{feat}_enc' for feat in cat_feats] # df[enc_cat_feats] = OrdinalEncoder().fit_transform(df.select([cat_feats])) # max_date = df.select('date').max() # train = df.filter(pl.col('date') < max_date - pl.duration(days=28)) # val = df.filter((pl.col('date') >= max_date - pl.duration(days=28 - (horizon-7) - 1)) & (pl.col('date') < max_date - pl.duration(days=28 - horizon))) # price_feats = ( # train # .groupby('id') # .agg([ # pl.col("sell_price").max().alias("max_price"), # pl.col("sell_price").median().alias("median_price"), # ]) # ) # train = train.join(price_feats, on='id', how='left') # val = val.join(price_feats, on='id', how='left') # cont_feats += ['max_price', 'median_price'] # return ( # train, val, # cont_feats, enc_cat_feats # ) # train_pd, val_pd, cont_feats_pd, cat_feats_pd = feature_engineering_pl(data_pl, horizon) horizon = 28 # ## Code in polars import polars as pl def compare(df_pd, df_pl): df_pd = ( pd.DataFrame(df_pd) .reset_index() .set_index(["date", "id"]) .sort_index() .drop("day_of_week", axis=1, errors="ignore") ) df_pl_aspd = ( df_pl.to_pandas() .set_index(["date", "id"]) .sort_index() .drop("day_of_week", axis=1, errors="ignore") ) assert df_pd.equals(df_pl_aspd) data_pl = pl.from_pandas(data.reset_index()) df_pd, _ = calc_lag_pd(data, 1, horizon) df_pl, _ = calc_lag_pl(data_pl, 1, horizon) compare(df_pd, df_pl) fe_table_pd, feature_name = calc_rolling_agg_pd( data.reset_index("id"), 28, horizon, "mean", by_day_of_week=True ) fe_table_pl, feature_name = calc_rolling_agg_pl( data_pl, 28, horizon, "mean", by_day_of_week=True ) compare(fe_table_pd, fe_table_pl) train_pd, val_pd, cont_feats_pd, cat_feats_pd = feature_engineering_pd(data, horizon) train_pl, val_pl, cont_feats_pl, cat_feats_pl = feature_engineering_pl(data_pl, horizon)
import pandas as pd import numpy as np import collections # - In the [discuttion][2], it is pointed out that levels 7, 15, 20, 21 and 22 are skipped. # [2]: https://www.kaggle.com/competitions/predict-student-performance-from-game-play/discussion/390339#2174184 # - As other [problems][1] with the dataset have been noted, the dataset has recently been added. We analyzed the new dataset to see if the problem of skipping levels has been resolved. # [1]: https://www.kaggle.com/competitions/predict-student-performance-from-game-play/discussion/395250 # - From the following analysis, we see that all sessions has ```level==22```. However, some sessions lacks levels 7, 15, 20, 21. # - It was noted that there are several columns like index and elapsed_time in this dataset that do not seem to be consistent, and the competition host indicated that this may be due to a bug in the game. Since only certain levels are missing, perhaps this missingness is a bug of the game. # - Please let me know if there is already another similar analysis. I'm new to kaggle and this is my first competition so please tell me something to improve this notebook and how to use kaggle. train_path = "/kaggle/input/predict-student-performance-from-game-play/train.csv" session_id = pd.read_csv(train_path, usecols=["session_id"]) level = pd.read_csv(train_path, usecols=["level"]) nlevel = pd.concat([session_id, level], axis=1).groupby("session_id").nunique() print(nlevel[nlevel.level < 21]) print("\nNumber of unique levels are larger than 20 for all sessions.") n23 = len(nlevel[nlevel.level == 23]) n22 = len(nlevel[nlevel.level == 22]) n21 = len(nlevel[nlevel.level == 21]) len_ = len(nlevel) print("0 missing:".ljust(15) + f"{n23: 10d} sessions, {(n23/len_)*100: 10.3f} %") print("1 missing:".ljust(15) + f"{n22: 10d} sessions, {(n22/len_)*100: 10.3f} %") print("2 missing:".ljust(15) + f"{n21: 10d} sessions, {(n21/len_)*100: 10.3f} %") session_and_level = pd.concat([session_id, level], axis=1) full_levels = set(np.arange(0, 23)) one_missing_session = nlevel[nlevel.level == 22].index diffs = [] for ID in one_missing_session: tmp = session_and_level.loc[session_and_level.session_id == ID] diff = full_levels - set(tmp.level.unique()) diffs.append(diff) tmp = [] for diff in diffs: for e in diff: tmp.append(e) print(f"Missing values distribution: {collections.Counter(tmp)} in {n22} sessions") two_missing_session = nlevel[nlevel.level == 21].index diffs = [] for ID in two_missing_session: tmp = session_and_level.loc[session_and_level.session_id == ID] diff = full_levels - set(tmp.level.unique()) diffs.append(diff) tmp = [] for diff in diffs: for e in diff: tmp.append(e) print(f"Missing values distribution: {collections.Counter(tmp)} in {n21} sessions")
import bz2 import lzma import pickle import matplotlib.pyplot as plt import numpy as np import shapely import tqdm from shapely.geometry import box from shapely.geometry import MultiPolygon, Point, GeometryCollection, MultiLineString from shapely import affinity from uuid import uuid4 plans = pickle.load(open("/kaggle/input/dataset-aug-ours/outs.pkl", "rb")) c = 0 size = 256 def buffer(p, w, bm=0.5): p = ( affinity.scale(p, xfact=0.9, yfact=0.9, origin=(size / 2, size / 2)) if p else Point(-100, -100) ) if bm: if isinstance(p, shapely.geometry.multipolygon.MultiPolygon): return [ i.buffer(-bm * w, join_style=2) .buffer((1.5 + bm) * w, join_style=2) .buffer(-1.5 * w, join_style=2) for i in p.geoms ] return [ p.buffer(-bm * w, join_style=2) .buffer((1.5 + bm) * w, join_style=2) .buffer(-1.5 * w, join_style=2) ] return p aug_prefs = [ [0, False], [0, True], [90, False], [90, True], [180, False], [180, True], [270, False], [270, True], ] def augment(polygon, degree, flip_vertical, size=256, point=False): if not polygon: return Point(-100, -100) if point else box(-100, -100, -100, -100) p = affinity.rotate(polygon, degree, origin=(size / 2, size / 2)) if flip_vertical: p = affinity.scale(p, xfact=1, yfact=-1, origin=(size / 2, size / 2)) return p augmented = [] for p in tqdm.tqdm(plans): bedroom_p = p["bedroom"] bathroom_p = p["bathroom"] front_p = p["front"] wall_width = p["wall_width"] p["inner_g"] = buffer(p["inner_g"], p["wall_width"], 0.5) if isinstance(p["inner_g"], list): p["inner_g"] = max(p["inner_g"], key=lambda x: x.area) p["kitchen_c"] = buffer(p["kitchen_c"], p["wall_width"], 0.5) p["general"] = buffer(p["general"], p["wall_width"], 0.5) p["balacony"] = buffer(p["balacony"], p["wall_width"], 0.5) poly = bedroom_p.buffer(p["wall_width"] * 0.1, join_style=2).buffer( -p["wall_width"] * 0.1, join_style=2 ) bedrooms = [i for i in poly.geoms] if isinstance(poly, MultiPolygon) else [poly] bedrooms = [buffer(i, p["wall_width"])[0] for i in bedrooms] bedrooms = sorted(bedrooms, key=lambda x: x.area, reverse=True) p["bedroom"] = [i for i in bedrooms if i.area > 0.1 * bedroom_p.area][0:4] polyB = bathroom_p.buffer(p["wall_width"] * 0.1, join_style=2).buffer( -p["wall_width"] * 0.1, join_style=2 ) bathroom = [i for i in polyB.geoms] if isinstance(polyB, MultiPolygon) else [polyB] bathroom = [buffer(i, p["wall_width"])[0] for i in bathroom] bathroom = sorted(bathroom, key=lambda x: x.area, reverse=True) p["bathroom"] = [i for i in bathroom if i.area > 0.1 * bathroom_p.area][0:4] if front_p and p["inner_g"]: front_p = buffer(front_p, p["wall_width"], 0) front_p = front_p.buffer(wall_width).intersection(p["inner_g"].exterior) if isinstance(front_p, (MultiPolygon, GeometryCollection, MultiLineString)): front_p = max(front_p.geoms, key=lambda x: x.length) front_p = front_p.centroid p["front"] = front_p plans[8]["front"] import geopandas as gpd gpd.GeoSeries(plans[0]["bedroom"] + plans[0]["bathroom"] + plans[0]["general"]).plot( cmap="Dark2_r" ) from typing import Iterable import cv2, pickle import numpy as np import shapely from pandas import Series from shapely import MultiPolygon, Polygon, box, Point from shapely.affinity import scale def get_mask(poly, shape, point_s=5): """Return image contains multiploygon as a numpy array mask Parameters ---------- poly: Polygon or MultiPolygon or Iterable[Polygon or MultiPolygon] The Polygon/s to get mask for shape: tuple The shape of the canvas to draw polygon/s on Returns ------- ndarray Mask array of the input polygon/s :param point_s: """ try: img = np.zeros(shape, dtype=np.uint8) if isinstance(poly, Polygon): if poly.is_empty: return img img = cv2.drawContours(img, np.int32([poly.exterior.coords]), -1, 255, -1) elif isinstance(poly, MultiPolygon): for p in poly.geoms: img = cv2.drawContours(img, np.int32([p.exterior.coords]), -1, 255, -1) elif isinstance(poly, Series): polys = [p for p in poly.tolist() if p] img = get_mask(polys, shape, point_s) elif isinstance(poly, Iterable): for p in poly: img = (img != 0) | (get_mask(p, shape, point_s) != 0) img = img.astype(np.uint8) * 255 elif isinstance(poly, Point): p = poly.coords[0] img = cv2.circle(img, (int(p[0]), int(p[1])), point_s, 255, -1) return img.astype(np.uint8) except: return img def get_centroid(poly): x1, x2, y1, y2 = 0, 0, 0, 0 import random MIN_ROOM_AREA = 8.5 MAX_ROOM_AREA = 46 MIN_BROOM_AREA = 3.5 MAX_BROOM_AREA = 15 def rand_room_area(n): total = 0 for i in range(n): MIDPOINT = (MIN_ROOM_AREA + MAX_ROOM_AREA) / 2 STD_DEV = (MAX_ROOM_AREA - MIN_ROOM_AREA) / 4 room_area = random.normalvariate(MIDPOINT, STD_DEV) room_area = max(min(room_area, MAX_ROOM_AREA), MIN_ROOM_AREA) room_area = round(room_area, 2) total += room_area return total def rand_broom_area(n): total = 0 for i in range(n): MIDPOINT = (MIN_BROOM_AREA + MAX_BROOM_AREA) / 2 STD_DEV = (MAX_BROOM_AREA - MIN_BROOM_AREA) / 4 room_area = random.normalvariate(MIDPOINT, STD_DEV) room_area = max(min(room_area, MAX_BROOM_AREA), MIN_BROOM_AREA) room_area = round(room_area, 2) total += room_area return total def estimate_total_area(num_bedrooms, num_bathrooms): avg_ratio_1br_1ba = 0.6 avg_ratio_2br_2ba = 0.7 avg_ratio_3br_nba = 0.75 combined_bed_bath_area = rand_room_area(num_bedrooms) + rand_broom_area( num_bathrooms ) if num_bedrooms == 1 and num_bathrooms == 1: area_ratio = avg_ratio_1br_1ba elif num_bedrooms == 2 and num_bathrooms == 2: area_ratio = avg_ratio_2br_2ba else: area_ratio = avg_ratio_3br_nba total_area = combined_bed_bath_area / area_ratio return total_area import gc torch.cuda.empty_cache() gc.collect() import numpy as np import keras, os, random import torch from torch.utils.data import Dataset, DataLoader onehot = {} for i in [1, 2, 3, 4]: for j in [1, 2, 3, 4]: img = np.zeros((256, 256, 8)) img[:, :, i - 1] = np.ones((256, 256)) img[:, :, j + 4 - 1] = 1 onehot[(i, j)] = img[:, :, :] import torch import numpy as np from torch.utils.data import Dataset import torch from torch.utils.data import Dataset class PlanDataset(Dataset): def __init__(self, plans, batch_size=32, image_size=(256, 256)): self.plans = plans self.batch_size = batch_size self.image_size = image_size self.num_samples = len(self.plans) def __len__(self): return self.num_samples def __getitem__(self, idx): plan = self.plans[idx] deg, flip = random.choice(aug_prefs) no_bedrooms = max(1, len(plan["bedroom"])) no_bathrooms = max(1, len(plan["bathroom"])) area = estimate_total_area(no_bedrooms, no_bathrooms) case = ( random.choice([f for f in range(1, no_bedrooms + 1) for j in range(f)]) if no_bedrooms > 1 else 1 ) inbedsnum = case - 1 x = np.zeros((*self.image_size, 4)) y = np.zeros((*self.image_size, 1)) # x[:,:,:8] = onehot[(no_bedrooms, no_bathrooms)][:,:,:8] # x[:,:,9] = get_mask(augment(plan['front'], deg, flip), (256, 256), point_s=7) > 0 # x[:,:,10] = get_mask(augment(plan['inner_g'], deg, flip), (256, 256), point_s=10) > 0 # x[:,:,11 + inbedsnum] = 1 x[:, :, 0] = ( get_mask(augment(plan["front"], deg, flip), (256, 256), point_s=7) > 0 ) x[:, :, 1] = ( get_mask(augment(plan["inner_g"], deg, flip), (256, 256), point_s=10) > 0 ) x[:, :, 2] = min(1, area / 500) bedrooms = [x for x in plan["bedroom"]] inbeds = [] for _ in range(inbedsnum): bedroom = random.choice(bedrooms) bedc = ( bedroom.minimum_rotated_rectangle.centroid if bedroom else Point(-100, -100) ) bedrooms = [x for x in bedrooms if x != bedroom] inbeds.append(augment(bedc, deg, flip)) x[:, :, 3] = get_mask(inbeds, (256, 256), point_s=15) > 0 bedroom = ( random.choice(bedrooms).minimum_rotated_rectangle.centroid if bedrooms else Point(-100, -100) ) y[:, :, 0] = get_mask(augment(bedroom, deg, flip), (256, 256), point_s=15) > 0 return ( torch.from_numpy(x).cuda().permute(2, 0, 1).float(), torch.from_numpy(y).cuda().permute(2, 0, 1).float(), ) from sklearn.model_selection import train_test_split # # Model import torch import torch.nn as nn import torchvision.models as models from tqdm.notebook import tqdm import matplotlib.pyplot as plt import pickle import numpy as np import bz2 class RoomLayoutUNet(nn.Module): def __init__(self, n_channels=3, n_classes=3): super(RoomLayoutUNet, self).__init__() self.model = models.resnet101(pretrained=True) embedding = nn.Embedding(5, 1) num_ftrs = self.model.fc.in_features self.model.fc = nn.Linear(num_ftrs, 40) def forward(self, x): output = self.model(x) return output class RoomLayoutUNet(nn.Module): def __init__(self, n_channels=4, n_classes=10): super(RoomLayoutUNet, self).__init__() self.model = models.segmentation.deeplabv3_resnet101( pretrained=True, progress=True ).cuda() print(self.model.backbone.conv1) self.model.backbone.conv1 = nn.Conv2d( n_channels, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False, ).cuda() self.model.classifier[4] = nn.Conv2d( 256, n_classes, kernel_size=(1, 1), stride=(1, 1) ).cuda() self.embedding = nn.Embedding(5, 1).cuda() def forward(self, x): output = self.model(x)["out"] return output # model = RoomLayoutUNet().cuda() # model.model.backbone.conv1 = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False).cuda() # model.model.classifier[4] = nn.Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1)).cuda() model = torch.load("/kaggle/input/res101-bed/model_centers_bed__100.pth").cuda() model.model.backbone.conv1 = nn.Conv2d( 4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False ).cuda() model.model.classifier[4] = nn.Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1)).cuda() import tensorflow as tf from tensorflow.keras import backend as K def accuracy_2(y_true, y_pred): numerator = torch.sum(((y_pred > 0.2) * y_true).bool().float()) denominator = torch.sum(y_true) accuracy = numerator / denominator return accuracy train_plans, test_plans = train_test_split( plans, test_size=0.02, shuffle=True, random_state=1997 ) plan_dataset = PlanDataset(train_plans) plan_dataloader = DataLoader(plan_dataset, batch_size=29, shuffle=True) plan_dataset_val = PlanDataset(test_plans) plan_dataloader_val = DataLoader(plan_dataset_val, batch_size=29, shuffle=True) import gc try: del inputs del labels del i del d del outputs del train_loss del val_loss del train_acc del val_acc del loss except: ... gc.collect() torch.cuda.empty_cache() loss_fn = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) from shapely.geometry import box import geopandas as gpd import pygeos from tqdm import tqdm from pygeos.creation import box # model = RoomLayoutUNet().to(device) num_epochs = 1000 os.makedirs("sample_output", exist_ok=True) train_loss = [] val_loss = [] train_acc = [] val_acc = [] every = len(plan_dataloader_val) // 6 for epoch in range(num_epochs): for i, d in tqdm(enumerate(plan_dataloader), total=len(plan_dataloader)): inputs, labels = d optimizer.zero_grad() outputs = model(inputs) loss = loss_fn(outputs, labels) train_acc.append(accuracy_2(labels, outputs).detach().cpu().item()) loss.backward() train_loss.append(loss.detach().cpu().item()) del inputs del labels del d del loss del outputs gc.collect() torch.cuda.empty_cache() optimizer.step() if i % 1000 == 0: with torch.no_grad(): for j, (inputs, labels) in enumerate(plan_dataloader_val): outputs = model(inputs) loss2 = loss_fn(outputs, labels) val_loss.append(loss2.detach().cpu().item()) val_acc.append(accuracy_2(labels, outputs).detach().cpu().item()) inp1 = ( inputs[0] .permute(1, 2, 0) .cpu() .detach() .numpy()[:, :, [0, 1, 3]] ) inp2 = labels[0].permute(1, 2, 0).cpu().detach().numpy()[:, :, :3] inp3 = outputs[0].permute(1, 2, 0).cpu().detach().numpy()[:, :, :3] print( "Epoch {} - Train Loss: {:.6f} | Val Loss: {:.6f} | Train accuracy: {:.6f} | Val accuracy {:.6f} ".format( epoch + 1, np.mean(train_loss), np.mean(val_loss), np.mean(train_acc), np.mean(val_acc), ) ) val_loss = [] train_loss = [] train_acc = [] val_acc = [] if i % 1000 == 0: plt.imshow(inp1, origin="lower") plt.show() plt.imshow(inp2, origin="lower") plt.show() plt.imshow(inp3, origin="lower") plt.show() # inp = labels[0].permute(1, 2, 0).cpu().detach().numpy()[:,:,4:7] # plt.imshow( inp, origin='lower' ) # plt.show() # inp = outputs[0].permute(1, 2, 0).cpu().detach().numpy()[:,:,4:7] # plt.imshow( inp, origin='lower' ) # plt.show() # inp = outputs[0].permute(1, 2, 0).cpu().detach().numpy()[:,:,10] # plt.imshow( inp, origin='lower' ) # plt.show() # inp = labels[0].permute(1, 2, 0).cpu().detach().numpy()[:,:,10] # plt.imshow( inp, origin='lower' ) # plt.show() # if epoch % 3 == 0: torch.save(model.cuda(), f"model_centers_bed__{epoch}.pth") # i = random.randint(0, 31) # x = next(iter(test_data)) # plt.imshow( model(x[0])[i] ) # plt.show() # plt.imshow(x[0][i][:, :, 8:11] + 2* x[1][i][:, :, :]) # plt.show() torch.save(model.cuda(), f"model_centers_bed__{100}.pth") def get_rects(imgr, bounds): img = (imgr).astype(np.uint8) # img[bounds>0] = 0 img[np.where(bounds == 0)] = 0 plt.imshow(bounds * 0.5 + img / 255) plt.show() shapes = [] cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for i, c in enumerate(cnts[0]): M = cv2.moments(c) box = cv2.boundingRect(c) x1, y1, w, h = box x2, y2 = x1 + w, y1 + h ii = imgr[y1:y2, x1:x2] # y, x = np.indices(ii.shape) # xx, yy = np.array([np.sum(x*ii)/np.sum(ii), np.sum(y*ii)/np.sum(ii)]) intensity = np.sum(ii) if not M["m00"]: continue cx = M["m10"] / M["m00"] cy = M["m01"] / M["m00"] # if bounds[int(cy), int(cx)]: shapes.append([cx, cy, intensity]) return [Point(*i[:2]) for i in sorted(shapes, key=lambda x: x[2], reverse=True)] def imfy(img): return (np.clip(img, 0, 1) * 255).astype(np.uint8) from skimage.feature import blob_dog, blob_log, blob_doh img = cv2.GaussianBlur(imfy(out), (15, 15), 5) ret, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) blobs_log = blob_log(img, min_sigma=12, max_sigma=30, threshold=0.01) kit = get_mask([Point(i[1], i[0]) for i in blobs_log], (256, 256), point_s=18) kit = img * (kit > 0) plt.imshow(kit) out = model(x[0])[i] plt.imshow(out)
# ##Pratica com novo DataSet import pandas as pd dados = pd.read_csv("//kaggle/input/top-250-anime-2023/top250_anime.csv") dados # Classificação qualitativa nominal -> Ordinal rank hierarquico sorted(dados.Popularity.unique()) # Classificação qualitativa nominal sorted(dados.Type.unique()) # Classificação Discreta -> Contem um numero finito ou enumeradas print("De Score %f até %f" % (dados.Score.min(), dados.Score.max())) # distribuição de frequencia Qualitativa dados["Type"].value_counts() # Mostrando em Percentual dados["Type"].value_counts(normalize=True) * 100 frequencia = dados["Type"].value_counts() percentual = dados["Type"].value_counts(normalize=True) * 100 df_frequencia = pd.DataFrame({"Frequencia": frequencia, "Percentual": percentual}) df_frequencia.rename_axis("Type of Production", axis="columns", inplace=True) df_frequencia # ## Exercicio Aula dados2 = pd.DataFrame({"Profissão": [1, 2, 3, 1, 2, 2, 2, 3, 3, 2, 1, 3]}) dados2 frequencia = dados2.Profissão.value_counts() percentual = dados2.Profissão.value_counts(normalize=True) * 100 dist_freq_qualitativas = pd.DataFrame( {"Frequencia": frequencia, "Porcentagem(%)": percentual} ) dist_freq_qualitativas.rename( index={1: "Estatístico", 2: "Cientista de Dados", 3: "Programador Python"}, inplace=True, ) dist_freq_qualitativas.rename_axis("Profissão", axis="columns", inplace=True) dist_freq_qualitativas pd.crosstab(dados.Type, dados.Score) # Fazendo cross de tabela de frequencia # ## Continuando Projeto dados.head(20) # ##Classificação por Duration: # ###Duração Curta - de 1 a 32 # ###Duração Média-Curta- de 32 a 64 # ###Duração Média - de 64 a 96 # ###Duração Média-Longa - de 96 a 128 # ###Duração Longa = de 128 ou mais # dados.Duration.min() s = pd.Series(dados.Duration.value_counts()) sorted = s.sort_index(ascending=True) sorted classes = [3, 32, 64, 96, 128, 161] labels = [ "Duração Curta", "Duração Média-Curta", "Duração Média", "Duração Média-Longa", "Duração Longa", ] frequencia = pd.value_counts( pd.cut(x=dados.Duration, bins=classes, labels=labels, include_lowest=True) ) frequencia percentual = ( pd.value_counts( pd.cut(x=dados.Duration, bins=classes, labels=labels, include_lowest=True), normalize=True, ) * 100 ) percentual dist_frequencia_quantitativa = pd.DataFrame( {"Frequencia": frequencia, "Percentual (%)": percentual} ) dist_frequencia_quantitativa dist_frequencia_quantitativa.sort_index(ascending=False) # #Utilizando metodo de Sturges import numpy as np n = dados.shape[0] n k = int(1 + (10 / 3) * np.log10(n)) print("Valor de classes => k =", k) frequencia_k = pd.value_counts( pd.cut(x=dados.Duration, bins=k, include_lowest=True), sort=False ) frequencia_k percentual_k = ( pd.value_counts( pd.cut(x=dados.Duration, bins=k, include_lowest=True), sort=False, normalize=True, ) * 100 ) percentual_k dist_freq_quantitativa_k = pd.DataFrame( {"Frequencia": frequencia_k, "Percentual(%)": percentual_k} ) dist_freq_quantitativa_k.rename_axis("Classificação(K)", axis="columns", inplace=True) dist_freq_quantitativa_k # #Criando analise com Histograma import seaborn as sns ax = sns.distplot(dist_frequencia_quantitativa, kde=True) ax.figure.set_size_inches(12, 6) ax.set_title("Distribuição de Frequencias - Duração", fontsize=18) ax.set_xlabel("Minutos", fontsize=14) ax dist_frequencia_quantitativa["Frequencia"].plot.bar( width=1, color="blue", alpha=0.5, figsize=(12, 6) ) dist_frequencia_quantitativa.hist(bins=50, figsize=(12, 6)) # ## Relação entre média, mediana e moda # *** # dados.head() ax = sns.distplot(dados.Episodes) ax.figure.figure.set_size_inches(12, 6) ax Moda = dados.Episodes.mode()[0] Moda Mediana = dados.Episodes.median() Mediana Media = dados.Episodes.mean() Media Media > Mediana > Moda ax = sns.distplot(dados.Score) ax.figure.figure.set_size_inches(12, 6) ax Moda = dados.Score.mode()[0] Moda Mediana = dados.Score.median() Mediana Media = dados.Score.mean() Media Media > Mediana > Moda dados.query("Episodes == 24").Episodes.value_counts() # #Medidas Separatrizes # dados.query('Type == "Music"').Popularity.quantile([0.25, 0.5, 0.75]) # quartis dados.Score.quantile([i / 10 for i in range(1, 10)]) # decis dados.Score.quantile([i / 100 for i in range(1, 10)]) # percentis ax = sns.distplot( dados.Score, hist_kws={"cumulative": True}, kde_kws={"cumulative": True}, bins=10 ) ax.figure.set_size_inches(14, 6) ax.set_title("Distribuição de Frequencias Acumulada", fontsize=18) ax.set_xlabel("Score", fontsize=14) ax.set_ylabel("Partes", fontsize=14) ax # ##Box Plot # ax = sns.boxplot(x="Score", data=dados, orient="h") ax.figure.set_size_inches(12, 4) ax.set_title("Score", fontsize=18) ax.set_xlabel("Score", fontsize=14) ax.set_ylabel("Partes", fontsize=14) ax = sns.boxplot(x="Popularity", y="Type", data=dados, orient="h") ax.figure.set_size_inches(12, 4) ax.set_title("Popularity by Type", fontsize=18) ax.set_xlabel("Popularity", fontsize=14) ax.set_ylabel("Partes", fontsize=14) dados.head() ax = sns.boxplot(x="Score", y="Type", data=dados.query("Popularity > 1000"), orient="h") ax.figure.set_size_inches(12, 4) ax.set_title("Popularity by Type", fontsize=18) ax.set_xlabel("Popularity", fontsize=14) ax.set_ylabel("Partes", fontsize=14)
# ### Intially importing some of the necessary librabries: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # ### Importing the dataset df = pd.read_csv("../input/diamonds/diamonds.csv") df.head() # ### Understanding the data dictionary df.columns # * first column "Unnamed:0" is just as the index type so we can drop this column. # * carat weight of the diamond-Continous type variable # * cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)- categorical type variable # * color diamond colour, from J (worst) to D (best)-categorical type variable # * clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best)) - categorical type variable # * x length in mm (0--10.74)-Continous variable type # * y width in mm (0--58.9)-continous variable type # * z depth in mm (0--31.8)-continous variable type # * depth total depth percentage = z / mean(x, y)-Continous variable type # * table width of top of diamond relative to widest point (43--95)-Continous variable type # ### Understanding the target variable (Price) df.price.head() # * It is of continous datatype so we should use "Supervised linear regression model" # ### Data sanity check # Droping the 'Unnamed: 0' column. df.drop(["Unnamed: 0"], axis=1, inplace=True) df.head() # Rechecking the dataframe df.shape # checking the shape of the dataframe df.info() # To get overall information of the dataset # * No data is missing..it is good to go df.describe() # To check the statistical data df.cut.value_counts() # to check unique values of cut variable. df.color.value_counts() # to get unique values of color variable. df.clarity.value_counts() # to get unique values of clarity variable. df.columns # Viewing the columns # #### By inspection: # * Continous/Numerical variables are: "carat","depth","table","price",'x', 'y','z' # * Categorical variables are: 'cut','color', 'clarity' # Calling categorical columns as cat & continous variables as cont cont = ["carat", "depth", "table", "x", "y", "z", "price"] cat = ["cut", "color", "clarity"] # ### Exploratory Data Analysis: # #### Numerical Analysis ( Target variable vs remaing continous variables): sns.pairplot( data=df, x_vars=["carat", "depth", "table", "x", "y", "z"], y_vars="price", diag_kind=None, ) # ### Takeways from pairplot: # * There is some sought of good linear relationship between x,y,z,carat and price variables.| # ### Heatmap # #### To find the correlation between the numerical variables we will plot heatmap. plt.figure(figsize=(15, 10)) sns.heatmap(df[cont].corr(), annot=True, cmap="Greens") # ### Take aways from heatmap: # * Strongest correlation between "x" & "y" that is 0.98. # * Good correlation between "price" and "carat" that is 0.92 # * Poor correlation between "depth" and "price" that is -0.11 # * Poor correlation between "table" and "price" that is 0.13. # ### Analysis on Categorical variables: def plot1(i): plt.figure(figsize=(15, 5)) ax1 = plt.subplot(121) sns.countplot(df[i], ax=ax1) plt.title("Count distribution of {} type in diamond dataset".format(i)) ax2 = plt.subplot(122) sns.barplot(x=df[i], y=df["price"], ax=ax2) plt.title("Total price distribution for each {} type".format(i)) plt.show() for i in cat: plot1(i) print("*" * 75) # ### Takeways from above plots- # * __Cut type__- Even Ideal cut type diamonds are high in the dataset, it doesn't have high price in total. # * __Cut type__- Even Fair diamonds are least in the dataset, it secures 2nd position in total price distribution of cut category. # * __Cut type__- Premium cut type diamonds in the dataset have high price in total. # * __Color type__- J type has least in number of diamonds in dataset, but it has high price in total price distribution. # * __Color type__- G type are maximum in number in dataset but it doesnot have high price in total price distribution in the dataset. # * __Clarity type__- L1 diamonds are least in number in the dataset but it considerably has high price in total price distribution of clarity type diamonds. # * __Clarity type__- Sl1 diamonds are maximum in the dataset but it doesn't have high price in total price distribution of clairty type diamonds. # ### Dummy creation for categorical variables: # Creating dummies for 3 categorical variables and dropping th first reductant variable. cut = pd.get_dummies(df["cut"], drop_first=True) color = pd.get_dummies(df["color"], drop_first=True) clarity = pd.get_dummies(df["clarity"], drop_first=True) # Adding the dummy variables to the dataframe. df = pd.concat([cut, color, clarity, df], axis=1) df.head() # Dropping the main 3 categorical variables from dataframe df.drop(cat, axis=1, inplace=True) df.shape # Once again viewing the shape # ### Train_Test_Split # Importing scikit library import sklearn from sklearn.model_selection import train_test_split df_train, df_test = train_test_split(df, train_size=0.7, random_state=100) df.shape # Viewing the shape of main dataframe df_train.shape # Viewing the shape of train dataset. df_test.shape # Viewing ths shape of test dataset. # # Scaling the Continous variable in train dataset: df_train[cont].head() # Viewing the train dataset continous variables. # * Here we shall use Minmax approach also called as normal distribution to squeeze the values to 0 to 1. # Importing library from sklearn.preprocessing import MinMaxScaler Scaler = MinMaxScaler() # Scaling the continous variables to 0-1 df_train[cont] = Scaler.fit_transform(df_train[cont]) df_train[cont].head() # Cross checking the test dataset once again. df_train[cont].describe() # Checking the descriptive statistics of the scaled dataset. # ### Divide train dataset into X and y datasets. y_train = df_train.pop("price") y_train X_train = df_train X_train.head() X_train.shape # ### Building our model # ### Mixed Feature elimination # * As the number of independent variables are 23 that is high. Initially we shall use Recursive Feature Elimination. # * We will be using the LinearRegression function from SciKit Learn for its compatibility with RFE. # * Once in the model the number of variables are 13, we shall use Manual Elimination method. from sklearn.feature_selection import RFE from sklearn.linear_model import LinearRegression # Running RFE with output variable is equal to 13. lm = LinearRegression() lm.fit(X_train, y_train) rfe = RFE(lm, 13) rfe = rfe.fit(X_train, y_train) list(zip(X_train.columns, rfe.support_, rfe.ranking_)) col = X_train.columns[rfe.support_] # Storing the acceptable variables into col list X_train.columns[~rfe.support_] len(col) # checking the length of acceptable variables. # ### Building model using statsmodel, for the detailed statistics # Creating X_train_rfe dataframe with RFE selected variables X_train_rfe = X_train[col] # Adding a constant variable import statsmodels.api as sm X_train_rfe = sm.add_constant(X_train_rfe) X_train_rfe.head() # Running the linear model lm = sm.OLS(y_train, X_train_rfe).fit() # Let's see the summary of our linear model lm.summary() # ### Checking the multicollinearity of variables by Variance Inflation Factor: X_vif1 = X_train_rfe.drop(["const"], axis=1) # Calculate the VIFs for the new model from statsmodels.stats.outliers_influence import variance_inflation_factor # Checking the Vif's: vif = pd.DataFrame() X = X_vif1 vif["Features"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif["VIF"] = round(vif["VIF"], 2) vif = vif.sort_values(by="VIF", ascending=False) vif # ### Vif for "x" variable is high. It means effected by mutlicollinearity. So, we shall drop "x" variable. X_train_new1 = X_train_rfe.drop(["x"], axis=1) X_train_new1.columns # Running the linear model lm = sm.OLS(y_train, X_train_new1).fit() lm.summary() ### Checking the VIF: X_vif2 = X_train_new1.drop(["const"], axis=1) vif = pd.DataFrame() X = X_vif2 vif["Features"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif["VIF"] = round(vif["VIF"], 2) vif = vif.sort_values(by="VIF", ascending=False) vif # ### Vif for "depth" variable is high. It means effected by mutlicollinearity. So, we shall drop "depth" variable. X_train_new2 = X_train_new1.drop(["depth"], axis=1) len(X_train_new2.columns) lm = sm.OLS(y_train, X_train_new2).fit() lm.summary() ### Checking the VIF: X_vif3 = X_train_new2.drop(["const"], axis=1) vif = pd.DataFrame() X = X_vif3 vif["Features"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif["VIF"] = round(vif["VIF"], 2) vif = vif.sort_values(by="VIF", ascending=False) vif # ### Vif for "table" variable is high. It means effected by mutlicollinearity. So, we shall drop "table" variable. X_train_new3 = X_train_new2.drop(["table"], axis=1) len(X_train_new3.columns) lm = sm.OLS(y_train, X_train_new3).fit() lm.summary() ### Checking the VIF: X_vif4 = X_train_new3.drop(["const"], axis=1) vif = pd.DataFrame() X = X_vif4 vif["Features"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif["VIF"] = round(vif["VIF"], 2) vif = vif.sort_values(by="VIF", ascending=False) vif # ### Now finally, Co-efficients are significant (p values are less than 5% confidence interval) and VIF's also in considerable range(<5). let's write in an equation form: # * price=-0.3022-0.05*(I)-0.10*(J)+0.3026*(IF)+0.205*(Sl1)+0.154*(Sl2)+0.257*(VS1)+0.241*(VS2)+0.284*(VVS1)+0.2817*(VVS2)+2.27*(carat) # ### Residual Analysis on train_dataset: # Finding the price predicted values using the regression model built already: y_train_pred = lm.predict(X_train_new3) res = y_train - y_train_pred res.head() plt.figure(figsize=(15, 5)) ax1 = plt.subplot(121) sns.distplot(res, ax=ax1) plt.title( "Error density distribution", fontdict={"fontsize": 20, "fontweight": -0.5, "color": "Red"}, ) plt.xlabel("Error terms") ax2 = plt.subplot(122) sns.scatterplot(x=y_train, y=res, ax=ax2) plt.title( "Error terms vs price_train", fontdict={"fontsize": 20, "fontweight": -0.5, "color": "Red"}, ) plt.ylabel("Error terms") plt.show() # ### Validating linear regression assumptions: # #### Insights from above two graphs: # * Errors terms were normally distributed(from left graph 1). # * Errors terms are more or less randomly distrubted with x values. # * Variance is also fine..but for some data points error term's variance is quite high. # ### Making Predictions on Test data # #### Scaling the Test dataset df_test.head() df_test[cont] = Scaler.transform(df_test[cont]) df_test[cont].head() df_test[cont].describe() # ### Creating X_test, y_test variables y_test = df_test.pop("price") y_test.head() X_test = df_test X_test.head() # Now let's use our model to make predictions. # Creating X_test_new dataframe by dropping variables from X_test X_test_new = X_test[X_vif4.columns] # Adding a constant variable X_test_new = sm.add_constant(X_test_new) X_test_new.head() y_pred_lm = lm.predict(X_test_new) X_test_new.shape # Evaluating the r-square for test data: from sklearn.metrics import r2_score r2_score(y_true=y_test, y_pred=y_pred_lm) n = 16182 r2 = 0.907 k = 10 Adjusted_R2 = 1 - float((1 - r2) * (n - 1) / (n - k - 1)) print(Adjusted_R2) # ### Model Visualization: # Scatter plot: sns.scatterplot(x=y_test, y=y_pred_lm) plt.xlabel("y_actual on test data") plt.ylabel("y_predict on test data") plt.title( "y_actual vs y_predict", fontdict={"fontsize": 20, "fontweight": -0.5, "color": "Red"}, ) plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # importing the required libraries import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.metrics import f1_score # ## Reading the data from csv file data = pd.read_csv( "/kaggle/input/ip-network-traffic-flows-labeled-with-87-apps/Dataset-Unicauca-Version2-87Atts.csv" ) data.head() print("Number of Rows: {}".format(data.shape[0])) print("Number of Columns: {}".format(data.shape[1])) # Graph of Protocol Name vs Frequency freq_protocol = data["ProtocolName"].value_counts() # sns.histplot(freq_protocol.values()) print(len(freq_protocol)) for key, value in freq_protocol.items(): print(key, value) # filtering the classes which have more than 10000 rows requiredProtocolName = [] for key, value in freq_protocol.items(): if value >= 10000: requiredProtocolName.append(key) print(requiredProtocolName) listofDataFrames = [] for protocol in requiredProtocolName: listofDataFrames.append( pd.DataFrame(data[data["ProtocolName"] == protocol].sample(n=10000)) ) sampledData = pd.concat(listofDataFrames) sampledData.shape # taking random rows data = sampledData # remove the rows that contains NULL values data.dropna(inplace=True) data.dropna(axis="columns") data.reset_index(drop=True, inplace=True) # remove columns which contains zeroes in the data data = data.loc[:, (data != 0).any(axis=0)] print("Shape after removing rows with NULL Values") print("Number of Rows: {}".format(data.shape[0])) print("Number of Columns: {}".format(data.shape[1])) # Graph of Protocol Name vs Frequency freq_protocol = data["ProtocolName"].value_counts() # sns.histplot(freq_protocol.values()) freq_protocol # Commented because target column can be text/string # # converting the protocol name (target column) to required format (int) # # using LabelEncoder function from sklearn.preprocession library # encoder = LabelEncoder().fit(data['ProtocolName']) # data['ProtocolName'] = encoder.transform(data['ProtocolName']) # # values = encoder.inverse_transform(data['ProtocolName']) # # values target_column = data["ProtocolName"] # get all the column heads data.columns # removing extra columns that are not useful for finding correlation # axis = 1 because we need to drop the columns # by default axis = 0 (drop the rows) dataset = data.drop( [ "Flow.ID", "Source.IP", "Label", "Timestamp", "Destination.IP", "Source.Port", "Destination.Port", "Protocol", ], axis=1, ) dataset.head() # ## Correlation Matrix # finding the correlation matrix correlation_matrix = dataset.corr() correlation_matrix.head() # plotting the heatmap plt.figure(figsize=(30, 30)) sns.heatmap(correlation_matrix, cmap="viridis") plt.plot() sorted_corr_matrix_protocolName = correlation_matrix["ProtocolName"].sort_values( ascending=False ) allKeys = list(sorted_corr_matrix_protocolName.keys()) # removing the target column allKeys.remove("ProtocolName") feature_map = {} for colName in allKeys: correlation = round(sorted_corr_matrix_protocolName[colName], 2) if abs(correlation) >= 0.01: if correlation in feature_map: feature_map[correlation].append(colName) else: feature_map[correlation] = [colName] print("Columns with absolute correlation greater than 0.01 with ProtocolName: \n") print(feature_map) final_features = [] import random # random_columns = [] for correlation, column_list in feature_map.items(): final_features.append(random.choice(column_list)) print("Randomly selected columns for each correlation value: ") print(final_features) pos_value_columns = final_features # final data which would be used for prediction data_for_prediction = data[pos_value_columns] data_for_prediction # ## Random Forest Classifier from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier feature_train, feature_test, target_train, target_test = train_test_split( data_for_prediction, target_column, test_size=0.2 ) clf = RandomForestClassifier(n_estimators=200) clf.fit(feature_train, target_train) predictions = clf.predict(feature_test) print("Accuracy with Dimensionaility Reduction", clf.score(feature_test, target_test)) f1Score = f1_score(target_test, predictions, average="weighted") print("F1 score for Random Forest", f1Score) # print(len(f1ScoreList), len(set(target_test))) # ## Logistic Regression from sklearn.preprocessing import StandardScaler sc = StandardScaler() feature_train = sc.fit_transform(feature_train) feature_test = sc.transform(feature_test) from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0, solver="lbfgs", max_iter=100) classifier.fit(feature_train, target_train) from sklearn.metrics import confusion_matrix, accuracy_score target_pred = classifier.predict(feature_test) print("Accuracy in Logistic Regression", accuracy_score(target_test, target_pred)) f1Score = f1_score(target_test, target_pred, average="weighted") print("F1 score for Logistic Regression", f1Score) # labels = list(set(target_column)) # f1_scores = f1_score(target_test, target_pred, average=None, labels=labels) # f1_scores_with_labels = {label:score for label,score in zip(labels, f1_scores)} print(target_pred)
numbers = [12, 7, 8, 15, 20, 10, 45] max_even = None i = 0 while i < len(numbers): num = numbers[i] i += 1 if num % 2 == 0: if max_even is None or num > max_even: max_even = num if max_even is not None: print("The max_even number is:", max_even) else: print("There is no max_even number") numbers = [1, 56, 90, 100, 20, 65, 90] max_even = None i = 0 while i < len(numbers): num = numbers[i] i += 1 if num % 2 == 0: if max_even is None or num > max_even: max_even = num if max_even is not None: print("The max_even number is:", max_even) else: print("There is no max_even numbers") numbers = [1, 56, 90, 100, 20, 65, 90, 1000, 1001] max_even = None for number in numbers: if number % 2 == 0: if max_even is None or number > max_even: max_even = number if max_even is not None: print("The max_even number is:", max_even) else: print("There is no max_even number") numbers = [1, 56, 90, 100, 20, 65, 90, 1000, 1001] i = 0 max_even = None while i < len(numbers): num = numbers[i] i += 1 if num % 2 == 0: if max_even is None or num > max_even: max_even = num if max_even is not None: print("The max_even number is:", max_even) else: print("There is no max_even numbers") numbers = [1, 56, 90, 100, 20, 65, 90, 1000, 1001] max_odd = None for number in numbers: if number % 2 != 0: if max_odd is None or number > max_odd: max_odd = number if max_odd is not None: print("The max_odd number is:", max_odd) else: print("There is no max_odd number") def chess(x, y): x = 10 y = 23 if x >= 10: print("The number is > or == to x") if y > 20: print("Y is eligible to play game as his age is big") else: print("Y is not eligible to play a game") else: print("The number is > to y") chess(1, 1) # In function they are 2 types of local variable and global variable # here in this example i will show u local variable def add(x=2, y=2): return x + y # Now i will give the example of Global variable a = 12 b = 1 def div(num): global a global b y = num + a + b return y def total_sales( monday_sales=0, tuesday_sales=0, wensday_sales=0, thrusday_sales=0, friday_sales=0, saturday_sales=0, sunday_sales=0, ): total_sales = ( monday_sales + tuesday_sales + wensday_sales + thrusday_sales + friday_sales + saturday_sales + sunday_sales ) return total_sales total_sales( monday_sales=10, tuesday_sales=10, wensday_sales=10, thrusday_sales=10, friday_sales=10, saturday_sales=10, sunday_sales=10, ) total_sales(1, 1, 1, 1, 1, 1, 1) def count(word): n = {} for char in word: if char in n: n[char] += 1 else: n[char] = 1 return n words = "custom Function" result = count(words) print(result)
# # Final Project # As in all machine learning problems you should complete the following steps: # 1. Load and explore the data (using plots and histograms ) # 2. Clean/preprocess/transform the data if necessary (first performed on training data and next on test data) # 3. Train the machine learning model (in this assignment two models, one linear and one non-linear) # 4. Evaluate and optimise the model # However, while performing the steps you should consider our main goals and research questions for doing this project and try to adress them. This can be either in each step or afterwards in discussion and conclusion section (your call!). Below are the research question we are interested in: # * What are the necessary step to clean and prepare the dataset as we have categorial features and missing data. # * What model/classifier provides the best result for this application. # * What is the best choice for our cost function and performance metrics for this problem. # Please also note the following points during the assignment: # * Use functions from open source libraries like sci-kit learn and keras and avoid using your own hand-written functions from previous assignments. You can also use our [cheatsheet](https://colab.research.google.com/drive/12h-QBlsaWXkjGIRoJXfF4yqi1elnX9qn?usp=sharing). # * Feel free to contact us on Teams if you need more description. # * This notebook is structured like a scientific paper. The text should provide a high-level overview of your approach. Please don't include any details about your code in the text but add them as comments in the code itself. Your code should be cleane and readable with enough comments. # * There are some instructions and questions in each section, remove the highlighted text in blue and replace it with your explanations and answers. # You can delete this section before submission. # ## 1. Introduction # Name: Mounzir Baroud and Dennis Landman # Username: Mounzir and Dennis Landman # # ## 2. Data # ### 2.1 Dataset # In this section, we load and explore the dataset. # # from tqdm.notebook import tqdm import numpy as np import pandas as pd pd.options.display.precision = 15 import os print(os.listdir("../input")) import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression # full data # train = pd.read_csv('/kaggle/input/LANL-Earthquake-Prediction/train.csv', dtype={'acoustic_data': np.int16, 'time_to_failure': np.float64}) # 300k rows train = pd.read_csv( "/kaggle/input/LANL-Earthquake-Prediction/train.csv", nrows=30_000_000, dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) train.head(10) train_acoustic_data_small = train["acoustic_data"].values[::100] train_time_to_failure_small = train["time_to_failure"].values[::100] fig, ax1 = plt.subplots(figsize=(16, 8)) plt.title("Trends of acoustic_data and time_to_failure. 2% of data (sampled)") plt.plot(train_acoustic_data_small, color="b") ax1.set_ylabel("acoustic_data", color="b") plt.legend(["acoustic_data"]) ax2 = ax1.twinx() plt.plot(train_time_to_failure_small, color="g") ax2.set_ylabel("time_to_failure", color="g") plt.legend(["time_to_failure"], loc=(0.875, 0.9)) plt.grid(False) del train_acoustic_data_small del train_time_to_failure_small # Create a training file with simple derived features rows = 150_000 segments = int(np.floor(train.shape[0] / rows)) # print(segments) def add_trend_feature(arr, abs_values=False): """Fit a univariate linear regression and return the coefficient.""" idx = np.array(range(len(arr))) if abs_values: arr = np.abs(arr) lr = LinearRegression() lr.fit(idx.reshape(-1, 1), arr) return lr.coef_[0] def extract_features_from_segment(X): """Returns a dictionary with the features for the given segment of acoustic data.""" features = [] features.append(X.mean()) features.append(X.std()) features.append(X.max()) features.append(X.min()) features.append(X.kurtosis()) features.append(X.skew()) features.append(np.quantile(X, 0.95)) features.append(np.quantile(X, 0.90)) features.append(np.quantile(X, 0.10)) features.append(np.quantile(X, 0.01)) return pd.Series(features) train = pd.read_csv( "/kaggle/input/LANL-Earthquake-Prediction/train.csv", iterator=True, chunksize=150_000, dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) X_train = pd.DataFrame() y_train = pd.Series() for df in train: ch = extract_features_from_segment(df["acoustic_data"]) X_train = X_train.append(ch, ignore_index=True) y_train = y_train.append(pd.Series(df["time_to_failure"].values[-1])) X_train.describe() from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn.svm import NuSVR, SVR scaler = StandardScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) parameters = [ { "gamma": [0.001, 0.005, 0.01, 0.02, 0.05, 0.1], "C": [0.1, 0.2, 0.25, 0.5, 1, 1.5, 2], } ] #'nu': [0.75, 0.8, 0.85, 0.9, 0.95, 0.97]}] reg1 = GridSearchCV( SVR(kernel="rbf", tol=0.01), parameters, cv=5, scoring="neg_mean_absolute_error" ) reg1.fit(X_train_scaled, y_train.values.flatten()) y_pred1 = reg1.predict(X_train_scaled) print("Best CV score: {:.4f}".format(reg1.best_score_)) print(reg1.best_params_) # features = {} # features['ave'] = x.values.mean() # features['std'] = x.values.std() # features['max'] = x.values.max() # features['min'] = x.values.min() # features['q90'] = np.quantile(x.values, 0.90) # features['q95'] = np.quantile(x.values, 0.95) # features['q99'] = np.quantile(x.values, 0.99) # features['q05'] = np.quantile(x.values, 0.05) # features['q10'] = np.quantile(x.values, 0.10) # features['q01'] = np.quantile(x.values, 0.01) # features['std_to_mean'] = features['std'] / features['ave'] # features['abs_max'] = np.abs(x.values).max() # features['abs_mean'] = np.abs(x.values).mean() # features['abs_std'] = np.abs(x.values).std() # features['trend'] = add_trend_feature(x.values) # features['abs_trend'] = add_trend_feature(x.values, abs_values=True) # # New features - rolling features # for w in [10, 50, 100, 1000]: # x_roll_abs_mean = x.abs().rolling(w).mean().dropna().values # x_roll_mean = x.rolling(w).mean().dropna().values # x_roll_std = x.rolling(w).std().dropna().values # x_roll_min = x.rolling(w).min().dropna().values # x_roll_max = x.rolling(w).max().dropna().values # features['ave_roll_std_' + str(w)] = x_roll_std.mean() # features['std_roll_std_' + str(w)] = x_roll_std.std() # features['max_roll_std_' + str(w)] = x_roll_std.max() # features['min_roll_std_' + str(w)] = x_roll_std.min() # features['q01_roll_std_' + str(w)] = np.quantile(x_roll_std, 0.01) # features['q05_roll_std_' + str(w)] = np.quantile(x_roll_std, 0.05) # features['q10_roll_std_' + str(w)] = np.quantile(x_roll_std, 0.10) # features['q95_roll_std_' + str(w)] = np.quantile(x_roll_std, 0.95) # features['q99_roll_std_' + str(w)] = np.quantile(x_roll_std, 0.99) # features['ave_roll_mean_' + str(w)] = x_roll_mean.mean() # features['std_roll_mean_' + str(w)] = x_roll_mean.std() # features['max_roll_mean_' + str(w)] = x_roll_mean.max() # features['min_roll_mean_' + str(w)] = x_roll_mean.min() # features['q05_roll_mean_' + str(w)] = np.quantile(x_roll_mean, 0.05) # features['q95_roll_mean_' + str(w)] = np.quantile(x_roll_mean, 0.95) # features['ave_roll_abs_mean_' + str(w)] = x_roll_abs_mean.mean() # features['std_roll_abs_mean_' + str(w)] = x_roll_abs_mean.std() # features['q05_roll_abs_mean_' + str(w)] = np.quantile(x_roll_abs_mean, 0.05) # features['q95_roll_abs_mean_' + str(w)] = np.quantile(x_roll_abs_mean, 0.95) # features['std_roll_min_' + str(w)] = x_roll_min.std() # features['max_roll_min_' + str(w)] = x_roll_min.max() # features['q05_roll_min_' + str(w)] = np.quantile(x_roll_min, 0.05) # features['q95_roll_min_' + str(w)] = np.quantile(x_roll_min, 0.95) # features['std_roll_max_' + str(w)] = x_roll_max.std() # features['min_roll_max_' + str(w)] = x_roll_max.min() # features['q05_roll_max_' + str(w)] = np.quantile(x_roll_max, 0.05) # features['q95_roll_max_' + str(w)] = np.quantile(x_roll_max, 0.95) features_test = [] for i in tqdm(range(1)): seg = train.iloc[i * rows : i * rows + rows] features_test.append(extract_features_from_segment(seg.acoustic_data)) print(features_test) features_list = [] for i in tqdm(range(segments)): seg = train.iloc[i * rows : i * rows + rows] features_list.append(extract_features_from_segment(seg.acoustic_data)) # print(features_list)
# ## Dataset: # https://www.kaggle.com/datasets/fajarkhaswara/religion-in-indonesia # # ## Definisi Indonesia Timur: # https://indonesiatimur.co/definisi/ # ## Pengantar..... # Sedikit pengantar, pada kesempatan ini saya hendak mempraktekan Exploratory Data Analysis (EDA) pada dataset religion-in-indonesia. Sesuai dengan judul EDA yang dilakukan ini berfokus pada beberapa provinsi yang berada dikawasan indonesia timur (belum mencakup provinsi-provinsi yang baru di Tanah Papua). EDA sendiri memiliki definisi yang luas namun secara singkat "EDA sebagai proses membangun asumsi, hipotesis, anomali dari data yang sedang dipelajari", pada notebook ini EDA di cover oleh dua pertanyaan untuk membantu menganalisis dataset ini. # input beberapa library yang digunakan # juga dataset yang digunakan import pandas as pd import matplotlib.pyplot as plt plt.style.use("bmh") import seaborn as sns dataset = pd.read_csv( "/kaggle/input/religion-in-indonesia/population_of_religious_adherents_in_Indonesia_by_province.csv" ) dataset # #### list provinsi-provinsi diindonesia timur indonesia_timur = pd.DataFrame( { "province": [ "East Nusa Tenggara", "Gorontalo", "South Sulawesi", "South East Sulawesi", "Central Sulawesi", "North Sulawesi", "West Sulawesi", "Maluku", "North Maluku", "Papua", "West Papua", "Mountain Papua", "South Papua", "Central Papua", "West Southeast Papua", ] } ) kawasan_indonesia_timur = pd.merge( indonesia_timur, dataset, on="province", how="left" ) # merge dataset dengan list provinsi indonesia timur kawasan_indonesia_timur kawasan_indonesia_timur.dropna(axis=0, inplace=True) # hapus NaN # kawasan_indonesia_timur.drop(labels='total', axis=1, inplace=True) # hapus kolom total kawasan_indonesia_timur.set_index( "province", inplace=True ) # set kolom provinsi menjadi index # ubah tipe data ke-int df = kawasan_indonesia_timur.applymap(int, na_action="ignore") df = df.reset_index() pair_plot = sns.pairplot(df, hue="province") def recode_province(province): if province == "West Papua": return 1 else: return 0 df["pb"] = df["province"].apply(recode_province) scatter_plot = plt.figure() axes1 = scatter_plot.add_subplot(1, 1, 1) axes1.scatter(x=df["christian"], y=df["province"], c=df["pb"], alpha=0.5) axes1.set_title("Agama Kristen di Indonesia Timur") axes1.set_xlabel("Jumlah") axes1.set_ylabel("Provinsi") scatter_plot.show() def recode_province(province): if province == "West Papua": return 1 else: return 0 df["pb"] = df["province"].apply(recode_province) sns.set_style("whitegrid") bar1 = sns.barplot(x="christian", y="province", data=df, hue="pb") bar1.legend() bar1.set_title("Agama Kristen di Indonesia Timur") bar1.set_xlabel("Jumlah") bar1.set_ylabel("Provinsi") # #### 1. Total Populasi Pada setiap Provinsi # assign var no_satu = df no_satu = pd.DataFrame( no_satu.sum(axis=1), columns=["jumlah"] ) # buat dataframe baru dari jumlah total jumlah = no_satu # var jumlah antar provinsi total = jumlah.sum() # var jumlah total populasi pada provinsi no_satu["presentasi"] = jumlah / total * 100 # Menghitung presentasinya no_satu = no_satu.sort_values("presentasi", ascending=False) # Sort Data # print hasil no_satu # #### 2. Total Populasi Pada setiap Agama # assign var no_dua = df no_dua = pd.DataFrame( no_dua.sum(), columns=["jumlah"] ) # buat dataframe baru dari jumlah total jumlah = no_dua # var jumlah antar provinsi total = jumlah.sum() # var jumlah total populasi pada provinsi no_dua["presentasi"] = jumlah / total * 100 # Menghitung presentasinya no_dua = no_dua.sort_values("presentasi", ascending=False) # Sort Data # print hasil no_dua # ## Visualisasi # deklarasi beberapa variable label = list(no_satu.index) sizes = list(no_satu.jumlah) style_1 = (0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0) # pie chart fig1, ax1 = plt.subplots(figsize=(16, 8), subplot_kw=dict(aspect="equal")) ax1.pie( sizes, labels=label, autopct="%1.1f%%", shadow=True, startangle=50, explode=style_1 ) # judul fig1.suptitle( "Populasi Penduduk di Indonesia Timur berdasarkan Provinsi", fontsize=20, fontweight="bold", ) plt.show() # deklarasi beberapa variable label2 = list(no_dua.index) sizes2 = list(no_dua.jumlah) rata2 = no_dua.jumlah.mean() # bar chart fig2, ax2 = plt.subplots(figsize=(16, 8)) ax2.bar(label2, sizes2) # color=bar_colors) # judul fig2.suptitle( "Jumlah Populasi berdasarkan suatu Agama di Indonesia Timur", fontsize=20, fontweight="bold", ) # label ax2.set_xlabel("Agama") ax2.set_ylabel("Populasi") # Garis Horizontal yang menunjukan rata-rata ax2.axhline(rata2, ls="--", color="r") plt.show()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Importing the required libraries # # Import libraries import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout from sklearn.metrics import confusion_matrix import seaborn as sns # # Load the data # Load the data data = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") # # Encode the target variable 'diagnosis' # Drop the 'Unnamed: 32' column data.drop(labels="Unnamed: 32", inplace=True, axis=1) # Encode the target variable 'diagnosis' x = data.iloc[:, 2:].values y = data.iloc[:, 1].values encoder = LabelEncoder() y = encoder.fit_transform(y) # # Split the data into training and testing setsm # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0) # # Scale the data using StandardScaler # Scale the data using StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # # Define the model architecture and compile it # Define the model architecture and compile it model = Sequential() model.add(Dense(16, activation="relu", input_shape=(30,))) model.add(Dropout(0.1)) model.add(Dense(16, activation="relu")) model.add(Dropout(0.1)) model.add(Dense(1, activation="sigmoid")) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) model.summary() # # Train the model on the training set # Train the model on the training set model.fit(X_train, y_train, batch_size=100, epochs=150) # # Predict on the test set and calculate confusion matrix # Predict on the test set and calculate confusion matrix pred = model.predict(X_test) pred = pred > 0.5 cm = confusion_matrix(y_test, pred) # Plot the confusion matrix using seaborn heatmap sns.heatmap(cm, annot=True)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os print(os.listdir("../input/LANL-Earthquake-Prediction")) train = pd.read_csv( "../input/LANL-Earthquake-Prediction/train.csv", dtype={"acoustic_data": np.int16, "time_to_failure": np.float64}, ) pd.options.display.precision = 20 train.head()
# # Preparing the MNIST Fashion dataset import os import time import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tqdm import tqdm from tensorflow.keras import layers # loading the MNIST fashion dataset (train_images, _), (_, _) = tf.keras.datasets.fashion_mnist.load_data() train_images.shape # reshaping for NN train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype("float32") train_images.shape # example train_images[56782, :10, :10] # normalising the data in arrays, so the values are between -1 and 1 train_images = (train_images - 127.5) / 127.5 train_images[56782, :10, :10] # let's chech the image after our modifications plt.imshow(train_images[2567].squeeze(), cmap="gray") buffer_size = 60000 batch_size = 128 # Training set is prepared by dividing the whole data into batches and shuffling it. train_dataset = ( tf.data.Dataset.from_tensor_slices(train_images) .shuffle(buffer_size) .batch(batch_size) ) # # Genetator # The generator uses tf.keras.layers.Dense layers to produce an image from a seed (random noise). Start with a Dense layer that takes this seed as input, then using Relu activations for each Dense layer.Note that activation in final layer is tanh which outputs in the range -1 to 1. we reshape the 784-d tensor to (Batch Size, 28, 28, 1) using layers.Reshape function # Both the generator and discriminator are defined using the Keras Sequential API. def generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(64, input_dim=100)) model.add(layers.ReLU()) model.add(layers.Dense(128)) model.add(layers.ReLU()) model.add(layers.Dense(256)) model.add(layers.ReLU()) model.add(layers.Dense(784, activation="tanh")) model.add(layers.Reshape((28, 28, 1))) return model generator = generator_model() generator.summary() # Using the (as yet untrained) generator to create an random gray scale image. noise = tf.random.normal([1, 100]) generated_image = generator(noise, training=False) generated_image.shape plt.imshow(generated_image[0, :, :, 0], cmap="gray") # # Discriminator # Note that the discriminator is a binary classifier, consisting only of fully -connected layers. So, the discriminator expects a tensor of shape (Batch Size, 28, 28, 1). # We are flattening out input to feed it into Dense layers. We use LeakyReLU fro better performance. # Output is the probability score. # discriminator model def discriminator_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(28, 28, 1))) model.add(layers.Flatten()) model.add(layers.Dense(256)) model.add(layers.LeakyReLU(0.2)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(128)) model.add(layers.LeakyReLU(0.2)) model.add(layers.Dropout(0.3)) model.add(layers.Dense(64)) model.add(layers.LeakyReLU(0.2)) model.add(layers.Dropout(0.2)) model.add(layers.Dense(1, activation="sigmoid")) return model discriminator = discriminator_model() discriminator.summary() # Here We are using the (as yet untrained) discriminator to classify the generated images as real or fake. # The model will be trained to output values > 0.5 for real images, and values <0.5 for fake images. discriminator = discriminator_model() output = discriminator(generated_image) print(output) # # Loss and Optimizer # Now We are defining loss functions. # In this case it is Binary Cross entropy as target is real or fake images # It compares the discriminator's predictions on real images to an array of 1s, # and the discriminator's predictions on fake (generated) images to an array of 0s. bce = tf.keras.losses.BinaryCrossentropy() def discriminator_loss(real_output, fake_output): real_loss = bce(tf.ones_like(real_output), real_output) fake_loss = bce(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss # The generator's loss quantifies how well it was able to trick the discriminator. # Intuitively, if the generator is performing well, the discriminator will classify # the fake images as real (or 1) def generator_loss(fake_output): gen_loss = bce(tf.ones_like(fake_output), fake_output) return gen_loss # The discriminator and the generator optimizers are different since two networks # would be trained separately. generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) # save and restore models, which can be helpful in case a long running training task is interrupted. checkpoint_dir = "./training_checkpoints" checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint( generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator, ) # # Training # The training loop begins with generator receiving a random seed as input. That seed is used to produce an image. The discriminator is then used to classify real images (drawn from the training set) and fakes images (produced by the generator). The loss is calculated for each of these models, and the gradients are used to update the generator and discriminator. epochs = 50 noise_dim = 100 num_examples_to_generate = 16 seed = tf.random.normal([num_examples_to_generate, noise_dim]) # The train_step function performs a single training step for a generative adversarial network (GAN), which consists of the following steps: # 1. Generate random noise of shape [batch_size, noise_dim] using tf.random.normal(). # 2. Use tf.GradientTape() to record the gradient computations during forward pass for both the generator and discriminator. # 3. Generate fake images by feeding the random noise to the generator. # 4. Compute the output of the discriminator for both real and fake images. # 5. Compute the discriminator loss using discriminator_loss() function with the real and fake outputs. # 6. Compute the generator loss using generator_loss() function with the fake output. # 7. Compute the gradients of the generator and discriminator with respect to their trainable variables using the corresponding gradient tapes. # 8. Apply the gradients to the optimizer for both the generator and discriminator. # 9. Return the generator loss, discriminator loss, mean of the real output, and mean of the fake output. # # We are using tf.function This annotation causes the function to be "compiled". @tf.function def train_step(images): noise = tf.random.normal([batch_size, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) disc_loss = discriminator_loss(real_output, fake_output) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient( disc_loss, discriminator.trainable_variables ) generator_optimizer.apply_gradients( zip(gradients_of_generator, generator.trainable_variables) ) discriminator_optimizer.apply_gradients( zip(gradients_of_discriminator, discriminator.trainable_variables) ) return ( gen_loss, disc_loss, tf.reduce_mean(real_output), tf.reduce_mean(fake_output), ) # Notice training is set to False. This is so all layers run in inference mode (batchnorm). # Function for generating and plotting images is defined def generate_and_plot_images(model, epoch, test_input): predictions = model(test_input, training=False) fig = plt.figure(figsize=(8, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i + 1) pred = (predictions[i, :, :, 0] + 1) * 127.5 pred = np.array(pred) plt.imshow(pred.astype(np.uint8), cmap="gray") plt.axis("off") plt.savefig("image_at_epoch_{:04d}.png".format(epoch)) plt.show() # The "train" function trains a GAN on the given dataset for the specified number of epochs by performing the following steps: # 1. Initialize empty lists gen_loss_list, disc_loss_list, real_score_list, and fake_score_list to keep track of the losses and scores during training. # 2. For each epoch, iterate over each batch in the dataset using a for loop. # 3. Call the train_step function on the current batch to perform a single training step for the GAN. 4. The returned values of generator loss, discriminator loss, real score, and fake score are accumulated to compute the mean losses and scores for the epoch. # 5. Print the generator and discriminator losses and real and fake scores for the current epoch. # 6. Generate and plot sample images using the generate_and_plot_images function. # 7. Append the mean generator and discriminator losses, real score, and fake score to their respective lists. # 8. Every 10 epochs, save a checkpoint of the model using the save method of a tf.train.Checkpoint object. # 9. Print the time taken to complete the epoch. # 10. Return the gen_loss_list, disc_loss_list, real_score_list, and fake_score_list. These lists contain the losses and scores for each epoch, and can be used to analyze the performance of the GAN over time. # train function def train(dataset, epochs): gen_loss_list = [] disc_loss_list = [] real_score_list = [] fake_score_list = [] for epoch in tqdm(range(epochs)): start = time.time() num_batches = len(dataset) print(f"Training started with epoch {epoch + 1} with {num_batches} batches...") total_gen_loss = 0 total_disc_loss = 0 for batch in dataset: generator_loss, discriminator_loss, real_score, fake_score = train_step( batch ) total_gen_loss += generator_loss total_disc_loss += discriminator_loss mean_gen_loss = total_gen_loss / num_batches mean_disc_loss = total_disc_loss / num_batches print( "Losses after epoch %5d: generator %.3f, discriminator %.3f, real_score %.2f%%, fake_score %.2f%%" % ( epoch + 1, generator_loss, discriminator_loss, real_score * 100, fake_score * 100, ) ) generate_and_plot_images(generator, epoch + 1, seed) gen_loss_list.append(mean_gen_loss) disc_loss_list.append(mean_disc_loss) real_score_list.append(real_score) fake_score_list.append(fake_score) if (epoch + 1) % 10 == 0: checkpoint.save(file_prefix=checkpoint_prefix) print("Time for epoch {} is {} sec".format(epoch + 1, time.time() - start)) return gen_loss_list, disc_loss_list, real_score_list, fake_score_list # Taking the train_dataset and epochs as the parameters, the train function calls the train_step # function, at every new batch. At the beginning of the training, the generated images look like # random noise. As training progresses, the generated images will look more real. gen_loss_epochs, disc_loss_epochs, real_score_list, fake_score_list = train( train_dataset, epochs=epochs ) # # Plotting visualisations fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8)) ax1.plot(gen_loss_epochs, label="Generator loss", alpha=0.5) ax1.plot(disc_loss_epochs, label="Discriminator loss", alpha=0.5) ax1.legend() ax1.set_title("Training Losses") ax2.plot(real_score_list, label="Real score", alpha=0.5) ax2.plot(fake_score_list, label="Fake score", alpha=0.5) ax2.set_title("Accuracy Scores") ax2.legend()
from sklearn.cluster import KMeans import glob from sklearn.metrics.pairwise import euclidean_distances import csv import os from PIL import Image from itertools import product import numpy as np PATCH_IMAGE_SIZE = 256 // 64 SOURCE_DIR = "/kaggle/input/tomato-short-dataset-5000/test" OUTPUT_FILE = "/kaggle/working/test_weights.csv" header = ["filename", "class", "weight", "full_path"] with open(OUTPUT_FILE, "w", newline="") as file: writer = csv.writer(file) writer.writerow(header) def tile(filename, dir_in, d): patches = [] name, ext = os.path.splitext(filename) try: img = Image.open(os.path.join(dir_in, filename)) except: print("Could not open image: ", filename) return w, h = img.size grid = product(range(0, h - h % d, d), range(0, w - w % d, d)) for i, j in grid: box = (j, i, j + d, i + d) patches.append(img.crop(box)) return patches def extractFetures(files, subfolder): features = [] labels = [] file_count = 0 for file in files: file_count += 1 # create patches m_patches = tile(file, subfolder, PATCH_IMAGE_SIZE) # if error occurred in file reading, skipping that file. if not m_patches: continue # convert to numpy array m_patches = [np.array(patch) for patch in m_patches] # extract features m_features = [patch.flatten() for patch in m_patches] # we have 16 features per image, with 16 same labels for f in m_features: features.append(f) labels.append(os.path.basename(file)) return features, labels, file_count def getMeanDistance(kmean, features): mean_distances = [] # Get cluster centroids centroids = kmean.cluster_centers_ # Calculate mean distance for each cluster for i in range(3): points = [] # Select points in cluster for j in range(kmean.labels_.size): l = kmean.labels_[j] if l == i: points.append(features[j]) # Calculate distances between points and centroid print("Calculating for cluster: " + str(i)) distances = euclidean_distances(points, centroids[i].reshape(1, -1)) # Calculate mean distance mean_distance = np.mean(distances) # Add mean distance to list mean_distances.append(mean_distance) return mean_distances def saveToCSV(files, weights): idx = 0 with open(OUTPUT_FILE, "a", newline="") as file: writer = csv.writer(file) for f in files: label = os.path.basename(f) dirname = os.path.dirname(f) classname = dirname.split("/")[-1] writer.writerow([label, classname, weights[idx], dirname]) idx += 1 subfolders = [f.path for f in os.scandir(SOURCE_DIR) if f.is_dir()] for subfolder in subfolders: files = os.listdir(subfolder) print("-----------------------------") print("Processing folder: ", subfolder) features, labels, file_count = extractFetures(files, subfolder) print("\nTotal Features: ", len(features)) print("Total Labels: ", len(labels)) print("Total File fetched: ", file_count) print("Creating Clusters...") # Creating Clusters k = 3 kmean = KMeans(k, random_state=40) kmean.fit(features) clusters_labels = kmean.predict(features) print("Clusters created.") files = glob.glob(subfolder + "/*.JPG") print("Total Files found: ", len(files)) files_clusters = dict() for f in files: filename = os.path.basename(f) files_clusters[filename] = dict() files_clusters[filename]["clusters"] = [0 for i in range(3)] cluster_count = [0 for i in range(3)] for i in range(len(labels)): label = labels[i] cluster = clusters_labels[i] if label in files_clusters: files_clusters[label]["clusters"][cluster] += 1 cluster_count[cluster] += 1 print("\nCluster Size: ", cluster_count) file1Cluster = files_clusters[list(files_clusters.keys())[0]] print("File 1 Cluster: ", file1Cluster) print("Total features per image:", sum(file1Cluster["clusters"])) print("Calculating mean distance...") # Initialize list to store mean distances for each cluster mean_distances = getMeanDistance(kmean, features) print("Mean Distance is: ", mean_distances) print("Calculating weight...") # weights # c = k * d/n ce = [0 for i in range(3)] for i in range(3): ce[i] = mean_distances[i] / cluster_count[i] # normalize cluster_coefficient = [float(i) / sum(ce) for i in ce] print("Cluster_coefficients: ", cluster_coefficient) c1 = cluster_coefficient[0] c2 = cluster_coefficient[1] c3 = cluster_coefficient[2] weights = [] for f in files: label = os.path.basename(f) fc = files_clusters[label]["clusters"] w = (c1 * fc[0] + c2 * fc[1] + c3 * fc[2]) / (fc[0] + fc[1] + fc[2]) weights.append(w) # saving weights print("Saving weights...") saveToCSV(files, weights) print("Weights saved.\n------------------------------\n\n")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objs as go # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Cleaning and Exploration # First, I'll have a look at the data using head, tail, and info. data = pd.read_csv( "/kaggle/input/life-expectancy-who-updated/Life-Expectancy-Data-Updated.csv" ) data.head() data.tail() data.info() # I'm interested in seeing what Region values there are for future analysis. data["Region"].unique() print("Missing values distribution: ") print(data.isnull().mean()) # The dataset appears to be quite clean already! I'll do a check for duplicates next. data.duplicated().sum() # I'd like to get an idea of what the data looks like grouped by region, then I'll run describe() to see some quick stats of the data. data.describe() # # Visualizing Life Expectancy and its Factors # Below I'll make a comparison of the average life expectancy by region. avg_life_expectancies = data.groupby("Region").Life_expectancy.mean() avg_life_expectancies.columns = ["Region", "Life Expectancy"] print(avg_life_expectancies) fig = plt.figure(figsize=(10, 5)) avg_life_expectancies.plot(kind="barh") plt.xlabel("Life expectancy") plt.title("Average Life Expectancy per Region from 2000-2015") plt.show() # Based on these average life expectancies, we can see that the highest have been in the European Union and North America. However, this represents the average over 15 years, so there are more questions we can ask about this data! I'd like to know how the life expectancies have changed over time in several regions. data_sorted_by_year = data.sort_values(by="Year") data_sorted_by_year = data_sorted_by_year.reset_index() data_sorted_by_year.head() data_sorted_by_year_Africa = data_sorted_by_year[ data_sorted_by_year["Region"] == "Africa" ] data_sorted_by_year_Africa data_sorted_by_year_Africa.reset_index() # Next I'll isolate the columns I want in my visualization and group by year. df_af = data_sorted_by_year_Africa[["Year", "Life_expectancy"]] df_af = df_af.groupby("Year").Life_expectancy.mean() df_af # Plot using matplotlib. africa_plot = plt.plot(df_af, "green") # I'm curious to see how this line plot compares to a region with a historically higher GDP per capita. I'll add another line to the graph showing the EU region's life expectancy over time. df_eu = data_sorted_by_year[data_sorted_by_year["Region"] == "European Union"] df_eu = df_eu.groupby("Year").Life_expectancy.mean() df_eu # Now that we have that information, we can compare both. The EU's life expectancy started off higher, but is plateuing. Africa's life expectancy is rising more quickly, but is still not very close to the EU's. plt.plot(df_eu) plt.plot(df_af, "green") plt.xlim(2000, 2015) plt.ylim(50, 85) plt.margins(0.2) plt.xlabel("Year") plt.ylabel("Life Expectancy") plt.legend(["EU", "Africa"], loc="lower right") plt.title("Life Expectancies of Africa vs EU 2000-2015") # The relationship between GDP per capita and life expectancy has long been studied and debated. I'm curious to know what it looks like based on the given dataset. To take a look at this, I'll use the year 2015 and get an average of the GDP of countries in a region, as well as the average life expectancy for countries in the region. series_2015 = data[data.Year == 2015] # only year 2015 series_2015.reset_index() df_agg = series_2015.groupby("Region").agg( avg_life=pd.NamedAgg(column="Life_expectancy", aggfunc="mean"), avg_gdp=pd.NamedAgg(column="GDP_per_capita", aggfunc="mean"), ) df_agg.reset_index() # In order to label points on the scatter plot: sorted_df = df_agg.sort_values(by=["avg_gdp"], ascending=True) sorted_df.reset_index() plt.scatter(df_agg.avg_gdp, df_agg.avg_life, s=90) plt.title("Average GDP vs Life Expectancy Across Regions 2015") plt.xscale("log") plt.xlabel("GDP") plt.ylabel("Life Expectancy")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Overview # ![CIFAR-10.png](attachment:a22d3dc8-5eb5-422a-9cfe-f200fbdeb8ea.png) # In this notebook we will use a Convolutional Neural Network (CNN) to classify images from the CIFAR-10 dataset. The task is pretty hard, as the images from the dataset are not that easy to clasify with great accuracy even for a person. But PyTorch let us build pretty easilly a CNN, whill is of great help. # # Introduction to Convolutional Neural Network (CNN) # ![cnn.gif](attachment:804ac2b9-448f-4331-bec8-150f61d8d590.gif) # A Convolutional Neural Network (CNN) is a class of artificial neural network most commonly applied to analyze visual imagery. They are specifically designed to process pixel data and are used in image recognition and processing. # CNNs were the models that allowed computer vision to scale from simple applications to powering sophisticated products and services. # A great intro into the subject can be found [here](https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1) # # Imports # Let's start with out imports. We import a bounch of things from torch, some utils and some data for plotting. import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F from torch.utils.data import random_split from torch.utils.data.dataloader import DataLoader from torchvision.utils import make_grid import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.metrics import confusion_matrix # # Loading and prepparing the data # Load the data from disk, we will use the available PyTorch functionality for this. dataset = torchvision.datasets.CIFAR10( root="/kaggle/input/cifar10-python/", train=True, download=False, transform=transforms.ToTensor(), ) testset = torchvision.datasets.CIFAR10( root="/kaggle/input/cifar10-python/", train=False, download=False, transform=transforms.ToTensor(), ) # Split the train data into train and validate, create data loaders and define the classes and the batch size constant. batchSize = 200 trainset, validateset = random_split(dataset, [45000, 5000]) train = DataLoader(trainset, batchSize, shuffle=True) validate = DataLoader(validateset, batchSize, shuffle=True) testLoader = DataLoader(testset, batch_size=batchSize, shuffle=False) classes = ( "plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ) # # Display some of the images # Display some of the pictures, to verify everything is ok, and also it will make some good plots :) # First let's display the first batch of 200 images from the training set. for images, labels in train: fig, ax = plt.subplots(figsize=(12, 6)) ax.set_xticks([]) ax.set_yticks([]) ax.imshow(make_grid(images, nrow=20).permute(1, 2, 0)) break # Now let's display a few of the images a little bigger, also with a their lable as a title. for i in range(0, 12): img, label = validateset[i] plt.subplot(3, 4, i + 1) plt.title(classes[label]) plt.axis("off") plt.imshow(img.permute(1, 2, 0)) # As you can see this is a pretty hard problem, as many of the images are hard for even a human. CNNs to the rescue! # # Creating the CNN Classification Model class # We will define a class that will serve as our classification model. We will levarage the functionality provided to us by PyTorch. class Cifar10Classifier(nn.Module): def __init__(self): super().__init__() # define all the transformers sequencially self.network = nn.Sequential( # here we define 3 channels as our inpur, 32 channels as the output, # the size of the kernel, the padding and the stride nn.Conv2d( in_channels=3, out_channels=32, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), nn.Conv2d( in_channels=32, out_channels=64, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), # apply a max pool layer nn.MaxPool2d(2, 2), # continue the process in the next two layers nn.Conv2d( in_channels=64, out_channels=128, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=128, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d( in_channels=128, out_channels=256, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), nn.Conv2d( in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=1 ), nn.ReLU(), nn.MaxPool2d(2, 2), # final layer, we decrease the number of outputs to 10, which is our number of classes nn.Flatten(), nn.Linear(256 * 4 * 4, 1024), nn.ReLU(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 10), ) def trainingStep(self, batch): # unpack the images and labels from the images, labels = batch # call the model itself out = self(images) # compute the loss loss = F.cross_entropy(out, labels) return loss def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def validationStep(self, batch): images, labels = batch out = self(images) loss = F.cross_entropy(out, labels) accuracy = self.accuracy(out, labels) return {"loss": loss, "accuracy": accuracy} def validationEpochEnd(self, outputs): batchLosses = [row["loss"] for row in outputs] epochLosses = torch.stack(batchLosses).mean() batchAcc = [row["accuracy"] for row in outputs] epochAcc = torch.stack(batchAcc).mean() return {"loss": epochLosses.item(), "accuracy": epochAcc.item()} def forward(self, x): return self.network(x) # # Training the CNN classification model # We will first define an evaluation method, a train method and then we will train our model. # the evaluation model, please note we will disable the gradiant descent on this method @torch.no_grad() def evaluateModel(model, validationLoader): # puts the model in eval mode model.eval() out = [model.validationStep(batch) for batch in validationLoader] return model.validationEpochEnd(out) # method for training the model def trainModel( epochs, lr, model, trainLoader, validationLoader, optimizationFunction=torch.optim.SGD, ): optimizer = optimizationFunction(model.parameters(), lr) for epoch in range(epochs): print(f"training epoch {epoch}") # puts the model in train mode model.train() trainingLosses = [] # training for batch in trainLoader: loss = model.trainingStep(batch) trainingLosses.append(loss) loss.backward() optimizer.step() optimizer.zero_grad() print( f"after training epoch {epoch} we get results {evaluateModel(model, validationLoader)}" ) # Now we will instantiate the model and performn an evaluation on it, before training the model. Because the weights of the model are randomly initliasied we have an accuracy of about 10% (100% devided by the number of classes). # instantiate the model model = Cifar10Classifier() # do an evaluation of the model on the tra evaluateModel(model, validate) # Now let's do the training of the model trainModel( 6, 0.001, model, trainLoader=train, validationLoader=validate, optimizationFunction=torch.optim.Adam, ) # We trained for 6 epochs, with this type of network we can achieve an accuracy of about 0.75 - 0.8. In our case we got about 0.72 which is satisfactory. Training the model for more epoch will end up yielding smaller improvements, capping bellow 0.8. # # Predicting the imagge class with our trainned model # First predict the accuracy for the validation dataset and then the test dataset. print(f"validation dataset accuracy: {evaluateModel(model, validate)}") print(f"test dataset accuracy: {evaluateModel(model, testLoader)}") # So we can see we have the accuracy and the loss pretty similar for the validation and test datasets. The accuracy of the test dataset is **0.5656**. # Let's define a new utility function to predict the label of an image based on the model. def predictImage(img, model): xb = img.unsqueeze(0) yb = model(xb) _, pred = torch.max(yb, dim=1) return pred[0].item() # Now we will plot maybe the most interesting image of the notebook, several images with the predicted and actual labels. Again we can see that the CIFAR-10 dataset is pretty hard, even for humans! with torch.no_grad(): plt.subplots(figsize=(12, 10)) for i in range(0, 12): img, label = testset[i] predictedValue = predictImage(img, model) plt.subplot(3, 4, i + 1) plt.title(f"predicted: {classes[predictedValue]} \n actual: {classes[label]}") plt.axis("off") plt.imshow(img.permute(1, 2, 0)) # # Confusion matrix # No classification problem is not complete without a confudion matrix, so let's make one! predictions = np.empty((0, len(testset)), np.int32) actualValues = np.empty((0, len(testset)), np.int32) with torch.no_grad(): for i in range(0, len(testset)): testImg, testLabel = testset[i] predictedValue = predictImage(testImg, model) predictions = np.append(predictions, predictedValue) actualValues = np.append(actualValues, testLabel) confusionMatrix = confusion_matrix(actualValues, predictions) confusionMatrixDf = pd.DataFrame( confusionMatrix, index=[i for i in classes], columns=[i for i in classes] ) plt.figure(figsize=(10, 7)) sns.heatmap(confusionMatrixDf, annot=True, cmap="Blues", fmt="g")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # task-1 data = pd.read_csv("/kaggle/input/automobile/automobile_data.csv") data # task-2 data.shape # task-3 data[0:3] # task-4 data[-5:] # task-5 data.columns # task-6 print("First column type") print(data[data.columns[0]].dtypes) print("First column type") print(data[data.columns[-1]].dtypes) # task-7 print(data["Popularity"].dtypes) # task-8 num_cols = data.select_dtypes(include="number").columns.tolist() print(num_cols) # task-9 non_num_cols = data.select_dtypes(exclude="number").columns.tolist() print(non_num_cols) # task-10 for i in non_num_cols: print(data[i].describe()) # task-11 for i in num_cols: print(data[i].describe()) # task-12 data["Style"].unique() # task-13 data["Year"].unique() # task-14 print(data["Cylinders"].max()) print(data["Cylinders"].min()) # task-15 data["Cylinders"].isna().sum() # task-16 data["HP"].isna().sum() # task-17 len(data[data["Make"] == "BMW"]) # task-18 data["Doors"].unique() # task-19 data["Cylinders"].isnull().sum() # task-20 data[data["MSRP"] == data["MSRP"].max()] # task-21 data = data.drop("Fuel Type", axis=1) data = data.drop("Category", axis=1) data = data.drop("Style", axis=1) data # task-22 data["Cylinders"] = data["Cylinders"].fillna(data["Cylinders"].mean()) data["Cylinders"].isna().sum() # task-23 data["HP"] = data["HP"].fillna(data["HP"].mean()) data["HP"].isna().sum() # task-24 data = data.astype(str) # Print the result print(data.dtypes) # task-25 print(data["Transmission"].value_counts()["MANUAL"]) # task-1 data = pd.read_csv("/kaggle/input/automobile/automobile_data.csv") # task-26 data[(data["Year"] == 2013) & (data["Fuel Type"] == "electric")] # task-27 data[(data["Make"] == "Honda") & (data["Fuel Type"] == "electric")] # task-28 data[data["HP"] == data["HP"].max()] # task-29 data = data.rename(columns={"HP": "Horse Power"}) data # task-30 data[data["Doors"] < 3] # task-31 data.shape # task-32 data[0:1] # task-33 data[-1:]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt from warnings import filterwarnings filterwarnings("ignore") # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/train.csv") sub_df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/sample_submission.csv") med_df = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/med.csv") train_df.head(10) train_df.info() train_df["Tarih"] = pd.to_datetime(train_df["Tarih"]) sub_df["Tarih"] = pd.to_datetime(sub_df["Tarih"]) med_df["Tarih"] = pd.to_datetime(med_df["Tarih"]) train_df.info() train_df["date"] = train_df["Tarih"].map(lambda x: x.strftime("%Y-%m-%d")) train_df["year"] = train_df["Tarih"].dt.year train_df["month"] = train_df["Tarih"].dt.month train_df["day"] = train_df["Tarih"].dt.day train_df["hour"] = train_df["Tarih"].dt.hour train_df["day_of_week"] = train_df["Tarih"].dt.dayofweek # day of week 0: pazartesi # day of week 6: pazar sub_df["date"] = sub_df["Tarih"].map(lambda x: x.strftime("%Y-%m-%d")) sub_df["year"] = sub_df["Tarih"].dt.year sub_df["month"] = sub_df["Tarih"].dt.month sub_df["day"] = sub_df["Tarih"].dt.day sub_df["hour"] = sub_df["Tarih"].dt.hour sub_df["day_of_week"] = sub_df["Tarih"].dt.dayofweek sub_df["Kesinti"] = 0 med_df["date"] = med_df["Tarih"].map(lambda x: x.strftime("%Y-%m-%d")) med_df["year"] = med_df["Tarih"].dt.year med_df["month"] = med_df["Tarih"].dt.month med_df["day"] = med_df["Tarih"].dt.day med_df["hour"] = med_df["Tarih"].dt.hour med_df["day_of_week"] = med_df["Tarih"].dt.dayofweek train_df.head() med_df[["year", "month", "day", "hour"]] = med_df[ ["year", "month", "day", "hour"] ].astype(int) train_df["Kesinti"] = train_df.apply( lambda row: int( ( row[["year", "month", "day", "hour"]] == med_df[["year", "month", "day", "hour"]] ) .all(axis=1) .any() ), axis=1, ) takvim = pd.read_csv("/kaggle/input/turkish-calendar/Turkish calendar.csv", sep=(";")) new_sub = takvim[853:884] new_train = takvim[884:2557] new_sub.loc[:, "month"] = pd.to_datetime( new_sub["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.month new_sub.loc[:, "year"] = pd.to_datetime( new_sub["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.year new_sub.loc[:, "day"] = pd.to_datetime( new_sub["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.day new_train.loc[:, "month"] = pd.to_datetime( new_train["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.month new_train.loc[:, "year"] = pd.to_datetime( new_train["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.year new_train.loc[:, "day"] = pd.to_datetime( new_train["CALENDAR_DATE"], format="%d.%m.%Y" ).dt.day new_train new_sub["WEEKEND_FLAG"] = new_sub["WEEKEND_FLAG"].replace(["N"], 0) new_sub["WEEKEND_FLAG"] = new_sub["WEEKEND_FLAG"].replace(["Y"], 1) new_sub["RAMADAN_FLAG"] = new_sub["RAMADAN_FLAG"].replace(["N"], 0) new_sub["RAMADAN_FLAG"] = new_sub["RAMADAN_FLAG"].replace(["Y"], 1) new_sub["PUBLIC_HOLIDAY_FLAG"] = new_sub["PUBLIC_HOLIDAY_FLAG"].replace(["N"], 0) new_sub["PUBLIC_HOLIDAY_FLAG"] = new_sub["PUBLIC_HOLIDAY_FLAG"].replace(["Y"], 1) new_train["WEEKEND_FLAG"] = new_train["WEEKEND_FLAG"].replace(["N"], 0) new_train["WEEKEND_FLAG"] = new_train["WEEKEND_FLAG"].replace(["Y"], 1) new_train["RAMADAN_FLAG"] = new_train["RAMADAN_FLAG"].replace(["N"], 0) new_train["RAMADAN_FLAG"] = new_train["RAMADAN_FLAG"].replace(["Y"], 1) new_train["PUBLIC_HOLIDAY_FLAG"] = new_train["PUBLIC_HOLIDAY_FLAG"].replace(["N"], 0) new_train["PUBLIC_HOLIDAY_FLAG"] = new_train["PUBLIC_HOLIDAY_FLAG"].replace(["Y"], 1) new_sub.drop( ["SPECIAL_DAY_SK", "SPECIAL_DAY_SK2", "CALENDAR_DATE"], axis=1, inplace=True ) new_train.drop( ["SPECIAL_DAY_SK", "SPECIAL_DAY_SK2", "CALENDAR_DATE"], axis=1, inplace=True ) merged_sub = pd.merge(new_sub, sub_df, on=["year", "month", "day"]) merge_train = pd.merge(new_train, train_df, on=["year", "month", "day"]) merged_sub merged_sub.drop(["Tarih", "date", "Dağıtılan Enerji (MWh)"], axis=1, inplace=True) merge_train.drop(["Tarih", "date"], axis=1, inplace=True) merge_train.info() x = merge_train.drop(["Dağıtılan Enerji (MWh)"], axis=1) y = merge_train["Dağıtılan Enerji (MWh)"] from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor import xgboost as xgb from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from sklearn.metrics import mean_absolute_percentage_error from sklearn.ensemble import VotingRegressor from sklearn.neighbors import KNeighborsRegressor X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42 ) # rf_model = RandomForestRegressor(n_estimators=100, random_state=42) # rf_model.fit(X_train, y_train) # # Make predictions on the validation set # y_pred = rf_model.predict(X_test) # from sklearn.metrics import accuracy_score knn_model = KNeighborsRegressor().fit(X_train, y_train) y_pred = knn_model.predict(X_test) MAPE = [] for k in range(15): k = k + 1 knn_model = KNeighborsRegressor(n_neighbors=k).fit(X_train, y_train) y_pred = knn_model.predict(X_test) mape = mean_absolute_percentage_error(y_test, y_pred) MAPE.append(mape) print("k =", k, "için RMSE değeri: ", mape) y_pred1 = knn_model.predict(merged_sub) subm = pd.read_csv("/kaggle/input/gdz-elektrik-datathon-2023/sample_submission.csv") subm["Dağıtılan Enerji (MWh)"] = y_pred1 subm subm.to_csv("KNN.csv", index=None)
# importing libraries for working with the dataset import pandas as pd from prettytable import PrettyTable, ALL import matplotlib.pyplot as plt import numpy as np import seaborn as sns from wordcloud import WordCloud pd.options.mode.chained_assignment = None # default='warn' # function to find correlation def correlation(col1, col2): return round(df_airport[col1].corr(df_airport[col2]), 3) # function to print table def create_table(df, col1, col2, table_title): table = PrettyTable() table.title = table_title table.field_names = [col1, col2] for i in range(0, len(df[col1])): table.add_row([df[col1][i], "{:,}".format(df[col2][i])]) print(f"** {table_title} **") print(table) # read csv from google drive df_airport = pd.read_csv("/kaggle/input/usa-airport-dataset/Airports2.csv") print("null values count per column\n", df_airport.isnull().sum()) print("shape of dataset: ", df_airport.shape) without_dublicate = df_airport.drop_duplicates() print("shape of dataset without dublicate: ", without_dublicate.shape) print("total dublicate rows=", df_airport.shape[0] - without_dublicate.shape[0]) # I will not be using last 4 columns so I don't need to fill null values # Finding coorelations between numerical columns print( f"There is high poisitive Correlation of {correlation('Passengers','Flights')} between number of flights and passengers" ) print( f"There is high poisitive Correlation of {correlation('Passengers','Seats')} between passengers and Seats" ) print( f"There is high poisitive Correlation of {correlation('Seats','Flights')} between Seats and flights" ) print( f"There is low negative Correlation of {correlation('Distance','Flights')} between number of flight and Distance" ) print( f"There is low Correlation of {correlation('Origin_population','Passengers')} between Population and Passengeres" ) print( f"There is low Correlation of {correlation('Destination_population','Passengers')} between Population and Passengeres" ) # print correlation matrix ax = sns.heatmap( df_airport[["Passengers", "Seats", "Flights"]].corr(), annot=True ).set_title("Correlation matrix") # reduce the unsed columns to to speed computation df_airport = df_airport[ [ "Origin_airport", "Destination_airport", "Origin_city", "Destination_city", "Passengers", "Flights", "Fly_date", ] ] # Splitting state and city df_airport[["Origin_city", "Origin_state"]] = df_airport["Origin_city"].str.split( ",", expand=True ) df_airport[["Destination_city", "Destination_state"]] = df_airport[ "Destination_city" ].str.split(",", expand=True) # Convert date type to be ready for time series analysis and correlation df_airport["Fly_date"] = pd.to_datetime(df_airport["Fly_date"], errors="coerce") df_airport["Fly_year"] = df_airport["Fly_date"].dt.strftime("%Y").astype("int") df_airport["Fly_month"] = df_airport["Fly_date"].dt.strftime("%m").astype("int") # Crate a word cloud # Import the wordcloud library # long_string = a,b,c... def world_cloud_generate(long_string): # create a worldcloud object wordcloud = WordCloud( background_color="white", max_words=500000, contour_width=3, contour_color="steelblue", width=500, height=300, repeat=False, include_numbers=False, collocations=False, ) # Generate a world cloud wordcloud.generate(long_string) return wordcloud long_string_title = ",".join(list(df_airport["Destination_city"][0:1000000].values)) wordcloud1 = world_cloud_generate(long_string_title) # Visualize the worldcloud wordcloud1.to_image() print( f"There is almost no Correlation {correlation('Passengers','Fly_year')} between NO. of passengers over the years" ) # I find that hard to belive there is no relationship so I tracked number of passengers annually Passengers_count_annualy = df_airport.groupby("Fly_year")["Passengers"].agg(["sum"]) Passengers_count_annualy.reset_index(inplace=True) Passengers_count_annualy["sum"] = Passengers_count_annualy["sum"].apply( lambda x: "{:,}".format(x) ) Passengers_count_annualy.columns = ["Fly_year", "Total passengers"] Passengers_count_annualy # There was a positive increase in the number of passengers annually until 2001-2002, after which it dropped dramatically # due to the 9/11 event. The number of passengers started to increase again in 2003, but 2008 marked the onset # of the Great Recession, which explains the second decrease. # Find the popular destinations for each year Passengers_dest_annualy = df_airport.groupby(["Fly_year", "Destination_state"])[ "Passengers" ].agg(["sum"]) Passengers_dest_annualy.reset_index(inplace=True) annual_grouped = Passengers_dest_annualy.groupby("Fly_year")["sum"].agg(["max"]) annual_grouped.reset_index(inplace=True) print("Most travelled to State per year:") Passengers_dest_annualy = pd.merge( Passengers_dest_annualy, annual_grouped, left_on="sum", right_on="max" ) Passengers_dest_annualy.drop(["Fly_year_y", "sum"], axis=1, inplace=True) Passengers_dest_annualy.columns = [ "Fly_year", "Destination_state", "Max_no_of_passengers", ] Passengers_dest_annualy[ "Max_no_of_passengers" ] = Passengers_dest_annualy.Max_no_of_passengers.apply(lambda x: "{:,}".format(x)) Passengers_dest_annualy # Texas and California are most visted states! # Top arrival and departure cities create_table( df_airport["Origin_city"] .value_counts() .head(3) .rename_axis("Origin_city") .reset_index(name="No of flights"), "Origin_city", "No of flights", "Top departure cities: ", ) create_table( df_airport["Destination_city"] .value_counts() .head(3) .rename_axis("Destination_city") .reset_index(name="No of flights"), "Destination_city", "No of flights", "Top arrival cities: ", ) # Make plot to compare passengers and flights monthly trends Flights_count = df_airport.groupby("Fly_month")["Flights"].agg(["mean"]) Flights_count.reset_index(inplace=True) Passengers_count = df_airport.groupby("Fly_month")["Passengers"].agg(["mean"]) Passengers_count.reset_index(inplace=True) fig, axs = plt.subplots(2) fig.suptitle("Passengers vs Flights monthly trend") axs[0].plot(Passengers_count["Fly_month"], Passengers_count["mean"]) axs[1].plot(Flights_count["Fly_month"], Flights_count["mean"]) # plot annual flight counts in bar chart Flights_count_annual = df_airport.groupby("Fly_year")["Flights"].agg(["sum"]) Flights_count_annual.reset_index(inplace=True) ax = Flights_count_annual.plot.bar( x="Fly_year", y="sum", rot=70, title="Annual Flights count", color=(240 / 255, 83 / 255, 101 / 255), ylabel="No of Flights", fontsize="large", figsize=(10, 4), ) current_values = plt.gca().get_yticks() plt.gca().set_yticklabels(["{:,.0f}".format(x) for x in current_values]) plt.show() # plot annual passengers counts in bar chart passengers_count_annual = df_airport.groupby("Fly_year")["Passengers"].agg(["sum"]) passengers_count_annual.reset_index(inplace=True) ax = passengers_count_annual.plot.bar( x="Fly_year", y="sum", rot=70, title="Passengers count", color=(240 / 255, 83 / 255, 101 / 255), ylabel="No of Passengers", fontsize="large", figsize=(10, 4), ) current_values = plt.gca().get_yticks() plt.gca().set_yticklabels(["{:,.0f}".format(x) for x in current_values]) plt.show() # we can see 9/11 and great recession effects more clearly, # reduce the unsed columns to to speed computation df_airport["Path"] = ( df_airport["Origin_airport"] + "-" + df_airport["Destination_airport"] ) df_airport = df_airport[ ["Fly_year", "Path", "Origin_city", "Destination_city", "Passengers"] ] # reduce the unsed columns to to speed computation df_airport = df_airport[ ["Fly_year", "Path", "Origin_city", "Destination_city", "Passengers"] ] table = PrettyTable() table.hrules = ALL table.field_names = [ "Fly_year", "Path", "Origin_city", "Destination_city", "Passengers", ] for i in range(1990, 2010): df1 = df_airport.loc[df_airport.Fly_year == i] df1 = df1.sort_values(by="Passengers", ascending=False).head(n=1) df1.reset_index(inplace=True) df1["Passengers"] = df1.Passengers.apply(lambda x: "{:,}".format(x)) table.add_row( [ df1["Fly_year"][0], df1["Path"][0], df1["Origin_city"][0], df1["Destination_city"][0], df1["Passengers"][0], ] ) print(f"\t\t\t** Most Used flight path **") print(table)
# Predicting Stock Prices # How to use LSTMs # **Context** # > This notebook is designed to demonstrate a concise script for predicting stock prices utilizing a Long Short-Term Memory (LSTM) model. I have provided an introduction to Time Series Analysis, which I encourage you to review if you have not already done so. # **Reminder** # > A Time Series is a **time-indexed** series of data. In Finance, a time series tracks the movement of the chosen data points, such as a *security’s price*, over a specified period of time with data points recorded at **regular intervals**. # **Why is it used for ?** # > Time series analysis can be useful to see how a given asset, security, or economic variable changes over time. It can also be used to examine how the changes associated with the chosen data point compare to shifts in other variables over the same time period. # > # > For example, suppose you wanted to analyze a time series of daily closing stock prices for a given stock over a period of one year. You would obtain a list of all the closing prices for the stock from each day for the past year and list them in chronological order. # ## Summary # **1. Import libraries** # **2. Preprocessing** # **3. Build LSTM model** # **4. Training** # **5. Predictions** # Imports import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import pandas_datareader as web import datetime as dt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping # **Back to summary** # ---- # Preprocessing # Load csv df = pd.read_csv( "../input/cac40-stocks-dataset/preprocessed_CAC40.csv", parse_dates=["Date"] ) def load_data(company, start, end): """ Load data for the specified company and date range. :param company: The company's stock symbol (str) :param start: The starting date for the data range (str or datetime) :param end: The ending date for the data range (str or datetime) :return: A dataframe containing the relevant stock data (pandas.DataFrame) """ dataframe = df.copy() dataframe = dataframe.loc[dataframe.Name == company, :] dataframe = dataframe.loc[ (dataframe["Date"] > start) & (dataframe["Date"] < end), : ] dataframe = dataframe.rename(columns={"Closing_Price": "Close"}) return dataframe COMPANY = "Accor" START_DATE = dt.datetime(2015, 1, 1) END_DATE = dt.datetime(2020, 1, 1) START_DATE_TEST = END_DATE data = load_data(company=COMPANY, start=START_DATE, end=END_DATE) # Normalize data scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data["Close"].values.reshape(-1, 1)) # Set the number of days used for prediction prediction_days = 60 # Initialize empty lists for training data input and output x_train = [] y_train = [] # Iterate through the scaled data, starting from the prediction_days index for x in range(prediction_days, len(scaled_data)): # Append the previous 'prediction_days' values to x_train x_train.append(scaled_data[x - prediction_days : x, 0]) # Append the current value to y_train y_train.append(scaled_data[x, 0]) # Convert the x_train and y_train lists to numpy arrays x_train, y_train = np.array(x_train), np.array(y_train) # Reshape x_train to a 3D array with the appropriate dimensions for the LSTM model x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # **Back to summary** # ---- # LSTM Model # **What is a LSTM ?** # > Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of RNN, capable of learning long-term dependencies. Introduced by Hochreiter & Schmidhuber (1997), and were refined and popularized by many people in following work. They work tremendously well on a large variety of problems, and are now widely used. # > # > LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior, not something they struggle to learn! # > # > All recurrent neural networks have the form of a chain of repeating modules of neural network. # You can find more details here: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ def LSTM_model(): """ Create and configure an LSTM model for stock price prediction. :return: The configured LSTM model (keras.Sequential) """ # Initialize a sequential model model = Sequential() # Add the first LSTM layer with 50 units, input shape, and return sequences model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) # Add dropout to prevent overfitting model.add(Dropout(0.2)) # Add a second LSTM layer with 50 units and return sequences model.add(LSTM(units=50, return_sequences=True)) # Add dropout to prevent overfitting model.add(Dropout(0.2)) # Add a third LSTM layer with 50 units model.add(LSTM(units=50)) # Add dropout to prevent overfitting model.add(Dropout(0.2)) # Add a dense output layer with one unit model.add(Dense(units=1)) return model # **Back to summary** # ---- # Training model = LSTM_model() model.summary() model.compile(optimizer="adam", loss="mean_squared_error") # Define callbacks # Save weights only for best model checkpointer = ModelCheckpoint( filepath="weights_best.hdf5", verbose=2, save_best_only=True ) model.fit(x_train, y_train, epochs=25, batch_size=32, callbacks=[checkpointer]) # **Back to summary** # ---- # Inference # Load test data for the specified company and date range test_data = load_data(company=COMPANY, start=START_DATE_TEST, end=dt.datetime.now()) # Extract the actual closing prices from the test data actual_prices = test_data["Close"].values # Concatenate the training and test data along the 'Close' column total_dataset = pd.concat((data["Close"], test_data["Close"]), axis=0) # Extract the relevant portion of the dataset for model inputs model_inputs = total_dataset[ len(total_dataset) - len(test_data) - prediction_days : ].values # Reshape the model inputs to a 2D array with a single column model_inputs = model_inputs.reshape(-1, 1) # Apply the same scaling used for training data to the model inputs model_inputs = scaler.transform(model_inputs) # Initialize an empty list for test data input x_test = [] # Iterate through the model inputs, starting from the prediction_days index for x in range(prediction_days, len(model_inputs)): # Append the previous 'prediction_days' values to x_test x_test.append(model_inputs[x - prediction_days : x, 0]) # Convert the x_test list to a numpy array x_test = np.array(x_test) # Reshape x_test to a 3D array with the appropriate dimensions for the LSTM model x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) # Generate price predictions using the LSTM model predicted_prices = model.predict(x_test) # Invert the scaling applied to the predicted prices to obtain actual values predicted_prices = scaler.inverse_transform(predicted_prices) # Plot the actual prices using a black line plt.plot(actual_prices, color="black", label=f"Actual {COMPANY} price") # Plot the predicted prices using a green line plt.plot(predicted_prices, color="green", label=f"Predicted {COMPANY} price") # Set the title of the plot using the company name plt.title(f"{COMPANY} share price") # Set the x-axis label as 'time' plt.xlabel("time") # Set the y-axis label using the company name plt.ylabel(f"{COMPANY} share price") # Display a legend to differentiate the actual and predicted prices plt.legend() # Show the plot on the screen plt.show() # Extract the last 'prediction_days' values from the model inputs real_data = [ model_inputs[len(model_inputs) + 1 - prediction_days : len(model_inputs + 1), 0] ] # Convert the real_data list to a numpy array real_data = np.array(real_data) # Reshape real_data to a 3D array with the appropriate dimensions for the LSTM model real_data = np.reshape(real_data, (real_data.shape[0], real_data.shape[1], 1)) # Generate a prediction using the LSTM model with the real_data input prediction = model.predict(real_data) # Invert the scaling applied to the prediction to obtain the actual value prediction = scaler.inverse_transform(prediction) # Print the prediction result to the console print(f"Prediction: {prediction[0][0]}")
# # CS6220 Sprint 2023 Final Project (Peter Liu) # ## A. Preparation part # ### 1. Check data paths, initial format and decide what data to use import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_absolute_error # To display all columns of dataframe pd.set_option("display.max_columns", None) import os for dirname, _, filenames in os.walk( "/kaggle/input/house-prices-advanced-regression-techniques" ): for filename in filenames: print(os.path.join(dirname, filename)) # print data description: with open( "/kaggle/input/house-prices-advanced-regression-techniques/data_description.txt", "r", ) as f: desc = f.readlines() print(desc) # Exploring shapes of dataset - train raw_train = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/train.csv" ) raw_train = raw_train.set_index("Id") print(raw_train.shape) raw_train.head() # Exploring shapes of dataset - test raw_test = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/test.csv" ) raw_test = raw_test.set_index("Id") print(raw_test.shape) raw_test.head() # Exploring shapes of dataset - sample_submission # We know that this is not useful data, but an indication of # what is to be submitted in we are in the contest sub = pd.read_csv( "/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv" ) sub = sub.set_index("Id") print(sub.shape) sub.head() # ### 2. Data cleaning # The following is missing data that needs special processing for all 19 columns # Check na, see if they are missing data or real value na_cols = raw_train.isna().sum()[raw_train.isna().sum() != 0] na_cols for col in na_cols.index: print(f"\nInpsecting {col}, {na_cols.loc[col]} nos. of na value") print(pd.unique(raw_train[col])) # real na means the data is actually missing real_na_cols = ["LotFrontage", "MasVnrType", "MasVnrArea", "Electrical"] # useful na means the na is a category and actually represents a meaning useful_na_cols = [ "Alley", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "BsmtFinType2", "FireplaceQu", "GarageType", "GarageYrBlt", "GarageFinish", "GarageQual", "GarageCond", "PoolQC", "Fence", "MiscFeature", ] # #### 2.1 Function for alerting NAs and print the columns with na values """ alert_na: identify any na values within the dataframe, and print out any column name that has at least one na values and alert This function does not modify data input: dataframe return: none """ def alert_na(df): # Check whole table has any na if df.isna().any().any(): print("There are still na values, should be removed") print(X_test.isna().any()[X_test.isna().any()].index) # #### 2.2 Function for data cleaning and get rid of NAs """ data_cleaning: after summarizing the data in section 2, all colums with na values are analyzed. Two groups are presented. Firstly, those with useful na are replaced with text "NA" to signal that it is meant to be one of the categories Secondly, for those na values that signals missing value, mean or mode is used to replace the values Finally, checking is done to make sure there are no na values This function modifies data inplace input: dataframe return: none """ def data_cleaning(df): # Replace useful na with another value so it can be distinguished later for col in useful_na_cols: df[col].fillna("NA", inplace=True) # Checking if na values are all replaced if df[col].isna().any(): print(f"{col} na values not fully replaced") # Fill in real na data case by case and check for na afterwards # LotFrontage replace with mean df["LotFrontage"].fillna(df["LotFrontage"].mean().round(0), inplace=True) # MasVnrType replace with most popular type df["MasVnrType"].fillna(df["MasVnrType"].mode().tolist()[0], inplace=True) # MasVnrArea replace with mean df["MasVnrArea"].fillna(df["MasVnrArea"].mean().round(0), inplace=True) # Electrical replace with most popular type df["Electrical"].fillna(df["Electrical"].mode().tolist()[0], inplace=True) for col in real_na_cols: # Checking if na values are all replaced if df[col].isna().any(): print(f"{col} na values not fully replaced") alert_na(df) # ### 3. Function for feature engineering to make the best use of data """ feature_engineering: Given all the attributes, it is normal that some attributes can be combined to make meaning combo. Added feature brings additional context to the model and tends to improve the accuracy. This function modifies data inplace input: dataframe return: none """ def feature_engineering(df): # total df["TotalPorchArea"] = df[ ["WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch"] ].sum(axis=1) df["TotalBath"] = df[["BsmtFullBath", "BsmtHalfBath", "FullBath", "HalfBath"]].sum( axis=1 ) # booleans df["CentralAir"] = np.where( df["CentralAir"] == "N", 0, 1 ) # Street itself is a boolean df["hasBsmt"] = np.where(df["TotalBsmtSF"] == 0, 0, 1) df["has2ndFlr"] = np.where(df["2ndFlrSF"] == 0, 0, 1) df["hasFirePlace"] = np.where(df["FireplaceQu"] == "NA", 0, 1) df["hasAlley"] = np.where(df["Alley"] == "NA", 0, 1) df["hasFence"] = np.where(df["Fence"] == "NA", 0, 1) df["Street"] = np.where(df["Street"] == "Pave", 0, 1) # Street itself is a boolean df["hasPool"] = np.where(df["PoolArea"] == 0, 0, 1) df["hasMasVnr"] = np.where(df["MasVnrArea"] == 0, 0, 1) df["hasGarage"] = np.where(df["GarageArea"] == 0, 0, 1) df["hasPorch"] = np.where(df["TotalPorchArea"] == 0, 0, 1) # ### 4. Encoding categorical data, which preserves the order of categories """ rank_encode: Going through all description, there are hidden rankings despite categorical. For instance, ExterQual is split into the Highest Ex, Gd, TA, FA then the lowest Po. This meaning must be captured in a scale following the description. This preserves a lot of crucial info that cannot be randomly assigned a category This function modifies data inplace input: dataframe return: none """ def rank_encode(df): ranked_categorical = [ "Alley", "LotShape", "LandContour", "LotConfig", "LandSlope", "HouseStyle", "RoofStyle", "MasVnrType", "ExterQual", "ExterCond", "Foundation", "BsmtQual", "BsmtCond", "BsmtExposure", "BsmtFinType1", "HeatingQC", "Electrical", "KitchenQual", "Functional", "FireplaceQu", "GarageFinish", "GarageQual", "GarageCond", "PavedDrive", "PoolQC", "Fence", "SaleType", "SaleCondition", ] # Reading the orders from desc variable, assign rankings according cat_dict = dict() counter = 0 for line in desc: try: # column names only has ":" without any tabs if ":" in line and "\t" not in line: # set dict to be filled # resets zero every time new column comes along counter = 0 temp_col = line.split(":")[0] cat_dict[temp_col] = dict() # It means parse and fill in dictionary elif "\t" in line and "".join(e for e in line if e.isalnum()) != "": cat_dict[temp_col][line.split("\t")[0].strip()] = counter counter += 1 except: # skip in case abnormal line structure pass for cat in ranked_categorical: df[cat] = df[cat].map(cat_dict[cat]) # ### 5. Standardization of data """ normalize: Normalization to be performed to make sure regression model runs more with higher accuracy and converges faster It makes the data for each column direction has mean = 0 and standard deviation = 1 It then fillna since sometimes the data has only one value (i.e. only 0), and line 10 makes the division operation returns nan when dividing zero This function modifies data inplace input: dataframe return: none """ def normalize(df): df -= df.mean() df /= df.std() # Sometimes the data has only one value (i.e. only 0), # and it makes the above operation return nan, replace nan with zero df.fillna(0, inplace=True) assert df.mean().sum() < 1e-10, "dataframe not normalized" assert (df.std() - 1).sum() < 1e-10, "dataframe not normalized" # ### 6. Function for filtering top relevant factors """ getTopVar: this uses correlation matrix to list importance of each data against saleprice, then make absolute (since extreme negative values are also highly correlated), and then rank the values in descending order It picks the top nosOfTopVar and return as identified factors with highest importances in price prediction This function does not modify data inplace input: X: dataframe without target value y: Series of target value nosOfTopVar: int the number of top factors to be picked and to be returned return_corr: boolean value stating if correlation matrix is to be returned includeSalePrice: boolean value stating if the saleprice value is to be returned, true only if plot return: topVar: list of top factor that are the most correlated to saleprice as determined by correlation matrix corr_series: the correlation list with respect to sales price for top picked attributes """ def getTopVar(X, y, nosOfTopVar, return_corr=False, excludeSalePrice=True): corr_series = X.join(y).corr()["SalePrice"].sort_values(ascending=False) # Pick the top most relevant variable with respect to sale price, # if excludeSalePrice is False, False * 1 = 0 meaning includeSalePrice, # skipping the saleprice if excludeSalePrice is True since True * 1 = 1 topVar = ( corr_series.abs() .sort_values(ascending=False) .index[excludeSalePrice * 1 : nosOfTopVar + 1] ) if return_corr: return topVar, corr_series return topVar # ### 7. Function for plotting """ plot: ploting the graphs: 1. histogram of saleprice vs number count 2. a heapmap showing top contributing variables with respect with sale price 3. bar chart showing the actual values of topVar correlation with salePrice in detal 4. pairplot of each topVar against salePrice input: X: dataframe without target value y: Series of target value return: none """ def plot(X, y, nosOfTopVar): topVar = getTopVar(X, y, nosOfTopVar) # Sale price histogram plt.hist(y, edgecolor="red", bins=20) plt.title("SalePrice histogram") plt.xlabel("Price") plt.ylabel("Count") plt.plot() # heatmap topVar, corr_series = getTopVar( X, y, nosOfTopVar, return_corr=True, excludeSalePrice=False ) # SalePrice necessary for plot plot_corr_series = corr_series[topVar].sort_values(ascending=False) # pick the top vars on index and columns respectively top_corr_df = X.join(y).corr()[topVar].loc[topVar] # To sort the correlation matrix on x and y axis top_corr_df = ( top_corr_df.sort_values("SalePrice", ascending=False) .transpose() .sort_values("SalePrice", ascending=False) ) plt.figure(figsize=(12, 10)) sns.heatmap(top_corr_df, cmap="coolwarm", annot=True, annot_kws={"fontsize": 8}) plt.title( f"Heatmap of top {nosOfTopVar} nos. of factor's correlation with SalePrice" ) plt.show() # correlation ranking plot in bar char, reuses plot_corr_df plt.figure(figsize=(12, 6)) plt.grid() # cutting the first item since it must be saleprice, i.e. saleprice is 100% correlating with saleprice, which is not useful to plot plot_corr_series = plot_corr_series.iloc[1:] plt.bar(plot_corr_series.index, plot_corr_series.values) plt.xticks(rotation=90) plt.title(f"Top {nosOfTopVar} factor correlated to sale price") plt.xlabel("Factors") plt.ylabel("Deg of corr") plt.plot() # pairplot of topVar against Saleprice g = sns.pairplot(X.join(y), x_vars=["SalePrice"], y_vars=topVar, height=4) g.fig.suptitle("Pairplot of top factors", y=1.01) # ### 8. Contants definition TOPVAR = 20 TEST_SIZE = 0.2 MAX_TOP_VAR = 60 MAX_SEED = 50 random_seed = 0 # ### 9. Function for data Preprocessing """ prepare_data: gets the data (with all attribute and target value) and all other input, perform all preprocessing and return the desired value to be put into model input: input_df: dataframe to be preprocessed _test_size: portion of test size to all data to be analyzed _random_seed: the seed to perform train_test_split on input_df plot_graph """ def prepare_data(input_df, _test_size, _random_seed, plot_graph=False): _X_train, _X_test, _y_train, _y_test = train_test_split( input_df.iloc[:, :-1], input_df.iloc[:, -1], test_size=_test_size, random_state=_random_seed, ) # -------- Preparation X_train -------- data_cleaning(_X_train) feature_engineering(_X_train) # Only run ONCE rank_encode(_X_train) # Remove all categorical data _X_train = _X_train[_X_train.describe().columns] if plot_graph: plot(_X_train, _y_train, TOPVAR) normalize(_X_train) # Make sure again we do not have any na after mapping categorical values alert_na(_X_train) # -------- Preparation X_test -------- data_cleaning(_X_test) feature_engineering(_X_test) # Only run ONCE rank_encode(_X_test) # Remove all categorical data _X_test = _X_test[_X_test.describe().columns] normalize(_X_test) # Make sure again we do not have any na after mapping categorical values alert_na(_X_test) return _X_train, _X_test, _y_train, _y_test # ## B. Exploratory Data Analysis raw_train.info() raw_train.describe() _, _, _, _ = prepare_data(raw_train, TEST_SIZE, random_seed, plot_graph=True) # ## C. Modelling # ### 1. Linear Regression modelling # #### 1.1 Linear Regression modelling based on certain train_test_split linear = LinearRegression() random_seed = 42 # Use raw_train only as it is the only part of data that has corresponding true y value in it X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, random_seed) # Tunning parameters, so far to adjust to nos. of top factors to be included in regression calculation score_dict = dict() for i in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, i) _reg = linear.fit(X_train[topVar], y_train) score_dict[i] = list() score_dict[i].append(_reg.score(X_train[topVar], y_train)) score_dict[i].append(_reg.score(X_test[topVar], y_test)) score_df = pd.DataFrame.from_dict( score_dict, orient="index", columns=["train_R2", "test_R2"] ) plt.plot(score_df.index, score_df["train_R2"], label="Train R2") plt.plot(score_df.index, score_df["test_R2"], label="Test R2") plt.legend(loc="lower left") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("R2 score") plt.title("Number of top factor on accuracy of model with random seed = 42") plt.grid() plt.show() # #### 1.2 Regression modelling based on another train_test_split random_seed = 3 # Use raw_train only as it is the only part of data that has corresponding true y value in it X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, random_seed) # Tunning parameters, so far to adjust to nos. of top factors to be included in regression calculation score_dict = dict() for i in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, i) _reg = linear.fit(X_train[topVar], y_train) score_dict[i] = list() score_dict[i].append(_reg.score(X_train[topVar], y_train)) score_dict[i].append(_reg.score(X_test[topVar], y_test)) score_df = pd.DataFrame.from_dict( score_dict, orient="index", columns=["train_R2", "test_R2"] ) plt.plot(score_df.index, score_df["train_R2"], label="Train R2") plt.plot(score_df.index, score_df["test_R2"], label="Test R2") plt.legend(loc="lower left") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("R2 score") plt.title("Number of top factor on accuracy of model with random seed = 3") plt.grid() plt.show() # #### 1.3 Cross validation with different random seeds, averaging across all seeds for mean R2 score for train and test data for regression model _train_dict_linear = dict() _test_dict_linear = dict() _test_dict_linear_mae = dict() for j in range(1, MAX_TOP_VAR + 1): _train_dict_linear[j] = list() _test_dict_linear[j] = list() _test_dict_linear_mae[j] = list() # Looping through different train_test_split randomness to perform cross validation on accuracy score for i in range(MAX_SEED): X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, i) # Change population of score dataframe to get average later in plot for j in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, j) _reg = linear.fit(X_train[topVar], y_train) _train_dict_linear[j].append(_reg.score(X_train[topVar], y_train)) _test_dict_linear[j].append(_reg.score(X_test[topVar], y_test)) _test_dict_linear_mae[j].append( mean_absolute_error(y_test, _reg.predict(X_test[topVar])) ) # Taking the mean of train and test and get the mean overall_score_df_linear_avg = pd.concat( [ pd.DataFrame.from_dict(_train_dict_linear, orient="index").mean(axis=1), pd.DataFrame.from_dict(_test_dict_linear, orient="index").mean(axis=1), ], axis=1, ) overall_score_df_linear_avg.columns = ["overall_train_R2", "overall_test_R2"] plt.plot( overall_score_df_linear_avg.index, overall_score_df_linear_avg["overall_train_R2"], label="Overall Train R2", ) plt.plot( overall_score_df_linear_avg.index, overall_score_df_linear_avg["overall_test_R2"], label="Overall Test R2", ) plt.legend(loc="lower right") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overall R2 score with cross validation") plt.title( "Number of top factor on accuracy of linear regression model\nCross validation with different random seeds, averaging across all seeds for mean R2 score" ) plt.grid() plt.show() # Checking the degree of overfitting plt.plot( overall_score_df_linear_avg["overall_train_R2"] - overall_score_df_linear_avg["overall_test_R2"] ) plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overfitting-caused-divergence (R2 score)\nwith cross validation") plt.title( "Degree of overfitting (R2 score) with respect to\nnos. of top factor involved on linear regression" ) plt.grid() plt.show() # Checking the std of train test data accross all random seed cross validation overall_score_df_linear_std = pd.concat( [ pd.DataFrame.from_dict(_train_dict_linear, orient="index").std(axis=1), pd.DataFrame.from_dict(_test_dict_linear, orient="index").std(axis=1), ], axis=1, ) overall_score_df_linear_std.columns = ["overall_train_R2", "overall_test_R2"] plt.plot( overall_score_df_linear_std.index, overall_score_df_linear_std["overall_train_R2"], label="Overall Train R2", ) plt.plot( overall_score_df_linear_std.index, overall_score_df_linear_std["overall_test_R2"], label="Overall Test R2", ) plt.legend(loc="lower right") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overall R2 score standard deviation\nwith cross validation") plt.title( "Standard deviation of accuracy of linear regression model\nCross validation with different random seeds for R2 score" ) plt.grid() plt.show() plt.plot(pd.DataFrame.from_dict(_test_dict_linear_mae, orient="index").mean(axis=1)) plt.ylabel("MAE of price prediction") plt.xlabel("Nos. of top variable") plt.title( "Mean absolute error for SalePrice out-of-sample prediction\nLinear Regression" ) plt.grid() plt.show() # ### 2. Extreme Gradient Boost Regression (XG Boost) modelling, repeat with Linear Regresison modelling steps above xg_boost = GradientBoostingRegressor(random_state=0) random_seed = 42 # Use raw_train only as it is the only part of data that has corresponding true y value in it X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, random_seed) # Tunning parameters, so far to adjust to nos. of top factors to be included in regression calculation score_dict = dict() for i in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, i) _reg = xg_boost = GradientBoostingRegressor(random_state=0).fit( X_train[topVar], y_train ) score_dict[i] = list() score_dict[i].append(_reg.score(X_train[topVar], y_train)) score_dict[i].append(_reg.score(X_test[topVar], y_test)) score_df = pd.DataFrame.from_dict( score_dict, orient="index", columns=["train_R2", "test_R2"] ) plt.plot(score_df.index, score_df["train_R2"], label="Train R2") plt.plot(score_df.index, score_df["test_R2"], label="Test R2") plt.legend(loc="lower left") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("R2 score") plt.title("Number of top factor on accuracy of model with random seed = 42") plt.grid() plt.show() random_seed = 3 # Use raw_train only as it is the only part of data that has corresponding true y value in it X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, random_seed) # Tunning parameters, so far to adjust to nos. of top factors to be included in regression calculation score_dict = dict() for i in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, i) _reg = xg_boost = GradientBoostingRegressor(random_state=0).fit( X_train[topVar], y_train ) score_dict[i] = list() score_dict[i].append(_reg.score(X_train[topVar], y_train)) score_dict[i].append(_reg.score(X_test[topVar], y_test)) score_df = pd.DataFrame.from_dict( score_dict, orient="index", columns=["train_R2", "test_R2"] ) plt.plot(score_df.index, score_df["train_R2"], label="Train R2") plt.plot(score_df.index, score_df["test_R2"], label="Test R2") plt.legend(loc="lower left") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("R2 score") plt.title("Number of top factor on accuracy of model with random seed = 3") plt.grid() plt.show() # ===================================================================================================== _train_dict_xg = dict() _test_dict_xg = dict() _test_dict_xg_mae = dict() for j in range(1, MAX_TOP_VAR + 1): _train_dict_xg[j] = list() _test_dict_xg[j] = list() _test_dict_xg_mae[j] = list() # Looping through different train_test_split randomness to perform cross validation on accuracy score for i in range(MAX_SEED): X_train, X_test, y_train, y_test = prepare_data(raw_train, TEST_SIZE, i) # Change population of score dataframe to get average later in plot for j in range(1, MAX_TOP_VAR + 1): topVar = getTopVar(X_train, y_train, j) _reg = xg_boost = GradientBoostingRegressor(random_state=0).fit( X_train[topVar], y_train ) _train_dict_xg[j].append(_reg.score(X_train[topVar], y_train)) _test_dict_xg[j].append(_reg.score(X_test[topVar], y_test)) _test_dict_xg_mae[j].append( mean_absolute_error(y_test, _reg.predict(X_test[topVar])) ) # Taking the mean of train and test and get the mean overall_score_df_xg_avg = pd.concat( [ pd.DataFrame.from_dict(_train_dict_xg, orient="index").mean(axis=1), pd.DataFrame.from_dict(_test_dict_xg, orient="index").mean(axis=1), ], axis=1, ) overall_score_df_xg_avg.columns = ["overall_train_R2", "overall_test_R2"] plt.plot( overall_score_df_xg_avg.index, overall_score_df_xg_avg["overall_train_R2"], label="Overall Train R2", ) plt.plot( overall_score_df_xg_avg.index, overall_score_df_xg_avg["overall_test_R2"], label="Overall Test R2", ) plt.legend(loc="lower right") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overall R2 score with cross validation") plt.title( "Number of top factor on accuracy of XG Boost regression model\nCross validation with different random seeds, averaging across all seeds for mean R2 score" ) plt.grid() plt.show() # Checking the degree of overfitting plt.plot( overall_score_df_xg_avg["overall_train_R2"] - overall_score_df_xg_avg["overall_test_R2"] ) plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overfitting-caused-divergence (R2 score)\nwith cross validation") plt.title( "Degree of overfitting (R2 score) with respect to\nnos. of top factor involved on XG Boost regression" ) plt.grid() plt.show() # Checking the std of train test data accross all random seed cross validation overall_score_df_xg_std = pd.concat( [ pd.DataFrame.from_dict(_train_dict_xg, orient="index").std(axis=1), pd.DataFrame.from_dict(_test_dict_xg, orient="index").std(axis=1), ], axis=1, ) overall_score_df_xg_std.columns = ["overall_train_R2", "overall_test_R2"] plt.plot( overall_score_df_xg_std.index, overall_score_df_xg_std["overall_train_R2"], label="Overall Train R2", ) plt.plot( overall_score_df_xg_std.index, overall_score_df_xg_std["overall_test_R2"], label="Overall Test R2", ) plt.legend(loc="lower right") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overall R2 score std\nwith cross validation") plt.title( "Standard deviation of accuracy of XS Boost regression model\nCross validation with different random seeds for R2 score" ) plt.grid() plt.show() plt.plot(pd.DataFrame.from_dict(_test_dict_xg_mae, orient="index").mean(axis=1)) plt.ylabel("MAE of price prediction") plt.xlabel("Nos. of top variable") plt.title( "Mean absolute error for SalePrice out-of-sample prediction\nXG Boost Regression" ) plt.grid() plt.show() # ### 3. Cross model comparison plt.plot(overall_score_df_linear_avg["overall_test_R2"], label="Linear") plt.plot(overall_score_df_xg_avg["overall_test_R2"], label="XG Boost") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Overall R2 score with cross validation") plt.title( "Cross-validated average for out-of-sample R2 score\nfor Linear and XG Boost Regression" ) plt.legend(loc="lower right") plt.grid() plt.show() plt.plot(overall_score_df_linear_std["overall_test_R2"], label="Linear") plt.plot(overall_score_df_xg_std["overall_test_R2"], label="XG Boost") plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("Std of R2 score with cross validation") plt.title( "Cross-validated standard deviation for out-of-sample R2 score\nfor Linear and XG Boost Regression" ) plt.legend(loc="lower right") plt.grid() plt.show() plt.plot( pd.DataFrame.from_dict(_test_dict_linear_mae, orient="index").mean(axis=1), label="Linear", ) plt.plot( pd.DataFrame.from_dict(_test_dict_xg_mae, orient="index").mean(axis=1), label="XG Boost", ) plt.xlabel("Number of factor (most relevant) used in model") plt.ylabel("MAE score with cross validation") plt.title( "Cross-validated average for out-of-sample MAE score\nfor Linear and XG Boost Regression" ) plt.legend(loc="lower right") plt.grid() plt.show()
import riiideducation env = riiideducation.make_env() import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import dask.dataframe as dd from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split dtypes = { "row_id": "int64", "timestamp": "int64", "user_id": "int32", "content_id": "int16", "content_type_id": "boolean", "task_container_id": "int16", "user_answer": "int8", "answered_correctly": "int8", "prior_question_elapsed_time": "float32", "prior_question_had_explanation": "boolean", } # Training data is in the competition dataset as usual # train_df = pd.read_csv('../input/riiid-test-answer-prediction/train.csv', dtype=dtypes) train_df = dd.read_csv( "../input/riiid-test-answer-prediction/train.csv", dtype=dtypes ).compute() train_df.head() y = train_df[["answered_correctly"]] X = train_df.drop(["row_id", "answered_correctly"], axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15) model = KNeighborsClassifier(n_neighbors=3) model.fit(X_test, y_test) iter_test = env.iter_test() for test_df, sample_prediction_df in iter_test: test_df["answered_correctly"] = model.predict(test_df.drop(["row_id"])) env.predict(test_df[["row_id", "answered_correctly"]])
# # Celeb Faces Mediapipe Images # Mediapipe face detection import cv2 import os import math import random import numpy as np import pandas as pd import matplotlib.pyplot as plt import mediapipe as mp mp_face_detection = mp.solutions.face_detection mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles paths0 = [] for dirname, _, filenames in os.walk( "/kaggle/input/celeba-dataset/img_align_celeba/img_align_celeba" ): for filename in filenames[0:10]: if filename[-4:] == ".jpg": paths0 += [(os.path.join(dirname, filename))] t += 1 print(paths0[0:3]) paths = random.sample(paths0, 2) paths2 = [] for i, path in enumerate(paths): if i % 10 == 0: print("i=", i) file = path.split("/")[-1] label = path.split("/")[-2] image = cv2.imread(path) image = cv2.resize(image, dsize=(400, 400)) with mp_face_detection.FaceDetection( model_selection=1, min_detection_confidence=0.2 ) as face_detection: try: results = face_detection.process(cv2.flip(image, 1)) if results.detections: image_hight, image_width, _ = image.shape annotated_image = cv2.flip(image.copy(), 1) mp_drawing.draw_landmarks( annotated_image, results.detections, mp_face_detection.FaceKeyPoint.NOSE_TIP, mp_drawing_styles.get_default_pose_landmarks_style(), ) anno_img = cv2.flip(annotated_image, 1) cv2.imwrite(file, anno_img) paths2 += [file] except: continue selected_num = random.sample(range(len(data)), 9) fig, axes = plt.subplots(3, 3, figsize=(10, 10)) for i, ax in enumerate(axes.flat): j = selected_num[i] img_path = data.iloc[j, 0] img = plt.imread(img_path) ax.imshow(img) ax.axis("off") plt.tight_layout() plt.show() #!rm *
# This notebook deals with problems from the structy.net platform # ## 0. Introduction # ### max value # Write a function, max_value, that takes in list of numbers as an argument. The function should return the largest number in the list. # Solve this without using any built-in list methods. # You can assume that the list is non-empty. # **test_00:** # > max_value([4, 7, 2, 8, 10, 9]) # -> 10 # **test_01:** # > max_value([10, 5, 40, 40.3]) # -> 40.3 # **test_02:** # > max_value([-5, -2, -1, -11]) # -> -1 # **test_03:** # > max_value([42]) # -> 42 # **test_04:** # > max_value([1000, 8]) # -> 1000 # **test_05:** # > max_value([1000, 8, 9000]) # -> 9000 # **test_06:** # > max_value([2, 5, 1, 1, 4]) # -> 5 def max_value(nums): max = float("-inf") for i in nums: if i > max: max = i return max # ### is prime # Write a function, is_prime, that takes in a number as an argument. The function should return a boolean indicating whether or not the given number is prime. # A prime number is a number that is only divisible by two distinct numbers: 1 and itself. # For example, 7 is a prime because it is only divisible by 1 and 7. For example, 6 is not a prime because it is divisible by 1, 2, 3, and 6. # You can assume that the input number is a positive integer. # **test_00:** # > is_prime(2) # -> True # **test_01:** # > is_prime(3) # -> True # **test_02:** # > is_prime(4) # -> False # **test_03:** # > is_prime(5) # -> True # **test_04:** # > is_prime(6) # -> False # **test_05:** # > is_prime(7) # -> True # **test_06:** # > is_prime(8) # -> False # **test_07:** # > is_prime(25) # -> False # **test_08:** # > is_prime(31) # -> True # **test_09:** # > is_prime(2017) # -> True # **test_10:** # > is_prime(2048) # -> False # **test_11:** # > is_prime(1) # -> False # **test_12:** # > is_prime(713) # -> False # from math import sqrt, floor def is_prime(n): if n <= 1: isprime = False else: isprime = True for i in range(2, floor(sqrt(n)) + 1): if n % i == 0: isprime = False return isprime # ## 1. Array and String # ### uncompress # Write a function, uncompress, that takes in a string as an argument. The input string will be formatted into multiple groups according to the following pattern: # for example, '2c' or '3a'. # The function should return an uncompressed version of the string where each 'char' of a group is repeated 'number' times consecutively. You may assume that the input string is well-formed according to the previously mentioned pattern. # **test_00:** # > uncompress("2c3a1t") # -> 'ccaaat' # # **test_01:** # > uncompress("4s2b") # -> 'ssssbb' # # **test_02:** # > uncompress("2p1o5p") # -> 'ppoppppp' # # **test_03:** # > uncompress("3n12e2z") # -> 'nnneeeeeeeeeeeezz' # # **test_04:** # > uncompress("127y") # -> 'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy.... # First solution def uncompress(s): str = "" num = "" for i in range(len(s)): if s[i].isnumeric(): num += s[i] else: str += s[i] * int(num) num = "" return str # Second Solution def uncompress(s): str = "" j = 0 for i in range(len(s)): if s[i].isalpha(): j = int(s[j:i]) str += j * s[i] j = i + 1 return str
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session ## Importing required libraries import numpy as np, gc import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as mpatches import sklearn import seaborn as sns from sklearn.metrics import confusion_matrix import random from sklearn.model_selection import KFold, GroupKFold from xgboost import XGBClassifier from sklearn.metrics import f1_score import pandas as pd import pyarrow.parquet as pq # Load the parquet file into a PyArrow table table = pq.read_table("/kaggle/input/how-to-get-32gb-ram/train.parquet") # Convert the PyArrow table to a Pandas dataframe train_df = table.to_pandas() train_df.describe() # Rename the columns in the dataframe using the labels vector # labels = ['label_1', 'label_2', 'label_3', ...] # replace with your own labels # df.columns = labels train_df.columns ROOMS = train_df.room_fqid.unique() print("Number of rooms:", len(ROOMS)) print(ROOMS) len(train_df) train_df.shape[1] train_df.columns train_df = train_df.drop(columns=["fullscreen", "hq", "music"]) train_df.columns train_df["event_name"].unique()
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from statsmodels.tsa.seasonal import seasonal_decompose import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tqdm import tqdm from math import ceil from itertools import product # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Functions # Several attempts of preprocess train_detailed.csv haven't reveled any advatages of using detailed table. Train.csv was used for training. There are function that I used for analysis of traing_detailed.csv def df_modification(df): """ Modification of primary dataframe with potential useful values input - pandas dataframe output - pandas dataframe with added columns """ # choosing the columns with dates subset = [x for x in df.columns if "Date" in x] # Deleting -0400 string and changing format to datetime df[subset] = df[subset].applymap(lambda x: x.replace(" -0400", "")) df[subset] = df[subset].apply(lambda x: pd.to_datetime(x), axis=1) # Selecting the category labeled as InBed by the device analyser df = df.query('value == "HKCategoryValueSleepAnalysisInBed"') # Column with sleeping hours as time difference of end and start df["sh"] = (df["endDate"] - df["startDate"]).dt.total_seconds() / 3600 # The difference between endDate and startDate in the next row. It could identify regions for sleeping hours combinations df["h_next"] = ( np.roll(df["startDate"], -1) - df["endDate"] ).dt.total_seconds() / 3600 df.loc[df.index[-1], "h_next"] = 0 # Label if next row has the same device. It could be useful with combination of short sleeping hours df["same_prev_dev"] = np.roll(df["sourceName"], 1) == df["sourceName"] # Label regions that should be combined together df["combine"] = False df.loc[ df.query( "sh <= 5 and same_prev_dev == True and h_next < 2 and h_next > 0" ).index, "combine", ] = True return df def plotting_colors(df): """ Simple function to observe the order of devices in unsorted dataframe. It could be useful for understanding if signal from two different diveces came to analser. In that case data should be filtered """ plt.scatter( y=[_ for _ in range(df.shape[0])], x=[1] * df.shape[0], c=df["sourceName"] .replace(dict(zip(df["sourceName"].unique(), ["yellow", "black", "blue"]))) .values, ) plt.show def one_hot(df): """ One hot encoding of not Data values """ return pd.get_dummies(df.loc[:, ["Date" not in x for x in df.columns]]) def decompose(df, period): """ Seasonal decomposion of sleeping hours """ res = seasonal_decompose(df["sleep_hours"].values, period=period) res.plot() plt.show() def topNcorr(df, N): """ Fuction return top N correlations with 'sleeping hours' in onehot dataframe """ df_corr = (df.join(df_onehot)).corr() return df_corr["sleep_hours"].sort_values(ascending=False, key=abs)[1 : N + 1] def cond_plot(window, out_vals, conv, shuffle, name): class_preds = prediction_generation( df_data, df_submission, window=window, out_vals=out_vals, conv=conv, shuffle=shuffle, ) class_preds.training(name) class_preds.prediction(name) class_preds.sub = class_preds.sub.assign( window=window, out_vals=out_vals, conv=conv, shuffle=shuffle ) return class_preds.sub class prediction_generation: """The class for datasets generation, choosing of model hyperparameters and submission data generation""" def __init__( self, df_data, df_submission, scale=True, window=100, out_vals=1, train_val=0.8, loss="mse", conv=False, epochs=100, shuffle=False, ): """ window - lenght of sample for prefiction next values out_val - the number of values to predict train_val - the part of train dataset compared to the whole data loss - loss function during training conv - using convolution before LSTM part batch - batch size durin training """ self.data = df_data self.sub = df_submission self.scale = scale self.window = window self.out_vals = out_vals self.train_val = train_val self.loss = loss self.epochs = epochs self.shuffle = shuffle self.conv = conv self.train, self.val = self.dataset() self.model = self.get_model() self.best_weights = self.model.get_weights() # will be chosen during traning def dataset(self): """ Creation of train and validation datasets. """ self.data_arr = self.data["sleep_hours"].values if self.scale: self.scale_factor = self.data["sleep_hours"].max() self.data_arr /= self.scale_factor # Making windows of data throug the whole array X, y = [], [] for i in range(len(self.data_arr) - self.window - self.out_vals + 1): X.append(self.data_arr[i : i + self.window].reshape(self.window, 1)) y.append(self.data_arr[i + self.window : i + self.window + self.out_vals]) dataset = tf.data.Dataset.from_tensor_slices((X, y)) self.train_ln = round(len(X) * self.train_val) self.val_ln = len(X) - self.train_ln if self.shuffle: dataset = dataset.shuffle(len(X)) train = dataset.take(self.train_ln).batch(self.train_ln) val = dataset.skip(self.train_ln).batch(self.val_ln) return train, val def get_model(self): input_model = tf.keras.Input(shape=(self.window, 1)) if self.conv: def conv_dil(x, dilation): return tf.keras.layers.Conv1D( 1, kernel_size=7, dilation_rate=dilation, padding="same", activation="relu", data_format="channels_last", )(x) concat = tf.keras.layers.Concatenate()( [conv_dil(input_model, dil) for dil in [1, 7, 31, 50]] ) out = tf.keras.layers.Dropout(0.1)(concat) out = tf.keras.layers.Dense(1)(out) else: out = input_model out = tf.keras.layers.LSTM(500)(out) out = tf.keras.layers.Dropout(0.1)(out) out = tf.keras.layers.Dense(self.out_vals)(out) model = tf.keras.models.Model(input_model, out) model.compile(optimizer="adam", loss=tf.keras.losses.MeanSquaredError()) return model def training(self, name): """Training model""" val_loss = self.model.evaluate(self.val, verbose=0) best_epoch = 0 for epoch in tqdm( range(self.epochs), position=0, leave=True, desc=f"training {name}" ): history = self.model.fit( self.train, validation_data=self.val, epochs=1, verbose=0 ) if history.history["val_loss"][0] < val_loss: val_loss = history.history["val_loss"][0] self.best_weights = self.model.get_weights() best_epoch = epoch + 1 self.model.set_weights(self.best_weights) print( f"The best results was achieved on the {best_epoch} epoch with val_loss {val_loss}" ) def prediction(self, name): y_pred = [] # data_arr = self.data['sleep_hours'].values / self.data['sleep_hours'].max() fst_X = self.data_arr[-self.window :].reshape(1, self.window, 1) n_preds = ceil(self.sub.shape[0] / self.out_vals) for _ in tqdm( range(n_preds), position=0, leave=True, desc=f"prediction {name}" ): pred = self.model.predict(fst_X, verbose=0) y_pred.append(pred) fst_X = np.concatenate([fst_X.flatten(), pred.flatten()])[ -self.window : ].reshape(1, self.window, 1) self.sub["sleep_hours"] = np.array(y_pred).flatten()[: self.sub.shape[0]] if self.scale: self.sub["sleep_hours"] *= self.scale_factor # ### Dataset creation # Dataset was created from train.csv file # Once it was approximetly choosen parameters of network in version 3 of this notebook, next step is to choose s way of preprocessing data # There are many ways: # # Use raw data # # Diveded by two outliers # # Replace outliers with ditribution of not-outliers data # # Use difference of this and next day # # Substract mean of data # # ... # Let's try saveral of them and to see if we could see the difference # Reading the dataframe df_data = pd.read_csv("../input/kaggle-pog-series-s01e04/train.csv") df_submission = pd.read_csv("../input/kaggle-pog-series-s01e04/sample_submission.csv") def cleaning_data(df): df["sleep_hours"] = df["sleep_hours"].apply(lambda x: x / 2 if x > 10 else x) q25, q75 = np.percentile(df["sleep_hours"], 25), np.percentile( df["sleep_hours"], 75 ) iqr = q75 - q25 lower, upper = q25 - 1.5 * iqr, q75 + 1.5 * iqr df["outlier"] = df["sleep_hours"].apply(lambda x: x < lower or x > upper) mean, std = ( df.query("outlier == False")["sleep_hours"].describe()["mean"], df.query("outlier == True")["sleep_hours"].describe()["std"], ) df.loc[df.query("outlier == True").index, "sleep_hours"] = mean df = df.drop("outlier", axis=1) return df data_option = {} data_option["raw"] = df_data data_option["diff"] df_diff = pd.read_csv("../input/kaggle-pog-series-s01e04/train.csv") df_diff["sleep_hours"] = df_data["sleep_hours"].diff() df_diff = df_diff.dropna() df_data_clean = cleaning_data(df_data) df_data_clean.plot() pred = prediction_generation( df_data_clean, df_submission, scale=True, window=1000, out_vals=100, conv=True, shuffle=True, epochs=250, ) pred.training("diff1") pred.prediction("diff1") pred.sub.plot() pred.sub.to_csv("sub11.csv", index=False) def cond_plot_cleaning( name, df_data, df_submission=df_submission, window=1000, out_vals=10, conv=True, shuffle=False, ): class_preds = prediction_generation( df_data, df_submission, window=window, out_vals=out_vals, conv=conv, shuffle=shuffle, ) class_preds.training(name) class_preds.prediction(name) class_preds.sub = class_preds.sub.assign(name=name) return class_preds.sub # df_data = cleaning_data(df_data) vals_product = product( [10, 30, 100, 300, 1000], [10, 30, 100, 300, 1000], [True, False], [True, False] ) total = len(list(vals_product)) vals_product = product( [10, 30, 100, 300, 1000], [10, 30, 100, 300, 1000], [True, False], [True, False] ) dataframe_list = [] for i, (window, out_vals, conv, shuffle) in enumerate(vals_product): name = ( f"{i+1}/{total} win_{window} out_vals_{out_vals} conv_{conv} shuffle_{shuffle}" ) dataframe_list.append(cond_plot(window, out_vals, conv, shuffle, name)) df_res = pd.concat(dataframe_list) df_res.to_csv("results.csv", index=False) df_res["index"] = list(range(419)) * 100 g = sns.FacetGrid(data=df_res.query("shuffle == True"), col="window", row="out_vals") g.map_dataframe(sns.pointplot, y="sleep_hours", x="index", hue="conv") g = sns.FacetGrid(data=df_res.query("shuffle == False"), col="window", row="out_vals") g.map_dataframe(sns.pointplot, y="sleep_hours", x="index", hue="conv") df_res.query("shuffle == False and conv == True and window == 1000 and out_vals == 10")[ ["date", "sleep_hours"] ].to_csv("submission9.csv", index=False)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objects as go import plotly.express as px from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import xgboost as xgb from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.metrics import ( confusion_matrix, accuracy_score, recall_score, precision_score, f1_score, ) from sklearn.metrics import classification_report from sklearn.preprocessing import LabelEncoder import statsmodels.api as sm from scipy import stats from sklearn.model_selection import cross_val_score plt.rcParams["font.sans-serif"] = ["SimHei"] plt.rcParams["axes.unicode_minus"] = False # 繪製sankey plot function def get_sankey_df(df, cat_cols=[], value_cols=""): colorNumList = [] labelList = [] for catCol in cat_cols: labelListTemp = list(set(df[catCol].values)) colorNumList.append(len(labelListTemp)) labelList = labelList + labelListTemp labelList = list(dict.fromkeys(labelList)) for i in range(len(cat_cols) - 1): if i == 0: sourceTargetDf = df[[cat_cols[i], cat_cols[i + 1], value_cols]] sourceTargetDf.columns = ["source", "target", "count"] else: tempDf = df[[cat_cols[i], cat_cols[i + 1], value_cols]] tempDf.columns = ["source", "target", "count"] sourceTargetDf = pd.concat([sourceTargetDf, tempDf]) sourceTargetDf = ( sourceTargetDf.groupby(["source", "target"]) .agg({"count": "sum"}) .reset_index() ) # add index for source-target pair sourceTargetDf["sourceID"] = sourceTargetDf["source"].apply( lambda x: labelList.index(x) ) sourceTargetDf["targetID"] = sourceTargetDf["target"].apply( lambda x: labelList.index(x) ) return {"label_list": labelList, "df": sourceTargetDf} # # About # 本次根據 IBM Watson Marketing Customer Value Data 做分析,主要有兩個目的, # 1. 用戶畫像描繪 # - 用戶畫像能夠幫助利益相關者了解自身產品的使用者特性與狀況。 # - 精準行銷,不同產品類型可能有不同受眾。 # - 透過洞察,看出客戶的潛藏需求,提供更貼心、更好的服務。 # 2. 再續訂預測 # - 以機器學習模型建立分類模型,幫助判斷當前客戶是否會再續訂目前的服務或方案。 # - 提早看出客戶再續約意願,可以過濾出無續約意願的客戶,把成本投入其他高價值客戶身上。 # - 針對續約意願高的客戶,推出更客製化服務,增加黏著度。 # ## 變數說明 # - 客戶編號, customer id # - 州, 居住的州 # - Customer Lifetime Value, 客戶的生命週期價值 # - Response, 是否願意續約(是,否) # - Coverage, 產品覆蓋範圍(基本、進階、高級) # - Education, 教育程度(高中或以下, 大學, 碩士, 博士) # - Effective To Date, 生效日期(保單) # - EmploymentStatus, 就業程度(就業中, 待業, 病假, 殘疾人士, 退休) # - Gender, 性別 # - Income, 年收入 # - Location Code, 位置代碼(郊區, 鄉村, 城市) # - Mariage Status, 婚姻狀況(單身, 已婚, 離婚) # - Monthly Premium Auto, 每月平均繳納金額 # - Months Since Last Claim, 自上次索賠以來的月數 # - Months Since Policy Inception, 自產品生效以來的月數 # - Number of Open Complaints, 未解決的索賠數量 # - Number of Policies, 保單數量 # - Policy Type, 產品類型(個人, 公司, 特殊) # - Policy 各產品類型的級別(L1, L2, L3) # - Renew Offer Type 續訂邀約類型(offer 1,offer 2,offer 3,offer 4) # - Sales Channel 銷售渠道(代理商、分行, 客服中心, 網路) # - Total Claim Amount 累積索賠金額 # - Vehicle Class 車輛類型(四門, 雙門, SUV, 跑車, 豪華SUV, 豪車) # - Vehicle Size 車輛類型(大, 中, 小) # # 載入套件、數據 df = pd.read_csv( "../input/ibm-watson-marketing-customer-value-data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv" ) df.head() df.shape pd.set_option("display.max_columns", None) df.head() # # Part 1. 用戶畫像分析 Persona # ## 資料清洗與檢驗 # 此數據無重複值或重複客戶,也沒發現遺失值。 # chech if there is any duplicated customer df["Customer"].duplicated().any() # percentage of missing value df.apply(lambda x: sum(x.isnull()) / len(x), axis=0) # ### 離群值檢驗 # 以盒鬚圖方法檢驗離群值,設定資料值小於 Q1 - 3xIQR 或大於 Q3 + 3xIQR 為離群值 # 有部分變數存在離群值,後續依情形排除。 def outlier_dectect(df, column, cutoff_rate): global lower, upper q1, q3 = np.quantile(df[column], 0.25), np.quantile(df[column], 0.75) IQR = q3 - q1 cut_off = IQR * cutoff_rate lower, upper = q1 - cut_off, q3 + cut_off print("The lower bound value is", lower) print("The upper bound value is", upper) df1 = df[df[column] > upper] df2 = df[df[column] < lower] return print("Total number of outliers are", df1.shape[0] + df2.shape[0]) df_remove_outlier = df.copy() df_remove_outlier.loc[ df_remove_outlier["Customer Lifetime Value"] >= 16414.04, "Customer Lifetime Value" ] = 16414 df_remove_outlier.loc[ df_remove_outlier["Monthly Premium Auto"] >= 170.5, "Monthly Premium Auto" ] = 170.5 df_remove_outlier.loc[ df_remove_outlier["Monthly Premium Auto"] <= 6.5, "Monthly Premium Auto" ] = 6.5 df_remove_outlier.loc[ df_remove_outlier["Total Claim Amount"] >= 960.3997, "Total Claim Amount" ] = 960.3997 out_index = df[ (df["Customer Lifetime Value"] >= 16414.04) | (df["Monthly Premium Auto"] >= 170.5) | (df["Monthly Premium Auto"] <= 6.5) | (df["Total Claim Amount"] >= 960.3997) ].index df_remove_outlier = df.drop(axis=0, labels=out_index) for col in df.columns[(df.dtypes == "int64") | (df.dtypes == "float64")]: print(f"Outlier detection for `{col}`:") outlier_dectect(df, col, 1.5) print("\n") # ## Quick EDA # ### 客戶性別 # 兩性別比例無明顯差異 gender_df = df.groupby("Gender")["Customer"].count() gender_df = gender_df.to_frame() gender_df.plot(kind="pie", subplots=True, autopct="%1.1f%%") plt.title("Customer gender distribution") plt.show() # ### 客戶居住地區 # 多數客戶選擇居住在郊區,又以California最多人居住。 loc_df = df.groupby(["Location Code", "State"])["Customer"].count() loc_df = loc_df.to_frame() loc_df = loc_df.reset_index() loc_data_for_sankey = get_sankey_df(loc_df, ["Location Code", "State"], "Customer") colors = [ "rgb(249, 226, 175)", "rgb(0, 159, 189)", "rgb(33, 0, 98)", "rgb(119, 3, 123)", "rgb(250, 112, 112)", "rgb(251, 242, 207)", "rgb(198, 235, 197)", "rgb(178, 164, 255)", ] fig = go.Figure( data=[ go.Sankey( node=dict( pad=15, thickness=20, line=dict(color="black", width=0.5), label=loc_data_for_sankey["label_list"], color=colors, ), link=dict( source=loc_data_for_sankey["df"]["sourceID"], target=loc_data_for_sankey["df"]["targetID"], value=loc_data_for_sankey["df"]["count"], ), ) ] ) fig.update_layout(title_text="Sankey diagram - 客戶居住地區分佈", font_size=15, width=600) fig.show() # ### 客戶教育程度 # 有碩士、博士學歷的是少數,大多客戶為學士或以下的學歷。 edu_df = df.groupby("Education")["Customer"].count() edu_df = edu_df.to_frame().reset_index() edu_df fig = px.bar(edu_df, x="Education", y="Customer") fig.update_layout( title_text="客戶教育程度分佈", barmode="stack", xaxis={"categoryorder": "total descending"}, width=600, ) fig.show() # ### 持有汽車種類 # 4門、雙門、SUV占多數的中型車占多數。 # vehicel_df = df.groupby(["Vehicle Size", "Vehicle Class"])["Customer"].count() vehicel_df = vehicel_df.to_frame() vehicel_df = vehicel_df.reset_index() vehicel_df fig = px.histogram( vehicel_df, x="Vehicle Class", y="Customer", color="Vehicle Size", barmode="group" ) fig.update_layout( title_text="客戶持有汽車類型分佈", barmode="stack", xaxis={"categoryorder": "total descending"}, width=600, ) fig.show() # ### 收入 # 收入的分配極度右偏,有2.5成客戶收入不到 2000美元 fig = px.histogram(df, x="Income", width=600) fig.show() # ### 婚姻狀態 marriage_df = df.groupby("Marital Status")["Customer"].count() marriage_df = marriage_df.to_frame().reset_index() fig = px.bar(marriage_df, x="Marital Status", y="Customer") fig.update_layout( title_text="客戶婚姻狀態分佈", barmode="stack", xaxis={"categoryorder": "total descending"}, width=600, ) fig.show() # ### 職業類型 employstatus_df = df.groupby("EmploymentStatus")["Customer"].count() employstatus_df = employstatus_df.to_frame().reset_index() fig = px.bar(employstatus_df, x="EmploymentStatus", y="Customer") fig.update_layout( title_text="客戶職業類型分佈", barmode="stack", xaxis={"categoryorder": "total descending"}, width=600, ) fig.show() # 因為這些類別變數是有序性的,也有部分連續型變數嚴重右偏,故以pd.factorize給予所有變數label encoding,再以Spearman觀察所有變數的相關性 df_corr = df.drop(["Response", "Customer"], axis=1).apply(lambda x: pd.factorize(x)[0]) df_corr = df_corr.corr("spearman").round(3) # 從相關性可發現一些有趣的事實: # - 顧客終身價值 與**收入**、**累積索賠金額**有低至中度相關 # - 累積索賠金額 與**客戶地區**有中度相關 # - 每月平均繳納金額 與**產品涵蓋類型**、**持有汽車種類**有中度相關 plt.figure(figsize=(15, 12)) ax = sns.heatmap(df_corr, annot=True, cmap="Blues") plt.title("Spearman correlation between variables") plt.show() # 顧客終身價值(CLV)能夠幫助我們決定多少成本應該投入在這些客戶身上,結合產品生效以來月數(Months Since Policy Inception)可以看客戶的忠誠度,接下來以兩變數做市場區分 df_cus_seg = df.copy() df_cus_seg["CLV seg"] = df_cus_seg["Customer Lifetime Value"].apply( lambda x: "high" if x > df_cus_seg["Customer Lifetime Value"].median() else "low" ) df_cus_seg["policy duration seg"] = df_cus_seg["Months Since Policy Inception"].apply( lambda x: "high" if x > df_cus_seg["Months Since Policy Inception"].median() else "low" ) fig = df_cus_seg.loc[ (df_cus_seg["CLV seg"] == "high") & (df_cus_seg["policy duration seg"] == "high") ].plot.scatter( x="Months Since Policy Inception", y="Customer Lifetime Value", c="red", logy=True ) df_cus_seg.loc[ (df_cus_seg["CLV seg"] == "low") & (df_cus_seg["policy duration seg"] == "high") ].plot.scatter( ax=fig, x="Months Since Policy Inception", y="Customer Lifetime Value", c="blue", logy=True, ) df_cus_seg.loc[ (df_cus_seg["CLV seg"] == "high") & (df_cus_seg["policy duration seg"] == "low") ].plot.scatter( ax=fig, x="Months Since Policy Inception", y="Customer Lifetime Value", c="yellow", logy=True, ) df_cus_seg.loc[ (df_cus_seg["CLV seg"] == "low") & (df_cus_seg["policy duration seg"] == "low") ].plot.scatter( ax=fig, x="Months Since Policy Inception", y="Customer Lifetime Value", c="grey", logy=True, ) fig.set_ylabel("log(CLV)") fig.set_xlabel("Months Since Policy Inception") fig.set_title("Customer Segmentation - Based on CLV and Months Since Policy Inception") plt.show() response_rate_by_cus_seg = ( df_cus_seg.loc[df_cus_seg["Response"] == "Yes"] .groupby(["CLV seg", "policy duration seg"]) .count()["Customer"] / df_cus_seg.groupby(["CLV seg", "policy duration seg"]).count()["Customer"] ) response_rate_by_cus_seg = ( response_rate_by_cus_seg.to_frame() .reset_index() .rename(columns={"Customer": "Response (%)"}) ) response_rate_by_cus_seg["Response (%)"] = ( response_rate_by_cus_seg["Response (%)"] * 100 ) # 將客戶分成4群後,依各組分別觀察其回應率,可以看到保單生效月數長,其回應率較高,也就是說長期投保的客戶有較高的回應率。 # 另外,低終身價值但是保單生效月數長的客戶有最高的回應率。 fig = px.bar( response_rate_by_cus_seg, x="CLV seg", y="Response (%)", color="policy duration seg", width=600, barmode="group", title="分群後 - 客戶回應率", ) fig.show() # ### 客戶分群 - 基於 DBSCAN for_cluster_X = df.drop(axis=1, labels=["Customer", "Response", "Effective To Date"]) famd = FAMD(n_components=3).fit(for_cluster_X) famd_X = famd.row_coordinates(for_cluster_X) famd_X.columns = ["comp1", "comp2", "comp3"] model = KMeans(n_clusters=3, random_state=42).fit(famd_X) famd_X["cluster"] = pd.Categorical(model.labels_) famd_X["cluster"].value_counts() sns.scatterplot(x="comp1", y="comp2", hue="cluster", data=famd_X) kmean_df = df.copy() kmean_df["cluster"] = pd.Categorical(model.labels_) kmean_df.head() kmean_df.groupby("cluster").agg( { "Customer Lifetime Value": np.mean, "Income": np.mean, "Monthly Premium Auto": np.mean, "Months Since Last Claim": np.mean, "Months Since Policy Inception": np.mean, "Number of Open Complaints": np.mean, "Number of Policies": np.mean, "Total Claim Amount": np.mean, } ) kmean_df.groupby("cluster")["Location Code"].value_counts() kmean_df.groupby("cluster")["Coverage"].value_counts() kmean_df.groupby("cluster")["Marital Status"].value_counts() kmean_df.groupby("cluster")["EmploymentStatus"].value_counts() # # Part 2. 用戶續訂預測 # ## Quick EDA # ## Target(目標變數): Response response_df = df.groupby("Response")["Customer"].count() response_df = response_df.to_frame().reset_index() response_df = response_df.assign(percentage=lambda x: x.Customer / len(df) * 100) response_df["percentage"] = response_df["percentage"].apply( lambda x: "{0:1.2f}%".format(x) ) fig = px.bar(response_df, x="Response", y="Customer", text="percentage") fig.update_layout( title_text="客戶回應狀況分佈", barmode="stack", xaxis={"categoryorder": "total descending"}, width=600, ) fig.show() # ### Response V.S. Education fig = px.histogram( df, x="Response", y="Customer", color="Education", barmode="group", histfunc="count", width=600, ) fig.update_layout(title_text="客戶回應狀況 V.S. 教育程度") fig.show() # ### Response V.S. Sales Channel # agent渠道的回應率最高,但是整體來說從agent來的渠道也最多,還無法下定論渠道是否會影響客戶回應率。 fig = px.histogram( df, x="Response", y="Customer", color="Sales Channel", barmode="group", histfunc="count", width=600, ) fig.update_layout(title_text="客戶回應狀況 V.S. 銷售渠道") fig.show() # ### Response V.S. EmploymentStatus # 受雇客戶回應人數最多,很符合常理,而且受雇人數本來就最多,值得注意的是退休人士的回應人數多於為回應人數。 # 可以看出退休人士對於保單服務的黏著度更高。 fig = px.histogram( df, x="Response", y="Customer", color="EmploymentStatus", barmode="group", histfunc="count", width=600, ) fig.update_layout(title_text="客戶回應狀況 V.S. 就業狀況") fig.show() # ### Response V.S. Renew Offer Type # 在此處可以發現一個關鍵點,Offer1, Offer2 的續訂佔絕大多數,offer3,offer4幾乎沒人續訂。 fig = px.histogram( df, x="Response", y="Customer", color="Renew Offer Type", barmode="group", histfunc="count", width=600, ) fig.update_layout(title_text="客戶回應狀況 V.S. 產品類型") fig.show() # ### Response rate V.S. Policy fig = px.histogram( df, x="Response", y="Customer", color="Policy", barmode="group", histfunc="count", width=600, ) fig.update_layout(title_text="客戶回應狀況 V.S. 產品類型的級別") fig.show() # ### 有回應的客戶中,其保單類型與層級分佈為何? # 從 Sankey diagram 來看,回應人數最多的保單層級前五名: # Personal L3 > Personal L2 > Personal L1 > Corporate L2 > Corporate L3 policy_df = ( df[df["Response"] == "Yes"] .groupby(["Renew Offer Type", "Policy"])["Customer"] .count() ) policy_df = policy_df.to_frame() policy_df = policy_df.reset_index() policy_data_for_sankey = get_sankey_df( policy_df, ["Renew Offer Type", "Policy"], "Customer" ) fig = go.Figure( data=[ go.Sankey( node=dict( pad=15, thickness=20, line=dict(color="black", width=0.5), label=policy_data_for_sankey["label_list"], ), link=dict( source=policy_data_for_sankey["df"]["sourceID"], target=policy_data_for_sankey["df"]["targetID"], value=policy_data_for_sankey["df"]["count"], ), ) ] ) fig.update_layout(title_text="Sankey diagram - 客戶購買保單類型與層級分佈", font_size=15, width=600) fig.show() # ### Response V.S. Income # 從box-plot來看,收入與客戶是否回應兩者有相關性。 fig = px.box(df, x="Response", y="Income", width=600) fig.update_layout(title_text="客戶回應狀況 V.S. 收入") fig.show() # ### Response V.S. Total Claim Amount # 從box-plot來看,累積索賠金額與客戶是否回應兩者有相關性。 outlier_dectect(df, "Total Claim Amount", 1.5) total_claim_remove_out_df = df[df["Total Claim Amount"] <= 960.3997] fig = px.box(total_claim_remove_out_df, x="Response", y="Total Claim Amount", width=600) fig.update_layout(title_text="客戶回應狀況 V.S. 累積索賠金額") fig.show() df.loc[df["Response"] == "Yes", "Response_label"] = 1 df.loc[df["Response"] == "No", "Response_label"] = 0 numeric_df = df.select_dtypes(["int64", "float64"]).drop( axis=1, labels=["Response_label"] ) cat_df = df.select_dtypes("object").drop(axis=1, labels=["Customer", "Response"]) lb = LabelEncoder() for col in cat_df.columns: cat_df[col] = lb.fit_transform(cat_df[col]) all_df = pd.concat([cat_df, numeric_df], axis=1) X = all_df y = df["Response_label"] lr_model = sm.Logit(y, X) lr_model_fit = lr_model.fit() lr_model_fit.summary() lr_model_fit.pvalues[lr_model_fit.pvalues < 0.05] # ## 類別變數篩選 - 卡方獨立性檢定 # 探討類別型變數與客戶是否回應之間的是否有關聯,可做為類別變數篩選手段。 def get_chi_square_res(df, x="", y=""): res = pd.crosstab(df[x], df[y], margins=False) chi2, p, dof, ex = stats.chi2_contingency(res, correction=False) return p lst = [] for i in cat_df.columns: p = get_chi_square_res(df, i, "Response") lst.append(p) chi_square_test_res = pd.Series(lst, index=cat_df.columns).to_frame( name="Chi-square test's p-value" ) chi_imp_cat_col = chi_square_test_res[ chi_square_test_res["Chi-square test's p-value"] < 0.05 ].index print(f"important categorical features via chi-square test : {list(chi_imp_cat_col)}") # ### 連續型變數篩選 - Two-sample Kolmogorov-Smirnov Test # 從KS 檢定來看,每個連續型變數在 Response = 'Yes' 與 Response = 'No' 時兩者分配顯著不相同, # 因此在區別客戶是否續訂的分類上可能也有所幫助。 from sklearn.preprocessing import MinMaxScaler # 歸一化 scaler = MinMaxScaler() numeric_X_scaled = scaler.fit_transform(numeric_df) numeric_X_scaled = pd.DataFrame(numeric_X_scaled, columns=numeric_df.columns) numeric_lr = sm.Logit(y, numeric_X_scaled) numeric_lr.fit().summary() from scipy.stats import ks_2samp lst = [] for i in numeric_X_scaled.columns: res = ks_2samp(np.array(numeric_X_scaled[i]), np.array(y)) lst.append(res.pvalue.round(3)) pd.Series(lst, index=numeric_X_scaled.columns).to_frame("ks test pvalue") # ## 連續型變數篩選 - Logistic regression # 從wald test結果來看,顯著水準0.05下,連續型變數皆為顯著,從係數可以發現,除了每月平均繳納金額(Monthly Premium Auto),其餘變數與Response為負相關。 # 根據變數篩選的結果,將重要的變數納入考量做為訓練模型的自變數 X ,目標變數 Response imp_X = X[chi_imp_cat_col.append(numeric_df.columns)] scaler = MinMaxScaler() imp_X_scaled = scaler.fit_transform(imp_X) imp_X_scaled = pd.DataFrame(imp_X, columns=imp_X.columns) X_train, X_test, y_train, y_test = train_test_split( imp_X_scaled, y, test_size=0.2, random_state=42 ) import warnings warnings.filterwarnings("ignore") Classifiers = [ ["LogisticRegression", LogisticRegression(random_state=42)], ["Random Forest", RandomForestClassifier(random_state=42)], ["Support Vector Machine", SVC(random_state=42)], ["XGBClassifier", xgb.XGBClassifier(random_state=42)], ] Classify_result = [] names = [] prediction = [] for name, classifier in Classifiers: classifier = classifier recall = cross_val_score(classifier, X, y, scoring="recall", cv=5).mean() precision = cross_val_score(classifier, X, y, scoring="precision", cv=5).mean() f1 = cross_val_score(classifier, X, y, scoring="f1", cv=5).mean() class_eva = pd.DataFrame([recall, precision, f1]) Classify_result.append(class_eva) name = pd.Series(name) names.append(name) names = pd.DataFrame(names) names = names[0].tolist() # names result = pd.concat(Classify_result, axis=1) result.columns = names result.index = ["recall", "precision", "F1score"] warnings.filterwarnings("default") result # #### Random Forest rfc = RandomForestClassifier() rfc.fit(X_train, y_train) rfc_pred = rfc.predict(X_test) print(confusion_matrix(rfc_pred, y_test)) print("Accuracy score:", accuracy_score(rfc_pred, y_test)) print(classification_report(rfc_pred, y_test)) scores = cross_val_score(rfc, X, y, cv=5) print("\n") print( "%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()) ) feature_imp = rfc.feature_importances_.round(3) feature_imp_ = pd.Series(feature_imp, index=imp_X.columns).sort_values(ascending=False) plt.figure(figsize=(8, 8)) sns.barplot(x=feature_imp_.values, y=feature_imp_.index) plt.title("Random forest feature importance") plt.xlabel("Gini importance") plt.show() # #### Xgboost import xgboost as xgb xgb = xgb.XGBClassifier(objective="binary:logistic", random_state=42) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print(confusion_matrix(xgb_pred, y_test)) print("Accuracy score:", accuracy_score(xgb_pred, y_test)) print(classification_report(xgb_pred, y_test)) feature_imp = xgb.feature_importances_.round(3) feature_imp_ = pd.Series(feature_imp, index=imp_X.columns).sort_values(ascending=False) plt.figure(figsize=(8, 8)) sns.barplot(x=feature_imp_.values, y=feature_imp_.index) plt.title("Xgboost feature importance") plt.xlabel("Average gain") plt.show()
import os import random import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns import numpy as np import pandas as pd # In this kaggle project we try to predict from the image of a bird its species (class) of belonging. # Our data are made of images of size 224x224x3 pixels (RGB system). # There are 450 classes of birds which forms a very large dataset. # The data are arranged in folders of train, valid and test which are themselves arranged by the 450 folders of species/class. # For the train we have 70626 images: a visualization of the class distribution and also random images is proposed in this notebook. # For the valid we have 5 images per class, that is 2250 images in total. # For the test we have 5 images per class, 2250 images in total. # train_dir = "/kaggle/input/100-bird-species/train/" val_dir = "/kaggle/input/100-bird-species/valid/" test_dir = "/kaggle/input/100-bird-species/test/" num_of_bird_species = len(os.listdir(train_dir)) num_of_bird_species # # 1.Data Visualisation # get the number of image per species per folder in the train data species_count = pd.Series(dtype="float64") for dirpath, dirnames, filenames in os.walk(train_dir): species = dirpath.split("/")[-1] number_image = len(filenames) species_count[species] = number_image species_count data = species_count.to_frame(name="number_image") data = data.reset_index() data.columns = ["species", "number_image"] data = data.sort_values("number_image", ascending=False) figure = plt.figure(figsize=(9, 90)) ax = sns.barplot(x="number_image", y="species", data=data) for i in ax.containers: ax.bar_label( i, ) def view_random_image(target_dir, target_class, verbose=0): if target_class == None: target_class = random.sample(os.listdir(train_dir), 1)[0] # setting up the image directory target_folder = target_dir + "/" + target_class # get a random image path random_image = random.sample(os.listdir(target_folder), 1) # read image and plotting it img = mpimg.imread(target_folder + "/" + random_image[0]) plt.imshow(img) plt.title(target_class) plt.axis("off") if verbose == 1: print(f"Image shape: {img.shape}") return img img = view_random_image( target_dir=train_dir, target_class="VICTORIA CROWNED PIGEON", verbose=1 ) def view_9_random_image(target_dir, target_class=None, verbose=0): plt.figure(figsize=(12, 12)) for x in range(1, 10): plt.subplot(3, 3, x) img = view_random_image( target_dir=target_dir, target_class=target_class, verbose=verbose ) view_9_random_image(train_dir, "HOUSE FINCH") view_9_random_image(train_dir) # # 2.CNN Model import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import Sequential from tensorflow.keras.layers import ( Conv2D, MaxPooling2D, SpatialDropout2D, Dropout, Flatten, Dense, BatchNormalization, ) from tensorflow.keras.callbacks import EarlyStopping # ## 2.1 Preprocessing # Rescale generator general_datagen = ImageDataGenerator(rescale=1 / 255) # ImageDataGenerator is used because the directories are not linked directly to the image data. # It consolidate the images for each train/test/validation set. # defaults parameters of flow_from_directory are lefts as follows: batch_size = 32, class_mode = 'categorical'(one hot encoding), shuffle = TRUE(in flow). train_data = general_datagen.flow_from_directory( directory=train_dir, target_size=(224, 224), seed=42 ) val_data = general_datagen.flow_from_directory( directory=val_dir, target_size=(224, 224), seed=42 ) test_data = general_datagen.flow_from_directory( directory=test_dir, target_size=(224, 224), shuffle=False ) # tuple of len 2 with X and y respectively len(train_data[0]) # shape of batch of entries ( aka X) train_data[0][0].shape train_data[0][0][[0]].shape # shape of a batch of targets ( aka y) train_data[0][1].shape # ## 2.2 Model Creation model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(224, 224, 3), activation="relu")) # 222X222 model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), activation="relu")) # 220x220 model.add(MaxPooling2D(pool_size=(2, 2))) # 110x110 model.add(BatchNormalization()) model.add(SpatialDropout2D(0.35)) model.add(Conv2D(128, (3, 3), activation="relu")) # 108x108 model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), activation="relu")) # 106x106 model.add(MaxPooling2D(pool_size=(2, 2))) # 53x53 model.add(BatchNormalization()) model.add(SpatialDropout2D(0.35)) model.add(Conv2D(512, (3, 3), activation="relu")) # 51x51 model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(512, activation="relu")) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(num_of_bird_species, activation="softmax")) # 450 model.summary() model.compile(loss="categorical_crossentropy", optimizer="Adam", metrics=["accuracy"]) # ## 2.3 Model fit # fit model history = model.fit( train_data, epochs=1, validation_data=val_data, verbose=1, callbacks=[ EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True) ], ) def plot_history_metrics(history): # plot accuracy = f(epoch) plt.plot(history.history["accuracy"]) plt.plot(history.history["val_accuracy"]) plt.title("Model accuracy") plt.ylabel("Accuracy") plt.xlabel("Epoch") plt.legend(["Train", "Valid"]) plt.show() # Plot loss = f(epoch) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("Model loss") plt.ylabel("Loss") plt.xlabel("Epoch") plt.legend(["Train", "Valid"]) plt.show() plot_history_metrics(history) # ## 2.4 Model Evaluation model.evaluate(test_data) # save the model to be reutilize easily model.save("CNN_birds_model.h5") # array of proba for each image 450 proba of belonging proba_pred = model.predict(test_data) proba_pred # get the index of the max, it's the corresponding predicted class of species y_pred = np.argmax(proba_pred, axis=-1) y_pred[0:50] y_true = test_data.classes y_true[0:50] from sklearn.metrics import multilabel_confusion_matrix multi_confu = multilabel_confusion_matrix(y_true, y_pred) dico = test_data.class_indices inv_dico = {value: key for key, value in dico.items()} # Plot per species the matrix of confusion and saves index with no good prediction zero_predict = [] for index, matrix in enumerate(multi_confu): print(inv_dico[index]) print(matrix) if matrix[1][1] == 0: zero_predict.append(index) species = list(dico.keys()) # species with not a single good prediction for ele in zero_predict: print(species[ele]) from sklearn.metrics import confusion_matrix confu = confusion_matrix(y_true, y_pred) confu # exemple of the upper up of the confusion matrix for the first 25 species plt.figure(figsize=(10, 8)) sns.heatmap( confu[0:25, 0:25], annot=True, xticklabels=species[0:25], yticklabels=species[0:25] ) plt.ylabel("True species") plt.xlabel("Predicted species") plt.show()
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder from sklearn.compose import ColumnTransformer from sklearn.model_selection import train_test_split import tensorflow as tf # **import data** df_train = pd.read_csv("/kaggle/input/titanic/train.csv") df_test = pd.read_csv("/kaggle/input/titanic/test.csv") # **a quick glance** df_train.info() df_test.info() # I am concating two dataframe to be more easier data preprocessing df_test["is_train"] = 0 df_train["is_train"] = 1 df_sum = pd.concat([df_test, df_train], axis=0) df_sum.info() df_sum.sample(10) df_sum.drop(["Ticket", "Cabin", "PassengerId"], axis=1, inplace=True) df_sum.isnull().sum() from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy="mean", missing_values=np.nan) imputer2 = SimpleImputer(strategy="most_frequent", missing_values=np.nan) df_sum["Age"] = imputer.fit_transform(df_sum["Age"].values.reshape(-1, 1)) df_sum["Embarked"] = imputer2.fit_transform((df_sum["Embarked"].values.reshape(-1, 1))) df_sum.isnull().sum() df_sum.head() df_sum["title"] = [i.split(",")[1].split(".")[0] for i in df_sum["Name"]] df_sum.drop("Name", axis=1, inplace=True) df_sum["title"].value_counts() for index, value in df_sum["title"].value_counts().items(): if value < 7: df_sum.loc[df_sum["title"] == index, "title"] = "re" df_sum["title"].value_counts() df_sum["is_alone"] = df_sum["SibSp"] + df_sum["Parch"] > 1 df_sum["is_alone"] = df_sum["is_alone"].apply(lambda x: 1 if x == True else 0) df_sum.drop(["SibSp", "Parch"], axis=1, inplace=True) df_sum["Age"] = pd.cut( df_sum["Age"], bins=[0, 7, 15, 25, 40, 120], labels=[0, 1, 2, 3, 4] ) le = LabelEncoder() df_sum["Sex"] = le.fit_transform(df_sum["Sex"]) df_sum ct = ColumnTransformer( transformers=[("encoder", OneHotEncoder(), [0, 2, 4, 7])], remainder="passthrough" ) df_sum = ct.fit_transform(df_sum) df_sum df_train = pd.DataFrame(df_sum[df_sum[:, 20] == 1]).drop(20, axis=1) df_test = pd.DataFrame(df_sum[df_sum[:, 20] == 0]).drop([20, 21], axis=1) X = df_train.drop(21, axis=1).values y = df_train.iloc[:, 21].values.reshape(-1, 1) x_train, x_test, y_train, y_test = train_test_split(X, y) sc = StandardScaler() x_train = sc.fit_transform(x_train) x_test = sc.transform(x_test) # **in here I developing my model. I thing there is a problem but I can not solve it. if you know this problem please contact me** model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(units=6, activation="relu")) model.add(tf.keras.layers.Dense(units=6, activation="relu")) model.add(tf.keras.layers.Dense(units=1, activation="sigmoid")) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) r = model.fit( x_train, y_train, batch_size=32, epochs=100, validation_data=(x_test, y_test) ) print(f"train Score : {model.evaluate(x_train,y_train)[1]}") print(f"test Score : {model.evaluate(x_test,y_test)[1]}") import matplotlib.pyplot as plt plt.plot(r.history["loss"], label="loss") plt.plot(r.history["val_loss"], label="val_loss") plt.legend() plt.plot(r.history["accuracy"], label="accuracy") plt.plot(r.history["val_accuracy"], label="val_accuracy")
import re import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() # #### Import txt files with open("../input/barbican-words/Barbican-Words-Left.txt", "r") as f: barb_l = f.readlines()[0] with open("../input/barbican-words/Barbican-Words-Right.txt", "r") as f: barb_r = f.readlines()[0] print(barb_l) print(barb_r) # ## Letter Counts # Count each occurance of a unique character (converted to lowercase), then drop any that are not alpha letter_cnt_l = {} letter_cnt_r = {} for letter in barb_l: if letter.isalpha(): letter_cnt_l[letter.lower()] = letter_cnt_l.get(letter, 0) + 1 for letter in barb_r: if letter.isalpha(): letter_cnt_r[letter.lower()] = letter_cnt_r.get(letter, 0) + 1 print(f"Left counts: {letter_cnt_l}", end="\n\n") print(f"Right counts: {letter_cnt_r}") # #### Let's make a graph! l_x, l_y = zip(*sorted(letter_cnt_l.items())) r_x, r_y = zip(*sorted(letter_cnt_r.items())) # ##### Left Graph sns.set_style("dark") plt.figure(figsize=(12, 8)) plt.bar(l_x, l_y, color="m") plt.show() # ##### Right Graph sns.set_style("dark") plt.figure(figsize=(12, 8)) plt.bar(r_x, r_y, color="m") plt.show() # ## Word Counts # Now we will count each occurance of a unique word and store these in a dict # This time we will use Counter! from collections import Counter # #### Creating lists of all words word_list_l = barb_l.split() word_list_r = barb_r.split() print( f"First ten words from left: {word_list_l[0:10]} \n\nFirst ten words from right: {word_list_r[0:10]}" ) word_cnt_l = Counter(word_list_l) word_cnt_r = Counter(word_list_r) word_cnt_l = {k.lower(): v for k, v in word_cnt_l.items()} word_cnt_r = {k.lower(): v for k, v in word_cnt_r.items()} sorted(word_cnt_l) # #### Look at this ~~photo~~graph! # Too many cateogries for a line plot, but the topology looks interesting! l_x_w, l_y_w = zip(*sorted(word_cnt_l.items())) r_x_w, r_y_w = zip(*sorted(word_cnt_r.items())) # ##### Left Graph plt.figure(figsize=(32, 20)) plt.plot(l_x_w, l_y_w, color="m") plt.xticks(size=5, rotation=90) plt.title("Barbican Walk Left Word Frequency", fontsize=22, weight="bold") plt.xlabel("Word", fontsize=14, weight="semibold") plt.ylabel("Frequency", rotation=90, fontsize=14, weight="semibold") # plt.savefig('Barbican-Walk-Left-Freq-by-Word') plt.show() # ##### Right Graph plt.figure(figsize=(32, 20)) plt.plot(r_x_w, r_y_w, color="m") plt.xticks(size=5, rotation=90) plt.title("Barbican Walk Right Word Frequency", fontsize=22, weight="bold") plt.xlabel("Word", fontsize=14, weight="semibold") plt.ylabel("Frequency", rotation=90, fontsize=14, weight="semibold") # plt.savefig('Barbican-Walk-Right-Freq-by-Word') plt.show() # ##### Both! # Crazy, right? plt.figure(figsize=(32, 20)) plt.plot(l_x_w, l_y_w, color="m") plt.plot(r_x_w, r_y_w, color="r") plt.xticks(size=5, rotation=90) plt.legend() plt.title("Barbican Walk (All) Word Frequency", fontsize=22, weight="bold") plt.xlabel("Word", fontsize=14, weight="semibold") plt.ylabel("Frequency", rotation=90, fontsize=14, weight="semibold") plt.savefig("Barbican-Walk-(All)-Freq-by-Word") plt.show() # ## Playing with Natural Language Toolkit (NLTK) # #### Importing libraries import nltk from nltk.corpus import treebank import random as rand # #### Create lists of words # This time using ntlk.word_tokenize() method # This time we shall concat the two sentances and then add the words to a list. barb_words = nltk.word_tokenize(barb_l + barb_r) tagged = nltk.pos_tag(barb_words) tagged # #### Convert to Dict word_dict = {} for i in range(len(tagged)): word_dict[tagged[i][0]] = tagged[i][1] word_dict # #### Looking at the unique speech codes word_types = Counter(word_dict.values()) word_types # #### Defining a function to create a sentance based on the grammar we specify def make_sentance(num=1): grammar = ["VB", "DT", ["NN", "NNP", "NNS"], "IN", "DT", ["NN", "NNP", "NNS"]] for i in range(num): sent = "" for i in grammar: word = rand.choice(list(word_dict.keys())) while word_dict[word] not in i: word = rand.choice(list(word_dict.keys())) sent += word + " " print(sent) make_sentance(25)
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # **SL Technique - Model** # **Without HyperParameter Tuning** import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder # Load the dataset df = pd.read_csv("/kaggle/input/viintage-analysis/dwd.csv") # Split the dataset into training and test sets train_df = df[df["OCCUPATION_TYPE"].notnull()] test_df = df[df["OCCUPATION_TYPE"].isnull()] train_df1, test_df1 = train_test_split(train_df, test_size=0.25, random_state=42) # Encode the categorical variables to numerical labels categorical_cols = [ "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] encoders = {} for col in categorical_cols: le = LabelEncoder() train_vals = train_df1[col].astype(str).unique() le.fit(train_vals) train_df1[col] = le.transform(train_df1[col].astype(str)) test_df1[col] = le.transform(test_df1[col].astype(str)) encoders[col] = le # Split the training data into input and target variables X_train = train_df1.drop("OCCUPATION_TYPE", axis=1) y_train = train_df1["OCCUPATION_TYPE"] # Train a random forest classifier clf = RandomForestClassifier( n_estimators=200, max_depth=13, min_samples_leaf=14, max_features=6 ) clf.fit(X_train, y_train) # Evaluate the performance on the test data X_test = test_df1.drop("OCCUPATION_TYPE", axis=1) y_test = test_df1["OCCUPATION_TYPE"] X_test = X_test.fillna( X_train.mean() ) # Fill missing values with the mean of the training data accuracy = clf.score(X_test, y_test) print(f"Accuracy: {accuracy}") # # **HyperParameter Tuning in RFC** import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.preprocessing import LabelEncoder # Load the dataset df = pd.read_csv("/kaggle/input/viintage-analysis/dwd.csv") # Split the dataset into training and test sets train_df = df[df["OCCUPATION_TYPE"].notnull()] test_df = df[df["OCCUPATION_TYPE"].isnull()] train_df1, test_df1 = train_test_split(train_df, test_size=0.25, random_state=42) # Encode the categorical variables to numerical labels categorical_cols = [ "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] encoders = {} for col in categorical_cols: le = LabelEncoder() train_vals = train_df1[col].astype(str).unique() le.fit(train_vals) train_df1[col] = le.transform(train_df1[col].astype(str)) test_df1[col] = le.transform(test_df1[col].astype(str)) encoders[col] = le # Split the training data into input and target variables X_train = train_df1.drop("OCCUPATION_TYPE", axis=1) y_train = train_df1["OCCUPATION_TYPE"] # Define the hyperparameter space # hyperparameters = { # 'n_estimators': [100, 200, 300, 400], # 'max_depth': [10, 12, 14, 16], # 'min_samples_leaf': [10, 12, 14, 16], # 'max_features': [5, 6, 7, 8], # } # Create the random forest classifier rf = RandomForestClassifier( n_estimators=300, min_samples_leaf=10, max_features=8, max_depth=16 ) # Perform randomized search CV to find the best hyperparameters # clf = RandomizedSearchCV(rf, random_state=42) rf.fit(X_train, y_train) # Print the best hyperparameters # print(f"Best hyperparameters: {clf.best_params_}") # Evaluate the performance on the test data using the best hyperparameters X_test = test_df1.drop("OCCUPATION_TYPE", axis=1) y_test = test_df1["OCCUPATION_TYPE"] X_test = X_test.fillna( X_train.mean() ) # Fill missing values with the mean of the training data accuracy = rf.score(X_test, y_test) print(f"Accuracy: {accuracy}") # ***Best hyperparameters: {'n_estimators': 300, 'min_samples_leaf': 10, 'max_features': 8, 'max_depth': 16}*** # ***Accuracy: 0.9568741276487756*** # Get the test data with null values X_missing = df[df["OCCUPATION_TYPE"].isnull()].drop("OCCUPATION_TYPE", axis=1) # Encode the categorical variables to numerical labels for col in categorical_cols: le = encoders[col] X_missing[col] = le.transform(X_missing[col].astype(str)) # Fill missing values with the mean of the training data X_missing = X_missing.fillna(X_train.mean()) # Predict the missing occupation types for the test set y_pred = rf.predict(X_missing) # Create a new dataframe with the imputed data imputed_df = df.copy() imputed_df.loc[df["OCCUPATION_TYPE"].isnull(), "OCCUPATION_TYPE"] = y_pred print(imputed_df) # Get the count of each category in the original OCCUPATION_TYPE column orig_counts = df["OCCUPATION_TYPE"].value_counts() # Get the count of each category in the imputed OCCUPATION_TYPE column imputed_counts = imputed_df["OCCUPATION_TYPE"].value_counts() # Merge the two dataframes on the index (which is the occupation type) merged = pd.merge(orig_counts, imputed_counts, left_index=True, right_index=True) # Rename the columns for clarity merged.columns = ["Original Count", "Imputed Count"] # Print the merged dataframe print(merged) imputed_df.to_csv("imputed using RFC.csv") # Get the count of unique values in both dataframes original_count = df["OCCUPATION_TYPE"].value_counts() imputed_count = imputed_df["OCCUPATION_TYPE"].value_counts() # Calculate the absolute difference between the counts for each unique value diff = (original_count - imputed_count).abs() # Calculate the sum of differences sum_diff = diff.sum() print("Sum of differences:", sum_diff) sum(df["OCCUPATION_TYPE"].isna()) df["OCCUPATION_TYPE"] = imputed_df["OCCUPATION_TYPE"] import pandas as pd df1 = pd.read_csv("/kaggle/working/imputed using RFC.csv") df1 = df1.drop("Unnamed: 0.1", axis=1) df1 = df1.drop("Unnamed: 0", axis=1) df1 df1.to_csv("imputed-RFC-df1.csv") import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import cross_val_score # Load the dataset print(df1.isna().sum()) # Split the dataset into training and test sets train_df, test_df = train_test_split(df1, test_size=0.25, random_state=42) # Encode the categorical variables to numerical labels categorical_cols = [ "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] encoders = {} for col in categorical_cols: le = LabelEncoder() train_vals = train_df[col].astype(str).unique() le.fit(train_vals) train_df[col] = le.transform(train_df[col].astype(str)) test_df[col] = le.transform(test_df[col].astype(str)) encoders[col] = le # Split the training data into input and target variables X_train = train_df.drop("OCCUPATION_TYPE", axis=1) y_train = train_df["OCCUPATION_TYPE"] # Train a random forest classifier clf = RandomForestClassifier( n_estimators=300, max_depth=16, min_samples_leaf=10, max_features=8 ) clf.fit(X_train, y_train) # Evaluate the performance on the test data X_test = test_df.drop("OCCUPATION_TYPE", axis=1) y_test = test_df["OCCUPATION_TYPE"] # X_test = X_test.fillna(X_train.mean()) # Fill missing values with the mean of the training data accuracy = clf.score(X_test, y_test) print(f"Accuracy: {accuracy}") from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier # create a random forest classifier with the best hyperparameters rf = RandomForestClassifier( n_estimators=300, min_samples_leaf=10, max_features=8, max_depth=16 ) # perform 10-fold cross-validation scores = cross_val_score(rf, X_train, y_train, cv=10) # print the mean and standard deviation of the scores print(f"Accuracy: {scores.mean():.2f} (+/- {scores.std():.2f})") df1.loc[df1["DAYS_EMPLOYED"] > 0, "DAYS_EMPLOYED"] = np.nan df1 df1[df1["DAYS_EMPLOYED"].isnull()] df1["YEARS_BIRTH"] = (df1["DAYS_BIRTH"] / -365.25).round(1) df1["YEARS_EMPLOYED"] = (df1["DAYS_EMPLOYED"] / -365.25).round(1) # Drop the original columns df1 = df1.drop(["DAYS_BIRTH", "DAYS_EMPLOYED"], axis=1) df1 df1[df1["YEARS_EMPLOYED"].isnull()] df1 # # Random Forest Regressor & Lasso To Predict Years Employed import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import Lasso # load the data # df = pd.read_csv('data.csv') # define the categorical columns categorical_cols = [ "OCCUPATION_TYPE", "CODE_GENDER", "FLAG_OWN_CAR", "FLAG_OWN_REALTY", "NAME_INCOME_TYPE", "NAME_EDUCATION_TYPE", "NAME_FAMILY_STATUS", "NAME_HOUSING_TYPE", ] # create a copy of the original dataset df_imputed = df1.copy() # split the dataset into training and testing sets train_df = df_imputed[df_imputed["YEARS_EMPLOYED"].notnull()] test_df = df_imputed[df_imputed["YEARS_EMPLOYED"].isnull()] train_df1, test_df1 = train_test_split(train_df, test_size=0.2, random_state=42) # Encode the categorical variables to numerical labels # categorical_cols = ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE'] encoders = {} for col in categorical_cols: le = LabelEncoder() train_vals = train_df1[col].astype(str).unique() le.fit(train_vals) train_df1[col] = le.transform(train_df1[col].astype(str)) test_df1[col] = le.transform(test_df1[col].astype(str)) encoders[col] = le # extract the target variable from the training set y_train = train_df1["YEARS_EMPLOYED"] # extract the features from the training and testing sets X_train = train_df1.drop(["YEARS_EMPLOYED"], axis=1) X_test = test_df1.drop(["YEARS_EMPLOYED"], axis=1) # impute missing values using a RandomForestRegressor rf = RandomForestRegressor(n_estimators=100) rf.fit(X_train, y_train) y_pred = rf.predict(X_test) # fit a Lasso model to the imputed data to apply L1 regularization lasso = Lasso(alpha=0.1, tol=0.01, random_state=42) lasso.fit(X_train, y_train) # predict using the Lasso model y_pred_lasso = lasso.predict(X_test) # calculate MAE for the Lasso model mae_lasso = mean_absolute_error(test_df1["YEARS_EMPLOYED"], y_pred_lasso) print("MAE with Lasso regularization:", mae_lasso) # calculate MAE for the random forest model mae_rf = mean_absolute_error(test_df1["YEARS_EMPLOYED"], y_pred) print("MAE without regularization:", mae_rf) # **HyperParameter Tuning** from sklearn.model_selection import GridSearchCV from sklearn.linear_model import Lasso # define the parameter grid param_grid = { "alpha": [0.001, 0.01, 0.1, 1.0, 10.0, 100.0], "tol": [0.0001, 0.001, 0.01, 0.1], "max_iter": [100, 500, 1000, 5000], } # create the Lasso model lasso = Lasso() # create the grid search object grid_search = GridSearchCV(lasso, param_grid, cv=5, scoring="neg_mean_absolute_error") # fit the grid search to the training data grid_search.fit(X_train, y_train) # print the best parameters and cross-validation score print("Best parameters: ", grid_search.best_params_) print("Cross-validation MAE: ", -grid_search.best_score_) from sklearn.model_selection import cross_val_score # define the model with Lasso regularization lasso_model = Lasso(alpha=0.001, max_iter=500, tol=0.0001) # calculate the cross-validation scores cv_scores = cross_val_score( lasso_model, X_train, y_train, cv=5, scoring="neg_mean_absolute_error" ) # convert the scores to positive values cv_scores = -cv_scores # calculate the mean and standard deviation of the scores mean_cv_score = cv_scores.mean() std_cv_score = cv_scores.std() # print the results print(f"Cross-validation MAE: {mean_cv_score:.3f} +/- {std_cv_score:.3f}") # a cross-validation MAE of 4.617 +/- 0.019 could be considered reasonable. Since the range of the target variable is from 0 to 43 years, an MAE of 4.6 years suggests that the model is off by an average of approximately 10% of the total range # Encode categorical variables in the full dataset for col in categorical_cols: le = encoders[col] df_imputed[col] = le.transform(df_imputed[col].astype(str)) # Extract the features from the full dataset X_full = df_imputed.drop(["YEARS_EMPLOYED"], axis=1) # Impute missing values using the trained model y_pred_full = rf.predict(X_full) df_imputed.loc[df_imputed["YEARS_EMPLOYED"].isnull(), "YEARS_EMPLOYED"] = y_pred_full[ df_imputed["YEARS_EMPLOYED"].isnull() ] # Decode categorical variables back to original values for col in categorical_cols: le = encoders[col] df_imputed[col] = le.inverse_transform(df_imputed[col]) df_imputed["YEARS_EMPLOYED"] nulls = df1["YEARS_EMPLOYED"].isnull() comparison_df = pd.DataFrame( { "Original": df1.loc[nulls, "YEARS_EMPLOYED"], "Imputed": df_imputed.loc[nulls, "YEARS_EMPLOYED"], } ) print(comparison_df) df_imputed[df_imputed["YEARS_EMPLOYED"] == 0] # **There Are Widows, should be removed as they are outliers** df_imputed.to_csv("imputed using RFR - latest.csv")
from keras.datasets import mnist, imdb, reuters import numpy as np import matplotlib.pyplot as plt from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense (train_data, train_labels), (test_data, test_labels) = mnist.load_data() train_data = train_data.reshape((60000, 28 * 28)) test_data = test_data.reshape((10000, 28 * 28)) train_data = train_data.astype("float32") / 255 test_data = test_data.astype("float32") / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model1 = Sequential( [ Dense(512, activation="relu", input_shape=(28 * 28,)), Dense(10, activation="softmax"), ] ) model1.compile( optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"] ) history1 = model1.fit(train_data, train_labels, batch_size=128, epochs=5) (loss_value, accuracy_value) = model1.evaluate(test_data, test_labels) print("accuracy_value: ", accuracy_value * 100) # # IMDB model (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) word_index = imdb.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) decoded_newswire = " ".join([reverse_word_index.get(i - 3, "?") for i in train_data[0]]) print(decoded_newswire) def one_hot(x, dim=10000): results = np.zeros((len(x), dim)) for i, sequence in enumerate(x): results[i, sequence] = 1.0 return results train_data = one_hot(train_data) test_data = one_hot(test_data) train_labels = np.asarray(train_labels).astype("float32") test_labels = np.asarray(test_labels).astype("float32") model2 = Sequential( [ Dense(16, activation="relu", input_shape=(10000,)), Dense(16, activation="relu"), Dense(1, activation="sigmoid"), ] ) model2.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"]) val_data = train_data[:10000] val_data = train_data[:10000] x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] history2 = model2.fit( partial_x_train, partial_y_train, batch_size=512, epochs=20, validation_data=(x_val, y_val), ) loss_his = history2.history["loss"] loss_val = history2.history["val_loss"] epochs = range(1, len(loss_his) + 1) plt.plot(epochs, loss_his, "bo", label="loss") plt.plot(epochs, loss_val, "b", label="val_loss") plt.title("Training and validation loss") plt.xlabel("epochs") plt.ylabel("loss") plt.legend() plt.show() plt.clf() acc = history2.history["accuracy"] val_acc = history2.history["val_accuracy"] epochs = range(1, len(loss_his) + 1) plt.plot(epochs, acc, "bo", label="acc") plt.plot(epochs, val_acc, "b", label="val_acc") plt.title("Training and validation acc") plt.xlabel("epochs") plt.ylabel("acc") plt.legend() plt.show() # # **reuters model** (train_data, train_labels), (test_data, test_labels) = reuters.load_data( num_words=10000 ) word_index = reuters.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) decoded_newswire = " ".join([reverse_word_index.get(i - 3, "?") for i in train_data[0]]) print("decoded_newswire: ", decoded_newswire) x_train = one_hot(train_data) x_test = one_hot(test_data) one_hot_train_labels = to_categorical(train_labels) one_hot_test_labels = to_categorical(test_labels) model3 = Sequential( [ Dense(64, activation="relu", input_shape=(10000,)), Dense(64, activation="relu"), Dense(46, activation="softmax"), ] ) model3.compile( optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"] ) x_val = x_train[:1000] partial_x_train = x_train[1000:] y_val = one_hot_train_labels[:1000] partial_y_train = one_hot_train_labels[1000:] history3 = model3.fit( partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val), ) results = model3.evaluate(x_test, one_hot_test_labels) loss = history3.history["loss"] val_loss = history3.history["val_loss"] epochs = range(1, len(loss) + 1) plt.plot(epochs, loss, "bo", label="Training loss") plt.plot(epochs, val_loss, "b", label="Validation loss") plt.title("Training and validation loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.show() plt.clf() acc = history3.history["accuracy"] val_acc = history3.history["val_accuracy"] plt.plot(epochs, acc, "bo", label="Training accuracy") plt.plot(epochs, val_acc, "b", label="Validation accuracy") plt.title("Training and validation accuracy") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.show() # # **methods implemention** def naive_relu(x): assert len(x.shape) == 2 x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] = max(x[i, j], 0) return x x = np.array([[1, -2, 3], [-4, 5, -6]]) y = naive_relu(x) print("Output array:") print(y) def naive_add(x, y): assert len(x.shape) == 2 assert x.shape == y.shape x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] += y[i, j] return x x = np.array([[1, -2, 3], [-4, 5, -6]]) y = np.array([[1, -2, 3], [-4, 5, -6]]) z = naive_add(x, y) print("Output array:") print(z) def naive_add_matrix_vector(x, y): assert len(x.shape) == 2 assert len(y.shape) == 1 assert x.shape[1] == y.shape[0] x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] += y[j] return x x = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([1, 2]) z = naive_add_matrix_vector(x, y) print("Output array:") print(z) def naive_vector_dot(x, y): assert len(x.shape) == 1 assert len(y.shape) == 1 z = 0.0 for i in range(x.shape[0]): z += x[i] * y[i] return z x = np.array([1, 2, 3]) y = np.array([1, 2, 3]) z = naive_vector_dot(x, y) print("Output array:") print(z) def naive_matrix_vector_dot(x, y): assert len(x.shape) == 2 assert len(y.shape) == 1 assert x.shape[1] == y.shape[0] z = np.zeros(x.shape[0]) for i in range(x.shape[0]): for j in range(x.shape[1]): z[i] += x[i, j] * y[j] return z x = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([1, 2]) z = naive_matrix_vector_dot(x, y) print("Output array:") print(z) def naive_matrix_vector_dot(x, y): z = np.zeros(x.shape[0]) for i in range(x.shape[0]): z[i] = naive_vector_dot(x[i, :], y) return z x = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([1, 2]) z = naive_matrix_vector_dot(x, y) print("************************************") print("Output array:") print(z) def naive_matrix_dot(x, y): assert len(x.shape) == 2 assert len(y.shape) == 2 assert x.shape[1] == y.shape[0] z = np.zeros((x.shape[0], y.shape[1])) for i in range(x.shape[0]): for j in range(y.shape[1]): row_x = x[i, :] column_y = y[:, j] z[i, j] = naive_vector_dot(row_x, column_y) return z x = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([[7, 8], [9, 10]]) z = naive_matrix_dot(x, y) print("Output array:") print(z)
import requests import pandas as pd import csv import time # URL-адрес API Binance "https://api.binance.com/api/v3/klines" url = "https://api.binance.com/api/v3/depth" # В качестве криптовалюты берём биткоин (BTC) по USDT symbol = "BTCUSDT" # Интервал будет в 1 минуту interval = "1m" # Количество минут в minutes_in_m = 99 * 24 * 60 # Создаем пустой список, в который мы будем добавлять данные data = [] for i in range(minutes_in_m): # Вычисляем время начала и конца интервала start_time = int(time.time() - i * 60) end_time = start_time + 60 # Выводим информацию о текущей итерации print( f"Iteration {i + 1} / {minutes_in_m}, collecting data for {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))}..." ) # Создаем параметры запроса params = { "symbol": symbol, "interval": interval, "startTime": start_time * 1000, "endTime": end_time * 1000, } # Отправляем GET-запрос к API с использованием библиотеки Requests response = requests.get(url, params=params) try: response.raise_for_status() except requests.exceptions.HTTPError as err: if "code" in response.json(): print(f"Error occurred: {response.json()['msg']}") else: raise err # Если запрос был успешным, то добавляем данные в список data if response.status_code == 200: json_data = response.json() if len(json_data) > 0: quote = json_data[0] timestamp = time.strftime( "%Y-%m-%d %H:%M:%S", time.localtime(quote[0] / 1000) ) data.append([timestamp, quote[1], quote[2], quote[3], quote[4]]) else: print("No data in the response") else: print(f"Request failed with status code {response.status_code}") # Создаем DataFrame из списка data df = pd.DataFrame(data, columns=["Timestamp", "Open", "High", "Low", "Close"]) # Сохраняем DataFrame в csv-файл df.to_csv("general_variant.FIASCO.csv", index=False) # Выводим информацию об окончании выполнения скрипта print( f"Data collection complete. {len(data)} rows of data were collected and saved to file 'general_variant.FIASCO.csv'." ) import requests url = "https://api.binance.com/api/v3/depth" response = requests.get(url) if response.status_code == 200: print("API connection successful") else: print("API connection failed")
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf fashion_mnist = tf.keras.datasets.mnist.load_data() (X_train_full, y_train_full), (X_test, y_test) = fashion_mnist X_train, y_train = X_train_full[:-5000], y_train_full[:-5000] X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:] print(set(y_train_full)) plt.imshow(X_train[11], cmap="binary") plt.axis("off") plt.show() X_train, X_valid, X_test = X_train / 255.0, X_valid / 255.0, X_test / 255.0 X_train[0].shape set(y_train_full) classifier = Sequential() classifier.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1), activation="relu")) classifier.add(MaxPooling2D(pool_size=(2, 2))) classifier.add(Conv2D(64, (3, 3), activation="relu")) classifier.add(MaxPooling2D(pool_size=(2, 2))) classifier.add(Flatten()) classifier.add(Dense(units=128, activation="relu")) classifier.add(Dense(units=10, activation="softmax")) classifier.summary() classifier.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) classifier.fit(X_train, y_train, epochs=50, validation_data=(X_valid, y_valid)) test_set = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test_set.head() test_set.shape test_set = test_set.values.astype("float32") test_set = test_set.reshape((28000, 28, 28)) predictions_test = classifier.predict(test_set) predictions_test[:10] ImageId = [] Label = [] for i in range(len(predictions_test)): ImageId.append(i + 1) Label.append(predictions_test[i].argmax()) submissions = pd.DataFrame({"ImageId": ImageId, "Label": Label}) submissions.to_csv("submission.csv", index=False, header=True)