file_id
stringlengths
5
9
content
stringlengths
100
5.25M
local_path
stringlengths
66
70
kaggle_dataset_name
stringlengths
3
50
kaggle_dataset_owner
stringlengths
3
20
kversion
stringlengths
497
763
kversion_datasetsources
stringlengths
71
5.46k
dataset_versions
stringlengths
338
235k
datasets
stringlengths
334
371
users
stringlengths
111
264
script
stringlengths
100
5.25M
df_info
stringlengths
0
4.87M
has_data_info
bool
2 classes
nb_filenames
int64
0
370
retreived_data_description
stringlengths
0
4.44M
script_nb_tokens
int64
25
663k
upvotes
int64
0
1.65k
tokens_description
int64
25
663k
tokens_script
int64
25
663k
129073232
<jupyter_start><jupyter_text>CIFAKE: Real and AI-Generated Synthetic Images # CIFAKE: Real and AI-Generated Synthetic Images The quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness. CIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI? Further information on this dataset can be found here: [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126) ![Images from the CIFAKE dataset](https://i.imgur.com/RiOwf8i.png) ## Dataset details The dataset contains two classes - REAL and FAKE. For REAL, we collected the images from Krizhevsky & Hinton's [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) For the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4 There are 100,000 images for training (50k per class) and 20,000 for testing (10k per class) ## Papers with Code The dataset and all studies using it are linked using [Papers with Code](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images) [https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images) ## References If you use this dataset, you **must** cite the following sources [Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdfl) [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126) Real images are from Krizhevsky & Hinton (2009), fake images are from Bird & Lotfi (2023). The Bird & Lotfi study is a preprint currently available on [ArXiv](https://arxiv.org/abs/2303.14126) and this description will be updated when the paper is published. ## Notes The updates to the dataset on the 28th of March 2023 did not change anything; the file formats ".jpeg" were renamed ".jpg" and the root folder was uploaded to meet Kaggle's usability requirements. ## License This dataset is published under the [same MIT license as CIFAR-10](https://github.com/wichtounet/cifar-10/blob/master/LICENSE): *Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:* *The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.* *THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.* Kaggle dataset identifier: cifake-real-and-ai-generated-synthetic-images <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import random import cv2 import os import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.utils import to_categorical, plot_model IMG_DIMS = (96, 96, 3) NUM_CLASSES = 2 BATCH_SIZE = 64 EPOCHS = 80 LEARNING_RATE = 1e-3 data = [] labels = [] images_path = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/train" fake_path = os.path.join(images_path, "FAKE") real_path = os.path.join(images_path, "REAL") fake_files = [ os.path.join(fake_path, f) for f in os.listdir(fake_path) if os.path.isfile(os.path.join(fake_path, f)) ] real_files = [ os.path.join(real_path, f) for f in os.listdir(real_path) if os.path.isfile(os.path.join(real_path, f)) ] image_files = fake_files + real_files random.shuffle(image_files) counter = 0 for img in image_files: if counter >= 12000: break image = cv2.imread(img) image = cv2.resize(image, (IMG_DIMS[0], IMG_DIMS[1])) image = img_to_array(image) data.append(image) label = img.split(os.path.sep)[-2] if label == "REAL": label = 1 else: label = 0 counter += 1 labels.append([label]) data = np.array(data, dtype="float") / 255.0 labels = np.array(labels) (trainX, testX, trainY, testY) = train_test_split( data, labels, test_size=0.3, random_state=101 ) trainY = to_categorical(trainY, num_classes=2) testY = to_categorical(testY, num_classes=2) def build_model(): model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D(32, (3, 3), padding="same", input_shape=IMG_DIMS), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(64, (3, 3), padding="same"), # tf.keras.layers.Activation("relu"), # tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(128, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(128, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(NUM_CLASSES), tf.keras.layers.Activation("softmax"), ] ) return model from tensorflow.keras.losses import CategoricalCrossentropy cce_loss = CategoricalCrossentropy() model = build_model() model.compile(optimizer="adam", loss=cce_loss, metrics=["accuracy"]) model.fit( trainX, trainY, batch_size=64, validation_data=(testX, testY), steps_per_epoch=len(trainX) // BATCH_SIZE, epochs=EPOCHS, verbose=1, ) import pandas as pd loss = pd.DataFrame(model.history.history) loss.plot() from sklearn.metrics import classification_report predictions = model.predict(testX) predicted_labels = np.argmax(predictions, axis=1) true_labels = np.argmax(testY, axis=1) report = classification_report(true_labels, predicted_labels) print(report) datas = [] labelss = [] images_paths = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/test" fake_paths = os.path.join(images_paths, "FAKE") real_paths = os.path.join(images_paths, "REAL") fake_file = [ os.path.join(fake_paths, f) for f in os.listdir(fake_paths) if os.path.isfile(os.path.join(fake_paths, f)) ] real_file = [ os.path.join(real_paths, f) for f in os.listdir(real_paths) if os.path.isfile(os.path.join(real_paths, f)) ] image_file = fake_file + real_file random.shuffle(image_file) counter = 0 for img in image_files: if counter >= 1000: break image = cv2.imread(img) image = cv2.resize(image, (IMG_DIMS[0], IMG_DIMS[1])) image = img_to_array(image) datas.append(image) label = img.split(os.path.sep)[-2] if label == "REAL": label = 1 else: label = 0 counter += 1 labelss.append([label]) datas = np.array(datas, dtype="float") / 255.0 labelss = np.array(labelss) # labelss = to_categorical(labelss, num_classes=2) (TrainX, TestX, TrainY, TestY) = train_test_split( datas, labelss, test_size=0.01, random_state=101 ) TrainY = to_categorical(TrainY, num_classes=2) from sklearn.metrics import classification_report pred = model.predict(TrainX) pred_label = np.argmax(pred, axis=1) true_label = np.argmax(TrainY, axis=1) reports = classification_report(true_label, pred_label) print(reports)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/073/129073232.ipynb
cifake-real-and-ai-generated-synthetic-images
birdy654
[{"Id": 129073232, "ScriptId": 38368072, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12633395, "CreationDate": "05/10/2023 19:09:23", "VersionNumber": 1.0, "Title": "notebookb0d7290cbe", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 195.0, "LinesInsertedFromPrevious": 195.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184805334, "KernelVersionId": 129073232, "SourceDatasetVersionId": 5256696}]
[{"Id": 5256696, "DatasetId": 3041726, "DatasourceVersionId": 5329502, "CreatorUserId": 2039603, "LicenseName": "Other (specified in description)", "CreationDate": "03/28/2023 16:00:29", "VersionNumber": 3.0, "Title": "CIFAKE: Real and AI-Generated Synthetic Images", "Slug": "cifake-real-and-ai-generated-synthetic-images", "Subtitle": "Can Computer Vision detect when images have been generated by AI?", "Description": "# CIFAKE: Real and AI-Generated Synthetic Images\nThe quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness.\n\nCIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI?\n\nFurther information on this dataset can be found here: [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126)\n\n![Images from the CIFAKE dataset](https://i.imgur.com/RiOwf8i.png)\n\n## Dataset details\nThe dataset contains two classes - REAL and FAKE. \n\nFor REAL, we collected the images from Krizhevsky & Hinton's [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html)\n\nFor the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4\n\nThere are 100,000 images for training (50k per class) and 20,000 for testing (10k per class)\n\n## Papers with Code\nThe dataset and all studies using it are linked using [Papers with Code](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images)\n[https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images)\n\n\n## References\nIf you use this dataset, you **must** cite the following sources\n\n[Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdfl)\n\n[Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126)\n\nReal images are from Krizhevsky & Hinton (2009), fake images are from Bird & Lotfi (2023). The Bird & Lotfi study is a preprint currently available on [ArXiv](https://arxiv.org/abs/2303.14126) and this description will be updated when the paper is published.\n\n## Notes\n\nThe updates to the dataset on the 28th of March 2023 did not change anything; the file formats \".jpeg\" were renamed \".jpg\" and the root folder was uploaded to meet Kaggle's usability requirements.\n\n## License\nThis dataset is published under the [same MIT license as CIFAR-10](https://github.com/wichtounet/cifar-10/blob/master/LICENSE):\n\n*Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:*\n\n*The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.*\n\n*THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.*", "VersionNotes": "Kaggle compatibility fix (no actual changes)", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3041726, "CreatorUserId": 2039603, "OwnerUserId": 2039603.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5256696.0, "CurrentDatasourceVersionId": 5329502.0, "ForumId": 3081274, "Type": 2, "CreationDate": "03/24/2023 13:22:42", "LastActivityDate": "03/24/2023", "TotalViews": 13728, "TotalDownloads": 1803, "TotalVotes": 46, "TotalKernels": 15}]
[{"Id": 2039603, "UserName": "birdy654", "DisplayName": "Jordan J. Bird", "RegisterDate": "07/03/2018", "PerformanceTier": 2}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import random import cv2 import os import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.utils import to_categorical, plot_model IMG_DIMS = (96, 96, 3) NUM_CLASSES = 2 BATCH_SIZE = 64 EPOCHS = 80 LEARNING_RATE = 1e-3 data = [] labels = [] images_path = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/train" fake_path = os.path.join(images_path, "FAKE") real_path = os.path.join(images_path, "REAL") fake_files = [ os.path.join(fake_path, f) for f in os.listdir(fake_path) if os.path.isfile(os.path.join(fake_path, f)) ] real_files = [ os.path.join(real_path, f) for f in os.listdir(real_path) if os.path.isfile(os.path.join(real_path, f)) ] image_files = fake_files + real_files random.shuffle(image_files) counter = 0 for img in image_files: if counter >= 12000: break image = cv2.imread(img) image = cv2.resize(image, (IMG_DIMS[0], IMG_DIMS[1])) image = img_to_array(image) data.append(image) label = img.split(os.path.sep)[-2] if label == "REAL": label = 1 else: label = 0 counter += 1 labels.append([label]) data = np.array(data, dtype="float") / 255.0 labels = np.array(labels) (trainX, testX, trainY, testY) = train_test_split( data, labels, test_size=0.3, random_state=101 ) trainY = to_categorical(trainY, num_classes=2) testY = to_categorical(testY, num_classes=2) def build_model(): model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D(32, (3, 3), padding="same", input_shape=IMG_DIMS), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(64, (3, 3), padding="same"), # tf.keras.layers.Activation("relu"), # tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(128, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(128, (3, 3), padding="same"), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024), tf.keras.layers.Activation("relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(NUM_CLASSES), tf.keras.layers.Activation("softmax"), ] ) return model from tensorflow.keras.losses import CategoricalCrossentropy cce_loss = CategoricalCrossentropy() model = build_model() model.compile(optimizer="adam", loss=cce_loss, metrics=["accuracy"]) model.fit( trainX, trainY, batch_size=64, validation_data=(testX, testY), steps_per_epoch=len(trainX) // BATCH_SIZE, epochs=EPOCHS, verbose=1, ) import pandas as pd loss = pd.DataFrame(model.history.history) loss.plot() from sklearn.metrics import classification_report predictions = model.predict(testX) predicted_labels = np.argmax(predictions, axis=1) true_labels = np.argmax(testY, axis=1) report = classification_report(true_labels, predicted_labels) print(report) datas = [] labelss = [] images_paths = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/test" fake_paths = os.path.join(images_paths, "FAKE") real_paths = os.path.join(images_paths, "REAL") fake_file = [ os.path.join(fake_paths, f) for f in os.listdir(fake_paths) if os.path.isfile(os.path.join(fake_paths, f)) ] real_file = [ os.path.join(real_paths, f) for f in os.listdir(real_paths) if os.path.isfile(os.path.join(real_paths, f)) ] image_file = fake_file + real_file random.shuffle(image_file) counter = 0 for img in image_files: if counter >= 1000: break image = cv2.imread(img) image = cv2.resize(image, (IMG_DIMS[0], IMG_DIMS[1])) image = img_to_array(image) datas.append(image) label = img.split(os.path.sep)[-2] if label == "REAL": label = 1 else: label = 0 counter += 1 labelss.append([label]) datas = np.array(datas, dtype="float") / 255.0 labelss = np.array(labelss) # labelss = to_categorical(labelss, num_classes=2) (TrainX, TestX, TrainY, TestY) = train_test_split( datas, labelss, test_size=0.01, random_state=101 ) TrainY = to_categorical(TrainY, num_classes=2) from sklearn.metrics import classification_report pred = model.predict(TrainX) pred_label = np.argmax(pred, axis=1) true_label = np.argmax(TrainY, axis=1) reports = classification_report(true_label, pred_label) print(reports)
false
0
1,907
0
2,950
1,907
129073823
<jupyter_start><jupyter_text>ecti2021 Kaggle dataset identifier: ecti2021 <jupyter_script># # # Lab_02_Unet_training_flood_assignment_v1_Kaggle # ## Student: Daniela de los Santos # Make sure to use a GPU and have access to internet connection in the Kaggle notebook: # 1. On the three dots on the top left, select "Notebook Options" and then "Accelerator" to choose the GPU P100, and select "Variables & Files" under Persistence. **Note that Kaggle allows 30h per week per user of accelerated computing. Plan your work accordingly. It takes time to load the data and you may experience unavailability of GPUs or Session Errors** # 1. Make sure your Kaggle account is phone verified by clicking "Get phone verified" in the left sidebar under "Notebook options" and following the steps (this step is required to switch on the internet connection needed to install packages). # 1. After phone verification, the full settings menu should be visible. Toggle the "Internet" switch. # More visualizations of the process to connect the notebook to the intern are provided [here](https://stackoverflow.com/questions/68142524/cannot-access-internet-on-kaggle-notebook) # ## Requirements: # 1. Downloading the [train data](https://cernbox.cern.ch/s/GtHXqYOzAJnGHPN) and the [val_without_ref_labels.zip](https://cernbox.cern.ch/s/EXHXXinESUxyhFi) # 1. Go to the "Side Bar", Click on "Data" # 1. Upload as `ecti2021` the following four files: `train data.zip`, `val_without_ref_labels.zip` , and the `water_tiles.csv` and `background_tiles.csv` from the Lab_01_data_preparation_flood_v1. # # Step 0: Enviroment setting # load packages import os import sys import cv2 import numpy as np import pandas as pd from glob import glob import torch.nn as nn from tqdm.notebook import tqdm import matplotlib.pyplot as plt import segmentation_models_pytorch as smp # Set up plotting options import pickle from pickle import load import torch from torch.utils.data import Dataset, DataLoader # # Step 1: Load the dataset files # Set path to where dataset is downloaded dataset_root = ( "/kaggle/input/ecti2021" # set accordingly based on how you uploaded the data ) # get number of training/validation regions train_dir = os.path.join(dataset_root, "train/train") test_dir = os.path.join(dataset_root, "val_without_ref_labels/val") n_train_regions = len(glob(train_dir + "/*/")) n_test_regions = len(glob(test_dir + "/*/")) # NOTE: make sure number of regions is NOT 0, otherwise it might be that the code is not able to read the data. print("Number of training temporal-regions: {}".format(n_train_regions)) print("Number of test temporal-regions: {}".format(n_test_regions)) # From the Lab_01_data_preparation_flood_v1, we indentified that the ETCI 2021 Competition on Flood Detection is composed by 33'405 tiles. However, we also identified tiles that have empty VV/VH but have a non-zero label. We already excluded this tiles when saving the `water_tiles.csv` and `background_tiles.csv`. The dataset used in this notebook should contain 27'214 tiles. # ## Utils functions def visualize(df_row, figsize=[25, 15]): # get image paths vv_image_path = df_row["vv_image_path"] vh_image_path = df_row["vh_image_path"] flood_label_path = df_row["flood_label_path"] water_body_label_path = df_row["water_body_label_path"] # create RGB image from S1 images rgb_name = get_filename(vv_image_path) vv_image = cv2.imread(vv_image_path, 0) / 255.0 vh_image = cv2.imread(vh_image_path, 0) / 255.0 rgb_image = s1_to_rgb(vv_image, vh_image) # get water body label mask water_body_label_image = cv2.imread(water_body_label_path, 0) / 255.0 # plot images plt.figure(figsize=tuple(figsize)) if df_row.isnull().sum() > 0: # plot RGB S1 image plt.subplot(1, 2, 1) plt.imshow(rgb_image) plt.title(rgb_name) # plot water body mask plt.subplot(1, 2, 2) plt.imshow(water_body_label_image) plt.title("Water body mask") else: flood_label_image = cv2.imread(flood_label_path, 0) / 255.0 # plot RGB S1 image plt.subplot(1, 3, 1) plt.imshow(rgb_image) plt.title(rgb_name) # plot flood label mask plt.subplot(1, 3, 2) plt.imshow(flood_label_image) plt.title("Flood mask") # plot water body mask plt.subplot(1, 3, 3) plt.imshow(water_body_label_image) plt.title("Water body mask") def s1_to_rgb(vv_image, vh_image): eps = 1e-06 ratio_image = np.clip( np.nan_to_num(vv_image / (vh_image + eps), 0), 0, 1 ) # outside [0,1] will be clipped rgb_image = np.stack( (vv_image, vh_image, ratio_image), axis=2 ) # different from lab01: np.abs(red) / np.abs(green) return rgb_image def visualize_result(df_row, prediction, figsize=[25, 15]): vv_image = cv2.imread(df_row["vv_image_path"], 0) / 255.0 vh_image = cv2.imread(df_row["vh_image_path"], 0) / 255.0 rgb_input = s1_to_rgb(vv_image, vh_image) plt.figure(figsize=tuple(figsize)) plt.subplot(1, 2, 1) plt.imshow(rgb_input) plt.title("RGB w/ result") plt.subplot(1, 2, 2) plt.imshow(prediction) plt.title("Result") # # Step 2: Create training dataframes def get_filename(filepath, split_symbol="/"): return filepath.split(split_symbol)[-1] def read_csv(csvpath, split_symbol="/"): path_list = np.loadtxt(csvpath, delimiter=" ", dtype=str).tolist() return [get_filename(pth, split_symbol) for pth in path_list] water_image_names = read_csv( "/kaggle/input/ecti2021/water_tiles.csv" ) # from lab01 make sure the path is correct background_image_names = read_csv("/kaggle/input/ecti2021/background_tiles.csv") region_name_dates0 = ["_".join(n.split("_")[:2]) for n in water_image_names] region_name_dates1 = ["_".join(n.split("_")[:2]) for n in background_image_names] vv_image_paths, vh_image_paths, flood_label_paths, water_body_label_paths = ( [], [], [], [], ) water_image_paths, background_image_paths = [], [] for i in range(len(water_image_names)): vv_image_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "vv", water_image_names[i] ) vv_image_paths.append(vv_image_path) water_image_paths.append(vv_image_path) # get vh image path vh_image_name = water_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path flood_image_name = water_image_names[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "flood_label", flood_image_name ) flood_label_paths.append(flood_label_path) # get water body mask path water_body_label_name = water_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) for i in range(len(background_image_names)): vv_image_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "vv", background_image_names[i] ) vv_image_paths.append(vv_image_path) background_image_paths.append(vv_image_path) # get vh image path vh_image_name = background_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path flood_image_name = background_image_names[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "flood_label", flood_image_name ) flood_label_paths.append(flood_label_path) # get water body mask path water_body_label_name = background_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) water_image_names[0] # Shuffle the index and then split in train and validation n = len(vv_image_paths) # number of images in the dataset arr = np.arange(n) # array 0...n-1 np.random.shuffle(arr) # shuffle it train_idx = arr[0 : int(np.round(0.80 * n))] # 80% train valid_idx = arr[int(np.round(0.80 * n)) :] # 20% validation print("Number of tiles in training set:", train_idx.size) print("Number of tiles in validation set:", valid_idx.size) print( "Number of tiles in the training and validation set:", train_idx.size + valid_idx.size, ) vv_image_paths_train = list(np.array(vv_image_paths)[train_idx]) vh_image_paths_train = list(np.array(vh_image_paths)[train_idx]) flood_label_paths_train = list(np.array(flood_label_paths)[train_idx]) water_body_label_paths_train = list(np.array(water_body_label_paths)[train_idx]) train_paths = { "vv_image_path": vv_image_paths_train, "vh_image_path": vh_image_paths_train, "flood_label_path": flood_label_paths_train, "water_body_label_path": water_body_label_paths_train, } train_df = pd.DataFrame(train_paths) print(train_df.shape) train_df.head() vv_image_paths_valid = list(np.array(vv_image_paths)[valid_idx]) vh_image_paths_valid = list(np.array(vh_image_paths)[valid_idx]) flood_label_paths_valid = list(np.array(flood_label_paths)[valid_idx]) water_body_label_paths_valid = list(np.array(water_body_label_paths)[valid_idx]) valid_paths = { "vv_image_path": vv_image_paths_valid, "vh_image_path": vh_image_paths_valid, "flood_label_path": flood_label_paths_valid, "water_body_label_path": water_body_label_paths_valid, } valid_df = pd.DataFrame(valid_paths) print(valid_df.shape) valid_df.head() # ## # Step 2b: Create training undersampled dataframes background_image_paths_train = [ path for path in background_image_paths if path in vv_image_paths_train ] background_num_train = len(background_image_paths_train) print("Number of background tiles included in training:", background_num_train) water_image_paths_train = [ path for path in water_image_paths if path in vv_image_paths_train ] water_image_names_train = [get_filename(pth) for pth in water_image_paths_train] region_name_dates2 = ["_".join(n.split("_")[:2]) for n in water_image_names_train] water_num_train = len(water_image_paths_train) print("Number of water tiles included in training:", water_num_train) num_samples = int(water_num_train * 0.15) # include 15% of water tiles arr = np.arange(int(water_num_train * 0.15)) # array 0...n-1 np.random.shuffle(arr) # shuffle it background_image_paths_train_undersampled = list( np.array(background_image_paths_train)[arr[0:num_samples]] ) background_image_names_train_undersampled = [ get_filename(pth) for pth in background_image_paths_train_undersampled ] print( "Number of background tiles included in training after undersampling:", len(background_image_names_train_undersampled), ) region_name_dates3 = [ "_".join(n.split("_")[:2]) for n in background_image_names_train_undersampled ] ( vh_image_paths_train_undersampled, flood_label_paths_train_undersampled, water_body_label_paths_train_undersampled, ) = ([], [], []) for i in range(len(water_image_names_train)): # get vh image path vh_image_name = water_image_names_train[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "vh", vh_image_name ) vh_image_paths_train_undersampled.append(vh_image_path) # get flood mask path flood_image_name = water_image_names_train[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "flood_label", flood_image_name ) flood_label_paths_train_undersampled.append(flood_label_path) # get water body mask path water_body_label_name = water_image_names_train[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths_train_undersampled.append(water_body_label_path) vv_image_paths_train_undersampled = water_image_paths_train print( "Number of water body label included in training after undersampling:", len(water_body_label_paths_train_undersampled), ) for i in range(len(background_image_names_train_undersampled)): vv_image_paths_train_undersampled.append( background_image_paths_train_undersampled[i] ) # get vh image path vh_image_name = background_image_names_train_undersampled[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "vh", vh_image_name ) vh_image_paths_train_undersampled.append(vh_image_path) # get flood mask path flood_image_name = background_image_names_train_undersampled[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "flood_label", flood_image_name ) flood_label_paths_train_undersampled.append(flood_label_path) # get water body mask path water_body_label_name = background_image_names_train_undersampled[i].replace( "_vv", "" ) water_body_label_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths_train_undersampled.append(water_body_label_path) assert ( len(vv_image_paths_train_undersampled) == len(vh_image_paths_train_undersampled) == len(flood_label_paths_train_undersampled) == len(water_body_label_paths_train_undersampled) ) print( "Number of overall images included in training after undersampling:", len(water_body_label_paths_train_undersampled), ) # **1) Based on the consideration done in Lab1 and the above calculation, explain the original dataset is in term of class imbalance and how this changed in the undersample dataset.** # **ANSWER HERE:** # In Lab1, we had obtained an imbalanced class distribution. At the pixel level, 98% corresponded to background pixels. At the tile level, even after excluding blank images, the background tiles were still nearly 62% of the total. # Here, in the undersample dataset, this class imbalance problem is addressed by including only a subset of the available background tiles. Particularly, this snipped of code: `num_samples = int(water_num_train * 0.15)`, computes the number of background tiles to include in the undersampled training set, setting it to 15% of the total number of water tiles in the original training set. That number is then selected from a shuffled array. On the other hand, the number of water tiles/water body labels stays the same after undersampling (8323). The code below provides a visualization similar to the ones used in Lab1, showing the new class distribution. # Define the class labels and counts classes = ["Water Tiles", "Background Tiles"] counts = [ np.size(water_body_label_paths_train_undersampled), np.size(background_image_names_train_undersampled), ] # Create a bar chart plt.bar(classes, counts) total = sum(counts) percentages = [(count / total) * 100 for count in counts] # Add a title and axis labels plt.title("Class Distribution at the tile level after undersampling") plt.xlabel("Class") plt.ylabel("Count") for i, count in enumerate(counts): percentage = (count / total) * 100 plt.text(i, count + 10, f"{percentage:.1f}%", ha="center") # Show the plot plt.show() train_paths_undersample = { "vv_image_path": vv_image_paths_train_undersampled, "vh_image_path": vh_image_paths_train_undersampled, "flood_label_path": flood_label_paths_train_undersampled, "water_body_label_path": water_body_label_paths_train_undersampled, } train_df_undersample = pd.DataFrame(train_paths_undersample) print(train_df_undersample.shape) train_df_undersample.head() # # Step 3: Visualize images # This section is meant to be used to experiment the data. Feel free to change things and to explore the data. train_df cv2.imread(train_df_undersample.iloc[1200]["vv_image_path"], 0) train_df_undersample.iloc[3600]["vv_image_path"] visualize(train_df_undersample.iloc[3600]) visualize(train_df.iloc[3677]) # # Step 4: Setup the dataset for machine learning # Since the Phase 1 (Development phase) of the ETCI 2021 Competition on Flood Detection provided with training data (which includes reference data) and a validation data (without reference data until phase 1 concludes),we will split our training dataset (that contains flood masks) into a smaller training and development set. # ### Create a PyTorch dataset # We will be using the PyTorch deep learning library to format this dataset and create our machine learning model. Therefore we will need to create a custom Dataset class and pass it into a DataLoader object (see the [PyTorch Dataset Tutorial](https://pytorch.org/tutorials/beginner/data_loading_tutorial.html) for more detail on the topic). To compute image transformations we will use the [Albumentations](https://github.com/albumentations-team/albumentations) package. class ETCIDataset(Dataset): def __init__(self, dataframe, split, transform=None): self.split = split self.dataset = dataframe self.transform = transform def __len__(self): return self.dataset.shape[0] def __getitem__(self, index): example = {} df_row = self.dataset.iloc[index] # load vv and vh images vv_image = cv2.imread(df_row["vv_image_path"], 0) / 255.0 vh_image = cv2.imread(df_row["vh_image_path"], 0) / 255.0 # convert vv and vh images to rgb rgb_image = s1_to_rgb(vv_image, vh_image) if self.split == "test": # no flood mask should be available example["image"] = rgb_image.transpose((2, 0, 1)).astype( "float32" ) # HWC->CHW else: # load ground truth flood mask flood_mask = cv2.imread(df_row["flood_label_path"], 0) / 255.0 # compute transformations if self.transform: augmented = self.transform(image=rgb_image, mask=flood_mask) rgb_image = augmented["image"] flood_mask = augmented["mask"] example["image"] = rgb_image.transpose((2, 0, 1)).astype( "float32" ) # HWC->CHW example["mask"] = flood_mask.astype("int64") return example # **2) Check the [Albumentations](https://github.com/albumentations-team/albumentations) package and implement both Vertical and Horizontal flip with probability 0.5 and RandomResizedCrop of 256 on both dimentions.** import albumentations as A ### BEGINNING OF THE CODE transform = A.Compose( [ A.RandomResizedCrop(height=256, width=256), A.OneOf([A.HorizontalFlip(p=1), A.VerticalFlip(p=1)], p=0.5), ] ) # Apply the transforms to an image image = cv2.imread(train_df_undersample.iloc[3600]["vv_image_path"]) transformed = transform(image=image) transformed_image = transformed["image"] # Display original and transformed images side by side fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) ax[0].set_title("Original") ax[1].imshow(cv2.cvtColor(transformed_image, cv2.COLOR_BGR2RGB)) ax[1].set_title("Transformed") plt.show() ####END OF THE CODE train_dataset = ETCIDataset(train_df, split="train", transform=transform) valid_dataset = ETCIDataset(valid_df, split="valid", transform=None) print("Trainining set size:", len(train_dataset)) print("Validation set size:", len(valid_dataset)) batch_size = 64 train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True ) valid_loader = DataLoader( valid_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) train_undersampled_dataset = ETCIDataset( train_df_undersample, split="train", transform=transform ) train_undersampled_loader = DataLoader( train_undersampled_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, ) print("Undersampled Trainining set size:", len(train_undersampled_dataset)) # # Step 5: Deep learning model creation # ### Select hardware to train model device = "cuda" # **3) We will grab a segmentation model from the [Segmentation Models](https://github.com/qubvel/segmentation_models.pytorch) package ([documentation here](https://smp.readthedocs.io/en/latest/)). Read carfully the documentation and implement a UNet with resnet34 as encoder, without any pre-trained weights, and the appropriate number of in_channel and classes based on the dataset.** import segmentation_models_pytorch as smp def create_model(in_channels=3, num_classes=2): model = smp.Unet( encoder_name="resnet34", encoder_weights=None, in_channels=in_channels, # Because we are working with RBG images, we set in_channels=3 classes=num_classes, ) return model model_1 = create_model() model_1.to(device) # load model into GPU memory # ### Metric tracker from sklearn.metrics import confusion_matrix class EvalTracker: def __init__(self, n_classes=2, smooth=0.0001): self.n_classes = n_classes self.reset() self.smooth = smooth def reset(self): self.cm = np.zeros((self.n_classes, self.n_classes)) self.count = 0 def update(self, pred, target): # pred: [B, 2, H, W] # target: [B, H, W] self.count += pred.shape[0] # reshape inputs pred = pred.argmax(dim=1).flatten() # [B*H*W] target = target.flatten() # [B*H*W] # put into cpu memory pred = pred.detach().cpu().numpy() target = target.detach().cpu().numpy() # compute confusion matrix values self.cm += confusion_matrix(target, pred) def get_mean(self): tn, fp, fn, tp = self.cm.ravel() # compute IoU iou = tp / (tp + fp + fn + self.smooth) prec = tp / (tp + fp + self.smooth) rec = tp / (tp + fn + self.smooth) f1 = 2.0 * prec * rec / (prec + rec) return iou, prec, rec, f1 # # Step 6: Train model on the full dataset # ### Model config, optimizer and loss function # set the number of times you want the model to see all of the training data epochs = 10 learning_rate = 1e-4 optimizer = torch.optim.Adam(model_1.parameters(), lr=learning_rate) criteria_no_weights = nn.CrossEntropyLoss(weight=None) # ### Training loop train_loss_dict = {} val_loss_dict = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_loader) train_loss = 0.0 model_1.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_1(image) # get loss loss = criteria_no_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_loader.dataset) train_loss_dict[epoch] = train_loss # valid set pbar = tqdm(valid_loader) model_1.eval() eval_logger = EvalTracker() val_loss = 0.0 with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_1(image) # get loss loss = criteria_no_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict[epoch] = val_loss # Save the training loss values with open("./train_loss_1_1_BCE.pkl", "wb") as file: pickle.dump(train_loss_dict, file) # Save the validation loss values with open("./val_loss_1_1_BCE.pkl", "wb") as file: pickle.dump(val_loss_dict, file) # save model torch.save(model_1.state_dict(), "model_1_BCE.pt") # ### Plot Losses # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_1_1_BCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_1_1_BCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # # Step 7: Train model on the undersampled dataset # ### Model config, optimizer and loss function batch_size = 64 epochs = 10 learning_rate = 1e-4 model_2 = create_model() model_2.to(device) optimizer = torch.optim.Adam(model_2.parameters(), lr=learning_rate) criteria_no_weights = nn.CrossEntropyLoss(weight=None) # **4) Implement a training loop similar to the one above but for the undersampled dataset. Use model_2 to avoid any overwriting of the previous model. Save the model as 'model_2d_BCE.pt'*** # ### Training loop ### CODE HERE### train_loss_dict_2 = {} val_loss_dict_2 = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_undersampled_loader) train_loss = 0.0 model_2.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_2(image) # get loss loss = criteria_no_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_undersampled_loader.dataset) train_loss_dict_2[epoch] = train_loss # valid set pbar = tqdm(valid_loader) model_2.eval() eval_logger = EvalTracker() val_loss = 0.0 with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_2(image) # get loss loss = criteria_no_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict_2[epoch] = val_loss # Save the training loss values with open("./train_loss_2_BCE.pkl", "wb") as file: pickle.dump(train_loss_dict_2, file) # Save the validation loss values with open("./val_loss_2_BCE.pkl", "wb") as file: pickle.dump(val_loss_dict_2, file) # save model torch.save(model_2.state_dict(), "model_2_BCE.pt") train_path = r"train_df.csv" valid_path = r"valid_df.csv" train_under_path = r"train_df_undersample.csv" train_df.to_csv(train_path) valid_df.to_csv(valid_path) train_df_undersample.to_csv(train_under_path) # ### Plot Losses # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_2_BCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_2_BCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # # Step 8: Train model on the undersampled dataset with a weighted loss function # ### Defining the split for the weighted Cross Entropy Loss # It take quite a long time to calcualte, the ratio is around 5% flooded pixels, 95% background n_size = len(flood_label_paths_train_undersampled) n_flooded = np.ndarray( (n_size,), ) for i in tqdm(range(n_size)): flood_label = cv2.imread(flood_label_paths_train_undersampled[i], 0) n_flooded[i] = np.sum(flood_label) / 255 n_flooded_ratio = np.divide(n_flooded, 256 * 256) flooded_pixels = np.sum(n_flooded) background_pixels = 256 * 256 * n_size - np.sum(n_flooded) print("Flooded Pixels:", flooded_pixels) print("Background Pixels:", background_pixels) print("Ratio:", np.mean(n_flooded_ratio)) # ### Model config, optimizer and loss function # **5) Define the "Model config, optimizer and loss function" section as previously done but for "model_3" which will be trained with a [Weighted Cross Entropy Loss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html). Remember to store the weights as a torch tensor, to load it in the GPU, and be careful on the order of your weights.** ###CODE HERE # Define the model configuration model_3 = create_model() model_3.to(device) learning_rate = 1e-4 optimizer = torch.optim.Adam(model_3.parameters(), lr=learning_rate) # define loss function with weights weights = torch.tensor([0.0462, (1 - 0.0462)]) weights = weights.to(device) criteria_weights = nn.CrossEntropyLoss(weight=weights) # **6) Why did you choose the weights you used for the CrossEntropyLoss?** # **ANSWER HERE:** # The choice of class weights for the weighted cross-entropy loss is in this case a strategy to tackle imbalance issues in the dataset. I set the weight for the background to 0.05 and for the flooded pixels to 0.95, thus reversing the original relationship of the distribution. This means that we are giving more weight and importance to the class we are interested in, as it is is more important in the segmentation task than the first class. # ### Training Loop train_loss_dict = {} val_loss_dict = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_undersampled_loader) train_loss = 0.0 model_3.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_3(image) # get loss loss = criteria_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_undersampled_loader.dataset) train_loss_dict[epoch] = train_loss # valid set pbar = tqdm(valid_loader) val_loss = 0.0 model_3.eval() eval_logger = EvalTracker() with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_3(image) # get loss loss = criteria_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict[epoch] = val_loss # Save the training loss values with open("./train_loss_2d_WBCE.pkl", "wb") as file: pickle.dump(train_loss_dict, file) # Save the validation loss values with open("./val_loss_2d_WBCE.pkl", "wb") as file: pickle.dump(val_loss_dict, file) # save model torch.save(model_3.state_dict(), "model_2d_WBCE.pt") # ### Plot Losses from numpy import * from pickle import load # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_2d_WBCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_2d_WBCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # **7) How are the three models (model_1_BCE.pt, model_2d_BCE.pt, and model_2d_WBCE.pt) performning? Comment the performances of the models.** # **ANSWER HERE:** # We can analyse and compare the performance of the models based on the performance metrics of the last Epoch. The table below summarizes the results. # | Model | Loss | MIoU | Precision | Recall | F1 score | # |---------------------------------------------------- |-------- |-------- |----------- |-------- |---------- | # | Full sample | 0.0054 | 0.5933 | 0.8283 | 0.6766 | 0.7448 | # | Undersampled dataset | 0.0182 | 0.5958 | 0.8036 | 0.6973 | 0.7467 | # | Undersampled dataset with a weighted loss function | 0.4686 | 0.0838 | 0.0842 | 0.9497 | 0.1547 | # Based on the given metrics, it appears that the first two models (Full sample and Undersampled dataset) perform similarly and better than the third model (Undersampled dataset with a weighted loss function). The first two models have similar values for MIoU, Precision, Recall, and F1 score, with the Undersampled dataset model having slightly higher MIoU and Recall but slightly lower Precision and F1 score. The third model has much lower values for Loss, MIoU, Precision, and F1 score but a much higher value for Recall. # In general, which model is better depends on the specific problem. For example, if high precision is important, then the Full sample model may be preferred. If high recall is important, then the Undersampled dataset model may be preferred. In our exercise, there is a clear tradeoff. Overlooking false positives (that is, considering an area is flooded when in fact it is not) might incur in inflating the costs to be faced by policymakers. On the other hand, overlooking false negatives (that is, ignoring some areas that are flooded and treat them as if they are not) might have negative effects from a humans right approach, as the cost to get help to flooded areas could be underestimated, and the strategy to cover those areas, get adequate aid, etc., might be suboptimal. In this context, we might want to give more importance to the **recall** metric: $\frac{TP}{(TP+FN)}$. # Even though the weighted loss function model has the highest recall, the rest of the metrics perform very poorly, which makes it a problematic choice. In that sense, the model with the undersampled dataset without weights might be a better choice. I will use this model in Step 10. # # Step 10: Test models # ### Create a test dataset # Let's create Dataset and DataLoader objects for the validation set. This time we will not have labels. vv_image_paths = sorted(glob(test_dir + "/**/vv/*.png", recursive=True)) vv_image_names = [get_filename(pth) for pth in vv_image_paths] region_name_dates = ["_".join(n.split("_")[:2]) for n in vv_image_names] vh_image_paths, flood_label_paths, water_body_label_paths, region_names = [], [], [], [] for i in range(len(vv_image_paths)): # get vh image path vh_image_name = vv_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( test_dir, region_name_dates[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path () flood_label_paths.append(np.NaN) # get water body mask path water_body_label_name = vv_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( test_dir, region_name_dates[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) # get region name region_name = region_name_dates[i].split("_")[0] region_names.append(region_name) test_paths = { "vv_image_path": vv_image_paths, "vh_image_path": vh_image_paths, "flood_label_path": flood_label_paths, "water_body_label_path": water_body_label_paths, "region": region_names, } test_df = pd.DataFrame(valid_paths) print(test_df.shape) test_df.head() # ### Run inference # **8) Choose your best performing model from Steps 6-9 and run inference below:** # load model model_test = create_model() model_test.load_state_dict( torch.load("/kaggle/working/model_2_BCE.pt") ) # CHANGE THE MODEL HERE. Default set as model_1_BCE.pt model_test.to(device) test_dataset = ETCIDataset(test_df, split="test", transform=None) test_loader = DataLoader( test_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) # make sure shuffle is False final_predictions = [] model_test.eval() with torch.no_grad(): for batch in tqdm(test_loader): # load image and mask into device memory image = batch["image"].to(device) # pass images into model pred = model_test(image) # compute class predictions, i.e. flood or no-flood class_pred = pred.argmax(dim=1) # convert class prediction to numpy class_pred = class_pred.detach().cpu().numpy() # add to final predictions final_predictions.append(class_pred.astype("uint8")) final_predictions = np.concatenate(final_predictions, axis=0) # check final prediction shape print(final_predictions.shape) # ### Visualize some results index = 252 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10)) index = -100 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10)) index = 1910 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/073/129073823.ipynb
ecti2021
luisquinones41
[{"Id": 129073823, "ScriptId": 38361828, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 15040553, "CreationDate": "05/10/2023 19:17:21", "VersionNumber": 1.0, "Title": "hw3-newversion", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 1000.0, "LinesInsertedFromPrevious": 1000.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184806190, "KernelVersionId": 129073823, "SourceDatasetVersionId": 5626554}]
[{"Id": 5626554, "DatasetId": 3234863, "DatasourceVersionId": 5701774, "CreatorUserId": 12136140, "LicenseName": "Unknown", "CreationDate": "05/07/2023 15:07:02", "VersionNumber": 3.0, "Title": "ecti2021", "Slug": "ecti2021", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2023-05-07", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3234863, "CreatorUserId": 12136140, "OwnerUserId": 12136140.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5626554.0, "CurrentDatasourceVersionId": 5701774.0, "ForumId": 3300026, "Type": 2, "CreationDate": "05/07/2023 14:14:14", "LastActivityDate": "05/07/2023", "TotalViews": 105, "TotalDownloads": 6, "TotalVotes": 0, "TotalKernels": 3}]
[{"Id": 12136140, "UserName": "luisquinones41", "DisplayName": "Luis Qui\u00f1ones", "RegisterDate": "10/28/2022", "PerformanceTier": 0}]
# # # Lab_02_Unet_training_flood_assignment_v1_Kaggle # ## Student: Daniela de los Santos # Make sure to use a GPU and have access to internet connection in the Kaggle notebook: # 1. On the three dots on the top left, select "Notebook Options" and then "Accelerator" to choose the GPU P100, and select "Variables & Files" under Persistence. **Note that Kaggle allows 30h per week per user of accelerated computing. Plan your work accordingly. It takes time to load the data and you may experience unavailability of GPUs or Session Errors** # 1. Make sure your Kaggle account is phone verified by clicking "Get phone verified" in the left sidebar under "Notebook options" and following the steps (this step is required to switch on the internet connection needed to install packages). # 1. After phone verification, the full settings menu should be visible. Toggle the "Internet" switch. # More visualizations of the process to connect the notebook to the intern are provided [here](https://stackoverflow.com/questions/68142524/cannot-access-internet-on-kaggle-notebook) # ## Requirements: # 1. Downloading the [train data](https://cernbox.cern.ch/s/GtHXqYOzAJnGHPN) and the [val_without_ref_labels.zip](https://cernbox.cern.ch/s/EXHXXinESUxyhFi) # 1. Go to the "Side Bar", Click on "Data" # 1. Upload as `ecti2021` the following four files: `train data.zip`, `val_without_ref_labels.zip` , and the `water_tiles.csv` and `background_tiles.csv` from the Lab_01_data_preparation_flood_v1. # # Step 0: Enviroment setting # load packages import os import sys import cv2 import numpy as np import pandas as pd from glob import glob import torch.nn as nn from tqdm.notebook import tqdm import matplotlib.pyplot as plt import segmentation_models_pytorch as smp # Set up plotting options import pickle from pickle import load import torch from torch.utils.data import Dataset, DataLoader # # Step 1: Load the dataset files # Set path to where dataset is downloaded dataset_root = ( "/kaggle/input/ecti2021" # set accordingly based on how you uploaded the data ) # get number of training/validation regions train_dir = os.path.join(dataset_root, "train/train") test_dir = os.path.join(dataset_root, "val_without_ref_labels/val") n_train_regions = len(glob(train_dir + "/*/")) n_test_regions = len(glob(test_dir + "/*/")) # NOTE: make sure number of regions is NOT 0, otherwise it might be that the code is not able to read the data. print("Number of training temporal-regions: {}".format(n_train_regions)) print("Number of test temporal-regions: {}".format(n_test_regions)) # From the Lab_01_data_preparation_flood_v1, we indentified that the ETCI 2021 Competition on Flood Detection is composed by 33'405 tiles. However, we also identified tiles that have empty VV/VH but have a non-zero label. We already excluded this tiles when saving the `water_tiles.csv` and `background_tiles.csv`. The dataset used in this notebook should contain 27'214 tiles. # ## Utils functions def visualize(df_row, figsize=[25, 15]): # get image paths vv_image_path = df_row["vv_image_path"] vh_image_path = df_row["vh_image_path"] flood_label_path = df_row["flood_label_path"] water_body_label_path = df_row["water_body_label_path"] # create RGB image from S1 images rgb_name = get_filename(vv_image_path) vv_image = cv2.imread(vv_image_path, 0) / 255.0 vh_image = cv2.imread(vh_image_path, 0) / 255.0 rgb_image = s1_to_rgb(vv_image, vh_image) # get water body label mask water_body_label_image = cv2.imread(water_body_label_path, 0) / 255.0 # plot images plt.figure(figsize=tuple(figsize)) if df_row.isnull().sum() > 0: # plot RGB S1 image plt.subplot(1, 2, 1) plt.imshow(rgb_image) plt.title(rgb_name) # plot water body mask plt.subplot(1, 2, 2) plt.imshow(water_body_label_image) plt.title("Water body mask") else: flood_label_image = cv2.imread(flood_label_path, 0) / 255.0 # plot RGB S1 image plt.subplot(1, 3, 1) plt.imshow(rgb_image) plt.title(rgb_name) # plot flood label mask plt.subplot(1, 3, 2) plt.imshow(flood_label_image) plt.title("Flood mask") # plot water body mask plt.subplot(1, 3, 3) plt.imshow(water_body_label_image) plt.title("Water body mask") def s1_to_rgb(vv_image, vh_image): eps = 1e-06 ratio_image = np.clip( np.nan_to_num(vv_image / (vh_image + eps), 0), 0, 1 ) # outside [0,1] will be clipped rgb_image = np.stack( (vv_image, vh_image, ratio_image), axis=2 ) # different from lab01: np.abs(red) / np.abs(green) return rgb_image def visualize_result(df_row, prediction, figsize=[25, 15]): vv_image = cv2.imread(df_row["vv_image_path"], 0) / 255.0 vh_image = cv2.imread(df_row["vh_image_path"], 0) / 255.0 rgb_input = s1_to_rgb(vv_image, vh_image) plt.figure(figsize=tuple(figsize)) plt.subplot(1, 2, 1) plt.imshow(rgb_input) plt.title("RGB w/ result") plt.subplot(1, 2, 2) plt.imshow(prediction) plt.title("Result") # # Step 2: Create training dataframes def get_filename(filepath, split_symbol="/"): return filepath.split(split_symbol)[-1] def read_csv(csvpath, split_symbol="/"): path_list = np.loadtxt(csvpath, delimiter=" ", dtype=str).tolist() return [get_filename(pth, split_symbol) for pth in path_list] water_image_names = read_csv( "/kaggle/input/ecti2021/water_tiles.csv" ) # from lab01 make sure the path is correct background_image_names = read_csv("/kaggle/input/ecti2021/background_tiles.csv") region_name_dates0 = ["_".join(n.split("_")[:2]) for n in water_image_names] region_name_dates1 = ["_".join(n.split("_")[:2]) for n in background_image_names] vv_image_paths, vh_image_paths, flood_label_paths, water_body_label_paths = ( [], [], [], [], ) water_image_paths, background_image_paths = [], [] for i in range(len(water_image_names)): vv_image_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "vv", water_image_names[i] ) vv_image_paths.append(vv_image_path) water_image_paths.append(vv_image_path) # get vh image path vh_image_name = water_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path flood_image_name = water_image_names[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "flood_label", flood_image_name ) flood_label_paths.append(flood_label_path) # get water body mask path water_body_label_name = water_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates0[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) for i in range(len(background_image_names)): vv_image_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "vv", background_image_names[i] ) vv_image_paths.append(vv_image_path) background_image_paths.append(vv_image_path) # get vh image path vh_image_name = background_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path flood_image_name = background_image_names[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "flood_label", flood_image_name ) flood_label_paths.append(flood_label_path) # get water body mask path water_body_label_name = background_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates1[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) water_image_names[0] # Shuffle the index and then split in train and validation n = len(vv_image_paths) # number of images in the dataset arr = np.arange(n) # array 0...n-1 np.random.shuffle(arr) # shuffle it train_idx = arr[0 : int(np.round(0.80 * n))] # 80% train valid_idx = arr[int(np.round(0.80 * n)) :] # 20% validation print("Number of tiles in training set:", train_idx.size) print("Number of tiles in validation set:", valid_idx.size) print( "Number of tiles in the training and validation set:", train_idx.size + valid_idx.size, ) vv_image_paths_train = list(np.array(vv_image_paths)[train_idx]) vh_image_paths_train = list(np.array(vh_image_paths)[train_idx]) flood_label_paths_train = list(np.array(flood_label_paths)[train_idx]) water_body_label_paths_train = list(np.array(water_body_label_paths)[train_idx]) train_paths = { "vv_image_path": vv_image_paths_train, "vh_image_path": vh_image_paths_train, "flood_label_path": flood_label_paths_train, "water_body_label_path": water_body_label_paths_train, } train_df = pd.DataFrame(train_paths) print(train_df.shape) train_df.head() vv_image_paths_valid = list(np.array(vv_image_paths)[valid_idx]) vh_image_paths_valid = list(np.array(vh_image_paths)[valid_idx]) flood_label_paths_valid = list(np.array(flood_label_paths)[valid_idx]) water_body_label_paths_valid = list(np.array(water_body_label_paths)[valid_idx]) valid_paths = { "vv_image_path": vv_image_paths_valid, "vh_image_path": vh_image_paths_valid, "flood_label_path": flood_label_paths_valid, "water_body_label_path": water_body_label_paths_valid, } valid_df = pd.DataFrame(valid_paths) print(valid_df.shape) valid_df.head() # ## # Step 2b: Create training undersampled dataframes background_image_paths_train = [ path for path in background_image_paths if path in vv_image_paths_train ] background_num_train = len(background_image_paths_train) print("Number of background tiles included in training:", background_num_train) water_image_paths_train = [ path for path in water_image_paths if path in vv_image_paths_train ] water_image_names_train = [get_filename(pth) for pth in water_image_paths_train] region_name_dates2 = ["_".join(n.split("_")[:2]) for n in water_image_names_train] water_num_train = len(water_image_paths_train) print("Number of water tiles included in training:", water_num_train) num_samples = int(water_num_train * 0.15) # include 15% of water tiles arr = np.arange(int(water_num_train * 0.15)) # array 0...n-1 np.random.shuffle(arr) # shuffle it background_image_paths_train_undersampled = list( np.array(background_image_paths_train)[arr[0:num_samples]] ) background_image_names_train_undersampled = [ get_filename(pth) for pth in background_image_paths_train_undersampled ] print( "Number of background tiles included in training after undersampling:", len(background_image_names_train_undersampled), ) region_name_dates3 = [ "_".join(n.split("_")[:2]) for n in background_image_names_train_undersampled ] ( vh_image_paths_train_undersampled, flood_label_paths_train_undersampled, water_body_label_paths_train_undersampled, ) = ([], [], []) for i in range(len(water_image_names_train)): # get vh image path vh_image_name = water_image_names_train[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "vh", vh_image_name ) vh_image_paths_train_undersampled.append(vh_image_path) # get flood mask path flood_image_name = water_image_names_train[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "flood_label", flood_image_name ) flood_label_paths_train_undersampled.append(flood_label_path) # get water body mask path water_body_label_name = water_image_names_train[i].replace("_vv", "") water_body_label_path = os.path.join( train_dir, region_name_dates2[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths_train_undersampled.append(water_body_label_path) vv_image_paths_train_undersampled = water_image_paths_train print( "Number of water body label included in training after undersampling:", len(water_body_label_paths_train_undersampled), ) for i in range(len(background_image_names_train_undersampled)): vv_image_paths_train_undersampled.append( background_image_paths_train_undersampled[i] ) # get vh image path vh_image_name = background_image_names_train_undersampled[i].replace("vv", "vh") vh_image_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "vh", vh_image_name ) vh_image_paths_train_undersampled.append(vh_image_path) # get flood mask path flood_image_name = background_image_names_train_undersampled[i].replace("_vv", "") flood_label_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "flood_label", flood_image_name ) flood_label_paths_train_undersampled.append(flood_label_path) # get water body mask path water_body_label_name = background_image_names_train_undersampled[i].replace( "_vv", "" ) water_body_label_path = os.path.join( train_dir, region_name_dates3[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths_train_undersampled.append(water_body_label_path) assert ( len(vv_image_paths_train_undersampled) == len(vh_image_paths_train_undersampled) == len(flood_label_paths_train_undersampled) == len(water_body_label_paths_train_undersampled) ) print( "Number of overall images included in training after undersampling:", len(water_body_label_paths_train_undersampled), ) # **1) Based on the consideration done in Lab1 and the above calculation, explain the original dataset is in term of class imbalance and how this changed in the undersample dataset.** # **ANSWER HERE:** # In Lab1, we had obtained an imbalanced class distribution. At the pixel level, 98% corresponded to background pixels. At the tile level, even after excluding blank images, the background tiles were still nearly 62% of the total. # Here, in the undersample dataset, this class imbalance problem is addressed by including only a subset of the available background tiles. Particularly, this snipped of code: `num_samples = int(water_num_train * 0.15)`, computes the number of background tiles to include in the undersampled training set, setting it to 15% of the total number of water tiles in the original training set. That number is then selected from a shuffled array. On the other hand, the number of water tiles/water body labels stays the same after undersampling (8323). The code below provides a visualization similar to the ones used in Lab1, showing the new class distribution. # Define the class labels and counts classes = ["Water Tiles", "Background Tiles"] counts = [ np.size(water_body_label_paths_train_undersampled), np.size(background_image_names_train_undersampled), ] # Create a bar chart plt.bar(classes, counts) total = sum(counts) percentages = [(count / total) * 100 for count in counts] # Add a title and axis labels plt.title("Class Distribution at the tile level after undersampling") plt.xlabel("Class") plt.ylabel("Count") for i, count in enumerate(counts): percentage = (count / total) * 100 plt.text(i, count + 10, f"{percentage:.1f}%", ha="center") # Show the plot plt.show() train_paths_undersample = { "vv_image_path": vv_image_paths_train_undersampled, "vh_image_path": vh_image_paths_train_undersampled, "flood_label_path": flood_label_paths_train_undersampled, "water_body_label_path": water_body_label_paths_train_undersampled, } train_df_undersample = pd.DataFrame(train_paths_undersample) print(train_df_undersample.shape) train_df_undersample.head() # # Step 3: Visualize images # This section is meant to be used to experiment the data. Feel free to change things and to explore the data. train_df cv2.imread(train_df_undersample.iloc[1200]["vv_image_path"], 0) train_df_undersample.iloc[3600]["vv_image_path"] visualize(train_df_undersample.iloc[3600]) visualize(train_df.iloc[3677]) # # Step 4: Setup the dataset for machine learning # Since the Phase 1 (Development phase) of the ETCI 2021 Competition on Flood Detection provided with training data (which includes reference data) and a validation data (without reference data until phase 1 concludes),we will split our training dataset (that contains flood masks) into a smaller training and development set. # ### Create a PyTorch dataset # We will be using the PyTorch deep learning library to format this dataset and create our machine learning model. Therefore we will need to create a custom Dataset class and pass it into a DataLoader object (see the [PyTorch Dataset Tutorial](https://pytorch.org/tutorials/beginner/data_loading_tutorial.html) for more detail on the topic). To compute image transformations we will use the [Albumentations](https://github.com/albumentations-team/albumentations) package. class ETCIDataset(Dataset): def __init__(self, dataframe, split, transform=None): self.split = split self.dataset = dataframe self.transform = transform def __len__(self): return self.dataset.shape[0] def __getitem__(self, index): example = {} df_row = self.dataset.iloc[index] # load vv and vh images vv_image = cv2.imread(df_row["vv_image_path"], 0) / 255.0 vh_image = cv2.imread(df_row["vh_image_path"], 0) / 255.0 # convert vv and vh images to rgb rgb_image = s1_to_rgb(vv_image, vh_image) if self.split == "test": # no flood mask should be available example["image"] = rgb_image.transpose((2, 0, 1)).astype( "float32" ) # HWC->CHW else: # load ground truth flood mask flood_mask = cv2.imread(df_row["flood_label_path"], 0) / 255.0 # compute transformations if self.transform: augmented = self.transform(image=rgb_image, mask=flood_mask) rgb_image = augmented["image"] flood_mask = augmented["mask"] example["image"] = rgb_image.transpose((2, 0, 1)).astype( "float32" ) # HWC->CHW example["mask"] = flood_mask.astype("int64") return example # **2) Check the [Albumentations](https://github.com/albumentations-team/albumentations) package and implement both Vertical and Horizontal flip with probability 0.5 and RandomResizedCrop of 256 on both dimentions.** import albumentations as A ### BEGINNING OF THE CODE transform = A.Compose( [ A.RandomResizedCrop(height=256, width=256), A.OneOf([A.HorizontalFlip(p=1), A.VerticalFlip(p=1)], p=0.5), ] ) # Apply the transforms to an image image = cv2.imread(train_df_undersample.iloc[3600]["vv_image_path"]) transformed = transform(image=image) transformed_image = transformed["image"] # Display original and transformed images side by side fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) ax[0].set_title("Original") ax[1].imshow(cv2.cvtColor(transformed_image, cv2.COLOR_BGR2RGB)) ax[1].set_title("Transformed") plt.show() ####END OF THE CODE train_dataset = ETCIDataset(train_df, split="train", transform=transform) valid_dataset = ETCIDataset(valid_df, split="valid", transform=None) print("Trainining set size:", len(train_dataset)) print("Validation set size:", len(valid_dataset)) batch_size = 64 train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True ) valid_loader = DataLoader( valid_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) train_undersampled_dataset = ETCIDataset( train_df_undersample, split="train", transform=transform ) train_undersampled_loader = DataLoader( train_undersampled_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, ) print("Undersampled Trainining set size:", len(train_undersampled_dataset)) # # Step 5: Deep learning model creation # ### Select hardware to train model device = "cuda" # **3) We will grab a segmentation model from the [Segmentation Models](https://github.com/qubvel/segmentation_models.pytorch) package ([documentation here](https://smp.readthedocs.io/en/latest/)). Read carfully the documentation and implement a UNet with resnet34 as encoder, without any pre-trained weights, and the appropriate number of in_channel and classes based on the dataset.** import segmentation_models_pytorch as smp def create_model(in_channels=3, num_classes=2): model = smp.Unet( encoder_name="resnet34", encoder_weights=None, in_channels=in_channels, # Because we are working with RBG images, we set in_channels=3 classes=num_classes, ) return model model_1 = create_model() model_1.to(device) # load model into GPU memory # ### Metric tracker from sklearn.metrics import confusion_matrix class EvalTracker: def __init__(self, n_classes=2, smooth=0.0001): self.n_classes = n_classes self.reset() self.smooth = smooth def reset(self): self.cm = np.zeros((self.n_classes, self.n_classes)) self.count = 0 def update(self, pred, target): # pred: [B, 2, H, W] # target: [B, H, W] self.count += pred.shape[0] # reshape inputs pred = pred.argmax(dim=1).flatten() # [B*H*W] target = target.flatten() # [B*H*W] # put into cpu memory pred = pred.detach().cpu().numpy() target = target.detach().cpu().numpy() # compute confusion matrix values self.cm += confusion_matrix(target, pred) def get_mean(self): tn, fp, fn, tp = self.cm.ravel() # compute IoU iou = tp / (tp + fp + fn + self.smooth) prec = tp / (tp + fp + self.smooth) rec = tp / (tp + fn + self.smooth) f1 = 2.0 * prec * rec / (prec + rec) return iou, prec, rec, f1 # # Step 6: Train model on the full dataset # ### Model config, optimizer and loss function # set the number of times you want the model to see all of the training data epochs = 10 learning_rate = 1e-4 optimizer = torch.optim.Adam(model_1.parameters(), lr=learning_rate) criteria_no_weights = nn.CrossEntropyLoss(weight=None) # ### Training loop train_loss_dict = {} val_loss_dict = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_loader) train_loss = 0.0 model_1.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_1(image) # get loss loss = criteria_no_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_loader.dataset) train_loss_dict[epoch] = train_loss # valid set pbar = tqdm(valid_loader) model_1.eval() eval_logger = EvalTracker() val_loss = 0.0 with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_1(image) # get loss loss = criteria_no_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict[epoch] = val_loss # Save the training loss values with open("./train_loss_1_1_BCE.pkl", "wb") as file: pickle.dump(train_loss_dict, file) # Save the validation loss values with open("./val_loss_1_1_BCE.pkl", "wb") as file: pickle.dump(val_loss_dict, file) # save model torch.save(model_1.state_dict(), "model_1_BCE.pt") # ### Plot Losses # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_1_1_BCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_1_1_BCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # # Step 7: Train model on the undersampled dataset # ### Model config, optimizer and loss function batch_size = 64 epochs = 10 learning_rate = 1e-4 model_2 = create_model() model_2.to(device) optimizer = torch.optim.Adam(model_2.parameters(), lr=learning_rate) criteria_no_weights = nn.CrossEntropyLoss(weight=None) # **4) Implement a training loop similar to the one above but for the undersampled dataset. Use model_2 to avoid any overwriting of the previous model. Save the model as 'model_2d_BCE.pt'*** # ### Training loop ### CODE HERE### train_loss_dict_2 = {} val_loss_dict_2 = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_undersampled_loader) train_loss = 0.0 model_2.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_2(image) # get loss loss = criteria_no_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_undersampled_loader.dataset) train_loss_dict_2[epoch] = train_loss # valid set pbar = tqdm(valid_loader) model_2.eval() eval_logger = EvalTracker() val_loss = 0.0 with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_2(image) # get loss loss = criteria_no_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict_2[epoch] = val_loss # Save the training loss values with open("./train_loss_2_BCE.pkl", "wb") as file: pickle.dump(train_loss_dict_2, file) # Save the validation loss values with open("./val_loss_2_BCE.pkl", "wb") as file: pickle.dump(val_loss_dict_2, file) # save model torch.save(model_2.state_dict(), "model_2_BCE.pt") train_path = r"train_df.csv" valid_path = r"valid_df.csv" train_under_path = r"train_df_undersample.csv" train_df.to_csv(train_path) valid_df.to_csv(valid_path) train_df_undersample.to_csv(train_under_path) # ### Plot Losses # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_2_BCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_2_BCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # # Step 8: Train model on the undersampled dataset with a weighted loss function # ### Defining the split for the weighted Cross Entropy Loss # It take quite a long time to calcualte, the ratio is around 5% flooded pixels, 95% background n_size = len(flood_label_paths_train_undersampled) n_flooded = np.ndarray( (n_size,), ) for i in tqdm(range(n_size)): flood_label = cv2.imread(flood_label_paths_train_undersampled[i], 0) n_flooded[i] = np.sum(flood_label) / 255 n_flooded_ratio = np.divide(n_flooded, 256 * 256) flooded_pixels = np.sum(n_flooded) background_pixels = 256 * 256 * n_size - np.sum(n_flooded) print("Flooded Pixels:", flooded_pixels) print("Background Pixels:", background_pixels) print("Ratio:", np.mean(n_flooded_ratio)) # ### Model config, optimizer and loss function # **5) Define the "Model config, optimizer and loss function" section as previously done but for "model_3" which will be trained with a [Weighted Cross Entropy Loss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html). Remember to store the weights as a torch tensor, to load it in the GPU, and be careful on the order of your weights.** ###CODE HERE # Define the model configuration model_3 = create_model() model_3.to(device) learning_rate = 1e-4 optimizer = torch.optim.Adam(model_3.parameters(), lr=learning_rate) # define loss function with weights weights = torch.tensor([0.0462, (1 - 0.0462)]) weights = weights.to(device) criteria_weights = nn.CrossEntropyLoss(weight=weights) # **6) Why did you choose the weights you used for the CrossEntropyLoss?** # **ANSWER HERE:** # The choice of class weights for the weighted cross-entropy loss is in this case a strategy to tackle imbalance issues in the dataset. I set the weight for the background to 0.05 and for the flooded pixels to 0.95, thus reversing the original relationship of the distribution. This means that we are giving more weight and importance to the class we are interested in, as it is is more important in the segmentation task than the first class. # ### Training Loop train_loss_dict = {} val_loss_dict = {} for epoch in range(epochs): print("Epoch: [{}/{}]".format(epoch + 1, epochs)) # train set pbar = tqdm(train_undersampled_loader) train_loss = 0.0 model_3.train() eval_logger = EvalTracker() for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_3(image) # get loss loss = criteria_weights(pred, mask) # update the model optimizer.zero_grad() loss.backward() optimizer.step() # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) train_loss += loss.item() * image.size(0) # calculate the average loss for both training and validation train_loss /= len(train_undersampled_loader.dataset) train_loss_dict[epoch] = train_loss # valid set pbar = tqdm(valid_loader) val_loss = 0.0 model_3.eval() eval_logger = EvalTracker() with torch.no_grad(): for batch in pbar: # load image and mask into device memory image = batch["image"].to(device) mask = batch["mask"].to(device) # pass images into model pred = model_3(image) # get loss loss = criteria_weights(pred, mask) # compute and display progress eval_logger.update(pred, mask) mIoU, Prec, Rec, f1 = eval_logger.get_mean() pbar.set_description( "Loss: {0:1.4f} | mIoU {1:1.4f} | Prec {2:1.4f} | Rec {3:1.4f} | F1 score {4:1.4f}".format( loss.item(), mIoU, Prec, Rec, f1 ) ) val_loss += loss.item() * image.size(0) val_loss /= len(valid_loader.dataset) val_loss_dict[epoch] = val_loss # Save the training loss values with open("./train_loss_2d_WBCE.pkl", "wb") as file: pickle.dump(train_loss_dict, file) # Save the validation loss values with open("./val_loss_2d_WBCE.pkl", "wb") as file: pickle.dump(val_loss_dict, file) # save model torch.save(model_3.state_dict(), "model_2d_WBCE.pt") # ### Plot Losses from numpy import * from pickle import load # Load the training and validation loss dictionaries train_loss = load(open("/kaggle/working/train_loss_2d_WBCE.pkl", "rb")) val_loss = load(open("/kaggle/working/val_loss_2d_WBCE.pkl", "rb")) # Retrieve each dictionary's values train_values = train_loss.values() val_values = val_loss.values() # Generate a sequence of integers to represent the epoch numbers epochs_range = range(1, epochs + 1) # Plot and label the training and validation loss values plt.plot(epochs_range, train_values, label="Training Loss") plt.plot(epochs_range, val_values, label="Validation Loss") # Add in a title and axes labels plt.title("Training and Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") # Set the tick locations plt.xticks(np.arange(0, epochs + 1, 2)) # Display the plot plt.legend(loc="best") plt.show() # **7) How are the three models (model_1_BCE.pt, model_2d_BCE.pt, and model_2d_WBCE.pt) performning? Comment the performances of the models.** # **ANSWER HERE:** # We can analyse and compare the performance of the models based on the performance metrics of the last Epoch. The table below summarizes the results. # | Model | Loss | MIoU | Precision | Recall | F1 score | # |---------------------------------------------------- |-------- |-------- |----------- |-------- |---------- | # | Full sample | 0.0054 | 0.5933 | 0.8283 | 0.6766 | 0.7448 | # | Undersampled dataset | 0.0182 | 0.5958 | 0.8036 | 0.6973 | 0.7467 | # | Undersampled dataset with a weighted loss function | 0.4686 | 0.0838 | 0.0842 | 0.9497 | 0.1547 | # Based on the given metrics, it appears that the first two models (Full sample and Undersampled dataset) perform similarly and better than the third model (Undersampled dataset with a weighted loss function). The first two models have similar values for MIoU, Precision, Recall, and F1 score, with the Undersampled dataset model having slightly higher MIoU and Recall but slightly lower Precision and F1 score. The third model has much lower values for Loss, MIoU, Precision, and F1 score but a much higher value for Recall. # In general, which model is better depends on the specific problem. For example, if high precision is important, then the Full sample model may be preferred. If high recall is important, then the Undersampled dataset model may be preferred. In our exercise, there is a clear tradeoff. Overlooking false positives (that is, considering an area is flooded when in fact it is not) might incur in inflating the costs to be faced by policymakers. On the other hand, overlooking false negatives (that is, ignoring some areas that are flooded and treat them as if they are not) might have negative effects from a humans right approach, as the cost to get help to flooded areas could be underestimated, and the strategy to cover those areas, get adequate aid, etc., might be suboptimal. In this context, we might want to give more importance to the **recall** metric: $\frac{TP}{(TP+FN)}$. # Even though the weighted loss function model has the highest recall, the rest of the metrics perform very poorly, which makes it a problematic choice. In that sense, the model with the undersampled dataset without weights might be a better choice. I will use this model in Step 10. # # Step 10: Test models # ### Create a test dataset # Let's create Dataset and DataLoader objects for the validation set. This time we will not have labels. vv_image_paths = sorted(glob(test_dir + "/**/vv/*.png", recursive=True)) vv_image_names = [get_filename(pth) for pth in vv_image_paths] region_name_dates = ["_".join(n.split("_")[:2]) for n in vv_image_names] vh_image_paths, flood_label_paths, water_body_label_paths, region_names = [], [], [], [] for i in range(len(vv_image_paths)): # get vh image path vh_image_name = vv_image_names[i].replace("vv", "vh") vh_image_path = os.path.join( test_dir, region_name_dates[i], "tiles", "vh", vh_image_name ) vh_image_paths.append(vh_image_path) # get flood mask path () flood_label_paths.append(np.NaN) # get water body mask path water_body_label_name = vv_image_names[i].replace("_vv", "") water_body_label_path = os.path.join( test_dir, region_name_dates[i], "tiles", "water_body_label", water_body_label_name, ) water_body_label_paths.append(water_body_label_path) # get region name region_name = region_name_dates[i].split("_")[0] region_names.append(region_name) test_paths = { "vv_image_path": vv_image_paths, "vh_image_path": vh_image_paths, "flood_label_path": flood_label_paths, "water_body_label_path": water_body_label_paths, "region": region_names, } test_df = pd.DataFrame(valid_paths) print(test_df.shape) test_df.head() # ### Run inference # **8) Choose your best performing model from Steps 6-9 and run inference below:** # load model model_test = create_model() model_test.load_state_dict( torch.load("/kaggle/working/model_2_BCE.pt") ) # CHANGE THE MODEL HERE. Default set as model_1_BCE.pt model_test.to(device) test_dataset = ETCIDataset(test_df, split="test", transform=None) test_loader = DataLoader( test_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) # make sure shuffle is False final_predictions = [] model_test.eval() with torch.no_grad(): for batch in tqdm(test_loader): # load image and mask into device memory image = batch["image"].to(device) # pass images into model pred = model_test(image) # compute class predictions, i.e. flood or no-flood class_pred = pred.argmax(dim=1) # convert class prediction to numpy class_pred = class_pred.detach().cpu().numpy() # add to final predictions final_predictions.append(class_pred.astype("uint8")) final_predictions = np.concatenate(final_predictions, axis=0) # check final prediction shape print(final_predictions.shape) # ### Visualize some results index = 252 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10)) index = -100 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10)) index = 1910 visualize_result(valid_df.iloc[index], final_predictions[index], figsize=(17, 10))
false
0
12,845
0
12,871
12,845
129073612
<jupyter_start><jupyter_text>Consumer Reviews of Amazon Products # About This Data This is a list of over 34,000 consumer reviews for Amazon products like the Kindle, Fire TV Stick, and more provided by [Datafiniti's Product Database][1]. The dataset includes basic product information, rating, review text, and more for each product. *Note that this is a sample of a large dataset. The full dataset is available through Datafiniti.* # What You Can Do With This Data You can use this data to [analyze Amazon’s most successful consumer electronics product launches][2]; discover insights into consumer reviews and assist with machine learning models. E.g.: * What are the most reviewed Amazon products? * What are the initial and current number of customer reviews for each product? * How do the reviews in the first 90 days after a product launch compare to the price of the product? * How do the reviews in the first 90 days after a product launch compare to the days available for sale? * Map the keywords in the review text against the review ratings to help train sentiment models. # Data Schema A full schema for the data is available in our [support documentation][3]. # About Datafiniti Datafiniti provides instant access to web data. We compile data from thousands of websites to create standardized databases of business, product, and property information. [Learn more][4]. # Interested in the Full Dataset? You can access the full dataset by running the following query with [Datafiniti’s Product API][5]. `{ "query": "dateUpdated:[2017-09-01 TO *] AND brand:Amazon* AND categories:* AND primaryCategories:* AND name:* AND reviews:*", "format": "csv", "download": true }` **The total number of results may vary.* Get this data and more by [creating a free Datafiniti account][6] or [requesting a demo][7]. [1]: https://datafiniti.co/products/product-data/ [2]: https://datafiniti.co/amazon-fire-stick-juggernaut/ [3]: https://datafiniti-api.readme.io/docs/product-data-schema [4]: https://datafiniti.co [5]: https://developer.datafiniti.co/docs/getting-started-with-product-data [6]: https://datafiniti.co/pricing/product-data-pricing/ [7]: https://datafiniti.co/request-a-demo/ Kaggle dataset identifier: consumer-reviews-of-amazon-products <jupyter_script># # # Import Required Packages import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns import math import warnings warnings.filterwarnings("ignore") # Hides warning warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) sns.set_style("whitegrid") # Plotting style np.random.seed(7) # seeding random number generato csv = "/kaggle/input/consumer-reviews-of-amazon-products/1429_1.csv" df = pd.read_csv(csv) df.head(2) data = df.copy() data.describe() data.info() data["asins"].unique() asins_unique = len(data["asins"].unique()) print("Number of Unique ASINs: " + str(asins_unique)) # Builds histogram and set the number of bins and fig size (width, height) data.hist(bins=50, figsize=(20, 15)) plt.show() # # Distribution of rating # # distribution of rating import matplotlib.pyplot as plt import seaborn as sns sns.countplot(data["reviews.rating"]) plt.xlabel("Rating Count") # # Distribution of sentiment # # map ratings 1, 2, 3 to 0 (NEGATIVE) and 4, 5 to 1 (POSITIVE) sentiment_score = {1: 0, 2: 0, 3: 0, 4: 1, 5: 1} sentiment = {0: "NEGATIVE", 1: "POSITIVE"} # mapping data["sentiment_score"] = data["reviews.rating"].map(sentiment_score) data["sentiment"] = data["sentiment_score"].map(sentiment) data.head() # distribution of sentiment plt.figure(figsize=(8, 8)) labels = ["POSITIVE", "NEGATIVE"] colors = ["#189AB4", "#D4F1F4"] plt.pie(data["sentiment"].value_counts(), autopct="%0.2f%%", colors=colors) plt.title("Distribution of sentiment", size=14, y=-0.01) plt.legend(labels, ncol=2, loc=9) plt.show() # # All Reviews wordclod # get all used words # = pd.Series(' '.join(data['reviews.text']).split()) all_words = pd.Series(" ".join(str(data["reviews.text"]).split())) # plot word cloud from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator wordcloud = WordCloud(width=1000, height=500).generate(" ".join(all_words)) plt.figure(figsize=(15, 8)) plt.imshow(wordcloud) plt.title("Most used words in all reviws", size=16) plt.axis("off") plt.show() from sklearn.model_selection import StratifiedShuffleSplit print("Before {}".format(len(data))) dataAfter = data.dropna(subset=["reviews.rating"]) # Removes all NAN in reviews.rating print("After {}".format(len(dataAfter))) dataAfter["reviews.rating"] = dataAfter["reviews.rating"].astype(int) split = StratifiedShuffleSplit(n_splits=5, test_size=0.2) for train_index, test_index in split.split(dataAfter, dataAfter["reviews.rating"]): strat_train = dataAfter.reindex(train_index) strat_test = dataAfter.reindex(test_index) len(strat_train), len(strat_test) strat_train["reviews.rating"].value_counts() / len(strat_train) strat_test["reviews.rating"].value_counts() / len(strat_test) # # Data Exploration reviews = strat_train.copy() reviews.head(2) len(reviews["name"].unique()), len(reviews["asins"].unique()) reviews.info() reviews.groupby("asins")["name"].unique() # Lets see all the different names for this product that have 2 ASINs different_names = reviews[reviews["asins"] == "B00L9EPT8O,B01E6AO69U"]["name"].unique() for name in different_names: print(name) fig = plt.figure(figsize=(16, 10)) ax1 = plt.subplot(211) ax2 = plt.subplot(212, sharex=ax1) reviews["asins"].value_counts().plot(kind="bar", ax=ax1, title="ASIN Frequency") np.log10(reviews["asins"].value_counts()).plot( kind="bar", ax=ax2, title="ASIN Frequency (Log10 Adjusted)" ) plt.show() # Entire training dataset average rating reviews["reviews.rating"].mean() # # Reviews.rating / ASINs asins_count_ix = reviews["asins"].value_counts().index plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.rating", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() # # Reviews.doRecommend/ASINs asins_count_ix = reviews["asins"].value_counts().index plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.rating", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.doRecommend", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() # # Correlations corr_matrix = reviews.corr() corr_matrix # Here we can analyze reviews.ratings with asins counts = reviews["asins"].value_counts().to_frame() counts.head() avg_rating = reviews.groupby("asins")["reviews.rating"].mean().to_frame() avg_rating.head() table = counts.join(avg_rating) table.head(30) plt.scatter("asins", "reviews.rating", data=table) table.corr() # # Sentiment Analysis def sentiments(rating): if (rating == 5) or (rating == 4): return "Positive" elif rating == 3: return "Neutral" elif (rating == 2) or (rating == 1): return "Negative" # Add sentiments to the data strat_train["Sentiment"] = strat_train["reviews.rating"].apply(sentiments) strat_test["Sentiment"] = strat_test["reviews.rating"].apply(sentiments) strat_train["Sentiment"][:20] # # Prepare data # X_train = strat_train["reviews.text"] X_train_targetSentiment = strat_train["Sentiment"] X_test = strat_test["reviews.text"] X_test_targetSentiment = strat_test["Sentiment"] print(len(X_train), len(X_test)) # # Feature Extraction # Replace "nan" with space X_train = X_train.fillna(" ") X_test = X_test.fillna(" ") X_train_targetSentiment = X_train_targetSentiment.fillna(" ") X_test_targetSentiment = X_test_targetSentiment.fillna(" ") # Text preprocessing and occurance counting from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(X_train) X_train_counts.shape from sklearn.feature_extraction.text import TfidfTransformer tfidf_transformer = TfidfTransformer(use_idf=False) X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) X_train_tfidf.shape # # Building a Pipeline from the Extracted Features # # Multinominal Naive Bayes from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline clf_multiNB_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_nominalNB", MultinomialNB()), ] ) clf_multiNB_pipe.fit(X_train, X_train_targetSentiment) import numpy as np predictedMultiNB = clf_multiNB_pipe.predict(X_test) mnb = np.mean(predictedMultiNB == X_test_targetSentiment) mnb * 100 # # Logistic Regression Classifier from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline clf_logReg_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_logReg", LogisticRegression()), ] ) clf_logReg_pipe.fit(X_train, X_train_targetSentiment) import numpy as np predictedLogReg = clf_logReg_pipe.predict(X_test) lrc = np.mean(predictedLogReg == X_test_targetSentiment) lrc * 100 # # Support Vector Machine Classifier from sklearn.svm import LinearSVC clf_linearSVC_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_linearSVC", LinearSVC()), ] ) clf_linearSVC_pipe.fit(X_train, X_train_targetSentiment) predictedLinearSVC = clf_linearSVC_pipe.predict(X_test) svmc = np.mean(predictedLinearSVC == X_test_targetSentiment) svmc * 100 # # Decision Tree Classifier # from sklearn.tree import DecisionTreeClassifier clf_decisionTree_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_decisionTree", DecisionTreeClassifier()), ] ) clf_decisionTree_pipe.fit(X_train, X_train_targetSentiment) predictedDecisionTree = clf_decisionTree_pipe.predict(X_test) dtc = np.mean(predictedDecisionTree == X_test_targetSentiment) dtc * 100 # # Random Forest Classifier from sklearn.ensemble import RandomForestClassifier clf_randomForest_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_randomForest", RandomForestClassifier()), ] ) clf_randomForest_pipe.fit(X_train, X_train_targetSentiment) predictedRandomForest = clf_randomForest_pipe.predict(X_test) rfc = np.mean(predictedRandomForest == X_test_targetSentiment) rfc * 100 # # Performance Analysis of Support Vector Machine Classifier from sklearn.model_selection import GridSearchCV parameters = { "vect__ngram_range": [(1, 1), (1, 2)], "tfidf__use_idf": (True, False), } gs_clf_LinearSVC_pipe = GridSearchCV(clf_linearSVC_pipe, parameters, n_jobs=-1) gs_clf_LinearSVC_pipe = gs_clf_LinearSVC_pipe.fit(X_train, X_train_targetSentiment) # new_text = ["The tablet is good, really liked it.", # positive # "The tablet is ok, but it works fine.", # neutral # "The tablet is not good, does not work very well."] # negative # X_train_targetSentiment[gs_clf_LinearSVC_pipe.predict(new_text)] predictedGS_clf_LinearSVC_pipe = gs_clf_LinearSVC_pipe.predict(X_test) GSLinearSVC = np.mean(predictedGS_clf_LinearSVC_pipe == X_test_targetSentiment) GSLinearSVC * 100 for performance_analysis in ( gs_clf_LinearSVC_pipe.best_score_, gs_clf_LinearSVC_pipe.best_estimator_, gs_clf_LinearSVC_pipe.best_params_, ): print(performance_analysis) from sklearn import metrics metrics.confusion_matrix(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe) from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score print(classification_report(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe)) print( "Accuracy: {}".format( accuracy_score(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe) ) ) # # Summary from prettytable import PrettyTable Summary = PrettyTable(["Model Name", "Accuracy in %"]) Summary.add_row(["Multinominal Naive Bayes", "{:.2f}".format(mnb * 100)]) Summary.add_row(["Logistic Regression Classifier", "{:.2f}".format(lrc * 100)]) Summary.add_row(["Support Vector Machine Classifier", "{:.2f}".format(svmc * 100)]) Summary.add_row(["Decision Tree Classifier", "{:.2f}".format(dtc * 100)]) Summary.add_row(["Random Forest Classifier", "{:.2f}".format(rfc * 100)]) Summary.add_row(["GridSearchClf_LinearSVC", "{:.2f}".format(GSLinearSVC * 100)]) print(Summary)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/073/129073612.ipynb
consumer-reviews-of-amazon-products
null
[{"Id": 129073612, "ScriptId": 38370136, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 2871082, "CreationDate": "05/10/2023 19:14:39", "VersionNumber": 1.0, "Title": "Amazon Sentiment Analysis | Model Comparison |2019", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 352.0, "LinesInsertedFromPrevious": 352.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 9}]
[{"Id": 184805880, "KernelVersionId": 129073612, "SourceDatasetVersionId": 438431}]
[{"Id": 438431, "DatasetId": 1939, "DatasourceVersionId": 453983, "CreatorUserId": 1164459, "LicenseName": "CC BY-NC-SA 4.0", "CreationDate": "05/20/2019 00:38:59", "VersionNumber": 5.0, "Title": "Consumer Reviews of Amazon Products", "Slug": "consumer-reviews-of-amazon-products", "Subtitle": "A list of over 34,000 reviews of Amazon products like the Kindle, Fire TV, etc.", "Description": "# About This Data\nThis is a list of over 34,000 consumer reviews for Amazon products like the Kindle, Fire TV Stick, and more provided by [Datafiniti's Product Database][1]. The dataset includes basic product information, rating, review text, and more for each product. \n\n*Note that this is a sample of a large dataset. The full dataset is available through Datafiniti.*\n\n# What You Can Do With This Data\nYou can use this data to [analyze Amazon\u2019s most successful consumer electronics product launches][2]; discover insights into consumer reviews and assist with machine learning models. E.g.:\n\n* What are the most reviewed Amazon products?\n* What are the initial and current number of customer reviews for each product?\n* How do the reviews in the first 90 days after a product launch compare to the price of the product?\n* How do the reviews in the first 90 days after a product launch compare to the days available for sale?\n* Map the keywords in the review text against the review ratings to help train sentiment models.\n\n# Data Schema\nA full schema for the data is available in our [support documentation][3].\n\n# About Datafiniti\nDatafiniti provides instant access to web data. We compile data from thousands of websites to create standardized databases of business, product, and property information. [Learn more][4].\n\n# Interested in the Full Dataset?\nYou can access the full dataset by running the following query with [Datafiniti\u2019s Product API][5].\n\n`{\n \"query\": \"dateUpdated:[2017-09-01 TO *] AND brand:Amazon* AND categories:* AND primaryCategories:* AND name:* AND reviews:*\", \"format\": \"csv\", \"download\": true\n}`\n\n**The total number of results may vary.*\n\nGet this data and more by [creating a free Datafiniti account][6] or [requesting a demo][7].\n\n [1]: https://datafiniti.co/products/product-data/\n [2]: https://datafiniti.co/amazon-fire-stick-juggernaut/\n [3]: https://datafiniti-api.readme.io/docs/product-data-schema\n [4]: https://datafiniti.co\n [5]: https://developer.datafiniti.co/docs/getting-started-with-product-data\n [6]: https://datafiniti.co/pricing/product-data-pricing/\n [7]: https://datafiniti.co/request-a-demo/", "VersionNotes": "This dataset is a list of over 28,000 consumer reviews for Amazon products like the Kindle, Fire TV Stick, and more from Datafiniti's Product Database updated between February 2019 and April 2019. Each product listing includes the name Amazon in the Brand and Manufacturer field. All fields within this dataset have been flattened, with some omitted, to streamline your data analysis. This version is a sample of a large dataset. The full dataset is available through Datafiniti.", "TotalCompressedBytes": 265643815.0, "TotalUncompressedBytes": 15260117.0}]
[{"Id": 1939, "CreatorUserId": 798407, "OwnerUserId": NaN, "OwnerOrganizationId": 221.0, "CurrentDatasetVersionId": 438431.0, "CurrentDatasourceVersionId": 453983.0, "ForumId": 5615, "Type": 2, "CreationDate": "08/14/2017 16:12:48", "LastActivityDate": "02/05/2018", "TotalViews": 385899, "TotalDownloads": 40733, "TotalVotes": 436, "TotalKernels": 71}]
null
# # # Import Required Packages import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns import math import warnings warnings.filterwarnings("ignore") # Hides warning warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) sns.set_style("whitegrid") # Plotting style np.random.seed(7) # seeding random number generato csv = "/kaggle/input/consumer-reviews-of-amazon-products/1429_1.csv" df = pd.read_csv(csv) df.head(2) data = df.copy() data.describe() data.info() data["asins"].unique() asins_unique = len(data["asins"].unique()) print("Number of Unique ASINs: " + str(asins_unique)) # Builds histogram and set the number of bins and fig size (width, height) data.hist(bins=50, figsize=(20, 15)) plt.show() # # Distribution of rating # # distribution of rating import matplotlib.pyplot as plt import seaborn as sns sns.countplot(data["reviews.rating"]) plt.xlabel("Rating Count") # # Distribution of sentiment # # map ratings 1, 2, 3 to 0 (NEGATIVE) and 4, 5 to 1 (POSITIVE) sentiment_score = {1: 0, 2: 0, 3: 0, 4: 1, 5: 1} sentiment = {0: "NEGATIVE", 1: "POSITIVE"} # mapping data["sentiment_score"] = data["reviews.rating"].map(sentiment_score) data["sentiment"] = data["sentiment_score"].map(sentiment) data.head() # distribution of sentiment plt.figure(figsize=(8, 8)) labels = ["POSITIVE", "NEGATIVE"] colors = ["#189AB4", "#D4F1F4"] plt.pie(data["sentiment"].value_counts(), autopct="%0.2f%%", colors=colors) plt.title("Distribution of sentiment", size=14, y=-0.01) plt.legend(labels, ncol=2, loc=9) plt.show() # # All Reviews wordclod # get all used words # = pd.Series(' '.join(data['reviews.text']).split()) all_words = pd.Series(" ".join(str(data["reviews.text"]).split())) # plot word cloud from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator wordcloud = WordCloud(width=1000, height=500).generate(" ".join(all_words)) plt.figure(figsize=(15, 8)) plt.imshow(wordcloud) plt.title("Most used words in all reviws", size=16) plt.axis("off") plt.show() from sklearn.model_selection import StratifiedShuffleSplit print("Before {}".format(len(data))) dataAfter = data.dropna(subset=["reviews.rating"]) # Removes all NAN in reviews.rating print("After {}".format(len(dataAfter))) dataAfter["reviews.rating"] = dataAfter["reviews.rating"].astype(int) split = StratifiedShuffleSplit(n_splits=5, test_size=0.2) for train_index, test_index in split.split(dataAfter, dataAfter["reviews.rating"]): strat_train = dataAfter.reindex(train_index) strat_test = dataAfter.reindex(test_index) len(strat_train), len(strat_test) strat_train["reviews.rating"].value_counts() / len(strat_train) strat_test["reviews.rating"].value_counts() / len(strat_test) # # Data Exploration reviews = strat_train.copy() reviews.head(2) len(reviews["name"].unique()), len(reviews["asins"].unique()) reviews.info() reviews.groupby("asins")["name"].unique() # Lets see all the different names for this product that have 2 ASINs different_names = reviews[reviews["asins"] == "B00L9EPT8O,B01E6AO69U"]["name"].unique() for name in different_names: print(name) fig = plt.figure(figsize=(16, 10)) ax1 = plt.subplot(211) ax2 = plt.subplot(212, sharex=ax1) reviews["asins"].value_counts().plot(kind="bar", ax=ax1, title="ASIN Frequency") np.log10(reviews["asins"].value_counts()).plot( kind="bar", ax=ax2, title="ASIN Frequency (Log10 Adjusted)" ) plt.show() # Entire training dataset average rating reviews["reviews.rating"].mean() # # Reviews.rating / ASINs asins_count_ix = reviews["asins"].value_counts().index plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.rating", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() # # Reviews.doRecommend/ASINs asins_count_ix = reviews["asins"].value_counts().index plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.rating", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() plt.subplots(2, 1, figsize=(16, 12)) plt.subplot(2, 1, 1) reviews["asins"].value_counts().plot(kind="bar", title="ASIN Frequency") plt.subplot(2, 1, 2) sns.pointplot(x="asins", y="reviews.doRecommend", order=asins_count_ix, data=reviews) plt.xticks(rotation=90) plt.show() # # Correlations corr_matrix = reviews.corr() corr_matrix # Here we can analyze reviews.ratings with asins counts = reviews["asins"].value_counts().to_frame() counts.head() avg_rating = reviews.groupby("asins")["reviews.rating"].mean().to_frame() avg_rating.head() table = counts.join(avg_rating) table.head(30) plt.scatter("asins", "reviews.rating", data=table) table.corr() # # Sentiment Analysis def sentiments(rating): if (rating == 5) or (rating == 4): return "Positive" elif rating == 3: return "Neutral" elif (rating == 2) or (rating == 1): return "Negative" # Add sentiments to the data strat_train["Sentiment"] = strat_train["reviews.rating"].apply(sentiments) strat_test["Sentiment"] = strat_test["reviews.rating"].apply(sentiments) strat_train["Sentiment"][:20] # # Prepare data # X_train = strat_train["reviews.text"] X_train_targetSentiment = strat_train["Sentiment"] X_test = strat_test["reviews.text"] X_test_targetSentiment = strat_test["Sentiment"] print(len(X_train), len(X_test)) # # Feature Extraction # Replace "nan" with space X_train = X_train.fillna(" ") X_test = X_test.fillna(" ") X_train_targetSentiment = X_train_targetSentiment.fillna(" ") X_test_targetSentiment = X_test_targetSentiment.fillna(" ") # Text preprocessing and occurance counting from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(X_train) X_train_counts.shape from sklearn.feature_extraction.text import TfidfTransformer tfidf_transformer = TfidfTransformer(use_idf=False) X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) X_train_tfidf.shape # # Building a Pipeline from the Extracted Features # # Multinominal Naive Bayes from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline clf_multiNB_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_nominalNB", MultinomialNB()), ] ) clf_multiNB_pipe.fit(X_train, X_train_targetSentiment) import numpy as np predictedMultiNB = clf_multiNB_pipe.predict(X_test) mnb = np.mean(predictedMultiNB == X_test_targetSentiment) mnb * 100 # # Logistic Regression Classifier from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline clf_logReg_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_logReg", LogisticRegression()), ] ) clf_logReg_pipe.fit(X_train, X_train_targetSentiment) import numpy as np predictedLogReg = clf_logReg_pipe.predict(X_test) lrc = np.mean(predictedLogReg == X_test_targetSentiment) lrc * 100 # # Support Vector Machine Classifier from sklearn.svm import LinearSVC clf_linearSVC_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_linearSVC", LinearSVC()), ] ) clf_linearSVC_pipe.fit(X_train, X_train_targetSentiment) predictedLinearSVC = clf_linearSVC_pipe.predict(X_test) svmc = np.mean(predictedLinearSVC == X_test_targetSentiment) svmc * 100 # # Decision Tree Classifier # from sklearn.tree import DecisionTreeClassifier clf_decisionTree_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_decisionTree", DecisionTreeClassifier()), ] ) clf_decisionTree_pipe.fit(X_train, X_train_targetSentiment) predictedDecisionTree = clf_decisionTree_pipe.predict(X_test) dtc = np.mean(predictedDecisionTree == X_test_targetSentiment) dtc * 100 # # Random Forest Classifier from sklearn.ensemble import RandomForestClassifier clf_randomForest_pipe = Pipeline( [ ("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf_randomForest", RandomForestClassifier()), ] ) clf_randomForest_pipe.fit(X_train, X_train_targetSentiment) predictedRandomForest = clf_randomForest_pipe.predict(X_test) rfc = np.mean(predictedRandomForest == X_test_targetSentiment) rfc * 100 # # Performance Analysis of Support Vector Machine Classifier from sklearn.model_selection import GridSearchCV parameters = { "vect__ngram_range": [(1, 1), (1, 2)], "tfidf__use_idf": (True, False), } gs_clf_LinearSVC_pipe = GridSearchCV(clf_linearSVC_pipe, parameters, n_jobs=-1) gs_clf_LinearSVC_pipe = gs_clf_LinearSVC_pipe.fit(X_train, X_train_targetSentiment) # new_text = ["The tablet is good, really liked it.", # positive # "The tablet is ok, but it works fine.", # neutral # "The tablet is not good, does not work very well."] # negative # X_train_targetSentiment[gs_clf_LinearSVC_pipe.predict(new_text)] predictedGS_clf_LinearSVC_pipe = gs_clf_LinearSVC_pipe.predict(X_test) GSLinearSVC = np.mean(predictedGS_clf_LinearSVC_pipe == X_test_targetSentiment) GSLinearSVC * 100 for performance_analysis in ( gs_clf_LinearSVC_pipe.best_score_, gs_clf_LinearSVC_pipe.best_estimator_, gs_clf_LinearSVC_pipe.best_params_, ): print(performance_analysis) from sklearn import metrics metrics.confusion_matrix(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe) from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score print(classification_report(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe)) print( "Accuracy: {}".format( accuracy_score(X_test_targetSentiment, predictedGS_clf_LinearSVC_pipe) ) ) # # Summary from prettytable import PrettyTable Summary = PrettyTable(["Model Name", "Accuracy in %"]) Summary.add_row(["Multinominal Naive Bayes", "{:.2f}".format(mnb * 100)]) Summary.add_row(["Logistic Regression Classifier", "{:.2f}".format(lrc * 100)]) Summary.add_row(["Support Vector Machine Classifier", "{:.2f}".format(svmc * 100)]) Summary.add_row(["Decision Tree Classifier", "{:.2f}".format(dtc * 100)]) Summary.add_row(["Random Forest Classifier", "{:.2f}".format(rfc * 100)]) Summary.add_row(["GridSearchClf_LinearSVC", "{:.2f}".format(GSLinearSVC * 100)]) print(Summary)
false
0
3,466
9
4,064
3,466
129073676
<jupyter_start><jupyter_text>Breast Cancer Wisconsin (Diagnostic) Data Set Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 Attribute Information: 1) ID number 2) Diagnosis (M = malignant, B = benign) 3-32) Ten real-valued features are computed for each cell nucleus: a) radius (mean of distances from center to points on the perimeter) b) texture (standard deviation of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths) f) compactness (perimeter^2 / area - 1.0) g) concavity (severity of concave portions of the contour) h) concave points (number of concave portions of the contour) i) symmetry j) fractal dimension ("coastline approximation" - 1) The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. All feature values are recoded with four significant digits. Missing attribute values: none Class distribution: 357 benign, 212 malignant Kaggle dataset identifier: breast-cancer-wisconsin-data <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # data visualization library import matplotlib.pyplot as plt import plotly.express as px import plotly.io as pio # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import time from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # import warnings library import warnings import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ignore all warnings warnings.filterwarnings("ignore") # Any results you write to the current directory are saved as output. # Veri İçeriği # 1. 1. kimlik Numarası # 1. 2. Teşhis (M = malign, B = iyi huylu) # 1. 3. yarıçap (merkezden çevre üzerindeki noktalara olan mesafelerin ortalaması) # 1. 4. doku (gri tonlama değerlerinin standart sapması) # 1. 5. çevre # 1. 6. alan # 1. 7. pürüzsüzlük (yarıçap uzunluklarında yerel değişiklik) # 1. 8. kompaktlık (çevre^2 / alan - 1,0) # 1. 9. içbükeylik (konturun içbükey kısımlarının ciddiyeti) # 1. 10. içbükey noktalar (konturun içbükey kısımlarının sayısı) # 1. 11. simetri # 1. 12. fraktal boyut ("kıyı şeridi yaklaşımı" - 1) # 1. 13. Bu özelliklerin ortalaması, standart hatası ve "en kötü" veya en büyüğü (en büyük üç değerin ortalaması), her görüntü için hesaplandı ve sonuçta 30 özellik elde edildi. Örneğin, alan 3 Ortalama Yarıçap, alan 13 Yarıçap SE, alan 23 En Kötü Yarıçaptır. # 1. 14. Tüm özellik değerleri, dört anlamlı basamakla yeniden kodlanır. # 1. 15. Eksik özellik değerleri: yok # 1. 16. Sınıf dağılımı: 357 iyi huylu, 212 kötü huylu # ---------------------------- # Data Content # 1. ID number # 2. Diagnosis (M = malignant, B = benign) # 3. radius (mean of distances from center to points on the perimeter) # 4. texture (standard deviation of gray-scale values) # 5. perimeter # 6. area # 7. smoothness (local variation in radius lengths) # 8. compactness (perimeter^2 / area - 1.0) # 9. concavity (severity of concave portions of the contour) # 10. concave points (number of concave portions of the contour) # 11. symmetry # 12. fractal dimension ("coastline approximation" - 1) # 13. The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. # 14. All feature values are recoded with four significant digits. # 15. Missing attribute values: none # 16. Class distribution: 357 benign, 212 malignant data = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") data.head() # Dikkatimi çeken 4 şey var 1) Sınıflandırma için kullanılamayacak bir id var 2) Tanı bizim sınıf etiketimiz 3) Unnamed: 32 özelliği NaN içeriyor yani ihtiyacımız yok. 4) Diğer özellik adları hakkında hiçbir fikrim yok aslında ihtiyacım yok çünkü makine öğrenimi harika :) # Bu nedenle, bu gereksiz özellikleri bırakın. Ancak bunun bir özellik seçimi olmadığını unutmayın. Bu bir pub'a göz atmak gibi, içeceğimizi henüz seçmiyoruz !!! # feature names as a list col = data.columns # .columns gives columns names in data print(col) # y includes our labels and x includes our features y = data.diagnosis # M or B list = ["Unnamed: 32", "id", "diagnosis"] x = data.drop(list, axis=1) x.head() fig = px.histogram(y, x="diagnosis", color="diagnosis", width=700, height=500) fig.show() # Tamam, şimdi özelliklerimiz var ama ne anlama geliyorlar ya da aslında bu özellikler hakkında ne kadar bilmemiz gerekiyor? varyans, standart sapma, örnek sayısı (count) veya max min değerleri. Bu tür bilgiler, verilerde neler olup bittiğini anlamaya yardımcı olur. Örneğin, aklıma field_mean özelliğinin max değeri 2500 ve smoothness_mean özelliklerinin max 0.16340 olduğu sorusu geldi. Bu nedenle görselleştirme, özellik seçimi, özellik çıkarma veya sınıflandırmadan önce standartlaştırmaya veya normalleştirmeye ihtiyacımız var mı? Cevap evet ve hayır şaşırtıcı değil. # Neyse adım adım gidelim ve görselleştirme ile başlayalım. x.describe() # görselleştirme # Verileri görselleştirmek için, sizi bilgilendirmek ve arazilerin çeşitliliği için diğer çekirdeklerde kullanılmayan seaborn grafiklerini kullanacağız. Gerçek hayatta kullandığım şeyler çoğunlukla keman planı ve sürü planıdır. Unutmayın, özellik seçmiyoruz, bar kapısındaki içecek listesine bakmak gibi verileri öğrenmeye çalışıyoruz. # Keman ve sürü grafiğinden önce normalleştirme veya standardizasyona ihtiyacımız var. Çünkü özelliklerin değerleri arasındaki farklar arsa üzerinde gözlemlenemeyecek kadar yüksektir. Özellikleri 3 grupta çiziyorum ve her grupta daha iyi gözlemlemek için 10 özellik var. # first ten features data_dia = y data = x data_n_2 = (data - data.mean()) / (data.std()) # standardization data = pd.concat([y, data_n_2.iloc[:, 0:10]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # Yukarıdaki grafiği birlikte yorumlayalım. Örneğin, texture_mean özelliğinde Malign ve Benign'in ortancası ayrılmış gibi görünüyor, bu nedenle sınıflandırma için iyi olabilir. Ancak fractal_dimension_mean özelliğinde Malign ve Benign'ın ortancası ayrılmış gibi görünmediğinden sınıflandırma için iyi bilgi vermez. # Second ten features data = pd.concat([y, data_n_2.iloc[:, 10:20]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # third ten features data = pd.concat([y, data_n_2.iloc[:, 20:31]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # Yukarıdaki arsa hakkında bir şey daha yorumlayalım, concavity_worst ve concave point_worst değişkeni benzer görünüyor ama birbirleriyle ilişkili olup olmadıklarına nasıl karar verebiliriz. (Her zaman doğru değil ama temel olarak özellikler birbiriyle ilişkiliyse bunlardan birini bırakabiliriz) # İki özelliği daha derinlemesine karşılaştırmak için ortak çizimi kullanalım. Buna aşağıdaki ortak arsada bakın, gerçekten ilişkilidir. Pearsonr değeri korelasyon değeridir ve 1 en yüksek değerdir. Dolayısıyla 0.86 korelasyonlu olduklarını söylemek için yeterli görünmektedir. Unutmayın, özellikleri henüz seçmiyoruz, sadece onlar hakkında fikir sahibi olmaya çalışıyoruz. sns.set(style="white") df = x.loc[:, ["radius_worst", "perimeter_worst", "area_worst"]] g = sns.PairGrid(df, diag_sharey=False) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(plt.scatter) g.map_diag(sns.kdeplot, lw=3) sns.set(style="whitegrid", palette="muted") data_dia = y data = x data_n_2 = (data - data.mean()) / (data.std()) # standardization data = pd.concat([y, data_n_2.iloc[:, 0:10]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) tic = time.time() sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) data = pd.concat([y, data_n_2.iloc[:, 10:20]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) data = pd.concat([y, data_n_2.iloc[:, 20:31]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) toc = time.time() plt.xticks(rotation=90) print("swarm plot time: ", toc - tic, " s") # Harika görünüyorlar. Ve varyansı daha net görebilirsiniz. Size bir soru sorayım, bu üç parselde hangi özellik sınıflandırma açısından daha net görünüyor. Bana göre son sürü arsasında area_worst kötü huylu ve iyi huylu gibi görünüyor, tamamen değil, çoğunlukla ayrılıyor. Ancak sürü arsa 2'deki pürüzsüzlük_se, kötü huylu ve iyi huylu gibi görünüyor, bu nedenle bu özelliği kullanırken sınıflandırmak zor. # Ya özellikler arasındaki tüm korelasyonu gözlemlemek istiyorsak? Evet haklısın. Cevap, eski ama güçlü çizim yöntemi olan ısı haritasıdır. dataa def dummies(train_df: pd.DataFrame, columns): from sklearn import preprocessing le = preprocessing.LabelEncoder() train_df[columns] = le.fit_transform(train_df[columns]) train_df = pd.get_dummies(train_df, columns=[columns]) return train_df dataa = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") dataa = dummies(dataa, "diagnosis") dataa.head() dataa["diagnosis"] = dataa["diagnosis_0"] list = ["Unnamed: 32", "id", "diagnosis_1", "diagnosis_0"] dataa = dataa.drop(list, axis=1) # correlation map f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(dataa.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # correlation map f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) import statsmodels.api as sm def p_values(df, pred_df, row, col, liste: list): """ return X_l new train_dataframe for predict""" global X_l X = np.append(arr=np.ones((row, col)).astype(int), values=df, axis=1) X_l = df.iloc[:, liste].values X_l = pd.DataFrame(np.array(X_l, dtype=float)) model = sm.OLS(pred_df, X_l).fit() return model.summary(), X_l x dataa1 = dataa.drop(labels="diagnosis", axis=1) dataa_s = pd.DataFrame(dataa["diagnosis"]) p_values(dataa1, dataa_s, 569, 30, range(0, 30)) # Özellik Seçimi ve Rastgele Orman Sınıflandırması # Bugün amacımız yeni kokteyller denemek. Mesela sonunda bir bardayız ve farklı tatlar içmek istiyoruz. Bu nedenle içeceklerin içeriklerini karşılaştırmamız gerekir. Bunlardan biri limon içeriyorsa onu içtikten sonra limon içeren diğer içecekleri elimine etmek gerekiyor ki çok farklı tatlar deneyimleyebilelim. # Bu bölümde korelasyonlu özellik seçimi, tek değişkenli özellik seçimi, özyinelemeli özellik eleme (RFE), çapraz doğrulama ile özyinelemeli özellik eleme (RFECV) ve ağaç tabanlı özellik seçimi gibi farklı yöntemlerle öznitelik seçeceğiz. Modelimizi eğitmek ve tahmin etmek için rastgele orman sınıflandırması kullanacağız. # 1) Korelasyon ve rastgele orman sınıflandırması ile özellik seçimi # Haritada görüldüğü gibi ısı rakamı yarıçap_ortalama, çevre_ortalama ve alan_ortalama birbiriyle ilişkilidir, bu nedenle sadece alan_ortalama kullanacağız. Alan_mean'i nasıl bir özellik olarak kullanacağımı sorarsanız, aslında doğru bir cevap yok, sadece sürü grafiklerine bakıyorum ve alan_mean benim için net görünüyor ama denemeden diğer ilişkili özellikler arasında tam ayrım yapamayız. Öyleyse diğer ilişkili özellikleri bulalım ve rastgele orman sınıflandırıcı ile doğruluk görelim. # Kompaktlık_ortalama, içbükeylik_ortalama ve içbükeylik_ortalama birbiriyle ilişkilidir. Bu nedenle sadece içbükeylik_ortalama'yı seçiyorum. Bunların dışında radius_se, perimeter_se ve field_se birbiriyle ilişkilidir ve ben sadece field_se kullanıyorum. yarıçap_en kötü, çevre_en kötü ve alan_en kötü birbiriyle ilişkilidir, bu yüzden ben en kötü alan kullanıyorum. Kompaktlık_en kötü, içbükey_en kötü ve içbükey noktalar_en kötü bu yüzden içbükey_en kötü olanı kullanıyorum. Compactness_se, concavity_se ve concave points_se bu yüzden concavity_se kullanıyorum. texture_mean ve texture_worst birbiriyle ilişkilidir ve ben texture_mean kullanıyorum. field_worst ve area_mean ilişkilidir, ben field_mean kullanıyorum. drop_list1 = [ "perimeter_mean", "radius_mean", "compactness_mean", "concave points_mean", "radius_se", "perimeter_se", "radius_worst", "perimeter_worst", "compactness_worst", "concave points_worst", "compactness_se", "concave points_se", "texture_worst", "area_worst", ] x_1 = x.drop(drop_list1, axis=1) # do not modify x, we will use it later x_1.head() # Düşürme korelasyonlu özelliklerden sonra, aşağıdaki korelasyon matrisinde de görülebileceği gibi, artık korelasyonlu özellik kalmamıştır. Aslında 0.9 korelasyon değeri olduğunu biliyorum ve görüyorsunuz ama onu düşürmezsek ne olacağını birlikte görelim. # correlation map f, ax = plt.subplots(figsize=(14, 14)) sns.heatmap(x_1.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # Peki özelliklerimizi seçiyoruz ama doğru mu seçmişiz? Rastgele ormanı kullanalım ve seçilen özelliklere göre doğruluğu bulalım. from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, confusion_matrix from sklearn.metrics import accuracy_score # split data train 70 % and test 30 % x_train, x_test, y_train, y_test = train_test_split( x_1, y, test_size=0.3, random_state=42 ) # random forest classifier with n_estimators=10 (default) clf_rf = RandomForestClassifier(random_state=43) clr_rf = clf_rf.fit(x_train, y_train) ac = accuracy_score(y_test, clf_rf.predict(x_test)) print("Accuracy is: ", ac) cm = confusion_matrix(y_test, clf_rf.predict(x_test)) sns.heatmap(cm, annot=True, fmt="d") # Doğruluk yaklaşık %95'tir ve karışıklık matrisinden de görülebileceği gibi çok az yanlış tahminde bulunuruz. Şimdi daha iyi sonuçlar bulmak için diğer özellik seçim yöntemlerini görelim. # 2) Tek değişkenli özellik seçimi ve rastgele orman sınıflandırması # Tek değişkenli özellik seçiminde, k en yüksek puanlama özelliği dışındaki tüm özellikleri kaldıran SelectKBest'i kullanacağız. http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest # Bu yöntemde kaç tane özellik kullanacağımızı seçmemiz gerekiyor. Örneğin, k (özellik sayısı) 5 mi, 10 mu, 15 mi olacak? Cevap sadece deniyor veya sezgisel olarak. Tüm kombinasyonları denemiyorum ama sadece k = 5'i seçiyorum ve en iyi 5 özelliği buluyorum. from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # find best scored 5 features select_feature = SelectKBest(chi2, k=5).fit(x_train, y_train) print("Score list:", select_feature.scores_) print("Feature list:", x_train.columns) # Sınıflandırılacak en iyi 5 özellik, rea_mean, area_se, texture_mean, concavity_worst and concavity_mean. Öyleyse, yalnızca bu en iyi puan alan 5 özelliği kullanırsak ne olacağını görelim. x_train_2 = select_feature.transform(x_train) x_test_2 = select_feature.transform(x_test) # random forest classifier with n_estimators=10 (default) clf_rf_2 = RandomForestClassifier() clr_rf_2 = clf_rf_2.fit(x_train_2, y_train) ac_2 = accuracy_score(y_test, clf_rf_2.predict(x_test_2)) print("Accuracy is: ", ac_2) cm_2 = confusion_matrix(y_test, clf_rf_2.predict(x_test_2)) sns.heatmap(cm_2, annot=True, fmt="d") # Doğruluk yaklaşık %96'dır ve karışıklık matrisinden de görülebileceği gibi çok az yanlış tahminde bulunuruz. Şimdiye kadar yaptığımız şey, özellikleri korelasyon matrisine ve selectkBest yöntemine göre seçmekti. SelectkBest yönteminde 5 özellik kullanmamıza rağmen doğrulukları benzer görünmektedir. Şimdi daha iyi sonuçlar bulmak için diğer özellik seçim yöntemlerini görelim. # 3) Rastgele orman ile özyinelemeli özellik eleme (RFE) # http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html Temel olarak, sınıflandırma yöntemlerinden birini kullanır (bizim örneğimizde rastgele orman), her bir özelliğe ağırlık atayın. Mutlak ağırlıkları en küçük olanların mevcut set özelliklerinden budanır. Bu prosedür, budanmış sette istenen sayıda özellik elde edilene kadar yinelemeli olarak tekrarlanır. # Önceki yöntemde olduğu gibi, 5 özellik kullanacağız. Ancak hangi 5 özelliği kullanacağız? Bunları RFE yöntemi ile seçeceğiz. from sklearn.feature_selection import RFE # Create the RFE object and rank each pixel clf_rf_3 = RandomForestClassifier() rfe = RFE(estimator=clf_rf_3, n_features_to_select=5, step=1) rfe = rfe.fit(x_train, y_train) print("Chosen best 5 feature by rfe:", x_train.columns[rfe.support_]) # rfe tarafından seçilen en iyi 5 özellik, texture_mean, field_mean, concavity_mean, field_se, concavity_worst. Önceki (selectkBest) yöntemine tamamen benzerler. Bu nedenle doğruluğu tekrar hesaplamamıza gerek yok. Kısaca rfe ve selectkBest yöntemleri ile iyi bir özellik seçimi yaptığımızı söyleyebiliriz. Ancak gördüğünüz gibi bir sorun var tamam ben en iyi 5 özelliğini iki farklı yöntemle buluyoruz ve bu özellikler aynı ama neden 5. Belki en iyi 2 veya en iyi 15 özelliğini kullanırsak daha iyi doğruluk elde ederiz. Bu nedenle, rfecv yöntemiyle kaç tane özellik kullanmamız gerektiğine bakalım. # 4) Çapraz doğrulama ve rastgele orman sınıflandırması ile özyinelemeli özellik eleme # http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html Şimdi sadece en iyi özellikleri değil, aynı zamanda en iyi doğruluk için kaç tane özelliğe ihtiyacımız olduğunu da bulacağız. from sklearn.feature_selection import RFECV # The "accuracy" scoring is proportional to the number of correct classifications clf_rf_4 = RandomForestClassifier() rfecv = RFECV( estimator=clf_rf_4, step=1, cv=5, scoring="accuracy" ) # 5-fold cross-validation rfecv = rfecv.fit(x_train, y_train) print("Optimal number of features :", rfecv.n_features_) print("Best features :", x_train.columns[rfecv.support_]) # Son olarak, en iyi sınıflandırma için texture_mean, field_mean, concavity_mean, texture_se, field_se, concavity_se,chemistry_se, smoothness_worst, concavity_worst,chemistry_worst ve fractal_dimension_worst olan en iyi 11 özelliği bulduk. Arsa ile en iyi doğruluğa bakalım. # 5) Tree based feature selection and random forest classification # http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html In random forest classification method there is a featureimportances attributes that is the feature importances (the higher, the more important the feature). !!! To use feature_importance method, in training data there should not be correlated features. Random forest choose randomly at each iteration, therefore sequence of feature importance list can change. # clf_rf_5 = RandomForestClassifier() clr_rf_5 = clf_rf_5.fit(x_train, y_train) importances = clr_rf_5.feature_importances_ std = np.std([tree.feature_importances_ for tree in clf_rf.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(x_train.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure(1, figsize=(14, 13)) plt.title("Feature importances") plt.bar( range(x_train.shape[1]), importances[indices], color="g", yerr=std[indices], align="center", ) plt.xticks(range(x_train.shape[1]), x_train.columns[indices], rotation=90) plt.xlim([-1, x_train.shape[1]]) plt.show() # Yukarıdaki grafikte de görebileceğiniz gibi, en iyi 5 özellikten sonra özelliklerin önemi azalır. Bu nedenle bu 5 özelliğe odaklanabiliriz. Daha önce üzüldüğüm gibi, özellikleri anlamaya ve en iyisini bulmaya önem veriyorum. # PCA ile Özellik Çıkarma # http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html Özellik çıkarımı için temel bileşen analizi (PCA) kullanacağız. PCA'dan önce, PCA'nın daha iyi performansı için verileri normalleştirmemiz gerekiyor. # split data train 70 % and test 30 % x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=42 ) # normalization x_train_N = (x_train - x_train.mean()) / (x_train.max() - x_train.min()) x_test_N = (x_test - x_test.mean()) / (x_test.max() - x_test.min()) from sklearn.decomposition import PCA pca = PCA() pca.fit(x_train_N) plt.figure(1, figsize=(14, 13)) plt.clf() plt.axes([0.2, 0.2, 0.7, 0.7]) plt.plot(pca.explained_variance_ratio_, linewidth=2) plt.axis("tight") plt.xlabel("n_components") plt.ylabel("explained_variance_ratio_")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/073/129073676.ipynb
breast-cancer-wisconsin-data
null
[{"Id": 129073676, "ScriptId": 38361348, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9683291, "CreationDate": "05/10/2023 19:15:26", "VersionNumber": 2.0, "Title": "Breast Cancer Wisconsin Feature Selection and CNN", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 370.0, "LinesInsertedFromPrevious": 277.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 93.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184805954, "KernelVersionId": 129073676, "SourceDatasetVersionId": 408}]
[{"Id": 408, "DatasetId": 180, "DatasourceVersionId": 408, "CreatorUserId": 711301, "LicenseName": "CC BY-NC-SA 4.0", "CreationDate": "09/25/2016 10:49:04", "VersionNumber": 2.0, "Title": "Breast Cancer Wisconsin (Diagnostic) Data Set", "Slug": "breast-cancer-wisconsin-data", "Subtitle": "Predict whether the cancer is benign or malignant", "Description": "Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. \nn the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: \"Robust Linear Programming Discrimination of Two Linearly Inseparable Sets\", Optimization Methods and Software 1, 1992, 23-34]. \n\nThis database is also available through the UW CS ftp server: \nftp ftp.cs.wisc.edu \ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\nAlso can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29\n\nAttribute Information:\n\n1) ID number \n2) Diagnosis (M = malignant, B = benign) \n3-32) \n\nTen real-valued features are computed for each cell nucleus: \n\na) radius (mean of distances from center to points on the perimeter) \nb) texture (standard deviation of gray-scale values) \nc) perimeter \nd) area \ne) smoothness (local variation in radius lengths) \nf) compactness (perimeter^2 / area - 1.0) \ng) concavity (severity of concave portions of the contour) \nh) concave points (number of concave portions of the contour) \ni) symmetry \nj) fractal dimension (\"coastline approximation\" - 1)\n\nThe mean, standard error and \"worst\" or largest (mean of the three\nlargest values) of these features were computed for each image,\nresulting in 30 features. For instance, field 3 is Mean Radius, field\n13 is Radius SE, field 23 is Worst Radius.\n\nAll feature values are recoded with four significant digits.\n\nMissing attribute values: none\n\nClass distribution: 357 benign, 212 malignant", "VersionNotes": "This updated dataset has column names added", "TotalCompressedBytes": 125204.0, "TotalUncompressedBytes": 125204.0}]
[{"Id": 180, "CreatorUserId": 711301, "OwnerUserId": NaN, "OwnerOrganizationId": 7.0, "CurrentDatasetVersionId": 408.0, "CurrentDatasourceVersionId": 408.0, "ForumId": 1547, "Type": 2, "CreationDate": "09/19/2016 20:27:05", "LastActivityDate": "02/06/2018", "TotalViews": 1744898, "TotalDownloads": 301790, "TotalVotes": 3191, "TotalKernels": 2628}]
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # data visualization library import matplotlib.pyplot as plt import plotly.express as px import plotly.io as pio # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import time from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # import warnings library import warnings import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # ignore all warnings warnings.filterwarnings("ignore") # Any results you write to the current directory are saved as output. # Veri İçeriği # 1. 1. kimlik Numarası # 1. 2. Teşhis (M = malign, B = iyi huylu) # 1. 3. yarıçap (merkezden çevre üzerindeki noktalara olan mesafelerin ortalaması) # 1. 4. doku (gri tonlama değerlerinin standart sapması) # 1. 5. çevre # 1. 6. alan # 1. 7. pürüzsüzlük (yarıçap uzunluklarında yerel değişiklik) # 1. 8. kompaktlık (çevre^2 / alan - 1,0) # 1. 9. içbükeylik (konturun içbükey kısımlarının ciddiyeti) # 1. 10. içbükey noktalar (konturun içbükey kısımlarının sayısı) # 1. 11. simetri # 1. 12. fraktal boyut ("kıyı şeridi yaklaşımı" - 1) # 1. 13. Bu özelliklerin ortalaması, standart hatası ve "en kötü" veya en büyüğü (en büyük üç değerin ortalaması), her görüntü için hesaplandı ve sonuçta 30 özellik elde edildi. Örneğin, alan 3 Ortalama Yarıçap, alan 13 Yarıçap SE, alan 23 En Kötü Yarıçaptır. # 1. 14. Tüm özellik değerleri, dört anlamlı basamakla yeniden kodlanır. # 1. 15. Eksik özellik değerleri: yok # 1. 16. Sınıf dağılımı: 357 iyi huylu, 212 kötü huylu # ---------------------------- # Data Content # 1. ID number # 2. Diagnosis (M = malignant, B = benign) # 3. radius (mean of distances from center to points on the perimeter) # 4. texture (standard deviation of gray-scale values) # 5. perimeter # 6. area # 7. smoothness (local variation in radius lengths) # 8. compactness (perimeter^2 / area - 1.0) # 9. concavity (severity of concave portions of the contour) # 10. concave points (number of concave portions of the contour) # 11. symmetry # 12. fractal dimension ("coastline approximation" - 1) # 13. The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. # 14. All feature values are recoded with four significant digits. # 15. Missing attribute values: none # 16. Class distribution: 357 benign, 212 malignant data = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") data.head() # Dikkatimi çeken 4 şey var 1) Sınıflandırma için kullanılamayacak bir id var 2) Tanı bizim sınıf etiketimiz 3) Unnamed: 32 özelliği NaN içeriyor yani ihtiyacımız yok. 4) Diğer özellik adları hakkında hiçbir fikrim yok aslında ihtiyacım yok çünkü makine öğrenimi harika :) # Bu nedenle, bu gereksiz özellikleri bırakın. Ancak bunun bir özellik seçimi olmadığını unutmayın. Bu bir pub'a göz atmak gibi, içeceğimizi henüz seçmiyoruz !!! # feature names as a list col = data.columns # .columns gives columns names in data print(col) # y includes our labels and x includes our features y = data.diagnosis # M or B list = ["Unnamed: 32", "id", "diagnosis"] x = data.drop(list, axis=1) x.head() fig = px.histogram(y, x="diagnosis", color="diagnosis", width=700, height=500) fig.show() # Tamam, şimdi özelliklerimiz var ama ne anlama geliyorlar ya da aslında bu özellikler hakkında ne kadar bilmemiz gerekiyor? varyans, standart sapma, örnek sayısı (count) veya max min değerleri. Bu tür bilgiler, verilerde neler olup bittiğini anlamaya yardımcı olur. Örneğin, aklıma field_mean özelliğinin max değeri 2500 ve smoothness_mean özelliklerinin max 0.16340 olduğu sorusu geldi. Bu nedenle görselleştirme, özellik seçimi, özellik çıkarma veya sınıflandırmadan önce standartlaştırmaya veya normalleştirmeye ihtiyacımız var mı? Cevap evet ve hayır şaşırtıcı değil. # Neyse adım adım gidelim ve görselleştirme ile başlayalım. x.describe() # görselleştirme # Verileri görselleştirmek için, sizi bilgilendirmek ve arazilerin çeşitliliği için diğer çekirdeklerde kullanılmayan seaborn grafiklerini kullanacağız. Gerçek hayatta kullandığım şeyler çoğunlukla keman planı ve sürü planıdır. Unutmayın, özellik seçmiyoruz, bar kapısındaki içecek listesine bakmak gibi verileri öğrenmeye çalışıyoruz. # Keman ve sürü grafiğinden önce normalleştirme veya standardizasyona ihtiyacımız var. Çünkü özelliklerin değerleri arasındaki farklar arsa üzerinde gözlemlenemeyecek kadar yüksektir. Özellikleri 3 grupta çiziyorum ve her grupta daha iyi gözlemlemek için 10 özellik var. # first ten features data_dia = y data = x data_n_2 = (data - data.mean()) / (data.std()) # standardization data = pd.concat([y, data_n_2.iloc[:, 0:10]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # Yukarıdaki grafiği birlikte yorumlayalım. Örneğin, texture_mean özelliğinde Malign ve Benign'in ortancası ayrılmış gibi görünüyor, bu nedenle sınıflandırma için iyi olabilir. Ancak fractal_dimension_mean özelliğinde Malign ve Benign'ın ortancası ayrılmış gibi görünmediğinden sınıflandırma için iyi bilgi vermez. # Second ten features data = pd.concat([y, data_n_2.iloc[:, 10:20]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # third ten features data = pd.concat([y, data_n_2.iloc[:, 20:31]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") fig = px.violin( data, y="value", x="features", color="diagnosis", box=True, points="all" ) fig.show() # Yukarıdaki arsa hakkında bir şey daha yorumlayalım, concavity_worst ve concave point_worst değişkeni benzer görünüyor ama birbirleriyle ilişkili olup olmadıklarına nasıl karar verebiliriz. (Her zaman doğru değil ama temel olarak özellikler birbiriyle ilişkiliyse bunlardan birini bırakabiliriz) # İki özelliği daha derinlemesine karşılaştırmak için ortak çizimi kullanalım. Buna aşağıdaki ortak arsada bakın, gerçekten ilişkilidir. Pearsonr değeri korelasyon değeridir ve 1 en yüksek değerdir. Dolayısıyla 0.86 korelasyonlu olduklarını söylemek için yeterli görünmektedir. Unutmayın, özellikleri henüz seçmiyoruz, sadece onlar hakkında fikir sahibi olmaya çalışıyoruz. sns.set(style="white") df = x.loc[:, ["radius_worst", "perimeter_worst", "area_worst"]] g = sns.PairGrid(df, diag_sharey=False) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(plt.scatter) g.map_diag(sns.kdeplot, lw=3) sns.set(style="whitegrid", palette="muted") data_dia = y data = x data_n_2 = (data - data.mean()) / (data.std()) # standardization data = pd.concat([y, data_n_2.iloc[:, 0:10]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) tic = time.time() sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) data = pd.concat([y, data_n_2.iloc[:, 10:20]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) data = pd.concat([y, data_n_2.iloc[:, 20:31]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name="value") plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) toc = time.time() plt.xticks(rotation=90) print("swarm plot time: ", toc - tic, " s") # Harika görünüyorlar. Ve varyansı daha net görebilirsiniz. Size bir soru sorayım, bu üç parselde hangi özellik sınıflandırma açısından daha net görünüyor. Bana göre son sürü arsasında area_worst kötü huylu ve iyi huylu gibi görünüyor, tamamen değil, çoğunlukla ayrılıyor. Ancak sürü arsa 2'deki pürüzsüzlük_se, kötü huylu ve iyi huylu gibi görünüyor, bu nedenle bu özelliği kullanırken sınıflandırmak zor. # Ya özellikler arasındaki tüm korelasyonu gözlemlemek istiyorsak? Evet haklısın. Cevap, eski ama güçlü çizim yöntemi olan ısı haritasıdır. dataa def dummies(train_df: pd.DataFrame, columns): from sklearn import preprocessing le = preprocessing.LabelEncoder() train_df[columns] = le.fit_transform(train_df[columns]) train_df = pd.get_dummies(train_df, columns=[columns]) return train_df dataa = pd.read_csv("/kaggle/input/breast-cancer-wisconsin-data/data.csv") dataa = dummies(dataa, "diagnosis") dataa.head() dataa["diagnosis"] = dataa["diagnosis_0"] list = ["Unnamed: 32", "id", "diagnosis_1", "diagnosis_0"] dataa = dataa.drop(list, axis=1) # correlation map f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(dataa.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # correlation map f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) import statsmodels.api as sm def p_values(df, pred_df, row, col, liste: list): """ return X_l new train_dataframe for predict""" global X_l X = np.append(arr=np.ones((row, col)).astype(int), values=df, axis=1) X_l = df.iloc[:, liste].values X_l = pd.DataFrame(np.array(X_l, dtype=float)) model = sm.OLS(pred_df, X_l).fit() return model.summary(), X_l x dataa1 = dataa.drop(labels="diagnosis", axis=1) dataa_s = pd.DataFrame(dataa["diagnosis"]) p_values(dataa1, dataa_s, 569, 30, range(0, 30)) # Özellik Seçimi ve Rastgele Orman Sınıflandırması # Bugün amacımız yeni kokteyller denemek. Mesela sonunda bir bardayız ve farklı tatlar içmek istiyoruz. Bu nedenle içeceklerin içeriklerini karşılaştırmamız gerekir. Bunlardan biri limon içeriyorsa onu içtikten sonra limon içeren diğer içecekleri elimine etmek gerekiyor ki çok farklı tatlar deneyimleyebilelim. # Bu bölümde korelasyonlu özellik seçimi, tek değişkenli özellik seçimi, özyinelemeli özellik eleme (RFE), çapraz doğrulama ile özyinelemeli özellik eleme (RFECV) ve ağaç tabanlı özellik seçimi gibi farklı yöntemlerle öznitelik seçeceğiz. Modelimizi eğitmek ve tahmin etmek için rastgele orman sınıflandırması kullanacağız. # 1) Korelasyon ve rastgele orman sınıflandırması ile özellik seçimi # Haritada görüldüğü gibi ısı rakamı yarıçap_ortalama, çevre_ortalama ve alan_ortalama birbiriyle ilişkilidir, bu nedenle sadece alan_ortalama kullanacağız. Alan_mean'i nasıl bir özellik olarak kullanacağımı sorarsanız, aslında doğru bir cevap yok, sadece sürü grafiklerine bakıyorum ve alan_mean benim için net görünüyor ama denemeden diğer ilişkili özellikler arasında tam ayrım yapamayız. Öyleyse diğer ilişkili özellikleri bulalım ve rastgele orman sınıflandırıcı ile doğruluk görelim. # Kompaktlık_ortalama, içbükeylik_ortalama ve içbükeylik_ortalama birbiriyle ilişkilidir. Bu nedenle sadece içbükeylik_ortalama'yı seçiyorum. Bunların dışında radius_se, perimeter_se ve field_se birbiriyle ilişkilidir ve ben sadece field_se kullanıyorum. yarıçap_en kötü, çevre_en kötü ve alan_en kötü birbiriyle ilişkilidir, bu yüzden ben en kötü alan kullanıyorum. Kompaktlık_en kötü, içbükey_en kötü ve içbükey noktalar_en kötü bu yüzden içbükey_en kötü olanı kullanıyorum. Compactness_se, concavity_se ve concave points_se bu yüzden concavity_se kullanıyorum. texture_mean ve texture_worst birbiriyle ilişkilidir ve ben texture_mean kullanıyorum. field_worst ve area_mean ilişkilidir, ben field_mean kullanıyorum. drop_list1 = [ "perimeter_mean", "radius_mean", "compactness_mean", "concave points_mean", "radius_se", "perimeter_se", "radius_worst", "perimeter_worst", "compactness_worst", "concave points_worst", "compactness_se", "concave points_se", "texture_worst", "area_worst", ] x_1 = x.drop(drop_list1, axis=1) # do not modify x, we will use it later x_1.head() # Düşürme korelasyonlu özelliklerden sonra, aşağıdaki korelasyon matrisinde de görülebileceği gibi, artık korelasyonlu özellik kalmamıştır. Aslında 0.9 korelasyon değeri olduğunu biliyorum ve görüyorsunuz ama onu düşürmezsek ne olacağını birlikte görelim. # correlation map f, ax = plt.subplots(figsize=(14, 14)) sns.heatmap(x_1.corr(), annot=True, linewidths=0.5, fmt=".1f", ax=ax) # Peki özelliklerimizi seçiyoruz ama doğru mu seçmişiz? Rastgele ormanı kullanalım ve seçilen özelliklere göre doğruluğu bulalım. from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, confusion_matrix from sklearn.metrics import accuracy_score # split data train 70 % and test 30 % x_train, x_test, y_train, y_test = train_test_split( x_1, y, test_size=0.3, random_state=42 ) # random forest classifier with n_estimators=10 (default) clf_rf = RandomForestClassifier(random_state=43) clr_rf = clf_rf.fit(x_train, y_train) ac = accuracy_score(y_test, clf_rf.predict(x_test)) print("Accuracy is: ", ac) cm = confusion_matrix(y_test, clf_rf.predict(x_test)) sns.heatmap(cm, annot=True, fmt="d") # Doğruluk yaklaşık %95'tir ve karışıklık matrisinden de görülebileceği gibi çok az yanlış tahminde bulunuruz. Şimdi daha iyi sonuçlar bulmak için diğer özellik seçim yöntemlerini görelim. # 2) Tek değişkenli özellik seçimi ve rastgele orman sınıflandırması # Tek değişkenli özellik seçiminde, k en yüksek puanlama özelliği dışındaki tüm özellikleri kaldıran SelectKBest'i kullanacağız. http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest # Bu yöntemde kaç tane özellik kullanacağımızı seçmemiz gerekiyor. Örneğin, k (özellik sayısı) 5 mi, 10 mu, 15 mi olacak? Cevap sadece deniyor veya sezgisel olarak. Tüm kombinasyonları denemiyorum ama sadece k = 5'i seçiyorum ve en iyi 5 özelliği buluyorum. from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # find best scored 5 features select_feature = SelectKBest(chi2, k=5).fit(x_train, y_train) print("Score list:", select_feature.scores_) print("Feature list:", x_train.columns) # Sınıflandırılacak en iyi 5 özellik, rea_mean, area_se, texture_mean, concavity_worst and concavity_mean. Öyleyse, yalnızca bu en iyi puan alan 5 özelliği kullanırsak ne olacağını görelim. x_train_2 = select_feature.transform(x_train) x_test_2 = select_feature.transform(x_test) # random forest classifier with n_estimators=10 (default) clf_rf_2 = RandomForestClassifier() clr_rf_2 = clf_rf_2.fit(x_train_2, y_train) ac_2 = accuracy_score(y_test, clf_rf_2.predict(x_test_2)) print("Accuracy is: ", ac_2) cm_2 = confusion_matrix(y_test, clf_rf_2.predict(x_test_2)) sns.heatmap(cm_2, annot=True, fmt="d") # Doğruluk yaklaşık %96'dır ve karışıklık matrisinden de görülebileceği gibi çok az yanlış tahminde bulunuruz. Şimdiye kadar yaptığımız şey, özellikleri korelasyon matrisine ve selectkBest yöntemine göre seçmekti. SelectkBest yönteminde 5 özellik kullanmamıza rağmen doğrulukları benzer görünmektedir. Şimdi daha iyi sonuçlar bulmak için diğer özellik seçim yöntemlerini görelim. # 3) Rastgele orman ile özyinelemeli özellik eleme (RFE) # http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html Temel olarak, sınıflandırma yöntemlerinden birini kullanır (bizim örneğimizde rastgele orman), her bir özelliğe ağırlık atayın. Mutlak ağırlıkları en küçük olanların mevcut set özelliklerinden budanır. Bu prosedür, budanmış sette istenen sayıda özellik elde edilene kadar yinelemeli olarak tekrarlanır. # Önceki yöntemde olduğu gibi, 5 özellik kullanacağız. Ancak hangi 5 özelliği kullanacağız? Bunları RFE yöntemi ile seçeceğiz. from sklearn.feature_selection import RFE # Create the RFE object and rank each pixel clf_rf_3 = RandomForestClassifier() rfe = RFE(estimator=clf_rf_3, n_features_to_select=5, step=1) rfe = rfe.fit(x_train, y_train) print("Chosen best 5 feature by rfe:", x_train.columns[rfe.support_]) # rfe tarafından seçilen en iyi 5 özellik, texture_mean, field_mean, concavity_mean, field_se, concavity_worst. Önceki (selectkBest) yöntemine tamamen benzerler. Bu nedenle doğruluğu tekrar hesaplamamıza gerek yok. Kısaca rfe ve selectkBest yöntemleri ile iyi bir özellik seçimi yaptığımızı söyleyebiliriz. Ancak gördüğünüz gibi bir sorun var tamam ben en iyi 5 özelliğini iki farklı yöntemle buluyoruz ve bu özellikler aynı ama neden 5. Belki en iyi 2 veya en iyi 15 özelliğini kullanırsak daha iyi doğruluk elde ederiz. Bu nedenle, rfecv yöntemiyle kaç tane özellik kullanmamız gerektiğine bakalım. # 4) Çapraz doğrulama ve rastgele orman sınıflandırması ile özyinelemeli özellik eleme # http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html Şimdi sadece en iyi özellikleri değil, aynı zamanda en iyi doğruluk için kaç tane özelliğe ihtiyacımız olduğunu da bulacağız. from sklearn.feature_selection import RFECV # The "accuracy" scoring is proportional to the number of correct classifications clf_rf_4 = RandomForestClassifier() rfecv = RFECV( estimator=clf_rf_4, step=1, cv=5, scoring="accuracy" ) # 5-fold cross-validation rfecv = rfecv.fit(x_train, y_train) print("Optimal number of features :", rfecv.n_features_) print("Best features :", x_train.columns[rfecv.support_]) # Son olarak, en iyi sınıflandırma için texture_mean, field_mean, concavity_mean, texture_se, field_se, concavity_se,chemistry_se, smoothness_worst, concavity_worst,chemistry_worst ve fractal_dimension_worst olan en iyi 11 özelliği bulduk. Arsa ile en iyi doğruluğa bakalım. # 5) Tree based feature selection and random forest classification # http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html In random forest classification method there is a featureimportances attributes that is the feature importances (the higher, the more important the feature). !!! To use feature_importance method, in training data there should not be correlated features. Random forest choose randomly at each iteration, therefore sequence of feature importance list can change. # clf_rf_5 = RandomForestClassifier() clr_rf_5 = clf_rf_5.fit(x_train, y_train) importances = clr_rf_5.feature_importances_ std = np.std([tree.feature_importances_ for tree in clf_rf.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(x_train.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure(1, figsize=(14, 13)) plt.title("Feature importances") plt.bar( range(x_train.shape[1]), importances[indices], color="g", yerr=std[indices], align="center", ) plt.xticks(range(x_train.shape[1]), x_train.columns[indices], rotation=90) plt.xlim([-1, x_train.shape[1]]) plt.show() # Yukarıdaki grafikte de görebileceğiniz gibi, en iyi 5 özellikten sonra özelliklerin önemi azalır. Bu nedenle bu 5 özelliğe odaklanabiliriz. Daha önce üzüldüğüm gibi, özellikleri anlamaya ve en iyisini bulmaya önem veriyorum. # PCA ile Özellik Çıkarma # http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html Özellik çıkarımı için temel bileşen analizi (PCA) kullanacağız. PCA'dan önce, PCA'nın daha iyi performansı için verileri normalleştirmemiz gerekiyor. # split data train 70 % and test 30 % x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=42 ) # normalization x_train_N = (x_train - x_train.mean()) / (x_train.max() - x_train.min()) x_test_N = (x_test - x_test.mean()) / (x_test.max() - x_test.min()) from sklearn.decomposition import PCA pca = PCA() pca.fit(x_train_N) plt.figure(1, figsize=(14, 13)) plt.clf() plt.axes([0.2, 0.2, 0.7, 0.7]) plt.plot(pca.explained_variance_ratio_, linewidth=2) plt.axis("tight") plt.xlabel("n_components") plt.ylabel("explained_variance_ratio_")
false
0
7,638
0
8,164
7,638
129073930
import numpy as np import pandas as pd import optuna import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import KFold from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from tqdm import tqdm from sklearn.metrics import mean_squared_error import os for dirname, _, filenames in os.walk("/kaggle/input/playground-series-s3e14"): for filename in filenames: print(os.path.join(dirname, filename)) # # Competition Page # https://www.kaggle.com/competitions/playground-series-s3e14 train = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") test = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") # ### Drop id from train and test set train.drop(columns=["id"], inplace=True) test.drop(columns=["id"], inplace=True) # ### Checking for null and duplicates train.isna().sum() train.duplicated().sum() train.drop_duplicates(inplace=True) train.reset_index(drop=True, inplace=True) for i in train.columns: print(train[i].value_counts()) # ### Summary stats train.describe() # ### Co relation heat map corr = train[["fruitset", "fruitmass", "seeds", "yield"]].corr() corr.style.background_gradient(cmap="coolwarm") # ### Plotting the continuous predictor variables plt.figure(figsize=(10, 10)) for i in range(len(["fruitset", "fruitmass", "seeds"])): plt.subplot(3, 3, i + 1) sns.histplot(x=train[(["fruitset", "fruitmass", "seeds"])[i]], kde=True) plt.tight_layout() # ### Plotting the boxplot of continuous predictor variables plt.figure(figsize=(10, 10)) for i in range(len(["fruitset", "fruitmass", "seeds"])): plt.subplot(3, 3, i + 1) sns.boxplot(y=train[(["fruitset", "fruitmass", "seeds"])[i]]) plt.tight_layout() # ### Plotting the categorical variables plt.figure(figsize=(12, 12)) for i in range( len( [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", ] ) ): plt.subplot(5, 3, i + 1) sns.countplot( x=train[ ( [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", ] )[i] ] ) plt.tight_layout() # ### Plotting the target variable sns.histplot(x=train["yield"], kde=True) plt.show() # ### Separating features and target variable y = train["yield"] train.drop(columns=["yield"], inplace=True) # ### Optuna parameter tuning- XG Boost def obj_xg(trial): params = { "max_depth": trial.suggest_int("max_depth", 1, 10), "learning_rate": trial.suggest_float("learning_rate", 0.1, 1), "n_estimators": trial.suggest_int("n_estimators", 200, 1000), "gamma": trial.suggest_float("gamma", 1e-5, 2), "min_child_weight": trial.suggest_int("min_child_weight", 1, 20), "subsample": trial.suggest_float("subsample", 0, 1), "colsample_bytree": trial.suggest_float("colsample_bytree", 0, 1), "reg_alpha": trial.suggest_float("reg_alpha", 0, 1), "reg_lambda": trial.suggest_float("reg_lambda", 0, 1), } scores = [] optuna_model = XGBRegressor(**params) cv = KFold(n_splits=10, random_state=100, shuffle=True) for train_index, test_index in cv.split(train, y): trainx, testx = train.iloc[train_index], train.iloc[test_index] trainy, testy = y[train_index], y[test_index] optuna_model.fit(trainx, trainy) predy = optuna_model.predict(testx) scores.append(mean_squared_error(testy, predy, squared=False)) return np.mean(scores) study_xg = optuna.create_study(direction="minimize") optuna.logging.set_verbosity(optuna.logging.WARNING) n_trials = 50 with tqdm(total=n_trials) as pbar: for i in range(n_trials): study_xg.optimize(obj_xg, n_trials=1) pbar.update(1) # ### Optuna parameter tuning- Light GBM def obj_light(trial): prams = { "max_depth": trial.suggest_int("max_depth", 1, 10), "n_estimators": trial.suggest_int("n_estimators", 200, 1000), "learning_rate": trial.suggest_float("learning_rate", 0.1, 1), "min_child_weight": trial.suggest_int("min_child_weight", 1, 20), "subsample": trial.suggest_float("subsample", 0, 1), "colsample_bytree": trial.suggest_float("colsample_bytree", 0, 1), "reg_alpha": trial.suggest_float("reg_alpha", 0, 1), "reg_lambda": trial.suggest_float("reg_lambda", 0, 1), } scores = [] optuna_model = LGBMRegressor(**params) cv = KFold(n_splits=10, shuffle=True, random_state=100) for train_index, test_index in cv.split(train, y): trainx, testx = train.iloc[train_index], train.iloc[test_index] trainy, testy = y[train_index], y[test_index] optuna_model.fit(trainx, trainy) predy = optuna_model.predict(testx) scores.append(mean_squared_error(testy, predy, squared=False)) return np.mean(scores) study_light = optuna.create_study(direction="minimize") n_trials = 50 with tqdm(total=n_trials) as pbar: for i in range(n_trials): study_light.optimize(obj_light, n_trials=1) pbar.update(1)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/073/129073930.ipynb
null
null
[{"Id": 129073930, "ScriptId": 38327225, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11722122, "CreationDate": "05/10/2023 19:18:45", "VersionNumber": 2.0, "Title": "Playground_S3_E14(Optuna - XGB, LGBM, CATBoost)", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 154.0, "LinesInsertedFromPrevious": 69.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 85.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np import pandas as pd import optuna import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import KFold from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from tqdm import tqdm from sklearn.metrics import mean_squared_error import os for dirname, _, filenames in os.walk("/kaggle/input/playground-series-s3e14"): for filename in filenames: print(os.path.join(dirname, filename)) # # Competition Page # https://www.kaggle.com/competitions/playground-series-s3e14 train = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") test = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") # ### Drop id from train and test set train.drop(columns=["id"], inplace=True) test.drop(columns=["id"], inplace=True) # ### Checking for null and duplicates train.isna().sum() train.duplicated().sum() train.drop_duplicates(inplace=True) train.reset_index(drop=True, inplace=True) for i in train.columns: print(train[i].value_counts()) # ### Summary stats train.describe() # ### Co relation heat map corr = train[["fruitset", "fruitmass", "seeds", "yield"]].corr() corr.style.background_gradient(cmap="coolwarm") # ### Plotting the continuous predictor variables plt.figure(figsize=(10, 10)) for i in range(len(["fruitset", "fruitmass", "seeds"])): plt.subplot(3, 3, i + 1) sns.histplot(x=train[(["fruitset", "fruitmass", "seeds"])[i]], kde=True) plt.tight_layout() # ### Plotting the boxplot of continuous predictor variables plt.figure(figsize=(10, 10)) for i in range(len(["fruitset", "fruitmass", "seeds"])): plt.subplot(3, 3, i + 1) sns.boxplot(y=train[(["fruitset", "fruitmass", "seeds"])[i]]) plt.tight_layout() # ### Plotting the categorical variables plt.figure(figsize=(12, 12)) for i in range( len( [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", ] ) ): plt.subplot(5, 3, i + 1) sns.countplot( x=train[ ( [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", ] )[i] ] ) plt.tight_layout() # ### Plotting the target variable sns.histplot(x=train["yield"], kde=True) plt.show() # ### Separating features and target variable y = train["yield"] train.drop(columns=["yield"], inplace=True) # ### Optuna parameter tuning- XG Boost def obj_xg(trial): params = { "max_depth": trial.suggest_int("max_depth", 1, 10), "learning_rate": trial.suggest_float("learning_rate", 0.1, 1), "n_estimators": trial.suggest_int("n_estimators", 200, 1000), "gamma": trial.suggest_float("gamma", 1e-5, 2), "min_child_weight": trial.suggest_int("min_child_weight", 1, 20), "subsample": trial.suggest_float("subsample", 0, 1), "colsample_bytree": trial.suggest_float("colsample_bytree", 0, 1), "reg_alpha": trial.suggest_float("reg_alpha", 0, 1), "reg_lambda": trial.suggest_float("reg_lambda", 0, 1), } scores = [] optuna_model = XGBRegressor(**params) cv = KFold(n_splits=10, random_state=100, shuffle=True) for train_index, test_index in cv.split(train, y): trainx, testx = train.iloc[train_index], train.iloc[test_index] trainy, testy = y[train_index], y[test_index] optuna_model.fit(trainx, trainy) predy = optuna_model.predict(testx) scores.append(mean_squared_error(testy, predy, squared=False)) return np.mean(scores) study_xg = optuna.create_study(direction="minimize") optuna.logging.set_verbosity(optuna.logging.WARNING) n_trials = 50 with tqdm(total=n_trials) as pbar: for i in range(n_trials): study_xg.optimize(obj_xg, n_trials=1) pbar.update(1) # ### Optuna parameter tuning- Light GBM def obj_light(trial): prams = { "max_depth": trial.suggest_int("max_depth", 1, 10), "n_estimators": trial.suggest_int("n_estimators", 200, 1000), "learning_rate": trial.suggest_float("learning_rate", 0.1, 1), "min_child_weight": trial.suggest_int("min_child_weight", 1, 20), "subsample": trial.suggest_float("subsample", 0, 1), "colsample_bytree": trial.suggest_float("colsample_bytree", 0, 1), "reg_alpha": trial.suggest_float("reg_alpha", 0, 1), "reg_lambda": trial.suggest_float("reg_lambda", 0, 1), } scores = [] optuna_model = LGBMRegressor(**params) cv = KFold(n_splits=10, shuffle=True, random_state=100) for train_index, test_index in cv.split(train, y): trainx, testx = train.iloc[train_index], train.iloc[test_index] trainy, testy = y[train_index], y[test_index] optuna_model.fit(trainx, trainy) predy = optuna_model.predict(testx) scores.append(mean_squared_error(testy, predy, squared=False)) return np.mean(scores) study_light = optuna.create_study(direction="minimize") n_trials = 50 with tqdm(total=n_trials) as pbar: for i in range(n_trials): study_light.optimize(obj_light, n_trials=1) pbar.update(1)
false
0
1,830
0
1,830
1,830
129190024
<jupyter_start><jupyter_text>New Plant Diseases Dataset **This dataset is recreated using offline augmentation from the original dataset. The original dataset can be found on [this][1] github repo. This dataset consists of about 87K rgb images of healthy and diseased crop leaves which is categorized into 38 different classes. The total dataset is divided into 80/20 ratio of training and validation set preserving the directory structure. A new directory containing 33 test images is created later for prediction purpose.** [1]: https://github.com/spMohanty/PlantVillage-Dataset Kaggle dataset identifier: new-plant-diseases-dataset <jupyter_script>import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import os image_size = 224 target_size = (image_size, image_size) input_shape = (image_size, image_size, 3) batch_size = 32 epochs = 25 base_dir = "../input/new-plant-diseases-dataset/new plant diseases dataset(augmented)/New Plant Diseases Dataset(Augmented)" train_dir = os.path.join(base_dir, "train") test_dir = os.path.join(base_dir, "valid") train_datagen = keras.preprocessing.image.ImageDataGenerator( rescale=1 / 255.0, shear_range=0.2, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, fill_mode="nearest", ) test_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) train_data = train_datagen.flow_from_directory( train_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode="categorical", ) test_data = test_datagen.flow_from_directory( test_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode="categorical", ) categories = list(train_data.class_indices.keys()) print(train_data.class_indices) import json with open("class_indices.json", "w") as f: json.dump(train_data.class_indices, f) from IPython.display import FileLink FileLink(r"class_indices.json") base_model = tf.keras.applications.MobileNet( weights="imagenet", include_top=False, input_shape=input_shape ) base_model.trainable = False inputs = keras.Input(shape=input_shape) x = base_model(inputs, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(len(categories), activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=x, name="LeafDisease_MobileNet") optimizer = tf.keras.optimizers.Adam() model.compile( optimizer=optimizer, loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.CategoricalAccuracy(), "accuracy"], ) history = model.fit( train_data, validation_data=test_data, epochs=epochs, steps_per_epoch=150, validation_steps=100, ) loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(len(loss)) fig = plt.figure(figsize=(10, 6)) plt.plot(epochs, loss, c="red", label="Training") plt.plot(epochs, val_loss, c="blue", label="Validation") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() acc = history.history["categorical_accuracy"] val_acc = history.history["val_categorical_accuracy"] epochs = range(len(acc)) fig = plt.figure(figsize=(10, 6)) plt.plot(epochs, acc, c="red", label="Training") plt.plot(epochs, val_acc, c="blue", label="Validation") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() model.save("plant_disease") import tensorflow as tf # Convert the model converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save the TFLite model with open("model.tflite", "wb") as f: f.write(tflite_model)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/190/129190024.ipynb
new-plant-diseases-dataset
vipoooool
[{"Id": 129190024, "ScriptId": 38388772, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8686594, "CreationDate": "05/11/2023 17:01:28", "VersionNumber": 1.0, "Title": "Plant disease classification using Mobilnet", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 140.0, "LinesInsertedFromPrevious": 140.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185016727, "KernelVersionId": 129190024, "SourceDatasetVersionId": 182633}]
[{"Id": 182633, "DatasetId": 78313, "DatasourceVersionId": 193494, "CreatorUserId": 2009285, "LicenseName": "Data files \u00a9 Original Authors", "CreationDate": "11/18/2018 07:09:16", "VersionNumber": 2.0, "Title": "New Plant Diseases Dataset", "Slug": "new-plant-diseases-dataset", "Subtitle": "Image dataset containing different healthy and unhealthy crop leaves.", "Description": "**This dataset is recreated using offline augmentation from the original dataset. The original dataset can be found on [this][1] github repo. This dataset consists of about 87K rgb images of healthy and diseased crop leaves which is categorized into 38 different classes. The total dataset is divided into 80/20 ratio of training and validation set preserving the directory structure.\nA new directory containing 33 test images is created later for prediction purpose.**\n\n\n [1]: https://github.com/spMohanty/PlantVillage-Dataset", "VersionNotes": "New Test Images", "TotalCompressedBytes": 1445887779.0, "TotalUncompressedBytes": 1445887779.0}]
[{"Id": 78313, "CreatorUserId": 2009285, "OwnerUserId": 2009285.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 182633.0, "CurrentDatasourceVersionId": 193494.0, "ForumId": 87652, "Type": 2, "CreationDate": "11/16/2018 12:17:57", "LastActivityDate": "11/16/2018", "TotalViews": 387678, "TotalDownloads": 47287, "TotalVotes": 766, "TotalKernels": 244}]
[{"Id": 2009285, "UserName": "vipoooool", "DisplayName": "Samir Bhattarai", "RegisterDate": "06/21/2018", "PerformanceTier": 0}]
import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import os image_size = 224 target_size = (image_size, image_size) input_shape = (image_size, image_size, 3) batch_size = 32 epochs = 25 base_dir = "../input/new-plant-diseases-dataset/new plant diseases dataset(augmented)/New Plant Diseases Dataset(Augmented)" train_dir = os.path.join(base_dir, "train") test_dir = os.path.join(base_dir, "valid") train_datagen = keras.preprocessing.image.ImageDataGenerator( rescale=1 / 255.0, shear_range=0.2, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2, fill_mode="nearest", ) test_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.0) train_data = train_datagen.flow_from_directory( train_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode="categorical", ) test_data = test_datagen.flow_from_directory( test_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode="categorical", ) categories = list(train_data.class_indices.keys()) print(train_data.class_indices) import json with open("class_indices.json", "w") as f: json.dump(train_data.class_indices, f) from IPython.display import FileLink FileLink(r"class_indices.json") base_model = tf.keras.applications.MobileNet( weights="imagenet", include_top=False, input_shape=input_shape ) base_model.trainable = False inputs = keras.Input(shape=input_shape) x = base_model(inputs, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(len(categories), activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=x, name="LeafDisease_MobileNet") optimizer = tf.keras.optimizers.Adam() model.compile( optimizer=optimizer, loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.CategoricalAccuracy(), "accuracy"], ) history = model.fit( train_data, validation_data=test_data, epochs=epochs, steps_per_epoch=150, validation_steps=100, ) loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(len(loss)) fig = plt.figure(figsize=(10, 6)) plt.plot(epochs, loss, c="red", label="Training") plt.plot(epochs, val_loss, c="blue", label="Validation") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() acc = history.history["categorical_accuracy"] val_acc = history.history["val_categorical_accuracy"] epochs = range(len(acc)) fig = plt.figure(figsize=(10, 6)) plt.plot(epochs, acc, c="red", label="Training") plt.plot(epochs, val_acc, c="blue", label="Validation") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() model.save("plant_disease") import tensorflow as tf # Convert the model converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save the TFLite model with open("model.tflite", "wb") as f: f.write(tflite_model)
false
0
993
0
1,144
993
129190109
<jupyter_start><jupyter_text>Related Job Skills The Job Skills Correlation dataset is a collection of data that provides insights into the relationships between different job skills and how they relate to each other. The dataset offers a valuable resource for researchers, policymakers, and employers interested in understanding the interdependencies between different job skills and their impact on job performance and success. The dataset contains information about the correlation between different job skills, including technical skills, soft skills, and industry-specific skills. The dataset includes data for a wide range of occupations, from healthcare and technology to manufacturing and retail. The dataset is particularly useful for researchers interested in understanding the skills required for different jobs and how these skills interact with each other. Policymakers can also use the dataset to develop strategies to promote skill development and training programs that take into account the interdependencies between different job skills. Employers can also benefit from the dataset by identifying the skills that are most closely related to job success and performance in their industry. By understanding the correlations between different job skills, employers can develop more effective job training and recruitment programs that target the most relevant skills. Overall, the Job Skills Correlation dataset is an essential resource for anyone interested in understanding the complex relationships between different job skills and their impact on job performance and success. By providing insights into the correlations between different job skills, the dataset can help individuals and organizations make more informed decisions about training, hiring, and career development. Kaggle dataset identifier: related-job-skills <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd df = pd.read_csv("/kaggle/input/related-job-skills/related_skills.csv") df.head() def gen_corpus(df): df["corpus"] = df["name"] for col in df.columns[1:]: df["corpus"] += " " + df[col] return df["corpus"] corpus = gen_corpus(df) from nltk.stem.porter import PorterStemmer ps = PorterStemmer() import re pattern = re.compile("\d+") def preprocess1(text): s = [] for word in text.split(): if word.lower() != "c" and len(word) == 1: continue word = re.sub(pattern, "", word) # word = ps.stem(word.lower()) s.append(word.lower()) return " ".join(s) corpus.dropna(inplace=True) corpus = corpus.apply(preprocess1) corpus lines = [] for i in range(corpus.size): lines.append(corpus.iloc[i]) corpus1 = [] from nltk import word_tokenize for line in lines: corpus1.append(word_tokenize(line)) import gensim model = gensim.models.Word2Vec(window=10, workers=2, vector_size=50) model.build_vocab(corpus1) model.train(corpus1, total_examples=model.corpus_count, epochs=50) model.wv.most_similar("backend") model.wv.similarity("server", "backend") l = [ "js", "javascript", "nodejs", "reactjs", "react", "angularjs", "angular", "backend", "server", ] j = ["dsa", "java", "python", "programming"] model.wv["sql"] resume = ["java", "python", "ml"] jd = ["css", "java", "html"] count = 0 for key in jd: for word in resume: if model.wv.similarity(key, word) >= 0.5: count += 1 break print(count) 20 - -80
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/190/129190109.ipynb
related-job-skills
ulrikthygepedersen
[{"Id": 129190109, "ScriptId": 38403734, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11375904, "CreationDate": "05/11/2023 17:02:35", "VersionNumber": 1.0, "Title": "notebookfa4c43bc7f", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 90.0, "LinesInsertedFromPrevious": 90.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185016848, "KernelVersionId": 129190109, "SourceDatasetVersionId": 5086757}]
[{"Id": 5086757, "DatasetId": 2953696, "DatasourceVersionId": 5157696, "CreatorUserId": 9580496, "LicenseName": "Attribution 4.0 International (CC BY 4.0)", "CreationDate": "03/01/2023 09:31:17", "VersionNumber": 1.0, "Title": "Related Job Skills", "Slug": "related-job-skills", "Subtitle": "Can you forecast which job skills are highly related?", "Description": "The Job Skills Correlation dataset is a collection of data that provides insights into the relationships between different job skills and how they relate to each other. The dataset offers a valuable resource for researchers, policymakers, and employers interested in understanding the interdependencies between different job skills and their impact on job performance and success.\n\nThe dataset contains information about the correlation between different job skills, including technical skills, soft skills, and industry-specific skills. The dataset includes data for a wide range of occupations, from healthcare and technology to manufacturing and retail.\n\nThe dataset is particularly useful for researchers interested in understanding the skills required for different jobs and how these skills interact with each other. Policymakers can also use the dataset to develop strategies to promote skill development and training programs that take into account the interdependencies between different job skills.\n\nEmployers can also benefit from the dataset by identifying the skills that are most closely related to job success and performance in their industry. By understanding the correlations between different job skills, employers can develop more effective job training and recruitment programs that target the most relevant skills.\n\nOverall, the Job Skills Correlation dataset is an essential resource for anyone interested in understanding the complex relationships between different job skills and their impact on job performance and success. By providing insights into the correlations between different job skills, the dataset can help individuals and organizations make more informed decisions about training, hiring, and career development.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2953696, "CreatorUserId": 9580496, "OwnerUserId": 9580496.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5086757.0, "CurrentDatasourceVersionId": 5157696.0, "ForumId": 2991781, "Type": 2, "CreationDate": "03/01/2023 09:31:17", "LastActivityDate": "03/01/2023", "TotalViews": 413, "TotalDownloads": 48, "TotalVotes": 1, "TotalKernels": 2}]
[{"Id": 9580496, "UserName": "ulrikthygepedersen", "DisplayName": "Ulrik Thyge Pedersen", "RegisterDate": "02/04/2022", "PerformanceTier": 2}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd df = pd.read_csv("/kaggle/input/related-job-skills/related_skills.csv") df.head() def gen_corpus(df): df["corpus"] = df["name"] for col in df.columns[1:]: df["corpus"] += " " + df[col] return df["corpus"] corpus = gen_corpus(df) from nltk.stem.porter import PorterStemmer ps = PorterStemmer() import re pattern = re.compile("\d+") def preprocess1(text): s = [] for word in text.split(): if word.lower() != "c" and len(word) == 1: continue word = re.sub(pattern, "", word) # word = ps.stem(word.lower()) s.append(word.lower()) return " ".join(s) corpus.dropna(inplace=True) corpus = corpus.apply(preprocess1) corpus lines = [] for i in range(corpus.size): lines.append(corpus.iloc[i]) corpus1 = [] from nltk import word_tokenize for line in lines: corpus1.append(word_tokenize(line)) import gensim model = gensim.models.Word2Vec(window=10, workers=2, vector_size=50) model.build_vocab(corpus1) model.train(corpus1, total_examples=model.corpus_count, epochs=50) model.wv.most_similar("backend") model.wv.similarity("server", "backend") l = [ "js", "javascript", "nodejs", "reactjs", "react", "angularjs", "angular", "backend", "server", ] j = ["dsa", "java", "python", "programming"] model.wv["sql"] resume = ["java", "python", "ml"] jd = ["css", "java", "html"] count = 0 for key in jd: for word in resume: if model.wv.similarity(key, word) >= 0.5: count += 1 break print(count) 20 - -80
false
1
708
0
1,041
708
129097878
<jupyter_start><jupyter_text>MIAS-ROI-Mammography Kaggle dataset identifier: mias-roi-mammography <jupyter_script># # # Table of content # [Read data: MINI-DDSM](#read-data) # !pip install torchsummary class clr: # HEADER = '\033[95m' # OKBLUE = '\033[94m' # OKCYAN = '\033[96m' # OKGREEN = '\033[92m' # WARNING = '\033[93m' # FAIL = '\033[91m' # ENDC = '\033[0m' # BOLD = '\033[1m' # UNDERLINE = '\033[4m' S = "\033[1;33m + \033[91m" E = "\033[0m" import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import cv2 import skimage.exposure as exposure from glob import glob from tqdm.notebook import tqdm import time from datetime import datetime from IPython import display import os import torch import torchvision from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torch.optim as optim import torchvision.models as models import torch.nn.functional as F import pytorch_lightning as pl # from torchsummary import summary from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import multiprocessing as mp import warnings warnings.filterwarnings("ignore") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cores = mp.cpu_count() plt.rcParams.update({"font.size": 10}) plt.rcParams["figure.figsize"] = (8, 6) print(clr.S + "Cores:" + clr.E, cores) print(clr.S + "Device:" + clr.E, device) print(clr.S + "Day: " + clr.E, datetime.now()) # # # Read Data # [prev](#content) - [content](#content) - [next](#dataset) class Read_data: def __init__(self, path_csv): self.name_dataset = path_csv.split("-")[-3:][0].split("/")[-1] self.df = pd.read_csv(f"{path_csv}/description.csv") self.df = self.df[["Cancer", "Path_save"]] self.df["Path_save"] = self.df["Path_save"].apply(lambda x: f"{path_csv}/{x}") def stats_cancer(self): stats = self.df["Cancer"].value_counts() plt.figure(figsize=plt.figaspect(1)) plt.pie( x=list(stats.values), labels=list(stats.index), autopct=lambda p: "{:.2f}% ({:.0f})".format( p, round((p / 100) * sum(list(stats.values)), 0) ), ) plt.title(f"sample number statistics of {self.name_dataset}") plt.show() mias = Read_data("/kaggle/input/mias-roi-mammography") mias.stats_cancer() inbreast = Read_data("/kaggle/input/inbreast-roi-mammography") inbreast.stats_cancer() ddsm = Read_data("/kaggle/input/mini-ddsm-roi-mammography") ddsm.stats_cancer() cmmd = Read_data("/kaggle/input/cmmd-roi-mammography") cmmd.stats_cancer() data = pd.concat([mias.df, inbreast.df, ddsm.df, cmmd.df]) stats = data["Cancer"].value_counts() plt.pie( x=list(stats.values), labels=list(stats.index), autopct=lambda p: "{:.2f}% ({:.0f})".format( p, round((p / 100) * sum(list(stats.values)), 0) ), ) plt.title(f"sample number statistics of all data") plt.show() # # # Split train - valid - test # [prev](#read-data) - [content](#content) - [next](#dataset) df_train, df_temp = train_test_split(data, test_size=0.2, random_state=42) df_valid, df_test = train_test_split(df_temp, test_size=0.5, random_state=42) # # # Custom dataset # [prev](#split-data) - [content](#content) - [next](#dataloader) def pre_processing(img): img = img.astype(np.uint8) # apply clahe with cv2 # clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(8, 8)) # img1 = clahe.apply(img) # apply clahe with skimage img2 = exposure.equalize_adapthist(img, clip_limit=0.02) # apply histogram equalization # img3 = cv2.equalizeHist(img) return img2 transforms = torchvision.transforms.Compose( [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5,), (0.5,)), torchvision.transforms.Resize((512, 512)), ] ) # path_img = df.Path.values[0] # img = cv2.imread(path_img, 0) # process = pre_processing(img) # plt.imshow(process, cmap='gray') # plt.axis('off') class Dataset: def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.iloc[idx] img = cv2.imread(row["Path_save"], 0) img = pre_processing(img) label = row["Cancer"] if self.transform: img = self.transform(img) label = torch.tensor(label) return img, label train_set = Dataset(df_train, transform=transforms) valid_set = Dataset(df_valid, transform=transforms) test_set = Dataset(df_test, transform=transforms) def show_img(img, label): if isinstance(img, torch.Tensor): img = img.permute(1, 2, 0) img = img.numpy() if isinstance(label, torch.Tensor): label = label.numpy() plt.imshow(img, cmap="gray") plt.title(f"Label: {label}") plt.show() show_img(*train_set[0]) # # # Dataloader # [prev](#dataset) - [content](#content) - [next](#model) batch_size = 16 train_loader = DataLoader( train_set, batch_size=batch_size, shuffle=True, num_workers=cores - 2 ) valid_loader = DataLoader( valid_set, batch_size=batch_size, shuffle=False, num_workers=cores - 2 ) test_loader = DataLoader( test_set, batch_size=batch_size, shuffle=False, num_workers=cores - 2 ) # Display image and label. train_features, train_labels = next(iter(train_loader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.title(f"Label: {label}") plt.show() # plt.figure(figsize=(15, 15)) # for i, (img, label) in enumerate(train_set): # plt.subplot(1,8,i+1) # plt.imshow(img.squeeze(), cmap='gray') # plt.axis('off') # plt.subplots_adjust(wspace=None, hspace=None) # plt.title(label) # if i == 7: # break # # # Model # [prev](#dataloader) - [content](#content) - [next](#) class Bottleneck(nn.Module): expansion = ( 3 # Number of output channels of the block relative to the input channels ) def __init__(self, in_channels, out_channels, stride=1, downsample=None, width=32): super().__init__() self.conv1 = nn.Conv2d(in_channels, width, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(width) self.conv2 = nn.Conv2d( width, width, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(width) self.conv3 = nn.Conv2d( width, out_channels * self.expansion, kernel_size=1, bias=False ) self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class HRNet(nn.Module): def __init__(self, block, layers, num_classes=1, width=32): super().__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=1, width=width) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, width=width) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, width=width) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, width=width) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1, width=32): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] layers.append( block(self.in_channels, out_channels, stride, downsample, width=width) ) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels, width=width)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) x = torch.sigmoid(x) return x model = HRNet(Bottleneck, [3, 4, 23, 3]).to(device) weight = torch.tensor([0.47, 0.53]) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.005) for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(train_loader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data inputs = inputs.type(torch.cuda.FloatTensor) labels = labels.type(torch.cuda.FloatTensor) inputs = inputs.to(device) labels = labels.to(device) print(inputs.shape) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}") running_loss = 0.0 print("Finished Training") for epoch in range(40): running_loss = 0.0 running_corrects = 0 total_samples = 0 all_preds = [] all_labels = [] for i, inp in enumerate(train_set, 0): inputs, labels = inp inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) preds = torch.sigmoid( outputs ) # Áp dụng hàm sigmoid cho đầu ra để đưa vào BCELoss # labels = labels.unsqueeze(1) # labels = labels.float() loss = criterion(outputs, labels) # Sử dụng BCELoss loss.backward() optimizer.step() running_loss += loss.item() running_corrects += torch.sum((preds > 0.5).float() == labels) total_samples += len(labels) all_preds.extend( (preds > 0.5).float().tolist() ) # Áp dreohreshold 0.5 để dự đoán nhãn nhị phân all_labels.extend(labels.tolist()) if i % 10 == 5: train_acc = running_corrects / total_samples train_loss = running_loss / 100 print( f"[Epoch {epoch + 1}, Batch {i}] loss: {train_loss:.3f}, acc: {train_acc:.3f}" ) running_loss = 0.0 running_corrects = 0 total_samples = 0 # Calculate F1-score, recall, and precision report = classification_report(all_labels, all_preds, output_dict=True) f1_score = report["weighted avg"]["f1-score"] recall = report["weighted avg"]["recall"] precision = report["weighted avg"]["precision"] # Reset running_corrects after calculating accuracy running_corrects = 0 # Step 5: Save your trained model torch.save(model.state_dict(), "/kaggle/working/model/HRnet_DDSM_Inbreast.pt")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097878.ipynb
mias-roi-mammography
quachnam
[{"Id": 129097878, "ScriptId": 37068459, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 7848581, "CreationDate": "05/11/2023 02:09:12", "VersionNumber": 2.0, "Title": "Model CNN", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 389.0, "LinesInsertedFromPrevious": 193.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 196.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184852580, "KernelVersionId": 129097878, "SourceDatasetVersionId": 5623907}, {"Id": 184852581, "KernelVersionId": 129097878, "SourceDatasetVersionId": 5624085}, {"Id": 184852582, "KernelVersionId": 129097878, "SourceDatasetVersionId": 5624440}]
[{"Id": 5623907, "DatasetId": 3054622, "DatasourceVersionId": 5699110, "CreatorUserId": 7848581, "LicenseName": "Unknown", "CreationDate": "05/07/2023 07:24:12", "VersionNumber": 4.0, "Title": "MIAS-ROI-Mammography", "Slug": "mias-roi-mammography", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2023-05-07", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3054622, "CreatorUserId": 7848581, "OwnerUserId": 7848581.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5623907.0, "CurrentDatasourceVersionId": 5699110.0, "ForumId": 3117180, "Type": 2, "CreationDate": "03/27/2023 17:42:32", "LastActivityDate": "03/27/2023", "TotalViews": 384, "TotalDownloads": 73, "TotalVotes": 3, "TotalKernels": 14}]
[{"Id": 7848581, "UserName": "quachnam", "DisplayName": "Qx Nam", "RegisterDate": "07/06/2021", "PerformanceTier": 1}]
# # # Table of content # [Read data: MINI-DDSM](#read-data) # !pip install torchsummary class clr: # HEADER = '\033[95m' # OKBLUE = '\033[94m' # OKCYAN = '\033[96m' # OKGREEN = '\033[92m' # WARNING = '\033[93m' # FAIL = '\033[91m' # ENDC = '\033[0m' # BOLD = '\033[1m' # UNDERLINE = '\033[4m' S = "\033[1;33m + \033[91m" E = "\033[0m" import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import cv2 import skimage.exposure as exposure from glob import glob from tqdm.notebook import tqdm import time from datetime import datetime from IPython import display import os import torch import torchvision from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torch.optim as optim import torchvision.models as models import torch.nn.functional as F import pytorch_lightning as pl # from torchsummary import summary from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import multiprocessing as mp import warnings warnings.filterwarnings("ignore") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cores = mp.cpu_count() plt.rcParams.update({"font.size": 10}) plt.rcParams["figure.figsize"] = (8, 6) print(clr.S + "Cores:" + clr.E, cores) print(clr.S + "Device:" + clr.E, device) print(clr.S + "Day: " + clr.E, datetime.now()) # # # Read Data # [prev](#content) - [content](#content) - [next](#dataset) class Read_data: def __init__(self, path_csv): self.name_dataset = path_csv.split("-")[-3:][0].split("/")[-1] self.df = pd.read_csv(f"{path_csv}/description.csv") self.df = self.df[["Cancer", "Path_save"]] self.df["Path_save"] = self.df["Path_save"].apply(lambda x: f"{path_csv}/{x}") def stats_cancer(self): stats = self.df["Cancer"].value_counts() plt.figure(figsize=plt.figaspect(1)) plt.pie( x=list(stats.values), labels=list(stats.index), autopct=lambda p: "{:.2f}% ({:.0f})".format( p, round((p / 100) * sum(list(stats.values)), 0) ), ) plt.title(f"sample number statistics of {self.name_dataset}") plt.show() mias = Read_data("/kaggle/input/mias-roi-mammography") mias.stats_cancer() inbreast = Read_data("/kaggle/input/inbreast-roi-mammography") inbreast.stats_cancer() ddsm = Read_data("/kaggle/input/mini-ddsm-roi-mammography") ddsm.stats_cancer() cmmd = Read_data("/kaggle/input/cmmd-roi-mammography") cmmd.stats_cancer() data = pd.concat([mias.df, inbreast.df, ddsm.df, cmmd.df]) stats = data["Cancer"].value_counts() plt.pie( x=list(stats.values), labels=list(stats.index), autopct=lambda p: "{:.2f}% ({:.0f})".format( p, round((p / 100) * sum(list(stats.values)), 0) ), ) plt.title(f"sample number statistics of all data") plt.show() # # # Split train - valid - test # [prev](#read-data) - [content](#content) - [next](#dataset) df_train, df_temp = train_test_split(data, test_size=0.2, random_state=42) df_valid, df_test = train_test_split(df_temp, test_size=0.5, random_state=42) # # # Custom dataset # [prev](#split-data) - [content](#content) - [next](#dataloader) def pre_processing(img): img = img.astype(np.uint8) # apply clahe with cv2 # clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(8, 8)) # img1 = clahe.apply(img) # apply clahe with skimage img2 = exposure.equalize_adapthist(img, clip_limit=0.02) # apply histogram equalization # img3 = cv2.equalizeHist(img) return img2 transforms = torchvision.transforms.Compose( [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5,), (0.5,)), torchvision.transforms.Resize((512, 512)), ] ) # path_img = df.Path.values[0] # img = cv2.imread(path_img, 0) # process = pre_processing(img) # plt.imshow(process, cmap='gray') # plt.axis('off') class Dataset: def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.iloc[idx] img = cv2.imread(row["Path_save"], 0) img = pre_processing(img) label = row["Cancer"] if self.transform: img = self.transform(img) label = torch.tensor(label) return img, label train_set = Dataset(df_train, transform=transforms) valid_set = Dataset(df_valid, transform=transforms) test_set = Dataset(df_test, transform=transforms) def show_img(img, label): if isinstance(img, torch.Tensor): img = img.permute(1, 2, 0) img = img.numpy() if isinstance(label, torch.Tensor): label = label.numpy() plt.imshow(img, cmap="gray") plt.title(f"Label: {label}") plt.show() show_img(*train_set[0]) # # # Dataloader # [prev](#dataset) - [content](#content) - [next](#model) batch_size = 16 train_loader = DataLoader( train_set, batch_size=batch_size, shuffle=True, num_workers=cores - 2 ) valid_loader = DataLoader( valid_set, batch_size=batch_size, shuffle=False, num_workers=cores - 2 ) test_loader = DataLoader( test_set, batch_size=batch_size, shuffle=False, num_workers=cores - 2 ) # Display image and label. train_features, train_labels = next(iter(train_loader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.title(f"Label: {label}") plt.show() # plt.figure(figsize=(15, 15)) # for i, (img, label) in enumerate(train_set): # plt.subplot(1,8,i+1) # plt.imshow(img.squeeze(), cmap='gray') # plt.axis('off') # plt.subplots_adjust(wspace=None, hspace=None) # plt.title(label) # if i == 7: # break # # # Model # [prev](#dataloader) - [content](#content) - [next](#) class Bottleneck(nn.Module): expansion = ( 3 # Number of output channels of the block relative to the input channels ) def __init__(self, in_channels, out_channels, stride=1, downsample=None, width=32): super().__init__() self.conv1 = nn.Conv2d(in_channels, width, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(width) self.conv2 = nn.Conv2d( width, width, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(width) self.conv3 = nn.Conv2d( width, out_channels * self.expansion, kernel_size=1, bias=False ) self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class HRNet(nn.Module): def __init__(self, block, layers, num_classes=1, width=32): super().__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=1, width=width) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, width=width) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, width=width) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, width=width) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1, width=32): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] layers.append( block(self.in_channels, out_channels, stride, downsample, width=width) ) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels, width=width)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) x = torch.sigmoid(x) return x model = HRNet(Bottleneck, [3, 4, 23, 3]).to(device) weight = torch.tensor([0.47, 0.53]) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.005) for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(train_loader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data inputs = inputs.type(torch.cuda.FloatTensor) labels = labels.type(torch.cuda.FloatTensor) inputs = inputs.to(device) labels = labels.to(device) print(inputs.shape) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}") running_loss = 0.0 print("Finished Training") for epoch in range(40): running_loss = 0.0 running_corrects = 0 total_samples = 0 all_preds = [] all_labels = [] for i, inp in enumerate(train_set, 0): inputs, labels = inp inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) preds = torch.sigmoid( outputs ) # Áp dụng hàm sigmoid cho đầu ra để đưa vào BCELoss # labels = labels.unsqueeze(1) # labels = labels.float() loss = criterion(outputs, labels) # Sử dụng BCELoss loss.backward() optimizer.step() running_loss += loss.item() running_corrects += torch.sum((preds > 0.5).float() == labels) total_samples += len(labels) all_preds.extend( (preds > 0.5).float().tolist() ) # Áp dreohreshold 0.5 để dự đoán nhãn nhị phân all_labels.extend(labels.tolist()) if i % 10 == 5: train_acc = running_corrects / total_samples train_loss = running_loss / 100 print( f"[Epoch {epoch + 1}, Batch {i}] loss: {train_loss:.3f}, acc: {train_acc:.3f}" ) running_loss = 0.0 running_corrects = 0 total_samples = 0 # Calculate F1-score, recall, and precision report = classification_report(all_labels, all_preds, output_dict=True) f1_score = report["weighted avg"]["f1-score"] recall = report["weighted avg"]["recall"] precision = report["weighted avg"]["precision"] # Reset running_corrects after calculating accuracy running_corrects = 0 # Step 5: Save your trained model torch.save(model.state_dict(), "/kaggle/working/model/HRnet_DDSM_Inbreast.pt")
false
0
3,878
0
3,908
3,878
129097310
<jupyter_start><jupyter_text>Mall_Customers Kaggle dataset identifier: mall-customers <jupyter_code>import pandas as pd df = pd.read_csv('mall-customers/Mall_Customers.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 CustomerID 200 non-null int64 1 Genre 200 non-null object 2 Age 200 non-null int64 3 Annual Income (k$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB <jupyter_text>Examples: { "CustomerID": 1, "Genre": "Male", "Age": 19, "Annual Income (k$)": 15, "Spending Score (1-100)": 39 } { "CustomerID": 2, "Genre": "Male", "Age": 21, "Annual Income (k$)": 15, "Spending Score (1-100)": 81 } { "CustomerID": 3, "Genre": "Female", "Age": 20, "Annual Income (k$)": 16, "Spending Score (1-100)": 6 } { "CustomerID": 4, "Genre": "Female", "Age": 23, "Annual Income (k$)": 16, "Spending Score (1-100)": 77 } <jupyter_script>from pycaret.utils import enable_colab enable_colab() import pandas as pd dataset = pd.read_csv("/kaggle/input/mall-customers/Mall_Customers.csv") dataset.head() dataset.shape data = dataset.sample(frac=0.95, random_state=786) data_unseen = dataset.drop(data.index) data.reset_index(drop=True, inplace=True) data_unseen.reset_index(drop=True, inplace=True) print("Data for Modeling: " + str(data.shape)) print("Unseen Data For Predictions: " + str(data_unseen.shape)) from pycaret.clustering import * exp_clu101 = setup(data, normalize=True, ignore_features=["CUST_ID"], session_id=123) kmeans = create_model("kmeans") print(kmeans) models() Agglo = create_model("hclust", num_clusters=4) print(Agglo) kmean_results = assign_model(kmeans) kmean_results.head() plot_model(kmeans)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097310.ipynb
mall-customers
shwetabh123
[{"Id": 129097310, "ScriptId": 38377779, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8292053, "CreationDate": "05/11/2023 02:00:39", "VersionNumber": 1.0, "Title": "notebook1abaa597c8", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 42.0, "LinesInsertedFromPrevious": 42.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184851493, "KernelVersionId": 129097310, "SourceDatasetVersionId": 10938}]
[{"Id": 10938, "DatasetId": 7721, "DatasourceVersionId": 10938, "CreatorUserId": 1508014, "LicenseName": "CC0: Public Domain", "CreationDate": "12/23/2017 06:12:40", "VersionNumber": 1.0, "Title": "Mall_Customers", "Slug": "mall-customers", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 4286.0, "TotalUncompressedBytes": 4286.0}]
[{"Id": 7721, "CreatorUserId": 1508014, "OwnerUserId": 1508014.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 10938.0, "CurrentDatasourceVersionId": 10938.0, "ForumId": 14591, "Type": 2, "CreationDate": "12/23/2017 06:12:40", "LastActivityDate": "02/01/2018", "TotalViews": 246607, "TotalDownloads": 43908, "TotalVotes": 192, "TotalKernels": 140}]
[{"Id": 1508014, "UserName": "shwetabh123", "DisplayName": "shwetabh123", "RegisterDate": "12/20/2017", "PerformanceTier": 1}]
from pycaret.utils import enable_colab enable_colab() import pandas as pd dataset = pd.read_csv("/kaggle/input/mall-customers/Mall_Customers.csv") dataset.head() dataset.shape data = dataset.sample(frac=0.95, random_state=786) data_unseen = dataset.drop(data.index) data.reset_index(drop=True, inplace=True) data_unseen.reset_index(drop=True, inplace=True) print("Data for Modeling: " + str(data.shape)) print("Unseen Data For Predictions: " + str(data_unseen.shape)) from pycaret.clustering import * exp_clu101 = setup(data, normalize=True, ignore_features=["CUST_ID"], session_id=123) kmeans = create_model("kmeans") print(kmeans) models() Agglo = create_model("hclust", num_clusters=4) print(Agglo) kmean_results = assign_model(kmeans) kmean_results.head() plot_model(kmeans)
[{"mall-customers/Mall_Customers.csv": {"column_names": "[\"CustomerID\", \"Genre\", \"Age\", \"Annual Income (k$)\", \"Spending Score (1-100)\"]", "column_data_types": "{\"CustomerID\": \"int64\", \"Genre\": \"object\", \"Age\": \"int64\", \"Annual Income (k$)\": \"int64\", \"Spending Score (1-100)\": \"int64\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 200 entries, 0 to 199\nData columns (total 5 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 CustomerID 200 non-null int64 \n 1 Genre 200 non-null object\n 2 Age 200 non-null int64 \n 3 Annual Income (k$) 200 non-null int64 \n 4 Spending Score (1-100) 200 non-null int64 \ndtypes: int64(4), object(1)\nmemory usage: 7.9+ KB\n", "summary": "{\"CustomerID\": {\"count\": 200.0, \"mean\": 100.5, \"std\": 57.879184513951124, \"min\": 1.0, \"25%\": 50.75, \"50%\": 100.5, \"75%\": 150.25, \"max\": 200.0}, \"Age\": {\"count\": 200.0, \"mean\": 38.85, \"std\": 13.96900733155888, \"min\": 18.0, \"25%\": 28.75, \"50%\": 36.0, \"75%\": 49.0, \"max\": 70.0}, \"Annual Income (k$)\": {\"count\": 200.0, \"mean\": 60.56, \"std\": 26.264721165271244, \"min\": 15.0, \"25%\": 41.5, \"50%\": 61.5, \"75%\": 78.0, \"max\": 137.0}, \"Spending Score (1-100)\": {\"count\": 200.0, \"mean\": 50.2, \"std\": 25.823521668370173, \"min\": 1.0, \"25%\": 34.75, \"50%\": 50.0, \"75%\": 73.0, \"max\": 99.0}}", "examples": "{\"CustomerID\":{\"0\":1,\"1\":2,\"2\":3,\"3\":4},\"Genre\":{\"0\":\"Male\",\"1\":\"Male\",\"2\":\"Female\",\"3\":\"Female\"},\"Age\":{\"0\":19,\"1\":21,\"2\":20,\"3\":23},\"Annual Income (k$)\":{\"0\":15,\"1\":15,\"2\":16,\"3\":16},\"Spending Score (1-100)\":{\"0\":39,\"1\":81,\"2\":6,\"3\":77}}"}}]
true
1
<start_data_description><data_path>mall-customers/Mall_Customers.csv: <column_names> ['CustomerID', 'Genre', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)'] <column_types> {'CustomerID': 'int64', 'Genre': 'object', 'Age': 'int64', 'Annual Income (k$)': 'int64', 'Spending Score (1-100)': 'int64'} <dataframe_Summary> {'CustomerID': {'count': 200.0, 'mean': 100.5, 'std': 57.879184513951124, 'min': 1.0, '25%': 50.75, '50%': 100.5, '75%': 150.25, 'max': 200.0}, 'Age': {'count': 200.0, 'mean': 38.85, 'std': 13.96900733155888, 'min': 18.0, '25%': 28.75, '50%': 36.0, '75%': 49.0, 'max': 70.0}, 'Annual Income (k$)': {'count': 200.0, 'mean': 60.56, 'std': 26.264721165271244, 'min': 15.0, '25%': 41.5, '50%': 61.5, '75%': 78.0, 'max': 137.0}, 'Spending Score (1-100)': {'count': 200.0, 'mean': 50.2, 'std': 25.823521668370173, 'min': 1.0, '25%': 34.75, '50%': 50.0, '75%': 73.0, 'max': 99.0}} <dataframe_info> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 CustomerID 200 non-null int64 1 Genre 200 non-null object 2 Age 200 non-null int64 3 Annual Income (k$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB <some_examples> {'CustomerID': {'0': 1, '1': 2, '2': 3, '3': 4}, 'Genre': {'0': 'Male', '1': 'Male', '2': 'Female', '3': 'Female'}, 'Age': {'0': 19, '1': 21, '2': 20, '3': 23}, 'Annual Income (k$)': {'0': 15, '1': 15, '2': 16, '3': 16}, 'Spending Score (1-100)': {'0': 39, '1': 81, '2': 6, '3': 77}} <end_description>
279
0
734
279
129097246
# # Convolutional Neural Networks (CNN) # Content: # import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sn sn.set(font_scale=1.4) import matplotlib.pyplot as plt from tqdm import tqdm import cv2 from sklearn.utils import shuffle import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import ReduceLROnPlateau from sklearn.metrics import confusion_matrix import os print(os.listdir("/kaggle/input/motion-planning-datasets-master/mp")) # Any results you write to the current directory are saved as output. class_names = [ "alternating_gaps", "bugtrap_forest", "forest", "gaps_and_forest", "mazes", "multiple_bugtraps", "shifting_gaps", "single_bugtrap", ] class_names_label = {class_name: i for i, class_name in enumerate(class_names)} num_classes = len(class_names) IMAGE_SIZE = (210, 210) # ## Loading the Data # * In this part I am loading the data # def load_data(): datasets = [ "/kaggle/input/motion-planning-datasets-master/mp/train", "/kaggle/input/motion-planning-datasets-master/mp/test", ] output = [] # Iterate through training and test sets for dataset in datasets: images = [] labels = [] print("Loading {}".format(dataset)) # Iterate through each folder corresponding to a category for folder in os.listdir(dataset): label = class_names_label[folder] # Iterate through each image in the folder for file in tqdm(os.listdir(os.path.join(dataset, folder))): # Get the path name of the image img_path = os.path.join(os.path.join(dataset, folder), file) # Open and resize the img img = cv2.imread(img_path) # Append the image and its corresponding label to the output images.append(img) labels.append(label) images = np.array(images, dtype="float32") labels = np.array(labels, dtype="int32") output.append((images, labels)) return output (train_images, train_labels), (test_images, test_labels) = load_data() train_images, train_labels = shuffle(train_images, train_labels, random_state=25) # ## Exploring the data # - How many training and testing examples do we have? # - What is the size of the image # - What is the proportion of each class # n_train = train_labels.shape[0] n_test = test_labels.shape[0] print("Number of training examples: {}".format(n_train)) print("Number of testing examples: {}".format(n_test)) print("Each image is of size: {}".format(IMAGE_SIZE)) _, train_counts = np.unique(train_labels, return_counts=True) _, test_counts = np.unique(test_labels, return_counts=True) pd.DataFrame({"train": train_counts, "test": test_counts}, index=class_names).plot.bar() plt.show() # ## Normalizing the Data # Scales down the pixel number from 0 to 255 to being 0 or 1. This will increase the models performance. train_images = train_images / 255.0 test_images = test_images / 255.0 # ## Visualizing the Data # Displays images from the dataset. def display_random_image(class_names, images, labels): index = np.random.randint(images.shape[0]) plt.figure() plt.imshow(images[index]) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.title("Image #{} : ".format(index) + class_names[labels[index]]) plt.show() return index display_random_image(class_names, train_images, train_labels) # Displays first 25 images from dataset for a better view. def display_examples(class_names, images, labels): fig = plt.figure(figsize=(10, 10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(class_names[labels[i]]) plt.show() display_examples(class_names, train_images, train_labels) # ## CNN # 1. Build the model # ![image.png](attachment:image.png) # - Feature detector is a 5x5 matrix # ![image-2.png](attachment:image-2.png) # - relu: turns neg numbers into 0s to make it linear # ![image-3.png](attachment:image-3.png) # - MaxPooling: reduces overfitting, 2x2 matrix # ![image-4.png](attachment:image-4.png) # - Dropout: drops a percent of input units in a layer # ![image-5.png](attachment:image-5.png) # - Flatten: makes 2D tensor 1D # ![image-6.png](attachment:image-6.png) # - Full Connection: All neurons in layer are connected to all the neurons in prev layer # ![image-7.png](attachment:image-7.png) # model = Sequential() model.add(Conv2D(32, (5, 5), activation="relu", input_shape=(201, 201, 3))) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.2)) # create NN model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(num_classes, activation="softmax")) # 2. Compile the model # We can use the parameters: # - optimizer: adam = RMSProp + Momentum # - Momentum = takes into account past gradiwnt to have a better update # - RMSProp = exponentially weighted average of the squares of past gradients # - Loss Function: I use categorical crosstropy for classification, each image belongs to only one class train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # 3. Train/fit the data to the model history = model.fit( train_images, train_labels, batch_size=200, epochs=10, validation_data=(test_images, test_labels), verbose=1, ) def plot_accuracy(history): fig = plt.figure(figsize=(10, 5)) # plot accuracy plt.plot(history.history["accuracy"], "bo--", label="accuracy") plt.plot(history.history["val_accuracy"], "ro--", label="val_accuracy") plt.title("train_acc vs val_acc") plt.ylabel("accuracy") plt.xlabel("epochs") plt.legend() plt.show() def plot_loss(history): fig = plt.figure(figsize=(10, 5)) # Plot loss function plt.plot(history.history["loss"], "bo--", label="loss") plt.plot(history.history["val_loss"], "ro--", label="val_loss") plt.title("train_loss vs val_loss") plt.ylabel("loss") plt.xlabel("epochs") plt.legend() plt.show() plot_accuracy(history) plot_loss(history) # 4. Evaluate model on the test set test_loss = model.evaluate(test_images, test_labels) print("The error is: %.2f%%" % (100 - test_loss[1] * 100)) # Testing on a Random Image predictions = model.predict(test_images) pred_labels = np.argmax(predictions, axis=1) display_random_image(class_names, test_images, pred_labels) # 5. Error Analysis # Analyze to see what images the classifier has trouble with def print_mislabeled_images(class_names, test_images, test_labels, pred_labels): bool_arr = [] i = 0 for pred in pred_labels: arr = test_labels[i] if arr[pred] == 0: bool_arr.append(False) else: bool_arr.append(True) i = i + 1 mislabeled_indices = [] i = 0 for b in bool_arr: if b == False: mislabeled_indices.append(i) i = i + 1 mislabeled_images = test_images[mislabeled_indices] mislabeled_labels = pred_labels[mislabeled_indices] title = "Some examples of mislabeled images by the classifier:" display_examples(class_names, mislabeled_images, mislabeled_labels) print_mislabeled_images(class_names, test_images, test_labels, pred_labels) tlabels = [] for test in test_labels: i = 0 for t in test: if t == 1: tlabels.append(i) i = i + 1 con_mat = confusion_matrix(tlabels, pred_labels) ax = plt.axes() sn.heatmap( con_mat, annot=True, annot_kws={"size": 10}, xticklabels=class_names, yticklabels=class_names, ax=ax, ) ax.set_title("Confusion matrix") plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097246.ipynb
null
null
[{"Id": 129097246, "ScriptId": 38375724, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13632161, "CreationDate": "05/11/2023 01:59:32", "VersionNumber": 2.0, "Title": "CNN for map planning data set", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 303.0, "LinesInsertedFromPrevious": 3.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 300.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# # Convolutional Neural Networks (CNN) # Content: # import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sn sn.set(font_scale=1.4) import matplotlib.pyplot as plt from tqdm import tqdm import cv2 from sklearn.utils import shuffle import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import ReduceLROnPlateau from sklearn.metrics import confusion_matrix import os print(os.listdir("/kaggle/input/motion-planning-datasets-master/mp")) # Any results you write to the current directory are saved as output. class_names = [ "alternating_gaps", "bugtrap_forest", "forest", "gaps_and_forest", "mazes", "multiple_bugtraps", "shifting_gaps", "single_bugtrap", ] class_names_label = {class_name: i for i, class_name in enumerate(class_names)} num_classes = len(class_names) IMAGE_SIZE = (210, 210) # ## Loading the Data # * In this part I am loading the data # def load_data(): datasets = [ "/kaggle/input/motion-planning-datasets-master/mp/train", "/kaggle/input/motion-planning-datasets-master/mp/test", ] output = [] # Iterate through training and test sets for dataset in datasets: images = [] labels = [] print("Loading {}".format(dataset)) # Iterate through each folder corresponding to a category for folder in os.listdir(dataset): label = class_names_label[folder] # Iterate through each image in the folder for file in tqdm(os.listdir(os.path.join(dataset, folder))): # Get the path name of the image img_path = os.path.join(os.path.join(dataset, folder), file) # Open and resize the img img = cv2.imread(img_path) # Append the image and its corresponding label to the output images.append(img) labels.append(label) images = np.array(images, dtype="float32") labels = np.array(labels, dtype="int32") output.append((images, labels)) return output (train_images, train_labels), (test_images, test_labels) = load_data() train_images, train_labels = shuffle(train_images, train_labels, random_state=25) # ## Exploring the data # - How many training and testing examples do we have? # - What is the size of the image # - What is the proportion of each class # n_train = train_labels.shape[0] n_test = test_labels.shape[0] print("Number of training examples: {}".format(n_train)) print("Number of testing examples: {}".format(n_test)) print("Each image is of size: {}".format(IMAGE_SIZE)) _, train_counts = np.unique(train_labels, return_counts=True) _, test_counts = np.unique(test_labels, return_counts=True) pd.DataFrame({"train": train_counts, "test": test_counts}, index=class_names).plot.bar() plt.show() # ## Normalizing the Data # Scales down the pixel number from 0 to 255 to being 0 or 1. This will increase the models performance. train_images = train_images / 255.0 test_images = test_images / 255.0 # ## Visualizing the Data # Displays images from the dataset. def display_random_image(class_names, images, labels): index = np.random.randint(images.shape[0]) plt.figure() plt.imshow(images[index]) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.title("Image #{} : ".format(index) + class_names[labels[index]]) plt.show() return index display_random_image(class_names, train_images, train_labels) # Displays first 25 images from dataset for a better view. def display_examples(class_names, images, labels): fig = plt.figure(figsize=(10, 10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(class_names[labels[i]]) plt.show() display_examples(class_names, train_images, train_labels) # ## CNN # 1. Build the model # ![image.png](attachment:image.png) # - Feature detector is a 5x5 matrix # ![image-2.png](attachment:image-2.png) # - relu: turns neg numbers into 0s to make it linear # ![image-3.png](attachment:image-3.png) # - MaxPooling: reduces overfitting, 2x2 matrix # ![image-4.png](attachment:image-4.png) # - Dropout: drops a percent of input units in a layer # ![image-5.png](attachment:image-5.png) # - Flatten: makes 2D tensor 1D # ![image-6.png](attachment:image-6.png) # - Full Connection: All neurons in layer are connected to all the neurons in prev layer # ![image-7.png](attachment:image-7.png) # model = Sequential() model.add(Conv2D(32, (5, 5), activation="relu", input_shape=(201, 201, 3))) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.2)) # create NN model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(num_classes, activation="softmax")) # 2. Compile the model # We can use the parameters: # - optimizer: adam = RMSProp + Momentum # - Momentum = takes into account past gradiwnt to have a better update # - RMSProp = exponentially weighted average of the squares of past gradients # - Loss Function: I use categorical crosstropy for classification, each image belongs to only one class train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # 3. Train/fit the data to the model history = model.fit( train_images, train_labels, batch_size=200, epochs=10, validation_data=(test_images, test_labels), verbose=1, ) def plot_accuracy(history): fig = plt.figure(figsize=(10, 5)) # plot accuracy plt.plot(history.history["accuracy"], "bo--", label="accuracy") plt.plot(history.history["val_accuracy"], "ro--", label="val_accuracy") plt.title("train_acc vs val_acc") plt.ylabel("accuracy") plt.xlabel("epochs") plt.legend() plt.show() def plot_loss(history): fig = plt.figure(figsize=(10, 5)) # Plot loss function plt.plot(history.history["loss"], "bo--", label="loss") plt.plot(history.history["val_loss"], "ro--", label="val_loss") plt.title("train_loss vs val_loss") plt.ylabel("loss") plt.xlabel("epochs") plt.legend() plt.show() plot_accuracy(history) plot_loss(history) # 4. Evaluate model on the test set test_loss = model.evaluate(test_images, test_labels) print("The error is: %.2f%%" % (100 - test_loss[1] * 100)) # Testing on a Random Image predictions = model.predict(test_images) pred_labels = np.argmax(predictions, axis=1) display_random_image(class_names, test_images, pred_labels) # 5. Error Analysis # Analyze to see what images the classifier has trouble with def print_mislabeled_images(class_names, test_images, test_labels, pred_labels): bool_arr = [] i = 0 for pred in pred_labels: arr = test_labels[i] if arr[pred] == 0: bool_arr.append(False) else: bool_arr.append(True) i = i + 1 mislabeled_indices = [] i = 0 for b in bool_arr: if b == False: mislabeled_indices.append(i) i = i + 1 mislabeled_images = test_images[mislabeled_indices] mislabeled_labels = pred_labels[mislabeled_indices] title = "Some examples of mislabeled images by the classifier:" display_examples(class_names, mislabeled_images, mislabeled_labels) print_mislabeled_images(class_names, test_images, test_labels, pred_labels) tlabels = [] for test in test_labels: i = 0 for t in test: if t == 1: tlabels.append(i) i = i + 1 con_mat = confusion_matrix(tlabels, pred_labels) ax = plt.axes() sn.heatmap( con_mat, annot=True, annot_kws={"size": 10}, xticklabels=class_names, yticklabels=class_names, ax=ax, ) ax.set_title("Confusion matrix") plt.show()
false
0
2,469
0
2,469
2,469
129097235
import random import pandas as pd def encrypt(plaintext, key): ciphertext = "" for char in plaintext: if char.isalpha(): char = char.lower() index = ord(char) - ord("a") char = key[index] ciphertext += char return ciphertext def generate_key(): alphabet = list("abcdefghijklmnopqrstuvwxyz") random.shuffle(alphabet) return "".join(alphabet) # Set the plaintext message plaintext = pd.read_fwf("/kaggle/input/text1234/text1.txt") # Remove punctuation, special characters, and spaces, and convert to lowercase plaintext = "".join(filter(str.isalpha, plaintext)).lower() # Generate a random key key = generate_key() # Encrypt the plaintext using the key ciphertext = encrypt(plaintext, key) print("Plaintext: ", plaintext) print("Key: ", key) print("Ciphertext: ", ciphertext) import numpy as np def generate_digraph_frequency_matrix(text): matrix_size = 26 digraph_counts = np.zeros((matrix_size, matrix_size), dtype=int) # Count digraph occurrences in the text for i in range(len(text) - 1): current_char = text[i] next_char = text[i + 1] if current_char.isalpha() and next_char.isalpha(): current_index = ord(current_char.lower()) - ord("a") next_index = ord(next_char.lower()) - ord("a") digraph_counts[current_index][next_index] += 1 # Add five to each element in the matrix digraph_counts += 5 # Normalize the matrix by dividing each element by its row sum row_sums = digraph_counts.sum(axis=1) matrix = digraph_counts / row_sums[:, np.newaxis] return matrix # Set the English text to generate the digraph frequency matrix text = "Your English text goes here..." # Remove punctuation, special characters, and spaces, and convert to lowercase text = "".join(filter(str.isalpha, text)).lower() # Generate the digraph frequency matrix digraph_matrix = generate_digraph_frequency_matrix(text) # Print the digraph frequency matrix print(digraph_matrix) import numpy as np def initialize_hmm(N, M): # Initialize transition matrix A A = digraph_matrix.copy() # Initialize emission matrix B B = np.random.rand(N, M) B /= B.sum(axis=1, keepdims=True) # Initialize initial state distribution pi pi = np.random.rand(N) pi /= pi.sum() # Print the trained HMM parameters return A, B, pi def forward_backward(ciphertext, A, B, pi): T = len(ciphertext) N, M = B.shape # Initialize forward and backward variables forward = np.zeros((T, N)) backward = np.zeros((T, N)) # Compute forward variables forward[0] = pi * B[:, ord(ciphertext[0].lower()) - ord("a")] for t in range(1, T): forward[t] = ( np.dot(forward[t - 1], A) * B[:, ord(ciphertext[t].lower()) - ord("a")] ) # Compute backward variables backward[-1] = 1 for t in range(T - 2, -1, -1): backward[t] = np.dot( A, B[:, ord(ciphertext[t + 1].lower()) - ord("a")] * backward[t + 1] ) # Compute the scaled forward and backward variables scale = np.sum(forward[-1]) forward /= scale backward /= scale return forward, backward def baum_welch(ciphertext, A, B, pi, num_iterations): T = len(ciphertext) N, M = B.shape for iteration in range(num_iterations): # Expectation step forward, backward = forward_backward(ciphertext, A, B, pi) xi = np.zeros((T - 1, N, N)) for t in range(T - 1): numerator = ( forward[t][:, np.newaxis] * A * B[:, ord(ciphertext[t + 1].lower()) - ord("a")].reshape((-1, 1)) * backward[t + 1] ) denominator = np.sum(np.sum(numerator, axis=0), axis=0) xi[t] = numerator / denominator gamma = forward * backward # Maximization step A = np.sum(xi, axis=0) / np.sum(gamma[:-1], axis=0)[:, np.newaxis] pi = gamma[0] for t in range(T): for j in range(M): if ciphertext[t] == chr(ord("a") + j): B[:, j] = np.sum(gamma[:, t], axis=1) / np.sum(gamma, axis=1) return A, B, pi A = digraph_matrix.copy() B = np.random.rand(N, M) B /= B.sum(axis=1, keepdims=True) pi = np.random.rand(N) pi /= pi.sum() print("Transition matrix A:") print(A) print("\nEmission matrix B:") print(B) print("\nInitial state distribution pi:") print(pi) # Set the actual key actual_key = "bcdefghijklmnopqrstuvwxyza" # Determine putative key from B matrix putative_key = [] for j in range(len(actual_key)): max_prob_index = np.argmax(B[:, j]) putative_key.append(chr(ord("a") + max_prob_index)) # Calculate fraction of matching key elements num_matching = sum( 1 for i in range(len(actual_key)) if actual_key[i] == putative_key[i] ) fraction_matching = num_matching / len(actual_key) # Print the results print("Actual Key:", actual_key) print("Putative Key:", "".join(putative_key)) print("Fraction of Matching Key Elements: {:.4f}".format(fraction_matching))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097235.ipynb
null
null
[{"Id": 129097235, "ScriptId": 38374490, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 7936144, "CreationDate": "05/11/2023 01:59:23", "VersionNumber": 1.0, "Title": "notebook1bbb3e94e3", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 170.0, "LinesInsertedFromPrevious": 170.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import random import pandas as pd def encrypt(plaintext, key): ciphertext = "" for char in plaintext: if char.isalpha(): char = char.lower() index = ord(char) - ord("a") char = key[index] ciphertext += char return ciphertext def generate_key(): alphabet = list("abcdefghijklmnopqrstuvwxyz") random.shuffle(alphabet) return "".join(alphabet) # Set the plaintext message plaintext = pd.read_fwf("/kaggle/input/text1234/text1.txt") # Remove punctuation, special characters, and spaces, and convert to lowercase plaintext = "".join(filter(str.isalpha, plaintext)).lower() # Generate a random key key = generate_key() # Encrypt the plaintext using the key ciphertext = encrypt(plaintext, key) print("Plaintext: ", plaintext) print("Key: ", key) print("Ciphertext: ", ciphertext) import numpy as np def generate_digraph_frequency_matrix(text): matrix_size = 26 digraph_counts = np.zeros((matrix_size, matrix_size), dtype=int) # Count digraph occurrences in the text for i in range(len(text) - 1): current_char = text[i] next_char = text[i + 1] if current_char.isalpha() and next_char.isalpha(): current_index = ord(current_char.lower()) - ord("a") next_index = ord(next_char.lower()) - ord("a") digraph_counts[current_index][next_index] += 1 # Add five to each element in the matrix digraph_counts += 5 # Normalize the matrix by dividing each element by its row sum row_sums = digraph_counts.sum(axis=1) matrix = digraph_counts / row_sums[:, np.newaxis] return matrix # Set the English text to generate the digraph frequency matrix text = "Your English text goes here..." # Remove punctuation, special characters, and spaces, and convert to lowercase text = "".join(filter(str.isalpha, text)).lower() # Generate the digraph frequency matrix digraph_matrix = generate_digraph_frequency_matrix(text) # Print the digraph frequency matrix print(digraph_matrix) import numpy as np def initialize_hmm(N, M): # Initialize transition matrix A A = digraph_matrix.copy() # Initialize emission matrix B B = np.random.rand(N, M) B /= B.sum(axis=1, keepdims=True) # Initialize initial state distribution pi pi = np.random.rand(N) pi /= pi.sum() # Print the trained HMM parameters return A, B, pi def forward_backward(ciphertext, A, B, pi): T = len(ciphertext) N, M = B.shape # Initialize forward and backward variables forward = np.zeros((T, N)) backward = np.zeros((T, N)) # Compute forward variables forward[0] = pi * B[:, ord(ciphertext[0].lower()) - ord("a")] for t in range(1, T): forward[t] = ( np.dot(forward[t - 1], A) * B[:, ord(ciphertext[t].lower()) - ord("a")] ) # Compute backward variables backward[-1] = 1 for t in range(T - 2, -1, -1): backward[t] = np.dot( A, B[:, ord(ciphertext[t + 1].lower()) - ord("a")] * backward[t + 1] ) # Compute the scaled forward and backward variables scale = np.sum(forward[-1]) forward /= scale backward /= scale return forward, backward def baum_welch(ciphertext, A, B, pi, num_iterations): T = len(ciphertext) N, M = B.shape for iteration in range(num_iterations): # Expectation step forward, backward = forward_backward(ciphertext, A, B, pi) xi = np.zeros((T - 1, N, N)) for t in range(T - 1): numerator = ( forward[t][:, np.newaxis] * A * B[:, ord(ciphertext[t + 1].lower()) - ord("a")].reshape((-1, 1)) * backward[t + 1] ) denominator = np.sum(np.sum(numerator, axis=0), axis=0) xi[t] = numerator / denominator gamma = forward * backward # Maximization step A = np.sum(xi, axis=0) / np.sum(gamma[:-1], axis=0)[:, np.newaxis] pi = gamma[0] for t in range(T): for j in range(M): if ciphertext[t] == chr(ord("a") + j): B[:, j] = np.sum(gamma[:, t], axis=1) / np.sum(gamma, axis=1) return A, B, pi A = digraph_matrix.copy() B = np.random.rand(N, M) B /= B.sum(axis=1, keepdims=True) pi = np.random.rand(N) pi /= pi.sum() print("Transition matrix A:") print(A) print("\nEmission matrix B:") print(B) print("\nInitial state distribution pi:") print(pi) # Set the actual key actual_key = "bcdefghijklmnopqrstuvwxyza" # Determine putative key from B matrix putative_key = [] for j in range(len(actual_key)): max_prob_index = np.argmax(B[:, j]) putative_key.append(chr(ord("a") + max_prob_index)) # Calculate fraction of matching key elements num_matching = sum( 1 for i in range(len(actual_key)) if actual_key[i] == putative_key[i] ) fraction_matching = num_matching / len(actual_key) # Print the results print("Actual Key:", actual_key) print("Putative Key:", "".join(putative_key)) print("Fraction of Matching Key Elements: {:.4f}".format(fraction_matching))
false
0
1,495
0
1,495
1,495
129097508
# ## Flight Delay Analysis # ## Introduction # ### Objective is to create a model that can classifier whether a flight will likely be delayed or not. # ##### Notes: I created this analysis initially in Databricks.¶ # ##### Data source came from: # ##### 1. https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGK&QO_fu146_anzr=b0-gvzr # ##### 2. https://ourairports.com/data/ from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import DoubleType, IntegerType, StringType spark = SparkSession.builder.appName("FlightDelayAnalysis").getOrCreate() # ## Reading and Preprocessing Data df_airports = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/airports.csv" ) df_flights = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/flights.csv" ) df_airlines = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/airlines.csv" ) df_flights.printSchema() df_flights = df_flights.join( df_airlines, df_flights.OP_UNIQUE_CARRIER == df_airlines.Code ) df_flights = df_flights.drop(df_flights.Code) display(df_airports.where(col("local_code") == "LAX").select("*")) df_airports1 = ( df_airports.drop("continent") .drop("iso_country") .drop("iso_region") .drop("gps_code") .drop("iata_code") .drop("home_link") .drop("wikipedia_link") .drop("keywords") .drop("scheduled_service") .drop("ident") .drop("id") ) df_joined_dep = ( df_flights.join(df_airports1, df_flights.ORIGIN == df_airports1.local_code, "inner") .withColumnRenamed("type", "dep_type") .withColumnRenamed("latitude_deg", "dep_lat") .withColumnRenamed("longitude_deg", "dep_lon") .withColumnRenamed("elevation_ft", "dep_elevation_ft") .withColumnRenamed("municipality", "dep_municipality") .withColumnRenamed("local_code", "dep_local_code") .withColumnRenamed("name", "dep_name") ) df_all_joined_dep_arr = ( df_joined_dep.join( df_airports1, df_joined_dep.DEST == df_airports1.local_code, "inner" ) .withColumnRenamed("type", "arr_type") .withColumnRenamed("latitude_deg", "arr_lat") .withColumnRenamed("longitude_deg", "arr_lon") .withColumnRenamed("elevation_ft", "arr_elevation_ft") .withColumnRenamed("municipality", "arr_municipality") .withColumnRenamed("local_code", "arr_local_code") .withColumnRenamed("name", "arr_name") ) df_all_joined_dep_arr = df_all_joined_dep_arr.dropna("any") df_all_add_2_cols = ( df_all.withColumn( "dep_delay_int", when(col("DEP_DELAY") <= 0, 0).when(col("DEP_DELAY") > 1, 1) ) .withColumn( "arr_delay_int", when(col("ARR_DELAY") <= 0, 0).when(col("ARR_DELAY") > 1, 1) ) .dropna() ) df_all_add_2_cols.printSchema() df_all_1 = df_all_add_2_cols.drop("DEP_DELAY").drop("ARR_DELAY") display(df_all_1) # ## Machine Learning - StringIndexer from pyspark.ml import Pipeline from pyspark.ml.feature import ( VectorAssembler, StringIndexer, VectorIndexer, MinMaxScaler, OneHotEncoder, MaxAbsScaler, ) from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier from pyspark.ml.tuning import ParamGridBuilder, CrossValidator from pyspark.ml.evaluation import ( BinaryClassificationEvaluator, MulticlassClassificationEvaluator, ) from xgboost.spark import SparkXGBClassifier pipeline_of_stringindexers = Pipeline(stages=indexers) model0 = pipeline_of_stringindexers.fit(df_all_1).transform(df_all_1) model0.printSchema() display(model0) model1 = ( model0.drop("OP_UNIQUE_CARRIER") .drop("ORIGIN") .drop("ORIGIN_STATE_NM") .drop("DEST_CITY_MARKET_ID") .drop("ORIGIN_STATE_ABR") .drop("dep_municipality") .drop("ORIGIN_CITY_NAME") .drop("ORIGIN_AIRPORT_SEQ_ID") .drop("DEST_AIRPORT_SEQ_ID") .drop("DEST_STATE_NM") .drop("DEST_STATE_NM") .drop("DEP_TIME") .drop("ARR_TIME") .drop("arr_municipality") .drop("DEST") .drop("DEST_CITY_NAME") .drop("DEST_STATE_ABRDEST_CITY_NAME") .drop("Description") .drop("DEST_STATE_ABR") .drop("dep_type") .drop("dep_name") .drop("arr_type") .drop("arr_name") .drop("dep_local_code") .drop("arr_local_code") ) model1.printSchema() display(model1) # ## Heatmap import matplotlib.pyplot as plt import seaborn as sns model1_pd = model1.toPandas() fig, ax = plt.subplots(figsize=(40, 10)) sns.heatmap(model1_pd.corr(), annot=True) feature_columns = [ "DAY_OF_WEEK", "ORIGIN_AIRPORT_ID", "DEST_AIRPORT_ID", "DISTANCE", "dep_lat", "dep_lon", "dep_elevation_ft", "arr_lat", "arr_lon", "arr_elevation_ft", "_OHE_OP_UNIQUE_CARRIER", "_OHE_OP_DEST", "_OHE_OP_ORIGIN", "_OHE_ORIGIN_CITY_NAME", "_OHE_DEST_CITY_NAME", "_OHE_DEST_STATE_ABR", "_OHE_description", "_OHE_dep_type", "_OHE_dep_name", "_OHE_arr_type", "_OHE_arr_name", ] # op1: without using pipeline # VectorAssembler: to add all the features into a single column # assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") # model2 = assembler.transform(model1) # op2: using pipeline but MinMaxScaler not really working # vectAssembler = VectorAssembler(inputCols=feature_columns, outputCol="features") # minMax = MinMaxScaler(inputCol="features", outputCol="normFeatures") # pipeline = Pipeline(stages=[vectAssembler, minMax]) # model2 = pipeline.fit(model1).transform(model1) # op3: using pipeline but MinMaxScaler not really working vectAssembler = VectorAssembler(inputCols=feature_columns, outputCol="features") minMax = MinMaxScaler(inputCol="features", outputCol="normfeatures") pipeline = Pipeline(stages=[vectAssembler, minMax]) model1_1 = pipeline.fit(model1).transform(model1) finalized_data = model1_1.select("normfeatures", "dep_delay_int") display(finalized_data) # split data into train and test train_data, test_data = finalized_data.randomSplit([0.8, 0.2], seed=42) # ## 1st Set: ML Algorithms - MinMaxScaler # ## 1st Set: Logistic Regression # create LogisticRegression model then fit it to training data train_data_lr = train_data test_data_lr = test_data lr = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures") lr_model = lr.fit(train_data_lr) # ## 1st Set: Decision Tree Classifier # create DecisionTreeClassifier model then fit it to training data train_data_dtc = train_data test_data_dtc = test_data dtc = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures") dtc_model = dtc.fit(train_data_dtc) # ## 1st Set: XGBoost # create XGBoost model then fit it to training data train_data_xgb = train_data test_data_xgb = test_data xgb = SparkXGBClassifier( features_col="normfeatures", label_col="dep_delay_int", num_workers=2 ) xgb_model = xgb.fit(train_data_xgb) # Evaluations # Eval-Logistric Regression predictions_df_lr = lr_model.transform(train_data_lr) predictions_df_lr = ( predictions_df_lr.withColumnRenamed("prediction", "prediction_lr") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr") .withColumnRenamed("rawPrediction", "rawPrediction_lr") .withColumnRenamed("probability", "probability_lr") ) predictions_df_lr.select( "rawPrediction_lr", "probability_lr", "prediction_lr", "dep_delay_int_lr" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr = float(predictions_df_lr.filter("prediction_lr == 1.0 AND dep_delay_int_lr == 1").count()) # fp_lr = float(predictions_df_lr.filter("prediction_lr == 1.0 AND dep_delay_int_lr == 0").count()) # tn_lr = float(predictions_df_lr.filter("prediction_lr == 0.0 AND dep_delay_int_lr == 0").count()) # fn_lr = float(predictions_df_lr.filter("prediction_lr == 0.0 AND dep_delay_int_lr == 1").count()) # pr_lr = tp_lr / (tp_lr + fp_lr) # re_lr = tp_lr / (tp_lr + fn_lr) # metrics = spark.createDataFrame([ # ("TP", tp_lr), # ("FP", fp_lr), # ("TN", tn_lr), # ("FN", fn_lr), # ("Precision", pr_lr), # ("Recall", re_lr), # ("myAccuracy", (tp_lr+tn_lr)/(tp_lr+fp_lr+tn_lr+fn_lr)), # ("F1", 2*pr_lr*re_lr/(re_lr+pr_lr))],["metric_for_lr1", "value"]) # metrics.show() evaluator_lr_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="accuracy" ) lr_accuracy = evaluator_lr_mc_acc.evaluate(predictions_df_lr) evaluator_lr_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="precisionByLabel", ) lr_precision = evaluator_lr_mc_precision.evaluate(predictions_df_lr) evaluator_lr_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="recallByLabel", ) lr_recall = evaluator_lr_mc_recall.evaluate(predictions_df_lr) evaluator_lr_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="f1" ) lr_f1 = evaluator_lr_mc_f1.evaluate(predictions_df_lr) # area under ROC evaluator_lr_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr", rawPredictionCol="prediction_lr", metricName="areaUnderROC", ) lr_areaUnderROC = evaluator_lr_bc.evaluate(predictions_df_lr) # Eval-Decision Tree Classifier predictions_df_dtc = dtc_model.transform(train_data_dtc) predictions_df_dtc = ( predictions_df_dtc.withColumnRenamed("prediction", "prediction_dtc") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc") .withColumnRenamed("rawPrediction", "rawPrediction_dtc") .withColumnRenamed("probability", "probability_dtc") ) predictions_df_dtc.select( "rawPrediction_dtc", "probability_dtc", "prediction_dtc", "dep_delay_int_dtc" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc = float(predictions_df_dtc.filter("prediction_dtc == 1.0 AND dep_delay_int_dtc == 1").count()) # fp_dtc = float(predictions_df_dtc.filter("prediction_dtc == 1.0 AND dep_delay_int_dtc == 0").count()) # tn_dtc = float(predictions_df_dtc.filter("prediction_dtc == 0.0 AND dep_delay_int_dtc == 0").count()) # fn_dtc = float(predictions_df_dtc.filter("prediction_dtc == 0.0 AND dep_delay_int_dtc == 1").count()) # pr_dtc = tp_dtc / (tp_dtc + fp_dtc) # re_dtc = tp_dtc / (tp_dtc + fn_dtc) # metrics = spark.createDataFrame([ # ("TP", tp_dtc), # ("FP", fp_dtc), # ("TN", tn_dtc), # ("FN", fn_dtc), # ("Precision", pr_dtc), # ("Recall", re_dtc), # ("myAccuracy", (tp_dtc+tn_dtc)/(tp_dtc+fp_dtc+tn_dtc+fn_dtc)), # ("F1", 2*pr_dtc*re_dtc/(re_dtc+pr_dtc))],["metric_for_dtc1", "value"]) # metrics.show() evaluator_dtc_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="accuracy" ) dtc_accuracy = evaluator_dtc_mc_acc.evaluate(predictions_df_dtc) evaluator_dtc_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="precisionByLabel", ) dtc_precision = evaluator_dtc_mc_precision.evaluate(predictions_df_dtc) evaluator_dtc_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="recallByLabel", ) dtc_recall = evaluator_dtc_mc_recall.evaluate(predictions_df_dtc) evaluator_dtc_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="f1" ) dtc_f1 = evaluator_dtc_mc_f1.evaluate(predictions_df_dtc) # area under ROC evaluator_dtc_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc", rawPredictionCol="prediction_dtc", metricName="areaUnderROC", ) dtc_areaUnderROC = evaluator_dtc_bc.evaluate(predictions_df_dtc) # Eval-XGBoost Classifier predictions_df_xgb = xgb_model.transform(train_data_xgb) predictions_df_xgb = ( predictions_df_xgb.withColumnRenamed("prediction", "prediction_xgb") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb") .withColumnRenamed("rawPrediction", "rawPrediction_xgb") .withColumnRenamed("probability", "probability_xgb") ) predictions_df_xgb.select( "rawPrediction_xgb", "probability_xgb", "prediction_xgb", "dep_delay_int_xgb" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb = float(predictions_df_xgb.filter("prediction_xgb == 1.0 AND dep_delay_int_xgb == 1").count()) # fp_xgb = float(predictions_df_xgb.filter("prediction_xgb == 1.0 AND dep_delay_int_xgb == 0").count()) # tn_xgb = float(predictions_df_xgb.filter("prediction_xgb == 0.0 AND dep_delay_int_xgb == 0").count()) # fn_xgb = float(predictions_df_xgb.filter("prediction_xgb == 0.0 AND dep_delay_int_xgb == 1").count()) # pr_xgb = tp_xgb / (tp_xgb + fp_xgb) # re_xgb = tp_xgb / (tp_xgb + fn_xgb) # metrics = spark.createDataFrame([ # ("TP", tp_xgb), # ("FP", fp_xgb), # ("TN", tn_xgb), # ("FN", fn_xgb), # ("Precision", pr_xgb), # ("Recall", re_xgb), # ("myAccuracy", (tp_xgb+tn_xgb)/(tp_xgb+fp_xgb+tn_xgb+fn_xgb)), # ("F1", 2*pr_xgb*re_xgb/(re_xgb+pr_xgb))],["metric_for_xgb1", "value"]) # metrics.show() evaluator_xgb_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="accuracy" ) xgb_accuracy = evaluator_xgb_mc_acc.evaluate(predictions_df_xgb) evaluator_xgb_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="precisionByLabel", ) xgb_precision = evaluator_xgb_mc_precision.evaluate(predictions_df_xgb) evaluator_xgb_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="recallByLabel", ) xgb_recall = evaluator_xgb_mc_recall.evaluate(predictions_df_xgb) evaluator_xgb_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="f1" ) xgb_f1 = evaluator_xgb_mc_f1.evaluate(predictions_df_xgb) # area under ROC evaluator_xgb_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb", rawPredictionCol="prediction_xgb", metricName="areaUnderROC", ) xgb_areaUnderROC = evaluator_xgb_bc.evaluate(predictions_df_xgb) # ## 1st Set: Metrics print(f"LR1 Accuracy: {lr_accuracy}") print(f"LR1 Precision: {lr_precision}") print(f"LR1 Recall: {lr_recall}") print(f"LR1 F1: {lr_f1}") print(f"LR1 AreaUnderROC: {lr_areaUnderROC}") print(f"DTC1 Accuracy: {dtc_accuracy}") print(f"DTC1 Precision: {dtc_precision}") print(f"DTC1 Recall: {dtc_recall}") print(f"DTC1 F1: {dtc_f1}") print(f"DTC1 AreaUnderROC: {dtc_areaUnderROC}") print(f"XGB1 Accuracy: {xgb_accuracy}") print(f"XGB1 Precision: {xgb_precision}") print(f"XGB1 Recall: {xgb_recall}") print(f"XGB1 F1: {xgb_f1}") print(f"XGB1 AreaUnderROC: {xgb_areaUnderROC}") # ## 2nd Set: ML Algorithms - Added OneHotEncoder display(model1) from pyspark.ml.feature import OneHotEncoder model2 = model1 model2_pd = model2.toPandas() display(model2_pd) # onehotencoder for _OHE_OP_UNIQUE_CARRIER column encoder = OneHotEncoder(inputCol="_OHE_OP_UNIQUE_CARRIER", outputCol="carrier_onehot") encoded_df = encoder.fit(model2).transform(model2) display(encoded_df) from pyspark.ml.functions import vector_to_array df_col_onehot = encoded_df.select( "*", vector_to_array("carrier_onehot").alias("col_onehot") ) display(df_col_onehot) num_categories = len(df_col_onehot.first()["col_onehot"]) # 3 display(df_col_onehot.first()) num_categories = len(df_col_onehot.first()["col_onehot"]) # 3 cols_expanded = [(col("col_onehot")[i]) for i in range(num_categories)] df_cols_onehot2 = df_col_onehot.select("*", *cols_expanded) display(df_cols_onehot2) # onehotencoder for day_of_week encoder_dayofweek = OneHotEncoder( inputCol="DAY_OF_WEEK", outputCol="day_of_week_onehot" ) encoded_df_dayofweek = encoder_dayofweek.fit(df_cols_onehot2).transform(df_cols_onehot2) df_col_onehot_dayofweek = encoded_df_dayofweek.select( "*", vector_to_array("day_of_week_onehot").alias("col_onehot_day_of_week") ) num_categories_dayofweek = len( df_col_onehot_dayofweek.first()["col_onehot_day_of_week"] ) # 3 cols_expanded_dayofweek = [ (col("col_onehot_day_of_week")[i]) for i in range(num_categories_dayofweek) ] df_cols_onehot_day_of_week = df_col_onehot_dayofweek.select( "*", *cols_expanded_dayofweek ) display(df_cols_onehot_day_of_week) vectAssembler2 = VectorAssembler(inputCols=feature_columns2, outputCol="features2") minMax2 = MinMaxScaler(inputCol="features2", outputCol="normfeatures2") pipeline2 = Pipeline(stages=[vectAssembler2, minMax2]) model2 = pipeline2.fit(df_cols_onehot_day_of_week).transform(df_cols_onehot_day_of_week) display(model2) finalized_data2 = model2.select( "carrier_onehot", "day_of_week_onehot", "normfeatures2", "dep_delay_int" ) display(finalized_data2) train_data2, test_data2 = finalized_data2.randomSplit([0.8, 0.2], seed=42) # ## 2nd Set: Logistic Regression train_data_lr2 = train_data2 test_data_lr2 = test_data2 lr2 = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures2") lr2_model = lr2.fit(train_data_lr2) predictions_df_lr2 = lr2_model.transform(train_data_lr2) predictions_df_lr2 = ( predictions_df_lr2.withColumnRenamed("prediction", "prediction_lr2") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr2") .withColumnRenamed("rawPrediction", "rawPrediction_lr2") .withColumnRenamed("probability", "probability_lr2") ) predictions_df_lr2.select( "rawPrediction_lr2", "probability_lr2", "prediction_lr2", "dep_delay_int_lr2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 1.0 AND dep_delay_int_lr2 == 1").count()) # fp_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 1.0 AND dep_delay_int_lr2 == 0").count()) # tn_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 0.0 AND dep_delay_int_lr2 == 0").count()) # fn_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 0.0 AND dep_delay_int_lr2 == 1").count()) # pr_lr2 = tp_lr2 / (tp_lr2 + fp_lr2) # re_lr2 = tp_lr2 / (tp_lr2 + fn_lr2) # metrics = spark.createDataFrame([ # ("TP", tp_lr2), # ("FP", fp_lr2), # ("TN", tn_lr2), # ("FN", fn_lr2), # ("Precision", pr_lr2), # ("Recall", re_lr2), # ("myAccuracy", (tp_lr2+tn_lr2)/(tp_lr2+fp_lr2+tn_lr2+fn_lr2)), # ("F1", 2*pr_lr2*re_lr2/(re_lr2+pr_lr2))],["metric_for_lr2", "value"]) # metrics.show() evaluator_lr2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="accuracy" ) lr2_accuracy = evaluator_lr2_mc_acc.evaluate(predictions_df_lr2) evaluator_lr2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="precisionByLabel", ) lr2_precision = evaluator_lr2_mc_precision.evaluate(predictions_df_lr2) evaluator_lr2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="recallByLabel", ) lr2_recall = evaluator_lr2_mc_recall.evaluate(predictions_df_lr2) evaluator_lr2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="f1" ) lr2_f1 = evaluator_lr2_mc_f1.evaluate(predictions_df_lr2) # area under ROC evaluator_lr2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr2", rawPredictionCol="prediction_lr2", metricName="areaUnderROC", ) lr2_areaUnderROC = evaluator_lr2_bc.evaluate(predictions_df_lr2) # ## 2nd Set: Decision Tree Classifier # create DecisionTreeClassifier model then fit it to training data train_data_dtc2 = train_data2 test_data_dtc2 = test_data2 dtc2 = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures2") dtc_model2 = dtc2.fit(train_data_dtc2) predictions_df_dtc2 = dtc_model2.transform(train_data_dtc2) predictions_df_dtc2 = ( predictions_df_dtc2.withColumnRenamed("prediction", "prediction_dtc2") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc2") .withColumnRenamed("rawPrediction", "rawPrediction_dtc2") .withColumnRenamed("probability", "probability_dtc2") ) predictions_df_dtc2.select( "rawPrediction_dtc2", "probability_dtc2", "prediction_dtc2", "dep_delay_int_dtc2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 1.0 AND dep_delay_int_dtc2 == 1").count()) # fp_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 1.0 AND dep_delay_int_dtc2 == 0").count()) # tn_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 0.0 AND dep_delay_int_dtc2 == 0").count()) # fn_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 0.0 AND dep_delay_int_dtc2 == 1").count()) # pr_dtc2 = tp_dtc2 / (tp_dtc2 + fp_dtc2) # re_dtc2 = tp_dtc2 / (tp_dtc2 + fn_dtc2) # metrics = spark.createDataFrame([ # ("TP", tp_dtc2), # ("FP", fp_dtc2), # ("TN", tn_dtc2), # ("FN", fn_dtc2), # ("Precision", pr_dtc2), # ("Recall", re_dtc2), # ("myAccuracy", (tp_dtc2+tn_dtc2)/(tp_dtc2+fp_dtc2+tn_dtc2+fn_dtc2)), # ("F1", 2*pr_dtc2*re_dtc2/(re_dtc2+pr_dtc2))],["metric_for_dtc2", "value"]) # metrics.show() evaluator_dtc2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="accuracy", ) dtc2_accuracy = evaluator_dtc2_mc_acc.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="precisionByLabel", ) dtc2_precision = evaluator_dtc2_mc_precision.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="recallByLabel", ) dtc2_recall = evaluator_dtc2_mc_recall.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="f1" ) dtc2_f1 = evaluator_dtc2_mc_f1.evaluate(predictions_df_dtc2) # area under ROC evaluator_dtc2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc2", rawPredictionCol="prediction_dtc2", metricName="areaUnderROC", ) dtc2_areaUnderROC = evaluator_dtc2_bc.evaluate(predictions_df_dtc2) # ## 2nd Set: XGBoost train_data_xgb2 = train_data2 test_data_xgb2 = test_data2 from xgboost.spark import SparkXGBClassifier xgb2 = SparkXGBClassifier( features_col="normfeatures2", label_col="dep_delay_int", num_workers=2 ) xgb_model2 = xgb2.fit(train_data_xgb2) predictions_df_xgb2 = xgb_model2.transform(train_data_xgb2) predictions_df_xgb2 = ( predictions_df_xgb2.withColumnRenamed("prediction", "prediction_xgb2") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb2") .withColumnRenamed("rawPrediction", "rawPrediction_xgb2") .withColumnRenamed("probability", "probability_xgb2") ) predictions_df_xgb2.select( "rawPrediction_xgb2", "probability_xgb2", "prediction_xgb2", "dep_delay_int_xgb2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 1.0 AND dep_delay_int_xgb2 == 1").count()) # fp_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 1.0 AND dep_delay_int_xgb2 == 0").count()) # tn_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 0.0 AND dep_delay_int_xgb2 == 0").count()) # fn_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 0.0 AND dep_delay_int_xgb2 == 1").count()) # pr_xgb2 = tp_xgb2 / (tp_xgb2 + fp_xgb2) # re_xgb2 = tp_xgb2 / (tp_xgb2 + fn_xgb2) # metrics = spark.createDataFrame([ # ("TP", tp_xgb2), # ("FP", fp_xgb2), # ("TN", tn_xgb2), # ("FN", fn_xgb2), # ("Precision", pr_xgb2), # ("Recall", re_xgb2), # ("myAccuracy", (tp_xgb2+tn_xgb2)/(tp_xgb2+fp_xgb2+tn_xgb2+fn_xgb2)), # ("F1", 2*pr_xgb2*re_xgb2/(re_xgb2+pr_xgb2))],["metric_for_xgb2", "value"]) # metrics.show() evaluator_xgb2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="accuracy", ) xgb2_accuracy = evaluator_xgb2_mc_acc.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="precisionByLabel", ) xgb2_precision = evaluator_xgb2_mc_precision.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="recallByLabel", ) xgb2_recall = evaluator_xgb2_mc_recall.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="f1" ) xgb2_f1 = evaluator_xgb2_mc_f1.evaluate(predictions_df_xgb2) # area under ROC evaluator_xgb2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb2", rawPredictionCol="prediction_xgb2", metricName="areaUnderROC", ) xgb2_areaUnderROC = evaluator_xgb2_bc.evaluate(predictions_df_xgb2) # ## 2nd Set: Metrics print(f"LR2 Accuracy: {lr2_accuracy}") print(f"LR2 Precision: {lr2_precision}") print(f"LR2 Recall: {lr2_recall}") print(f"LR2 F1: {lr2_f1}") print(f"LR2 AreaUnderROC: {lr2_areaUnderROC}") print(f"DTC2 Accuracy: {dtc2_accuracy}") print(f"DTC2 Precision: {dtc2_precision}") print(f"DTC2 Recall: {dtc2_recall}") print(f"DTC2 F1: {dtc2_f1}") print(f"DTC2 AreaUnderROC: {dtc2_areaUnderROC}") print(f"XGB2 Accuracy: {xgb2_accuracy}") print(f"XGB2 Precision: {xgb2_precision}") print(f"XGB2 Recall: {xgb2_recall}") print(f"XGB2 F1: {xgb2_f1}") print(f"XGB2 AreaUnderROC: {xgb2_areaUnderROC}") # ## 3rd Set: ML Algorithms - Switched to MaxAbsScaler df_v3 = df_cols_onehot_day_of_week vectAssembler3 = VectorAssembler(inputCols=feature_columns3, outputCol="features3") maxAbs = MaxAbsScaler(inputCol="features3", outputCol="normfeatures3") pipeline3 = Pipeline(stages=[vectAssembler3, maxAbs]) model3 = pipeline3.fit(df_v3).transform(df_v3) finalized_data3 = model3.select("normfeatures3", "dep_delay_int") display(finalized_data3) train_data3, test_data3 = finalized_data3.randomSplit([0.8, 0.2], seed=42) # ## 3rd Set: Logistic Regression train_data_lr3 = train_data3 test_data_lr3 = test_data3 lr3 = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures3") lr3_model = lr3.fit(train_data_lr3) predictions_df_lr3 = lr3_model.transform(train_data_lr3) predictions_df_lr3 = ( predictions_df_lr3.withColumnRenamed("prediction", "prediction_lr3") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr3") .withColumnRenamed("rawPrediction", "rawPrediction_lr3") .withColumnRenamed("probability", "probability_lr3") ) predictions_df_lr3.select( "rawPrediction_lr3", "probability_lr3", "prediction_lr3", "dep_delay_int_lr3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 1.0 AND dep_delay_int_lr3 == 1").count()) # fp_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 1.0 AND dep_delay_int_lr3 == 0").count()) # tn_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 0.0 AND dep_delay_int_lr3 == 0").count()) # fn_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 0.0 AND dep_delay_int_lr3 == 1").count()) # pr_lr3 = tp_lr3 / (tp_lr3 + fp_lr3) # re_lr3 = tp_lr3 / (tp_lr3 + fn_lr3) # metrics = spark.createDataFrame([ # ("TP", tp_lr3), # ("FP", fp_lr3), # ("TN", tn_lr3), # ("FN", fn_lr3), # ("Precision", pr_lr3), # ("Recall", re_lr3), # ("myAccuracy", (tp_lr3+tn_lr3)/(tp_lr3+fp_lr3+tn_lr3+fn_lr3)), # ("F1", 2*pr_lr3*re_lr3/(re_lr3+pr_lr3))],["metric_for_lr3", "value"]) # metrics.show() evaluator_lr3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="accuracy" ) lr3_accuracy = evaluator_lr3_mc_acc.evaluate(predictions_df_lr3) evaluator_lr3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="precisionByLabel", ) lr3_precision = evaluator_lr3_mc_precision.evaluate(predictions_df_lr3) evaluator_lr3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="recallByLabel", ) lr3_recall = evaluator_lr3_mc_recall.evaluate(predictions_df_lr3) evaluator_lr3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="f1" ) lr3_f1 = evaluator_lr3_mc_f1.evaluate(predictions_df_lr3) # area under ROC evaluator_lr3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr3", rawPredictionCol="prediction_lr3", metricName="areaUnderROC", ) lr3_areaUnderROC = evaluator_lr3_bc.evaluate(predictions_df_lr3) # ## 3rd Set: Decision Tree Classifier train_data_dtc3 = train_data3 test_data_dtc3 = test_data3 dtc3 = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures3") dtc_model3 = dtc3.fit(train_data_dtc3) predictions_df_dtc3 = dtc_model3.transform(train_data_dtc3) predictions_df_dtc3 = ( predictions_df_dtc3.withColumnRenamed("prediction", "prediction_dtc3") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc3") .withColumnRenamed("rawPrediction", "rawPrediction_dtc3") .withColumnRenamed("probability", "probability_dtc3") ) predictions_df_dtc3.select( "rawPrediction_dtc3", "probability_dtc3", "prediction_dtc3", "dep_delay_int_dtc3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 1.0 AND dep_delay_int_dtc3 == 1").count()) # fp_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 1.0 AND dep_delay_int_dtc3 == 0").count()) # tn_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 0.0 AND dep_delay_int_dtc3 == 0").count()) # fn_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 0.0 AND dep_delay_int_dtc3 == 1").count()) # pr_dtc3 = tp_dtc3 / (tp_dtc3 + fp_dtc3) # re_dtc3 = tp_dtc3 / (tp_dtc3 + fn_dtc3) # metrics = spark.createDataFrame([ # ("TP", tp_dtc3), # ("FP", fp_dtc3), # ("TN", tn_dtc3), # ("FN", fn_dtc3), # ("Precision", pr_dtc3), # ("Recall", re_dtc3), # ("myAccuracy", (tp_dtc3+tn_dtc3)/(tp_dtc3+fp_dtc3+tn_dtc3+fn_dtc3)), # ("F1", 2*pr_dtc3*re_dtc3/(re_dtc3+pr_dtc3))],["metric_for_dtc3", "value"]) # metrics.show() evaluator_dtc3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="accuracy", ) dtc3_accuracy = evaluator_dtc3_mc_acc.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="precisionByLabel", ) dtc3_precision = evaluator_dtc3_mc_precision.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="recallByLabel", ) dtc3_recall = evaluator_dtc3_mc_recall.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="f1" ) dtc3_f1 = evaluator_dtc3_mc_f1.evaluate(predictions_df_dtc3) # area under ROC evaluator_dtc3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc3", rawPredictionCol="prediction_dtc3", metricName="areaUnderROC", ) dtc3_areaUnderROC = evaluator_dtc3_bc.evaluate(predictions_df_dtc3) # ## 3rd Set: XGBoost train_data_xgb3 = train_data3 test_data_xgb3 = test_data3 from xgboost.spark import SparkXGBClassifier xgb3 = SparkXGBClassifier( features_col="normfeatures3", label_col="dep_delay_int", num_workers=2 ) xgb_model3 = xgb3.fit(train_data_xgb3) predictions_df_xgb3 = xgb_model3.transform(train_data_xgb3) predictions_df_xgb3 = ( predictions_df_xgb3.withColumnRenamed("prediction", "prediction_xgb3") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb3") .withColumnRenamed("rawPrediction", "rawPrediction_xgb3") .withColumnRenamed("probability", "probability_xgb3") ) predictions_df_xgb3.select( "rawPrediction_xgb3", "probability_xgb3", "prediction_xgb3", "dep_delay_int_xgb3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 1.0 AND dep_delay_int_xgb3 == 1").count()) # fp_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 1.0 AND dep_delay_int_xgb3 == 0").count()) # tn_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 0.0 AND dep_delay_int_xgb3 == 0").count()) # fn_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 0.0 AND dep_delay_int_xgb3 == 1").count()) # pr_xgb3 = tp_dtc3 / (tp_xgb3 + fp_xgb3) # re_xgb3 = tp_dtc3 / (tp_xgb3 + fn_xgb3) # metrics = spark.createDataFrame([ # ("TP", tp_xgb3), # ("FP", fp_xgb3), # ("TN", tn_xgb3), # ("FN", fn_xgb3), # ("Precision", pr_xgb3), # ("Recall", re_xgb3), # ("myAccuracy", (tp_xgb3+tn_xgb3)/(tp_xgb3+fp_xgb3+tn_xgb3+fn_xgb3)), # ("F1", 2*pr_xgb3*re_xgb3/(re_xgb3+pr_xgb3))],["metric_for_xgb3", "value"]) # metrics.show() evaluator_xgb3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="accuracy", ) xgb3_accuracy = evaluator_xgb3_mc_acc.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="precisionByLabel", ) xgb3_precision = evaluator_xgb3_mc_precision.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="recallByLabel", ) xgb3_recall = evaluator_xgb3_mc_recall.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="f1" ) xgb3_f1 = evaluator_xgb3_mc_f1.evaluate(predictions_df_xgb3) # area under ROC evaluator_xgb3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb3", rawPredictionCol="prediction_xgb3", metricName="areaUnderROC", ) xgb3_areaUnderROC = evaluator_xgb3_bc.evaluate(predictions_df_xgb3) # ## 3rd Set: Metrics print(f"LR3 Accuracy: {lr3_accuracy}") print(f"LR3 Precision: {lr3_precision}") print(f"LR3 Recall: {lr3_recall}") print(f"LR3 F1: {lr3_f1}") print(f"LR3 AreaUnderROC: {lr3_areaUnderROC}") print(f"DTC3 Accuracy: {dtc3_accuracy}") print(f"DTC3 Precision: {dtc3_precision}") print(f"DTC3 Recall: {dtc3_recall}") print(f"DTC3 F1: {dtc3_f1}") print(f"DTC3 AreaUnderROC: {dtc3_areaUnderROC}") print(f"XGB3 Accuracy: {xgb3_accuracy}") print(f"XGB3 Precision: {xgb3_precision}") print(f"XGB3 Recall: {xgb3_recall}") print(f"XGB3 F1: {xgb3_f1}") print(f"XGB3 AreaUnderROC: {xgb3_areaUnderROC}") # ## Analysis Comparing Metrics # ##### 3 sets of Logistic Regression, Decision Tree, and XGBoost were ran. # ##### The first set used StringIndexer, VectAssembler, and MinMaxScaler. # ##### The second set used StringIndexer, OneHotEncoder, VectAssembler, and MinMaxScaler. # ##### The third set used StringIndexer, OneHotEncoder, VectAssembler, and MaxAbsScaler. # ##### Based on the metrics above, the second set performed the best and within that set, XGBoost performed the best. Accuracy: 0.6685, Precision: 0.6799, Recall: 0.8955, F1: 0.6297, and Area Under ROC: 0.5885. The scores could be better. This means that the features in this dataset are not sufficient enough in teaching the network how to predict whether or not a flight would be delayed. Additional features such as weather conditions would be beneficial to have as features and should help increase those scores. # ## Feature Importance print(feature_columns2) xgb_model2.get_booster().feature_names = feature_columns2 important_features = xgb_model2.get_booster().get_score(importance_type="gain") display(important_features) i_f_sorted = { k: v for k, v in sorted( important_features.items(), key=lambda item: item[1], reverse=True ) } print(i_f_sorted) import pandas as pd i_f_df = pd.DataFrame( {"Features": i_f_sorted.keys(), "Importance": i_f_sorted.values()} ) display(i_f_df) import matplotlib.pyplot as plt plt.figure(figsize=(20, 15)) plt.barh(i_f_df.Features, i_f_df.Importance) plt.xlabel("Importance") plt.ylabel("Feature") plt.legend(["Score"]) plt.title("Feature Importance") plt.tight_layout plt.show() # ## Analysis # ##### The feature with the most impact in helping to predict whether or not a flight would be delayed is the airline carrier (represented as col_onehot[n], with n representing a specific airline carrier). Based on the plot, the top four highest features are all related to airline carriers. This is followed by the departure name, meaning certain departing airports are more prone to have delays. This is probably related to how busy and how much traffic that airport typically has. The next feature of highest significance would be col_onehot_day_of_week[3], which represents Wednesday, followed by Saturday. # predictions_df_xgb2_test = xgb_model2.transform(test_data_xgb2) predictions_df_xgb2_test_columns_renamed = ( predictions_df_xgb2_test.withColumnRenamed("prediction", "prediction_xgb2_test") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb2_test") .withColumnRenamed("rawPrediction", "rawPrediction_xgb2_test") .withColumnRenamed("probability", "probability_xgb2_test") ) predictions_df_xgb2_test_columns_renamed.select( "rawPrediction_xgb2_test", "probability_xgb2_test", "prediction_xgb2_test", "dep_delay_int_xgb2_test", ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 1.0 AND dep_delay_int_xgb2_test == 1").count()) # fp_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 1.0 AND dep_delay_int_xgb2_test == 0").count()) # tn_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 0.0 AND dep_delay_int_xgb2_test == 0").count()) # fn_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 0.0 AND dep_delay_int_xgb2_test == 1").count()) # pr_xgb2_test = tp_xgb2_test / (tp_xgb2_test + fp_xgb2_test) # re_xgb2_test = tp_xgb2_test / (tp_xgb2_test + fn_xgb2_test) # metrics = spark.createDataFrame([ # ("TP", tp_xgb2_test), # ("FP", fp_xgb2_test), # ("TN", tn_xgb2_test), # ("FN", fn_xgb2_test), # ("Precision", pr_xgb2_test), # ("Recall", re_xgb2_test), # ("myAccuracy", (tp_xgb2_test+tn_xgb2_test)/(tp_xgb2_test+fp_xgb2_test+tn_xgb2_test+fn_xgb2_test)), # ("F1", 2*pr_xgb2_test*re_xgb2_test/(re_xgb2_test+pr_xgb2_test))],["metric", "value"]) # metrics.show() evaluator_xgbtest_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="accuracy", ) xgbtest_accuracy = evaluator_xgbtest_mc_acc.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Accuracy: {xgbtest_accuracy}") evaluator_xgbtest_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="precisionByLabel", ) xgbtest_precision = evaluator_xgbtest_mc_precision.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Precision: {xgbtest_precision}") evaluator_xgbtest_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="recallByLabel", ) xgbtest_recall = evaluator_xgbtest_mc_recall.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Recall: {xgbtest_recall}") evaluator_xgbtest_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="f1", ) xgbtest_f1 = evaluator_xgbtest_mc_f1.evaluate(predictions_df_xgb2_test_columns_renamed) print(f"XGBTest F1: {xgbtest_f1}") # area under ROC evaluator_xgbtest_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", rawPredictionCol="prediction_xgb2_test", metricName="areaUnderROC", ) xgbtest_areaUnderROC = evaluator_xgbtest_bc.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest AreaUnderROC: {xgbtest_areaUnderROC}")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097508.ipynb
null
null
[{"Id": 129097508, "ScriptId": 38372163, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8831419, "CreationDate": "05/11/2023 02:03:51", "VersionNumber": 2.0, "Title": "FlightDelay-Analysis", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 757.0, "LinesInsertedFromPrevious": 63.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 694.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# ## Flight Delay Analysis # ## Introduction # ### Objective is to create a model that can classifier whether a flight will likely be delayed or not. # ##### Notes: I created this analysis initially in Databricks.¶ # ##### Data source came from: # ##### 1. https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGK&QO_fu146_anzr=b0-gvzr # ##### 2. https://ourairports.com/data/ from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import DoubleType, IntegerType, StringType spark = SparkSession.builder.appName("FlightDelayAnalysis").getOrCreate() # ## Reading and Preprocessing Data df_airports = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/airports.csv" ) df_flights = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/flights.csv" ) df_airlines = spark.read.options(header="true").csv( "/kaggle/input/flightdelay-data/airlines.csv" ) df_flights.printSchema() df_flights = df_flights.join( df_airlines, df_flights.OP_UNIQUE_CARRIER == df_airlines.Code ) df_flights = df_flights.drop(df_flights.Code) display(df_airports.where(col("local_code") == "LAX").select("*")) df_airports1 = ( df_airports.drop("continent") .drop("iso_country") .drop("iso_region") .drop("gps_code") .drop("iata_code") .drop("home_link") .drop("wikipedia_link") .drop("keywords") .drop("scheduled_service") .drop("ident") .drop("id") ) df_joined_dep = ( df_flights.join(df_airports1, df_flights.ORIGIN == df_airports1.local_code, "inner") .withColumnRenamed("type", "dep_type") .withColumnRenamed("latitude_deg", "dep_lat") .withColumnRenamed("longitude_deg", "dep_lon") .withColumnRenamed("elevation_ft", "dep_elevation_ft") .withColumnRenamed("municipality", "dep_municipality") .withColumnRenamed("local_code", "dep_local_code") .withColumnRenamed("name", "dep_name") ) df_all_joined_dep_arr = ( df_joined_dep.join( df_airports1, df_joined_dep.DEST == df_airports1.local_code, "inner" ) .withColumnRenamed("type", "arr_type") .withColumnRenamed("latitude_deg", "arr_lat") .withColumnRenamed("longitude_deg", "arr_lon") .withColumnRenamed("elevation_ft", "arr_elevation_ft") .withColumnRenamed("municipality", "arr_municipality") .withColumnRenamed("local_code", "arr_local_code") .withColumnRenamed("name", "arr_name") ) df_all_joined_dep_arr = df_all_joined_dep_arr.dropna("any") df_all_add_2_cols = ( df_all.withColumn( "dep_delay_int", when(col("DEP_DELAY") <= 0, 0).when(col("DEP_DELAY") > 1, 1) ) .withColumn( "arr_delay_int", when(col("ARR_DELAY") <= 0, 0).when(col("ARR_DELAY") > 1, 1) ) .dropna() ) df_all_add_2_cols.printSchema() df_all_1 = df_all_add_2_cols.drop("DEP_DELAY").drop("ARR_DELAY") display(df_all_1) # ## Machine Learning - StringIndexer from pyspark.ml import Pipeline from pyspark.ml.feature import ( VectorAssembler, StringIndexer, VectorIndexer, MinMaxScaler, OneHotEncoder, MaxAbsScaler, ) from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier from pyspark.ml.tuning import ParamGridBuilder, CrossValidator from pyspark.ml.evaluation import ( BinaryClassificationEvaluator, MulticlassClassificationEvaluator, ) from xgboost.spark import SparkXGBClassifier pipeline_of_stringindexers = Pipeline(stages=indexers) model0 = pipeline_of_stringindexers.fit(df_all_1).transform(df_all_1) model0.printSchema() display(model0) model1 = ( model0.drop("OP_UNIQUE_CARRIER") .drop("ORIGIN") .drop("ORIGIN_STATE_NM") .drop("DEST_CITY_MARKET_ID") .drop("ORIGIN_STATE_ABR") .drop("dep_municipality") .drop("ORIGIN_CITY_NAME") .drop("ORIGIN_AIRPORT_SEQ_ID") .drop("DEST_AIRPORT_SEQ_ID") .drop("DEST_STATE_NM") .drop("DEST_STATE_NM") .drop("DEP_TIME") .drop("ARR_TIME") .drop("arr_municipality") .drop("DEST") .drop("DEST_CITY_NAME") .drop("DEST_STATE_ABRDEST_CITY_NAME") .drop("Description") .drop("DEST_STATE_ABR") .drop("dep_type") .drop("dep_name") .drop("arr_type") .drop("arr_name") .drop("dep_local_code") .drop("arr_local_code") ) model1.printSchema() display(model1) # ## Heatmap import matplotlib.pyplot as plt import seaborn as sns model1_pd = model1.toPandas() fig, ax = plt.subplots(figsize=(40, 10)) sns.heatmap(model1_pd.corr(), annot=True) feature_columns = [ "DAY_OF_WEEK", "ORIGIN_AIRPORT_ID", "DEST_AIRPORT_ID", "DISTANCE", "dep_lat", "dep_lon", "dep_elevation_ft", "arr_lat", "arr_lon", "arr_elevation_ft", "_OHE_OP_UNIQUE_CARRIER", "_OHE_OP_DEST", "_OHE_OP_ORIGIN", "_OHE_ORIGIN_CITY_NAME", "_OHE_DEST_CITY_NAME", "_OHE_DEST_STATE_ABR", "_OHE_description", "_OHE_dep_type", "_OHE_dep_name", "_OHE_arr_type", "_OHE_arr_name", ] # op1: without using pipeline # VectorAssembler: to add all the features into a single column # assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") # model2 = assembler.transform(model1) # op2: using pipeline but MinMaxScaler not really working # vectAssembler = VectorAssembler(inputCols=feature_columns, outputCol="features") # minMax = MinMaxScaler(inputCol="features", outputCol="normFeatures") # pipeline = Pipeline(stages=[vectAssembler, minMax]) # model2 = pipeline.fit(model1).transform(model1) # op3: using pipeline but MinMaxScaler not really working vectAssembler = VectorAssembler(inputCols=feature_columns, outputCol="features") minMax = MinMaxScaler(inputCol="features", outputCol="normfeatures") pipeline = Pipeline(stages=[vectAssembler, minMax]) model1_1 = pipeline.fit(model1).transform(model1) finalized_data = model1_1.select("normfeatures", "dep_delay_int") display(finalized_data) # split data into train and test train_data, test_data = finalized_data.randomSplit([0.8, 0.2], seed=42) # ## 1st Set: ML Algorithms - MinMaxScaler # ## 1st Set: Logistic Regression # create LogisticRegression model then fit it to training data train_data_lr = train_data test_data_lr = test_data lr = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures") lr_model = lr.fit(train_data_lr) # ## 1st Set: Decision Tree Classifier # create DecisionTreeClassifier model then fit it to training data train_data_dtc = train_data test_data_dtc = test_data dtc = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures") dtc_model = dtc.fit(train_data_dtc) # ## 1st Set: XGBoost # create XGBoost model then fit it to training data train_data_xgb = train_data test_data_xgb = test_data xgb = SparkXGBClassifier( features_col="normfeatures", label_col="dep_delay_int", num_workers=2 ) xgb_model = xgb.fit(train_data_xgb) # Evaluations # Eval-Logistric Regression predictions_df_lr = lr_model.transform(train_data_lr) predictions_df_lr = ( predictions_df_lr.withColumnRenamed("prediction", "prediction_lr") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr") .withColumnRenamed("rawPrediction", "rawPrediction_lr") .withColumnRenamed("probability", "probability_lr") ) predictions_df_lr.select( "rawPrediction_lr", "probability_lr", "prediction_lr", "dep_delay_int_lr" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr = float(predictions_df_lr.filter("prediction_lr == 1.0 AND dep_delay_int_lr == 1").count()) # fp_lr = float(predictions_df_lr.filter("prediction_lr == 1.0 AND dep_delay_int_lr == 0").count()) # tn_lr = float(predictions_df_lr.filter("prediction_lr == 0.0 AND dep_delay_int_lr == 0").count()) # fn_lr = float(predictions_df_lr.filter("prediction_lr == 0.0 AND dep_delay_int_lr == 1").count()) # pr_lr = tp_lr / (tp_lr + fp_lr) # re_lr = tp_lr / (tp_lr + fn_lr) # metrics = spark.createDataFrame([ # ("TP", tp_lr), # ("FP", fp_lr), # ("TN", tn_lr), # ("FN", fn_lr), # ("Precision", pr_lr), # ("Recall", re_lr), # ("myAccuracy", (tp_lr+tn_lr)/(tp_lr+fp_lr+tn_lr+fn_lr)), # ("F1", 2*pr_lr*re_lr/(re_lr+pr_lr))],["metric_for_lr1", "value"]) # metrics.show() evaluator_lr_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="accuracy" ) lr_accuracy = evaluator_lr_mc_acc.evaluate(predictions_df_lr) evaluator_lr_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="precisionByLabel", ) lr_precision = evaluator_lr_mc_precision.evaluate(predictions_df_lr) evaluator_lr_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="recallByLabel", ) lr_recall = evaluator_lr_mc_recall.evaluate(predictions_df_lr) evaluator_lr_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr", predictionCol="prediction_lr", metricName="f1" ) lr_f1 = evaluator_lr_mc_f1.evaluate(predictions_df_lr) # area under ROC evaluator_lr_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr", rawPredictionCol="prediction_lr", metricName="areaUnderROC", ) lr_areaUnderROC = evaluator_lr_bc.evaluate(predictions_df_lr) # Eval-Decision Tree Classifier predictions_df_dtc = dtc_model.transform(train_data_dtc) predictions_df_dtc = ( predictions_df_dtc.withColumnRenamed("prediction", "prediction_dtc") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc") .withColumnRenamed("rawPrediction", "rawPrediction_dtc") .withColumnRenamed("probability", "probability_dtc") ) predictions_df_dtc.select( "rawPrediction_dtc", "probability_dtc", "prediction_dtc", "dep_delay_int_dtc" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc = float(predictions_df_dtc.filter("prediction_dtc == 1.0 AND dep_delay_int_dtc == 1").count()) # fp_dtc = float(predictions_df_dtc.filter("prediction_dtc == 1.0 AND dep_delay_int_dtc == 0").count()) # tn_dtc = float(predictions_df_dtc.filter("prediction_dtc == 0.0 AND dep_delay_int_dtc == 0").count()) # fn_dtc = float(predictions_df_dtc.filter("prediction_dtc == 0.0 AND dep_delay_int_dtc == 1").count()) # pr_dtc = tp_dtc / (tp_dtc + fp_dtc) # re_dtc = tp_dtc / (tp_dtc + fn_dtc) # metrics = spark.createDataFrame([ # ("TP", tp_dtc), # ("FP", fp_dtc), # ("TN", tn_dtc), # ("FN", fn_dtc), # ("Precision", pr_dtc), # ("Recall", re_dtc), # ("myAccuracy", (tp_dtc+tn_dtc)/(tp_dtc+fp_dtc+tn_dtc+fn_dtc)), # ("F1", 2*pr_dtc*re_dtc/(re_dtc+pr_dtc))],["metric_for_dtc1", "value"]) # metrics.show() evaluator_dtc_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="accuracy" ) dtc_accuracy = evaluator_dtc_mc_acc.evaluate(predictions_df_dtc) evaluator_dtc_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="precisionByLabel", ) dtc_precision = evaluator_dtc_mc_precision.evaluate(predictions_df_dtc) evaluator_dtc_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="recallByLabel", ) dtc_recall = evaluator_dtc_mc_recall.evaluate(predictions_df_dtc) evaluator_dtc_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc", predictionCol="prediction_dtc", metricName="f1" ) dtc_f1 = evaluator_dtc_mc_f1.evaluate(predictions_df_dtc) # area under ROC evaluator_dtc_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc", rawPredictionCol="prediction_dtc", metricName="areaUnderROC", ) dtc_areaUnderROC = evaluator_dtc_bc.evaluate(predictions_df_dtc) # Eval-XGBoost Classifier predictions_df_xgb = xgb_model.transform(train_data_xgb) predictions_df_xgb = ( predictions_df_xgb.withColumnRenamed("prediction", "prediction_xgb") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb") .withColumnRenamed("rawPrediction", "rawPrediction_xgb") .withColumnRenamed("probability", "probability_xgb") ) predictions_df_xgb.select( "rawPrediction_xgb", "probability_xgb", "prediction_xgb", "dep_delay_int_xgb" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb = float(predictions_df_xgb.filter("prediction_xgb == 1.0 AND dep_delay_int_xgb == 1").count()) # fp_xgb = float(predictions_df_xgb.filter("prediction_xgb == 1.0 AND dep_delay_int_xgb == 0").count()) # tn_xgb = float(predictions_df_xgb.filter("prediction_xgb == 0.0 AND dep_delay_int_xgb == 0").count()) # fn_xgb = float(predictions_df_xgb.filter("prediction_xgb == 0.0 AND dep_delay_int_xgb == 1").count()) # pr_xgb = tp_xgb / (tp_xgb + fp_xgb) # re_xgb = tp_xgb / (tp_xgb + fn_xgb) # metrics = spark.createDataFrame([ # ("TP", tp_xgb), # ("FP", fp_xgb), # ("TN", tn_xgb), # ("FN", fn_xgb), # ("Precision", pr_xgb), # ("Recall", re_xgb), # ("myAccuracy", (tp_xgb+tn_xgb)/(tp_xgb+fp_xgb+tn_xgb+fn_xgb)), # ("F1", 2*pr_xgb*re_xgb/(re_xgb+pr_xgb))],["metric_for_xgb1", "value"]) # metrics.show() evaluator_xgb_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="accuracy" ) xgb_accuracy = evaluator_xgb_mc_acc.evaluate(predictions_df_xgb) evaluator_xgb_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="precisionByLabel", ) xgb_precision = evaluator_xgb_mc_precision.evaluate(predictions_df_xgb) evaluator_xgb_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="recallByLabel", ) xgb_recall = evaluator_xgb_mc_recall.evaluate(predictions_df_xgb) evaluator_xgb_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb", predictionCol="prediction_xgb", metricName="f1" ) xgb_f1 = evaluator_xgb_mc_f1.evaluate(predictions_df_xgb) # area under ROC evaluator_xgb_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb", rawPredictionCol="prediction_xgb", metricName="areaUnderROC", ) xgb_areaUnderROC = evaluator_xgb_bc.evaluate(predictions_df_xgb) # ## 1st Set: Metrics print(f"LR1 Accuracy: {lr_accuracy}") print(f"LR1 Precision: {lr_precision}") print(f"LR1 Recall: {lr_recall}") print(f"LR1 F1: {lr_f1}") print(f"LR1 AreaUnderROC: {lr_areaUnderROC}") print(f"DTC1 Accuracy: {dtc_accuracy}") print(f"DTC1 Precision: {dtc_precision}") print(f"DTC1 Recall: {dtc_recall}") print(f"DTC1 F1: {dtc_f1}") print(f"DTC1 AreaUnderROC: {dtc_areaUnderROC}") print(f"XGB1 Accuracy: {xgb_accuracy}") print(f"XGB1 Precision: {xgb_precision}") print(f"XGB1 Recall: {xgb_recall}") print(f"XGB1 F1: {xgb_f1}") print(f"XGB1 AreaUnderROC: {xgb_areaUnderROC}") # ## 2nd Set: ML Algorithms - Added OneHotEncoder display(model1) from pyspark.ml.feature import OneHotEncoder model2 = model1 model2_pd = model2.toPandas() display(model2_pd) # onehotencoder for _OHE_OP_UNIQUE_CARRIER column encoder = OneHotEncoder(inputCol="_OHE_OP_UNIQUE_CARRIER", outputCol="carrier_onehot") encoded_df = encoder.fit(model2).transform(model2) display(encoded_df) from pyspark.ml.functions import vector_to_array df_col_onehot = encoded_df.select( "*", vector_to_array("carrier_onehot").alias("col_onehot") ) display(df_col_onehot) num_categories = len(df_col_onehot.first()["col_onehot"]) # 3 display(df_col_onehot.first()) num_categories = len(df_col_onehot.first()["col_onehot"]) # 3 cols_expanded = [(col("col_onehot")[i]) for i in range(num_categories)] df_cols_onehot2 = df_col_onehot.select("*", *cols_expanded) display(df_cols_onehot2) # onehotencoder for day_of_week encoder_dayofweek = OneHotEncoder( inputCol="DAY_OF_WEEK", outputCol="day_of_week_onehot" ) encoded_df_dayofweek = encoder_dayofweek.fit(df_cols_onehot2).transform(df_cols_onehot2) df_col_onehot_dayofweek = encoded_df_dayofweek.select( "*", vector_to_array("day_of_week_onehot").alias("col_onehot_day_of_week") ) num_categories_dayofweek = len( df_col_onehot_dayofweek.first()["col_onehot_day_of_week"] ) # 3 cols_expanded_dayofweek = [ (col("col_onehot_day_of_week")[i]) for i in range(num_categories_dayofweek) ] df_cols_onehot_day_of_week = df_col_onehot_dayofweek.select( "*", *cols_expanded_dayofweek ) display(df_cols_onehot_day_of_week) vectAssembler2 = VectorAssembler(inputCols=feature_columns2, outputCol="features2") minMax2 = MinMaxScaler(inputCol="features2", outputCol="normfeatures2") pipeline2 = Pipeline(stages=[vectAssembler2, minMax2]) model2 = pipeline2.fit(df_cols_onehot_day_of_week).transform(df_cols_onehot_day_of_week) display(model2) finalized_data2 = model2.select( "carrier_onehot", "day_of_week_onehot", "normfeatures2", "dep_delay_int" ) display(finalized_data2) train_data2, test_data2 = finalized_data2.randomSplit([0.8, 0.2], seed=42) # ## 2nd Set: Logistic Regression train_data_lr2 = train_data2 test_data_lr2 = test_data2 lr2 = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures2") lr2_model = lr2.fit(train_data_lr2) predictions_df_lr2 = lr2_model.transform(train_data_lr2) predictions_df_lr2 = ( predictions_df_lr2.withColumnRenamed("prediction", "prediction_lr2") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr2") .withColumnRenamed("rawPrediction", "rawPrediction_lr2") .withColumnRenamed("probability", "probability_lr2") ) predictions_df_lr2.select( "rawPrediction_lr2", "probability_lr2", "prediction_lr2", "dep_delay_int_lr2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 1.0 AND dep_delay_int_lr2 == 1").count()) # fp_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 1.0 AND dep_delay_int_lr2 == 0").count()) # tn_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 0.0 AND dep_delay_int_lr2 == 0").count()) # fn_lr2 = float(predictions_df_lr2.filter("prediction_lr2 == 0.0 AND dep_delay_int_lr2 == 1").count()) # pr_lr2 = tp_lr2 / (tp_lr2 + fp_lr2) # re_lr2 = tp_lr2 / (tp_lr2 + fn_lr2) # metrics = spark.createDataFrame([ # ("TP", tp_lr2), # ("FP", fp_lr2), # ("TN", tn_lr2), # ("FN", fn_lr2), # ("Precision", pr_lr2), # ("Recall", re_lr2), # ("myAccuracy", (tp_lr2+tn_lr2)/(tp_lr2+fp_lr2+tn_lr2+fn_lr2)), # ("F1", 2*pr_lr2*re_lr2/(re_lr2+pr_lr2))],["metric_for_lr2", "value"]) # metrics.show() evaluator_lr2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="accuracy" ) lr2_accuracy = evaluator_lr2_mc_acc.evaluate(predictions_df_lr2) evaluator_lr2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="precisionByLabel", ) lr2_precision = evaluator_lr2_mc_precision.evaluate(predictions_df_lr2) evaluator_lr2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="recallByLabel", ) lr2_recall = evaluator_lr2_mc_recall.evaluate(predictions_df_lr2) evaluator_lr2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr2", predictionCol="prediction_lr2", metricName="f1" ) lr2_f1 = evaluator_lr2_mc_f1.evaluate(predictions_df_lr2) # area under ROC evaluator_lr2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr2", rawPredictionCol="prediction_lr2", metricName="areaUnderROC", ) lr2_areaUnderROC = evaluator_lr2_bc.evaluate(predictions_df_lr2) # ## 2nd Set: Decision Tree Classifier # create DecisionTreeClassifier model then fit it to training data train_data_dtc2 = train_data2 test_data_dtc2 = test_data2 dtc2 = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures2") dtc_model2 = dtc2.fit(train_data_dtc2) predictions_df_dtc2 = dtc_model2.transform(train_data_dtc2) predictions_df_dtc2 = ( predictions_df_dtc2.withColumnRenamed("prediction", "prediction_dtc2") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc2") .withColumnRenamed("rawPrediction", "rawPrediction_dtc2") .withColumnRenamed("probability", "probability_dtc2") ) predictions_df_dtc2.select( "rawPrediction_dtc2", "probability_dtc2", "prediction_dtc2", "dep_delay_int_dtc2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 1.0 AND dep_delay_int_dtc2 == 1").count()) # fp_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 1.0 AND dep_delay_int_dtc2 == 0").count()) # tn_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 0.0 AND dep_delay_int_dtc2 == 0").count()) # fn_dtc2 = float(predictions_df_dtc2.filter("prediction_dtc2 == 0.0 AND dep_delay_int_dtc2 == 1").count()) # pr_dtc2 = tp_dtc2 / (tp_dtc2 + fp_dtc2) # re_dtc2 = tp_dtc2 / (tp_dtc2 + fn_dtc2) # metrics = spark.createDataFrame([ # ("TP", tp_dtc2), # ("FP", fp_dtc2), # ("TN", tn_dtc2), # ("FN", fn_dtc2), # ("Precision", pr_dtc2), # ("Recall", re_dtc2), # ("myAccuracy", (tp_dtc2+tn_dtc2)/(tp_dtc2+fp_dtc2+tn_dtc2+fn_dtc2)), # ("F1", 2*pr_dtc2*re_dtc2/(re_dtc2+pr_dtc2))],["metric_for_dtc2", "value"]) # metrics.show() evaluator_dtc2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="accuracy", ) dtc2_accuracy = evaluator_dtc2_mc_acc.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="precisionByLabel", ) dtc2_precision = evaluator_dtc2_mc_precision.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="recallByLabel", ) dtc2_recall = evaluator_dtc2_mc_recall.evaluate(predictions_df_dtc2) evaluator_dtc2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc2", predictionCol="prediction_dtc2", metricName="f1" ) dtc2_f1 = evaluator_dtc2_mc_f1.evaluate(predictions_df_dtc2) # area under ROC evaluator_dtc2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc2", rawPredictionCol="prediction_dtc2", metricName="areaUnderROC", ) dtc2_areaUnderROC = evaluator_dtc2_bc.evaluate(predictions_df_dtc2) # ## 2nd Set: XGBoost train_data_xgb2 = train_data2 test_data_xgb2 = test_data2 from xgboost.spark import SparkXGBClassifier xgb2 = SparkXGBClassifier( features_col="normfeatures2", label_col="dep_delay_int", num_workers=2 ) xgb_model2 = xgb2.fit(train_data_xgb2) predictions_df_xgb2 = xgb_model2.transform(train_data_xgb2) predictions_df_xgb2 = ( predictions_df_xgb2.withColumnRenamed("prediction", "prediction_xgb2") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb2") .withColumnRenamed("rawPrediction", "rawPrediction_xgb2") .withColumnRenamed("probability", "probability_xgb2") ) predictions_df_xgb2.select( "rawPrediction_xgb2", "probability_xgb2", "prediction_xgb2", "dep_delay_int_xgb2" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 1.0 AND dep_delay_int_xgb2 == 1").count()) # fp_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 1.0 AND dep_delay_int_xgb2 == 0").count()) # tn_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 0.0 AND dep_delay_int_xgb2 == 0").count()) # fn_xgb2 = float(predictions_df_xgb2.filter("prediction_xgb2 == 0.0 AND dep_delay_int_xgb2 == 1").count()) # pr_xgb2 = tp_xgb2 / (tp_xgb2 + fp_xgb2) # re_xgb2 = tp_xgb2 / (tp_xgb2 + fn_xgb2) # metrics = spark.createDataFrame([ # ("TP", tp_xgb2), # ("FP", fp_xgb2), # ("TN", tn_xgb2), # ("FN", fn_xgb2), # ("Precision", pr_xgb2), # ("Recall", re_xgb2), # ("myAccuracy", (tp_xgb2+tn_xgb2)/(tp_xgb2+fp_xgb2+tn_xgb2+fn_xgb2)), # ("F1", 2*pr_xgb2*re_xgb2/(re_xgb2+pr_xgb2))],["metric_for_xgb2", "value"]) # metrics.show() evaluator_xgb2_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="accuracy", ) xgb2_accuracy = evaluator_xgb2_mc_acc.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="precisionByLabel", ) xgb2_precision = evaluator_xgb2_mc_precision.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="recallByLabel", ) xgb2_recall = evaluator_xgb2_mc_recall.evaluate(predictions_df_xgb2) evaluator_xgb2_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2", predictionCol="prediction_xgb2", metricName="f1" ) xgb2_f1 = evaluator_xgb2_mc_f1.evaluate(predictions_df_xgb2) # area under ROC evaluator_xgb2_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb2", rawPredictionCol="prediction_xgb2", metricName="areaUnderROC", ) xgb2_areaUnderROC = evaluator_xgb2_bc.evaluate(predictions_df_xgb2) # ## 2nd Set: Metrics print(f"LR2 Accuracy: {lr2_accuracy}") print(f"LR2 Precision: {lr2_precision}") print(f"LR2 Recall: {lr2_recall}") print(f"LR2 F1: {lr2_f1}") print(f"LR2 AreaUnderROC: {lr2_areaUnderROC}") print(f"DTC2 Accuracy: {dtc2_accuracy}") print(f"DTC2 Precision: {dtc2_precision}") print(f"DTC2 Recall: {dtc2_recall}") print(f"DTC2 F1: {dtc2_f1}") print(f"DTC2 AreaUnderROC: {dtc2_areaUnderROC}") print(f"XGB2 Accuracy: {xgb2_accuracy}") print(f"XGB2 Precision: {xgb2_precision}") print(f"XGB2 Recall: {xgb2_recall}") print(f"XGB2 F1: {xgb2_f1}") print(f"XGB2 AreaUnderROC: {xgb2_areaUnderROC}") # ## 3rd Set: ML Algorithms - Switched to MaxAbsScaler df_v3 = df_cols_onehot_day_of_week vectAssembler3 = VectorAssembler(inputCols=feature_columns3, outputCol="features3") maxAbs = MaxAbsScaler(inputCol="features3", outputCol="normfeatures3") pipeline3 = Pipeline(stages=[vectAssembler3, maxAbs]) model3 = pipeline3.fit(df_v3).transform(df_v3) finalized_data3 = model3.select("normfeatures3", "dep_delay_int") display(finalized_data3) train_data3, test_data3 = finalized_data3.randomSplit([0.8, 0.2], seed=42) # ## 3rd Set: Logistic Regression train_data_lr3 = train_data3 test_data_lr3 = test_data3 lr3 = LogisticRegression(labelCol="dep_delay_int", featuresCol="normfeatures3") lr3_model = lr3.fit(train_data_lr3) predictions_df_lr3 = lr3_model.transform(train_data_lr3) predictions_df_lr3 = ( predictions_df_lr3.withColumnRenamed("prediction", "prediction_lr3") .withColumnRenamed("dep_delay_int", "dep_delay_int_lr3") .withColumnRenamed("rawPrediction", "rawPrediction_lr3") .withColumnRenamed("probability", "probability_lr3") ) predictions_df_lr3.select( "rawPrediction_lr3", "probability_lr3", "prediction_lr3", "dep_delay_int_lr3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 1.0 AND dep_delay_int_lr3 == 1").count()) # fp_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 1.0 AND dep_delay_int_lr3 == 0").count()) # tn_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 0.0 AND dep_delay_int_lr3 == 0").count()) # fn_lr3 = float(predictions_df_lr3.filter("prediction_lr3 == 0.0 AND dep_delay_int_lr3 == 1").count()) # pr_lr3 = tp_lr3 / (tp_lr3 + fp_lr3) # re_lr3 = tp_lr3 / (tp_lr3 + fn_lr3) # metrics = spark.createDataFrame([ # ("TP", tp_lr3), # ("FP", fp_lr3), # ("TN", tn_lr3), # ("FN", fn_lr3), # ("Precision", pr_lr3), # ("Recall", re_lr3), # ("myAccuracy", (tp_lr3+tn_lr3)/(tp_lr3+fp_lr3+tn_lr3+fn_lr3)), # ("F1", 2*pr_lr3*re_lr3/(re_lr3+pr_lr3))],["metric_for_lr3", "value"]) # metrics.show() evaluator_lr3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="accuracy" ) lr3_accuracy = evaluator_lr3_mc_acc.evaluate(predictions_df_lr3) evaluator_lr3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="precisionByLabel", ) lr3_precision = evaluator_lr3_mc_precision.evaluate(predictions_df_lr3) evaluator_lr3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="recallByLabel", ) lr3_recall = evaluator_lr3_mc_recall.evaluate(predictions_df_lr3) evaluator_lr3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_lr3", predictionCol="prediction_lr3", metricName="f1" ) lr3_f1 = evaluator_lr3_mc_f1.evaluate(predictions_df_lr3) # area under ROC evaluator_lr3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_lr3", rawPredictionCol="prediction_lr3", metricName="areaUnderROC", ) lr3_areaUnderROC = evaluator_lr3_bc.evaluate(predictions_df_lr3) # ## 3rd Set: Decision Tree Classifier train_data_dtc3 = train_data3 test_data_dtc3 = test_data3 dtc3 = DecisionTreeClassifier(labelCol="dep_delay_int", featuresCol="normfeatures3") dtc_model3 = dtc3.fit(train_data_dtc3) predictions_df_dtc3 = dtc_model3.transform(train_data_dtc3) predictions_df_dtc3 = ( predictions_df_dtc3.withColumnRenamed("prediction", "prediction_dtc3") .withColumnRenamed("dep_delay_int", "dep_delay_int_dtc3") .withColumnRenamed("rawPrediction", "rawPrediction_dtc3") .withColumnRenamed("probability", "probability_dtc3") ) predictions_df_dtc3.select( "rawPrediction_dtc3", "probability_dtc3", "prediction_dtc3", "dep_delay_int_dtc3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 1.0 AND dep_delay_int_dtc3 == 1").count()) # fp_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 1.0 AND dep_delay_int_dtc3 == 0").count()) # tn_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 0.0 AND dep_delay_int_dtc3 == 0").count()) # fn_dtc3 = float(predictions_df_dtc3.filter("prediction_dtc3 == 0.0 AND dep_delay_int_dtc3 == 1").count()) # pr_dtc3 = tp_dtc3 / (tp_dtc3 + fp_dtc3) # re_dtc3 = tp_dtc3 / (tp_dtc3 + fn_dtc3) # metrics = spark.createDataFrame([ # ("TP", tp_dtc3), # ("FP", fp_dtc3), # ("TN", tn_dtc3), # ("FN", fn_dtc3), # ("Precision", pr_dtc3), # ("Recall", re_dtc3), # ("myAccuracy", (tp_dtc3+tn_dtc3)/(tp_dtc3+fp_dtc3+tn_dtc3+fn_dtc3)), # ("F1", 2*pr_dtc3*re_dtc3/(re_dtc3+pr_dtc3))],["metric_for_dtc3", "value"]) # metrics.show() evaluator_dtc3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="accuracy", ) dtc3_accuracy = evaluator_dtc3_mc_acc.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="precisionByLabel", ) dtc3_precision = evaluator_dtc3_mc_precision.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="recallByLabel", ) dtc3_recall = evaluator_dtc3_mc_recall.evaluate(predictions_df_dtc3) evaluator_dtc3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_dtc3", predictionCol="prediction_dtc3", metricName="f1" ) dtc3_f1 = evaluator_dtc3_mc_f1.evaluate(predictions_df_dtc3) # area under ROC evaluator_dtc3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_dtc3", rawPredictionCol="prediction_dtc3", metricName="areaUnderROC", ) dtc3_areaUnderROC = evaluator_dtc3_bc.evaluate(predictions_df_dtc3) # ## 3rd Set: XGBoost train_data_xgb3 = train_data3 test_data_xgb3 = test_data3 from xgboost.spark import SparkXGBClassifier xgb3 = SparkXGBClassifier( features_col="normfeatures3", label_col="dep_delay_int", num_workers=2 ) xgb_model3 = xgb3.fit(train_data_xgb3) predictions_df_xgb3 = xgb_model3.transform(train_data_xgb3) predictions_df_xgb3 = ( predictions_df_xgb3.withColumnRenamed("prediction", "prediction_xgb3") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb3") .withColumnRenamed("rawPrediction", "rawPrediction_xgb3") .withColumnRenamed("probability", "probability_xgb3") ) predictions_df_xgb3.select( "rawPrediction_xgb3", "probability_xgb3", "prediction_xgb3", "dep_delay_int_xgb3" ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 1.0 AND dep_delay_int_xgb3 == 1").count()) # fp_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 1.0 AND dep_delay_int_xgb3 == 0").count()) # tn_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 0.0 AND dep_delay_int_xgb3 == 0").count()) # fn_xgb3 = float(predictions_df_xgb3.filter("prediction_xgb3 == 0.0 AND dep_delay_int_xgb3 == 1").count()) # pr_xgb3 = tp_dtc3 / (tp_xgb3 + fp_xgb3) # re_xgb3 = tp_dtc3 / (tp_xgb3 + fn_xgb3) # metrics = spark.createDataFrame([ # ("TP", tp_xgb3), # ("FP", fp_xgb3), # ("TN", tn_xgb3), # ("FN", fn_xgb3), # ("Precision", pr_xgb3), # ("Recall", re_xgb3), # ("myAccuracy", (tp_xgb3+tn_xgb3)/(tp_xgb3+fp_xgb3+tn_xgb3+fn_xgb3)), # ("F1", 2*pr_xgb3*re_xgb3/(re_xgb3+pr_xgb3))],["metric_for_xgb3", "value"]) # metrics.show() evaluator_xgb3_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="accuracy", ) xgb3_accuracy = evaluator_xgb3_mc_acc.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="precisionByLabel", ) xgb3_precision = evaluator_xgb3_mc_precision.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="recallByLabel", ) xgb3_recall = evaluator_xgb3_mc_recall.evaluate(predictions_df_xgb3) evaluator_xgb3_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb3", predictionCol="prediction_xgb3", metricName="f1" ) xgb3_f1 = evaluator_xgb3_mc_f1.evaluate(predictions_df_xgb3) # area under ROC evaluator_xgb3_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb3", rawPredictionCol="prediction_xgb3", metricName="areaUnderROC", ) xgb3_areaUnderROC = evaluator_xgb3_bc.evaluate(predictions_df_xgb3) # ## 3rd Set: Metrics print(f"LR3 Accuracy: {lr3_accuracy}") print(f"LR3 Precision: {lr3_precision}") print(f"LR3 Recall: {lr3_recall}") print(f"LR3 F1: {lr3_f1}") print(f"LR3 AreaUnderROC: {lr3_areaUnderROC}") print(f"DTC3 Accuracy: {dtc3_accuracy}") print(f"DTC3 Precision: {dtc3_precision}") print(f"DTC3 Recall: {dtc3_recall}") print(f"DTC3 F1: {dtc3_f1}") print(f"DTC3 AreaUnderROC: {dtc3_areaUnderROC}") print(f"XGB3 Accuracy: {xgb3_accuracy}") print(f"XGB3 Precision: {xgb3_precision}") print(f"XGB3 Recall: {xgb3_recall}") print(f"XGB3 F1: {xgb3_f1}") print(f"XGB3 AreaUnderROC: {xgb3_areaUnderROC}") # ## Analysis Comparing Metrics # ##### 3 sets of Logistic Regression, Decision Tree, and XGBoost were ran. # ##### The first set used StringIndexer, VectAssembler, and MinMaxScaler. # ##### The second set used StringIndexer, OneHotEncoder, VectAssembler, and MinMaxScaler. # ##### The third set used StringIndexer, OneHotEncoder, VectAssembler, and MaxAbsScaler. # ##### Based on the metrics above, the second set performed the best and within that set, XGBoost performed the best. Accuracy: 0.6685, Precision: 0.6799, Recall: 0.8955, F1: 0.6297, and Area Under ROC: 0.5885. The scores could be better. This means that the features in this dataset are not sufficient enough in teaching the network how to predict whether or not a flight would be delayed. Additional features such as weather conditions would be beneficial to have as features and should help increase those scores. # ## Feature Importance print(feature_columns2) xgb_model2.get_booster().feature_names = feature_columns2 important_features = xgb_model2.get_booster().get_score(importance_type="gain") display(important_features) i_f_sorted = { k: v for k, v in sorted( important_features.items(), key=lambda item: item[1], reverse=True ) } print(i_f_sorted) import pandas as pd i_f_df = pd.DataFrame( {"Features": i_f_sorted.keys(), "Importance": i_f_sorted.values()} ) display(i_f_df) import matplotlib.pyplot as plt plt.figure(figsize=(20, 15)) plt.barh(i_f_df.Features, i_f_df.Importance) plt.xlabel("Importance") plt.ylabel("Feature") plt.legend(["Score"]) plt.title("Feature Importance") plt.tight_layout plt.show() # ## Analysis # ##### The feature with the most impact in helping to predict whether or not a flight would be delayed is the airline carrier (represented as col_onehot[n], with n representing a specific airline carrier). Based on the plot, the top four highest features are all related to airline carriers. This is followed by the departure name, meaning certain departing airports are more prone to have delays. This is probably related to how busy and how much traffic that airport typically has. The next feature of highest significance would be col_onehot_day_of_week[3], which represents Wednesday, followed by Saturday. # predictions_df_xgb2_test = xgb_model2.transform(test_data_xgb2) predictions_df_xgb2_test_columns_renamed = ( predictions_df_xgb2_test.withColumnRenamed("prediction", "prediction_xgb2_test") .withColumnRenamed("dep_delay_int", "dep_delay_int_xgb2_test") .withColumnRenamed("rawPrediction", "rawPrediction_xgb2_test") .withColumnRenamed("probability", "probability_xgb2_test") ) predictions_df_xgb2_test_columns_renamed.select( "rawPrediction_xgb2_test", "probability_xgb2_test", "prediction_xgb2_test", "dep_delay_int_xgb2_test", ).show(100) # ok in DataBricks but timed out in Kaggle # tp_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 1.0 AND dep_delay_int_xgb2_test == 1").count()) # fp_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 1.0 AND dep_delay_int_xgb2_test == 0").count()) # tn_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 0.0 AND dep_delay_int_xgb2_test == 0").count()) # fn_xgb2_test = float(predictions_df_xgb2_test_columns_renamed.filter("prediction_xgb2_test == 0.0 AND dep_delay_int_xgb2_test == 1").count()) # pr_xgb2_test = tp_xgb2_test / (tp_xgb2_test + fp_xgb2_test) # re_xgb2_test = tp_xgb2_test / (tp_xgb2_test + fn_xgb2_test) # metrics = spark.createDataFrame([ # ("TP", tp_xgb2_test), # ("FP", fp_xgb2_test), # ("TN", tn_xgb2_test), # ("FN", fn_xgb2_test), # ("Precision", pr_xgb2_test), # ("Recall", re_xgb2_test), # ("myAccuracy", (tp_xgb2_test+tn_xgb2_test)/(tp_xgb2_test+fp_xgb2_test+tn_xgb2_test+fn_xgb2_test)), # ("F1", 2*pr_xgb2_test*re_xgb2_test/(re_xgb2_test+pr_xgb2_test))],["metric", "value"]) # metrics.show() evaluator_xgbtest_mc_acc = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="accuracy", ) xgbtest_accuracy = evaluator_xgbtest_mc_acc.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Accuracy: {xgbtest_accuracy}") evaluator_xgbtest_mc_precision = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="precisionByLabel", ) xgbtest_precision = evaluator_xgbtest_mc_precision.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Precision: {xgbtest_precision}") evaluator_xgbtest_mc_recall = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="recallByLabel", ) xgbtest_recall = evaluator_xgbtest_mc_recall.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest Recall: {xgbtest_recall}") evaluator_xgbtest_mc_f1 = MulticlassClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", predictionCol="prediction_xgb2_test", metricName="f1", ) xgbtest_f1 = evaluator_xgbtest_mc_f1.evaluate(predictions_df_xgb2_test_columns_renamed) print(f"XGBTest F1: {xgbtest_f1}") # area under ROC evaluator_xgbtest_bc = BinaryClassificationEvaluator( labelCol="dep_delay_int_xgb2_test", rawPredictionCol="prediction_xgb2_test", metricName="areaUnderROC", ) xgbtest_areaUnderROC = evaluator_xgbtest_bc.evaluate( predictions_df_xgb2_test_columns_renamed ) print(f"XGBTest AreaUnderROC: {xgbtest_areaUnderROC}")
false
0
14,877
0
14,877
14,877
129097338
# import libraries from random import randint, seed import pandas as pd import numpy as np import plotly.express as px seed(10) my_data = pd.read_csv("/kaggle/input/titanic/Titanic.tsv", sep="\t") my_data.info() my_data.head(11) # Outliers # Outliers are rare values that are usually very different from other observations. Outliers can be important for data analysis, but they are usually excluded from the dataset because they can affect the analysis results. print(my_data.describe()) my_data["Fare"] = pd.to_numeric(my_data["Fare"], errors="coerce") # find out the outliers in the Fare variable q1 = my_data["Fare"].quantile(0.25) q3 = my_data["Fare"].quantile(0.75) iqr = q3 - q1 upper_bound = q3 + 1.5 * iqr outliers = my_data[my_data["Fare"] > upper_bound] print(outliers) # Handling duplicates my_data.drop_duplicates(keep=False, inplace=True) my_data.shape # Handling missing data, NaNs, Blanks (missing values) my_data.isna().sum() my_data = my_data.dropna() # delete rows with missing data my_data.isna().sum() my_data.shape # Wrong/improper values my_data["Age"].value_counts() # Convert incorrectly formatted age values to float my_data["Age"] = my_data["Age"].apply( lambda x: float(x.replace(".", "")) if isinstance(x, str) and "." in x else x ) my_data["Age"].value_counts()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097338.ipynb
null
null
[{"Id": 129097338, "ScriptId": 38204470, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14627695, "CreationDate": "05/11/2023 02:01:00", "VersionNumber": 10.0, "Title": "Data Cleaning and Preparation", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 57.0, "LinesInsertedFromPrevious": 15.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 42.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# import libraries from random import randint, seed import pandas as pd import numpy as np import plotly.express as px seed(10) my_data = pd.read_csv("/kaggle/input/titanic/Titanic.tsv", sep="\t") my_data.info() my_data.head(11) # Outliers # Outliers are rare values that are usually very different from other observations. Outliers can be important for data analysis, but they are usually excluded from the dataset because they can affect the analysis results. print(my_data.describe()) my_data["Fare"] = pd.to_numeric(my_data["Fare"], errors="coerce") # find out the outliers in the Fare variable q1 = my_data["Fare"].quantile(0.25) q3 = my_data["Fare"].quantile(0.75) iqr = q3 - q1 upper_bound = q3 + 1.5 * iqr outliers = my_data[my_data["Fare"] > upper_bound] print(outliers) # Handling duplicates my_data.drop_duplicates(keep=False, inplace=True) my_data.shape # Handling missing data, NaNs, Blanks (missing values) my_data.isna().sum() my_data = my_data.dropna() # delete rows with missing data my_data.isna().sum() my_data.shape # Wrong/improper values my_data["Age"].value_counts() # Convert incorrectly formatted age values to float my_data["Age"] = my_data["Age"].apply( lambda x: float(x.replace(".", "")) if isinstance(x, str) and "." in x else x ) my_data["Age"].value_counts()
false
0
434
0
434
434
129097494
<jupyter_start><jupyter_text>Credit Card Dataset for Clustering This case requires to develop a customer segmentation to define marketing strategy. The sample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables. Following is the Data Dictionary for Credit Card dataset :- **CUST_ID** : Identification of Credit Card holder (Categorical) **BALANCE** : Balance amount left in their account to make purchases ( **BALANCE_FREQUENCY** : How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated) **PURCHASES** : Amount of purchases made from account **ONEOFF_PURCHASES** : Maximum purchase amount done in one-go **INSTALLMENTS_PURCHASES** : Amount of purchase done in installment **CASH_ADVANCE** : Cash in advance given by the user **PURCHASES_FREQUENCY** : How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased) **ONEOFFPURCHASESFREQUENCY** : How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased) **PURCHASESINSTALLMENTSFREQUENCY** : How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done) **CASHADVANCEFREQUENCY** : How frequently the cash in advance being paid **CASHADVANCETRX** : Number of Transactions made with "Cash in Advanced" **PURCHASES_TRX** : Numbe of purchase transactions made **CREDIT_LIMIT** : Limit of Credit Card for user **PAYMENTS** : Amount of Payment done by user **MINIMUM_PAYMENTS** : Minimum amount of payments made by user **PRCFULLPAYMENT** : Percent of full payment paid by user **TENURE** : Tenure of credit card service for user Kaggle dataset identifier: ccdata <jupyter_script># Grupo de trabajo: Briannys Ahiram Páez Monserrate, Daniel Esteban Hurtado Dimas, Ramiro Esteban Bravo Higuera y Juan Camilo Peña Perdomo. # El siguiente trabajo evidencia el taller propuesto en la matería big data, este trabajo es realizado en lenguaje R. # # 1. Paquetes y librerías. install.packages("FactoClass") install.packages("dplyr") install.packages("FactoMineR") install.packages("factoextra") install.packages("fpc") rm(list=ls()) library(FactoClass) library(readxl) library(readr) library(dplyr) library(FactoMineR) library(Factoshiny) library(fpc) library(tidyverse) library(cluster) library(factoextra) library(readr)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/097/129097494.ipynb
ccdata
arjunbhasin2013
[{"Id": 129097494, "ScriptId": 38377830, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13998711, "CreationDate": "05/11/2023 02:03:34", "VersionNumber": 1.0, "Title": "notebook4f2fe97123", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 26.0, "LinesInsertedFromPrevious": 26.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184851850, "KernelVersionId": 129097494, "SourceDatasetVersionId": 19663}]
[{"Id": 19663, "DatasetId": 14701, "DatasourceVersionId": 19663, "CreatorUserId": 621533, "LicenseName": "CC0: Public Domain", "CreationDate": "03/02/2018 08:35:03", "VersionNumber": 1.0, "Title": "Credit Card Dataset for Clustering", "Slug": "ccdata", "Subtitle": NaN, "Description": "This case requires to develop a customer segmentation to define marketing strategy. The\nsample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables.\n\nFollowing is the Data Dictionary for Credit Card dataset :-\n\n**CUST_ID** : Identification of Credit Card holder (Categorical)\n**BALANCE** : Balance amount left in their account to make purchases (\n**BALANCE_FREQUENCY** : How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated)\n**PURCHASES** : Amount of purchases made from account\n**ONEOFF_PURCHASES** : Maximum purchase amount done in one-go\n**INSTALLMENTS_PURCHASES** : Amount of purchase done in installment\n**CASH_ADVANCE** : Cash in advance given by the user\n**PURCHASES_FREQUENCY** : How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased)\n**ONEOFFPURCHASESFREQUENCY** : How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased)\n**PURCHASESINSTALLMENTSFREQUENCY** : How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done)\n**CASHADVANCEFREQUENCY** : How frequently the cash in advance being paid\n**CASHADVANCETRX** : Number of Transactions made with \"Cash in Advanced\"\n**PURCHASES_TRX** : Numbe of purchase transactions made\n**CREDIT_LIMIT** : Limit of Credit Card for user\n**PAYMENTS** : Amount of Payment done by user\n**MINIMUM_PAYMENTS** : Minimum amount of payments made by user\n**PRCFULLPAYMENT** : Percent of full payment paid by user\n**TENURE** : Tenure of credit card service for user", "VersionNotes": "Initial release", "TotalCompressedBytes": 902879.0, "TotalUncompressedBytes": 902879.0}]
[{"Id": 14701, "CreatorUserId": 621533, "OwnerUserId": 621533.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 19663.0, "CurrentDatasourceVersionId": 19663.0, "ForumId": 22292, "Type": 2, "CreationDate": "03/02/2018 08:35:03", "LastActivityDate": "03/02/2018", "TotalViews": 341525, "TotalDownloads": 47528, "TotalVotes": 471, "TotalKernels": 266}]
[{"Id": 621533, "UserName": "arjunbhasin2013", "DisplayName": "Arjun Bhasin", "RegisterDate": "05/23/2016", "PerformanceTier": 1}]
# Grupo de trabajo: Briannys Ahiram Páez Monserrate, Daniel Esteban Hurtado Dimas, Ramiro Esteban Bravo Higuera y Juan Camilo Peña Perdomo. # El siguiente trabajo evidencia el taller propuesto en la matería big data, este trabajo es realizado en lenguaje R. # # 1. Paquetes y librerías. install.packages("FactoClass") install.packages("dplyr") install.packages("FactoMineR") install.packages("factoextra") install.packages("fpc") rm(list=ls()) library(FactoClass) library(readxl) library(readr) library(dplyr) library(FactoMineR) library(Factoshiny) library(fpc) library(tidyverse) library(cluster) library(factoextra) library(readr)
false
0
222
0
694
222
129103334
<jupyter_start><jupyter_text>Amazon Sales Dataset This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon **Features** - product_id - Product ID - product_name - Name of the Product - category - Category of the Product - discounted_price - Discounted Price of the Product - actual_price - Actual Price of the Product - discount_percentage - Percentage of Discount for the Product - rating - Rating of the Product - rating_count - Number of people who voted for the Amazon rating - about_product - Description about the Product - user_id - ID of the user who wrote review for the Product - user_name - Name of the user who wrote review for the Product - review_id - ID of the user review - review_title - Short review - review_content - Long review - img_link - Image Link of the Product - product_link - Official Website Link of the Product **Inspiration** Amazon is an American Tech Multi-National Company whose business interests include E-commerce, where they buy and store the inventory, and take care of everything from shipping and pricing to customer service and returns. I've created this dataset so that people can play with this dataset and do a lot of things as mentioned below - Dataset Walkthrough - Understanding Dataset Hierarchy - Data Preprocessing - Exploratory Data Analysis - Data Visualization - Making Recommendation System This is a list of some of that things that you can do on this dataset. It's not definitely limited to the one that is mentioned there but a lot more other things can also be done. Kaggle dataset identifier: amazon-sales-dataset <jupyter_code>import pandas as pd df = pd.read_csv('amazon-sales-dataset/amazon.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 1465 entries, 0 to 1464 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 product_id 1465 non-null object 1 product_name 1465 non-null object 2 category 1465 non-null object 3 discounted_price 1465 non-null object 4 actual_price 1465 non-null object 5 discount_percentage 1465 non-null object 6 rating 1465 non-null object 7 rating_count 1463 non-null object 8 about_product 1465 non-null object 9 user_id 1465 non-null object 10 user_name 1465 non-null object 11 review_id 1465 non-null object 12 review_title 1465 non-null object 13 review_content 1465 non-null object 14 img_link 1465 non-null object 15 product_link 1465 non-null object dtypes: object(16) memory usage: 183.2+ KB <jupyter_text>Examples: { "product_id": "B07JW9H4J1", "product_name": "Wayona Nylon Braided USB to Lightning Fast Charging and Data Sync Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini (3 FT Pack of 1, Grey)", "category": "Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables", "discounted_price": "\u20b9399", "actual_price": "\u20b91,099", "discount_percentage": "64%", "rating": 4.2, "rating_count": "24,269", "about_product": "High Compatibility : Compatible With iPhone 12, 11, X/XsMax/Xr ,iPhone 8/8 Plus,iPhone 7/7 Plus,iPhone 6s/6s Plus,iPhone 6/6 Plus,iPhone 5/5s/5c/se,iPad Pro,iPad Air 1/2,iPad mini 1/2/3,iPod nano7,iPod touch and more apple devices.|Fast Charge&Data Sync : It can charge and sync...(truncated)", "user_id": "AG3D6O4STAQKAY2UVGEUV46KN35Q,AHMY5CWJMMK5BJRBBSNLYT3ONILA,AHCTC6ULH4XB6YHDY6PCH2R772LQ,AGYHHIERNXKA6P5T7CZLXKVPT7IQ,AG4OGOFWXJZTQ2HKYIOCOY3KXF2Q,AENGU523SXMOS7JPDTW52PNNVWGQ,AEQJHCVTNINBS4FKTBGQRQTGTE5Q,AFC3FFC5PKFF5PMA52S3VCHOZ5FQ", "user_name": "Manav,Adarsh gupta,Sundeep,S.Sayeed Ahmed,jaspreet singh,Khaja moin,Anand,S.ARUMUGAM", "review_id": "R3HXWT0LRP0NMF,R2AJM3LFTLZHFO,R6AQJGUP6P86,R1KD19VHEDV0OR,R3C02RMYQMK6FC,R39GQRVBUZBWGY,R2K9EDOE15QIRJ,R3OI7YT648TL8I", "review_title": "Satisfied,Charging is really fast,Value for money,Product review,Good quality,Good product,Good Product,As of now seems good", "review_content": "Looks durable Charging is fine tooNo complains,Charging is really fast, good product.,Till now satisfied with the quality.,This is a good product . The charging speed is slower than the original iPhone cable,Good quality, would recommend,https://m.media-amazon.com/images/W/WEB...(truncated)", "img_link": "https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/51UsScvHQNL._SX300_SY300_QL70_FMwebp_.jpg", "product_link": "https://www.amazon.in/Wayona-Braided-WN3LG1-Syncing-Charging/dp/B07JW9H4J1/ref=sr_1_1?qid=1672909124&s=electronics&sr=1-1" } { "product_id": "B098NS6PVG", "product_name": "Ambrane Unbreakable 60W / 3A Fast Charging 1.5m Braided Type C Cable for Smartphones, Tablets, Laptops & other Type C devices, PD Technology, 480Mbps Data Sync, Quick Charge 3.0 (RCT15A, Black)", "category": "Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables", "discounted_price": "\u20b9199", "actual_price": "\u20b9349", "discount_percentage": "43%", "rating": 4.0, "rating_count": "43,994", "about_product": "Compatible with all Type C enabled devices, be it an android smartphone (Mi, Samsung, Oppo, Vivo, Realme, OnePlus, etc), tablet, laptop (Macbook, Chromebook, etc)|Supports Quick Charging (2.0/3.0)|Unbreakable \u2013 Made of special braided outer with rugged interior bindings, i...(truncated)", "user_id": "AECPFYFQVRUWC3KGNLJIOREFP5LQ,AGYYVPDD7YG7FYNBXNGXZJT525AQ,AHONIZU3ICIEHQIGQ6R2VFRSBXOQ,AFPHD2CRPDZMWMBL7WXRSVYWS5JA,AEZ346GX3HJ4O4XNRPHCNHXQURMQ,AEPSWFPNECKO34PUC7I56ITGXR6Q,AHWVEHR5DYLVFTO2KF3IZATFQSWQ,AH4QT33M55677I7ISQOAKEQWACYQ", "user_name": "ArdKn,Nirbhay kumar,Sagar Viswanathan,Asp,Placeholder,BharanI,sonia,Niam", "review_id": "RGIQEG07R9HS2,R1SMWZQ86XIN8U,R2J3Y1WL29GWDE,RYGGS0M09S3KY,R17KQRUTAN5DKS,R3AAQGS6HP2QUK,R1HDNOG6TO2CCA,R3PHKXYA5AFEOU", "review_title": "A Good Braided Cable for Your Type C Device,Good quality product from ambrane,Super cable,As,Good quality,Good product,its good,Good quality for the price but one issue with my unit", "review_content": "I ordered this cable to connect my phone to Android Auto of car. The cable is really strong and the connection ports are really well made. I already has a Micro USB cable from Ambrane and it's still in good shape. I connected my phone to the car using the cable and it got conn...(truncated)", "img_link": "https://m.media-amazon.com/images/W/WEBP_402378-T2/images/I/31zOsqQOAOL._SY445_SX342_QL70_FMwebp_.jpg", "product_link": "https://www.amazon.in/Ambrane-Unbreakable-Charging-Braided-Cable/dp/B098NS6PVG/ref=sr_1_2?qid=1672909124&s=electronics&sr=1-2" } { "product_id": "B096MSW6CT", "product_name": "Sounce Fast Phone Charging Cable & Data Sync USB Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini & iOS Devices", "category": "Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables", "discounted_price": "\u20b9199", "actual_price": "\u20b91,899", "discount_percentage": "90%", "rating": 3.9, "rating_count": "7,928", "about_product": "\u3010 Fast Charger& Data Sync\u3011-With built-in safety proctections and four-core copper wires promote maximum signal quality and strength and enhance charging & data transfer speed with up to 480 mb/s transferring speed.|\u3010 Compatibility\u3011-Compatible with iPhone 13,...(truncated)", "user_id": "AGU3BBQ2V2DDAMOAKGFAWDDQ6QHA,AESFLDV2PT363T2AQLWQOWZ4N3OA,AHTPQRIMGUD4BYR5YIHBH3CCGEFQ,AEUVWXYP5LT7PZLLZENEO2NODPBQ,AHC7MPW55DOO6WNCOQVA2VHOD26A,AFDI6FRPFBTNBG7BAEB7JDJSMKDQ,AFQKCEEEKXCOHTDG4WUN3XPPHJQQ,AHKUUFNMBZIDLSSPA4FEHIO2EC7Q", "user_name": "Kunal,Himanshu,viswanath,sai niharka,saqib malik,Aashiq,Ramu Challa,Sanjay gupta", "review_id": "R3J3EQQ9TZI5ZJ,R3E7WBGK7ID0KV,RWU79XKQ6I1QF,R25X4TBMPY91LX,R27OK7G99VK0TR,R207CYDCHJJTCJ,R3PCU8XMU173BT,R1IMONDOWRNU5V", "review_title": "Good speed for earlier versions,Good Product,Working good,Good for the price,Good,Worth for money,Working nice,it's a really nice product", "review_content": "Not quite durable and sturdy,https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/71rIggrbUCL._SY88.jpg,Working good,https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/61bKp9YO6wL._SY88.jpg,Product,Very nice product,Working well,It's a really nice product", "img_link": "https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/31IvNJZnmdL._SY445_SX342_QL70_FMwebp_.jpg", "product_link": "https://www.amazon.in/Sounce-iPhone-Charging-Compatible-Devices/dp/B096MSW6CT/ref=sr_1_3?qid=1672909124&s=electronics&sr=1-3" } { "product_id": "B08HDJ86NZ", "product_name": "boAt Deuce USB 300 2 in 1 Type-C & Micro USB Stress Resistant, Tangle-Free, Sturdy Cable with 3A Fast Charging & 480mbps Data Transmission, 10000+ Bends Lifespan and Extended 1.5m Length(Martian Red)", "category": "Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables", "discounted_price": "\u20b9329", "actual_price": "\u20b9699", "discount_percentage": "53%", "rating": 4.2, "rating_count": "94,363", "about_product": "The boAt Deuce USB 300 2 in 1 cable is compatible with smartphones, tablets, PC peripherals, Bluetooth speakers, power banks and all other devices with Type-C as well as Micro USB port|It ensures 3A fast charging and data transmissions with rapid sync at 480 mbps|The premium Ny...(truncated)", "user_id": "AEWAZDZZJLQUYVOVGBEUKSLXHQ5A,AG5HTSFRRE6NL3M5SGCUQBP7YSCA,AH725ST5NW2Y4JZPKUNTIJCUK2BA,AHV3TXIFCJPMS4D5JATCEUR266MQ,AGWIGDEMFIIUAOXYY2QATNBSUGHA,AFSTSLQUV4EVEXWKBOLEFHL2H5YQ,AGAKDNBHY2FKX7I4ACRGILU7QL7A,AFNWJUWJRHCC6HN52KMG5AKZY37Q", "user_name": "Omkar dhale,JD,HEMALATHA,Ajwadh a.,amar singh chouhan,Ravi Siddan,Himanshu Goel,Udaykumar", "review_id": "R3EEUZKKK9J36I,R3HJVYCLYOY554,REDECAZ7AMPQC,R1CLH2ULIVG5U3,R2DMKIBGFKBD6R,RC89B5IAJUTR5,R3B3DDON5FH8DS,R13WAEJDI5RS36", "review_title": "Good product,Good one,Nice,Really nice product,Very first time change,Good,Fine product but could be better,Very nice it's charging like jet", "review_content": "Good product,long wire,Charges good,Nice,I bought this cable for Rs.339 worthy product for this price, i tested it in various charger adapters 33w and 18w it supports fast charging as well.,Good,Ok,I had got this at good price on sale on Amazon and product is useful with warra...(truncated)", "img_link": "https://m.media-amazon.com/images/I/41V5FtEWPkL._SX300_SY300_QL70_FMwebp_.jpg", "product_link": "https://www.amazon.in/Deuce-300-Resistant-Tangle-Free-Transmission/dp/B08HDJ86NZ/ref=sr_1_4?qid=1672909124&s=electronics&sr=1-4" } <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seaborn as sns dt = pd.read_csv("/kaggle/input/amazon-sales-dataset/amazon.csv") dt.head(4) # tail shows last 5 rows dt.tail() dt.info() dt.describe() # Non-numeric data dt.isna().sum() # Deleting the Non-numeric data on rating_count variable dt.dropna(axis=0, how="any", inplace=True) # Non-numeric data dt.isna().sum() # Removing, replacing and cleaning data dt["category"] = dt.category.apply(lambda x: x.split("|")[0]) dt["discounted_price"] = dt.discounted_price.apply( lambda x: x.replace("₹", "").replace(",", "") ).astype(float) dt["actual_price"] = dt.actual_price.apply( lambda x: x.replace("₹", "").replace(",", "") ).astype(float) dt["rating_count"] = ( dt.rating_count.astype(str).apply(lambda x: x.replace(",", "")).astype(int) ) dt["discount_percentage"] = dt.discount_percentage.apply( lambda x: x.replace("%", "") ).astype(int) dt.head(5) # Correlation matrix corrmat = dt.corr() f, ax = plt.subplots(figsize=(4, 2)) sns.heatmap(corrmat, vmax=1, square=True) dt.corr() # Histogram dt.hist(figsize=(8, 8), bins=10) plt.tight_layout() # List the names of the columns cols = dt.columns.tolist() print(cols) print(len(cols)) # Unique values in category dt["category"].unique() # Unique values in discount_percentage dt["discount_percentage"].unique() # Unique values in product_name dt["product_name"].unique() # Analyzing sales share by category plt.figure(figsize=(10, 5)) sns.histplot(data=dt, x="category", stat="percent") plt.xticks(rotation=90) # The analysis will continue with the categories: Computers&Accesories, Home&Kitchen, Electronics and Office Products # sort the data by 'rating' in descending order dt.sort_values(by="rating", ascending=False, inplace=True) dt["rating"].value_counts() dt.loc[dt["rating"] == "|"] dt.drop(index=1279, inplace=True) dt["rating"].value_counts().plot.bar() # scatterplot of rating counts by category sns.scatterplot(x="category", y="rating_count", data=dt, hue="rating_count") plt.xticks(rotation=90) plt.tight_layout() # New data set dt2 = dt.drop( columns=[ "product_id", "about_product", "user_id", "user_name", "review_id", "review_title", "review_content", "img_link", ] ) # Sort the data by 'rating_count' dt2.sort_values(by="rating_count", ascending=False, inplace=True) # Delete duplicate items and keep the items with higher or latest 'rating_count' dt2.drop_duplicates( subset="product_name", keep="first", inplace=True, ignore_index=True ) dt2.shape # We can visualice the mean discount percentage by category : new_catg = ("Electronics", "Home&Kitchen", "Computers&Accessories", "OfficeProducts") ddf = dt2[dt2["category"].isin(new_catg)] sns.displot(data=ddf, x="discount_percentage", col="category", kind="hist", kde=True) plt.figure(figsize=(15, 5)) plt.xticks(rotation=90) sns.stripplot(data=dt2, x="category", y="rating_count", jitter=0.3)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/103/129103334.ipynb
amazon-sales-dataset
karkavelrajaj
[{"Id": 129103334, "ScriptId": 35240882, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12683756, "CreationDate": "05/11/2023 03:23:13", "VersionNumber": 4.0, "Title": "Visual Analysis", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 112.0, "LinesInsertedFromPrevious": 19.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 93.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184862552, "KernelVersionId": 129103334, "SourceDatasetVersionId": 4862520}]
[{"Id": 4862520, "DatasetId": 2818963, "DatasourceVersionId": 4929374, "CreatorUserId": 9355447, "LicenseName": "CC BY-NC-SA 4.0", "CreationDate": "01/17/2023 06:21:15", "VersionNumber": 1.0, "Title": "Amazon Sales Dataset", "Slug": "amazon-sales-dataset", "Subtitle": "This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews", "Description": "This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon\n\n**Features**\n\n- product_id - Product ID\n- product_name - Name of the Product\n- category - Category of the Product\n- discounted_price - Discounted Price of the Product\n- actual_price - Actual Price of the Product\n- discount_percentage - Percentage of Discount for the Product\n- rating - Rating of the Product\n- rating_count - Number of people who voted for the Amazon rating\n- about_product - Description about the Product\n- user_id - ID of the user who wrote review for the Product\n- user_name - Name of the user who wrote review for the Product\n- review_id - ID of the user review\n- review_title - Short review\n- review_content - Long review\n- img_link - Image Link of the Product\n- product_link - Official Website Link of the Product\n\n**Inspiration**\n\nAmazon is an American Tech Multi-National Company whose business interests include E-commerce, where they buy and store the inventory, and take care of everything from shipping and pricing to customer service and returns. I've created this dataset so that people can play with this dataset and do a lot of things as mentioned below\n\n- Dataset Walkthrough\n- Understanding Dataset Hierarchy\n- Data Preprocessing\n- Exploratory Data Analysis\n- Data Visualization\n- Making Recommendation System\nThis is a list of some of that things that you can do on this dataset. It's not definitely limited to the one that is mentioned there but a lot more other things can also be done.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2818963, "CreatorUserId": 9355447, "OwnerUserId": 9355447.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 4862520.0, "CurrentDatasourceVersionId": 4929374.0, "ForumId": 2853848, "Type": 2, "CreationDate": "01/17/2023 06:21:15", "LastActivityDate": "01/17/2023", "TotalViews": 157282, "TotalDownloads": 32675, "TotalVotes": 298, "TotalKernels": 30}]
[{"Id": 9355447, "UserName": "karkavelrajaj", "DisplayName": "KARKAVELRAJA J", "RegisterDate": "01/09/2022", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seaborn as sns dt = pd.read_csv("/kaggle/input/amazon-sales-dataset/amazon.csv") dt.head(4) # tail shows last 5 rows dt.tail() dt.info() dt.describe() # Non-numeric data dt.isna().sum() # Deleting the Non-numeric data on rating_count variable dt.dropna(axis=0, how="any", inplace=True) # Non-numeric data dt.isna().sum() # Removing, replacing and cleaning data dt["category"] = dt.category.apply(lambda x: x.split("|")[0]) dt["discounted_price"] = dt.discounted_price.apply( lambda x: x.replace("₹", "").replace(",", "") ).astype(float) dt["actual_price"] = dt.actual_price.apply( lambda x: x.replace("₹", "").replace(",", "") ).astype(float) dt["rating_count"] = ( dt.rating_count.astype(str).apply(lambda x: x.replace(",", "")).astype(int) ) dt["discount_percentage"] = dt.discount_percentage.apply( lambda x: x.replace("%", "") ).astype(int) dt.head(5) # Correlation matrix corrmat = dt.corr() f, ax = plt.subplots(figsize=(4, 2)) sns.heatmap(corrmat, vmax=1, square=True) dt.corr() # Histogram dt.hist(figsize=(8, 8), bins=10) plt.tight_layout() # List the names of the columns cols = dt.columns.tolist() print(cols) print(len(cols)) # Unique values in category dt["category"].unique() # Unique values in discount_percentage dt["discount_percentage"].unique() # Unique values in product_name dt["product_name"].unique() # Analyzing sales share by category plt.figure(figsize=(10, 5)) sns.histplot(data=dt, x="category", stat="percent") plt.xticks(rotation=90) # The analysis will continue with the categories: Computers&Accesories, Home&Kitchen, Electronics and Office Products # sort the data by 'rating' in descending order dt.sort_values(by="rating", ascending=False, inplace=True) dt["rating"].value_counts() dt.loc[dt["rating"] == "|"] dt.drop(index=1279, inplace=True) dt["rating"].value_counts().plot.bar() # scatterplot of rating counts by category sns.scatterplot(x="category", y="rating_count", data=dt, hue="rating_count") plt.xticks(rotation=90) plt.tight_layout() # New data set dt2 = dt.drop( columns=[ "product_id", "about_product", "user_id", "user_name", "review_id", "review_title", "review_content", "img_link", ] ) # Sort the data by 'rating_count' dt2.sort_values(by="rating_count", ascending=False, inplace=True) # Delete duplicate items and keep the items with higher or latest 'rating_count' dt2.drop_duplicates( subset="product_name", keep="first", inplace=True, ignore_index=True ) dt2.shape # We can visualice the mean discount percentage by category : new_catg = ("Electronics", "Home&Kitchen", "Computers&Accessories", "OfficeProducts") ddf = dt2[dt2["category"].isin(new_catg)] sns.displot(data=ddf, x="discount_percentage", col="category", kind="hist", kde=True) plt.figure(figsize=(15, 5)) plt.xticks(rotation=90) sns.stripplot(data=dt2, x="category", y="rating_count", jitter=0.3)
[{"amazon-sales-dataset/amazon.csv": {"column_names": "[\"product_id\", \"product_name\", \"category\", \"discounted_price\", \"actual_price\", \"discount_percentage\", \"rating\", \"rating_count\", \"about_product\", \"user_id\", \"user_name\", \"review_id\", \"review_title\", \"review_content\", \"img_link\", \"product_link\"]", "column_data_types": "{\"product_id\": \"object\", \"product_name\": \"object\", \"category\": \"object\", \"discounted_price\": \"object\", \"actual_price\": \"object\", \"discount_percentage\": \"object\", \"rating\": \"object\", \"rating_count\": \"object\", \"about_product\": \"object\", \"user_id\": \"object\", \"user_name\": \"object\", \"review_id\": \"object\", \"review_title\": \"object\", \"review_content\": \"object\", \"img_link\": \"object\", \"product_link\": \"object\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1465 entries, 0 to 1464\nData columns (total 16 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 product_id 1465 non-null object\n 1 product_name 1465 non-null object\n 2 category 1465 non-null object\n 3 discounted_price 1465 non-null object\n 4 actual_price 1465 non-null object\n 5 discount_percentage 1465 non-null object\n 6 rating 1465 non-null object\n 7 rating_count 1463 non-null object\n 8 about_product 1465 non-null object\n 9 user_id 1465 non-null object\n 10 user_name 1465 non-null object\n 11 review_id 1465 non-null object\n 12 review_title 1465 non-null object\n 13 review_content 1465 non-null object\n 14 img_link 1465 non-null object\n 15 product_link 1465 non-null object\ndtypes: object(16)\nmemory usage: 183.2+ KB\n", "summary": "{\"product_id\": {\"count\": 1465, \"unique\": 1351, \"top\": \"B07JW9H4J1\", \"freq\": 3}, \"product_name\": {\"count\": 1465, \"unique\": 1337, \"top\": \"Fire-Boltt Ninja Call Pro Plus 1.83\\\" Smart Watch with Bluetooth Calling, AI Voice Assistance, 100 Sports Modes IP67 Rating, 240*280 Pixel High Resolution\", \"freq\": 5}, \"category\": {\"count\": 1465, \"unique\": 211, \"top\": \"Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables\", \"freq\": 233}, \"discounted_price\": {\"count\": 1465, \"unique\": 550, \"top\": \"\\u20b9199\", \"freq\": 53}, \"actual_price\": {\"count\": 1465, \"unique\": 449, \"top\": \"\\u20b9999\", \"freq\": 120}, \"discount_percentage\": {\"count\": 1465, \"unique\": 92, \"top\": \"50%\", \"freq\": 56}, \"rating\": {\"count\": 1465, \"unique\": 28, \"top\": \"4.1\", \"freq\": 244}, \"rating_count\": {\"count\": 1463, \"unique\": 1143, \"top\": \"9,378\", \"freq\": 9}, \"about_product\": {\"count\": 1465, \"unique\": 1293, \"top\": \"[CHARGE & SYNC FUNCTION]- This cable comes with charging & Data sync function|[HIGH QUALITY MATERIAL]- TPE + Nylon Material to make sure that the life of the cable is enhanced significantly|[LONG CORD]- The Cable is extra thick 1.2 meter long, optimized for an easy use for your comfort at home or office|[MORE DURABLE]-This cable is unique interms of design and multi-use and is positioned to provide the best comfort and performance while using|[UNIVERSAL COMPATIBILITY]- Compatible with all devices like iPhone XS, X, XR, 8, 7, 6S, 6, 5S, iPad Pro, iPad mini and iPad Air\", \"freq\": 6}, \"user_id\": {\"count\": 1465, \"unique\": 1194, \"top\": \"AHIKJUDTVJ4T6DV6IUGFYZ5LXMPA,AE55KTFVNXYFD5FPYWP2OUPEYNPQ,AEBWA5I4QFCA3P3OBEPMELBGN4GQ,AHMGAC6QM62UXNEOCZIHLHSXPP2Q,AFHROSCGIXUPV3FYQ7H5QOD46Q7Q,AEAMIR3CMSA32IDEINSJKHRNANTA,AF355FTXYAKFH5NYPRTE7SL3WO3Q,AG5DWPD54QGSLWJ6QUFERLPNAX4Q\", \"freq\": 10}, \"user_name\": {\"count\": 1465, \"unique\": 1194, \"top\": \"$@|\\\\|TO$|-|,Sethu madhav,Akash Thakur,Burger Planet,Justice \\u2696\\ufe0f,indrajyoti d.,Aditya Kumar,E.C.GEORGE\", \"freq\": 10}, \"review_id\": {\"count\": 1465, \"unique\": 1194, \"top\": \"R3F4T5TRYPTMIG,R3DQIEC603E7AY,R1O4Z15FD40PV5,RDVX50PD4CTFE,R3H6WKG0TA5CGU,R3Q3L1KP5QWPV3,RU0LU2PAIIME,R20FTANBPFA653\", \"freq\": 10}, \"review_title\": {\"count\": 1465, \"unique\": 1194, \"top\": \"Worked on iPhone 7 and didn\\u2019t work on XR,Good one,Dull Physical Looks,Just Buy it,Go for it,About the product,Get charging cable at the price,Working well.\", \"freq\": 10}, \"review_content\": {\"count\": 1465, \"unique\": 1212, \"top\": \"I am not big on camera usage, personally. I was even mentally prepared for a bad camera, based on some reviews here. But I was pleasantly surprised that camera clicks good photos. They are not awesome, but they are decent photos that can even be shared.Now coming to my biggest grouse; heating issue. The phone started heating up while charging, but it was just a little and so I could have ignored it. But then it started heating up more and got me very concerned. I even ordered a replacement thinking I got a defective piece. But then, after further tests, I found that it is heating more when I download huge amounts of data, for example, when I restore data of my old phone, from back up. This is ok with me as, I don't perform huge data loads regularly, definitely not on phone. Then I tested by running tasks I usually perform such as checking office mails, attending office meeting on phone, watching a video from Amazon Prime, and so on. The phone did not heat up even a little. Personally, this is good for me.At this price range, this is a good phone. But if you are camera heavy user and expect to perform heavy downloads frequently, this phone may not for you. I am personally satisfied with this phone as it works for my type of usage. I will not go into plus points of this phone as they are covered by other reviews already. I am only attempting to clarify about how this phone can suit you (or not) in terms of camera and heating. I had many questions about these aspects before buying. Perhaps this review will help you make an informed decision to buy (or avoid). Cheers.,Display - BeautyCamera - decentPerformance - AmazingBattery - ok (in 5000mah u expect more tbh)Overall good phone...Also after 1day of use, i found some network connectivity issue in my jiosim, which I'm using right now in this phone, but I'll keep update this review after 1month of usage!,It's a decent mobile under this price but few things worried me , weight of the phone, too many procedure to change some settings, no screen casting. Apart from that it has good touch, a decent camera for day light , battery life is good.,I bought this smartphone for my mom. Samusung interface is very handful for easy use. Battery is superb, last whole day. Camera is mediocre but provide original colour pictures. All in all satisfied with this smartphone that i got in sale for 9499.,Unable to do video call within same service provider as in VOLTE within same service provider video call feature is available.,Product is fine. Nothing Fancy but for the budget it is a good phone.,BATTERY : more than enough for normal use Not sure in gamingCAMERA : good in this segment , can record videos in FHD 30fpsDISPLAY : since it's a LCD display the quality is a bit less , but goodV RAM : you can add upto 2gb of virtual ram but have to sacrifice your storage Space to use it OVERALL A GOOD BUDGET PHONE,Finger print is working speedy battery backup is good camera quality is also good\", \"freq\": 8}, \"img_link\": {\"count\": 1465, \"unique\": 1412, \"top\": \"https://m.media-amazon.com/images/I/413sCRKobNL._SX300_SY300_QL70_ML2_.jpg\", \"freq\": 3}, \"product_link\": {\"count\": 1465, \"unique\": 1465, \"top\": \"https://www.amazon.in/Wayona-Braided-WN3LG1-Syncing-Charging/dp/B07JW9H4J1/ref=sr_1_1?qid=1672909124&s=electronics&sr=1-1\", \"freq\": 1}}", "examples": "{\"product_id\":{\"0\":\"B07JW9H4J1\",\"1\":\"B098NS6PVG\",\"2\":\"B096MSW6CT\",\"3\":\"B08HDJ86NZ\"},\"product_name\":{\"0\":\"Wayona Nylon Braided USB to Lightning Fast Charging and Data Sync Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini (3 FT Pack of 1, Grey)\",\"1\":\"Ambrane Unbreakable 60W \\/ 3A Fast Charging 1.5m Braided Type C Cable for Smartphones, Tablets, Laptops & other Type C devices, PD Technology, 480Mbps Data Sync, Quick Charge 3.0 (RCT15A, Black)\",\"2\":\"Sounce Fast Phone Charging Cable & Data Sync USB Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini & iOS Devices\",\"3\":\"boAt Deuce USB 300 2 in 1 Type-C & Micro USB Stress Resistant, Tangle-Free, Sturdy Cable with 3A Fast Charging & 480mbps Data Transmission, 10000+ Bends Lifespan and Extended 1.5m Length(Martian Red)\"},\"category\":{\"0\":\"Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables\",\"1\":\"Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables\",\"2\":\"Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables\",\"3\":\"Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables\"},\"discounted_price\":{\"0\":\"\\u20b9399\",\"1\":\"\\u20b9199\",\"2\":\"\\u20b9199\",\"3\":\"\\u20b9329\"},\"actual_price\":{\"0\":\"\\u20b91,099\",\"1\":\"\\u20b9349\",\"2\":\"\\u20b91,899\",\"3\":\"\\u20b9699\"},\"discount_percentage\":{\"0\":\"64%\",\"1\":\"43%\",\"2\":\"90%\",\"3\":\"53%\"},\"rating\":{\"0\":\"4.2\",\"1\":\"4.0\",\"2\":\"3.9\",\"3\":\"4.2\"},\"rating_count\":{\"0\":\"24,269\",\"1\":\"43,994\",\"2\":\"7,928\",\"3\":\"94,363\"},\"about_product\":{\"0\":\"High Compatibility : Compatible With iPhone 12, 11, X\\/XsMax\\/Xr ,iPhone 8\\/8 Plus,iPhone 7\\/7 Plus,iPhone 6s\\/6s Plus,iPhone 6\\/6 Plus,iPhone 5\\/5s\\/5c\\/se,iPad Pro,iPad Air 1\\/2,iPad mini 1\\/2\\/3,iPod nano7,iPod touch and more apple devices.|Fast Charge&Data Sync : It can charge and sync simultaneously at a rapid speed, Compatible with any charging adaptor, multi-port charging station or power bank.|Durability : Durable nylon braided design with premium aluminum housing and toughened nylon fiber wound tightly around the cord lending it superior durability and adding a bit to its flexibility.|High Security Level : It is designed to fully protect your device from damaging excessive current.Copper core thick+Multilayer shielding, Anti-interference, Protective circuit equipment.|WARRANTY: 12 months warranty and friendly customer services, ensures the long-time enjoyment of your purchase. If you meet any question or problem, please don't hesitate to contact us.\",\"1\":\"Compatible with all Type C enabled devices, be it an android smartphone (Mi, Samsung, Oppo, Vivo, Realme, OnePlus, etc), tablet, laptop (Macbook, Chromebook, etc)|Supports Quick Charging (2.0\\/3.0)|Unbreakable \\u2013 Made of special braided outer with rugged interior bindings, it is ultra-durable cable that won\\u2019t be affected by daily rough usage|Ideal Length \\u2013 It has ideal length of 1.5 meters which is neither too short like your typical 1meter cable or too long like a 2meters cable|Supports maximum 3A fast charging and 480 Mbps data transfer speed|6 months manufacturer warranty from the date of purchase\",\"2\":\"\\u3010 Fast Charger& Data Sync\\u3011-With built-in safety proctections and four-core copper wires promote maximum signal quality and strength and enhance charging & data transfer speed with up to 480 mb\\/s transferring speed.|\\u3010 Compatibility\\u3011-Compatible with iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini & iOS devices.|\\u3010 Sturdy & Durable\\u3011-The jacket and enforced connector made of TPE and premium copper, are resistant to repeatedly bending and coiling.|\\u3010 Ultra High Quality\\u3011: According to the experimental results, the fishbone design can accept at least 20,000 bending and insertion tests for extra protection and durability. Upgraded 3D aluminum connector and exclusive laser welding technology, which to ensure the metal part won't break and also have a tighter connection which fits well even with a protective case on and will never loose connection.|\\u3010 Good After Sales Service\\u3011-Our friendly and reliable customer service will respond to you within 24 hours ! you can purchase with confidence,and every sale includes a 365-day worry-free Service to prove the importance we set on quality.\",\"3\":\"The boAt Deuce USB 300 2 in 1 cable is compatible with smartphones, tablets, PC peripherals, Bluetooth speakers, power banks and all other devices with Type-C as well as Micro USB port|It ensures 3A fast charging and data transmissions with rapid sync at 480 mbps|The premium Nylon braided skin makes it sturdy and invincible against external damage|Its Aluminium alloy shell housing makes it last longer with 10000+ Bends Lifespan with extended frame protection for strain relief|The resilient and flexible design offers a tangle free experience seamlessly|Deuce USB 300 cable offers a perfect 1.5 meters in length for smooth & hassle-free user experience|2 years warranty from the date of purchase\"},\"user_id\":{\"0\":\"AG3D6O4STAQKAY2UVGEUV46KN35Q,AHMY5CWJMMK5BJRBBSNLYT3ONILA,AHCTC6ULH4XB6YHDY6PCH2R772LQ,AGYHHIERNXKA6P5T7CZLXKVPT7IQ,AG4OGOFWXJZTQ2HKYIOCOY3KXF2Q,AENGU523SXMOS7JPDTW52PNNVWGQ,AEQJHCVTNINBS4FKTBGQRQTGTE5Q,AFC3FFC5PKFF5PMA52S3VCHOZ5FQ\",\"1\":\"AECPFYFQVRUWC3KGNLJIOREFP5LQ,AGYYVPDD7YG7FYNBXNGXZJT525AQ,AHONIZU3ICIEHQIGQ6R2VFRSBXOQ,AFPHD2CRPDZMWMBL7WXRSVYWS5JA,AEZ346GX3HJ4O4XNRPHCNHXQURMQ,AEPSWFPNECKO34PUC7I56ITGXR6Q,AHWVEHR5DYLVFTO2KF3IZATFQSWQ,AH4QT33M55677I7ISQOAKEQWACYQ\",\"2\":\"AGU3BBQ2V2DDAMOAKGFAWDDQ6QHA,AESFLDV2PT363T2AQLWQOWZ4N3OA,AHTPQRIMGUD4BYR5YIHBH3CCGEFQ,AEUVWXYP5LT7PZLLZENEO2NODPBQ,AHC7MPW55DOO6WNCOQVA2VHOD26A,AFDI6FRPFBTNBG7BAEB7JDJSMKDQ,AFQKCEEEKXCOHTDG4WUN3XPPHJQQ,AHKUUFNMBZIDLSSPA4FEHIO2EC7Q\",\"3\":\"AEWAZDZZJLQUYVOVGBEUKSLXHQ5A,AG5HTSFRRE6NL3M5SGCUQBP7YSCA,AH725ST5NW2Y4JZPKUNTIJCUK2BA,AHV3TXIFCJPMS4D5JATCEUR266MQ,AGWIGDEMFIIUAOXYY2QATNBSUGHA,AFSTSLQUV4EVEXWKBOLEFHL2H5YQ,AGAKDNBHY2FKX7I4ACRGILU7QL7A,AFNWJUWJRHCC6HN52KMG5AKZY37Q\"},\"user_name\":{\"0\":\"Manav,Adarsh gupta,Sundeep,S.Sayeed Ahmed,jaspreet singh,Khaja moin,Anand,S.ARUMUGAM\",\"1\":\"ArdKn,Nirbhay kumar,Sagar Viswanathan,Asp,Placeholder,BharanI,sonia,Niam\",\"2\":\"Kunal,Himanshu,viswanath,sai niharka,saqib malik,Aashiq,Ramu Challa,Sanjay gupta\",\"3\":\"Omkar dhale,JD,HEMALATHA,Ajwadh a.,amar singh chouhan,Ravi Siddan,Himanshu Goel,Udaykumar\"},\"review_id\":{\"0\":\"R3HXWT0LRP0NMF,R2AJM3LFTLZHFO,R6AQJGUP6P86,R1KD19VHEDV0OR,R3C02RMYQMK6FC,R39GQRVBUZBWGY,R2K9EDOE15QIRJ,R3OI7YT648TL8I\",\"1\":\"RGIQEG07R9HS2,R1SMWZQ86XIN8U,R2J3Y1WL29GWDE,RYGGS0M09S3KY,R17KQRUTAN5DKS,R3AAQGS6HP2QUK,R1HDNOG6TO2CCA,R3PHKXYA5AFEOU\",\"2\":\"R3J3EQQ9TZI5ZJ,R3E7WBGK7ID0KV,RWU79XKQ6I1QF,R25X4TBMPY91LX,R27OK7G99VK0TR,R207CYDCHJJTCJ,R3PCU8XMU173BT,R1IMONDOWRNU5V\",\"3\":\"R3EEUZKKK9J36I,R3HJVYCLYOY554,REDECAZ7AMPQC,R1CLH2ULIVG5U3,R2DMKIBGFKBD6R,RC89B5IAJUTR5,R3B3DDON5FH8DS,R13WAEJDI5RS36\"},\"review_title\":{\"0\":\"Satisfied,Charging is really fast,Value for money,Product review,Good quality,Good product,Good Product,As of now seems good\",\"1\":\"A Good Braided Cable for Your Type C Device,Good quality product from ambrane,Super cable,As,Good quality,Good product,its good,Good quality for the price but one issue with my unit\",\"2\":\"Good speed for earlier versions,Good Product,Working good,Good for the price,Good,Worth for money,Working nice,it's a really nice product\",\"3\":\"Good product,Good one,Nice,Really nice product,Very first time change,Good,Fine product but could be better,Very nice it's charging like jet\"},\"review_content\":{\"0\":\"Looks durable Charging is fine tooNo complains,Charging is really fast, good product.,Till now satisfied with the quality.,This is a good product . The charging speed is slower than the original iPhone cable,Good quality, would recommend,https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T1\\/images\\/I\\/81---F1ZgHL._SY88.jpg,Product had worked well till date and was having no issue.Cable is also sturdy enough...Have asked for replacement and company is doing the same...,Value for money\",\"1\":\"I ordered this cable to connect my phone to Android Auto of car. The cable is really strong and the connection ports are really well made. I already has a Micro USB cable from Ambrane and it's still in good shape. I connected my phone to the car using the cable and it got connected well and no issues. I also connected it to the charging port and yes it has Fast Charging support.,It quality is good at this price and the main thing is that i didn't ever thought that this cable will be so long it's good one and charging power is too good and also supports fast charging,Value for money, with extra length\\ud83d\\udc4d,Good, working fine,Product quality is good,Good,very good,Bought for my daughter's old phone.Brand new cable it was not charging, I already repacked and requested for replacement.I checked again, and there was some green colour paste\\/fungus inside the micro USB connector. I cleaned with an alcoholic and starts working again.Checked the ampere of charging speed got around 1400ma-1500ma - not bad, came with braided 1.5m long cable, pretty impressive for the price.Can't blame the manufacturer.But quality issues by the distributor, they might have stored in very humid place.\",\"2\":\"Not quite durable and sturdy,https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T1\\/images\\/I\\/71rIggrbUCL._SY88.jpg,Working good,https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T1\\/images\\/I\\/61bKp9YO6wL._SY88.jpg,Product,Very nice product,Working well,It's a really nice product\",\"3\":\"Good product,long wire,Charges good,Nice,I bought this cable for Rs.339 worthy product for this price, i tested it in various charger adapters 33w and 18w it supports fast charging as well.,Good,Ok,I had got this at good price on sale on Amazon and product is useful with warranty but for warranty you need to go very far not practical for such a cost and mine micro to type c connector stopped working after few days only.,I like this product\"},\"img_link\":{\"0\":\"https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T1\\/images\\/I\\/51UsScvHQNL._SX300_SY300_QL70_FMwebp_.jpg\",\"1\":\"https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T2\\/images\\/I\\/31zOsqQOAOL._SY445_SX342_QL70_FMwebp_.jpg\",\"2\":\"https:\\/\\/m.media-amazon.com\\/images\\/W\\/WEBP_402378-T1\\/images\\/I\\/31IvNJZnmdL._SY445_SX342_QL70_FMwebp_.jpg\",\"3\":\"https:\\/\\/m.media-amazon.com\\/images\\/I\\/41V5FtEWPkL._SX300_SY300_QL70_FMwebp_.jpg\"},\"product_link\":{\"0\":\"https:\\/\\/www.amazon.in\\/Wayona-Braided-WN3LG1-Syncing-Charging\\/dp\\/B07JW9H4J1\\/ref=sr_1_1?qid=1672909124&s=electronics&sr=1-1\",\"1\":\"https:\\/\\/www.amazon.in\\/Ambrane-Unbreakable-Charging-Braided-Cable\\/dp\\/B098NS6PVG\\/ref=sr_1_2?qid=1672909124&s=electronics&sr=1-2\",\"2\":\"https:\\/\\/www.amazon.in\\/Sounce-iPhone-Charging-Compatible-Devices\\/dp\\/B096MSW6CT\\/ref=sr_1_3?qid=1672909124&s=electronics&sr=1-3\",\"3\":\"https:\\/\\/www.amazon.in\\/Deuce-300-Resistant-Tangle-Free-Transmission\\/dp\\/B08HDJ86NZ\\/ref=sr_1_4?qid=1672909124&s=electronics&sr=1-4\"}}"}}]
true
1
<start_data_description><data_path>amazon-sales-dataset/amazon.csv: <column_names> ['product_id', 'product_name', 'category', 'discounted_price', 'actual_price', 'discount_percentage', 'rating', 'rating_count', 'about_product', 'user_id', 'user_name', 'review_id', 'review_title', 'review_content', 'img_link', 'product_link'] <column_types> {'product_id': 'object', 'product_name': 'object', 'category': 'object', 'discounted_price': 'object', 'actual_price': 'object', 'discount_percentage': 'object', 'rating': 'object', 'rating_count': 'object', 'about_product': 'object', 'user_id': 'object', 'user_name': 'object', 'review_id': 'object', 'review_title': 'object', 'review_content': 'object', 'img_link': 'object', 'product_link': 'object'} <dataframe_Summary> {'product_id': {'count': 1465, 'unique': 1351, 'top': 'B07JW9H4J1', 'freq': 3}, 'product_name': {'count': 1465, 'unique': 1337, 'top': 'Fire-Boltt Ninja Call Pro Plus 1.83" Smart Watch with Bluetooth Calling, AI Voice Assistance, 100 Sports Modes IP67 Rating, 240*280 Pixel High Resolution', 'freq': 5}, 'category': {'count': 1465, 'unique': 211, 'top': 'Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables', 'freq': 233}, 'discounted_price': {'count': 1465, 'unique': 550, 'top': '₹199', 'freq': 53}, 'actual_price': {'count': 1465, 'unique': 449, 'top': '₹999', 'freq': 120}, 'discount_percentage': {'count': 1465, 'unique': 92, 'top': '50%', 'freq': 56}, 'rating': {'count': 1465, 'unique': 28, 'top': '4.1', 'freq': 244}, 'rating_count': {'count': 1463, 'unique': 1143, 'top': '9,378', 'freq': 9}, 'about_product': {'count': 1465, 'unique': 1293, 'top': '[CHARGE & SYNC FUNCTION]- This cable comes with charging & Data sync function|[HIGH QUALITY MATERIAL]- TPE + Nylon Material to make sure that the life of the cable is enhanced significantly|[LONG CORD]- The Cable is extra thick 1.2 meter long, optimized for an easy use for your comfort at home or office|[MORE DURABLE]-This cable is unique interms of design and multi-use and is positioned to provide the best comfort and performance while using|[UNIVERSAL COMPATIBILITY]- Compatible with all devices like iPhone XS, X, XR, 8, 7, 6S, 6, 5S, iPad Pro, iPad mini and iPad Air', 'freq': 6}, 'user_id': {'count': 1465, 'unique': 1194, 'top': 'AHIKJUDTVJ4T6DV6IUGFYZ5LXMPA,AE55KTFVNXYFD5FPYWP2OUPEYNPQ,AEBWA5I4QFCA3P3OBEPMELBGN4GQ,AHMGAC6QM62UXNEOCZIHLHSXPP2Q,AFHROSCGIXUPV3FYQ7H5QOD46Q7Q,AEAMIR3CMSA32IDEINSJKHRNANTA,AF355FTXYAKFH5NYPRTE7SL3WO3Q,AG5DWPD54QGSLWJ6QUFERLPNAX4Q', 'freq': 10}, 'user_name': {'count': 1465, 'unique': 1194, 'top': '$@|\\|TO$|-|,Sethu madhav,Akash Thakur,Burger Planet,Justice ⚖️,indrajyoti d.,Aditya Kumar,E.C.GEORGE', 'freq': 10}, 'review_id': {'count': 1465, 'unique': 1194, 'top': 'R3F4T5TRYPTMIG,R3DQIEC603E7AY,R1O4Z15FD40PV5,RDVX50PD4CTFE,R3H6WKG0TA5CGU,R3Q3L1KP5QWPV3,RU0LU2PAIIME,R20FTANBPFA653', 'freq': 10}, 'review_title': {'count': 1465, 'unique': 1194, 'top': 'Worked on iPhone 7 and didn’t work on XR,Good one,Dull Physical Looks,Just Buy it,Go for it,About the product,Get charging cable at the price,Working well.', 'freq': 10}, 'review_content': {'count': 1465, 'unique': 1212, 'top': "I am not big on camera usage, personally. I was even mentally prepared for a bad camera, based on some reviews here. But I was pleasantly surprised that camera clicks good photos. They are not awesome, but they are decent photos that can even be shared.Now coming to my biggest grouse; heating issue. The phone started heating up while charging, but it was just a little and so I could have ignored it. But then it started heating up more and got me very concerned. I even ordered a replacement thinking I got a defective piece. But then, after further tests, I found that it is heating more when I download huge amounts of data, for example, when I restore data of my old phone, from back up. This is ok with me as, I don't perform huge data loads regularly, definitely not on phone. Then I tested by running tasks I usually perform such as checking office mails, attending office meeting on phone, watching a video from Amazon Prime, and so on. The phone did not heat up even a little. Personally, this is good for me.At this price range, this is a good phone. But if you are camera heavy user and expect to perform heavy downloads frequently, this phone may not for you. I am personally satisfied with this phone as it works for my type of usage. I will not go into plus points of this phone as they are covered by other reviews already. I am only attempting to clarify about how this phone can suit you (or not) in terms of camera and heating. I had many questions about these aspects before buying. Perhaps this review will help you make an informed decision to buy (or avoid). Cheers.,Display - BeautyCamera - decentPerformance - AmazingBattery - ok (in 5000mah u expect more tbh)Overall good phone...Also after 1day of use, i found some network connectivity issue in my jiosim, which I'm using right now in this phone, but I'll keep update this review after 1month of usage!,It's a decent mobile under this price but few things worried me , weight of the phone, too many procedure to change some settings, no screen casting. Apart from that it has good touch, a decent camera for day light , battery life is good.,I bought this smartphone for my mom. Samusung interface is very handful for easy use. Battery is superb, last whole day. Camera is mediocre but provide original colour pictures. All in all satisfied with this smartphone that i got in sale for 9499.,Unable to do video call within same service provider as in VOLTE within same service provider video call feature is available.,Product is fine. Nothing Fancy but for the budget it is a good phone.,BATTERY : more than enough for normal use Not sure in gamingCAMERA : good in this segment , can record videos in FHD 30fpsDISPLAY : since it's a LCD display the quality is a bit less , but goodV RAM : you can add upto 2gb of virtual ram but have to sacrifice your storage Space to use it OVERALL A GOOD BUDGET PHONE,Finger print is working speedy battery backup is good camera quality is also good", 'freq': 8}, 'img_link': {'count': 1465, 'unique': 1412, 'top': 'https://m.media-amazon.com/images/I/413sCRKobNL._SX300_SY300_QL70_ML2_.jpg', 'freq': 3}, 'product_link': {'count': 1465, 'unique': 1465, 'top': 'https://www.amazon.in/Wayona-Braided-WN3LG1-Syncing-Charging/dp/B07JW9H4J1/ref=sr_1_1?qid=1672909124&s=electronics&sr=1-1', 'freq': 1}} <dataframe_info> RangeIndex: 1465 entries, 0 to 1464 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 product_id 1465 non-null object 1 product_name 1465 non-null object 2 category 1465 non-null object 3 discounted_price 1465 non-null object 4 actual_price 1465 non-null object 5 discount_percentage 1465 non-null object 6 rating 1465 non-null object 7 rating_count 1463 non-null object 8 about_product 1465 non-null object 9 user_id 1465 non-null object 10 user_name 1465 non-null object 11 review_id 1465 non-null object 12 review_title 1465 non-null object 13 review_content 1465 non-null object 14 img_link 1465 non-null object 15 product_link 1465 non-null object dtypes: object(16) memory usage: 183.2+ KB <some_examples> {'product_id': {'0': 'B07JW9H4J1', '1': 'B098NS6PVG', '2': 'B096MSW6CT', '3': 'B08HDJ86NZ'}, 'product_name': {'0': 'Wayona Nylon Braided USB to Lightning Fast Charging and Data Sync Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini (3 FT Pack of 1, Grey)', '1': 'Ambrane Unbreakable 60W / 3A Fast Charging 1.5m Braided Type C Cable for Smartphones, Tablets, Laptops & other Type C devices, PD Technology, 480Mbps Data Sync, Quick Charge 3.0 (RCT15A, Black)', '2': 'Sounce Fast Phone Charging Cable & Data Sync USB Cable Compatible for iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini & iOS Devices', '3': 'boAt Deuce USB 300 2 in 1 Type-C & Micro USB Stress Resistant, Tangle-Free, Sturdy Cable with 3A Fast Charging & 480mbps Data Transmission, 10000+ Bends Lifespan and Extended 1.5m Length(Martian Red)'}, 'category': {'0': 'Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables', '1': 'Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables', '2': 'Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables', '3': 'Computers&Accessories|Accessories&Peripherals|Cables&Accessories|Cables|USBCables'}, 'discounted_price': {'0': '₹399', '1': '₹199', '2': '₹199', '3': '₹329'}, 'actual_price': {'0': '₹1,099', '1': '₹349', '2': '₹1,899', '3': '₹699'}, 'discount_percentage': {'0': '64%', '1': '43%', '2': '90%', '3': '53%'}, 'rating': {'0': '4.2', '1': '4.0', '2': '3.9', '3': '4.2'}, 'rating_count': {'0': '24,269', '1': '43,994', '2': '7,928', '3': '94,363'}, 'about_product': {'0': "High Compatibility : Compatible With iPhone 12, 11, X/XsMax/Xr ,iPhone 8/8 Plus,iPhone 7/7 Plus,iPhone 6s/6s Plus,iPhone 6/6 Plus,iPhone 5/5s/5c/se,iPad Pro,iPad Air 1/2,iPad mini 1/2/3,iPod nano7,iPod touch and more apple devices.|Fast Charge&Data Sync : It can charge and sync simultaneously at a rapid speed, Compatible with any charging adaptor, multi-port charging station or power bank.|Durability : Durable nylon braided design with premium aluminum housing and toughened nylon fiber wound tightly around the cord lending it superior durability and adding a bit to its flexibility.|High Security Level : It is designed to fully protect your device from damaging excessive current.Copper core thick+Multilayer shielding, Anti-interference, Protective circuit equipment.|WARRANTY: 12 months warranty and friendly customer services, ensures the long-time enjoyment of your purchase. If you meet any question or problem, please don't hesitate to contact us.", '1': 'Compatible with all Type C enabled devices, be it an android smartphone (Mi, Samsung, Oppo, Vivo, Realme, OnePlus, etc), tablet, laptop (Macbook, Chromebook, etc)|Supports Quick Charging (2.0/3.0)|Unbreakable – Made of special braided outer with rugged interior bindings, it is ultra-durable cable that won’t be affected by daily rough usage|Ideal Length – It has ideal length of 1.5 meters which is neither too short like your typical 1meter cable or too long like a 2meters cable|Supports maximum 3A fast charging and 480 Mbps data transfer speed|6 months manufacturer warranty from the date of purchase', '2': "【 Fast Charger& Data Sync】-With built-in safety proctections and four-core copper wires promote maximum signal quality and strength and enhance charging & data transfer speed with up to 480 mb/s transferring speed.|【 Compatibility】-Compatible with iPhone 13, 12,11, X, 8, 7, 6, 5, iPad Air, Pro, Mini & iOS devices.|【 Sturdy & Durable】-The jacket and enforced connector made of TPE and premium copper, are resistant to repeatedly bending and coiling.|【 Ultra High Quality】: According to the experimental results, the fishbone design can accept at least 20,000 bending and insertion tests for extra protection and durability. Upgraded 3D aluminum connector and exclusive laser welding technology, which to ensure the metal part won't break and also have a tighter connection which fits well even with a protective case on and will never loose connection.|【 Good After Sales Service】-Our friendly and reliable customer service will respond to you within 24 hours ! you can purchase with confidence,and every sale includes a 365-day worry-free Service to prove the importance we set on quality.", '3': 'The boAt Deuce USB 300 2 in 1 cable is compatible with smartphones, tablets, PC peripherals, Bluetooth speakers, power banks and all other devices with Type-C as well as Micro USB port|It ensures 3A fast charging and data transmissions with rapid sync at 480 mbps|The premium Nylon braided skin makes it sturdy and invincible against external damage|Its Aluminium alloy shell housing makes it last longer with 10000+ Bends Lifespan with extended frame protection for strain relief|The resilient and flexible design offers a tangle free experience seamlessly|Deuce USB 300 cable offers a perfect 1.5 meters in length for smooth & hassle-free user experience|2 years warranty from the date of purchase'}, 'user_id': {'0': 'AG3D6O4STAQKAY2UVGEUV46KN35Q,AHMY5CWJMMK5BJRBBSNLYT3ONILA,AHCTC6ULH4XB6YHDY6PCH2R772LQ,AGYHHIERNXKA6P5T7CZLXKVPT7IQ,AG4OGOFWXJZTQ2HKYIOCOY3KXF2Q,AENGU523SXMOS7JPDTW52PNNVWGQ,AEQJHCVTNINBS4FKTBGQRQTGTE5Q,AFC3FFC5PKFF5PMA52S3VCHOZ5FQ', '1': 'AECPFYFQVRUWC3KGNLJIOREFP5LQ,AGYYVPDD7YG7FYNBXNGXZJT525AQ,AHONIZU3ICIEHQIGQ6R2VFRSBXOQ,AFPHD2CRPDZMWMBL7WXRSVYWS5JA,AEZ346GX3HJ4O4XNRPHCNHXQURMQ,AEPSWFPNECKO34PUC7I56ITGXR6Q,AHWVEHR5DYLVFTO2KF3IZATFQSWQ,AH4QT33M55677I7ISQOAKEQWACYQ', '2': 'AGU3BBQ2V2DDAMOAKGFAWDDQ6QHA,AESFLDV2PT363T2AQLWQOWZ4N3OA,AHTPQRIMGUD4BYR5YIHBH3CCGEFQ,AEUVWXYP5LT7PZLLZENEO2NODPBQ,AHC7MPW55DOO6WNCOQVA2VHOD26A,AFDI6FRPFBTNBG7BAEB7JDJSMKDQ,AFQKCEEEKXCOHTDG4WUN3XPPHJQQ,AHKUUFNMBZIDLSSPA4FEHIO2EC7Q', '3': 'AEWAZDZZJLQUYVOVGBEUKSLXHQ5A,AG5HTSFRRE6NL3M5SGCUQBP7YSCA,AH725ST5NW2Y4JZPKUNTIJCUK2BA,AHV3TXIFCJPMS4D5JATCEUR266MQ,AGWIGDEMFIIUAOXYY2QATNBSUGHA,AFSTSLQUV4EVEXWKBOLEFHL2H5YQ,AGAKDNBHY2FKX7I4ACRGILU7QL7A,AFNWJUWJRHCC6HN52KMG5AKZY37Q'}, 'user_name': {'0': 'Manav,Adarsh gupta,Sundeep,S.Sayeed Ahmed,jaspreet singh,Khaja moin,Anand,S.ARUMUGAM', '1': 'ArdKn,Nirbhay kumar,Sagar Viswanathan,Asp,Placeholder,BharanI,sonia,Niam', '2': 'Kunal,Himanshu,viswanath,sai niharka,saqib malik,Aashiq,Ramu Challa,Sanjay gupta', '3': 'Omkar dhale,JD,HEMALATHA,Ajwadh a.,amar singh chouhan,Ravi Siddan,Himanshu Goel,Udaykumar'}, 'review_id': {'0': 'R3HXWT0LRP0NMF,R2AJM3LFTLZHFO,R6AQJGUP6P86,R1KD19VHEDV0OR,R3C02RMYQMK6FC,R39GQRVBUZBWGY,R2K9EDOE15QIRJ,R3OI7YT648TL8I', '1': 'RGIQEG07R9HS2,R1SMWZQ86XIN8U,R2J3Y1WL29GWDE,RYGGS0M09S3KY,R17KQRUTAN5DKS,R3AAQGS6HP2QUK,R1HDNOG6TO2CCA,R3PHKXYA5AFEOU', '2': 'R3J3EQQ9TZI5ZJ,R3E7WBGK7ID0KV,RWU79XKQ6I1QF,R25X4TBMPY91LX,R27OK7G99VK0TR,R207CYDCHJJTCJ,R3PCU8XMU173BT,R1IMONDOWRNU5V', '3': 'R3EEUZKKK9J36I,R3HJVYCLYOY554,REDECAZ7AMPQC,R1CLH2ULIVG5U3,R2DMKIBGFKBD6R,RC89B5IAJUTR5,R3B3DDON5FH8DS,R13WAEJDI5RS36'}, 'review_title': {'0': 'Satisfied,Charging is really fast,Value for money,Product review,Good quality,Good product,Good Product,As of now seems good', '1': 'A Good Braided Cable for Your Type C Device,Good quality product from ambrane,Super cable,As,Good quality,Good product,its good,Good quality for the price but one issue with my unit', '2': "Good speed for earlier versions,Good Product,Working good,Good for the price,Good,Worth for money,Working nice,it's a really nice product", '3': "Good product,Good one,Nice,Really nice product,Very first time change,Good,Fine product but could be better,Very nice it's charging like jet"}, 'review_content': {'0': 'Looks durable Charging is fine tooNo complains,Charging is really fast, good product.,Till now satisfied with the quality.,This is a good product . The charging speed is slower than the original iPhone cable,Good quality, would recommend,https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/81---F1ZgHL._SY88.jpg,Product had worked well till date and was having no issue.Cable is also sturdy enough...Have asked for replacement and company is doing the same...,Value for money', '1': "I ordered this cable to connect my phone to Android Auto of car. The cable is really strong and the connection ports are really well made. I already has a Micro USB cable from Ambrane and it's still in good shape. I connected my phone to the car using the cable and it got connected well and no issues. I also connected it to the charging port and yes it has Fast Charging support.,It quality is good at this price and the main thing is that i didn't ever thought that this cable will be so long it's good one and charging power is too good and also supports fast charging,Value for money, with extra length👍,Good, working fine,Product quality is good,Good,very good,Bought for my daughter's old phone.Brand new cable it was not charging, I already repacked and requested for replacement.I checked again, and there was some green colour paste/fungus inside the micro USB connector. I cleaned with an alcoholic and starts working again.Checked the ampere of charging speed got around 1400ma-1500ma - not bad, came with braided 1.5m long cable, pretty impressive for the price.Can't blame the manufacturer.But quality issues by the distributor, they might have stored in very humid place.", '2': "Not quite durable and sturdy,https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/71rIggrbUCL._SY88.jpg,Working good,https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/61bKp9YO6wL._SY88.jpg,Product,Very nice product,Working well,It's a really nice product", '3': 'Good product,long wire,Charges good,Nice,I bought this cable for Rs.339 worthy product for this price, i tested it in various charger adapters 33w and 18w it supports fast charging as well.,Good,Ok,I had got this at good price on sale on Amazon and product is useful with warranty but for warranty you need to go very far not practical for such a cost and mine micro to type c connector stopped working after few days only.,I like this product'}, 'img_link': {'0': 'https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/51UsScvHQNL._SX300_SY300_QL70_FMwebp_.jpg', '1': 'https://m.media-amazon.com/images/W/WEBP_402378-T2/images/I/31zOsqQOAOL._SY445_SX342_QL70_FMwebp_.jpg', '2': 'https://m.media-amazon.com/images/W/WEBP_402378-T1/images/I/31IvNJZnmdL._SY445_SX342_QL70_FMwebp_.jpg', '3': 'https://m.media-amazon.com/images/I/41V5FtEWPkL._SX300_SY300_QL70_FMwebp_.jpg'}, 'product_link': {'0': 'https://www.amazon.in/Wayona-Braided-WN3LG1-Syncing-Charging/dp/B07JW9H4J1/ref=sr_1_1?qid=1672909124&s=electronics&sr=1-1', '1': 'https://www.amazon.in/Ambrane-Unbreakable-Charging-Braided-Cable/dp/B098NS6PVG/ref=sr_1_2?qid=1672909124&s=electronics&sr=1-2', '2': 'https://www.amazon.in/Sounce-iPhone-Charging-Compatible-Devices/dp/B096MSW6CT/ref=sr_1_3?qid=1672909124&s=electronics&sr=1-3', '3': 'https://www.amazon.in/Deuce-300-Resistant-Tangle-Free-Transmission/dp/B08HDJ86NZ/ref=sr_1_4?qid=1672909124&s=electronics&sr=1-4'}} <end_description>
1,039
0
5,309
1,039
129174592
<jupyter_start><jupyter_text>Historical Weather Data for Indian Cities ### Context The dataset was created by keeping in mind the necessity of such historical weather data in the community. The datasets for top 8 Indian cities as per the population. ### Content The dataset was used with the help of the worldweatheronline.com API and the wwo_hist package. The datasets contain hourly weather data from 01-01-2009 to 01-01-2020. The data of each city is for more than 10 years. This data can be used to visualize the change in data due to global warming or can be used to predict the weather for upcoming days, weeks, months, seasons, etc. Note : The data was extracted with the help of worldweatheronline.com API and I can't guarantee about the accuracy of the data. Kaggle dataset identifier: historical-weather-data-for-indian-cities <jupyter_script># **Enhancing Weather # Predictions through # Machine Learning and Data # Optimization in Python** # Team Members # 1. Vansita Soni (21STUJPCS0025) # 2. Rajendra Saini # 3. Aditya Raj Singh # 4. Sanjay Sharma # 5. Khushi Kumari # 6. Kartikeyan Ajmera # # Importing Needed Packages # The first step is to import the required packages, such as warnings, numpy, pandas, matplotlib.pyplot, sklearn, LinearRegression, and preprocessing. These packages will be used later in the code. import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.linear_model import LinearRegression from sklearn import preprocessing # # Reading CSV file as weather_df and making date_time column as index of dataframe # The second step is to read the CSV file 'delhi.csv' and store it as the dataframe 'weather_df'. Here, the 'parse_dates' parameter is used to convert the 'date_time' column into a datetime format and 'index_col' parameter is used to set the 'date_time' column as the index of the dataframe. weather_df = pd.read_csv( "/kaggle/input/historical-weather-data-for-indian-cities/delhi.csv", parse_dates=["date_time"], index_col="date_time", ) weather_df.tail(5) # # Checking columns in our dataframe # The 'columns' parameter is used to check the column names of the dataframe. weather_df.columns # ## Now shape # The 'shape' parameter is used to check the dimensions of the dataframe, i.e., number of rows and columns. weather_df.shape # **Describing the dataframe:** # The 'describe' parameter is used to display the summary statistics of the dataframe. weather_df.describe() # # Checking is there any null values in dataset # The 'isnull' and 'any' parameters are used to check if there are any null values in the dataframe. weather_df.isnull().any() # ### Now lets separate the feature (i.e. temperature) to be predicted from the rest of the featured. weather_x stores the rest of the dataset while weather_y has temperature column. # Here, a new dataframe 'weather_df_num' is created with only the features that are required for the prediction. The 'loc' parameter is used to select the required columns, i.e., 'maxtempC', 'mintempC', 'cloudcover', 'humidity', 'tempC', 'sunHour', 'HeatIndexC', 'precipMM', 'pressure', and 'windspeedKmph'. The 'head' parameter is used to display the first five rows of the new dataframe. weather_df_num = weather_df.loc[ :, [ "maxtempC", "mintempC", "cloudcover", "humidity", "tempC", "sunHour", "HeatIndexC", "precipMM", "pressure", "windspeedKmph", ], ] weather_df_num.head() # # Shape of new dataframe # The 'shape' parameter is used to display the dimensions of the new dataframe. weather_df_num.shape # # Columns in new dataframe # The 'columns' parameter is used to display the column names of the new dataframe. weather_df_num.columns # ## Ploting all the column values # The 'plot' parameter is used to display the line plots of all the columns in the dataframe weather_df_num.plot(subplots=True, figsize=(25, 20)) # # Ploting all the column values for 1 year # The 'resample' parameter is used to resample the data by day and 'fillna' parameter is used to fill any missing values with the previous value. The resulting dataframe is plotted using the 'plot' parameter. weather_df_num["2019":"2020"].resample("D").fillna(method="pad").plot( subplots=True, figsize=(25, 20) ) weather_df_num.hist(bins=10, figsize=(15, 15)) weth = weather_df_num["2019":"2020"] weth.head() weather_y = weather_df_num.pop("tempC") weather_x = weather_df_num # ### Now our dataset is prepared and it is ready to be fed to the model for training.it’s time to split the dataset into training and testing. train_X, test_X, train_y, test_y = train_test_split( weather_x, weather_y, test_size=0.2, random_state=4 ) train_X.shape train_y.shape # ### train_x has all the features except temperature and train_y has the corresponding temperature for those features. in supervised machine learning we first feed the model with input and associated output and then we check with a new input. train_y.head() # This code snippet is using three different machine learning models to predict the temperature based on given features. Let's go through the code and understand each line and its working for all three models. # Firstly, the code imports the required libraries for the implementation of the model. The sklearn library is used to import the three different machine learning models - RandomForestRegressor, DecisionTreeRegressor, and LinearRegression. The numpy and pandas libraries are used for handling data and numerical computations. The matplotlib library is used for data visualization purposes. # ``` # from sklearn.ensemble import RandomForestRegressor # from sklearn.tree import DecisionTreeRegressor # from sklearn.linear_model import LinearRegression # import numpy as np # import pandas as pd # import matplotlib.pyplot as plt # ``` # Next, the code instantiates the RandomForestRegressor model and sets the parameters such as max_depth, random_state, and n_estimators to tune the model's performance. The fit method is called on the training data to train the model. # ``` # regr = RandomForestRegressor(max_depth=90, random_state=0, n_estimators=100) # regr.fit(train_X, train_y) # ``` # Similarly, the DecisionTreeRegressor model is instantiated, and the fit method is called on the training data to train the model. # ``` # regressor = DecisionTreeRegressor(random_state=0) # regressor.fit(train_X, train_y) # ``` # Finally, the LinearRegression model is instantiated, and the fit method is called on the training data to train the model. # ``` # model = LinearRegression() # model.fit(train_X, train_y) # ``` # After training the models, the code predicts the temperature based on the test data using each of the three models. The predict method is called on the trained models to predict the temperature. # ``` # prediction3 = regr.predict(test_X) # prediction2 = regressor.predict(test_X) # prediction = model.predict(test_X) # ``` # The code then calculates the mean absolute error for each of the three models to evaluate the models' performance. # ``` # np.mean(np.absolute(prediction3 - test_y)) # np.mean(np.absolute(prediction2 - test_y)) # np.mean(np.absolute(prediction - test_y)) # ``` # Similarly, the code calculates the variance score for each of the three models to evaluate the models' performance. # ``` # regr.score(test_X, test_y) # regressor.score(test_X, test_y) # model.score(test_X, test_y) # ``` # The code then rounds the predicted values to two decimal places and creates a dataframe to display the actual and predicted temperature values for each of the three models. # ``` # for i in range(len(prediction3)): # prediction3[i] = round(prediction3[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction3, 'diff': (test_y - prediction3)}) # for i in range(len(prediction2)): # prediction2[i] = round(prediction2[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction2, 'diff': (test_y - prediction2)}) # for i in range(len(prediction)): # prediction[i] = round(prediction[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction, 'diff': (test_y - prediction)}) # ``` # Lastly, the code uses the matplotlib library to visualize the scatter plot for three features - minimum temperature, heat index, and pressure. # ``` # plt.scatter(weth.mintempC, weth.tempC) # plt.xlabel("Minimum Temperature") # plt.ylabel("Temperature") # plt.show() # plt.scatter(weth.HeatIndexC, weth.tempC) # plt.xlabel("Heat Index") # plt.ylabel("Temperature") # plt.show() # plt.scatter(weth.pressure, weth.tempC) # plt.xlabel("Minimum Temperature") # plt.ylabel("Temperature") # plt.show() # # Multiple Linear Regression # the code uses the matplotlib library to visualize the scatter plot for three features - minimum temperature, heat index, and pressure. # # How Multiple regression model algo. work # In a multiple regression model, **the predicted output variable (often denoted as Y)** is a **linear function of the input variables (often denoted as X1, X2, X3, ..., Xp)**, with an **additional constant term (often denoted as β0)** included as an intercept. The equation for the model can be written as: # **Y = β0 + β1X1 + β2X2 + β3X3 + ... + βpXp + ε** # where:- **Y** is the predicted output variable (often called the dependent variable or response variable).- **β0** is the intercept, which represents the predicted value of Y when all input variables are zero.- **β1, β2, β3, ..., βp** are the coefficients or weights assigned to each input variable, which represent the change in the predicted value of Y associated with a one-unit change in the corresponding input variable.- **X1, X2, X3, ..., Xp** are the input variables (often called the independent variables or predictors).- ε is the error term, which represents the random variability or noise in the relationship between the input variables and the output variable. # To estimate the values of the coefficients **β0, β1, β2, β3, ..., βp**, we use a method called least squares regression, which minimizes the sum of squared errors between the predicted and actual output values in the training data. This involves solving a system of linear equations to find the values of the coefficients that minimize the residual sum of squares (RSS). # Once the coefficients are estimated, we can use the model to make predictions on new data by plugging in the input values and solving for the predicted output value using the above equation. plt.scatter(weth.mintempC, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() plt.scatter(weth.HeatIndexC, weth.tempC) plt.xlabel("Heat Index") plt.ylabel("Temperature") plt.show() plt.scatter(weth.pressure, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() plt.scatter(weth.mintempC, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() model = LinearRegression() model.fit(train_X, train_y) prediction = model.predict(test_X) # calculating error np.mean(np.absolute(prediction - test_y)) print("Variance score: %.2f" % model.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction)): prediction[i] = round(prediction[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction, "Difference": (test_y - prediction)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() # # Decision Tree Regression # **Let's denote the input variables as X = [X1, X2, ..., Xp]** and the **output variable as Y**. A decision tree can be represented by a set of binary decision rules that partition the input space into non-overlapping regions. For each region, we assign a constant value that represents the predicted output value for all input values in that region. # The decision rules can be represented as a series of if-then statements, where each statement tests the value of one input variable and branches the tree accordingly. For example, a simple decision tree for a single input variable X1 might have the following structure: # **if X1 <= c1 then Y = y1** # **else Y = y2** # where c1 is a constant threshold value for X1, and y1 and y2 are constant values representing the predicted output value for X1 c1, respectively. # To build a decision tree regression model, we use an algorithm to recursively partition the input space into smaller regions based on the input variables that are most predictive of the output variable. The algorithm selects the best split point for each input variable based on some criterion, such as the reduction in mean squared error or the increase in R-squared value. The tree is grown until a stopping criterion is met, such as reaching a minimum node size or a maximum tree depth. # How Decition tree regression model algo. work from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state=0) regressor.fit(train_X, train_y) prediction2 = regressor.predict(test_X) np.mean(np.absolute(prediction2 - test_y)) print("Variance score: %.2f" % regressor.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction2)): prediction[i] = round(prediction2[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction2, "Difference": (test_y - prediction2)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() # # Random Forest Regression # Let's denote the input variables as X = [X1, X2, ..., Xp] and the output variable as Y. To build a random forest regression model, we first create a set of N decision trees T1, T2, ..., TN, where each tree is built using a bootstrap sample of the training data and a random subset of the input variables. The trees are built independently of each other, and the bootstrap sampling ensures that each tree sees a slightly different subset of the training data. # For each tree Ti, we use the same algorithm as in decision tree regression to recursively partition the input space into smaller regions based on the input variables that are most predictive of the output variable. The tree is grown until a stopping criterion is met, such as reaching a minimum node size or a maximum tree depth. # To make a prediction on new data, we pass the data through each of the N decision trees, and obtain a prediction for each tree. The predictions are then aggregated using some aggregation rule, such as taking the mean or median of the predictions. This final prediction represents the output of the random forest regression model. # The aggregation rule can be chosen based on the properties of the data and the goals of the analysis. For example, taking the mean of the predictions tends to produce smoother predictions that are less sensitive to outliers, while taking the median tends to be more robust to extreme values. # How Random forest tree regression model algo. work from sklearn.ensemble import RandomForestRegressor regr = RandomForestRegressor(max_depth=90, random_state=0, n_estimators=100) regr.fit(train_X, train_y) prediction3 = regr.predict(test_X) np.mean(np.absolute(prediction3 - test_y)) print("Variance score: %.2f" % regr.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction3)): prediction[i] = round(prediction3[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction3, "Difference": (test_y - prediction3)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() from sklearn.metrics import r2_score # # Calculating R2-score for Multiple Linear Regression print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction)) # # Calculating R2-score for Decision Tree Regression print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction2 - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction2 - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction2)) # # Calculating R2-score for Random Forest Regression from sklearn.metrics import r2_score print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction3 - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction3 - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction3))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/174/129174592.ipynb
historical-weather-data-for-indian-cities
hiteshsoneji
[{"Id": 129174592, "ScriptId": 37423813, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14462421, "CreationDate": "05/11/2023 14:38:38", "VersionNumber": 5.0, "Title": "WF-COA", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 327.0, "LinesInsertedFromPrevious": 29.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 298.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184989043, "KernelVersionId": 129174592, "SourceDatasetVersionId": 1129180}]
[{"Id": 1129180, "DatasetId": 635203, "DatasourceVersionId": 1159657, "CreatorUserId": 4267922, "LicenseName": "Other (specified in description)", "CreationDate": "05/04/2020 12:43:21", "VersionNumber": 1.0, "Title": "Historical Weather Data for Indian Cities", "Slug": "historical-weather-data-for-indian-cities", "Subtitle": "Historical weather data for top 8 indian cities per population", "Description": "### Context\n\nThe dataset was created by keeping in mind the necessity of such historical weather data in the community. The datasets for top 8 Indian cities as per the population. \n\n\n### Content\n\nThe dataset was used with the help of the worldweatheronline.com API and the wwo_hist package. The datasets contain hourly weather data from 01-01-2009 to 01-01-2020. The data of each city is for more than 10 years. This data can be used to visualize the change in data due to global warming or can be used to predict the weather for upcoming days, weeks, months, seasons, etc.\nNote : The data was extracted with the help of worldweatheronline.com API and I can't guarantee about the accuracy of the data.\n\n\n### Acknowledgements\n\nThe data is owned by worldweatheronline.com and is extracted with the help of their API. \n\n\n### Inspiration\n\nThe main target of this dataset can be used to predict weather for the next day or week with huge amounts of data provided in the dataset. Furthermore, this data can also be used to make visualization which would help to understand the impact of global warming over the various aspects of the weather like precipitation, humidity, temperature, etc.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 635203, "CreatorUserId": 4267922, "OwnerUserId": 4267922.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1129180.0, "CurrentDatasourceVersionId": 1159657.0, "ForumId": 649466, "Type": 2, "CreationDate": "05/04/2020 12:43:21", "LastActivityDate": "05/04/2020", "TotalViews": 21168, "TotalDownloads": 2732, "TotalVotes": 39, "TotalKernels": 3}]
[{"Id": 4267922, "UserName": "hiteshsoneji", "DisplayName": "Hitesh Soneji", "RegisterDate": "12/30/2019", "PerformanceTier": 1}]
# **Enhancing Weather # Predictions through # Machine Learning and Data # Optimization in Python** # Team Members # 1. Vansita Soni (21STUJPCS0025) # 2. Rajendra Saini # 3. Aditya Raj Singh # 4. Sanjay Sharma # 5. Khushi Kumari # 6. Kartikeyan Ajmera # # Importing Needed Packages # The first step is to import the required packages, such as warnings, numpy, pandas, matplotlib.pyplot, sklearn, LinearRegression, and preprocessing. These packages will be used later in the code. import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.linear_model import LinearRegression from sklearn import preprocessing # # Reading CSV file as weather_df and making date_time column as index of dataframe # The second step is to read the CSV file 'delhi.csv' and store it as the dataframe 'weather_df'. Here, the 'parse_dates' parameter is used to convert the 'date_time' column into a datetime format and 'index_col' parameter is used to set the 'date_time' column as the index of the dataframe. weather_df = pd.read_csv( "/kaggle/input/historical-weather-data-for-indian-cities/delhi.csv", parse_dates=["date_time"], index_col="date_time", ) weather_df.tail(5) # # Checking columns in our dataframe # The 'columns' parameter is used to check the column names of the dataframe. weather_df.columns # ## Now shape # The 'shape' parameter is used to check the dimensions of the dataframe, i.e., number of rows and columns. weather_df.shape # **Describing the dataframe:** # The 'describe' parameter is used to display the summary statistics of the dataframe. weather_df.describe() # # Checking is there any null values in dataset # The 'isnull' and 'any' parameters are used to check if there are any null values in the dataframe. weather_df.isnull().any() # ### Now lets separate the feature (i.e. temperature) to be predicted from the rest of the featured. weather_x stores the rest of the dataset while weather_y has temperature column. # Here, a new dataframe 'weather_df_num' is created with only the features that are required for the prediction. The 'loc' parameter is used to select the required columns, i.e., 'maxtempC', 'mintempC', 'cloudcover', 'humidity', 'tempC', 'sunHour', 'HeatIndexC', 'precipMM', 'pressure', and 'windspeedKmph'. The 'head' parameter is used to display the first five rows of the new dataframe. weather_df_num = weather_df.loc[ :, [ "maxtempC", "mintempC", "cloudcover", "humidity", "tempC", "sunHour", "HeatIndexC", "precipMM", "pressure", "windspeedKmph", ], ] weather_df_num.head() # # Shape of new dataframe # The 'shape' parameter is used to display the dimensions of the new dataframe. weather_df_num.shape # # Columns in new dataframe # The 'columns' parameter is used to display the column names of the new dataframe. weather_df_num.columns # ## Ploting all the column values # The 'plot' parameter is used to display the line plots of all the columns in the dataframe weather_df_num.plot(subplots=True, figsize=(25, 20)) # # Ploting all the column values for 1 year # The 'resample' parameter is used to resample the data by day and 'fillna' parameter is used to fill any missing values with the previous value. The resulting dataframe is plotted using the 'plot' parameter. weather_df_num["2019":"2020"].resample("D").fillna(method="pad").plot( subplots=True, figsize=(25, 20) ) weather_df_num.hist(bins=10, figsize=(15, 15)) weth = weather_df_num["2019":"2020"] weth.head() weather_y = weather_df_num.pop("tempC") weather_x = weather_df_num # ### Now our dataset is prepared and it is ready to be fed to the model for training.it’s time to split the dataset into training and testing. train_X, test_X, train_y, test_y = train_test_split( weather_x, weather_y, test_size=0.2, random_state=4 ) train_X.shape train_y.shape # ### train_x has all the features except temperature and train_y has the corresponding temperature for those features. in supervised machine learning we first feed the model with input and associated output and then we check with a new input. train_y.head() # This code snippet is using three different machine learning models to predict the temperature based on given features. Let's go through the code and understand each line and its working for all three models. # Firstly, the code imports the required libraries for the implementation of the model. The sklearn library is used to import the three different machine learning models - RandomForestRegressor, DecisionTreeRegressor, and LinearRegression. The numpy and pandas libraries are used for handling data and numerical computations. The matplotlib library is used for data visualization purposes. # ``` # from sklearn.ensemble import RandomForestRegressor # from sklearn.tree import DecisionTreeRegressor # from sklearn.linear_model import LinearRegression # import numpy as np # import pandas as pd # import matplotlib.pyplot as plt # ``` # Next, the code instantiates the RandomForestRegressor model and sets the parameters such as max_depth, random_state, and n_estimators to tune the model's performance. The fit method is called on the training data to train the model. # ``` # regr = RandomForestRegressor(max_depth=90, random_state=0, n_estimators=100) # regr.fit(train_X, train_y) # ``` # Similarly, the DecisionTreeRegressor model is instantiated, and the fit method is called on the training data to train the model. # ``` # regressor = DecisionTreeRegressor(random_state=0) # regressor.fit(train_X, train_y) # ``` # Finally, the LinearRegression model is instantiated, and the fit method is called on the training data to train the model. # ``` # model = LinearRegression() # model.fit(train_X, train_y) # ``` # After training the models, the code predicts the temperature based on the test data using each of the three models. The predict method is called on the trained models to predict the temperature. # ``` # prediction3 = regr.predict(test_X) # prediction2 = regressor.predict(test_X) # prediction = model.predict(test_X) # ``` # The code then calculates the mean absolute error for each of the three models to evaluate the models' performance. # ``` # np.mean(np.absolute(prediction3 - test_y)) # np.mean(np.absolute(prediction2 - test_y)) # np.mean(np.absolute(prediction - test_y)) # ``` # Similarly, the code calculates the variance score for each of the three models to evaluate the models' performance. # ``` # regr.score(test_X, test_y) # regressor.score(test_X, test_y) # model.score(test_X, test_y) # ``` # The code then rounds the predicted values to two decimal places and creates a dataframe to display the actual and predicted temperature values for each of the three models. # ``` # for i in range(len(prediction3)): # prediction3[i] = round(prediction3[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction3, 'diff': (test_y - prediction3)}) # for i in range(len(prediction2)): # prediction2[i] = round(prediction2[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction2, 'diff': (test_y - prediction2)}) # for i in range(len(prediction)): # prediction[i] = round(prediction[i], 2) # pd.DataFrame({'Actual': test_y, 'Prediction': prediction, 'diff': (test_y - prediction)}) # ``` # Lastly, the code uses the matplotlib library to visualize the scatter plot for three features - minimum temperature, heat index, and pressure. # ``` # plt.scatter(weth.mintempC, weth.tempC) # plt.xlabel("Minimum Temperature") # plt.ylabel("Temperature") # plt.show() # plt.scatter(weth.HeatIndexC, weth.tempC) # plt.xlabel("Heat Index") # plt.ylabel("Temperature") # plt.show() # plt.scatter(weth.pressure, weth.tempC) # plt.xlabel("Minimum Temperature") # plt.ylabel("Temperature") # plt.show() # # Multiple Linear Regression # the code uses the matplotlib library to visualize the scatter plot for three features - minimum temperature, heat index, and pressure. # # How Multiple regression model algo. work # In a multiple regression model, **the predicted output variable (often denoted as Y)** is a **linear function of the input variables (often denoted as X1, X2, X3, ..., Xp)**, with an **additional constant term (often denoted as β0)** included as an intercept. The equation for the model can be written as: # **Y = β0 + β1X1 + β2X2 + β3X3 + ... + βpXp + ε** # where:- **Y** is the predicted output variable (often called the dependent variable or response variable).- **β0** is the intercept, which represents the predicted value of Y when all input variables are zero.- **β1, β2, β3, ..., βp** are the coefficients or weights assigned to each input variable, which represent the change in the predicted value of Y associated with a one-unit change in the corresponding input variable.- **X1, X2, X3, ..., Xp** are the input variables (often called the independent variables or predictors).- ε is the error term, which represents the random variability or noise in the relationship between the input variables and the output variable. # To estimate the values of the coefficients **β0, β1, β2, β3, ..., βp**, we use a method called least squares regression, which minimizes the sum of squared errors between the predicted and actual output values in the training data. This involves solving a system of linear equations to find the values of the coefficients that minimize the residual sum of squares (RSS). # Once the coefficients are estimated, we can use the model to make predictions on new data by plugging in the input values and solving for the predicted output value using the above equation. plt.scatter(weth.mintempC, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() plt.scatter(weth.HeatIndexC, weth.tempC) plt.xlabel("Heat Index") plt.ylabel("Temperature") plt.show() plt.scatter(weth.pressure, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() plt.scatter(weth.mintempC, weth.tempC) plt.xlabel("Minimum Temperature") plt.ylabel("Temperature") plt.show() model = LinearRegression() model.fit(train_X, train_y) prediction = model.predict(test_X) # calculating error np.mean(np.absolute(prediction - test_y)) print("Variance score: %.2f" % model.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction)): prediction[i] = round(prediction[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction, "Difference": (test_y - prediction)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() # # Decision Tree Regression # **Let's denote the input variables as X = [X1, X2, ..., Xp]** and the **output variable as Y**. A decision tree can be represented by a set of binary decision rules that partition the input space into non-overlapping regions. For each region, we assign a constant value that represents the predicted output value for all input values in that region. # The decision rules can be represented as a series of if-then statements, where each statement tests the value of one input variable and branches the tree accordingly. For example, a simple decision tree for a single input variable X1 might have the following structure: # **if X1 <= c1 then Y = y1** # **else Y = y2** # where c1 is a constant threshold value for X1, and y1 and y2 are constant values representing the predicted output value for X1 c1, respectively. # To build a decision tree regression model, we use an algorithm to recursively partition the input space into smaller regions based on the input variables that are most predictive of the output variable. The algorithm selects the best split point for each input variable based on some criterion, such as the reduction in mean squared error or the increase in R-squared value. The tree is grown until a stopping criterion is met, such as reaching a minimum node size or a maximum tree depth. # How Decition tree regression model algo. work from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state=0) regressor.fit(train_X, train_y) prediction2 = regressor.predict(test_X) np.mean(np.absolute(prediction2 - test_y)) print("Variance score: %.2f" % regressor.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction2)): prediction[i] = round(prediction2[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction2, "Difference": (test_y - prediction2)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() # # Random Forest Regression # Let's denote the input variables as X = [X1, X2, ..., Xp] and the output variable as Y. To build a random forest regression model, we first create a set of N decision trees T1, T2, ..., TN, where each tree is built using a bootstrap sample of the training data and a random subset of the input variables. The trees are built independently of each other, and the bootstrap sampling ensures that each tree sees a slightly different subset of the training data. # For each tree Ti, we use the same algorithm as in decision tree regression to recursively partition the input space into smaller regions based on the input variables that are most predictive of the output variable. The tree is grown until a stopping criterion is met, such as reaching a minimum node size or a maximum tree depth. # To make a prediction on new data, we pass the data through each of the N decision trees, and obtain a prediction for each tree. The predictions are then aggregated using some aggregation rule, such as taking the mean or median of the predictions. This final prediction represents the output of the random forest regression model. # The aggregation rule can be chosen based on the properties of the data and the goals of the analysis. For example, taking the mean of the predictions tends to produce smoother predictions that are less sensitive to outliers, while taking the median tends to be more robust to extreme values. # How Random forest tree regression model algo. work from sklearn.ensemble import RandomForestRegressor regr = RandomForestRegressor(max_depth=90, random_state=0, n_estimators=100) regr.fit(train_X, train_y) prediction3 = regr.predict(test_X) np.mean(np.absolute(prediction3 - test_y)) print("Variance score: %.2f" % regr.score(test_X, test_y)) import plotly.graph_objs as go for i in range(len(prediction3)): prediction[i] = round(prediction3[i], 2) results = pd.DataFrame( {"Actual": test_y, "Prediction": prediction3, "Difference": (test_y - prediction3)} ) fig = go.Figure( data=[ go.Table( header=dict(values=list(results.columns)), cells=dict(values=[results.Actual, results.Prediction, results.Difference]), ) ] ) fig.show() from sklearn.metrics import r2_score # # Calculating R2-score for Multiple Linear Regression print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction)) # # Calculating R2-score for Decision Tree Regression print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction2 - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction2 - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction2)) # # Calculating R2-score for Random Forest Regression from sklearn.metrics import r2_score print("Mean absolute error: %.2f" % np.mean(np.absolute(prediction3 - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((prediction3 - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y, prediction3))
false
1
4,400
0
4,614
4,400
129174612
<jupyter_start><jupyter_text>nestle Kaggle dataset identifier: nestle <jupyter_script># Data manipulation # ============================================================================== import numpy as np import pandas as pd from datetime import datetime # Plots # ============================================================================== import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats import statsmodels.api as sm import plotly.express as px import plotly.graph_objects as go path_week = "/kaggle/input/nestle/week.xlsx" df = pd.read_excel(path_week) name_col = [ "Time", "total_product", "boiler1_Elec", "boiler2_Elec", "compress_Elec", "chiller_Elec", "other_Elec", "total_Elec", "boiler2_bio", "boiler1_oil", "temp", "real_a", ] df.rename(columns={df.columns[0]: "Time"}, inplace=True) df["Time"] = pd.to_datetime(df["Time"]) df.columns = name_col df["weekofyear"] = df["Time"].dt.isocalendar().week df.head(5) df = df.set_index("Time") import math def add_week_of_month(df): df["week_in_month"] = pd.to_numeric(df.index.day / 7) df["week_in_month"] = df["week_in_month"].apply(lambda x: math.ceil(x)) return df df = add_week_of_month(df) df.loc[:, "month"] = pd.Series(df.index.month, df.index) df["boiler1_toe"] = df["boiler1_Elec"] * 0.0001543 + df["boiler1_oil"] * 0.00088 df["boiler2_toe"] = df["boiler2_Elec"] * 0.0001543 + df["boiler2_bio"] * 0.0003869 df["boiler_toe"] = df["boiler2_toe"] + df["boiler1_toe"] df["compress_toe"] = df["compress_Elec"] * 0.0001543 df["chiller_toe"] = df["chiller_Elec"] * 0.0001543 df["other_toe"] = df["other_Elec"] * 0.0001543 df["total_toe"] = ( df["other_toe"] + df["chiller_toe"] + df["compress_toe"] + df["boiler2_toe"] + df["boiler1_toe"] ) df["toe_product"] = df["total_toe"] / df["total_product"] df.head(5) # # Isolation Forest from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.metrics import classification_report, accuracy_score from sklearn.metrics import f1_score from itertools import product data_test = ["boiler1_toe", "boiler2_toe", "chiller_toe", "compress_toe"] outliers_fraction = [0.03, 0.04, 0.05, 0.1] n_estimate = [100, 200, 300, 100] max_sample = [0.6, 0.8, 0.1] print(list(product(outliers_fraction, n_estimate, max_sample))) for i in data_test: dict = {"outliers_fraction": [0], "n_estimate": [0], "max_sample": [0], "f1": [0]} restult = pd.DataFrame(dict) data_buff = pd.DataFrame(df[i]) # data_buff.columns = ['Date','Total'] # outliers_fraction = float(.05) scaler = StandardScaler() np_scaled = scaler.fit_transform(data_buff.values.reshape(-1, 1)) data = pd.DataFrame(np_scaled) for c, n, m in product(outliers_fraction, n_estimate, max_sample): model = IsolationForest(contamination=c, n_estimators=n, max_samples=m) model.fit(data) data_buff["anomaly"] = model.predict(data) # print( f1_score(df['real_a'] , data_buff['anomaly'],pos_label=-1)) dt = { "outliers_fraction": [c], "n_estimate": [n], "max_sample": [m], "f1": [f1_score(df["real_a"], data_buff["anomaly"], pos_label=-1)], } buff = pd.DataFrame(dt) restult = pd.concat([restult, buff], ignore_index=True) print(i) print(restult.loc[restult["f1"].idxmax()]) # restult.loc[restult['f1'].idxmax()]
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/174/129174612.ipynb
nestle
dngovn
[{"Id": 129174612, "ScriptId": 38212962, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9608077, "CreationDate": "05/11/2023 14:38:46", "VersionNumber": 7.0, "Title": "Isolation Forest", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 95.0, "LinesInsertedFromPrevious": 2.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 93.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184989058, "KernelVersionId": 129174612, "SourceDatasetVersionId": 5663209}]
[{"Id": 5663209, "DatasetId": 3007716, "DatasourceVersionId": 5738664, "CreatorUserId": 9608077, "LicenseName": "Unknown", "CreationDate": "05/11/2023 12:58:26", "VersionNumber": 16.0, "Title": "nestle", "Slug": "nestle", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2023-05-11", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3007716, "CreatorUserId": 9608077, "OwnerUserId": 9608077.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5663209.0, "CurrentDatasourceVersionId": 5738664.0, "ForumId": 3046724, "Type": 2, "CreationDate": "03/16/2023 02:28:22", "LastActivityDate": "03/16/2023", "TotalViews": 119, "TotalDownloads": 15, "TotalVotes": 0, "TotalKernels": 2}]
[{"Id": 9608077, "UserName": "dngovn", "DisplayName": "D\u0169ng \u0110\u00e0o V\u0103n", "RegisterDate": "02/08/2022", "PerformanceTier": 0}]
# Data manipulation # ============================================================================== import numpy as np import pandas as pd from datetime import datetime # Plots # ============================================================================== import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats import statsmodels.api as sm import plotly.express as px import plotly.graph_objects as go path_week = "/kaggle/input/nestle/week.xlsx" df = pd.read_excel(path_week) name_col = [ "Time", "total_product", "boiler1_Elec", "boiler2_Elec", "compress_Elec", "chiller_Elec", "other_Elec", "total_Elec", "boiler2_bio", "boiler1_oil", "temp", "real_a", ] df.rename(columns={df.columns[0]: "Time"}, inplace=True) df["Time"] = pd.to_datetime(df["Time"]) df.columns = name_col df["weekofyear"] = df["Time"].dt.isocalendar().week df.head(5) df = df.set_index("Time") import math def add_week_of_month(df): df["week_in_month"] = pd.to_numeric(df.index.day / 7) df["week_in_month"] = df["week_in_month"].apply(lambda x: math.ceil(x)) return df df = add_week_of_month(df) df.loc[:, "month"] = pd.Series(df.index.month, df.index) df["boiler1_toe"] = df["boiler1_Elec"] * 0.0001543 + df["boiler1_oil"] * 0.00088 df["boiler2_toe"] = df["boiler2_Elec"] * 0.0001543 + df["boiler2_bio"] * 0.0003869 df["boiler_toe"] = df["boiler2_toe"] + df["boiler1_toe"] df["compress_toe"] = df["compress_Elec"] * 0.0001543 df["chiller_toe"] = df["chiller_Elec"] * 0.0001543 df["other_toe"] = df["other_Elec"] * 0.0001543 df["total_toe"] = ( df["other_toe"] + df["chiller_toe"] + df["compress_toe"] + df["boiler2_toe"] + df["boiler1_toe"] ) df["toe_product"] = df["total_toe"] / df["total_product"] df.head(5) # # Isolation Forest from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.metrics import classification_report, accuracy_score from sklearn.metrics import f1_score from itertools import product data_test = ["boiler1_toe", "boiler2_toe", "chiller_toe", "compress_toe"] outliers_fraction = [0.03, 0.04, 0.05, 0.1] n_estimate = [100, 200, 300, 100] max_sample = [0.6, 0.8, 0.1] print(list(product(outliers_fraction, n_estimate, max_sample))) for i in data_test: dict = {"outliers_fraction": [0], "n_estimate": [0], "max_sample": [0], "f1": [0]} restult = pd.DataFrame(dict) data_buff = pd.DataFrame(df[i]) # data_buff.columns = ['Date','Total'] # outliers_fraction = float(.05) scaler = StandardScaler() np_scaled = scaler.fit_transform(data_buff.values.reshape(-1, 1)) data = pd.DataFrame(np_scaled) for c, n, m in product(outliers_fraction, n_estimate, max_sample): model = IsolationForest(contamination=c, n_estimators=n, max_samples=m) model.fit(data) data_buff["anomaly"] = model.predict(data) # print( f1_score(df['real_a'] , data_buff['anomaly'],pos_label=-1)) dt = { "outliers_fraction": [c], "n_estimate": [n], "max_sample": [m], "f1": [f1_score(df["real_a"], data_buff["anomaly"], pos_label=-1)], } buff = pd.DataFrame(dt) restult = pd.concat([restult, buff], ignore_index=True) print(i) print(restult.loc[restult["f1"].idxmax()]) # restult.loc[restult['f1'].idxmax()]
false
0
1,263
0
1,280
1,263
129079987
import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.cluster import DBSCAN from lightgbm import LGBMClassifier from sklearn import metrics # Ссылка на документ со статьями: https://docs.google.com/document/d/1q4Uoee8wUVpunF7ZWaZ4oxaEqwlFsBW2/edit?usp=sharing&ouid=101393046997272752391&rtpof=true&sd=true train_df = pd.read_csv("train_dataset.csv", index_col=0) train_df.shape train_df.head() features = train_df.drop("label", axis=1).columns X, y = train_df[features], train_df["label"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, stratify=y, random_state=42 ) # LGBM использовала для выбора признаковю Делала аналогично классификации. model_LGBM_bt1 = LGBMClassifier(max_depth=16, n_estimators=100) y_train_bt1 = (y_train == "brain_type1").astype(int) LGBM_train_bt1 = model_LGBM_bt1.fit(X_train, y_train_bt1) importance_df_bt1 = ( pd.DataFrame( { "feature_name": LGBM_train_bt1.feature_name_, "importance_gain": LGBM_train_bt1.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt1.iloc[0:10]) list_bt1 = list(importance_df_bt1.iloc[0:200, 0]) print(list_bt1) y_test_pred_bt1 = model_LGBM_bt1.predict(X_test) y_test_bt1 = (y_test == "brain_type1").astype(int) metrics.f1_score(y_test_pred_bt1, y_test_bt1) model_LGBM_bt2 = LGBMClassifier(max_depth=10, n_estimators=50) y_train_bt2 = (y_train == "brain_type2").astype(int) LGBM_train_bt2 = model_LGBM_bt2.fit(X_train, y_train_bt2) importance_df_bt2 = ( pd.DataFrame( { "feature_name": LGBM_train_bt2.feature_name_, "importance_gain": LGBM_train_bt2.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt2.iloc[0:10]) list_bt2 = list(importance_df_bt2.iloc[0:200, 0]) print(list_bt2) y_test_pred_bt2 = model_LGBM_bt2.predict(X_test) y_test_bt2 = (y_test == "brain_type2").astype(int) metrics.f1_score(y_test_pred_bt2, y_test_bt2) model_LGBM_bt3 = LGBMClassifier(max_depth=10, n_estimators=75) y_train_bt3 = (y_train == "brain_type3").astype(int) LGBM_train_bt3 = model_LGBM_bt3.fit(X_train, y_train_bt3) importance_df_bt3 = ( pd.DataFrame( { "feature_name": LGBM_train_bt3.feature_name_, "importance_gain": LGBM_train_bt3.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt3.iloc[0:10]) list_bt3 = list(importance_df_bt3.iloc[0:200, 0]) print(list_bt3) y_test_pred_bt3 = model_LGBM_bt3.predict(X_test) y_test_bt3 = (y_test == "brain_type3").astype(int) metrics.f1_score(y_test_pred_bt3, y_test_bt3) model_LGBM_brt1 = LGBMClassifier(max_depth=15, n_estimators=100) y_train_brt1 = (y_train == "brest_type1").astype(int) LGBM_train_brt1 = model_LGBM_brt1.fit(X_train, y_train_brt1) importance_df_brt1 = ( pd.DataFrame( { "feature_name": LGBM_train_brt1.feature_name_, "importance_gain": LGBM_train_brt1.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt1.iloc[0:10]) list_brt1 = list(importance_df_brt1.iloc[0:200, 0]) print(list_brt1) y_test_pred_brt1 = model_LGBM_brt1.predict(X_test) y_test_brt1 = (y_test == "brest_type1").astype(int) metrics.f1_score(y_test_pred_brt1, y_test_brt1) model_LGBM_brt2 = LGBMClassifier(max_depth=10, n_estimators=50) y_train_brt2 = (y_train == "brest_type2").astype(int) LGBM_train_brt2 = model_LGBM_brt2.fit(X_train, y_train_brt2) importance_df_brt2 = ( pd.DataFrame( { "feature_name": LGBM_train_brt2.feature_name_, "importance_gain": LGBM_train_brt2.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt2.iloc[0:10]) list_brt2 = list(importance_df_brt2.iloc[0:200, 0]) print(list_brt2) y_test_pred_brt2 = model_LGBM_brt2.predict(X_test) y_test_brt2 = (y_test == "brest_type2").astype(int) metrics.f1_score(y_test_pred_brt2, y_test_brt2) model_LGBM_brt3 = LGBMClassifier(max_depth=15, n_estimators=100) y_train_brt3 = (y_train == "brest_type3").astype(int) LGBM_train_brt3 = model_LGBM_brt3.fit(X_train, y_train_brt3) importance_df_brt3 = ( pd.DataFrame( { "feature_name": LGBM_train_brt3.feature_name_, "importance_gain": LGBM_train_brt3.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt3.iloc[0:10]) list_brt3 = list(importance_df_brt3.iloc[0:200, 0]) print(list_brt3) y_test_pred_brt3 = model_LGBM_brt3.predict(X_test) y_test_brt3 = (y_test == "brest_type3").astype(int) metrics.f1_score(y_test_pred_brt3, y_test_brt3) model_LGBM_col = LGBMClassifier(max_depth=10, n_estimators=50) y_train_col = (y_train == "colorectal").astype(int) LGBM_train_col = model_LGBM_col.fit(X_train, y_train_col) importance_df_col = ( pd.DataFrame( { "feature_name": LGBM_train_col.feature_name_, "importance_gain": LGBM_train_col.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_col.iloc[0:10]) list_col = list(importance_df_col.iloc[0:200, 0]) print(list_col) y_test_pred_col = model_LGBM_col.predict(X_test) y_test_col = (y_test == "colorectal").astype(int) metrics.f1_score(y_test_pred_col, y_test_col) model_LGBM_es = LGBMClassifier(max_depth=10, n_estimators=50) y_train_es = (y_train == "esophageal").astype(int) LGBM_train_es = model_LGBM_es.fit(X_train, y_train_es) importance_df_es = ( pd.DataFrame( { "feature_name": LGBM_train_es.feature_name_, "importance_gain": LGBM_train_es.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_es.iloc[0:10]) list_es = list(importance_df_es.iloc[0:200, 0]) print(list_es) y_test_pred_es = model_LGBM_es.predict(X_test) y_test_es = (y_test == "esophageal").astype(int) metrics.f1_score(y_test_pred_es, y_test_es) columns = list( set( list_es + list_col + list_brt1 + list_brt2 + list_brt3 + list_bt1 + list_bt2 + list_bt3 ) ) print(len(columns)) print(columns) X_col = pd.DataFrame(data=X, columns=columns) X_col label_mapping = {k: num for num, k in enumerate(y.unique())} label_mapping y = [label_mapping[item] for item in y] y X_train_col, X_test_col, y_train_col, y_test_col = train_test_split( X_col, y, test_size=0.2, stratify=y, random_state=42 ) # k-близжайших соседей from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train_col, y_train_col) y_test_pred_knn = knn.predict(X_test_col) metrics.f1_score(y_test_pred_knn, y_test_col, average="weighted") from sklearn.preprocessing import StandardScaler # создадим объект класса StandardScaler scaler = StandardScaler() scaler.fit(X_train_col) # трансформируем датасеты train_x и test_x train_x_scaler = scaler.transform(X_train_col) test_x_scaler = scaler.transform(X_test_col) knns = KNeighborsClassifier(n_neighbors=4) knns.fit(train_x_scaler, y_train_col) y_pred_knn_scaler = knns.predict(test_x_scaler) metrics.f1_score(y_pred_knn_scaler, y_test_col, average="weighted") # импортируем класс PCA from sklearn.decomposition import PCA # создадим объект класса PCA pca = PCA(n_components=40, random_state=42) pca.fit(train_x_scaler) # уменьшим размерность данных train_x_pca = pca.transform(train_x_scaler) test_x_pca = pca.transform(test_x_scaler) knn2 = KNeighborsClassifier(n_neighbors=4) knn2.fit(train_x_pca, y_train_col) y_pred_knn_pca = knn2.predict(test_x_pca) metrics.f1_score(y_pred_knn_pca, y_test_col, average="weighted") test_df = pd.read_csv("test_dataset.csv", index_col=0) test_df.shape test_df.head() X_test_df = pd.DataFrame(data=test_df, columns=columns) X_test_df_scaler = scaler.transform(X_test_df) X_test_df_pca = pca.transform(X_test_df_scaler) predictions = knn2.predict(X_test_df_pca) predictions_df = pd.DataFrame( data=predictions, index=test_df.index, columns=["Predicted"] ) predictions_df predictions_df.index.name = "Id" predictions_df.head() predictions_df["Predicted"].map({v: k for k, v in label_mapping.items()}) predictions_df["Predicted"] = predictions_df["Predicted"].map( {v: k for k, v in label_mapping.items()} ) predictions_df predictions_df.to_csv("submission_cluster 2.csv")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/079/129079987.ipynb
null
null
[{"Id": 129079987, "ScriptId": 38372096, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13032224, "CreationDate": "05/10/2023 20:45:49", "VersionNumber": 1.0, "Title": "\u0414\u0436\u0430\u0440\u0443\u043b\u043b\u0430\u0435\u0432\u0430 \u0410\u0428 + \u0441\u0441\u044b\u043b\u043a\u0430 \u043d\u0430 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442 \u0441\u043e \u0441\u0442\u0430\u0442\u044c\u044f\u043c\u0438", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 283.0, "LinesInsertedFromPrevious": 283.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.cluster import DBSCAN from lightgbm import LGBMClassifier from sklearn import metrics # Ссылка на документ со статьями: https://docs.google.com/document/d/1q4Uoee8wUVpunF7ZWaZ4oxaEqwlFsBW2/edit?usp=sharing&ouid=101393046997272752391&rtpof=true&sd=true train_df = pd.read_csv("train_dataset.csv", index_col=0) train_df.shape train_df.head() features = train_df.drop("label", axis=1).columns X, y = train_df[features], train_df["label"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, stratify=y, random_state=42 ) # LGBM использовала для выбора признаковю Делала аналогично классификации. model_LGBM_bt1 = LGBMClassifier(max_depth=16, n_estimators=100) y_train_bt1 = (y_train == "brain_type1").astype(int) LGBM_train_bt1 = model_LGBM_bt1.fit(X_train, y_train_bt1) importance_df_bt1 = ( pd.DataFrame( { "feature_name": LGBM_train_bt1.feature_name_, "importance_gain": LGBM_train_bt1.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt1.iloc[0:10]) list_bt1 = list(importance_df_bt1.iloc[0:200, 0]) print(list_bt1) y_test_pred_bt1 = model_LGBM_bt1.predict(X_test) y_test_bt1 = (y_test == "brain_type1").astype(int) metrics.f1_score(y_test_pred_bt1, y_test_bt1) model_LGBM_bt2 = LGBMClassifier(max_depth=10, n_estimators=50) y_train_bt2 = (y_train == "brain_type2").astype(int) LGBM_train_bt2 = model_LGBM_bt2.fit(X_train, y_train_bt2) importance_df_bt2 = ( pd.DataFrame( { "feature_name": LGBM_train_bt2.feature_name_, "importance_gain": LGBM_train_bt2.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt2.iloc[0:10]) list_bt2 = list(importance_df_bt2.iloc[0:200, 0]) print(list_bt2) y_test_pred_bt2 = model_LGBM_bt2.predict(X_test) y_test_bt2 = (y_test == "brain_type2").astype(int) metrics.f1_score(y_test_pred_bt2, y_test_bt2) model_LGBM_bt3 = LGBMClassifier(max_depth=10, n_estimators=75) y_train_bt3 = (y_train == "brain_type3").astype(int) LGBM_train_bt3 = model_LGBM_bt3.fit(X_train, y_train_bt3) importance_df_bt3 = ( pd.DataFrame( { "feature_name": LGBM_train_bt3.feature_name_, "importance_gain": LGBM_train_bt3.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_bt3.iloc[0:10]) list_bt3 = list(importance_df_bt3.iloc[0:200, 0]) print(list_bt3) y_test_pred_bt3 = model_LGBM_bt3.predict(X_test) y_test_bt3 = (y_test == "brain_type3").astype(int) metrics.f1_score(y_test_pred_bt3, y_test_bt3) model_LGBM_brt1 = LGBMClassifier(max_depth=15, n_estimators=100) y_train_brt1 = (y_train == "brest_type1").astype(int) LGBM_train_brt1 = model_LGBM_brt1.fit(X_train, y_train_brt1) importance_df_brt1 = ( pd.DataFrame( { "feature_name": LGBM_train_brt1.feature_name_, "importance_gain": LGBM_train_brt1.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt1.iloc[0:10]) list_brt1 = list(importance_df_brt1.iloc[0:200, 0]) print(list_brt1) y_test_pred_brt1 = model_LGBM_brt1.predict(X_test) y_test_brt1 = (y_test == "brest_type1").astype(int) metrics.f1_score(y_test_pred_brt1, y_test_brt1) model_LGBM_brt2 = LGBMClassifier(max_depth=10, n_estimators=50) y_train_brt2 = (y_train == "brest_type2").astype(int) LGBM_train_brt2 = model_LGBM_brt2.fit(X_train, y_train_brt2) importance_df_brt2 = ( pd.DataFrame( { "feature_name": LGBM_train_brt2.feature_name_, "importance_gain": LGBM_train_brt2.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt2.iloc[0:10]) list_brt2 = list(importance_df_brt2.iloc[0:200, 0]) print(list_brt2) y_test_pred_brt2 = model_LGBM_brt2.predict(X_test) y_test_brt2 = (y_test == "brest_type2").astype(int) metrics.f1_score(y_test_pred_brt2, y_test_brt2) model_LGBM_brt3 = LGBMClassifier(max_depth=15, n_estimators=100) y_train_brt3 = (y_train == "brest_type3").astype(int) LGBM_train_brt3 = model_LGBM_brt3.fit(X_train, y_train_brt3) importance_df_brt3 = ( pd.DataFrame( { "feature_name": LGBM_train_brt3.feature_name_, "importance_gain": LGBM_train_brt3.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_brt3.iloc[0:10]) list_brt3 = list(importance_df_brt3.iloc[0:200, 0]) print(list_brt3) y_test_pred_brt3 = model_LGBM_brt3.predict(X_test) y_test_brt3 = (y_test == "brest_type3").astype(int) metrics.f1_score(y_test_pred_brt3, y_test_brt3) model_LGBM_col = LGBMClassifier(max_depth=10, n_estimators=50) y_train_col = (y_train == "colorectal").astype(int) LGBM_train_col = model_LGBM_col.fit(X_train, y_train_col) importance_df_col = ( pd.DataFrame( { "feature_name": LGBM_train_col.feature_name_, "importance_gain": LGBM_train_col.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_col.iloc[0:10]) list_col = list(importance_df_col.iloc[0:200, 0]) print(list_col) y_test_pred_col = model_LGBM_col.predict(X_test) y_test_col = (y_test == "colorectal").astype(int) metrics.f1_score(y_test_pred_col, y_test_col) model_LGBM_es = LGBMClassifier(max_depth=10, n_estimators=50) y_train_es = (y_train == "esophageal").astype(int) LGBM_train_es = model_LGBM_es.fit(X_train, y_train_es) importance_df_es = ( pd.DataFrame( { "feature_name": LGBM_train_es.feature_name_, "importance_gain": LGBM_train_es.feature_importances_, } ) .sort_values("importance_gain", ascending=False) .reset_index(drop=True) ) print(importance_df_es.iloc[0:10]) list_es = list(importance_df_es.iloc[0:200, 0]) print(list_es) y_test_pred_es = model_LGBM_es.predict(X_test) y_test_es = (y_test == "esophageal").astype(int) metrics.f1_score(y_test_pred_es, y_test_es) columns = list( set( list_es + list_col + list_brt1 + list_brt2 + list_brt3 + list_bt1 + list_bt2 + list_bt3 ) ) print(len(columns)) print(columns) X_col = pd.DataFrame(data=X, columns=columns) X_col label_mapping = {k: num for num, k in enumerate(y.unique())} label_mapping y = [label_mapping[item] for item in y] y X_train_col, X_test_col, y_train_col, y_test_col = train_test_split( X_col, y, test_size=0.2, stratify=y, random_state=42 ) # k-близжайших соседей from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train_col, y_train_col) y_test_pred_knn = knn.predict(X_test_col) metrics.f1_score(y_test_pred_knn, y_test_col, average="weighted") from sklearn.preprocessing import StandardScaler # создадим объект класса StandardScaler scaler = StandardScaler() scaler.fit(X_train_col) # трансформируем датасеты train_x и test_x train_x_scaler = scaler.transform(X_train_col) test_x_scaler = scaler.transform(X_test_col) knns = KNeighborsClassifier(n_neighbors=4) knns.fit(train_x_scaler, y_train_col) y_pred_knn_scaler = knns.predict(test_x_scaler) metrics.f1_score(y_pred_knn_scaler, y_test_col, average="weighted") # импортируем класс PCA from sklearn.decomposition import PCA # создадим объект класса PCA pca = PCA(n_components=40, random_state=42) pca.fit(train_x_scaler) # уменьшим размерность данных train_x_pca = pca.transform(train_x_scaler) test_x_pca = pca.transform(test_x_scaler) knn2 = KNeighborsClassifier(n_neighbors=4) knn2.fit(train_x_pca, y_train_col) y_pred_knn_pca = knn2.predict(test_x_pca) metrics.f1_score(y_pred_knn_pca, y_test_col, average="weighted") test_df = pd.read_csv("test_dataset.csv", index_col=0) test_df.shape test_df.head() X_test_df = pd.DataFrame(data=test_df, columns=columns) X_test_df_scaler = scaler.transform(X_test_df) X_test_df_pca = pca.transform(X_test_df_scaler) predictions = knn2.predict(X_test_df_pca) predictions_df = pd.DataFrame( data=predictions, index=test_df.index, columns=["Predicted"] ) predictions_df predictions_df.index.name = "Id" predictions_df.head() predictions_df["Predicted"].map({v: k for k, v in label_mapping.items()}) predictions_df["Predicted"] = predictions_df["Predicted"].map( {v: k for k, v in label_mapping.items()} ) predictions_df predictions_df.to_csv("submission_cluster 2.csv")
false
0
3,618
0
3,618
3,618
129079916
<jupyter_start><jupyter_text>Red Wine Quality ### Context The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.). These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones). --- *This dataset is also available from the UCI machine learning repository, https://archive.ics.uci.edu/ml/datasets/wine+quality , I just shared it to kaggle for convenience. (If I am mistaken and the public license type disallowed me from doing so, I will take this down if requested.)* ### Content For more information, read [Cortez et al., 2009].<br> Input variables (based on physicochemical tests):<br> 1 - fixed acidity <br> 2 - volatile acidity <br> 3 - citric acid <br> 4 - residual sugar <br> 5 - chlorides <br> 6 - free sulfur dioxide <br> 7 - total sulfur dioxide <br> 8 - density <br> 9 - pH <br> 10 - sulphates <br> 11 - alcohol <br> Output variable (based on sensory data): <br> 12 - quality (score between 0 and 10) <br> ### Tips What might be an interesting thing to do, is aside from using regression modelling, is to set an arbitrary cutoff for your dependent variable (wine quality) at e.g. 7 or higher getting classified as 'good/1' and the remainder as 'not good/0'. This allows you to practice with hyper parameter tuning on e.g. decision tree algorithms looking at the ROC curve and the AUC value. Without doing any kind of feature engineering or overfitting you should be able to get an AUC of .88 (without even using random forest algorithm) **KNIME** is a great tool (GUI) that can be used for this.<br> 1 - File Reader (for csv) to linear correlation node and to interactive histogram for basic EDA.<br> 2- File Reader to 'Rule Engine Node' to turn the 10 point scale to dichtome variable (good wine and rest), the code to put in the rule engine is something like this:<br> - **$quality$ > 6.5 => "good"**<br> - **TRUE => "bad"** <br> 3- Rule Engine Node output to input of Column Filter node to filter out your original 10point feature (this prevent leaking)<br> 4- Column Filter Node output to input of Partitioning Node (your standard train/tes split, e.g. 75%/25%, choose 'random' or 'stratified')<br> 5- Partitioning Node train data split output to input of Train data split to input Decision Tree Learner node and <br> 6- Partitioning Node test data split output to input Decision Tree predictor Node<br> 7- Decision Tree learner Node output to input Decision Tree Node input<br> 8- Decision Tree output to input ROC Node.. (here you can evaluate your model base on AUC value)<br> ### Inspiration Use machine learning to determine which physiochemical properties make a wine 'good'! Kaggle dataset identifier: red-wine-quality-cortez-et-al-2009 <jupyter_script># # Importing the Libraries import numpy as np # to create numpy arrays import pandas as pd # to create pandas dataframe import matplotlib.pyplot as plt # for making plots and graphs import seaborn as sns # for data visualization import warnings warnings.filterwarnings("ignore") from sklearn.model_selection import ( train_test_split, ) # to split data into training data and testing data from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # to evaluate the model # # Data Collection # loading the dataset to a pandas dataframe wine_dataset = pd.read_csv( "/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv" ) # checking the first 5 rows of the dataset wine_dataset.head() # checking number of rows and columns in th dataset' wine_dataset.shape # getting some information about the dataset wine_dataset.info() # checking for missing values in each column wine_dataset.isnull().sum() # > We don't have any missing values in our dataset # # Data Analysis and Visualization # getting statistical measures of the dataset wine_dataset.describe() # finding the number of values for each quality sns.catplot(x="quality", data=wine_dataset, kind="count") # volatile acidity vs quality plot = plt.figure(figsize=(5, 5)) sns.barplot(x="quality", y="volatile acidity", data=wine_dataset) # > 'volatile acidity' and 'quality' are inversely proportional # citric acid vs quality plot = plt.figure(figsize=(5, 5)) sns.barplot(x="quality", y="citric acid", data=wine_dataset) # > Here, when the 'citric acid' content is more then we're getting high 'quality' of wine. # checking the distribution of the data wine_dataset.hist(bins=100, figsize=(10, 10)) plt.show() # # Correlation # correlation between all the columns to the quality column correlation = wine_dataset.corr() # constructing a heatmap to understand the correlation between the columns plt.figure(figsize=(10, 7)) sns.heatmap(correlation, annot=True) # printing correlation values wine_dataset.corr()["quality"].sort_values() # > 'alcohol' has higher correlation with target --quality # # Data Preprocessing # separating the features and label X = wine_dataset.drop("quality", axis=1) print(X.head(2)) # **Label Binarization** Y = wine_dataset["quality"].apply(lambda y_value: 1 if y_value >= 6.5 else 0) print(Y) # > So here we have classified the different wine quality ratings to 0 and 1 --GOOD and BAD # # Train & Test Split # splitting X,Y into training and testing data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=3 ) # assigned 20% for test print(X.shape, X_train.shape, X_test.shape) # # Model Training # **Model 1 - Logistic Regression** logreg = LogisticRegression() # training the model with training data logreg.fit(X_train, Y_train) # model evaluation logreg_pred = logreg.predict(X_test) logreg_acc = accuracy_score(logreg_pred, Y_test) print("Test accuracy score is: ", logreg_acc * 100) # **Model 2 - Decision Tree Model** dtree = DecisionTreeClassifier() # training the model dtree.fit(X_train, Y_train) # model evaluation dtree_pred = dtree.predict(X_test) dtree_acc = accuracy_score(dtree_pred, Y_test) print("Test Accuracy score is:", dtree_acc * 100) # **Model 3 - Random Forest Classifier** rforest = RandomForestClassifier() # training the model rforest.fit(X_train, Y_train) # model evaluation rforest_pred = rforest.predict(X_test) rforest_acc = accuracy_score(rforest_pred, Y_test) print("Test Accuracy score is:", rforest_acc * 100) # > Conclusion: # > Random Forest has better accuracy than other two models (Logistic Regression and Decision Tree) # # Building a Predictive System input_data = (7.3, 0.65, 0.0, 1.2, 0.065, 15.0, 21.0, 0.9946, 3.39, 0.47, 10.0) # input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5) # changing the input data to a numpy array input_data_as_numpy_array = np.asarray(input_data) # reshaping the data as we are predicting the label for only one instance input_data_reshaped = input_data_as_numpy_array.reshape(1, -1) prediction = rforest.predict(input_data_reshaped) print(prediction) if prediction[0] == 1: print("Good Quality Wine!") else: print("Bad Quality Wine")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/079/129079916.ipynb
red-wine-quality-cortez-et-al-2009
null
[{"Id": 129079916, "ScriptId": 38353133, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14119393, "CreationDate": "05/10/2023 20:44:41", "VersionNumber": 3.0, "Title": "Wine Quality Prediction", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 162.0, "LinesInsertedFromPrevious": 76.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 86.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184816396, "KernelVersionId": 129079916, "SourceDatasetVersionId": 8204}]
[{"Id": 8204, "DatasetId": 4458, "DatasourceVersionId": 8204, "CreatorUserId": 1132983, "LicenseName": "Database: Open Database, Contents: Database Contents", "CreationDate": "11/27/2017 23:41:08", "VersionNumber": 2.0, "Title": "Red Wine Quality", "Slug": "red-wine-quality-cortez-et-al-2009", "Subtitle": "Simple and clean practice dataset for regression or classification modelling", "Description": "### Context\n\nThe two datasets are related to red and white variants of the Portuguese \"Vinho Verde\" wine. For more details, consult the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.). \n\nThese datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones). \n\n---\n*This dataset is also available from the UCI machine learning repository, https://archive.ics.uci.edu/ml/datasets/wine+quality , I just shared it to kaggle for convenience. (If I am mistaken and the public license type disallowed me from doing so, I will take this down if requested.)*\n\n\n### Content\n\nFor more information, read [Cortez et al., 2009].<br>\nInput variables (based on physicochemical tests):<br>\n1 - fixed acidity <br>\n2 - volatile acidity <br>\n3 - citric acid <br>\n4 - residual sugar <br>\n5 - chlorides <br>\n6 - free sulfur dioxide <br> \n7 - total sulfur dioxide <br>\n8 - density <br>\n9 - pH <br>\n10 - sulphates <br>\n11 - alcohol <br>\nOutput variable (based on sensory data): <br>\n12 - quality (score between 0 and 10) <br>\n\n### Tips\nWhat might be an interesting thing to do, is aside from using regression modelling, is to set an arbitrary cutoff for your dependent variable (wine quality) at e.g. 7 or higher getting classified as 'good/1' and the remainder as 'not good/0'.\nThis allows you to practice with hyper parameter tuning on e.g. decision tree algorithms looking at the ROC curve and the AUC value.\nWithout doing any kind of feature engineering or overfitting you should be able to get an AUC of .88 (without even using random forest algorithm)\n\n**KNIME** is a great tool (GUI) that can be used for this.<br>\n1 - File Reader (for csv) to linear correlation node and to interactive histogram for basic EDA.<br>\n2- File Reader to 'Rule Engine Node' to turn the 10 point scale to dichtome variable (good wine and rest), the code to put in the rule engine is something like this:<br>\n - **$quality$ > 6.5 => \"good\"**<br>\n - **TRUE => \"bad\"** <br>\n3- Rule Engine Node output to input of Column Filter node to filter out your original 10point feature (this prevent leaking)<br>\n4- Column Filter Node output to input of Partitioning Node (your standard train/tes split, e.g. 75%/25%, choose 'random' or 'stratified')<br>\n5- Partitioning Node train data split output to input of Train data split to input Decision Tree Learner node and <br>\n6- Partitioning Node test data split output to input Decision Tree predictor Node<br>\n7- Decision Tree learner Node output to input Decision Tree Node input<br>\n8- Decision Tree output to input ROC Node.. (here you can evaluate your model base on AUC value)<br>\n\n\n### Inspiration\nUse machine learning to determine which physiochemical properties make a wine 'good'!\n\n\n\n### Acknowledgements\n\nThis dataset is also available from the UCI machine learning repository, https://archive.ics.uci.edu/ml/datasets/wine+quality , I just shared it to kaggle for convenience. *(I am mistaken and the public license type disallowed me from doing so, I will take this down at first request. I am not the owner of this dataset.*\n\n**Please include this citation if you plan to use this database: \nP. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. \nModeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.**\n\n### Relevant publication\n\nP. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. \nIn Decision Support Systems, Elsevier, 47(4):547-553, 2009.", "VersionNotes": "Fixed csv format to use comma as delimiter", "TotalCompressedBytes": 100951.0, "TotalUncompressedBytes": 100951.0}]
[{"Id": 4458, "CreatorUserId": 1132983, "OwnerUserId": NaN, "OwnerOrganizationId": 7.0, "CurrentDatasetVersionId": 8204.0, "CurrentDatasourceVersionId": 8204.0, "ForumId": 10170, "Type": 2, "CreationDate": "11/12/2017 14:08:43", "LastActivityDate": "02/06/2018", "TotalViews": 1214229, "TotalDownloads": 194418, "TotalVotes": 2537, "TotalKernels": 1574}]
null
# # Importing the Libraries import numpy as np # to create numpy arrays import pandas as pd # to create pandas dataframe import matplotlib.pyplot as plt # for making plots and graphs import seaborn as sns # for data visualization import warnings warnings.filterwarnings("ignore") from sklearn.model_selection import ( train_test_split, ) # to split data into training data and testing data from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # to evaluate the model # # Data Collection # loading the dataset to a pandas dataframe wine_dataset = pd.read_csv( "/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv" ) # checking the first 5 rows of the dataset wine_dataset.head() # checking number of rows and columns in th dataset' wine_dataset.shape # getting some information about the dataset wine_dataset.info() # checking for missing values in each column wine_dataset.isnull().sum() # > We don't have any missing values in our dataset # # Data Analysis and Visualization # getting statistical measures of the dataset wine_dataset.describe() # finding the number of values for each quality sns.catplot(x="quality", data=wine_dataset, kind="count") # volatile acidity vs quality plot = plt.figure(figsize=(5, 5)) sns.barplot(x="quality", y="volatile acidity", data=wine_dataset) # > 'volatile acidity' and 'quality' are inversely proportional # citric acid vs quality plot = plt.figure(figsize=(5, 5)) sns.barplot(x="quality", y="citric acid", data=wine_dataset) # > Here, when the 'citric acid' content is more then we're getting high 'quality' of wine. # checking the distribution of the data wine_dataset.hist(bins=100, figsize=(10, 10)) plt.show() # # Correlation # correlation between all the columns to the quality column correlation = wine_dataset.corr() # constructing a heatmap to understand the correlation between the columns plt.figure(figsize=(10, 7)) sns.heatmap(correlation, annot=True) # printing correlation values wine_dataset.corr()["quality"].sort_values() # > 'alcohol' has higher correlation with target --quality # # Data Preprocessing # separating the features and label X = wine_dataset.drop("quality", axis=1) print(X.head(2)) # **Label Binarization** Y = wine_dataset["quality"].apply(lambda y_value: 1 if y_value >= 6.5 else 0) print(Y) # > So here we have classified the different wine quality ratings to 0 and 1 --GOOD and BAD # # Train & Test Split # splitting X,Y into training and testing data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=3 ) # assigned 20% for test print(X.shape, X_train.shape, X_test.shape) # # Model Training # **Model 1 - Logistic Regression** logreg = LogisticRegression() # training the model with training data logreg.fit(X_train, Y_train) # model evaluation logreg_pred = logreg.predict(X_test) logreg_acc = accuracy_score(logreg_pred, Y_test) print("Test accuracy score is: ", logreg_acc * 100) # **Model 2 - Decision Tree Model** dtree = DecisionTreeClassifier() # training the model dtree.fit(X_train, Y_train) # model evaluation dtree_pred = dtree.predict(X_test) dtree_acc = accuracy_score(dtree_pred, Y_test) print("Test Accuracy score is:", dtree_acc * 100) # **Model 3 - Random Forest Classifier** rforest = RandomForestClassifier() # training the model rforest.fit(X_train, Y_train) # model evaluation rforest_pred = rforest.predict(X_test) rforest_acc = accuracy_score(rforest_pred, Y_test) print("Test Accuracy score is:", rforest_acc * 100) # > Conclusion: # > Random Forest has better accuracy than other two models (Logistic Regression and Decision Tree) # # Building a Predictive System input_data = (7.3, 0.65, 0.0, 1.2, 0.065, 15.0, 21.0, 0.9946, 3.39, 0.47, 10.0) # input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5) # changing the input data to a numpy array input_data_as_numpy_array = np.asarray(input_data) # reshaping the data as we are predicting the label for only one instance input_data_reshaped = input_data_as_numpy_array.reshape(1, -1) prediction = rforest.predict(input_data_reshaped) print(prediction) if prediction[0] == 1: print("Good Quality Wine!") else: print("Bad Quality Wine")
false
0
1,379
0
2,247
1,379
129533101
# ## Imports import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from tqdm import tqdm from matplotlib import pyplot as plt train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") sub = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv") train.head(3) # ## Transformer from transformers import ( AutoModel, AutoTokenizer, AutoConfig, get_cosine_schedule_with_warmup, ) import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.optim import AdamW device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class CFG: max_len = 512 batch_size = 32 epochs = 1 model_str = "xlm-roberta-base" tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") encoder_lr = 1e-5 decoder_lr = 1e-4 eps = 1e-6 betas = (0.9, 0.999) weight_decay = 0.01 max_grad_norm = 0.012 num_cycles = 0.5 warmup_ratio = 0.1 max_grad_norm = 0.012 def prepare_inputs(inputs, max_len): inputs = CFG.tokenizer.encode_plus( inputs, return_tensors=None, add_special_tokens=True, max_length=max_len, truncation=True, pad_to_max_length=True, ) return {k: torch.tensor(v, dtype=torch.long).to(device) for k, v in inputs.items()} class CustomDataset: def __init__(self, df, max_len, train=True): self.text = df["text"] self.train = train if train == True: self.target = df["target"] self.max_len = max_len def __len__(self): return len(self.text) def __getitem__(self, idx): inputs = prepare_inputs(self.text[idx], self.max_len) if self.train == True: labels = torch.tensor(self.target[idx], dtype=torch.float).to(device) return inputs, labels else: return inputs class MeanPooling(nn.Module): def __init__(self): super(MeanPooling, self).__init__() def forward(self, last_hidden_state, attention_mask): input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() ) sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) mean_embeddings = sum_embeddings / sum_mask return mean_embeddings class CustomModel(nn.Module): def __init__(self): super().__init__() self.model = AutoModel.from_pretrained(CFG.model_str) self.config = AutoConfig.from_pretrained(CFG.model_str) self.config.hidden_dropout = 0.0 self.config.hidden_dropout_prob = 0.0 self.config.attention_dropout = 0.0 self.config.attention_probs_dropout_prob = 0.0 self.linear = nn.Linear(self.config.hidden_size, 1) self.pool = MeanPooling() def forward(self, inputs): out = self.model(**inputs) x = self.pool(out["last_hidden_state"], inputs["attention_mask"]) x = self.linear(x) return x def collate(inputs): mask_len = int(inputs["attention_mask"].sum(axis=1).max()) for k, v in inputs.items(): inputs[k] = inputs[k][:, :mask_len] return inputs dataset = CustomDataset(train, CFG.max_len) loader = DataLoader(dataset=dataset, batch_size=CFG.batch_size, shuffle=True) model = CustomModel().to(device) criterion = nn.BCEWithLogitsLoss(reduction="mean") def get_optimizer_params(model, encoder_lr, decoder_lr, weight_decay=0.0): no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_parameters = [ { "params": [ p for n, p in model.model.named_parameters() if not any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": weight_decay, }, { "params": [ p for n, p in model.model.named_parameters() if any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": 0.0, }, { "params": [p for n, p in model.named_parameters() if "model" not in n], "lr": decoder_lr, "weight_decay": 0.0, }, ] return optimizer_parameters # for name,param in model.named_parameters(): # if 'model' in name: # param.param_requires_grad = False optimizer_parameters = get_optimizer_params( model, encoder_lr=CFG.encoder_lr, decoder_lr=CFG.decoder_lr, weight_decay=CFG.weight_decay, ) optimizer = AdamW(optimizer_parameters, lr=CFG.encoder_lr, eps=CFG.eps, betas=CFG.betas) num_train_steps = int(len(train) / CFG.batch_size * CFG.epochs) num_warmup_steps = num_train_steps * CFG.warmup_ratio # Scheduler scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_train_steps, num_cycles=CFG.num_cycles, ) def train_fn(model, optimizer, criterion, scheduler, loader, epochs): torch.autograd.set_detect_anomaly(True) for i in range(epochs): print(f"Epoch {i}") scaler = torch.cuda.amp.GradScaler(enabled=True) global_step = 0 running_loss = 0.0 correct_preds = 0 total_preds = 0 for inputs, target in loader: inputs = collate(inputs) with torch.cuda.amp.autocast(enabled=True): y_preds = model(inputs) loss = criterion(y_preds.view(-1), target) optimizer.zero_grad() scaler.scale(loss).backward() scaler.unscale_(optimizer) grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), CFG.max_grad_norm ) scaler.step(optimizer) scaler.update() global_step += 1 running_loss += loss.item() predicted_labels = torch.round(torch.sigmoid(y_preds)).squeeze() correct_preds += (predicted_labels == target).sum().item() total_preds += len(target) scheduler.step() if global_step % 100 == 0: avg_loss = running_loss / 100 acc = correct_preds / total_preds print( f"Step {global_step}: loss = {avg_loss:.3f}, accuracy = {acc:.3f}" ) running_loss = 0.0 correct_preds = 0 total_preds = 0 train_fn(model, optimizer, criterion, scheduler, loader, epochs=4) dataset = CustomDataset(test, CFG.max_len, train=False) loader = DataLoader(dataset=dataset, batch_size=CFG.batch_size, shuffle=False) i = 0 test_preds = [] for inputs in loader: inputs = collate(inputs) with torch.cuda.amp.autocast(enabled=True): ypreds = model(inputs) ypreds = torch.round(torch.sigmoid(ypreds)).squeeze() test_preds.extend(ypreds.tolist()) sub["id"] = test["id"] sub["target"] = test_preds sub["target"] = sub["target"].astype("int64") sub.to_csv("submission.csv", index=False) sub.head()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/533/129533101.ipynb
null
null
[{"Id": 129533101, "ScriptId": 38516179, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 4611683, "CreationDate": "05/14/2023 15:38:37", "VersionNumber": 1.0, "Title": "Pytorch \ud83d\udd25 Transformer \ud83e\udd17 Simple Baseline", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 215.0, "LinesInsertedFromPrevious": 8.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 207.0, "LinesInsertedFromFork": 8.0, "LinesDeletedFromFork": 99.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 207.0, "TotalVotes": 0}]
null
null
null
null
# ## Imports import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from tqdm import tqdm from matplotlib import pyplot as plt train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") sub = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv") train.head(3) # ## Transformer from transformers import ( AutoModel, AutoTokenizer, AutoConfig, get_cosine_schedule_with_warmup, ) import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.optim import AdamW device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class CFG: max_len = 512 batch_size = 32 epochs = 1 model_str = "xlm-roberta-base" tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") encoder_lr = 1e-5 decoder_lr = 1e-4 eps = 1e-6 betas = (0.9, 0.999) weight_decay = 0.01 max_grad_norm = 0.012 num_cycles = 0.5 warmup_ratio = 0.1 max_grad_norm = 0.012 def prepare_inputs(inputs, max_len): inputs = CFG.tokenizer.encode_plus( inputs, return_tensors=None, add_special_tokens=True, max_length=max_len, truncation=True, pad_to_max_length=True, ) return {k: torch.tensor(v, dtype=torch.long).to(device) for k, v in inputs.items()} class CustomDataset: def __init__(self, df, max_len, train=True): self.text = df["text"] self.train = train if train == True: self.target = df["target"] self.max_len = max_len def __len__(self): return len(self.text) def __getitem__(self, idx): inputs = prepare_inputs(self.text[idx], self.max_len) if self.train == True: labels = torch.tensor(self.target[idx], dtype=torch.float).to(device) return inputs, labels else: return inputs class MeanPooling(nn.Module): def __init__(self): super(MeanPooling, self).__init__() def forward(self, last_hidden_state, attention_mask): input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() ) sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) mean_embeddings = sum_embeddings / sum_mask return mean_embeddings class CustomModel(nn.Module): def __init__(self): super().__init__() self.model = AutoModel.from_pretrained(CFG.model_str) self.config = AutoConfig.from_pretrained(CFG.model_str) self.config.hidden_dropout = 0.0 self.config.hidden_dropout_prob = 0.0 self.config.attention_dropout = 0.0 self.config.attention_probs_dropout_prob = 0.0 self.linear = nn.Linear(self.config.hidden_size, 1) self.pool = MeanPooling() def forward(self, inputs): out = self.model(**inputs) x = self.pool(out["last_hidden_state"], inputs["attention_mask"]) x = self.linear(x) return x def collate(inputs): mask_len = int(inputs["attention_mask"].sum(axis=1).max()) for k, v in inputs.items(): inputs[k] = inputs[k][:, :mask_len] return inputs dataset = CustomDataset(train, CFG.max_len) loader = DataLoader(dataset=dataset, batch_size=CFG.batch_size, shuffle=True) model = CustomModel().to(device) criterion = nn.BCEWithLogitsLoss(reduction="mean") def get_optimizer_params(model, encoder_lr, decoder_lr, weight_decay=0.0): no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_parameters = [ { "params": [ p for n, p in model.model.named_parameters() if not any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": weight_decay, }, { "params": [ p for n, p in model.model.named_parameters() if any(nd in n for nd in no_decay) ], "lr": encoder_lr, "weight_decay": 0.0, }, { "params": [p for n, p in model.named_parameters() if "model" not in n], "lr": decoder_lr, "weight_decay": 0.0, }, ] return optimizer_parameters # for name,param in model.named_parameters(): # if 'model' in name: # param.param_requires_grad = False optimizer_parameters = get_optimizer_params( model, encoder_lr=CFG.encoder_lr, decoder_lr=CFG.decoder_lr, weight_decay=CFG.weight_decay, ) optimizer = AdamW(optimizer_parameters, lr=CFG.encoder_lr, eps=CFG.eps, betas=CFG.betas) num_train_steps = int(len(train) / CFG.batch_size * CFG.epochs) num_warmup_steps = num_train_steps * CFG.warmup_ratio # Scheduler scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_train_steps, num_cycles=CFG.num_cycles, ) def train_fn(model, optimizer, criterion, scheduler, loader, epochs): torch.autograd.set_detect_anomaly(True) for i in range(epochs): print(f"Epoch {i}") scaler = torch.cuda.amp.GradScaler(enabled=True) global_step = 0 running_loss = 0.0 correct_preds = 0 total_preds = 0 for inputs, target in loader: inputs = collate(inputs) with torch.cuda.amp.autocast(enabled=True): y_preds = model(inputs) loss = criterion(y_preds.view(-1), target) optimizer.zero_grad() scaler.scale(loss).backward() scaler.unscale_(optimizer) grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), CFG.max_grad_norm ) scaler.step(optimizer) scaler.update() global_step += 1 running_loss += loss.item() predicted_labels = torch.round(torch.sigmoid(y_preds)).squeeze() correct_preds += (predicted_labels == target).sum().item() total_preds += len(target) scheduler.step() if global_step % 100 == 0: avg_loss = running_loss / 100 acc = correct_preds / total_preds print( f"Step {global_step}: loss = {avg_loss:.3f}, accuracy = {acc:.3f}" ) running_loss = 0.0 correct_preds = 0 total_preds = 0 train_fn(model, optimizer, criterion, scheduler, loader, epochs=4) dataset = CustomDataset(test, CFG.max_len, train=False) loader = DataLoader(dataset=dataset, batch_size=CFG.batch_size, shuffle=False) i = 0 test_preds = [] for inputs in loader: inputs = collate(inputs) with torch.cuda.amp.autocast(enabled=True): ypreds = model(inputs) ypreds = torch.round(torch.sigmoid(ypreds)).squeeze() test_preds.extend(ypreds.tolist()) sub["id"] = test["id"] sub["target"] = test_preds sub["target"] = sub["target"].astype("int64") sub.to_csv("submission.csv", index=False) sub.head()
false
0
2,122
0
2,122
2,122
129969666
<jupyter_start><jupyter_text>Credit Card Fraud Detection Context --------- It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Content --------- The dataset contains transactions made by credit cards in September 2013 by European cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, ... V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. Given the class imbalance ratio, we recommend measuring the accuracy using the Area Under the Precision-Recall Curve (AUPRC). Confusion matrix accuracy is not meaningful for unbalanced classification. Update (03/05/2021) --------- A simulator for transaction data has been released as part of the practical handbook on Machine Learning for Credit Card Fraud Detection - https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_3_GettingStarted/SimulatedDataset.html. We invite all practitioners interested in fraud detection datasets to also check out this data simulator, and the methodologies for credit card fraud detection presented in the book. Acknowledgements --------- The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on [https://www.researchgate.net/project/Fraud-detection-5][1] and the page of the [DefeatFraud][2] project Please cite the following works: Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. [Calibrating Probability with Undersampling for Unbalanced Classification.][3] In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015 Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. [Learned lessons in credit card fraud detection from a practitioner perspective][4], Expert systems with applications,41,10,4915-4928,2014, Pergamon Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. [Credit card fraud detection: a realistic modeling and a novel learning strategy,][5] IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE Dal Pozzolo, Andrea [Adaptive Machine learning for credit card fraud detection][6] ULB MLG PhD thesis (supervised by G. Bontempi) Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-Aël; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. [Scarff: a scalable framework for streaming credit card fraud detection with Spark][7], Information fusion,41, 182-194,2018,Elsevier Carcillo, Fabrizio; Le Borgne, Yann-Aël; Caelen, Olivier; Bontempi, Gianluca. [Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization,][8] International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing Bertrand Lebichot, Yann-Aël Le Borgne, Liyun He, Frederic Oblé, Gianluca Bontempi [Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection](https://www.researchgate.net/publication/332180999_Deep-Learning_Domain_Adaptation_Techniques_for_Credit_Cards_Fraud_Detection), INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019 Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Frederic Oblé, Gianluca Bontempi [Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection ](https://www.researchgate.net/publication/333143698_Combining_Unsupervised_and_Supervised_Learning_in_Credit_Card_Fraud_Detection) Information Sciences, 2019 Yann-Aël Le Borgne, Gianluca Bontempi [Reproducible machine Learning for Credit Card Fraud Detection - Practical Handbook ](https://www.researchgate.net/publication/351283764_Machine_Learning_for_Credit_Card_Fraud_Detection_-_Practical_Handbook) Bertrand Lebichot, Gianmarco Paldino, Wissam Siblini, Liyun He, Frederic Oblé, Gianluca Bontempi [Incremental learning strategies for credit cards fraud detection](https://www.researchgate.net/publication/352275169_Incremental_learning_strategies_for_credit_cards_fraud_detection), IInternational Journal of Data Science and Analytics [1]: https://www.researchgate.net/project/Fraud-detection-5 [2]: https://mlg.ulb.ac.be/wordpress/portfolio_page/defeatfraud-assessment-and-validation-of-deep-feature-engineering-and-learning-solutions-for-fraud-detection/ [3]: https://www.researchgate.net/publication/283349138_Calibrating_Probability_with_Undersampling_for_Unbalanced_Classification [4]: https://www.researchgate.net/publication/260837261_Learned_lessons_in_credit_card_fraud_detection_from_a_practitioner_perspective [5]: https://www.researchgate.net/publication/319867396_Credit_Card_Fraud_Detection_A_Realistic_Modeling_and_a_Novel_Learning_Strategy [6]: http://di.ulb.ac.be/map/adalpozz/pdf/Dalpozzolo2015PhD.pdf [7]: https://www.researchgate.net/publication/319616537_SCARFF_a_Scalable_Framework_for_Streaming_Credit_Card_Fraud_Detection_with_Spark [8]: https://www.researchgate.net/publication/332180999_Deep-Learning_Domain_Adaptation_Techniques_for_Credit_Cards_Fraud_Detection Kaggle dataset identifier: creditcardfraud <jupyter_script># # **Librerías** import io import scipy as sp import numpy as np # álgebra lineal import pandas as pd # procesamiento de datos import matplotlib.pyplot as plt # gáficos básicos import seaborn as sns # gráficos avanzados from sklearn.model_selection import train_test_split # división de datos from sklearn.preprocessing import StandardScaler # normalización de datos from sklearn.neural_network import MLPClassifier # modelo Artificial Neural Network from sklearn.tree import DecisionTreeClassifier # modelo Decision Tree from sklearn.ensemble import GradientBoostingClassifier # modelo Gradient Boosting from sklearn.ensemble import IsolationForest # modelo Isolation Forest from sklearn.neighbors import KNeighborsClassifier # modelo K-Nearest Neighbors from sklearn.linear_model import LogisticRegression # modelo Logistic Regression from sklearn.naive_bayes import GaussianNB # modelo Naïve Baiyes Classifier from sklearn.ensemble import RandomForestClassifier # modelo Random Forest Classifier from sklearn.svm import SVC # modelo Support Vector Machine from sklearn.metrics import ( classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, make_scorer, ) # evaluación de métricas from sklearn.pipeline import Pipeline # sikit learn pipline from sklearn.pipeline import make_pipeline # sikit learn pipline from sklearn.model_selection import GridSearchCV, ShuffleSplit # cross validation from sklearn import model_selection, linear_model, decomposition from scipy.stats import uniform as sp_randFloat from scipy.stats import randint as sp_randInt from sklearn.tree import plot_tree from sklearn import tree from sklearn import metrics # model = StreamingRFC(spf_n_fits=math.inf) from incremental_trees.models.classification.streaming_rfc import StreamingRFC # from imblearn.over_sampling import SMOTE from imblearn.over_sampling._smote.base import SMOTE from collections import Counter # # **Limpieza / Preprocesamiento y Transformación de los datos** from google.colab import files uploaded = files.upload() df = pd.read_csv(io.BytesIO(uploaded["creditcard.csv"])) df.head() df.plot() plt.show() from pandas.plotting import andrews_curves plt.figure() andrews_curves(df, "Class") df.plot(subplots=True, layout=(31, 31), figsize=(31, 31), sharex=False) # Se busca una información más general del conjunto de datos. df.info() # Tratamiento de los datos **(Preprocesamiento)**: # visualizar si existen datos duplicados df[df.duplicated() == True] # eliminar las filas duplicadas df1 = df.drop_duplicates() # re-check: visualizar si existen datos duplicados df1[df1.duplicated() == True] # visualizar si existen valores nulos nulls = df.isna().sum() # contar valores nulos en cada columna df_nulls = pd.DataFrame(nulls) # convertir el resultado en un dataframe df_nulls.transpose() # transponer el marco de datos e imprimir el resultado # visualizar si existen valores atípicos int_vars = df1[ [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "Amount", "Class", ] ] sns.pairplot(int_vars, hue="Class") plt.show() df1 # # **Resultado** # » Los datos no tienen valores nulos. # »Todas las características están en el tipo correcto. # »Se descartaron las filas duplicadas. # » Se encontraron valores atípicos los cuales son el objetivo de este proyecto. # Ahora los datos están libres de errores y listos para construir el pipeline. df1.to_csv("creditcard.csv") from google.colab import files files.download("creditcard.csv") # # **Ajuste de parámetros con GridSearchCV:** # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # # **Manejando los datos desbalanceados:** # SMOTE: Synthetic Minority Oversampling Technique counter = Counter(y_train) print("Antes", counter) # oversampling the train dataset using SMOTE smt = SMOTE(random_state=0) # X_train, y_train=smt.fit_resample(X_train, y_train) X_train_sm, y_train_sm = smt.fit_resample(X_train, y_train) counter = Counter(y_train_sm) print("Después", counter) # #**Ajuste de parámetros con GridSearchCV para el algoritmo K-Nearest Neighbors.** # Iniciamos el modelo knn = KNeighborsClassifier() # operaciones en orden operations = [("knn", knn)] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador knn knn.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # modificaremos el 'n_neighbors' k_values = list(range(1, 100)) k_values # establecer el parámetro del grid param_grid = { "knn__n_neighbors": k_values } # podemos añadir cualquier otro parámetro (to be tuned) scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( pipe, param_grid, cv=5, scoring=scoring, refit="sensitivity" ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a KNeighborsClassifier(n_neighbors=1) # iniciar y configurar las operaciones knn2 = KNeighborsClassifier(n_neighbors=1) operations = [("knn2", knn2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") knn_auc = roc_auc_score(y_test, knn2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, knn2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, knn2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, knn2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, knn2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(knn_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = knn2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Decision Trees Classifier.** # Iniciamos el modelo dtree_model = DecisionTreeClassifier(random_state=0) # operaciones en orden operations = [ ("dtree_model", dtree_model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador DT dtree_model.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid param_grid = {"criterion": ["gini", "entropy"], "max_depth": range(1, 150, 1)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( dtree_model, param_grid, cv=5, scoring=scoring, refit="sensitivity" ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a DecisionTreeClassifier(criterion='entropy', max_depth=23, random_state=0) # iniciar y configurar las operaciones dtree_model4 = DecisionTreeClassifier(criterion="entropy", max_depth=23, random_state=0) operations = [("dtree_model4", dtree_model4)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") dt_auc = roc_auc_score(y_test, dtree_model4.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, dtree_model4.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, dtree_model4.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, dtree_model4.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, dtree_model4.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(dt_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = dtree_model4.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # plot model dt = DecisionTreeClassifier(criterion="entropy", max_depth=23, random_state=0) dt.fit(X_train_sm, y_train_sm) fig = plt.figure(figsize=(100, 20)) _ = tree.plot_tree(dt) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Naïve Baiyes Classifier.** # Iniciamos el modelo nb_classifier = GaussianNB() # operaciones en orden operations = [ ("nb_classifier", nb_classifier) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador NBC nb_classifier.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid params_NB = {"var_smoothing": np.logspace(0, -9, num=100)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=nb_classifier, param_grid=params_NB, cv=5, scoring=scoring, refit="sensitivity", ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a GaussianNB(var_smoothing=5.3366992312063123e-05) # iniciar y configurar las operaciones nb_classifier8 = GaussianNB(var_smoothing=5.3366992312063123e-05) operations = [("nb_classifier8", nb_classifier8)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") nbc_auc = roc_auc_score(y_test, nb_classifier8.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, nb_classifier8.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, nb_classifier8.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, nb_classifier8.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, nb_classifier8.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(nbc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = nb_classifier8.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Support Vector Machine.** # Iniciamos el modelo model = SVC(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador SVM model.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid params_SVM = { "C": [0.1, 1, 10, 100, 1000], "gamma": [1, 0.1, 0.01, 0.001, 0.0001], "kernel": ["rbf"], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=model, param_grid=params_SVM, cv=5, scoring=scoring, refit="sensitivity", verbose=3, ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a SVC(C=1000, gamma=0.0001, random_state=0) # # iniciar y configurar las operaciones # Para que este método funcione debemos modificar el parámetro 'probability' a probability=True modelCG2 = SVC(C=1000, gamma=0.0001, random_state=0, probability=True) operations = [("modelCG2", modelCG2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") svm_auc = roc_auc_score(y_test, modelCG2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelCG2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelCG2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelCG2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelCG2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(svm_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelCG2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Logistic Regression.** # PCA() pca = decomposition.PCA() # Iniciamos el modelo logistic_Reg = linear_model.LogisticRegression(random_state=0) # operaciones en orden operations = [ ("pca", pca), ("logistic_Reg", logistic_Reg), ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador LR logistic_Reg.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # modificaremos el 'n_components ' n_components = list(range(1, X_train.shape[1] + 1, 1)) n_components # La regresión logística requiere que GridSearchCV optimice dos parámetros 'C' y 'penalty'. # Así que hemos establecido estos dos parámetros como una lista de valores de los cuales GridSearchCV seleccionará el mejor valor del parámetro. C = np.logspace(-4, 4, 50) penalty = ["l1", "l2"] # Ahora estamos creando un diccionario para establecer todas las opciones de parámetros para diferentes módulos. parameters = dict( pca__n_components=n_components, logistic_Reg__C=C, logistic_Reg__penalty=penalty ) scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Hacer un objeto clf_GS para GridSearchCV y ajustar el conjunto de datos, es decir, X e y clf_GS = GridSearchCV(pipe, parameters, cv=5, scoring=scoring, refit="sensitivity") clf_GS.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo clf_GS.best_estimator_.get_params() clf_GS.best_estimator_ # El mejor rendimiento está asociado a LogisticRegression(C=109.85411419875572, random_state=0) # iniciar y configurar las operaciones logistic_RegC2 = linear_model.LogisticRegression(C=109.85411419875572, random_state=0) operations = [("logistic_RegC2", logistic_RegC2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") lr_auc = roc_auc_score(y_test, logistic_RegC2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, logistic_RegC2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, logistic_RegC2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, logistic_RegC2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, logistic_RegC2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(lr_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = logistic_RegC2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Artificial Neural Network.** # Iniciamos el modelo mlp = MLPClassifier(max_iter=100, random_state=0) # operaciones en orden operations = [("mlp", mlp)] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador LR mlp.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predºict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid parameter_space = { "hidden_layer_sizes": [(50, 50, 50), (50, 100, 50), (100,)], "activation": ["tanh", "relu"], "solver": ["sgd", "adam"], "alpha": [0.0001, 0.05], "learning_rate": ["constant", "adaptive"], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( mlp, parameter_space, cv=3, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a MLPClassifier(hidden_layer_sizes=(50, 50, 50), learning_rate='adaptive', max_iter=100, random_state=0, solver='sgd') # iniciar y configurar las operaciones mlpC = MLPClassifier( hidden_layer_sizes=(50, 50, 50), learning_rate="adaptive", max_iter=100, random_state=0, solver="sgd", ) operations = [("mlpC", mlpC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") mlp_auc = roc_auc_score(y_test, mlpC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, mlpC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, mlpC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, mlpC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, mlpC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(mlp_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = mlpC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Random Forest.** # Iniciamos el modelo model = StreamingRFC(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador RFC model.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # establecer el parámetro del grid param_grid = { "max_depth": range(1, 150, 1), "min_samples_leaf": [0, 0.025, 0.05, 0.075, 0.1], "max_features": ["sqrt", "log2"], } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=model, param_grid=param_grid, cv=5, scoring=scoring, refit="sensitivity", verbose=3, ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a StreamingRFC(max_depth=4, max_features='log2', min_samples_leaf=0.025, random_state=0) # # iniciar y configurar las operaciones modelRFC = StreamingRFC( max_depth=4, max_features="log2", min_samples_leaf=0.025, random_state=0 ) operations = [("modelRFC", modelRFC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") rfc_auc = roc_auc_score(y_test, modelRFC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelRFC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelRFC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelRFC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelRFC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(rfc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelRFC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # plot model rf = RandomForestClassifier( max_depth=4, max_features="log2", min_samples_leaf=0.025, random_state=0 ) rf.fit(X_train_sm, y_train_sm) plt.figure(figsize=(20, 20)) _ = tree.plot_tree(rf.estimators_[0], feature_names=X_train_sm.columns, filled=True) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Isolation Forest** # Iniciamos el modelo model_isf = IsolationForest(random_state=0) # operaciones en orden operations = [ ("model_isf", model_isf) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador RFC model_isf.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") model_isf.fit(X_train_sm, y_train_sm) y_pred = pd.Series(model_isf.predict(X_test)) y_pred = y_pred.map({1: 0, -1: 1}) tn, fp, fn, tp = confusion_matrix(y_test.round(), y_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap( confusion_matrix(y_test.round(), y_pred), annot=True, cmap="Greys", fmt=".0f" ) plt.show() # establecer el parámetro del grid param_grid = {"n_estimators": range(10, 50, 10), "max_features": range(8, 28, 10)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto import warnings warnings.filterwarnings("ignore") full_cv_classifier = GridSearchCV( model_isf, param_grid, cv=5, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a IsolationForest(max_features=8, n_estimators=10, random_state=0) # iniciar y configurar las operaciones modelIF = IsolationForest(max_features=8, n_estimators=10, random_state=0) operations = [("modelIF", modelIF)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba y_pred = pd.Series(modelIF.predict(X_test)) y_pred = y_pred.map({1: 0, -1: 1}) import warnings warnings.filterwarnings("ignore") if_auc = roc_auc_score(y_test, pipe.predict(X_test)) tn, fp, fn, tp = confusion_matrix(y_test.round(), y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelIF.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(if_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), y_pred, pos_label=0) roc_auc = metrics.auc(fpr, tpr) # Graficar roc_curve plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # Imprimir valor del AUC if_auc = np.trapz(tpr, fpr) print("AUC:", if_auc) # plot model iforst = IsolationForest(max_features=8, n_estimators=10, random_state=0) iforst.fit(X_train_sm, y_train_sm) plt.figure(figsize=(20, 20)) _ = tree.plot_tree(iforst.estimators_[0], feature_names=X_train_sm.columns, filled=True) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Gradient Boosting** # Iniciamos el modelo model = GradientBoostingClassifier(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador GBC model.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid parameters = { "learning_rate": [0.01, 0.05, 0.1, 0.5, 1], "min_samples_split": [2, 5, 10, 20], "max_depth": [2, 3, 5, 10], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( model, parameters, cv=3, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm.values.ravel()) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a GradientBoostingClassifier(learning_rate=1, max_depth=10, min_samples_split=10, random_state=0) # iniciar y configurar las operaciones modelGBC = GradientBoostingClassifier( learning_rate=1, max_depth=10, min_samples_split=10, random_state=0 ) operations = [("modelGBC", modelGBC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") gbc_auc = roc_auc_score(y_test, modelGBC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelGBC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelGBC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelGBC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelGBC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(gbc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelGBC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Elección del método de ML.** mlp_f1 = 0.008793356130923304 dt_f1 = 0.2650602409638554 gbc_f1 = 0.2608695652173913 if_f1 = 0.05555555555555556 knn_f1 = 0.0 lr_f1 = 0.05520169851380042 nbc_f1 = 0.008479067302596715 rfc_f1 = 0.014204545454545456 svm_f1 = 0.0 mylist = [mlp_f1, dt_f1, gbc_f1, if_f1, knn_f1, lr_f1, nbc_f1, rfc_f1, svm_f1] best_f1 = 0.0 for x in mylist: a = x if a > best_f1: best_f1 = a print("El mayor valor de F1 Score está dado para el modelo:") if best_f1 == mlp_f1: print("Artificial Neural Network") if best_f1 == dt_f1: print("Decision Tree Classifier") if best_f1 == gbc_f1: print("Gradient Boosting") if best_f1 == if_f1: print("Isolation Forest") if best_f1 == knn_f1: print("K-Nearest Neighbors") if best_f1 == lr_f1: print("Logistic Regression") if best_f1 == nbc_f1: print("Naïve Baiyes Classifier") if best_f1 == rfc_f1: print("Random Forest Classifier") if best_f1 == svm_f1: print("Support Vector Machine") # # **Experimento 1: Comparación entre los resultados del Dataset original.** df1 = df # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** # model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # # **Experimento 2: Comparación entre los modelos de ML teniendo en cuenta los resultados de los pasos 3 y 4 de la secuencia KDD (sin tratamiento del desbalance).** df1 = df.drop_duplicates() # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # # **Experimento 3: Comparación entre los modelos de ML tras aplicar SMOTE.** # SMOTE: Synthetic Minority Oversampling Technique counter = Counter(y_train) print("Antes", counter) # oversampling the train dataset using SMOTE smt = SMOTE(random_state=0) # X_train, y_train=smt.fit_resample(X_train, y_train) X_train_sm, y_train_sm = smt.fit_resample(X_train, y_train) counter = Counter(y_train_sm) print("Después", counter) # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/969/129969666.ipynb
creditcardfraud
null
[{"Id": 129969666, "ScriptId": 38660696, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9864294, "CreationDate": "05/17/2023 19:54:56", "VersionNumber": 2.0, "Title": "notebookea7a3e004d", "EvaluationDate": NaN, "IsChange": false, "TotalLines": 2157.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 2157.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186408710, "KernelVersionId": 129969666, "SourceDatasetVersionId": 23498}]
[{"Id": 23498, "DatasetId": 310, "DatasourceVersionId": 23502, "CreatorUserId": 998023, "LicenseName": "Database: Open Database, Contents: Database Contents", "CreationDate": "03/23/2018 01:17:27", "VersionNumber": 3.0, "Title": "Credit Card Fraud Detection", "Slug": "creditcardfraud", "Subtitle": "Anonymized credit card transactions labeled as fraudulent or genuine", "Description": "Context\n---------\n\nIt is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase.\n\nContent\n---------\n\nThe dataset contains transactions made by credit cards in September 2013 by European cardholders. \nThis dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.\n\nIt contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, ... V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. \n\nGiven the class imbalance ratio, we recommend measuring the accuracy using the Area Under the Precision-Recall Curve (AUPRC). Confusion matrix accuracy is not meaningful for unbalanced classification.\n\nUpdate (03/05/2021)\n---------\n\nA simulator for transaction data has been released as part of the practical handbook on Machine Learning for Credit Card Fraud Detection - https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_3_GettingStarted/SimulatedDataset.html. We invite all practitioners interested in fraud detection datasets to also check out this data simulator, and the methodologies for credit card fraud detection presented in the book.\n\nAcknowledgements\n---------\n\nThe dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00e9 Libre de Bruxelles) on big data mining and fraud detection.\nMore details on current and past projects on related topics are available on [https://www.researchgate.net/project/Fraud-detection-5][1] and the page of the [DefeatFraud][2] project\n\nPlease cite the following works: \n\nAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. [Calibrating Probability with Undersampling for Unbalanced Classification.][3] In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n\nDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. [Learned lessons in credit card fraud detection from a practitioner perspective][4], Expert systems with applications,41,10,4915-4928,2014, Pergamon\n\nDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. [Credit card fraud detection: a realistic modeling and a novel learning strategy,][5] IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n\nDal Pozzolo, Andrea [Adaptive Machine learning for credit card fraud detection][6] ULB MLG PhD thesis (supervised by G. Bontempi)\n\nCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00ebl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. [Scarff: a scalable framework for streaming credit card fraud detection with Spark][7], Information fusion,41, 182-194,2018,Elsevier\n\nCarcillo, Fabrizio; Le Borgne, Yann-A\u00ebl; Caelen, Olivier; Bontempi, Gianluca. [Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization,][8] International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing\n\nBertrand Lebichot, Yann-A\u00ebl Le Borgne, Liyun He, Frederic Obl\u00e9, Gianluca Bontempi [Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection](https://www.researchgate.net/publication/332180999_Deep-Learning_Domain_Adaptation_Techniques_for_Credit_Cards_Fraud_Detection), INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019\n\nFabrizio Carcillo, Yann-A\u00ebl Le Borgne, Olivier Caelen, Frederic Obl\u00e9, Gianluca Bontempi [Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection ](https://www.researchgate.net/publication/333143698_Combining_Unsupervised_and_Supervised_Learning_in_Credit_Card_Fraud_Detection) Information Sciences, 2019\n\nYann-A\u00ebl Le Borgne, Gianluca Bontempi [Reproducible machine Learning for Credit Card Fraud Detection - Practical Handbook ](https://www.researchgate.net/publication/351283764_Machine_Learning_for_Credit_Card_Fraud_Detection_-_Practical_Handbook) \n\nBertrand Lebichot, Gianmarco Paldino, Wissam Siblini, Liyun He, Frederic Obl\u00e9, Gianluca Bontempi [Incremental learning strategies for credit cards fraud detection](https://www.researchgate.net/publication/352275169_Incremental_learning_strategies_for_credit_cards_fraud_detection), IInternational Journal of Data Science and Analytics\n\n [1]: https://www.researchgate.net/project/Fraud-detection-5\n [2]: https://mlg.ulb.ac.be/wordpress/portfolio_page/defeatfraud-assessment-and-validation-of-deep-feature-engineering-and-learning-solutions-for-fraud-detection/\n [3]: https://www.researchgate.net/publication/283349138_Calibrating_Probability_with_Undersampling_for_Unbalanced_Classification\n [4]: https://www.researchgate.net/publication/260837261_Learned_lessons_in_credit_card_fraud_detection_from_a_practitioner_perspective\n [5]: https://www.researchgate.net/publication/319867396_Credit_Card_Fraud_Detection_A_Realistic_Modeling_and_a_Novel_Learning_Strategy\n [6]: http://di.ulb.ac.be/map/adalpozz/pdf/Dalpozzolo2015PhD.pdf\n [7]: https://www.researchgate.net/publication/319616537_SCARFF_a_Scalable_Framework_for_Streaming_Credit_Card_Fraud_Detection_with_Spark\n \n[8]: https://www.researchgate.net/publication/332180999_Deep-Learning_Domain_Adaptation_Techniques_for_Credit_Cards_Fraud_Detection", "VersionNotes": "Fixed preview", "TotalCompressedBytes": 150828752.0, "TotalUncompressedBytes": 69155632.0}]
[{"Id": 310, "CreatorUserId": 14069, "OwnerUserId": NaN, "OwnerOrganizationId": 1160.0, "CurrentDatasetVersionId": 23498.0, "CurrentDatasourceVersionId": 23502.0, "ForumId": 1838, "Type": 2, "CreationDate": "11/03/2016 13:21:36", "LastActivityDate": "02/06/2018", "TotalViews": 10310781, "TotalDownloads": 564249, "TotalVotes": 10432, "TotalKernels": 4266}]
null
# # **Librerías** import io import scipy as sp import numpy as np # álgebra lineal import pandas as pd # procesamiento de datos import matplotlib.pyplot as plt # gáficos básicos import seaborn as sns # gráficos avanzados from sklearn.model_selection import train_test_split # división de datos from sklearn.preprocessing import StandardScaler # normalización de datos from sklearn.neural_network import MLPClassifier # modelo Artificial Neural Network from sklearn.tree import DecisionTreeClassifier # modelo Decision Tree from sklearn.ensemble import GradientBoostingClassifier # modelo Gradient Boosting from sklearn.ensemble import IsolationForest # modelo Isolation Forest from sklearn.neighbors import KNeighborsClassifier # modelo K-Nearest Neighbors from sklearn.linear_model import LogisticRegression # modelo Logistic Regression from sklearn.naive_bayes import GaussianNB # modelo Naïve Baiyes Classifier from sklearn.ensemble import RandomForestClassifier # modelo Random Forest Classifier from sklearn.svm import SVC # modelo Support Vector Machine from sklearn.metrics import ( classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, make_scorer, ) # evaluación de métricas from sklearn.pipeline import Pipeline # sikit learn pipline from sklearn.pipeline import make_pipeline # sikit learn pipline from sklearn.model_selection import GridSearchCV, ShuffleSplit # cross validation from sklearn import model_selection, linear_model, decomposition from scipy.stats import uniform as sp_randFloat from scipy.stats import randint as sp_randInt from sklearn.tree import plot_tree from sklearn import tree from sklearn import metrics # model = StreamingRFC(spf_n_fits=math.inf) from incremental_trees.models.classification.streaming_rfc import StreamingRFC # from imblearn.over_sampling import SMOTE from imblearn.over_sampling._smote.base import SMOTE from collections import Counter # # **Limpieza / Preprocesamiento y Transformación de los datos** from google.colab import files uploaded = files.upload() df = pd.read_csv(io.BytesIO(uploaded["creditcard.csv"])) df.head() df.plot() plt.show() from pandas.plotting import andrews_curves plt.figure() andrews_curves(df, "Class") df.plot(subplots=True, layout=(31, 31), figsize=(31, 31), sharex=False) # Se busca una información más general del conjunto de datos. df.info() # Tratamiento de los datos **(Preprocesamiento)**: # visualizar si existen datos duplicados df[df.duplicated() == True] # eliminar las filas duplicadas df1 = df.drop_duplicates() # re-check: visualizar si existen datos duplicados df1[df1.duplicated() == True] # visualizar si existen valores nulos nulls = df.isna().sum() # contar valores nulos en cada columna df_nulls = pd.DataFrame(nulls) # convertir el resultado en un dataframe df_nulls.transpose() # transponer el marco de datos e imprimir el resultado # visualizar si existen valores atípicos int_vars = df1[ [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "Amount", "Class", ] ] sns.pairplot(int_vars, hue="Class") plt.show() df1 # # **Resultado** # » Los datos no tienen valores nulos. # »Todas las características están en el tipo correcto. # »Se descartaron las filas duplicadas. # » Se encontraron valores atípicos los cuales son el objetivo de este proyecto. # Ahora los datos están libres de errores y listos para construir el pipeline. df1.to_csv("creditcard.csv") from google.colab import files files.download("creditcard.csv") # # **Ajuste de parámetros con GridSearchCV:** # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # # **Manejando los datos desbalanceados:** # SMOTE: Synthetic Minority Oversampling Technique counter = Counter(y_train) print("Antes", counter) # oversampling the train dataset using SMOTE smt = SMOTE(random_state=0) # X_train, y_train=smt.fit_resample(X_train, y_train) X_train_sm, y_train_sm = smt.fit_resample(X_train, y_train) counter = Counter(y_train_sm) print("Después", counter) # #**Ajuste de parámetros con GridSearchCV para el algoritmo K-Nearest Neighbors.** # Iniciamos el modelo knn = KNeighborsClassifier() # operaciones en orden operations = [("knn", knn)] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador knn knn.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # modificaremos el 'n_neighbors' k_values = list(range(1, 100)) k_values # establecer el parámetro del grid param_grid = { "knn__n_neighbors": k_values } # podemos añadir cualquier otro parámetro (to be tuned) scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( pipe, param_grid, cv=5, scoring=scoring, refit="sensitivity" ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a KNeighborsClassifier(n_neighbors=1) # iniciar y configurar las operaciones knn2 = KNeighborsClassifier(n_neighbors=1) operations = [("knn2", knn2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") knn_auc = roc_auc_score(y_test, knn2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, knn2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, knn2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, knn2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, knn2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(knn_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = knn2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Decision Trees Classifier.** # Iniciamos el modelo dtree_model = DecisionTreeClassifier(random_state=0) # operaciones en orden operations = [ ("dtree_model", dtree_model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador DT dtree_model.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid param_grid = {"criterion": ["gini", "entropy"], "max_depth": range(1, 150, 1)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( dtree_model, param_grid, cv=5, scoring=scoring, refit="sensitivity" ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a DecisionTreeClassifier(criterion='entropy', max_depth=23, random_state=0) # iniciar y configurar las operaciones dtree_model4 = DecisionTreeClassifier(criterion="entropy", max_depth=23, random_state=0) operations = [("dtree_model4", dtree_model4)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") dt_auc = roc_auc_score(y_test, dtree_model4.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, dtree_model4.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, dtree_model4.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, dtree_model4.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, dtree_model4.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(dt_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = dtree_model4.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # plot model dt = DecisionTreeClassifier(criterion="entropy", max_depth=23, random_state=0) dt.fit(X_train_sm, y_train_sm) fig = plt.figure(figsize=(100, 20)) _ = tree.plot_tree(dt) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Naïve Baiyes Classifier.** # Iniciamos el modelo nb_classifier = GaussianNB() # operaciones en orden operations = [ ("nb_classifier", nb_classifier) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador NBC nb_classifier.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid params_NB = {"var_smoothing": np.logspace(0, -9, num=100)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=nb_classifier, param_grid=params_NB, cv=5, scoring=scoring, refit="sensitivity", ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a GaussianNB(var_smoothing=5.3366992312063123e-05) # iniciar y configurar las operaciones nb_classifier8 = GaussianNB(var_smoothing=5.3366992312063123e-05) operations = [("nb_classifier8", nb_classifier8)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") nbc_auc = roc_auc_score(y_test, nb_classifier8.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, nb_classifier8.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, nb_classifier8.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, nb_classifier8.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, nb_classifier8.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(nbc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = nb_classifier8.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Support Vector Machine.** # Iniciamos el modelo model = SVC(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador SVM model.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid params_SVM = { "C": [0.1, 1, 10, 100, 1000], "gamma": [1, 0.1, 0.01, 0.001, 0.0001], "kernel": ["rbf"], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=model, param_grid=params_SVM, cv=5, scoring=scoring, refit="sensitivity", verbose=3, ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a SVC(C=1000, gamma=0.0001, random_state=0) # # iniciar y configurar las operaciones # Para que este método funcione debemos modificar el parámetro 'probability' a probability=True modelCG2 = SVC(C=1000, gamma=0.0001, random_state=0, probability=True) operations = [("modelCG2", modelCG2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") svm_auc = roc_auc_score(y_test, modelCG2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelCG2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelCG2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelCG2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelCG2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(svm_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelCG2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Logistic Regression.** # PCA() pca = decomposition.PCA() # Iniciamos el modelo logistic_Reg = linear_model.LogisticRegression(random_state=0) # operaciones en orden operations = [ ("pca", pca), ("logistic_Reg", logistic_Reg), ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador LR logistic_Reg.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # modificaremos el 'n_components ' n_components = list(range(1, X_train.shape[1] + 1, 1)) n_components # La regresión logística requiere que GridSearchCV optimice dos parámetros 'C' y 'penalty'. # Así que hemos establecido estos dos parámetros como una lista de valores de los cuales GridSearchCV seleccionará el mejor valor del parámetro. C = np.logspace(-4, 4, 50) penalty = ["l1", "l2"] # Ahora estamos creando un diccionario para establecer todas las opciones de parámetros para diferentes módulos. parameters = dict( pca__n_components=n_components, logistic_Reg__C=C, logistic_Reg__penalty=penalty ) scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Hacer un objeto clf_GS para GridSearchCV y ajustar el conjunto de datos, es decir, X e y clf_GS = GridSearchCV(pipe, parameters, cv=5, scoring=scoring, refit="sensitivity") clf_GS.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo clf_GS.best_estimator_.get_params() clf_GS.best_estimator_ # El mejor rendimiento está asociado a LogisticRegression(C=109.85411419875572, random_state=0) # iniciar y configurar las operaciones logistic_RegC2 = linear_model.LogisticRegression(C=109.85411419875572, random_state=0) operations = [("logistic_RegC2", logistic_RegC2)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") lr_auc = roc_auc_score(y_test, logistic_RegC2.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, logistic_RegC2.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, logistic_RegC2.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, logistic_RegC2.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, logistic_RegC2.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(lr_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = logistic_RegC2.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Artificial Neural Network.** # Iniciamos el modelo mlp = MLPClassifier(max_iter=100, random_state=0) # operaciones en orden operations = [("mlp", mlp)] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador LR mlp.get_params().keys() # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predºict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid parameter_space = { "hidden_layer_sizes": [(50, 50, 50), (50, 100, 50), (100,)], "activation": ["tanh", "relu"], "solver": ["sgd", "adam"], "alpha": [0.0001, 0.05], "learning_rate": ["constant", "adaptive"], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( mlp, parameter_space, cv=3, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a MLPClassifier(hidden_layer_sizes=(50, 50, 50), learning_rate='adaptive', max_iter=100, random_state=0, solver='sgd') # iniciar y configurar las operaciones mlpC = MLPClassifier( hidden_layer_sizes=(50, 50, 50), learning_rate="adaptive", max_iter=100, random_state=0, solver="sgd", ) operations = [("mlpC", mlpC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") mlp_auc = roc_auc_score(y_test, mlpC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, mlpC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, mlpC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, mlpC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, mlpC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(mlp_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = mlpC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Ajuste de parámetros con GridSearchCV para el algoritmo Random Forest.** # Iniciamos el modelo model = StreamingRFC(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador RFC model.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # establecer el parámetro del grid param_grid = { "max_depth": range(1, 150, 1), "min_samples_leaf": [0, 0.025, 0.05, 0.075, 0.1], "max_features": ["sqrt", "log2"], } # Poniendo todo junto full_cv_classifier = GridSearchCV( estimator=model, param_grid=param_grid, cv=5, scoring=scoring, refit="sensitivity", verbose=3, ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a StreamingRFC(max_depth=4, max_features='log2', min_samples_leaf=0.025, random_state=0) # # iniciar y configurar las operaciones modelRFC = StreamingRFC( max_depth=4, max_features="log2", min_samples_leaf=0.025, random_state=0 ) operations = [("modelRFC", modelRFC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") rfc_auc = roc_auc_score(y_test, modelRFC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelRFC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelRFC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelRFC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelRFC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(rfc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelRFC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # plot model rf = RandomForestClassifier( max_depth=4, max_features="log2", min_samples_leaf=0.025, random_state=0 ) rf.fit(X_train_sm, y_train_sm) plt.figure(figsize=(20, 20)) _ = tree.plot_tree(rf.estimators_[0], feature_names=X_train_sm.columns, filled=True) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Isolation Forest** # Iniciamos el modelo model_isf = IsolationForest(random_state=0) # operaciones en orden operations = [ ("model_isf", model_isf) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador RFC model_isf.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") model_isf.fit(X_train_sm, y_train_sm) y_pred = pd.Series(model_isf.predict(X_test)) y_pred = y_pred.map({1: 0, -1: 1}) tn, fp, fn, tp = confusion_matrix(y_test.round(), y_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap( confusion_matrix(y_test.round(), y_pred), annot=True, cmap="Greys", fmt=".0f" ) plt.show() # establecer el parámetro del grid param_grid = {"n_estimators": range(10, 50, 10), "max_features": range(8, 28, 10)} scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto import warnings warnings.filterwarnings("ignore") full_cv_classifier = GridSearchCV( model_isf, param_grid, cv=5, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a IsolationForest(max_features=8, n_estimators=10, random_state=0) # iniciar y configurar las operaciones modelIF = IsolationForest(max_features=8, n_estimators=10, random_state=0) operations = [("modelIF", modelIF)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba y_pred = pd.Series(modelIF.predict(X_test)) y_pred = y_pred.map({1: 0, -1: 1}) import warnings warnings.filterwarnings("ignore") if_auc = roc_auc_score(y_test, pipe.predict(X_test)) tn, fp, fn, tp = confusion_matrix(y_test.round(), y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelIF.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(if_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), y_pred, pos_label=0) roc_auc = metrics.auc(fpr, tpr) # Graficar roc_curve plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # Imprimir valor del AUC if_auc = np.trapz(tpr, fpr) print("AUC:", if_auc) # plot model iforst = IsolationForest(max_features=8, n_estimators=10, random_state=0) iforst.fit(X_train_sm, y_train_sm) plt.figure(figsize=(20, 20)) _ = tree.plot_tree(iforst.estimators_[0], feature_names=X_train_sm.columns, filled=True) # #**Ajuste de parámetros con GridSearchCV para el algoritmo Gradient Boosting** # Iniciamos el modelo model = GradientBoostingClassifier(random_state=0) # operaciones en orden operations = [ ("model", model) ] # Observe que están escritos en tuplas dentro de una lista # configurar el pipeline pipe = Pipeline(operations) # Estos son los parámetros que se pueden modificar en el clasificador GBC model.get_params().keys() # entrenamiento del pipeline import warnings warnings.filterwarnings("ignore") pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("Leyenda »", "tn: ", tn, "fp: ", fp, "fn: ", fn, "tp: ", tp) plt.figure(figsize=(5, 2)) plt.title("Matriz de Confusión del Pipeline:", fontsize=16) sns.heatmap(confusion_matrix(y_test, pipe_pred), annot=True, cmap="Greys", fmt=".0f") plt.show() # establecer el parámetro del grid parameters = { "learning_rate": [0.01, 0.05, 0.1, 0.5, 1], "min_samples_split": [2, 5, 10, 20], "max_depth": [2, 3, 5, 10], } scoring = { "sensitivity": make_scorer(recall_score), "specificity": make_scorer(recall_score, pos_label=0), } # Poniendo todo junto full_cv_classifier = GridSearchCV( model, parameters, cv=3, scoring=scoring, refit="sensitivity", verbose=3 ) # Entrenamos el Pipeline full_cv_classifier.fit(X_train_sm, y_train_sm.values.ravel()) # Mejores parámetros del modelo full_cv_classifier.best_estimator_.get_params() full_cv_classifier.best_estimator_ # El mejor rendimiento está asociado a GradientBoostingClassifier(learning_rate=1, max_depth=10, min_samples_split=10, random_state=0) # iniciar y configurar las operaciones modelGBC = GradientBoostingClassifier( learning_rate=1, max_depth=10, min_samples_split=10, random_state=0 ) operations = [("modelGBC", modelGBC)] # configurar el pipeline pipe = Pipeline(operations) # entrenamiento del pipeline pipe.fit(X_train_sm, y_train_sm) # predicción con el conjunto de prueba pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") gbc_auc = roc_auc_score(y_test, modelGBC.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, modelGBC.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, modelGBC.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, modelGBC.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, modelGBC.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(gbc_auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # calculando el fpr y tpr para todos los thresholds de la clasificación probs = modelGBC.predict_proba(X_test) preds = probs[:, 1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method: plt plt.title("Receiver Operating Characteristic") plt.plot(fpr, tpr, "b", label="AUC = %0.2f" % roc_auc) plt.legend(loc="lower right") plt.plot([0, 1], [0, 1], "r--") plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel("True Positive Rate") plt.xlabel("False Positive Rate") plt.show() # #**Elección del método de ML.** mlp_f1 = 0.008793356130923304 dt_f1 = 0.2650602409638554 gbc_f1 = 0.2608695652173913 if_f1 = 0.05555555555555556 knn_f1 = 0.0 lr_f1 = 0.05520169851380042 nbc_f1 = 0.008479067302596715 rfc_f1 = 0.014204545454545456 svm_f1 = 0.0 mylist = [mlp_f1, dt_f1, gbc_f1, if_f1, knn_f1, lr_f1, nbc_f1, rfc_f1, svm_f1] best_f1 = 0.0 for x in mylist: a = x if a > best_f1: best_f1 = a print("El mayor valor de F1 Score está dado para el modelo:") if best_f1 == mlp_f1: print("Artificial Neural Network") if best_f1 == dt_f1: print("Decision Tree Classifier") if best_f1 == gbc_f1: print("Gradient Boosting") if best_f1 == if_f1: print("Isolation Forest") if best_f1 == knn_f1: print("K-Nearest Neighbors") if best_f1 == lr_f1: print("Logistic Regression") if best_f1 == nbc_f1: print("Naïve Baiyes Classifier") if best_f1 == rfc_f1: print("Random Forest Classifier") if best_f1 == svm_f1: print("Support Vector Machine") # # **Experimento 1: Comparación entre los resultados del Dataset original.** df1 = df # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** # model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # # **Experimento 2: Comparación entre los modelos de ML teniendo en cuenta los resultados de los pasos 3 y 4 de la secuencia KDD (sin tratamiento del desbalance).** df1 = df.drop_duplicates() # Dividimos los datos en entrenamiento y prueba df_training = df1.head(int(len(df1) * 0.8)) y_train = df_training["Class"] X_train = df_training.drop("Class", axis=1) df_test = df.drop(df_training.index) y_test = df_test["Class"] X_test = df_test.drop("Class", axis=1) print("Ejemplos usados para entrenar: ", len(X_train)) print("Ejemplos usados para test: ", len(X_test)) # Mostramos los datos de la columna 'Class' para el conjunto de prueba y_test.value_counts() # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train, y_train) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # # **Experimento 3: Comparación entre los modelos de ML tras aplicar SMOTE.** # SMOTE: Synthetic Minority Oversampling Technique counter = Counter(y_train) print("Antes", counter) # oversampling the train dataset using SMOTE smt = SMOTE(random_state=0) # X_train, y_train=smt.fit_resample(X_train, y_train) X_train_sm, y_train_sm = smt.fit_resample(X_train, y_train) counter = Counter(y_train_sm) print("Después", counter) # **Artificial Neural Network** model = MLPClassifier(max_iter=100, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Decision Tree Classifier** model = DecisionTreeClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Gradient Boosting** model = GradientBoostingClassifier(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Isolation Forest** model = IsolationForest(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) import warnings warnings.filterwarnings("ignore") p_pred = pipe.predict(X_test) p_pred = p_pred.flatten() y_pred = np.where(p_pred > 0.5, 1, 0) fpr, tpr, thresholds = metrics.roc_curve(y_test.round(), p_pred, pos_label=0) auc = np.trapz(tpr, fpr) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) print( "(accuracy_score) = {}".format( accuracy_score(y_test.round(), model.predict(X_test)) ) ) p = precision_score(y_test.round(), y_pred, average="binary") print("(precision_score) = {}".format(p)) r = recall_score(y_test.round(), y_pred, average="binary") print("(recall_score) = {}".format(r)) f1 = f1_score(y_test.round(), y_pred, average="binary") print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **K-Nearest Neighbors** model = KNeighborsClassifier() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Logistic Regression** model = linear_model.LogisticRegression(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Naïve Baiyes Classifier** model = GaussianNB() operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Random Forest Classifier** model = StreamingRFC(random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean) # **Support Vector Machine** model = SVC(probability=True, random_state=0) operations = [("model", model)] pipe = Pipeline(operations) pipe.fit(X_train_sm, y_train_sm) pipe_pred = pipe.predict(X_test) import warnings warnings.filterwarnings("ignore") auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) tn, fp, fn, tp = confusion_matrix(y_test, pipe_pred).ravel() print("tn : ", tn) print("fp : ", fp) print("fn : ", fn) print("tp : ", tp) a = accuracy_score(y_test, model.predict(X_test)) print("(accuracy_score) = {}".format(a)) p = precision_score(y_test, model.predict(X_test)) print("(precision_score) = {}".format(p)) r = recall_score(y_test, model.predict(X_test)) print("(recall_score) = {}".format(r)) f1 = f1_score(y_test, model.predict(X_test)) print("(f1_score) = {}".format(f1)) print("(auc_score) = {}".format(auc)) specificity = tn / (tn + fp) print("specificity : ", specificity) sensitivity = tp / (tp + fn) print("sensitivity : ", sensitivity) G_Mean = np.sqrt(sensitivity * specificity) print("G-Mean : ", G_Mean)
false
0
24,317
0
26,190
24,317
129969333
<jupyter_start><jupyter_text>images_reorganized1 Kaggle dataset identifier: images-reorganized1 <jupyter_script># # Objective: # Develop an algorithm which will identify the genre when provided with a painting, with state of the art precision. # ## Read data import pandas as pd import numpy as np import matplotlib.pyplot as plt import json import os from tqdm import tqdm, tqdm_notebook import random import cv2 import tensorflow as tf from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * from tensorflow.keras.applications import * from tensorflow.keras.callbacks import * from tensorflow.keras.initializers import * from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import layers from numpy.random import seed from keras import regularizers artists = pd.read_csv("../input/artists2/artists2.csv") artist_use = artists[["genre", "paintings"]] # ## Data Processing # Explore images of top artists images_dir = "../input/genrerec3/archive" artists_dirs = os.listdir(images_dir) artists_temp = artist_use.groupby(["genre"]).sum().reset_index() artists_temp = artists_temp.sort_values(by=["paintings"], ascending=False) artists_temp = artists_temp[artists_temp["paintings"] >= 500].reset_index() artists_temp = artists_temp[artists_temp["paintings"] != 1048].reset_index() artists_temp["paintings"] artists_temp artists_temp["class_weight"] = artists_temp.paintings.sum() / ( artists_temp.shape[0] * artists_temp.paintings ) artists_genre = np.array(artists_temp["genre"]) artists_genre = np.unique(artists_genre) class_weights = artists_temp["class_weight"].to_dict() class_weights images_dir = "../input/genrerec3/archive" artists_dirs = os.listdir(images_dir) for name in artists_genre: if os.path.exists(os.path.join(images_dir, name)): print("Found -->", os.path.join(images_dir, name)) else: print("Did not find -->", os.path.join(images_dir, name)) import os import numpy as np from PIL import Image def extract_edge_features(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grey scale gray = cv2.GaussianBlur(gray, (5, 5), 0.2) # Gaussian filter edges = cv2.Canny(gray, 50, 150) # Canny edge edges = cv2.resize(edges, (IMG_SIZE, IMG_SIZE)) return edges.flatten() # read images from folder and extract feature def read_images_from_folder(folder): X = [] label_folder = folder for filename in os.listdir(label_folder): img_path = os.path.join(label_folder, filename) img = cv2.imread(img_path) edges = extract_edge_features(img) X.append(edges) X = np.array(X) return X def read_images_from_folder_new(folder): X = [] label_folder = folder for name in os.listdir(label_folder): # Construct the full path to the image subfile_path = os.path.join(label_folder, name) for filename in os.listdir(subfile_path): file_path = os.path.join(subfile_path, filename) img = cv2.imread(file_path) edges = extract_edge_features(img) X.append(edges) X = np.array(X) return X IMG_SIZE = 224 imp_dir_path = "../input/genrerec3/archive/Impressionism" imp_X_train = read_images_from_folder(imp_dir_path) baq_dir_path = "../input/genrerec3/archive/Baroque" baq_X_train = read_images_from_folder(baq_dir_path) nr_dir_path = "../input/genrerec3/archive/Northern Renaissance" nr_X_train = read_images_from_folder_new(nr_dir_path) X = np.append(imp_X_train, baq_X_train, axis=0) X = np.append(X, nr_X_train, axis=0) Y = ( [[1, 0, 0]] * len(imp_X_train) + [[0, 1, 0]] * len(baq_X_train) + [[0, 0, 1]] * len(nr_X_train) ) x = [] for i in range(len(X)): x.append(X[i].reshape((224, 224))) x = np.array(x) Y = np.array(Y) X_train, X_test, y_train, y_test = train_test_split( x, Y, test_size=0.25, random_state=0 ) # ## Data Augmentation # Augment data batch_size = 16 train_input_shape = (224, 224, 1) n_classes = len(artists_temp) train_datagen = ImageDataGenerator( validation_split=0.2, rescale=1.0 / 255.0, zoom_range=0.7, horizontal_flip=True, vertical_flip=True, ) train_generator = train_datagen.flow_from_directory( directory=images_dir, class_mode="categorical", target_size=train_input_shape[0:2], batch_size=batch_size, subset="training", shuffle=True, classes=artists_genre.tolist(), ) valid_generator = train_datagen.flow_from_directory( directory=images_dir, class_mode="categorical", target_size=train_input_shape[0:2], batch_size=batch_size, subset="validation", shuffle=True, classes=artists_genre.tolist(), ) STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size print("Total number of batches =", STEP_SIZE_TRAIN, "and", STEP_SIZE_VALID) # ## Build Model base_model = Xception(weights=None, include_top=False, input_shape=train_input_shape) for layer in base_model.layers: layer.trainable = True # Add layers at the end X = base_model.output X = Flatten()(X) X = Dense(512, kernel_initializer="he_uniform")(X) X = BatchNormalization()(X) X = Activation("relu")(X) X = Dropout(0.5)(X) X = Dense(16, kernel_initializer="he_uniform")(X) X = Dropout(0.5)(X) X = BatchNormalization()(X) X = Activation("relu")(X) output = Dense(3, activation="softmax")(X) model = Model(inputs=base_model.input, outputs=output) optimizer = Adam(lr=0.0001) model.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"] ) n_epoch = 10 early_stop = EarlyStopping( monitor="val_loss", patience=20, verbose=1, mode="auto", restore_best_weights=True ) # reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, # verbose=1, mode='auto') # Train the model - all layers history1 = model.fit( x=x, y=Y, steps_per_epoch=STEP_SIZE_TRAIN, epochs=n_epoch, shuffle=True, verbose=1, # callbacks=[reduce_lr], workers=16, ) # Freeze core ResNet layers and train again for layer in model.layers: layer.trainable = False for layer in model.layers[:50]: layer.trainable = True optimizer = Adam(lr=0.0001) model.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"] ) n_epoch = 50 history2 = model.fit( x=x, y=Y, steps_per_epoch=STEP_SIZE_TRAIN, epochs=n_epoch, shuffle=True, verbose=1, # callbacks=[reduce_lr], workers=16, ) # ## Training graph # Merge history1 and history2 history = {} history["loss"] = history1.history["loss"] + history2.history["loss"] history["accuracy"] = history1.history["accuracy"] + history2.history["accuracy"] history["val_loss"] = history1.history["val_loss"] + history2.history["val_loss"] history["val_accuracy"] = ( history1.history["val_accuracy"] + history2.history["val_accuracy"] ) # history['learning_rate'] = history1.history['learning_rate'] + history2.history['learning_rate'] # Plot the training graph def plot_training(history): acc = history["accuracy"] val_acc = history["val_accuracy"] loss = history["loss"] val_loss = history["val_loss"] epochs = range(len(loss)) fig, axes = plt.subplots(1, 2, figsize=(15, 5)) axes[0].plot(epochs, acc, "r-", label="Training Accuracy") axes[0].plot(epochs, val_acc, "b--", label="Validation Accuracy") axes[0].set_title("Training and Validation Accuracy") axes[0].legend(loc="best") axes[1].plot(epochs, loss, "r-", label="Training Loss") axes[1].plot(epochs, val_loss, "b--", label="Validation Loss") axes[1].set_title("Training and Validation Loss") axes[1].legend(loc="best") plt.show() plot_training(history) # ## Evaluate performance # Prediction accuracy on train data score = model.evaluate_generator(train_generator, verbose=1) print("Prediction accuracy on train data =%.3f" % score[1]) # Prediction accuracy on CV data score = model.evaluate_generator(valid_generator, verbose=1) print("Prediction accuracy on CV data =%.3f" % score[1]) # ## Confusion Matrix. # Classification report and confusion matrix from sklearn.metrics import * import seaborn as sns tick_labels = artists_genre def showClassficationReport_Generator(model, valid_generator, STEP_SIZE_VALID): # Loop on each generator batch and predict y_pred, y_true = [], [] for i in range(STEP_SIZE_VALID): (X, y) = next(valid_generator) y_pred.append(model.predict(X)) y_true.append(y) # Create a flat list for y_true and y_pred y_pred = [subresult for result in y_pred for subresult in result] y_true = [subresult for result in y_true for subresult in result] # Update Truth vector based on argmax y_true = np.argmax(y_true, axis=1) y_true = np.asarray(y_true).ravel() # Update Prediction vector based on argmax y_pred = np.argmax(y_pred, axis=1) y_pred = np.asarray(y_pred).ravel() # Confusion Matrix fig, ax = plt.subplots(figsize=(10, 10)) conf_matrix = confusion_matrix(y_true, y_pred, labels=np.arange(n_classes)) conf_matrix = conf_matrix / np.sum(conf_matrix, axis=1) sns.heatmap( conf_matrix, annot=True, fmt=".2f", square=True, cbar=False, cmap=plt.cm.jet, xticklabels=tick_labels, yticklabels=tick_labels, ax=ax, ) ax.set_ylabel("Actual") ax.set_xlabel("Predicted") ax.set_title("Confusion Matrix") plt.show() print("Classification Report:") print( classification_report( y_true, y_pred, labels=np.arange(n_classes), target_names=artists_genre ) ) showClassficationReport_Generator(model, valid_generator, STEP_SIZE_VALID)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/969/129969333.ipynb
images-reorganized1
keldon
[{"Id": 129969333, "ScriptId": 38651102, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 6189082, "CreationDate": "05/17/2023 19:50:45", "VersionNumber": 2.0, "Title": "Identify genre from Art with Xception f1c1ca", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 309.0, "LinesInsertedFromPrevious": 62.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 247.0, "LinesInsertedFromFork": 62.0, "LinesDeletedFromFork": 205.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 247.0, "TotalVotes": 0}]
[{"Id": 186408188, "KernelVersionId": 129969333, "SourceDatasetVersionId": 3251836}, {"Id": 186408187, "KernelVersionId": 129969333, "SourceDatasetVersionId": 3235471}, {"Id": 186408186, "KernelVersionId": 129969333, "SourceDatasetVersionId": 310927}, {"Id": 186408190, "KernelVersionId": 129969333, "SourceDatasetVersionId": 5659667}, {"Id": 186408189, "KernelVersionId": 129969333, "SourceDatasetVersionId": 3260882}]
[{"Id": 3251836, "DatasetId": 1970629, "DatasourceVersionId": 3302126, "CreatorUserId": 6189082, "LicenseName": "Unknown", "CreationDate": "03/03/2022 18:09:01", "VersionNumber": 1.0, "Title": "images_reorganized1", "Slug": "images-reorganized1", "Subtitle": "made from artist csv", "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1970629, "CreatorUserId": 6189082, "OwnerUserId": 6189082.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3251836.0, "CurrentDatasourceVersionId": 3302126.0, "ForumId": 1994800, "Type": 2, "CreationDate": "03/03/2022 18:09:01", "LastActivityDate": "03/03/2022", "TotalViews": 37, "TotalDownloads": 0, "TotalVotes": 0, "TotalKernels": 7}]
[{"Id": 6189082, "UserName": "keldon", "DisplayName": "Keldon", "RegisterDate": "11/18/2020", "PerformanceTier": 0}]
# # Objective: # Develop an algorithm which will identify the genre when provided with a painting, with state of the art precision. # ## Read data import pandas as pd import numpy as np import matplotlib.pyplot as plt import json import os from tqdm import tqdm, tqdm_notebook import random import cv2 import tensorflow as tf from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * from tensorflow.keras.applications import * from tensorflow.keras.callbacks import * from tensorflow.keras.initializers import * from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import layers from numpy.random import seed from keras import regularizers artists = pd.read_csv("../input/artists2/artists2.csv") artist_use = artists[["genre", "paintings"]] # ## Data Processing # Explore images of top artists images_dir = "../input/genrerec3/archive" artists_dirs = os.listdir(images_dir) artists_temp = artist_use.groupby(["genre"]).sum().reset_index() artists_temp = artists_temp.sort_values(by=["paintings"], ascending=False) artists_temp = artists_temp[artists_temp["paintings"] >= 500].reset_index() artists_temp = artists_temp[artists_temp["paintings"] != 1048].reset_index() artists_temp["paintings"] artists_temp artists_temp["class_weight"] = artists_temp.paintings.sum() / ( artists_temp.shape[0] * artists_temp.paintings ) artists_genre = np.array(artists_temp["genre"]) artists_genre = np.unique(artists_genre) class_weights = artists_temp["class_weight"].to_dict() class_weights images_dir = "../input/genrerec3/archive" artists_dirs = os.listdir(images_dir) for name in artists_genre: if os.path.exists(os.path.join(images_dir, name)): print("Found -->", os.path.join(images_dir, name)) else: print("Did not find -->", os.path.join(images_dir, name)) import os import numpy as np from PIL import Image def extract_edge_features(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grey scale gray = cv2.GaussianBlur(gray, (5, 5), 0.2) # Gaussian filter edges = cv2.Canny(gray, 50, 150) # Canny edge edges = cv2.resize(edges, (IMG_SIZE, IMG_SIZE)) return edges.flatten() # read images from folder and extract feature def read_images_from_folder(folder): X = [] label_folder = folder for filename in os.listdir(label_folder): img_path = os.path.join(label_folder, filename) img = cv2.imread(img_path) edges = extract_edge_features(img) X.append(edges) X = np.array(X) return X def read_images_from_folder_new(folder): X = [] label_folder = folder for name in os.listdir(label_folder): # Construct the full path to the image subfile_path = os.path.join(label_folder, name) for filename in os.listdir(subfile_path): file_path = os.path.join(subfile_path, filename) img = cv2.imread(file_path) edges = extract_edge_features(img) X.append(edges) X = np.array(X) return X IMG_SIZE = 224 imp_dir_path = "../input/genrerec3/archive/Impressionism" imp_X_train = read_images_from_folder(imp_dir_path) baq_dir_path = "../input/genrerec3/archive/Baroque" baq_X_train = read_images_from_folder(baq_dir_path) nr_dir_path = "../input/genrerec3/archive/Northern Renaissance" nr_X_train = read_images_from_folder_new(nr_dir_path) X = np.append(imp_X_train, baq_X_train, axis=0) X = np.append(X, nr_X_train, axis=0) Y = ( [[1, 0, 0]] * len(imp_X_train) + [[0, 1, 0]] * len(baq_X_train) + [[0, 0, 1]] * len(nr_X_train) ) x = [] for i in range(len(X)): x.append(X[i].reshape((224, 224))) x = np.array(x) Y = np.array(Y) X_train, X_test, y_train, y_test = train_test_split( x, Y, test_size=0.25, random_state=0 ) # ## Data Augmentation # Augment data batch_size = 16 train_input_shape = (224, 224, 1) n_classes = len(artists_temp) train_datagen = ImageDataGenerator( validation_split=0.2, rescale=1.0 / 255.0, zoom_range=0.7, horizontal_flip=True, vertical_flip=True, ) train_generator = train_datagen.flow_from_directory( directory=images_dir, class_mode="categorical", target_size=train_input_shape[0:2], batch_size=batch_size, subset="training", shuffle=True, classes=artists_genre.tolist(), ) valid_generator = train_datagen.flow_from_directory( directory=images_dir, class_mode="categorical", target_size=train_input_shape[0:2], batch_size=batch_size, subset="validation", shuffle=True, classes=artists_genre.tolist(), ) STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size print("Total number of batches =", STEP_SIZE_TRAIN, "and", STEP_SIZE_VALID) # ## Build Model base_model = Xception(weights=None, include_top=False, input_shape=train_input_shape) for layer in base_model.layers: layer.trainable = True # Add layers at the end X = base_model.output X = Flatten()(X) X = Dense(512, kernel_initializer="he_uniform")(X) X = BatchNormalization()(X) X = Activation("relu")(X) X = Dropout(0.5)(X) X = Dense(16, kernel_initializer="he_uniform")(X) X = Dropout(0.5)(X) X = BatchNormalization()(X) X = Activation("relu")(X) output = Dense(3, activation="softmax")(X) model = Model(inputs=base_model.input, outputs=output) optimizer = Adam(lr=0.0001) model.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"] ) n_epoch = 10 early_stop = EarlyStopping( monitor="val_loss", patience=20, verbose=1, mode="auto", restore_best_weights=True ) # reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, # verbose=1, mode='auto') # Train the model - all layers history1 = model.fit( x=x, y=Y, steps_per_epoch=STEP_SIZE_TRAIN, epochs=n_epoch, shuffle=True, verbose=1, # callbacks=[reduce_lr], workers=16, ) # Freeze core ResNet layers and train again for layer in model.layers: layer.trainable = False for layer in model.layers[:50]: layer.trainable = True optimizer = Adam(lr=0.0001) model.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"] ) n_epoch = 50 history2 = model.fit( x=x, y=Y, steps_per_epoch=STEP_SIZE_TRAIN, epochs=n_epoch, shuffle=True, verbose=1, # callbacks=[reduce_lr], workers=16, ) # ## Training graph # Merge history1 and history2 history = {} history["loss"] = history1.history["loss"] + history2.history["loss"] history["accuracy"] = history1.history["accuracy"] + history2.history["accuracy"] history["val_loss"] = history1.history["val_loss"] + history2.history["val_loss"] history["val_accuracy"] = ( history1.history["val_accuracy"] + history2.history["val_accuracy"] ) # history['learning_rate'] = history1.history['learning_rate'] + history2.history['learning_rate'] # Plot the training graph def plot_training(history): acc = history["accuracy"] val_acc = history["val_accuracy"] loss = history["loss"] val_loss = history["val_loss"] epochs = range(len(loss)) fig, axes = plt.subplots(1, 2, figsize=(15, 5)) axes[0].plot(epochs, acc, "r-", label="Training Accuracy") axes[0].plot(epochs, val_acc, "b--", label="Validation Accuracy") axes[0].set_title("Training and Validation Accuracy") axes[0].legend(loc="best") axes[1].plot(epochs, loss, "r-", label="Training Loss") axes[1].plot(epochs, val_loss, "b--", label="Validation Loss") axes[1].set_title("Training and Validation Loss") axes[1].legend(loc="best") plt.show() plot_training(history) # ## Evaluate performance # Prediction accuracy on train data score = model.evaluate_generator(train_generator, verbose=1) print("Prediction accuracy on train data =%.3f" % score[1]) # Prediction accuracy on CV data score = model.evaluate_generator(valid_generator, verbose=1) print("Prediction accuracy on CV data =%.3f" % score[1]) # ## Confusion Matrix. # Classification report and confusion matrix from sklearn.metrics import * import seaborn as sns tick_labels = artists_genre def showClassficationReport_Generator(model, valid_generator, STEP_SIZE_VALID): # Loop on each generator batch and predict y_pred, y_true = [], [] for i in range(STEP_SIZE_VALID): (X, y) = next(valid_generator) y_pred.append(model.predict(X)) y_true.append(y) # Create a flat list for y_true and y_pred y_pred = [subresult for result in y_pred for subresult in result] y_true = [subresult for result in y_true for subresult in result] # Update Truth vector based on argmax y_true = np.argmax(y_true, axis=1) y_true = np.asarray(y_true).ravel() # Update Prediction vector based on argmax y_pred = np.argmax(y_pred, axis=1) y_pred = np.asarray(y_pred).ravel() # Confusion Matrix fig, ax = plt.subplots(figsize=(10, 10)) conf_matrix = confusion_matrix(y_true, y_pred, labels=np.arange(n_classes)) conf_matrix = conf_matrix / np.sum(conf_matrix, axis=1) sns.heatmap( conf_matrix, annot=True, fmt=".2f", square=True, cbar=False, cmap=plt.cm.jet, xticklabels=tick_labels, yticklabels=tick_labels, ax=ax, ) ax.set_ylabel("Actual") ax.set_xlabel("Predicted") ax.set_title("Confusion Matrix") plt.show() print("Classification Report:") print( classification_report( y_true, y_pred, labels=np.arange(n_classes), target_names=artists_genre ) ) showClassficationReport_Generator(model, valid_generator, STEP_SIZE_VALID)
false
1
3,088
0
3,113
3,088
129969878
# # Staionary Timeseris import numpy as np import pandas as pd import matplotlib.pyplot as plt from statsmodels.graphics.tsaplots import plot_acf # Generate synthetic data for a stationary and seasonal time series np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") seasonality = np.sin(2 * np.pi * np.arange(len(index)) / 365) noise = np.random.normal(0, 0.1, size=len(index)) data = seasonality + noise df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary and Seasonal Time Series") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary and Seasonal Time Series") plt.show() # # Stationary Time Series with Decaying Auto Correlation Function (ACF) # # Generate synthetic data for a stationary time series with a decaying ACF np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") data = np.random.normal(0, 1, size=len(index)) df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary Time Series with Decaying ACF") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary Time Series with Decaying ACF") plt.show() # # Non-Stationary Time Series with Decaying ACF # Generate synthetic data for a stationary time series with a decaying ACF np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") data = np.random.normal(0, 1, size=len(index)) df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary Time Series with Decaying ACF") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary Time Series with Decaying ACF") plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/969/129969878.ipynb
null
null
[{"Id": 129969878, "ScriptId": 38661829, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11890312, "CreationDate": "05/17/2023 19:57:19", "VersionNumber": 1.0, "Title": "Staitionary and No stationary Timesereis", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 84.0, "LinesInsertedFromPrevious": 84.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 2}]
null
null
null
null
# # Staionary Timeseris import numpy as np import pandas as pd import matplotlib.pyplot as plt from statsmodels.graphics.tsaplots import plot_acf # Generate synthetic data for a stationary and seasonal time series np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") seasonality = np.sin(2 * np.pi * np.arange(len(index)) / 365) noise = np.random.normal(0, 0.1, size=len(index)) data = seasonality + noise df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary and Seasonal Time Series") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary and Seasonal Time Series") plt.show() # # Stationary Time Series with Decaying Auto Correlation Function (ACF) # # Generate synthetic data for a stationary time series with a decaying ACF np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") data = np.random.normal(0, 1, size=len(index)) df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary Time Series with Decaying ACF") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary Time Series with Decaying ACF") plt.show() # # Non-Stationary Time Series with Decaying ACF # Generate synthetic data for a stationary time series with a decaying ACF np.random.seed(0) index = pd.date_range(start="2022-01-01", end="2022-12-31", freq="D") data = np.random.normal(0, 1, size=len(index)) df = pd.DataFrame(data, index=index, columns=["Value"]) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(df.index, df["Value"]) plt.xlabel("Date") plt.ylabel("Value") plt.title("Stationary Time Series with Decaying ACF") plt.show() # Plot the autocorrelation function (ACF) plt.figure(figsize=(10, 4)) plot_acf(df["Value"], lags=30) plt.xlabel("Lag") plt.ylabel("Autocorrelation") plt.title("Autocorrelation Function (ACF) - Stationary Time Series with Decaying ACF") plt.show()
false
0
881
2
881
881
129969007
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import tensorflow as tf from sklearn.model_selection import train_test_split (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() assert x_train.shape == (50000, 32, 32, 3) assert x_test.shape == (10000, 32, 32, 3) assert y_train.shape == (50000, 1) assert y_test.shape == (10000, 1) # The shape assertions ensure that the loaded data has the expected shapes. Specifically, x_train.shape is asserted to be (50000, 32, 32, 3), indicating that there are 50,000 training images, each with dimensions of 32x32 pixels and three color channels. Similarly, x_test.shape is asserted to be (10000, 32, 32, 3), representing 10,000 test images with the same image dimensions and color channels. # The y_train.shape assertion confirms that y_train has a shape of (50000, 1), indicating that there are 50,000 corresponding labels for the training images. Similarly, y_test.shape asserts that y_test has a shape of (10000, 1), signifying 10,000 labels for the test images. y_train.shape # scaled to the range between 0 and 1 by dividing each pixel value by 255.0. x_train = x_train / 255.0 x_test = x_test / 255.0 # The labels are one-hot encoded using the tf.keras.utils.to_categorical function. # One-hot encode the labels y_train = tf.keras.utils.to_categorical(y_train, num_classes=10) y_test = tf.keras.utils.to_categorical(y_test, num_classes=10) # Split the training data into training and validation sets x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=0.2, random_state=42 ) # Print the shapes of the preprocessed data print("x_train shape:", x_train.shape) print("y_train shape:", y_train.shape) print("x_val shape:", x_val.shape) print("y_val shape:", y_val.shape) print("x_test shape:", x_test.shape) print("y_test shape:", y_test.shape) model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D( 32, (3, 3), activation="relu", padding="same", input_shape=(32, 32, 3) ), tf.keras.layers.Conv2D(32, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Conv2D(64, (3, 3), activation="relu", padding="same"), tf.keras.layers.Conv2D(64, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(128, (3, 3), activation="relu", padding="same"), tf.keras.layers.Conv2D(128, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.4), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax"), ] ) # Print the model summary model.summary() # In this example, the model consists of several convolutional (Conv2D) layers, max pooling (MaxPooling2D) layers, a flatten layer, and dense (Dense) layers. The convolutional layers are responsible for capturing spatial patterns in the images, while the pooling layers reduce the spatial dimensions. The flatten layer converts the 2D feature maps into a 1D vector, and the dense layers are responsible for classification. # The Dropout layers help prevent overfitting by randomly setting a fraction of the input units to 0 at each training step. model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # Train the model history = model.fit( x_train, y_train, batch_size=128, epochs=20, validation_data=(x_val, y_val) ) import matplotlib.pyplot as plt pd.DataFrame(history.history).plot(figsize=(14, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) # Make predictions on new, unseen data predictions = model.predict(x_test) # Convert predictions to class labels predicted_labels = tf.argmax(predictions, axis=1) predictions.round(2) y_pred = predicted_classes = np.argmax(predictions, axis=1) y_pred classes_names = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ] np.array(classes_names)[y_pred]
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/969/129969007.ipynb
null
null
[{"Id": 129969007, "ScriptId": 38657475, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8615026, "CreationDate": "05/17/2023 19:46:38", "VersionNumber": 1.0, "Title": "Classification by ciraf10", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 109.0, "LinesInsertedFromPrevious": 109.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 4}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import tensorflow as tf from sklearn.model_selection import train_test_split (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() assert x_train.shape == (50000, 32, 32, 3) assert x_test.shape == (10000, 32, 32, 3) assert y_train.shape == (50000, 1) assert y_test.shape == (10000, 1) # The shape assertions ensure that the loaded data has the expected shapes. Specifically, x_train.shape is asserted to be (50000, 32, 32, 3), indicating that there are 50,000 training images, each with dimensions of 32x32 pixels and three color channels. Similarly, x_test.shape is asserted to be (10000, 32, 32, 3), representing 10,000 test images with the same image dimensions and color channels. # The y_train.shape assertion confirms that y_train has a shape of (50000, 1), indicating that there are 50,000 corresponding labels for the training images. Similarly, y_test.shape asserts that y_test has a shape of (10000, 1), signifying 10,000 labels for the test images. y_train.shape # scaled to the range between 0 and 1 by dividing each pixel value by 255.0. x_train = x_train / 255.0 x_test = x_test / 255.0 # The labels are one-hot encoded using the tf.keras.utils.to_categorical function. # One-hot encode the labels y_train = tf.keras.utils.to_categorical(y_train, num_classes=10) y_test = tf.keras.utils.to_categorical(y_test, num_classes=10) # Split the training data into training and validation sets x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=0.2, random_state=42 ) # Print the shapes of the preprocessed data print("x_train shape:", x_train.shape) print("y_train shape:", y_train.shape) print("x_val shape:", x_val.shape) print("y_val shape:", y_val.shape) print("x_test shape:", x_test.shape) print("y_test shape:", y_test.shape) model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D( 32, (3, 3), activation="relu", padding="same", input_shape=(32, 32, 3) ), tf.keras.layers.Conv2D(32, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Conv2D(64, (3, 3), activation="relu", padding="same"), tf.keras.layers.Conv2D(64, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(128, (3, 3), activation="relu", padding="same"), tf.keras.layers.Conv2D(128, (3, 3), activation="relu", padding="same"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Dropout(0.4), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax"), ] ) # Print the model summary model.summary() # In this example, the model consists of several convolutional (Conv2D) layers, max pooling (MaxPooling2D) layers, a flatten layer, and dense (Dense) layers. The convolutional layers are responsible for capturing spatial patterns in the images, while the pooling layers reduce the spatial dimensions. The flatten layer converts the 2D feature maps into a 1D vector, and the dense layers are responsible for classification. # The Dropout layers help prevent overfitting by randomly setting a fraction of the input units to 0 at each training step. model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # Train the model history = model.fit( x_train, y_train, batch_size=128, epochs=20, validation_data=(x_val, y_val) ) import matplotlib.pyplot as plt pd.DataFrame(history.history).plot(figsize=(14, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) # Make predictions on new, unseen data predictions = model.predict(x_test) # Convert predictions to class labels predicted_labels = tf.argmax(predictions, axis=1) predictions.round(2) y_pred = predicted_classes = np.argmax(predictions, axis=1) y_pred classes_names = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ] np.array(classes_names)[y_pred]
false
0
1,574
4
1,574
1,574
129969426
<jupyter_start><jupyter_text>Brian Tumor Dataset ### Context This dataset consists of the scanned images of brain of patient diagnosed of brain tumour. ### Content Separated files for train and test data with separating features and labels Kaggle dataset identifier: brian-tumor-dataset <jupyter_script># # Brain Tumour Classifier # This image classifier was built as an experiment for lesson 2 of Fast.ai's ML course. I'm using it to learn the basics of their library on a meaningful dataset. # # Initialising the Datablock and Dataloader from fastai.data.all import * from fastai.vision.all import * # First I define a label function for the data loader. The possible categories are "Healthy" if the file name contains the string "Not Cancer", else it is labelled as "Tumour" def is_healthy(file_name): return file_name.startswith("Not") and not file_name == "Not Cancer (1).jpeg" def label_y(x): file_name = str(os.path.split(x)[1]) return "Healthy" if is_healthy(file_name) else "Tumour" # Next, I create a datablock that takes images as x labels, and categories as y labels. I print the vocabulary created by the data block. The images are resized to be 256x256 and a random validation split is made. path = "/kaggle/input/brian-tumor-dataset/Brain Tumor Data Set/Brain Tumor Data Set" datablock = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=label_y, splitter=RandomSplitter(valid_pct=0.2), item_tfms=Resize(256), ) datasets = datablock.datasets(path) print(f"Categories: {datasets.vocab}") dataloaders = datablock.dataloaders(path) # # Fine Tuning # A vision learner based on ResNet-18 is defined and the model is fine tuned for 3 epochs. learn = vision_learner(dataloaders, resnet18, metrics=error_rate) learn.fine_tune(3) learn.export("tumour_classifier_model.pkl") # # Visualising Accuracy # I plot a confusion matrix and display data from the top 15 losses that occured during validation interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix() interp.plot_top_losses(15) # # Making a Prediction # I create a function to classify a sample image using the model I just trained. The probability of the image belonging to either category is displayed. sample_image = PILImage.create(f"{path}/Healthy/Not Cancer (1).jpeg") sample_image.thumbnail((192, 192)) sample_image def classify_image(image): prediction, _, probability = learn.predict(image) return dict(zip(datasets.vocab, map(float, probability))) classify_image(sample_image) # # User Interface # I'm going to make a simple Gradio interface that allows a user to upload a brain scan, and makes a prediction using the model. import gradio as gr recieved_image = gr.inputs.Image((256, 256)) label = gr.outputs.Label() interface = gr.Interface(fn=classify_image, inputs=recieved_image, outputs=label) interface.launch(inline=True)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/969/129969426.ipynb
brian-tumor-dataset
preetviradiya
[{"Id": 129969426, "ScriptId": 38614513, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 15100726, "CreationDate": "05/17/2023 19:51:50", "VersionNumber": 5.0, "Title": "ResNet-18 Brain Tumour Classifier", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 77.0, "LinesInsertedFromPrevious": 4.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 73.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 1}]
[{"Id": 186408383, "KernelVersionId": 129969426, "SourceDatasetVersionId": 2236708}]
[{"Id": 2236708, "DatasetId": 1343913, "DatasourceVersionId": 2278530, "CreatorUserId": 5456766, "LicenseName": "GPL 2", "CreationDate": "05/16/2021 10:20:25", "VersionNumber": 1.0, "Title": "Brian Tumor Dataset", "Slug": "brian-tumor-dataset", "Subtitle": "X-Ray images of Brain", "Description": "### Context\n\nThis dataset consists of the scanned images of brain of patient diagnosed of brain tumour.\n\n### Content\nSeparated files for train and test data with separating features and labels\n\n### Acknowledgements\nWe wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.\n\n### Inspiration\nYour data will be in front of the world's largest data science community. What questions do you want to see answered?", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1343913, "CreatorUserId": 5456766, "OwnerUserId": 5456766.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 2236708.0, "CurrentDatasourceVersionId": 2278530.0, "ForumId": 1362909, "Type": 2, "CreationDate": "05/16/2021 10:20:25", "LastActivityDate": "05/16/2021", "TotalViews": 42814, "TotalDownloads": 5355, "TotalVotes": 87, "TotalKernels": 38}]
[{"Id": 5456766, "UserName": "preetviradiya", "DisplayName": "Preet Viradiya", "RegisterDate": "07/12/2020", "PerformanceTier": 2}]
# # Brain Tumour Classifier # This image classifier was built as an experiment for lesson 2 of Fast.ai's ML course. I'm using it to learn the basics of their library on a meaningful dataset. # # Initialising the Datablock and Dataloader from fastai.data.all import * from fastai.vision.all import * # First I define a label function for the data loader. The possible categories are "Healthy" if the file name contains the string "Not Cancer", else it is labelled as "Tumour" def is_healthy(file_name): return file_name.startswith("Not") and not file_name == "Not Cancer (1).jpeg" def label_y(x): file_name = str(os.path.split(x)[1]) return "Healthy" if is_healthy(file_name) else "Tumour" # Next, I create a datablock that takes images as x labels, and categories as y labels. I print the vocabulary created by the data block. The images are resized to be 256x256 and a random validation split is made. path = "/kaggle/input/brian-tumor-dataset/Brain Tumor Data Set/Brain Tumor Data Set" datablock = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=label_y, splitter=RandomSplitter(valid_pct=0.2), item_tfms=Resize(256), ) datasets = datablock.datasets(path) print(f"Categories: {datasets.vocab}") dataloaders = datablock.dataloaders(path) # # Fine Tuning # A vision learner based on ResNet-18 is defined and the model is fine tuned for 3 epochs. learn = vision_learner(dataloaders, resnet18, metrics=error_rate) learn.fine_tune(3) learn.export("tumour_classifier_model.pkl") # # Visualising Accuracy # I plot a confusion matrix and display data from the top 15 losses that occured during validation interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix() interp.plot_top_losses(15) # # Making a Prediction # I create a function to classify a sample image using the model I just trained. The probability of the image belonging to either category is displayed. sample_image = PILImage.create(f"{path}/Healthy/Not Cancer (1).jpeg") sample_image.thumbnail((192, 192)) sample_image def classify_image(image): prediction, _, probability = learn.predict(image) return dict(zip(datasets.vocab, map(float, probability))) classify_image(sample_image) # # User Interface # I'm going to make a simple Gradio interface that allows a user to upload a brain scan, and makes a prediction using the model. import gradio as gr recieved_image = gr.inputs.Image((256, 256)) label = gr.outputs.Label() interface = gr.Interface(fn=classify_image, inputs=recieved_image, outputs=label) interface.launch(inline=True)
false
0
775
1
845
775
129544832
<jupyter_start><jupyter_text>Aeroclub 2023 Kaggle dataset identifier: aeroclub-2023 <jupyter_script>import pandas as pd data = pd.read_excel("/kaggle/input/aeroclub-2023/1/Задача №1/train_data.xlsx") data.head() data.describe() data["title"].unique data["title"]
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/544/129544832.ipynb
aeroclub-2023
dimka11
[{"Id": 129544832, "ScriptId": 38520068, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9950472, "CreationDate": "05/14/2023 17:35:00", "VersionNumber": 1.0, "Title": "notebook96f66d702a", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 11.0, "LinesInsertedFromPrevious": 11.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185714643, "KernelVersionId": 129544832, "SourceDatasetVersionId": 5671957}]
[{"Id": 5671957, "DatasetId": 3260672, "DatasourceVersionId": 5747475, "CreatorUserId": 2778887, "LicenseName": "Unknown", "CreationDate": "05/12/2023 18:18:42", "VersionNumber": 1.0, "Title": "Aeroclub 2023", "Slug": "aeroclub-2023", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3260672, "CreatorUserId": 2778887, "OwnerUserId": 2778887.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5671957.0, "CurrentDatasourceVersionId": 5747475.0, "ForumId": 3326228, "Type": 2, "CreationDate": "05/12/2023 18:18:42", "LastActivityDate": "05/12/2023", "TotalViews": 47, "TotalDownloads": 3, "TotalVotes": 0, "TotalKernels": 1}]
[{"Id": 2778887, "UserName": "dimka11", "DisplayName": "Dmitry Sokolov", "RegisterDate": "02/04/2019", "PerformanceTier": 1}]
import pandas as pd data = pd.read_excel("/kaggle/input/aeroclub-2023/1/Задача №1/train_data.xlsx") data.head() data.describe() data["title"].unique data["title"]
false
0
66
0
98
66
129544878
import pandas as pd import amp_pd_peptide import numpy as np import sklearn import collections import warnings import polars as pl from sklearn.model_selection import KFold, GroupKFold, StratifiedKFold from catboost import CatBoostRegressor from scipy.optimize import minimize import joblib warnings.simplefilter("ignore") # ### Data load train = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv" ) extra = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv" ) train_pe = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_peptides.csv" ) train_pr = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv" ) # - **[important]** In the training set, users with UPDRS scores at 3/6/9/18/30/42/54 months tend to have higher scores, while users without scores during these months tend to have scores close to zero. # - The same trend is observed in the test dataset as well, where users with values at 6/18 months are expected to have scores close to zero (at least according to the results of the leaderboard). # train preprocess print("before preprocess:", train.shape) all_patient_ids = list(train["patient_id"].unique()) no_healty_users = list( set( train.filter((pl.col("visit_month").is_in([3, 6, 9, 18, 30, 42, 54]) == True))[ "patient_id" ] ) ) healty_users = [i for i in all_patient_ids if i not in no_healty_users] print(len(no_healty_users)) print(len(healty_users)) train_no_healthy = train.filter(pl.col("patient_id").is_in(no_healty_users)).to_pandas() train_healthy = train.filter(pl.col("patient_id").is_in(healty_users)).to_pandas() print("after preprocess:", train_no_healthy.shape, train_healthy.shape) train_users = train_no_healthy["patient_id"].drop_duplicates() train_pe = train_pe.filter(pl.col("patient_id").is_in(no_healty_users)) train_pr = train_pr.filter(pl.col("patient_id").is_in(no_healty_users)) # extra preprocess extra_have_5 = list(extra.filter(pl.col("visit_month") == 5)["patient_id"]) extra_super_healty = list( extra.filter((pl.col("visit_month") == 0) & (pl.col("updrs_1").is_null()))[ "patient_id" ] ) extra_have_36 = list(extra.filter(pl.col("visit_month") == 36)["patient_id"]) # extra_unknown_list = list(set(extra_have_5 + extra_have_36 + extra_super_healty)) # LB best extra_unknown_list = list(set(extra_have_5 + extra_super_healty)) # CV best extra_have_5 = extra.filter(pl.col("patient_id").is_in(extra_have_5) == True) extra_have_36 = extra.filter(pl.col("patient_id").is_in(extra_have_36) == True) extra_super_healty = extra.filter( pl.col("patient_id").is_in(extra_super_healty) == True ) extra_no_healthy = extra.filter( pl.col("patient_id").is_in(extra_unknown_list) == False ).to_pandas() print( len(extra_have_5), len(extra_have_36), len(extra_super_healty), len(extra_no_healthy), ) train_no_healthy_df = pd.concat([train_no_healthy, extra_no_healthy]) print(train_no_healthy_df.shape) p_month_df = ( train_no_healthy_df.groupby("patient_id")["visit_month"].max().reset_index() ) p_month_df.columns = ["patient_id", "max_visit_month"] train_no_healthy_df = train_no_healthy_df.merge(p_month_df, on="patient_id", how="left") # baseline train_pr_pi = train_pr.pivot("NPX", "visit_id", "UniProt") train_pe_pi = train_pe.pivot("PeptideAbundance", "visit_id", "Peptide") train_pr_pi = train_pr_pi.to_pandas() train_pe_pi = train_pe_pi.to_pandas() train_pr_pe_base = train_pr_pi.merge(train_pe_pi, on="visit_id", how="left") train_pr_pe_base["patient_id"] = ( train_pr_pe_base["visit_id"].apply(lambda x: x.split("_")[0]).astype(int) ) train_pr_pe_base["visit_month"] = ( train_pr_pe_base["visit_id"].apply(lambda x: x.split("_")[1]).astype(int) ) # feature importance top 50 cb_feature_dict = { "updrs_1": [ "GEAGAPGEEDIQGPTK", "WEAEPVYVQR", "FIYGGC(UniMod_4)GGNR", "P04275", "FLPSYQAVEYMR", "P04180", "ITTTSPWMFPSR", "Q06481", "P07602", "LSSWVLLM(UniMod_35)K", "ASNLESGVPSR", "KLSSWVLLMK", "C(UniMod_4)C(UniMod_4)VEC(UniMod_4)PPC(UniMod_4)PAPPVAGPSVFLFPPKPK", "FSVVYAK", "LVGYLDR", "QKWEAEPVYVQR", "SSGLVSNAPGVQIR", "NSPLDEENLTQENQDR", "TVAAC(UniMod_4)NLPIVR", "GKRPYQEGTPC(UniMod_4)SQC(UniMod_4)PSGYHC(UniMod_4)K", "GVASLFAGR", "Q14624", "P19652", "LHLDYIGPC(UniMod_4)K", "RVDTVDPPYPR", "GATLALTQVTPQDER", "LMVELHNLYR", "TGYYFDGISR", "LEEQAQQIR", "IVSSAM(UniMod_35)EPDREYHFGQAVR", "WYEIEKIPTTFENGR", "P01009", "LADGGATNQGRVEIFYR", "MNFRPGVLSSR", "GNPEPTFSWTK", "P01344", "LRTEGDGVYTLNNEK", "M(UniMod_35)LTPEHVFIHPGWK", "TM(UniMod_35)LLQPAGSLGSYSYR", "Q6UXB8", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "P01594", "SGIEC(UniMod_4)QLWR", "TFISPIK", "ESLQQMAEVTR", "YFIDFVAR", "LGMFNIQHC(UniMod_4)K", "INENTGSVSVTR", "SEYPSIK", "LLDNWDSVTSTFSK", ], "updrs_2": [ "LQDLYSIVR", "P04180", "P01861", "O15240", "Q6UXD5", "P04433", "QQETAAAETETR", "P01717", "P01857", "TPC(UniMod_4)TVSC(UniMod_4)NIPVVSGKEC(UniMod_4)EEIIR", "EGDMLTLFDGDGPSAR", "NFPPSQDASGDLYTTSSQLTLPATQC(UniMod_4)PDGK", "SSGLVSNAPGVQIR", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "P02753", "YWGVASFLQK", "P01860", "AKLEEQAQQIR", "HLSLLTTLSNR", "LLPAQLPAEKEVGPPLPQEAVPLQK", "TLLSNLEEAKK", "FSC(UniMod_4)MC(UniMod_4)PQGYQVVR", "ALEQDLPVNIK", "RLEGQEEEEDNRDSSMK", "VHKEDDGVPVIC(UniMod_4)QVEHPAVTGNLQTQR", "C(UniMod_4)LVEKGDVAFVKHQTVPQNTGGK", "LSPEDYTLK", "P10645", "C(UniMod_4)TTPPPSSGPTYQC(UniMod_4)LK", "SVIPSDGPSVAC(UniMod_4)VKK", "DC(UniMod_4)HLAQVPSHTVVAR", "LVFFAEDVGSNK", "GGETSEMYLIQPDSSVKPYR", "ILAGSADSEGVAAPR", "EAEEETTNDNGVLVLEPARK", "LLIYDASNR", "IIGYTPDLDPETVDDAFAR", "ITTTSPWMFPSR", "VMPIC(UniMod_4)LPSKDYAEVGR", "P07602", "SC(UniMod_4)ESNSPFPVHPGTAEC(UniMod_4)C(UniMod_4)TK", "YPGPQAEGDSEGLSQGLVDREK", "IEEELGDEAR", "P07711", "GEAGAPGEEDIQGPTK", "QHM(UniMod_35)DSDSSPSSSSTYC(UniMod_4)NQMMR", "P04406", "Q99829", "C(UniMod_4)C(UniMod_4)VEC(UniMod_4)PPC(UniMod_4)PAPPVAGPSVFLFPPKPK", "VIAVNEVGR", ], "updrs_3": [ "NPDSSTTGPWC(UniMod_4)YTTDPTVR", "P00738", "IYISGMAPRPSLAK", "KAADDTWEPFASGK", "FFLC(UniMod_4)QVAGDAK", "P01717", "EHVAHLLFLR", "IWDVVEK", "DQC(UniMod_4)QVDSQC(UniMod_4)PGQMK", "RGYQLSDVDGVTC(UniMod_4)EDIDEC(UniMod_4)ALPTGGHIC(UniMod_4)SYR", "WYEIEKIPTTFENGR", "GQSISVTSIRPC(UniMod_4)AAETQ", "P01877", "DLATVYVDVLK", "KPQSAVYSTGSNGILLC(UniMod_4)EAEGEPQPTIK", "EGDMLTLFDGDGPSAR", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "RPGGEPSPEGTTGQSYNQYSQR", "VMTPAVYAPYDVK", "YWGVASFLQK", "GKRPYQEGTPC(UniMod_4)SQC(UniMod_4)PSGYHC(UniMod_4)K", "VNGSPVDNHPFAGDVVFPR", "VIAVNEVGR", "O00533", "VMPIC(UniMod_4)LPSKDYAEVGR", "P12109", "P04004", "IEIPSSVQQVPTIIK", "C(UniMod_4)YTAVVPLVYGGETK", "TLKIENVSYQDKGNYR", "Q6UXD5", "RVDTVDPPYPR", "VVVNFAPTIQEIK", "QQETAAAETETR", "GLEFLSVPSTYYK", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFRK", "LQDLYSIVR", "P01591", "P00748", "P02753", "YGQTIRPIC(UniMod_4)LPC(UniMod_4)TEGTTR", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFRKDPK", "LVFFAEDVGSNK", "SYELTQPPSVSVSPGQTAR", "AYQGVAAPFPK", "VASYGVKPR", "FKDLGEENFK", "P00441", "YPGPQAEGDSEGLSQGLVDREK", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFR", ], } cb_pr_params = { "iterations": 100000, "early_stopping_rounds": 30, "depth": 2, "learning_rate": 0.03, "loss_function": "MAE", "eval_metric": "MAE", "random_seed": 1208, "min_child_samples": 30, "subsample": 0.8, "verbose": 0, "l2_leaf_reg": 5, } def smape_plus_1(y_true, y_pred): y_true_plus_1 = y_true + 1 y_pred_plus_1 = y_pred + 1 metric = np.zeros(len(y_true_plus_1)) numerator = np.abs(y_true_plus_1 - y_pred_plus_1) denominator = (np.abs(y_true_plus_1) + np.abs(y_pred_plus_1)) / 2 mask_not_zeros = (y_true_plus_1 != 0) | (y_pred_plus_1 != 0) metric[mask_not_zeros] = numerator[mask_not_zeros] / denominator[mask_not_zeros] return 100 * np.nanmean(metric) def pr_model( train, valid, cb_params, target_columns, cb_feature_dict, fold, save_model ): valid_df = valid[["patient_id", "visit_month", target_columns]] # cb model_cb = CatBoostRegressor(**cb_params) model_cb.fit( train[cb_feature_dict[target_columns]], train[target_columns], eval_set=(valid[cb_feature_dict[target_columns]], valid[target_columns]), ) if save_model == True: joblib.dump(model_cb, f"model_cb_{target_columns}_{fold}.pkl") joblib.dump( cb_feature_dict[target_columns], f"cb_use_features_{target_columns}.pkl" ) pred = model_cb.predict(valid[cb_feature_dict[target_columns]]) valid_df["oof_cb"] = pred return valid_df # ### Make Model kf = KFold(n_splits=10) all_score_list = [] null_fill = True model_ratio = 1 for target_columns in ["updrs_1", "updrs_2", "updrs_3"]: score_list = [] for f, (idx_tr, idx_va) in enumerate(kf.split(train_users)): tr_users = list(train_users.iloc[idx_tr]) va_users = list(train_users.iloc[idx_va]) train_no_healthy_fold_tr_df = train_no_healthy_df[ train_no_healthy_df["patient_id"].isin(va_users) == False ] train_no_healthy_fold_val_df = train_no_healthy_df[ train_no_healthy_df["patient_id"].isin(va_users) == True ] # model df train_no_healthy_fold_tr_model_df = train_no_healthy_fold_tr_df.merge( train_pr_pe_base, on=["patient_id", "visit_month"], how="inner" ) train_no_healthy_fold_val_model_df = train_no_healthy_fold_val_df.merge( train_pr_pe_base, on=["patient_id", "visit_month"], how="inner" ) train_no_healthy_fold_tr_model_df = train_no_healthy_fold_tr_model_df[ train_no_healthy_fold_tr_model_df[target_columns].isnull() == False ] train_no_healthy_fold_val_model_df = train_no_healthy_fold_val_model_df[ train_no_healthy_fold_val_model_df[target_columns].isnull() == False ] pf_model_valid_df = pr_model( train_no_healthy_fold_tr_model_df, train_no_healthy_fold_val_model_df, cb_pr_params, target_columns, cb_feature_dict, f, save_model=True, ) val_df = train_no_healthy_fold_val_df[ ["patient_id", "visit_month", target_columns] ].merge( pf_model_valid_df[["patient_id", "visit_month", "oof_cb"]], on=["patient_id", "visit_month"], how="left", ) # CV的にはupdrs_3は無い方が良い if null_fill == True: val_df = val_df.groupby("patient_id").fillna(method="ffill") val_df["oof_cb"] = np.where( val_df["oof_cb"].isnull(), val_df[target_columns], val_df["oof_cb"] ) val_df[target_columns] = (val_df["oof_cb"] * model_ratio) + ( val_df[target_columns] * (1 - model_ratio) ) validation_pred = np.round(val_df[target_columns].values.ravel()) validation_target = train_no_healthy_fold_val_df[target_columns].values.ravel() score = smape_plus_1(validation_target, validation_pred) score_list.append(score) target_score = np.array(score_list).mean() print(target_columns, target_score) all_score_list.append(target_score) total_score = np.array(all_score_list).mean() print("total:", total_score)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/544/129544878.ipynb
null
null
[{"Id": 129544878, "ScriptId": 38511692, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 397595, "CreationDate": "05/14/2023 17:35:30", "VersionNumber": 3.0, "Title": "amp_catboost_protein_model", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 322.0, "LinesInsertedFromPrevious": 5.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 317.0, "LinesInsertedFromFork": 46.0, "LinesDeletedFromFork": 462.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 276.0, "TotalVotes": 0}]
null
null
null
null
import pandas as pd import amp_pd_peptide import numpy as np import sklearn import collections import warnings import polars as pl from sklearn.model_selection import KFold, GroupKFold, StratifiedKFold from catboost import CatBoostRegressor from scipy.optimize import minimize import joblib warnings.simplefilter("ignore") # ### Data load train = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv" ) extra = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv" ) train_pe = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_peptides.csv" ) train_pr = pl.read_csv( "/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv" ) # - **[important]** In the training set, users with UPDRS scores at 3/6/9/18/30/42/54 months tend to have higher scores, while users without scores during these months tend to have scores close to zero. # - The same trend is observed in the test dataset as well, where users with values at 6/18 months are expected to have scores close to zero (at least according to the results of the leaderboard). # train preprocess print("before preprocess:", train.shape) all_patient_ids = list(train["patient_id"].unique()) no_healty_users = list( set( train.filter((pl.col("visit_month").is_in([3, 6, 9, 18, 30, 42, 54]) == True))[ "patient_id" ] ) ) healty_users = [i for i in all_patient_ids if i not in no_healty_users] print(len(no_healty_users)) print(len(healty_users)) train_no_healthy = train.filter(pl.col("patient_id").is_in(no_healty_users)).to_pandas() train_healthy = train.filter(pl.col("patient_id").is_in(healty_users)).to_pandas() print("after preprocess:", train_no_healthy.shape, train_healthy.shape) train_users = train_no_healthy["patient_id"].drop_duplicates() train_pe = train_pe.filter(pl.col("patient_id").is_in(no_healty_users)) train_pr = train_pr.filter(pl.col("patient_id").is_in(no_healty_users)) # extra preprocess extra_have_5 = list(extra.filter(pl.col("visit_month") == 5)["patient_id"]) extra_super_healty = list( extra.filter((pl.col("visit_month") == 0) & (pl.col("updrs_1").is_null()))[ "patient_id" ] ) extra_have_36 = list(extra.filter(pl.col("visit_month") == 36)["patient_id"]) # extra_unknown_list = list(set(extra_have_5 + extra_have_36 + extra_super_healty)) # LB best extra_unknown_list = list(set(extra_have_5 + extra_super_healty)) # CV best extra_have_5 = extra.filter(pl.col("patient_id").is_in(extra_have_5) == True) extra_have_36 = extra.filter(pl.col("patient_id").is_in(extra_have_36) == True) extra_super_healty = extra.filter( pl.col("patient_id").is_in(extra_super_healty) == True ) extra_no_healthy = extra.filter( pl.col("patient_id").is_in(extra_unknown_list) == False ).to_pandas() print( len(extra_have_5), len(extra_have_36), len(extra_super_healty), len(extra_no_healthy), ) train_no_healthy_df = pd.concat([train_no_healthy, extra_no_healthy]) print(train_no_healthy_df.shape) p_month_df = ( train_no_healthy_df.groupby("patient_id")["visit_month"].max().reset_index() ) p_month_df.columns = ["patient_id", "max_visit_month"] train_no_healthy_df = train_no_healthy_df.merge(p_month_df, on="patient_id", how="left") # baseline train_pr_pi = train_pr.pivot("NPX", "visit_id", "UniProt") train_pe_pi = train_pe.pivot("PeptideAbundance", "visit_id", "Peptide") train_pr_pi = train_pr_pi.to_pandas() train_pe_pi = train_pe_pi.to_pandas() train_pr_pe_base = train_pr_pi.merge(train_pe_pi, on="visit_id", how="left") train_pr_pe_base["patient_id"] = ( train_pr_pe_base["visit_id"].apply(lambda x: x.split("_")[0]).astype(int) ) train_pr_pe_base["visit_month"] = ( train_pr_pe_base["visit_id"].apply(lambda x: x.split("_")[1]).astype(int) ) # feature importance top 50 cb_feature_dict = { "updrs_1": [ "GEAGAPGEEDIQGPTK", "WEAEPVYVQR", "FIYGGC(UniMod_4)GGNR", "P04275", "FLPSYQAVEYMR", "P04180", "ITTTSPWMFPSR", "Q06481", "P07602", "LSSWVLLM(UniMod_35)K", "ASNLESGVPSR", "KLSSWVLLMK", "C(UniMod_4)C(UniMod_4)VEC(UniMod_4)PPC(UniMod_4)PAPPVAGPSVFLFPPKPK", "FSVVYAK", "LVGYLDR", "QKWEAEPVYVQR", "SSGLVSNAPGVQIR", "NSPLDEENLTQENQDR", "TVAAC(UniMod_4)NLPIVR", "GKRPYQEGTPC(UniMod_4)SQC(UniMod_4)PSGYHC(UniMod_4)K", "GVASLFAGR", "Q14624", "P19652", "LHLDYIGPC(UniMod_4)K", "RVDTVDPPYPR", "GATLALTQVTPQDER", "LMVELHNLYR", "TGYYFDGISR", "LEEQAQQIR", "IVSSAM(UniMod_35)EPDREYHFGQAVR", "WYEIEKIPTTFENGR", "P01009", "LADGGATNQGRVEIFYR", "MNFRPGVLSSR", "GNPEPTFSWTK", "P01344", "LRTEGDGVYTLNNEK", "M(UniMod_35)LTPEHVFIHPGWK", "TM(UniMod_35)LLQPAGSLGSYSYR", "Q6UXB8", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "P01594", "SGIEC(UniMod_4)QLWR", "TFISPIK", "ESLQQMAEVTR", "YFIDFVAR", "LGMFNIQHC(UniMod_4)K", "INENTGSVSVTR", "SEYPSIK", "LLDNWDSVTSTFSK", ], "updrs_2": [ "LQDLYSIVR", "P04180", "P01861", "O15240", "Q6UXD5", "P04433", "QQETAAAETETR", "P01717", "P01857", "TPC(UniMod_4)TVSC(UniMod_4)NIPVVSGKEC(UniMod_4)EEIIR", "EGDMLTLFDGDGPSAR", "NFPPSQDASGDLYTTSSQLTLPATQC(UniMod_4)PDGK", "SSGLVSNAPGVQIR", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "P02753", "YWGVASFLQK", "P01860", "AKLEEQAQQIR", "HLSLLTTLSNR", "LLPAQLPAEKEVGPPLPQEAVPLQK", "TLLSNLEEAKK", "FSC(UniMod_4)MC(UniMod_4)PQGYQVVR", "ALEQDLPVNIK", "RLEGQEEEEDNRDSSMK", "VHKEDDGVPVIC(UniMod_4)QVEHPAVTGNLQTQR", "C(UniMod_4)LVEKGDVAFVKHQTVPQNTGGK", "LSPEDYTLK", "P10645", "C(UniMod_4)TTPPPSSGPTYQC(UniMod_4)LK", "SVIPSDGPSVAC(UniMod_4)VKK", "DC(UniMod_4)HLAQVPSHTVVAR", "LVFFAEDVGSNK", "GGETSEMYLIQPDSSVKPYR", "ILAGSADSEGVAAPR", "EAEEETTNDNGVLVLEPARK", "LLIYDASNR", "IIGYTPDLDPETVDDAFAR", "ITTTSPWMFPSR", "VMPIC(UniMod_4)LPSKDYAEVGR", "P07602", "SC(UniMod_4)ESNSPFPVHPGTAEC(UniMod_4)C(UniMod_4)TK", "YPGPQAEGDSEGLSQGLVDREK", "IEEELGDEAR", "P07711", "GEAGAPGEEDIQGPTK", "QHM(UniMod_35)DSDSSPSSSSTYC(UniMod_4)NQMMR", "P04406", "Q99829", "C(UniMod_4)C(UniMod_4)VEC(UniMod_4)PPC(UniMod_4)PAPPVAGPSVFLFPPKPK", "VIAVNEVGR", ], "updrs_3": [ "NPDSSTTGPWC(UniMod_4)YTTDPTVR", "P00738", "IYISGMAPRPSLAK", "KAADDTWEPFASGK", "FFLC(UniMod_4)QVAGDAK", "P01717", "EHVAHLLFLR", "IWDVVEK", "DQC(UniMod_4)QVDSQC(UniMod_4)PGQMK", "RGYQLSDVDGVTC(UniMod_4)EDIDEC(UniMod_4)ALPTGGHIC(UniMod_4)SYR", "WYEIEKIPTTFENGR", "GQSISVTSIRPC(UniMod_4)AAETQ", "P01877", "DLATVYVDVLK", "KPQSAVYSTGSNGILLC(UniMod_4)EAEGEPQPTIK", "EGDMLTLFDGDGPSAR", "GRPGPQPWC(UniMod_4)ATTPNFDQDQR", "RPGGEPSPEGTTGQSYNQYSQR", "VMTPAVYAPYDVK", "YWGVASFLQK", "GKRPYQEGTPC(UniMod_4)SQC(UniMod_4)PSGYHC(UniMod_4)K", "VNGSPVDNHPFAGDVVFPR", "VIAVNEVGR", "O00533", "VMPIC(UniMod_4)LPSKDYAEVGR", "P12109", "P04004", "IEIPSSVQQVPTIIK", "C(UniMod_4)YTAVVPLVYGGETK", "TLKIENVSYQDKGNYR", "Q6UXD5", "RVDTVDPPYPR", "VVVNFAPTIQEIK", "QQETAAAETETR", "GLEFLSVPSTYYK", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFRK", "LQDLYSIVR", "P01591", "P00748", "P02753", "YGQTIRPIC(UniMod_4)LPC(UniMod_4)TEGTTR", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFRKDPK", "LVFFAEDVGSNK", "SYELTQPPSVSVSPGQTAR", "AYQGVAAPFPK", "VASYGVKPR", "FKDLGEENFK", "P00441", "YPGPQAEGDSEGLSQGLVDREK", "HQPQEFPTYVEPTNDEIC(UniMod_4)EAFR", ], } cb_pr_params = { "iterations": 100000, "early_stopping_rounds": 30, "depth": 2, "learning_rate": 0.03, "loss_function": "MAE", "eval_metric": "MAE", "random_seed": 1208, "min_child_samples": 30, "subsample": 0.8, "verbose": 0, "l2_leaf_reg": 5, } def smape_plus_1(y_true, y_pred): y_true_plus_1 = y_true + 1 y_pred_plus_1 = y_pred + 1 metric = np.zeros(len(y_true_plus_1)) numerator = np.abs(y_true_plus_1 - y_pred_plus_1) denominator = (np.abs(y_true_plus_1) + np.abs(y_pred_plus_1)) / 2 mask_not_zeros = (y_true_plus_1 != 0) | (y_pred_plus_1 != 0) metric[mask_not_zeros] = numerator[mask_not_zeros] / denominator[mask_not_zeros] return 100 * np.nanmean(metric) def pr_model( train, valid, cb_params, target_columns, cb_feature_dict, fold, save_model ): valid_df = valid[["patient_id", "visit_month", target_columns]] # cb model_cb = CatBoostRegressor(**cb_params) model_cb.fit( train[cb_feature_dict[target_columns]], train[target_columns], eval_set=(valid[cb_feature_dict[target_columns]], valid[target_columns]), ) if save_model == True: joblib.dump(model_cb, f"model_cb_{target_columns}_{fold}.pkl") joblib.dump( cb_feature_dict[target_columns], f"cb_use_features_{target_columns}.pkl" ) pred = model_cb.predict(valid[cb_feature_dict[target_columns]]) valid_df["oof_cb"] = pred return valid_df # ### Make Model kf = KFold(n_splits=10) all_score_list = [] null_fill = True model_ratio = 1 for target_columns in ["updrs_1", "updrs_2", "updrs_3"]: score_list = [] for f, (idx_tr, idx_va) in enumerate(kf.split(train_users)): tr_users = list(train_users.iloc[idx_tr]) va_users = list(train_users.iloc[idx_va]) train_no_healthy_fold_tr_df = train_no_healthy_df[ train_no_healthy_df["patient_id"].isin(va_users) == False ] train_no_healthy_fold_val_df = train_no_healthy_df[ train_no_healthy_df["patient_id"].isin(va_users) == True ] # model df train_no_healthy_fold_tr_model_df = train_no_healthy_fold_tr_df.merge( train_pr_pe_base, on=["patient_id", "visit_month"], how="inner" ) train_no_healthy_fold_val_model_df = train_no_healthy_fold_val_df.merge( train_pr_pe_base, on=["patient_id", "visit_month"], how="inner" ) train_no_healthy_fold_tr_model_df = train_no_healthy_fold_tr_model_df[ train_no_healthy_fold_tr_model_df[target_columns].isnull() == False ] train_no_healthy_fold_val_model_df = train_no_healthy_fold_val_model_df[ train_no_healthy_fold_val_model_df[target_columns].isnull() == False ] pf_model_valid_df = pr_model( train_no_healthy_fold_tr_model_df, train_no_healthy_fold_val_model_df, cb_pr_params, target_columns, cb_feature_dict, f, save_model=True, ) val_df = train_no_healthy_fold_val_df[ ["patient_id", "visit_month", target_columns] ].merge( pf_model_valid_df[["patient_id", "visit_month", "oof_cb"]], on=["patient_id", "visit_month"], how="left", ) # CV的にはupdrs_3は無い方が良い if null_fill == True: val_df = val_df.groupby("patient_id").fillna(method="ffill") val_df["oof_cb"] = np.where( val_df["oof_cb"].isnull(), val_df[target_columns], val_df["oof_cb"] ) val_df[target_columns] = (val_df["oof_cb"] * model_ratio) + ( val_df[target_columns] * (1 - model_ratio) ) validation_pred = np.round(val_df[target_columns].values.ravel()) validation_target = train_no_healthy_fold_val_df[target_columns].values.ravel() score = smape_plus_1(validation_target, validation_pred) score_list.append(score) target_score = np.array(score_list).mean() print(target_columns, target_score) all_score_list.append(target_score) total_score = np.array(all_score_list).mean() print("total:", total_score)
false
0
4,813
0
4,813
4,813
129864806
<jupyter_start><jupyter_text>DC comics The DC Universe (DCU) is the fictional shared universe where most stories in American comic book titles published by DC Comics take place. DC superheroes such as Superman, Batman, Wonder Woman, Martian Manhunter, The Flash, Green Lantern, and Aquaman are from this universe, as well as teams such as the Justice League and the Teen Titans. It also contains well-known supervillains such as Lex Luthor, the Joker, Sinestro, Harley Quinn, Reverse-Flash, Darkseid, General Zod, Penguin, the Riddler, Catwoman, Ra’s al Ghul, Bane, and Two-Face. In context, the term "DC Universe" usually refers to the main DC continuity. The main DC Universe, as well as the alternate realities related to it, were quickly adapted to other media such as film serials or radio dramas. In subsequent decades, the continuity between all of these media became increasingly complex with certain storylines and events designed to simplify or streamline the more confusing aspects of characters' histories. The basic concept of the DC Universe is that it is just like the real world, but with superheroes and supervillains existing in it. However, there are other corollary differences resulting from the justifications implied by that main concept. Many fictional countries, such as Qurac, Vlatava, and Zandia, exist in it. Though stories are often set in the United States of America, they are as often as not set in fictional cities, such as Gotham City or Metropolis. These cities are effectively archetypes of cities, with Gotham City embodying more of the negative aspects of life in a large city, and Metropolis reflecting more of the positive aspects. Sentient alien species (such as Kryptonians and Thanagarians) and even functioning interstellar societies are generally known to exist, and the arrival of alien spacecraft is not uncommon. Technologies which are only theoretical in the real world, such as artificial intelligence, or are outright impossible according to modern science, such as faster-than-light travel, are functional and reproducible, though they are often portrayed as highly experimental and difficult to achieve. Demonstrable magic exists and can be learned. The general history of the fictional world is similar to the real one (for instance, there was a Roman Empire, and World War II and 9/11 both occurred), but many fantastic additions exist, such as the known existence of Atlantis. In recent years, stories have increasingly described events which bring the DC Universe farther away from reality, such as World War III occurring, Lex Luthor being elected as President of the United States in 2000, and entire cities and countries being destroyed. There are other minor variations, such as the Earth being slightly larger than ours (to accommodate the extra countries), and the planet Saturn having 18 moons rather than 19 because Superman destroyed one. This data set consists of ten columns. The columns are : Page_id - An ID assigned to each record Name- Name of the DC character URL - It consists of the Wikipedia link of the information regarding each character ID- The district from which the patient belongs Align - Information whether the character is a good or a bad character in the DC universe Eye - Eye color of each character Hair- Hair color of each character Sex- Gender of the character Alive - Information whether the character is alive or deceased Appearances - The total number of appearances of the character in the DC universe Would love to see your analysis and insights from this data set using various algorithms. Kindly let me know about your work from this data set via email. Feel free to connect on LinkedIn. email : [email protected] LinkedIn: https://www.linkedin.com/in/aruna-s-/ Kaggle dataset identifier: dc-comics <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd # Read the CSV file into a pandas DataFrame df = pd.read_csv("/kaggle/input/dc-comics/dc-comics.csv") df.head() df.info() df.describe() # Remove unnecessary columns columns_to_drop = ["page_id", "urlslug"] df.drop(columns=columns_to_drop, inplace=True) # Clean missing values df.dropna(inplace=True) # Generate a unique identifier for each row df["Row_ID"] = range(1, len(df) + 1) df["Row_ID"] = df["Row_ID"].astype(str) # Convert string columns to lowercase for consistency string_columns = ["name", "ALIGN", "EYE", "HAIR", "SEX", "ALIVE"] df[string_columns] = df[string_columns].apply(lambda x: x.str.lower()) # Remove leading/trailing whitespaces in string columns df[string_columns] = df[string_columns].apply(lambda x: x.str.strip()) # Save the cleaned dataset to a new CSV file df.to_csv("cleaned_superheroes_data.csv", index=False)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/864/129864806.ipynb
dc-comics
arunasivapragasam
[{"Id": 129864806, "ScriptId": 38624924, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11318851, "CreationDate": "05/17/2023 04:02:35", "VersionNumber": 1.0, "Title": "Data Cleaning of DC comics dataset", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 54.0, "LinesInsertedFromPrevious": 54.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186262787, "KernelVersionId": 129864806, "SourceDatasetVersionId": 3124482}]
[{"Id": 3124482, "DatasetId": 1903303, "DatasourceVersionId": 3173505, "CreatorUserId": 5820768, "LicenseName": "Unknown", "CreationDate": "02/01/2022 13:13:19", "VersionNumber": 3.0, "Title": "DC comics", "Slug": "dc-comics", "Subtitle": "Dataset of DC universe characters", "Description": "The DC Universe (DCU) is the fictional shared universe where most stories in American comic book titles published by DC Comics take place. DC superheroes such as Superman, Batman, Wonder Woman, Martian Manhunter, The Flash, Green Lantern, and Aquaman are from this universe, as well as teams such as the Justice League and the Teen Titans. It also contains well-known supervillains such as Lex Luthor, the Joker, Sinestro, Harley Quinn, Reverse-Flash, Darkseid, General Zod, Penguin, the Riddler, Catwoman, Ra\u2019s al Ghul, Bane, and Two-Face. In context, the term \"DC Universe\" usually refers to the main DC continuity. The main DC Universe, as well as the alternate realities related to it, were quickly adapted to other media such as film serials or radio dramas. In subsequent decades, the continuity between all of these media became increasingly complex with certain storylines and events designed to simplify or streamline the more confusing aspects of characters' histories. The basic concept of the DC Universe is that it is just like the real world, but with superheroes and supervillains existing in it. However, there are other corollary differences resulting from the justifications implied by that main concept. Many fictional countries, such as Qurac, Vlatava, and Zandia, exist in it. Though stories are often set in the United States of America, they are as often as not set in fictional cities, such as Gotham City or Metropolis. These cities are effectively archetypes of cities, with Gotham City embodying more of the negative aspects of life in a large city, and Metropolis reflecting more of the positive aspects. Sentient alien species (such as Kryptonians and Thanagarians) and even functioning interstellar societies are generally known to exist, and the arrival of alien spacecraft is not uncommon. Technologies which are only theoretical in the real world, such as artificial intelligence, or are outright impossible according to modern science, such as faster-than-light travel, are functional and reproducible, though they are often portrayed as highly experimental and difficult to achieve. Demonstrable magic exists and can be learned. The general history of the fictional world is similar to the real one (for instance, there was a Roman Empire, and World War II and 9/11 both occurred), but many fantastic additions exist, such as the known existence of Atlantis. In recent years, stories have increasingly described events which bring the DC Universe farther away from reality, such as World War III occurring, Lex Luthor being elected as President of the United States in 2000, and entire cities and countries being destroyed. There are other minor variations, such as the Earth being slightly larger than ours (to accommodate the extra countries), and the planet Saturn having 18 moons rather than 19 because Superman destroyed one.\n\n\n\n\n\nThis data set consists of ten columns. The columns are :\n\nPage_id - An ID assigned to each record \nName- Name of the DC character \nURL - It consists of the Wikipedia link of the information regarding each character\nID- The district from which the patient belongs\nAlign - Information whether the character is a good or a bad character in the DC universe\nEye - Eye color of each character\nHair- Hair color of each character\nSex- Gender of the character\nAlive - Information whether the character is alive or deceased\nAppearances - The total number of appearances of the character in the DC universe\n\nWould love to see your analysis and insights from this data set using various algorithms. Kindly let me know about your work from this data set via email. Feel free to connect on LinkedIn.\n\nemail : [email protected]\nLinkedIn: https://www.linkedin.com/in/aruna-s-/", "VersionNotes": "Data Update 2022/02/01", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1903303, "CreatorUserId": 5820768, "OwnerUserId": 5820768.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3124482.0, "CurrentDatasourceVersionId": 3173505.0, "ForumId": 1926686, "Type": 2, "CreationDate": "01/31/2022 16:26:21", "LastActivityDate": "01/31/2022", "TotalViews": 1780, "TotalDownloads": 183, "TotalVotes": 22, "TotalKernels": 1}]
[{"Id": 5820768, "UserName": "arunasivapragasam", "DisplayName": "Aruna S", "RegisterDate": "09/21/2020", "PerformanceTier": 2}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd # Read the CSV file into a pandas DataFrame df = pd.read_csv("/kaggle/input/dc-comics/dc-comics.csv") df.head() df.info() df.describe() # Remove unnecessary columns columns_to_drop = ["page_id", "urlslug"] df.drop(columns=columns_to_drop, inplace=True) # Clean missing values df.dropna(inplace=True) # Generate a unique identifier for each row df["Row_ID"] = range(1, len(df) + 1) df["Row_ID"] = df["Row_ID"].astype(str) # Convert string columns to lowercase for consistency string_columns = ["name", "ALIGN", "EYE", "HAIR", "SEX", "ALIVE"] df[string_columns] = df[string_columns].apply(lambda x: x.str.lower()) # Remove leading/trailing whitespaces in string columns df[string_columns] = df[string_columns].apply(lambda x: x.str.strip()) # Save the cleaned dataset to a new CSV file df.to_csv("cleaned_superheroes_data.csv", index=False)
false
1
472
0
1,396
472
129987615
<jupyter_start><jupyter_text>IBM HR Analytics Employee Attrition & Performance Uncover the factors that lead to employee attrition and explore important questions such as ‘show me a breakdown of distance from home by job role and attrition’ or ‘compare average monthly income by education and attrition’. This is a fictional data set created by IBM data scientists. Education 1 'Below College' 2 'College' 3 'Bachelor' 4 'Master' 5 'Doctor' EnvironmentSatisfaction 1 'Low' 2 'Medium' 3 'High' 4 'Very High' JobInvolvement 1 'Low' 2 'Medium' 3 'High' 4 'Very High' JobSatisfaction 1 'Low' 2 'Medium' 3 'High' 4 'Very High' PerformanceRating 1 'Low' 2 'Good' 3 'Excellent' 4 'Outstanding' RelationshipSatisfaction 1 'Low' 2 'Medium' 3 'High' 4 'Very High' WorkLifeBalance 1 'Bad' 2 'Good' 3 'Better' 4 'Best' Kaggle dataset identifier: ibm-hr-analytics-attrition-dataset <jupyter_code>import pandas as pd df = pd.read_csv('ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 1470 non-null int64 1 Attrition 1470 non-null object 2 BusinessTravel 1470 non-null object 3 DailyRate 1470 non-null int64 4 Department 1470 non-null object 5 DistanceFromHome 1470 non-null int64 6 Education 1470 non-null int64 7 EducationField 1470 non-null object 8 EmployeeCount 1470 non-null int64 9 EmployeeNumber 1470 non-null int64 10 EnvironmentSatisfaction 1470 non-null int64 11 Gender 1470 non-null object 12 HourlyRate 1470 non-null int64 13 JobInvolvement 1470 non-null int64 14 JobLevel 1470 non-null int64 15 JobRole 1470 non-null object 16 JobSatisfaction 1470 non-null int64 17 MaritalStatus 1470 non-null object 18 MonthlyIncome 1470 non-null int64 19 MonthlyRate 1470 non-null int64 20 NumCompaniesWorked 1470 non-null int64 21 Over18 1470 non-null object 22 OverTime 1470 non-null object 23 PercentSalaryHike 1470 non-null int64 24 PerformanceRating 1470 non-null int64 25 RelationshipSatisfaction 1470 non-null int64 26 StandardHours 1470 non-null int64 27 StockOptionLevel 1470 non-null int64 28 TotalWorkingYears 1470 non-null int64 29 TrainingTimesLastYear 1470 non-null int64 30 WorkLifeBalance 1470 non-null int64 31 YearsAtCompany 1470 non-null int64 32 YearsInCurrentRole 1470 non-null int64 33 YearsSinceLastPromotion 1470 non-null int64 34 YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.1+ KB <jupyter_text>Examples: { "Age": 41, "Attrition": "Yes", "BusinessTravel": "Travel_Rarely", "DailyRate": 1102, "Department": "Sales", "DistanceFromHome": 1, "Education": 2, "EducationField": "Life Sciences", "EmployeeCount": 1, "EmployeeNumber": 1, "EnvironmentSatisfaction": 2, "Gender": "Female", "HourlyRate": 94, "JobInvolvement": 3, "JobLevel": 2, "JobRole": "Sales Executive", "JobSatisfaction": 4, "MaritalStatus": "Single", "MonthlyIncome": 5993, "MonthlyRate": 19479, "...": "and 15 more columns" } { "Age": 49, "Attrition": "No", "BusinessTravel": "Travel_Frequently", "DailyRate": 279, "Department": "Research & Development", "DistanceFromHome": 8, "Education": 1, "EducationField": "Life Sciences", "EmployeeCount": 1, "EmployeeNumber": 2, "EnvironmentSatisfaction": 3, "Gender": "Male", "HourlyRate": 61, "JobInvolvement": 2, "JobLevel": 2, "JobRole": "Research Scientist", "JobSatisfaction": 2, "MaritalStatus": "Married", "MonthlyIncome": 5130, "MonthlyRate": 24907, "...": "and 15 more columns" } { "Age": 37, "Attrition": "Yes", "BusinessTravel": "Travel_Rarely", "DailyRate": 1373, "Department": "Research & Development", "DistanceFromHome": 2, "Education": 2, "EducationField": "Other", "EmployeeCount": 1, "EmployeeNumber": 4, "EnvironmentSatisfaction": 4, "Gender": "Male", "HourlyRate": 92, "JobInvolvement": 2, "JobLevel": 1, "JobRole": "Laboratory Technician", "JobSatisfaction": 3, "MaritalStatus": "Single", "MonthlyIncome": 2090, "MonthlyRate": 2396, "...": "and 15 more columns" } { "Age": 33, "Attrition": "No", "BusinessTravel": "Travel_Frequently", "DailyRate": 1392, "Department": "Research & Development", "DistanceFromHome": 3, "Education": 4, "EducationField": "Life Sciences", "EmployeeCount": 1, "EmployeeNumber": 5, "EnvironmentSatisfaction": 4, "Gender": "Female", "HourlyRate": 56, "JobInvolvement": 3, "JobLevel": 1, "JobRole": "Research Scientist", "JobSatisfaction": 3, "MaritalStatus": "Married", "MonthlyIncome": 2909, "MonthlyRate": 23159, "...": "and 15 more columns" } <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sn import matplotlib.pyplot as plt pd.set_option("display.max_columns", None) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session dataset = pd.read_csv( "/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv" ) dataset.head() columns = dataset.columns.to_list() # checar valores por coluna, valores unicos e se há valores nulos. for column in columns: print(dataset[column].unique()) print(sum(dataset[column].isna())) # somando o check de valores nulos, se Zero, logo não há valores nulos. # Lista de Dicionários para converter valores não numéricos em numéricos. dictionary_variables = [] inverted_dictionary = [] dict_default = { "Education": { 1: "Below College", 2: "College", 3: "Bachelor", 4: "Master", 5: "Doctor", }, "EnvironmentSatisfaction": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "JobInvolvement": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "JobSatisfaction": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "PerformanceRating": {1: "Low", 2: "Good", 3: "Excellent", 4: "Outstanding"}, "RelationshipSatisfaction": {1: "Low", 2: "Good", 3: "Excellent", 4: "Outstanding"}, "WorkLifeBalance": {1: "Bad", 2: "Good", 3: "Better", 4: "Best"}, } for column in columns: try: dataset[column][2] / 1 dictionary_variables.append([column, 0]) try: dict_defaul[column] inverted_dictionary.append([column, dict_default[column]]) except: inverted_dictionary.append([column, 0]) except: classes = dataset[column].unique() inverted_dictionary.append([column, dict(zip(range(len(classes)), classes))]) dictionary_variables.append([column, dict(zip(classes, range(len(classes))))]) print(inverted_dictionary) dataset.describe() # convertendo o dataset para numérico for value in dictionary_variables: if not value[1] == 0: dataset[value[0]] = dataset[value[0]].map(value[1]) dataset.head() dataset.describe() plt.subplots(figsize=(20, 15)) sn.heatmap(dataset.corr(), linewidth=0.2) # convertendo o dataset para categórico for value in range(len(inverted_dictionary)): if not inverted_dictionary[value][1] == 0: dataset[inverted_dictionary[value][0]] = dataset[ inverted_dictionary[value][0] ].map(inverted_dictionary[value][1]) if dictionary_variables[value][0] == "Attrition": dataset[dictionary_variables[value][0]] = dataset[ dictionary_variables[value][0] ].map(dictionary_variables[value][1]) dataset.head() plt.subplots(figsize=(20, 15)) sn.heatmap(dataset.corr(), linewidth=0.2)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/987/129987615.ipynb
ibm-hr-analytics-attrition-dataset
pavansubhasht
[{"Id": 129987615, "ScriptId": 38665575, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 4609995, "CreationDate": "05/18/2023 00:38:43", "VersionNumber": 1.0, "Title": "notebook455d960c79", "EvaluationDate": "05/18/2023", "IsChange": true, "TotalLines": 93.0, "LinesInsertedFromPrevious": 93.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186434867, "KernelVersionId": 129987615, "SourceDatasetVersionId": 1925}]
[{"Id": 1925, "DatasetId": 1067, "DatasourceVersionId": 1925, "CreatorUserId": 862007, "LicenseName": "Database: Open Database, Contents: Database Contents", "CreationDate": "03/31/2017 06:55:16", "VersionNumber": 1.0, "Title": "IBM HR Analytics Employee Attrition & Performance", "Slug": "ibm-hr-analytics-attrition-dataset", "Subtitle": "Predict attrition of your valuable employees", "Description": "Uncover the factors that lead to employee attrition and explore important questions such as \u2018show me a breakdown of distance from home by job role and attrition\u2019 or \u2018compare average monthly income by education and attrition\u2019. This is a fictional data set created by IBM data scientists.\n\nEducation\n\t1 'Below College'\n\t2 'College'\n\t3 'Bachelor'\n\t4 'Master'\n\t5 'Doctor'\n\t\nEnvironmentSatisfaction\n\t1 'Low'\n\t2 'Medium'\n\t3 'High'\n\t4 'Very High'\n\t\nJobInvolvement\t\n 1 'Low'\n\t2 'Medium'\n\t3 'High'\n\t4 'Very High'\n\t\nJobSatisfaction\t\n 1 'Low'\n\t2 'Medium'\n\t3 'High'\n\t4 'Very High'\n\t\nPerformanceRating\t\n 1 'Low'\n\t2 'Good'\n\t3 'Excellent'\n\t4 'Outstanding'\n\t\nRelationshipSatisfaction\t\n 1 'Low'\n\t2 'Medium'\n\t3 'High'\n\t4 'Very High'\n\t\nWorkLifeBalance\t\n 1 'Bad'\n\t2 'Good'\n\t3 'Better'\n\t4 'Best'", "VersionNotes": "Initial release", "TotalCompressedBytes": 227977.0, "TotalUncompressedBytes": 227977.0}]
[{"Id": 1067, "CreatorUserId": 862007, "OwnerUserId": 862007.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1925.0, "CurrentDatasourceVersionId": 1925.0, "ForumId": 3045, "Type": 2, "CreationDate": "03/31/2017 06:55:16", "LastActivityDate": "02/06/2018", "TotalViews": 1254989, "TotalDownloads": 142350, "TotalVotes": 2254, "TotalKernels": 821}]
[{"Id": 862007, "UserName": "pavansubhasht", "DisplayName": "pavansubhash", "RegisterDate": "01/10/2017", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sn import matplotlib.pyplot as plt pd.set_option("display.max_columns", None) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session dataset = pd.read_csv( "/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv" ) dataset.head() columns = dataset.columns.to_list() # checar valores por coluna, valores unicos e se há valores nulos. for column in columns: print(dataset[column].unique()) print(sum(dataset[column].isna())) # somando o check de valores nulos, se Zero, logo não há valores nulos. # Lista de Dicionários para converter valores não numéricos em numéricos. dictionary_variables = [] inverted_dictionary = [] dict_default = { "Education": { 1: "Below College", 2: "College", 3: "Bachelor", 4: "Master", 5: "Doctor", }, "EnvironmentSatisfaction": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "JobInvolvement": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "JobSatisfaction": {1: "Low", 2: "Medium", 3: "High", 4: "Very High"}, "PerformanceRating": {1: "Low", 2: "Good", 3: "Excellent", 4: "Outstanding"}, "RelationshipSatisfaction": {1: "Low", 2: "Good", 3: "Excellent", 4: "Outstanding"}, "WorkLifeBalance": {1: "Bad", 2: "Good", 3: "Better", 4: "Best"}, } for column in columns: try: dataset[column][2] / 1 dictionary_variables.append([column, 0]) try: dict_defaul[column] inverted_dictionary.append([column, dict_default[column]]) except: inverted_dictionary.append([column, 0]) except: classes = dataset[column].unique() inverted_dictionary.append([column, dict(zip(range(len(classes)), classes))]) dictionary_variables.append([column, dict(zip(classes, range(len(classes))))]) print(inverted_dictionary) dataset.describe() # convertendo o dataset para numérico for value in dictionary_variables: if not value[1] == 0: dataset[value[0]] = dataset[value[0]].map(value[1]) dataset.head() dataset.describe() plt.subplots(figsize=(20, 15)) sn.heatmap(dataset.corr(), linewidth=0.2) # convertendo o dataset para categórico for value in range(len(inverted_dictionary)): if not inverted_dictionary[value][1] == 0: dataset[inverted_dictionary[value][0]] = dataset[ inverted_dictionary[value][0] ].map(inverted_dictionary[value][1]) if dictionary_variables[value][0] == "Attrition": dataset[dictionary_variables[value][0]] = dataset[ dictionary_variables[value][0] ].map(dictionary_variables[value][1]) dataset.head() plt.subplots(figsize=(20, 15)) sn.heatmap(dataset.corr(), linewidth=0.2)
[{"ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv": {"column_names": "[\"Age\", \"Attrition\", \"BusinessTravel\", \"DailyRate\", \"Department\", \"DistanceFromHome\", \"Education\", \"EducationField\", \"EmployeeCount\", \"EmployeeNumber\", \"EnvironmentSatisfaction\", \"Gender\", \"HourlyRate\", \"JobInvolvement\", \"JobLevel\", \"JobRole\", \"JobSatisfaction\", \"MaritalStatus\", \"MonthlyIncome\", \"MonthlyRate\", \"NumCompaniesWorked\", \"Over18\", \"OverTime\", \"PercentSalaryHike\", \"PerformanceRating\", \"RelationshipSatisfaction\", \"StandardHours\", \"StockOptionLevel\", \"TotalWorkingYears\", \"TrainingTimesLastYear\", \"WorkLifeBalance\", \"YearsAtCompany\", \"YearsInCurrentRole\", \"YearsSinceLastPromotion\", \"YearsWithCurrManager\"]", "column_data_types": "{\"Age\": \"int64\", \"Attrition\": \"object\", \"BusinessTravel\": \"object\", \"DailyRate\": \"int64\", \"Department\": \"object\", \"DistanceFromHome\": \"int64\", \"Education\": \"int64\", \"EducationField\": \"object\", \"EmployeeCount\": \"int64\", \"EmployeeNumber\": \"int64\", \"EnvironmentSatisfaction\": \"int64\", \"Gender\": \"object\", \"HourlyRate\": \"int64\", \"JobInvolvement\": \"int64\", \"JobLevel\": \"int64\", \"JobRole\": \"object\", \"JobSatisfaction\": \"int64\", \"MaritalStatus\": \"object\", \"MonthlyIncome\": \"int64\", \"MonthlyRate\": \"int64\", \"NumCompaniesWorked\": \"int64\", \"Over18\": \"object\", \"OverTime\": \"object\", \"PercentSalaryHike\": \"int64\", \"PerformanceRating\": \"int64\", \"RelationshipSatisfaction\": \"int64\", \"StandardHours\": \"int64\", \"StockOptionLevel\": \"int64\", \"TotalWorkingYears\": \"int64\", \"TrainingTimesLastYear\": \"int64\", \"WorkLifeBalance\": \"int64\", \"YearsAtCompany\": \"int64\", \"YearsInCurrentRole\": \"int64\", \"YearsSinceLastPromotion\": \"int64\", \"YearsWithCurrManager\": \"int64\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1470 entries, 0 to 1469\nData columns (total 35 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Age 1470 non-null int64 \n 1 Attrition 1470 non-null object\n 2 BusinessTravel 1470 non-null object\n 3 DailyRate 1470 non-null int64 \n 4 Department 1470 non-null object\n 5 DistanceFromHome 1470 non-null int64 \n 6 Education 1470 non-null int64 \n 7 EducationField 1470 non-null object\n 8 EmployeeCount 1470 non-null int64 \n 9 EmployeeNumber 1470 non-null int64 \n 10 EnvironmentSatisfaction 1470 non-null int64 \n 11 Gender 1470 non-null object\n 12 HourlyRate 1470 non-null int64 \n 13 JobInvolvement 1470 non-null int64 \n 14 JobLevel 1470 non-null int64 \n 15 JobRole 1470 non-null object\n 16 JobSatisfaction 1470 non-null int64 \n 17 MaritalStatus 1470 non-null object\n 18 MonthlyIncome 1470 non-null int64 \n 19 MonthlyRate 1470 non-null int64 \n 20 NumCompaniesWorked 1470 non-null int64 \n 21 Over18 1470 non-null object\n 22 OverTime 1470 non-null object\n 23 PercentSalaryHike 1470 non-null int64 \n 24 PerformanceRating 1470 non-null int64 \n 25 RelationshipSatisfaction 1470 non-null int64 \n 26 StandardHours 1470 non-null int64 \n 27 StockOptionLevel 1470 non-null int64 \n 28 TotalWorkingYears 1470 non-null int64 \n 29 TrainingTimesLastYear 1470 non-null int64 \n 30 WorkLifeBalance 1470 non-null int64 \n 31 YearsAtCompany 1470 non-null int64 \n 32 YearsInCurrentRole 1470 non-null int64 \n 33 YearsSinceLastPromotion 1470 non-null int64 \n 34 YearsWithCurrManager 1470 non-null int64 \ndtypes: int64(26), object(9)\nmemory usage: 402.1+ KB\n", "summary": "{\"Age\": {\"count\": 1470.0, \"mean\": 36.923809523809524, \"std\": 9.135373489136732, \"min\": 18.0, \"25%\": 30.0, \"50%\": 36.0, \"75%\": 43.0, \"max\": 60.0}, \"DailyRate\": {\"count\": 1470.0, \"mean\": 802.4857142857143, \"std\": 403.50909994352816, \"min\": 102.0, \"25%\": 465.0, \"50%\": 802.0, \"75%\": 1157.0, \"max\": 1499.0}, \"DistanceFromHome\": {\"count\": 1470.0, \"mean\": 9.19251700680272, \"std\": 8.106864435666074, \"min\": 1.0, \"25%\": 2.0, \"50%\": 7.0, \"75%\": 14.0, \"max\": 29.0}, \"Education\": {\"count\": 1470.0, \"mean\": 2.912925170068027, \"std\": 1.0241649445978729, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 4.0, \"max\": 5.0}, \"EmployeeCount\": {\"count\": 1470.0, \"mean\": 1.0, \"std\": 0.0, \"min\": 1.0, \"25%\": 1.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 1.0}, \"EmployeeNumber\": {\"count\": 1470.0, \"mean\": 1024.865306122449, \"std\": 602.0243348474751, \"min\": 1.0, \"25%\": 491.25, \"50%\": 1020.5, \"75%\": 1555.75, \"max\": 2068.0}, \"EnvironmentSatisfaction\": {\"count\": 1470.0, \"mean\": 2.721768707482993, \"std\": 1.0930822146350005, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 4.0, \"max\": 4.0}, \"HourlyRate\": {\"count\": 1470.0, \"mean\": 65.89115646258503, \"std\": 20.329427593996165, \"min\": 30.0, \"25%\": 48.0, \"50%\": 66.0, \"75%\": 83.75, \"max\": 100.0}, \"JobInvolvement\": {\"count\": 1470.0, \"mean\": 2.7299319727891156, \"std\": 0.7115611429632304, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 3.0, \"max\": 4.0}, \"JobLevel\": {\"count\": 1470.0, \"mean\": 2.0639455782312925, \"std\": 1.106939898935122, \"min\": 1.0, \"25%\": 1.0, \"50%\": 2.0, \"75%\": 3.0, \"max\": 5.0}, \"JobSatisfaction\": {\"count\": 1470.0, \"mean\": 2.7285714285714286, \"std\": 1.1028461230547204, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 4.0, \"max\": 4.0}, \"MonthlyIncome\": {\"count\": 1470.0, \"mean\": 6502.931292517007, \"std\": 4707.956783097994, \"min\": 1009.0, \"25%\": 2911.0, \"50%\": 4919.0, \"75%\": 8379.0, \"max\": 19999.0}, \"MonthlyRate\": {\"count\": 1470.0, \"mean\": 14313.103401360544, \"std\": 7117.786044059976, \"min\": 2094.0, \"25%\": 8047.0, \"50%\": 14235.5, \"75%\": 20461.5, \"max\": 26999.0}, \"NumCompaniesWorked\": {\"count\": 1470.0, \"mean\": 2.6931972789115646, \"std\": 2.498009006070747, \"min\": 0.0, \"25%\": 1.0, \"50%\": 2.0, \"75%\": 4.0, \"max\": 9.0}, \"PercentSalaryHike\": {\"count\": 1470.0, \"mean\": 15.209523809523809, \"std\": 3.6599377165396407, \"min\": 11.0, \"25%\": 12.0, \"50%\": 14.0, \"75%\": 18.0, \"max\": 25.0}, \"PerformanceRating\": {\"count\": 1470.0, \"mean\": 3.1537414965986397, \"std\": 0.36082352460434397, \"min\": 3.0, \"25%\": 3.0, \"50%\": 3.0, \"75%\": 3.0, \"max\": 4.0}, \"RelationshipSatisfaction\": {\"count\": 1470.0, \"mean\": 2.7122448979591836, \"std\": 1.0812088864403524, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 4.0, \"max\": 4.0}, \"StandardHours\": {\"count\": 1470.0, \"mean\": 80.0, \"std\": 0.0, \"min\": 80.0, \"25%\": 80.0, \"50%\": 80.0, \"75%\": 80.0, \"max\": 80.0}, \"StockOptionLevel\": {\"count\": 1470.0, \"mean\": 0.7938775510204081, \"std\": 0.852076667930838, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 3.0}, \"TotalWorkingYears\": {\"count\": 1470.0, \"mean\": 11.279591836734694, \"std\": 7.780781675514997, \"min\": 0.0, \"25%\": 6.0, \"50%\": 10.0, \"75%\": 15.0, \"max\": 40.0}, \"TrainingTimesLastYear\": {\"count\": 1470.0, \"mean\": 2.7993197278911564, \"std\": 1.2892706207958455, \"min\": 0.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 3.0, \"max\": 6.0}, \"WorkLifeBalance\": {\"count\": 1470.0, \"mean\": 2.7612244897959184, \"std\": 0.7064758297141507, \"min\": 1.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 3.0, \"max\": 4.0}, \"YearsAtCompany\": {\"count\": 1470.0, \"mean\": 7.0081632653061225, \"std\": 6.126525152403569, \"min\": 0.0, \"25%\": 3.0, \"50%\": 5.0, \"75%\": 9.0, \"max\": 40.0}, \"YearsInCurrentRole\": {\"count\": 1470.0, \"mean\": 4.229251700680272, \"std\": 3.623137034670628, \"min\": 0.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 7.0, \"max\": 18.0}, \"YearsSinceLastPromotion\": {\"count\": 1470.0, \"mean\": 2.1877551020408164, \"std\": 3.222430279137967, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 3.0, \"max\": 15.0}, \"YearsWithCurrManager\": {\"count\": 1470.0, \"mean\": 4.12312925170068, \"std\": 3.5681361205404376, \"min\": 0.0, \"25%\": 2.0, \"50%\": 3.0, \"75%\": 7.0, \"max\": 17.0}}", "examples": "{\"Age\":{\"0\":41,\"1\":49,\"2\":37,\"3\":33},\"Attrition\":{\"0\":\"Yes\",\"1\":\"No\",\"2\":\"Yes\",\"3\":\"No\"},\"BusinessTravel\":{\"0\":\"Travel_Rarely\",\"1\":\"Travel_Frequently\",\"2\":\"Travel_Rarely\",\"3\":\"Travel_Frequently\"},\"DailyRate\":{\"0\":1102,\"1\":279,\"2\":1373,\"3\":1392},\"Department\":{\"0\":\"Sales\",\"1\":\"Research & Development\",\"2\":\"Research & Development\",\"3\":\"Research & Development\"},\"DistanceFromHome\":{\"0\":1,\"1\":8,\"2\":2,\"3\":3},\"Education\":{\"0\":2,\"1\":1,\"2\":2,\"3\":4},\"EducationField\":{\"0\":\"Life Sciences\",\"1\":\"Life Sciences\",\"2\":\"Other\",\"3\":\"Life Sciences\"},\"EmployeeCount\":{\"0\":1,\"1\":1,\"2\":1,\"3\":1},\"EmployeeNumber\":{\"0\":1,\"1\":2,\"2\":4,\"3\":5},\"EnvironmentSatisfaction\":{\"0\":2,\"1\":3,\"2\":4,\"3\":4},\"Gender\":{\"0\":\"Female\",\"1\":\"Male\",\"2\":\"Male\",\"3\":\"Female\"},\"HourlyRate\":{\"0\":94,\"1\":61,\"2\":92,\"3\":56},\"JobInvolvement\":{\"0\":3,\"1\":2,\"2\":2,\"3\":3},\"JobLevel\":{\"0\":2,\"1\":2,\"2\":1,\"3\":1},\"JobRole\":{\"0\":\"Sales Executive\",\"1\":\"Research Scientist\",\"2\":\"Laboratory Technician\",\"3\":\"Research Scientist\"},\"JobSatisfaction\":{\"0\":4,\"1\":2,\"2\":3,\"3\":3},\"MaritalStatus\":{\"0\":\"Single\",\"1\":\"Married\",\"2\":\"Single\",\"3\":\"Married\"},\"MonthlyIncome\":{\"0\":5993,\"1\":5130,\"2\":2090,\"3\":2909},\"MonthlyRate\":{\"0\":19479,\"1\":24907,\"2\":2396,\"3\":23159},\"NumCompaniesWorked\":{\"0\":8,\"1\":1,\"2\":6,\"3\":1},\"Over18\":{\"0\":\"Y\",\"1\":\"Y\",\"2\":\"Y\",\"3\":\"Y\"},\"OverTime\":{\"0\":\"Yes\",\"1\":\"No\",\"2\":\"Yes\",\"3\":\"Yes\"},\"PercentSalaryHike\":{\"0\":11,\"1\":23,\"2\":15,\"3\":11},\"PerformanceRating\":{\"0\":3,\"1\":4,\"2\":3,\"3\":3},\"RelationshipSatisfaction\":{\"0\":1,\"1\":4,\"2\":2,\"3\":3},\"StandardHours\":{\"0\":80,\"1\":80,\"2\":80,\"3\":80},\"StockOptionLevel\":{\"0\":0,\"1\":1,\"2\":0,\"3\":0},\"TotalWorkingYears\":{\"0\":8,\"1\":10,\"2\":7,\"3\":8},\"TrainingTimesLastYear\":{\"0\":0,\"1\":3,\"2\":3,\"3\":3},\"WorkLifeBalance\":{\"0\":1,\"1\":3,\"2\":3,\"3\":3},\"YearsAtCompany\":{\"0\":6,\"1\":10,\"2\":0,\"3\":8},\"YearsInCurrentRole\":{\"0\":4,\"1\":7,\"2\":0,\"3\":7},\"YearsSinceLastPromotion\":{\"0\":0,\"1\":1,\"2\":0,\"3\":3},\"YearsWithCurrManager\":{\"0\":5,\"1\":7,\"2\":0,\"3\":0}}"}}]
true
1
<start_data_description><data_path>ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv: <column_names> ['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department', 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager'] <column_types> {'Age': 'int64', 'Attrition': 'object', 'BusinessTravel': 'object', 'DailyRate': 'int64', 'Department': 'object', 'DistanceFromHome': 'int64', 'Education': 'int64', 'EducationField': 'object', 'EmployeeCount': 'int64', 'EmployeeNumber': 'int64', 'EnvironmentSatisfaction': 'int64', 'Gender': 'object', 'HourlyRate': 'int64', 'JobInvolvement': 'int64', 'JobLevel': 'int64', 'JobRole': 'object', 'JobSatisfaction': 'int64', 'MaritalStatus': 'object', 'MonthlyIncome': 'int64', 'MonthlyRate': 'int64', 'NumCompaniesWorked': 'int64', 'Over18': 'object', 'OverTime': 'object', 'PercentSalaryHike': 'int64', 'PerformanceRating': 'int64', 'RelationshipSatisfaction': 'int64', 'StandardHours': 'int64', 'StockOptionLevel': 'int64', 'TotalWorkingYears': 'int64', 'TrainingTimesLastYear': 'int64', 'WorkLifeBalance': 'int64', 'YearsAtCompany': 'int64', 'YearsInCurrentRole': 'int64', 'YearsSinceLastPromotion': 'int64', 'YearsWithCurrManager': 'int64'} <dataframe_Summary> {'Age': {'count': 1470.0, 'mean': 36.923809523809524, 'std': 9.135373489136732, 'min': 18.0, '25%': 30.0, '50%': 36.0, '75%': 43.0, 'max': 60.0}, 'DailyRate': {'count': 1470.0, 'mean': 802.4857142857143, 'std': 403.50909994352816, 'min': 102.0, '25%': 465.0, '50%': 802.0, '75%': 1157.0, 'max': 1499.0}, 'DistanceFromHome': {'count': 1470.0, 'mean': 9.19251700680272, 'std': 8.106864435666074, 'min': 1.0, '25%': 2.0, '50%': 7.0, '75%': 14.0, 'max': 29.0}, 'Education': {'count': 1470.0, 'mean': 2.912925170068027, 'std': 1.0241649445978729, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 4.0, 'max': 5.0}, 'EmployeeCount': {'count': 1470.0, 'mean': 1.0, 'std': 0.0, 'min': 1.0, '25%': 1.0, '50%': 1.0, '75%': 1.0, 'max': 1.0}, 'EmployeeNumber': {'count': 1470.0, 'mean': 1024.865306122449, 'std': 602.0243348474751, 'min': 1.0, '25%': 491.25, '50%': 1020.5, '75%': 1555.75, 'max': 2068.0}, 'EnvironmentSatisfaction': {'count': 1470.0, 'mean': 2.721768707482993, 'std': 1.0930822146350005, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 4.0, 'max': 4.0}, 'HourlyRate': {'count': 1470.0, 'mean': 65.89115646258503, 'std': 20.329427593996165, 'min': 30.0, '25%': 48.0, '50%': 66.0, '75%': 83.75, 'max': 100.0}, 'JobInvolvement': {'count': 1470.0, 'mean': 2.7299319727891156, 'std': 0.7115611429632304, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 3.0, 'max': 4.0}, 'JobLevel': {'count': 1470.0, 'mean': 2.0639455782312925, 'std': 1.106939898935122, 'min': 1.0, '25%': 1.0, '50%': 2.0, '75%': 3.0, 'max': 5.0}, 'JobSatisfaction': {'count': 1470.0, 'mean': 2.7285714285714286, 'std': 1.1028461230547204, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 4.0, 'max': 4.0}, 'MonthlyIncome': {'count': 1470.0, 'mean': 6502.931292517007, 'std': 4707.956783097994, 'min': 1009.0, '25%': 2911.0, '50%': 4919.0, '75%': 8379.0, 'max': 19999.0}, 'MonthlyRate': {'count': 1470.0, 'mean': 14313.103401360544, 'std': 7117.786044059976, 'min': 2094.0, '25%': 8047.0, '50%': 14235.5, '75%': 20461.5, 'max': 26999.0}, 'NumCompaniesWorked': {'count': 1470.0, 'mean': 2.6931972789115646, 'std': 2.498009006070747, 'min': 0.0, '25%': 1.0, '50%': 2.0, '75%': 4.0, 'max': 9.0}, 'PercentSalaryHike': {'count': 1470.0, 'mean': 15.209523809523809, 'std': 3.6599377165396407, 'min': 11.0, '25%': 12.0, '50%': 14.0, '75%': 18.0, 'max': 25.0}, 'PerformanceRating': {'count': 1470.0, 'mean': 3.1537414965986397, 'std': 0.36082352460434397, 'min': 3.0, '25%': 3.0, '50%': 3.0, '75%': 3.0, 'max': 4.0}, 'RelationshipSatisfaction': {'count': 1470.0, 'mean': 2.7122448979591836, 'std': 1.0812088864403524, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 4.0, 'max': 4.0}, 'StandardHours': {'count': 1470.0, 'mean': 80.0, 'std': 0.0, 'min': 80.0, '25%': 80.0, '50%': 80.0, '75%': 80.0, 'max': 80.0}, 'StockOptionLevel': {'count': 1470.0, 'mean': 0.7938775510204081, 'std': 0.852076667930838, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 1.0, 'max': 3.0}, 'TotalWorkingYears': {'count': 1470.0, 'mean': 11.279591836734694, 'std': 7.780781675514997, 'min': 0.0, '25%': 6.0, '50%': 10.0, '75%': 15.0, 'max': 40.0}, 'TrainingTimesLastYear': {'count': 1470.0, 'mean': 2.7993197278911564, 'std': 1.2892706207958455, 'min': 0.0, '25%': 2.0, '50%': 3.0, '75%': 3.0, 'max': 6.0}, 'WorkLifeBalance': {'count': 1470.0, 'mean': 2.7612244897959184, 'std': 0.7064758297141507, 'min': 1.0, '25%': 2.0, '50%': 3.0, '75%': 3.0, 'max': 4.0}, 'YearsAtCompany': {'count': 1470.0, 'mean': 7.0081632653061225, 'std': 6.126525152403569, 'min': 0.0, '25%': 3.0, '50%': 5.0, '75%': 9.0, 'max': 40.0}, 'YearsInCurrentRole': {'count': 1470.0, 'mean': 4.229251700680272, 'std': 3.623137034670628, 'min': 0.0, '25%': 2.0, '50%': 3.0, '75%': 7.0, 'max': 18.0}, 'YearsSinceLastPromotion': {'count': 1470.0, 'mean': 2.1877551020408164, 'std': 3.222430279137967, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 3.0, 'max': 15.0}, 'YearsWithCurrManager': {'count': 1470.0, 'mean': 4.12312925170068, 'std': 3.5681361205404376, 'min': 0.0, '25%': 2.0, '50%': 3.0, '75%': 7.0, 'max': 17.0}} <dataframe_info> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 1470 non-null int64 1 Attrition 1470 non-null object 2 BusinessTravel 1470 non-null object 3 DailyRate 1470 non-null int64 4 Department 1470 non-null object 5 DistanceFromHome 1470 non-null int64 6 Education 1470 non-null int64 7 EducationField 1470 non-null object 8 EmployeeCount 1470 non-null int64 9 EmployeeNumber 1470 non-null int64 10 EnvironmentSatisfaction 1470 non-null int64 11 Gender 1470 non-null object 12 HourlyRate 1470 non-null int64 13 JobInvolvement 1470 non-null int64 14 JobLevel 1470 non-null int64 15 JobRole 1470 non-null object 16 JobSatisfaction 1470 non-null int64 17 MaritalStatus 1470 non-null object 18 MonthlyIncome 1470 non-null int64 19 MonthlyRate 1470 non-null int64 20 NumCompaniesWorked 1470 non-null int64 21 Over18 1470 non-null object 22 OverTime 1470 non-null object 23 PercentSalaryHike 1470 non-null int64 24 PerformanceRating 1470 non-null int64 25 RelationshipSatisfaction 1470 non-null int64 26 StandardHours 1470 non-null int64 27 StockOptionLevel 1470 non-null int64 28 TotalWorkingYears 1470 non-null int64 29 TrainingTimesLastYear 1470 non-null int64 30 WorkLifeBalance 1470 non-null int64 31 YearsAtCompany 1470 non-null int64 32 YearsInCurrentRole 1470 non-null int64 33 YearsSinceLastPromotion 1470 non-null int64 34 YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.1+ KB <some_examples> {'Age': {'0': 41, '1': 49, '2': 37, '3': 33}, 'Attrition': {'0': 'Yes', '1': 'No', '2': 'Yes', '3': 'No'}, 'BusinessTravel': {'0': 'Travel_Rarely', '1': 'Travel_Frequently', '2': 'Travel_Rarely', '3': 'Travel_Frequently'}, 'DailyRate': {'0': 1102, '1': 279, '2': 1373, '3': 1392}, 'Department': {'0': 'Sales', '1': 'Research & Development', '2': 'Research & Development', '3': 'Research & Development'}, 'DistanceFromHome': {'0': 1, '1': 8, '2': 2, '3': 3}, 'Education': {'0': 2, '1': 1, '2': 2, '3': 4}, 'EducationField': {'0': 'Life Sciences', '1': 'Life Sciences', '2': 'Other', '3': 'Life Sciences'}, 'EmployeeCount': {'0': 1, '1': 1, '2': 1, '3': 1}, 'EmployeeNumber': {'0': 1, '1': 2, '2': 4, '3': 5}, 'EnvironmentSatisfaction': {'0': 2, '1': 3, '2': 4, '3': 4}, 'Gender': {'0': 'Female', '1': 'Male', '2': 'Male', '3': 'Female'}, 'HourlyRate': {'0': 94, '1': 61, '2': 92, '3': 56}, 'JobInvolvement': {'0': 3, '1': 2, '2': 2, '3': 3}, 'JobLevel': {'0': 2, '1': 2, '2': 1, '3': 1}, 'JobRole': {'0': 'Sales Executive', '1': 'Research Scientist', '2': 'Laboratory Technician', '3': 'Research Scientist'}, 'JobSatisfaction': {'0': 4, '1': 2, '2': 3, '3': 3}, 'MaritalStatus': {'0': 'Single', '1': 'Married', '2': 'Single', '3': 'Married'}, 'MonthlyIncome': {'0': 5993, '1': 5130, '2': 2090, '3': 2909}, 'MonthlyRate': {'0': 19479, '1': 24907, '2': 2396, '3': 23159}, 'NumCompaniesWorked': {'0': 8, '1': 1, '2': 6, '3': 1}, 'Over18': {'0': 'Y', '1': 'Y', '2': 'Y', '3': 'Y'}, 'OverTime': {'0': 'Yes', '1': 'No', '2': 'Yes', '3': 'Yes'}, 'PercentSalaryHike': {'0': 11, '1': 23, '2': 15, '3': 11}, 'PerformanceRating': {'0': 3, '1': 4, '2': 3, '3': 3}, 'RelationshipSatisfaction': {'0': 1, '1': 4, '2': 2, '3': 3}, 'StandardHours': {'0': 80, '1': 80, '2': 80, '3': 80}, 'StockOptionLevel': {'0': 0, '1': 1, '2': 0, '3': 0}, 'TotalWorkingYears': {'0': 8, '1': 10, '2': 7, '3': 8}, 'TrainingTimesLastYear': {'0': 0, '1': 3, '2': 3, '3': 3}, 'WorkLifeBalance': {'0': 1, '1': 3, '2': 3, '3': 3}, 'YearsAtCompany': {'0': 6, '1': 10, '2': 0, '3': 8}, 'YearsInCurrentRole': {'0': 4, '1': 7, '2': 0, '3': 7}, 'YearsSinceLastPromotion': {'0': 0, '1': 1, '2': 0, '3': 3}, 'YearsWithCurrManager': {'0': 5, '1': 7, '2': 0, '3': 0}} <end_description>
995
0
2,856
995
129987774
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session d = 5 # slit seperation max_y = 20 # wall distance max_x = 20 # peaks included point_step = 0.1 # amount of points between 0 and max wavelength = 5 x_positive = d / 2 x_negative = 0 - x_positive x_list = [] y_list = [] z_list = [] z_list_positive = [] z_list_negative = [] len_positive = [] for y in np.arange(0, max_y, point_step): for x in np.arange(-max_x, max_x, point_step): length_positive = np.sqrt((y**2) + ((x - x_positive) ** 2)) length_negative = np.sqrt((y**2) + ((x - x_negative) ** 2)) z_positive = np.sin(((2 * np.pi) / wavelength) * length_positive) z_negative = np.sin(((2 * np.pi) / wavelength) * length_negative) z = z_positive + z_negative x_list.append(x) y_list.append(y) z_list.append(z) z_list_positive.append(z_positive) z_list_negative.append(z_negative) X, Y, Z = np.array(x_list), np.array(y_list), np.array(z_list) Z_neg, Z_pos = np.array(z_list_negative), np.array(z_list_positive) fig = plt.figure(figsize=(12, 10)) ax = plt.axes(projection="3d") surf = ax.plot_trisurf(X, Y, Z, cmap=plt.cm.cividis) plt.show() fig = plt.figure(figsize=(12, 10)) ax = plt.axes(projection="3d") surf = ax.plot_trisurf(X, Y, Z_pos, cmap=plt.cm.cividis) plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/987/129987774.ipynb
null
null
[{"Id": 129987774, "ScriptId": 38656614, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14500225, "CreationDate": "05/18/2023 00:41:45", "VersionNumber": 2.0, "Title": "Phys-Project", "EvaluationDate": "05/18/2023", "IsChange": true, "TotalLines": 64.0, "LinesInsertedFromPrevious": 2.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 62.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session d = 5 # slit seperation max_y = 20 # wall distance max_x = 20 # peaks included point_step = 0.1 # amount of points between 0 and max wavelength = 5 x_positive = d / 2 x_negative = 0 - x_positive x_list = [] y_list = [] z_list = [] z_list_positive = [] z_list_negative = [] len_positive = [] for y in np.arange(0, max_y, point_step): for x in np.arange(-max_x, max_x, point_step): length_positive = np.sqrt((y**2) + ((x - x_positive) ** 2)) length_negative = np.sqrt((y**2) + ((x - x_negative) ** 2)) z_positive = np.sin(((2 * np.pi) / wavelength) * length_positive) z_negative = np.sin(((2 * np.pi) / wavelength) * length_negative) z = z_positive + z_negative x_list.append(x) y_list.append(y) z_list.append(z) z_list_positive.append(z_positive) z_list_negative.append(z_negative) X, Y, Z = np.array(x_list), np.array(y_list), np.array(z_list) Z_neg, Z_pos = np.array(z_list_negative), np.array(z_list_positive) fig = plt.figure(figsize=(12, 10)) ax = plt.axes(projection="3d") surf = ax.plot_trisurf(X, Y, Z, cmap=plt.cm.cividis) plt.show() fig = plt.figure(figsize=(12, 10)) ax = plt.axes(projection="3d") surf = ax.plot_trisurf(X, Y, Z_pos, cmap=plt.cm.cividis) plt.show()
false
0
701
0
701
701
129987958
import numpy as np import pandas as pd trainAbs = pd.read_csv("/kaggle/input/data-set/test-abstract.csv", encoding="latin-1") trainTargets = pd.read_csv( "/kaggle/input/data-set/test-targets.csv", encoding="latin-1" ) test_df = pd.merge(trainAbs, trainTargets, on="ReviewID", how="inner") test_df.to_csv("/kaggle/working/Final_test.csv", index=False) train_df = pd.read_csv( "/kaggle/input/data-set/Final_train.csv", encoding="latin-1", usecols=["Abstract", "Target"], ) train_df train_df = train_df.rename(columns={"Abstract": "source_text", "Target": "target_text"}) train_df train_df["source_text"] = "summarize: " + train_df["source_text"] train_df test_df = pd.read_csv( "/kaggle/working/Final_test.csv", encoding="latin-1", usecols=["Abstract", "Target"] ) test_df test_df = test_df.rename(columns={"Abstract": "source_text", "Target": "target_text"}) test_df test_df["source_text"] = "summarize: " + test_df["source_text"] test_df from simplet5 import SimpleT5 model = SimpleT5() model.from_pretrained(model_type="t5", model_name="t5-base") train_df = train_df.applymap(str) test_df = test_df.applymap(str) model.train( train_df=train_df, eval_df=test_df, source_max_token_len=512, target_max_token_len=128, outputdir="/kaggle/working/Outputs", batch_size=10, max_epochs=6, use_gpu=True, dataloader_num_workers=4, ) import matplotlib.pyplot as plt # Retrieve the accuracy values from the dataframes train_accuracy = model.training_stats["train_acc"] eval_accuracy = model.training_stats["eval_acc"] # Create the x-axis values (epochs) epochs = range(1, len(train_accuracy) + 1) # Plot the accuracy values plt.plot(epochs, train_accuracy, label="Train Accuracy") plt.plot(epochs, eval_accuracy, label="Eval Accuracy") # Add labels and title plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.title("Accuracy During Training") # Add legend plt.legend() # Show the plot plt.show() import os os.chdir(r"/kaggle/working") from IPython.display import FileLinks FileLinks(r"Outputs") model.load_model( "t5", "Outputs/simplet5-epoch-5-train-loss-0.547-val-loss-3.5378", use_gpu=False ) text = """mutation that prevents certain amino acids from entering neurons leads to the cells’ death early in brain development, according to a new study in mice. The findings provide clues to what happens in the brains of people with the mutation, which is linked to autism. The mutation affects the SLC7A5 gene, which encodes a protein that transports some large amino acids across the blood-brain barrier. Most of these amino acids are essential, meaning the body cannot produce them and has to get them from food. Mice missing the SLC7A5 gene in cells of the blood-brain barrier develop microcephaly, or an unusually small brain, after birth and have motor and social difficulties, a 2016 study showed. In the new study, published last month in Cell, the same team of researchers discovered that neurons in the mouse brain also express SLC7A5. Knocking the gene out of some of those neurons starves the cells of amino acids and causes them to die. “Obviously neurons need some fuel,” says lead researcher Gaia Novarino, professor of neuroscience at the Institute of Science and Technology in Klosterneuburg, Austria. It’s interesting “to really see that our neurons are dependent on that level, specifically at certain stages, on those amino acids.” It was known that, in the developing brain, neural progenitor cells get energy through anaerobic glycolysis—that is, by breaking down glucose in the absence of oxygen. Later, support cells called astrocytes feed mature neurons the vast amounts of energy needed to fire and reset. Surprisingly, there was little information about what happens in between, when neurons begin to fire but do not yet have support from astrocytes. It turns out that during this transitional period, young neurons get their energy by metabolizing a set of essential amino acids called branched-chain amino acids (BCAAs), Novarino’s team discovered by analyzing the metabolomes of developing mouse neurons. “That was eye-opening to me, how dramatically the metabolism of the cell seems to change,” says John Jay Gargus, director of the Center for Autism Research and Translation at the University of California, Irvine, who was not involved in the study. BCAAs are among the amino acids that SLC7A5 transports. In mice, young neurons missing the gene are therefore starved of their primary energy source. These neurons switch to running on lipids, but they fire less frequently than usual and then disappear within 10 days after birth, the team found. As a result, SLC7A5 mice have smaller brains than controls do. Similar to these mice, two children with SLC7A5 mutations, whom Novarino and her team identified and monitored after their 2016 study, were born with mild microcephaly that became more pronounced within seven months. It is not clear why the brain seems to be partially protected from SLC7A5 mutations before birth, but perhaps amino acid levels during that period are higher overall or controlled by different transporters, Novarino speculates. “I think this paper is going to have a huge impact on the field,” says David Amaral, distinguished professor of psychiatry and behavioral sciences at the University of California, Davis MIND Institute, who was not involved in the new work. “It shows that changes in metabolic pathways can have wide-range effects downstream.” He says the research aligns with a larger pattern in the field: About 17 percent of autistic children show an imbalance in their amino acid levels, according to a 2018 study that Amaral led. “With this particular mutation, there may be difficulties in trying to find a targeted approach,” Amaral says. But by paying more attention to the metabolomes—that is, the molecules that are used and produced in metabolism—of people with autism, researchers might be able to identify subtypes that could be treatable. “I think the bigger picture is that as we unravel some of these metabolic disturbances … there well may be some potential for effective treatment.”""" i = 0 list_text = [] while i < len(text): list_text.append(model.predict(text[i : i + 512])) i += 512 pred_text = "-\n".join(str(item) for s in list_text for item in s) print(pred_text)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/987/129987958.ipynb
null
null
[{"Id": 129987958, "ScriptId": 38645170, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 10263393, "CreationDate": "05/18/2023 00:44:58", "VersionNumber": 1.0, "Title": "Simple T5 training", "EvaluationDate": NaN, "IsChange": true, "TotalLines": 125.0, "LinesInsertedFromPrevious": 125.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np import pandas as pd trainAbs = pd.read_csv("/kaggle/input/data-set/test-abstract.csv", encoding="latin-1") trainTargets = pd.read_csv( "/kaggle/input/data-set/test-targets.csv", encoding="latin-1" ) test_df = pd.merge(trainAbs, trainTargets, on="ReviewID", how="inner") test_df.to_csv("/kaggle/working/Final_test.csv", index=False) train_df = pd.read_csv( "/kaggle/input/data-set/Final_train.csv", encoding="latin-1", usecols=["Abstract", "Target"], ) train_df train_df = train_df.rename(columns={"Abstract": "source_text", "Target": "target_text"}) train_df train_df["source_text"] = "summarize: " + train_df["source_text"] train_df test_df = pd.read_csv( "/kaggle/working/Final_test.csv", encoding="latin-1", usecols=["Abstract", "Target"] ) test_df test_df = test_df.rename(columns={"Abstract": "source_text", "Target": "target_text"}) test_df test_df["source_text"] = "summarize: " + test_df["source_text"] test_df from simplet5 import SimpleT5 model = SimpleT5() model.from_pretrained(model_type="t5", model_name="t5-base") train_df = train_df.applymap(str) test_df = test_df.applymap(str) model.train( train_df=train_df, eval_df=test_df, source_max_token_len=512, target_max_token_len=128, outputdir="/kaggle/working/Outputs", batch_size=10, max_epochs=6, use_gpu=True, dataloader_num_workers=4, ) import matplotlib.pyplot as plt # Retrieve the accuracy values from the dataframes train_accuracy = model.training_stats["train_acc"] eval_accuracy = model.training_stats["eval_acc"] # Create the x-axis values (epochs) epochs = range(1, len(train_accuracy) + 1) # Plot the accuracy values plt.plot(epochs, train_accuracy, label="Train Accuracy") plt.plot(epochs, eval_accuracy, label="Eval Accuracy") # Add labels and title plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.title("Accuracy During Training") # Add legend plt.legend() # Show the plot plt.show() import os os.chdir(r"/kaggle/working") from IPython.display import FileLinks FileLinks(r"Outputs") model.load_model( "t5", "Outputs/simplet5-epoch-5-train-loss-0.547-val-loss-3.5378", use_gpu=False ) text = """mutation that prevents certain amino acids from entering neurons leads to the cells’ death early in brain development, according to a new study in mice. The findings provide clues to what happens in the brains of people with the mutation, which is linked to autism. The mutation affects the SLC7A5 gene, which encodes a protein that transports some large amino acids across the blood-brain barrier. Most of these amino acids are essential, meaning the body cannot produce them and has to get them from food. Mice missing the SLC7A5 gene in cells of the blood-brain barrier develop microcephaly, or an unusually small brain, after birth and have motor and social difficulties, a 2016 study showed. In the new study, published last month in Cell, the same team of researchers discovered that neurons in the mouse brain also express SLC7A5. Knocking the gene out of some of those neurons starves the cells of amino acids and causes them to die. “Obviously neurons need some fuel,” says lead researcher Gaia Novarino, professor of neuroscience at the Institute of Science and Technology in Klosterneuburg, Austria. It’s interesting “to really see that our neurons are dependent on that level, specifically at certain stages, on those amino acids.” It was known that, in the developing brain, neural progenitor cells get energy through anaerobic glycolysis—that is, by breaking down glucose in the absence of oxygen. Later, support cells called astrocytes feed mature neurons the vast amounts of energy needed to fire and reset. Surprisingly, there was little information about what happens in between, when neurons begin to fire but do not yet have support from astrocytes. It turns out that during this transitional period, young neurons get their energy by metabolizing a set of essential amino acids called branched-chain amino acids (BCAAs), Novarino’s team discovered by analyzing the metabolomes of developing mouse neurons. “That was eye-opening to me, how dramatically the metabolism of the cell seems to change,” says John Jay Gargus, director of the Center for Autism Research and Translation at the University of California, Irvine, who was not involved in the study. BCAAs are among the amino acids that SLC7A5 transports. In mice, young neurons missing the gene are therefore starved of their primary energy source. These neurons switch to running on lipids, but they fire less frequently than usual and then disappear within 10 days after birth, the team found. As a result, SLC7A5 mice have smaller brains than controls do. Similar to these mice, two children with SLC7A5 mutations, whom Novarino and her team identified and monitored after their 2016 study, were born with mild microcephaly that became more pronounced within seven months. It is not clear why the brain seems to be partially protected from SLC7A5 mutations before birth, but perhaps amino acid levels during that period are higher overall or controlled by different transporters, Novarino speculates. “I think this paper is going to have a huge impact on the field,” says David Amaral, distinguished professor of psychiatry and behavioral sciences at the University of California, Davis MIND Institute, who was not involved in the new work. “It shows that changes in metabolic pathways can have wide-range effects downstream.” He says the research aligns with a larger pattern in the field: About 17 percent of autistic children show an imbalance in their amino acid levels, according to a 2018 study that Amaral led. “With this particular mutation, there may be difficulties in trying to find a targeted approach,” Amaral says. But by paying more attention to the metabolomes—that is, the molecules that are used and produced in metabolism—of people with autism, researchers might be able to identify subtypes that could be treatable. “I think the bigger picture is that as we unravel some of these metabolic disturbances … there well may be some potential for effective treatment.”""" i = 0 list_text = [] while i < len(text): list_text.append(model.predict(text[i : i + 512])) i += 512 pred_text = "-\n".join(str(item) for s in list_text for item in s) print(pred_text)
false
0
1,790
0
1,790
1,790
129987555
<jupyter_start><jupyter_text>EVs - One Electric Vehicle Dataset - Smaller **CONTEXT**: This is a dataset of electric vehicles. One of the more popular data science datasets is the mtcars dataset. It is known for its simplicity when running analysis and visualizations. When looking for simple datasets on EVs, there don't seem to be any. Also, given the growth in this market, this is something many would be curious about. Hence, the reason for creating this dataset. For more information, please visit the data source below. **TASKS**: Some basic tasks would include 1. Which car has the fastest 0-100 acceleration? 2. Which has the highest efficiency? 3. Does a difference in power train effect the range, top speed, efficiency? 4. Which manufacturer has the most number of vehicles? 5. How does price relate to rapid charging? **CONTENT**: I've included two datasets below: 1. 'ElectricCarData_Clean.csv' -- original pulled data. 2. 'ElectricCarData_Norm.csv' -- units removed from each of the rows -- rapid charge has a binary yes/no value The point of both is to have users practice some data cleaning. **CREDITS**: There are two credits and sourcing that needs to be mentioned: 1. *Datasource*: ev-database.org/ 2.*Banner image*: freepik - author - 'macrovector' **UPDATES**: There will be future updates when we can attain additional data. Kaggle dataset identifier: evs-one-electric-vehicle-dataset <jupyter_code>import pandas as pd df = pd.read_csv('evs-one-electric-vehicle-dataset/ElectricCarData_Clean.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 103 entries, 0 to 102 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Brand 103 non-null object 1 Model 103 non-null object 2 AccelSec 103 non-null float64 3 TopSpeed_KmH 103 non-null int64 4 Range_Km 103 non-null int64 5 Efficiency_WhKm 103 non-null int64 6 FastCharge_KmH 103 non-null object 7 RapidCharge 103 non-null object 8 PowerTrain 103 non-null object 9 PlugType 103 non-null object 10 BodyStyle 103 non-null object 11 Segment 103 non-null object 12 Seats 103 non-null int64 13 PriceEuro 103 non-null int64 dtypes: float64(1), int64(5), object(8) memory usage: 11.4+ KB <jupyter_text>Examples: { "Brand": "Tesla ", "Model": "Model 3 Long Range Dual Motor", "AccelSec": 4.6, "TopSpeed_KmH": 233, "Range_Km": 450, "Efficiency_WhKm": 161, "FastCharge_KmH": 940, "RapidCharge": "Yes", "PowerTrain": "AWD", "PlugType": "Type 2 CCS", "BodyStyle": "Sedan", "Segment": "D", "Seats": 5, "PriceEuro": 55480 } { "Brand": "Volkswagen ", "Model": "ID.3 Pure", "AccelSec": 10.0, "TopSpeed_KmH": 160, "Range_Km": 270, "Efficiency_WhKm": 167, "FastCharge_KmH": 250, "RapidCharge": "Yes", "PowerTrain": "RWD", "PlugType": "Type 2 CCS", "BodyStyle": "Hatchback", "Segment": "C", "Seats": 5, "PriceEuro": 30000 } { "Brand": "Polestar ", "Model": "2", "AccelSec": 4.7, "TopSpeed_KmH": 210, "Range_Km": 400, "Efficiency_WhKm": 181, "FastCharge_KmH": 620, "RapidCharge": "Yes", "PowerTrain": "AWD", "PlugType": "Type 2 CCS", "BodyStyle": "Liftback", "Segment": "D", "Seats": 5, "PriceEuro": 56440 } { "Brand": "BMW ", "Model": "iX3 ", "AccelSec": 6.8, "TopSpeed_KmH": 180, "Range_Km": 360, "Efficiency_WhKm": 206, "FastCharge_KmH": 560, "RapidCharge": "Yes", "PowerTrain": "RWD", "PlugType": "Type 2 CCS", "BodyStyle": "SUV", "Segment": "D", "Seats": 5, "PriceEuro": 68040 } <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to electricity using fuel cells or a generator). EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. # In the 21st century, EVs have seen a resurgence due to technological developments, and an increased focus on renewable energy and the potential reduction of transportation's impact on climate change and other environmental issues. Project Drawdown describes electric vehicles as one of the 100 best contemporary solutions for addressing climate change. import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb import statsmodels.api as sm df = pd.read_csv("../input/evs-one-electric-vehicle-dataset/ElectricCarData_Clean.csv") df.head() # Finding out the number of null values df.isnull().sum() # There exists no null value # Descriptive Statistics of the dataset df.describe() # **Information of the type of data in search column** # df.info() a = np.arange(1, 104) # Pairplot of all the columns based on Rapid Charger presence sb.pairplot(df, hue="RapidCharge") # **Heatmap to show the correlation of the data** ax = plt.figure(figsize=(15, 8)) sb.heatmap(df.corr(), linewidths=1, linecolor="white", annot=True) # **Frequency of the Brands in the dataset** ax = plt.figure(figsize=(20, 5)) plt.grid(axis="y") plt.title("Brands in the datset") plt.xlabel("Brand") plt.ylabel("Frequency") plt.xticks(rotation=45) # **Top speeds achieved by the cars of a brand** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="TopSpeed_KmH", data=df, palette="Paired") plt.grid(axis="y") plt.title("Top Speed achieved by a brand") plt.xlabel("Brand") plt.ylabel("Top Speed") plt.xticks(rotation=45) # **Range a car can achieve** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="Range_Km", data=df, palette="tab10") plt.grid(axis="y") plt.title("Maximum Range achieved by a brand") plt.xlabel("Brand") plt.ylabel("Range") plt.xticks(rotation=45) # **Number of seats in each car** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="Seats", data=df, palette="husl") plt.grid(axis="y") plt.title("Seats in a car") plt.xlabel("Brand") plt.ylabel("Seats") plt.xticks(rotation=45) # **Putting independent variables as x and dependent variable as y** x = df[["AccelSec", "Range_Km", "TopSpeed_KmH", "Efficiency_WhKm"]] y = df["PriceEuro"] # **Finding out the linear regression using OLS method** x = sm.add_constant(x) results = sm.OLS(y, x) # **Fitting the model and summarizing** model = results.fit() model.summary() # **model with highest range** range_df = df.sort_values(by=["Range_Km"], ascending=False) range_df[["Brand", "Model", "Range_Km"]].head(n=1) range_df = df.sort_values(by=["Range_Km"], ascending=False) range_df[["Brand", "Model", "Range_Km"]].head(n=5) # model with top speed speed_df = df.sort_values(by=["TopSpeed_KmH"], ascending=False) speed_df[["Brand", "Model", "TopSpeed_KmH"]].head(n=1) # number of vehicle produced by each brand companies = df.groupby("Brand").count() print(companies["Model"].sort_values(ascending=False)) for column in [i for i in df.columns if df.dtypes[i] == "object"]: print(column, len(df[column].unique())) Y = df["Range_Km"] Y x = df[["AccelSec", "Range_Km", "TopSpeed_KmH", "Efficiency_WhKm"]] y = df["PriceEuro"] # Importing train test split from Scikit Learn from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=36 ) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) pred = lr.predict(X_test) # **Finding out the R-squared value** from sklearn.metrics import r2_score r2 = r2_score(y_test, pred) print(r2 * 100)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/987/129987555.ipynb
evs-one-electric-vehicle-dataset
geoffnel
[{"Id": 129987555, "ScriptId": 38667668, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14132496, "CreationDate": "05/18/2023 00:37:35", "VersionNumber": 1.0, "Title": "notebook1292a42426", "EvaluationDate": "05/18/2023", "IsChange": true, "TotalLines": 153.0, "LinesInsertedFromPrevious": 153.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 2}]
[{"Id": 186434785, "KernelVersionId": 129987555, "SourceDatasetVersionId": 1422244}]
[{"Id": 1422244, "DatasetId": 832692, "DatasourceVersionId": 1455545, "CreatorUserId": 3388491, "LicenseName": "CC0: Public Domain", "CreationDate": "08/16/2020 01:19:58", "VersionNumber": 1.0, "Title": "EVs - One Electric Vehicle Dataset - Smaller", "Slug": "evs-one-electric-vehicle-dataset", "Subtitle": "Compare and analyze today's electric cars!", "Description": "**CONTEXT**:\nThis is a dataset of electric vehicles.\n\nOne of the more popular data science datasets is the mtcars dataset. It is known for its simplicity when running analysis and visualizations. \n\nWhen looking for simple datasets on EVs, there don't seem to be any. Also, given the growth in this market, this is something many would be curious about. Hence, the reason for creating this dataset.\n\n For more information, please visit the data source below.\n\n\n**TASKS**:\nSome basic tasks would include\n1. Which car has the fastest 0-100 acceleration?\n2. Which has the highest efficiency?\n3. Does a difference in power train effect the range, top speed, efficiency?\n4. Which manufacturer has the most number of vehicles?\n5. How does price relate to rapid charging?\n\n\n**CONTENT**:\nI've included two datasets below:\n\n1. 'ElectricCarData_Clean.csv' \n-- original pulled data.\n\n2. 'ElectricCarData_Norm.csv' \n-- units removed from each of the rows\n-- rapid charge has a binary yes/no value\n\nThe point of both is to have users practice some data cleaning.\n\n**CREDITS**:\nThere are two credits and sourcing that needs to be mentioned: \n1. *Datasource*: ev-database.org/\n2.*Banner image*: freepik - author - 'macrovector'\n\n\n**UPDATES**:\nThere will be future updates when we can attain additional data.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 832692, "CreatorUserId": 3388491, "OwnerUserId": 3388491.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1422244.0, "CurrentDatasourceVersionId": 1455545.0, "ForumId": 847855, "Type": 2, "CreationDate": "08/16/2020 01:19:58", "LastActivityDate": "08/16/2020", "TotalViews": 85197, "TotalDownloads": 12606, "TotalVotes": 134, "TotalKernels": 30}]
[{"Id": 3388491, "UserName": "geoffnel", "DisplayName": "Geoff839", "RegisterDate": "06/24/2019", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to electricity using fuel cells or a generator). EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. # In the 21st century, EVs have seen a resurgence due to technological developments, and an increased focus on renewable energy and the potential reduction of transportation's impact on climate change and other environmental issues. Project Drawdown describes electric vehicles as one of the 100 best contemporary solutions for addressing climate change. import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb import statsmodels.api as sm df = pd.read_csv("../input/evs-one-electric-vehicle-dataset/ElectricCarData_Clean.csv") df.head() # Finding out the number of null values df.isnull().sum() # There exists no null value # Descriptive Statistics of the dataset df.describe() # **Information of the type of data in search column** # df.info() a = np.arange(1, 104) # Pairplot of all the columns based on Rapid Charger presence sb.pairplot(df, hue="RapidCharge") # **Heatmap to show the correlation of the data** ax = plt.figure(figsize=(15, 8)) sb.heatmap(df.corr(), linewidths=1, linecolor="white", annot=True) # **Frequency of the Brands in the dataset** ax = plt.figure(figsize=(20, 5)) plt.grid(axis="y") plt.title("Brands in the datset") plt.xlabel("Brand") plt.ylabel("Frequency") plt.xticks(rotation=45) # **Top speeds achieved by the cars of a brand** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="TopSpeed_KmH", data=df, palette="Paired") plt.grid(axis="y") plt.title("Top Speed achieved by a brand") plt.xlabel("Brand") plt.ylabel("Top Speed") plt.xticks(rotation=45) # **Range a car can achieve** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="Range_Km", data=df, palette="tab10") plt.grid(axis="y") plt.title("Maximum Range achieved by a brand") plt.xlabel("Brand") plt.ylabel("Range") plt.xticks(rotation=45) # **Number of seats in each car** ax = plt.figure(figsize=(20, 5)) sb.barplot(x="Brand", y="Seats", data=df, palette="husl") plt.grid(axis="y") plt.title("Seats in a car") plt.xlabel("Brand") plt.ylabel("Seats") plt.xticks(rotation=45) # **Putting independent variables as x and dependent variable as y** x = df[["AccelSec", "Range_Km", "TopSpeed_KmH", "Efficiency_WhKm"]] y = df["PriceEuro"] # **Finding out the linear regression using OLS method** x = sm.add_constant(x) results = sm.OLS(y, x) # **Fitting the model and summarizing** model = results.fit() model.summary() # **model with highest range** range_df = df.sort_values(by=["Range_Km"], ascending=False) range_df[["Brand", "Model", "Range_Km"]].head(n=1) range_df = df.sort_values(by=["Range_Km"], ascending=False) range_df[["Brand", "Model", "Range_Km"]].head(n=5) # model with top speed speed_df = df.sort_values(by=["TopSpeed_KmH"], ascending=False) speed_df[["Brand", "Model", "TopSpeed_KmH"]].head(n=1) # number of vehicle produced by each brand companies = df.groupby("Brand").count() print(companies["Model"].sort_values(ascending=False)) for column in [i for i in df.columns if df.dtypes[i] == "object"]: print(column, len(df[column].unique())) Y = df["Range_Km"] Y x = df[["AccelSec", "Range_Km", "TopSpeed_KmH", "Efficiency_WhKm"]] y = df["PriceEuro"] # Importing train test split from Scikit Learn from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=36 ) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) pred = lr.predict(X_test) # **Finding out the R-squared value** from sklearn.metrics import r2_score r2 = r2_score(y_test, pred) print(r2 * 100)
[{"evs-one-electric-vehicle-dataset/ElectricCarData_Clean.csv": {"column_names": "[\"Brand\", \"Model\", \"AccelSec\", \"TopSpeed_KmH\", \"Range_Km\", \"Efficiency_WhKm\", \"FastCharge_KmH\", \"RapidCharge\", \"PowerTrain\", \"PlugType\", \"BodyStyle\", \"Segment\", \"Seats\", \"PriceEuro\"]", "column_data_types": "{\"Brand\": \"object\", \"Model\": \"object\", \"AccelSec\": \"float64\", \"TopSpeed_KmH\": \"int64\", \"Range_Km\": \"int64\", \"Efficiency_WhKm\": \"int64\", \"FastCharge_KmH\": \"object\", \"RapidCharge\": \"object\", \"PowerTrain\": \"object\", \"PlugType\": \"object\", \"BodyStyle\": \"object\", \"Segment\": \"object\", \"Seats\": \"int64\", \"PriceEuro\": \"int64\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 103 entries, 0 to 102\nData columns (total 14 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Brand 103 non-null object \n 1 Model 103 non-null object \n 2 AccelSec 103 non-null float64\n 3 TopSpeed_KmH 103 non-null int64 \n 4 Range_Km 103 non-null int64 \n 5 Efficiency_WhKm 103 non-null int64 \n 6 FastCharge_KmH 103 non-null object \n 7 RapidCharge 103 non-null object \n 8 PowerTrain 103 non-null object \n 9 PlugType 103 non-null object \n 10 BodyStyle 103 non-null object \n 11 Segment 103 non-null object \n 12 Seats 103 non-null int64 \n 13 PriceEuro 103 non-null int64 \ndtypes: float64(1), int64(5), object(8)\nmemory usage: 11.4+ KB\n", "summary": "{\"AccelSec\": {\"count\": 103.0, \"mean\": 7.39611650485437, \"std\": 3.0174304849311087, \"min\": 2.1, \"25%\": 5.1, \"50%\": 7.3, \"75%\": 9.0, \"max\": 22.4}, \"TopSpeed_KmH\": {\"count\": 103.0, \"mean\": 179.19417475728156, \"std\": 43.573030481499785, \"min\": 123.0, \"25%\": 150.0, \"50%\": 160.0, \"75%\": 200.0, \"max\": 410.0}, \"Range_Km\": {\"count\": 103.0, \"mean\": 338.7864077669903, \"std\": 126.0144444323618, \"min\": 95.0, \"25%\": 250.0, \"50%\": 340.0, \"75%\": 400.0, \"max\": 970.0}, \"Efficiency_WhKm\": {\"count\": 103.0, \"mean\": 189.16504854368932, \"std\": 29.566839230892835, \"min\": 104.0, \"25%\": 168.0, \"50%\": 180.0, \"75%\": 203.0, \"max\": 273.0}, \"Seats\": {\"count\": 103.0, \"mean\": 4.883495145631068, \"std\": 0.7958343860843434, \"min\": 2.0, \"25%\": 5.0, \"50%\": 5.0, \"75%\": 5.0, \"max\": 7.0}, \"PriceEuro\": {\"count\": 103.0, \"mean\": 55811.563106796115, \"std\": 34134.665280290195, \"min\": 20129.0, \"25%\": 34429.5, \"50%\": 45000.0, \"75%\": 65000.0, \"max\": 215000.0}}", "examples": "{\"Brand\":{\"0\":\"Tesla \",\"1\":\"Volkswagen \",\"2\":\"Polestar \",\"3\":\"BMW \"},\"Model\":{\"0\":\"Model 3 Long Range Dual Motor\",\"1\":\"ID.3 Pure\",\"2\":\"2\",\"3\":\"iX3 \"},\"AccelSec\":{\"0\":4.6,\"1\":10.0,\"2\":4.7,\"3\":6.8},\"TopSpeed_KmH\":{\"0\":233,\"1\":160,\"2\":210,\"3\":180},\"Range_Km\":{\"0\":450,\"1\":270,\"2\":400,\"3\":360},\"Efficiency_WhKm\":{\"0\":161,\"1\":167,\"2\":181,\"3\":206},\"FastCharge_KmH\":{\"0\":\"940\",\"1\":\"250\",\"2\":\"620\",\"3\":\"560\"},\"RapidCharge\":{\"0\":\"Yes\",\"1\":\"Yes\",\"2\":\"Yes\",\"3\":\"Yes\"},\"PowerTrain\":{\"0\":\"AWD\",\"1\":\"RWD\",\"2\":\"AWD\",\"3\":\"RWD\"},\"PlugType\":{\"0\":\"Type 2 CCS\",\"1\":\"Type 2 CCS\",\"2\":\"Type 2 CCS\",\"3\":\"Type 2 CCS\"},\"BodyStyle\":{\"0\":\"Sedan\",\"1\":\"Hatchback\",\"2\":\"Liftback\",\"3\":\"SUV\"},\"Segment\":{\"0\":\"D\",\"1\":\"C\",\"2\":\"D\",\"3\":\"D\"},\"Seats\":{\"0\":5,\"1\":5,\"2\":5,\"3\":5},\"PriceEuro\":{\"0\":55480,\"1\":30000,\"2\":56440,\"3\":68040}}"}}]
true
1
<start_data_description><data_path>evs-one-electric-vehicle-dataset/ElectricCarData_Clean.csv: <column_names> ['Brand', 'Model', 'AccelSec', 'TopSpeed_KmH', 'Range_Km', 'Efficiency_WhKm', 'FastCharge_KmH', 'RapidCharge', 'PowerTrain', 'PlugType', 'BodyStyle', 'Segment', 'Seats', 'PriceEuro'] <column_types> {'Brand': 'object', 'Model': 'object', 'AccelSec': 'float64', 'TopSpeed_KmH': 'int64', 'Range_Km': 'int64', 'Efficiency_WhKm': 'int64', 'FastCharge_KmH': 'object', 'RapidCharge': 'object', 'PowerTrain': 'object', 'PlugType': 'object', 'BodyStyle': 'object', 'Segment': 'object', 'Seats': 'int64', 'PriceEuro': 'int64'} <dataframe_Summary> {'AccelSec': {'count': 103.0, 'mean': 7.39611650485437, 'std': 3.0174304849311087, 'min': 2.1, '25%': 5.1, '50%': 7.3, '75%': 9.0, 'max': 22.4}, 'TopSpeed_KmH': {'count': 103.0, 'mean': 179.19417475728156, 'std': 43.573030481499785, 'min': 123.0, '25%': 150.0, '50%': 160.0, '75%': 200.0, 'max': 410.0}, 'Range_Km': {'count': 103.0, 'mean': 338.7864077669903, 'std': 126.0144444323618, 'min': 95.0, '25%': 250.0, '50%': 340.0, '75%': 400.0, 'max': 970.0}, 'Efficiency_WhKm': {'count': 103.0, 'mean': 189.16504854368932, 'std': 29.566839230892835, 'min': 104.0, '25%': 168.0, '50%': 180.0, '75%': 203.0, 'max': 273.0}, 'Seats': {'count': 103.0, 'mean': 4.883495145631068, 'std': 0.7958343860843434, 'min': 2.0, '25%': 5.0, '50%': 5.0, '75%': 5.0, 'max': 7.0}, 'PriceEuro': {'count': 103.0, 'mean': 55811.563106796115, 'std': 34134.665280290195, 'min': 20129.0, '25%': 34429.5, '50%': 45000.0, '75%': 65000.0, 'max': 215000.0}} <dataframe_info> RangeIndex: 103 entries, 0 to 102 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Brand 103 non-null object 1 Model 103 non-null object 2 AccelSec 103 non-null float64 3 TopSpeed_KmH 103 non-null int64 4 Range_Km 103 non-null int64 5 Efficiency_WhKm 103 non-null int64 6 FastCharge_KmH 103 non-null object 7 RapidCharge 103 non-null object 8 PowerTrain 103 non-null object 9 PlugType 103 non-null object 10 BodyStyle 103 non-null object 11 Segment 103 non-null object 12 Seats 103 non-null int64 13 PriceEuro 103 non-null int64 dtypes: float64(1), int64(5), object(8) memory usage: 11.4+ KB <some_examples> {'Brand': {'0': 'Tesla ', '1': 'Volkswagen ', '2': 'Polestar ', '3': 'BMW '}, 'Model': {'0': 'Model 3 Long Range Dual Motor', '1': 'ID.3 Pure', '2': '2', '3': 'iX3 '}, 'AccelSec': {'0': 4.6, '1': 10.0, '2': 4.7, '3': 6.8}, 'TopSpeed_KmH': {'0': 233, '1': 160, '2': 210, '3': 180}, 'Range_Km': {'0': 450, '1': 270, '2': 400, '3': 360}, 'Efficiency_WhKm': {'0': 161, '1': 167, '2': 181, '3': 206}, 'FastCharge_KmH': {'0': '940', '1': '250', '2': '620', '3': '560'}, 'RapidCharge': {'0': 'Yes', '1': 'Yes', '2': 'Yes', '3': 'Yes'}, 'PowerTrain': {'0': 'AWD', '1': 'RWD', '2': 'AWD', '3': 'RWD'}, 'PlugType': {'0': 'Type 2 CCS', '1': 'Type 2 CCS', '2': 'Type 2 CCS', '3': 'Type 2 CCS'}, 'BodyStyle': {'0': 'Sedan', '1': 'Hatchback', '2': 'Liftback', '3': 'SUV'}, 'Segment': {'0': 'D', '1': 'C', '2': 'D', '3': 'D'}, 'Seats': {'0': 5, '1': 5, '2': 5, '3': 5}, 'PriceEuro': {'0': 55480, '1': 30000, '2': 56440, '3': 68040}} <end_description>
1,503
2
2,822
1,503
129449779
<jupyter_start><jupyter_text>SQL Murder Mystery Database There's been a Murder in SQL City! The SQL Murder Mystery is designed to be both a self-directed lesson to learn SQL concepts and commands and a fun game for experienced SQL users to solve an intriguing crime. A crime has taken place and the detective needs your help. The detective gave you the crime scene report, but you somehow lost it. You vaguely remember that the crime was a ​murder​ that occurred sometime on ​Jan.15, 2018​ and that it took place in ​SQL City​. Start by retrieving the corresponding crime scene report from the police department’s database. Kaggle dataset identifier: sql-murder-mystery-database <jupyter_script># ![](https://mystery.knightlab.com/174092-clue-illustration.png) # A crime has taken place and the detective needs your help. The detective gave you the crime scene report, but you somehow lost it. You vaguely remember that the crime was a ​murder​ that occurred sometime on ​Jan.15, 2018​ and that it took place in ​SQL City​. Start by retrieving the corresponding crime scene report from the police department’s database.uely remember that the crime was a ​murder​ that occurred sometime on ​Jan.15, 2018​ and that it took place in ​SQL City​. Start by retrieving the corresponding crime scene report from the police department’s database. # Below is the schema we'll be using: # ![](https://mystery.knightlab.com/schema.png) # import libraries import sqlite3 as sql # run queries on relational database import pandas as pd # data processing # connect to the SQL Murder Mystery Database conn = sql.connect("/kaggle/input/sql-murder-mystery-database/sql-murder-mystery.db") # set up the column width to take up as much space as it needs to. This prevents cutting off text when displaying the data pd.set_option("display.max_colwidth", 0) # Remember that what we know is: # The crime was a **murder** that occurred sometime on **Jan.15, 2018** and that it took place in **SQL City**. # pull the crime scene report query_1 = """ SELECT * FROM crime_scene_report WHERE date = '20180115' AND city = 'SQL City' AND type = 'murder' """ # read the query crime_scene_report = pd.read_sql_query(query_1, conn) # display the query aka the crime scene report crime_scene_report # We have some leads on the two witnesses. Let's find out who they are. # find witness 1, who we know lives at the last house on "Northwestern Dr" query_2 = """ SELECT * FROM person WHERE address_street_name = "Northwestern Dr" ORDER BY address_number DESC LIMIT 1 """ # read the query witness_1 = pd.read_sql_query(query_2, conn) # display the query aka witness 1's identity witness_1 # We have identified witness 1 as Monty Schapiro. Let's move on to witness 2. # find witness 2, who we know is named Annabel and lives somewhere on "Franklin Ave" query_3 = """ SELECT * FROM person WHERE address_street_name = "Franklin Ave" AND name LIKE "%Annabel%" """ # read the query witness_2 = pd.read_sql_query(query_3, conn) # display the query aka witness 2's identity witness_2 # We have identified witness 2 as Annabel Miller. Now that we know who they are, let's take a look at their statements. # read the witness statements query_4 = """ SELECT p.name, i.* FROM interview as i, person as p WHERE person_id IN (14887, 16371) AND i.person_id = p.id """ # read the query witness_statements = pd.read_sql_query(query_4, conn) # display the query aka the witness statements witness_statements # We have a few clues from the witnesses to finally get to a suspect list. Which Get Fit member has (1) a membership number that starts with “48Z”, (2) a car plate with “H42W” and (3) checked into the gym on Jan 9? # find the suspect(s) query_5 = """ SELECT p.name, dl.plate_number, gfm.id, gfc.check_in_date FROM person as p, drivers_license as dl, get_fit_now_member as gfm, get_fit_now_check_in as gfc ON gfm.person_id = p.id AND gfm.id = gfc.membership_id AND p.license_id = dl.id WHERE gfc.membership_id LIKE "%48Z%" AND dl.plate_number LIKE "%H42W%" AND gfc.check_in_date = '20180109' """ # read the query suspects = pd.read_sql_query(query_5, conn) # display the query aka the suspect list suspects # Looks like there's only one suspect matching our clues! Let's see what Jeremy Bowers has to say. # get the suspect statement query_6 = """ SELECT p.name, i.* FROM person as p, interview as i ON p.id = i.person_id WHERE p.name = "Jeremy Bowers" """ # read the query suspect_statement = pd.read_sql_query(query_6, conn) # display the query aka the suspect statement suspect_statement # Turns out Jeremy was a hired hitman...who is the mystery woman behind the murder? Let's start by identifying all women who have red hair, has a Tesla Model S, and is between 65" and 67" in height. # identify all women who have red hair, has a Tesla Model S, and is between 65" and 67" in height query_7 = """ SELECT * FROM drivers_license WHERE gender = "female" AND hair_color = "red" AND car_make = "Tesla" AND car_model = "Model S"AND height BETWEEN 65 AND 67 """ # read the query new_suspects = pd.read_sql_query(query_7, conn) # display the query aka the new suspects new_suspects # We have 3 suspects for our mystery woman. We know that our mystery woman attended the SQL Symphony Concert 3 times in Dec 2017, so let's see if she checked into the Facebook event. # of the identified women, find who checked into a Facebook event for SQL Symphony Concert query_8 = """ SELECT p.name, fb.* FROM facebook_event_checkin as fb, person as p, drivers_license as dl ON fb.person_id = p.id AND p.license_id = dl.id WHERE p.license_id IN (202298,291182,918773) """ # read the query mystery_woman = pd.read_sql_query(query_8, conn) # display the query aka the new suspects mystery_woman
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/449/129449779.ipynb
sql-murder-mystery-database
johnp47
[{"Id": 129449779, "ScriptId": 38489830, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14288627, "CreationDate": "05/13/2023 23:40:00", "VersionNumber": 2.0, "Title": "SQL Murder Mystery - Solution Walkthrough", "EvaluationDate": "05/13/2023", "IsChange": false, "TotalLines": 166.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 166.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185510459, "KernelVersionId": 129449779, "SourceDatasetVersionId": 3833395}]
[{"Id": 3833395, "DatasetId": 2282161, "DatasourceVersionId": 3888216, "CreatorUserId": 7822593, "LicenseName": "Data files \u00a9 Original Authors", "CreationDate": "06/20/2022 06:16:52", "VersionNumber": 1.0, "Title": "SQL Murder Mystery Database", "Slug": "sql-murder-mystery-database", "Subtitle": "There's been a Murder in SQL City!", "Description": "There's been a Murder in SQL City! The SQL Murder Mystery is designed to be both a self-directed lesson to learn SQL concepts and commands and a fun game for experienced SQL users to solve an intriguing crime.\n\nA crime has taken place and the detective needs your help. The detective gave you the crime scene report, but you somehow lost it. You vaguely remember that the crime was a \u200bmurder\u200b that occurred sometime on \u200bJan.15, 2018\u200b and that it took place in \u200bSQL City\u200b. Start by retrieving the corresponding crime scene report from the police department\u2019s database.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2282161, "CreatorUserId": 7822593, "OwnerUserId": 7822593.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3833395.0, "CurrentDatasourceVersionId": 3888216.0, "ForumId": 2308721, "Type": 2, "CreationDate": "06/20/2022 06:16:52", "LastActivityDate": "06/20/2022", "TotalViews": 9742, "TotalDownloads": 1296, "TotalVotes": 36, "TotalKernels": 10}]
[{"Id": 7822593, "UserName": "johnp47", "DisplayName": "John", "RegisterDate": "07/02/2021", "PerformanceTier": 1}]
# ![](https://mystery.knightlab.com/174092-clue-illustration.png) # A crime has taken place and the detective needs your help. The detective gave you the crime scene report, but you somehow lost it. You vaguely remember that the crime was a ​murder​ that occurred sometime on ​Jan.15, 2018​ and that it took place in ​SQL City​. Start by retrieving the corresponding crime scene report from the police department’s database.uely remember that the crime was a ​murder​ that occurred sometime on ​Jan.15, 2018​ and that it took place in ​SQL City​. Start by retrieving the corresponding crime scene report from the police department’s database. # Below is the schema we'll be using: # ![](https://mystery.knightlab.com/schema.png) # import libraries import sqlite3 as sql # run queries on relational database import pandas as pd # data processing # connect to the SQL Murder Mystery Database conn = sql.connect("/kaggle/input/sql-murder-mystery-database/sql-murder-mystery.db") # set up the column width to take up as much space as it needs to. This prevents cutting off text when displaying the data pd.set_option("display.max_colwidth", 0) # Remember that what we know is: # The crime was a **murder** that occurred sometime on **Jan.15, 2018** and that it took place in **SQL City**. # pull the crime scene report query_1 = """ SELECT * FROM crime_scene_report WHERE date = '20180115' AND city = 'SQL City' AND type = 'murder' """ # read the query crime_scene_report = pd.read_sql_query(query_1, conn) # display the query aka the crime scene report crime_scene_report # We have some leads on the two witnesses. Let's find out who they are. # find witness 1, who we know lives at the last house on "Northwestern Dr" query_2 = """ SELECT * FROM person WHERE address_street_name = "Northwestern Dr" ORDER BY address_number DESC LIMIT 1 """ # read the query witness_1 = pd.read_sql_query(query_2, conn) # display the query aka witness 1's identity witness_1 # We have identified witness 1 as Monty Schapiro. Let's move on to witness 2. # find witness 2, who we know is named Annabel and lives somewhere on "Franklin Ave" query_3 = """ SELECT * FROM person WHERE address_street_name = "Franklin Ave" AND name LIKE "%Annabel%" """ # read the query witness_2 = pd.read_sql_query(query_3, conn) # display the query aka witness 2's identity witness_2 # We have identified witness 2 as Annabel Miller. Now that we know who they are, let's take a look at their statements. # read the witness statements query_4 = """ SELECT p.name, i.* FROM interview as i, person as p WHERE person_id IN (14887, 16371) AND i.person_id = p.id """ # read the query witness_statements = pd.read_sql_query(query_4, conn) # display the query aka the witness statements witness_statements # We have a few clues from the witnesses to finally get to a suspect list. Which Get Fit member has (1) a membership number that starts with “48Z”, (2) a car plate with “H42W” and (3) checked into the gym on Jan 9? # find the suspect(s) query_5 = """ SELECT p.name, dl.plate_number, gfm.id, gfc.check_in_date FROM person as p, drivers_license as dl, get_fit_now_member as gfm, get_fit_now_check_in as gfc ON gfm.person_id = p.id AND gfm.id = gfc.membership_id AND p.license_id = dl.id WHERE gfc.membership_id LIKE "%48Z%" AND dl.plate_number LIKE "%H42W%" AND gfc.check_in_date = '20180109' """ # read the query suspects = pd.read_sql_query(query_5, conn) # display the query aka the suspect list suspects # Looks like there's only one suspect matching our clues! Let's see what Jeremy Bowers has to say. # get the suspect statement query_6 = """ SELECT p.name, i.* FROM person as p, interview as i ON p.id = i.person_id WHERE p.name = "Jeremy Bowers" """ # read the query suspect_statement = pd.read_sql_query(query_6, conn) # display the query aka the suspect statement suspect_statement # Turns out Jeremy was a hired hitman...who is the mystery woman behind the murder? Let's start by identifying all women who have red hair, has a Tesla Model S, and is between 65" and 67" in height. # identify all women who have red hair, has a Tesla Model S, and is between 65" and 67" in height query_7 = """ SELECT * FROM drivers_license WHERE gender = "female" AND hair_color = "red" AND car_make = "Tesla" AND car_model = "Model S"AND height BETWEEN 65 AND 67 """ # read the query new_suspects = pd.read_sql_query(query_7, conn) # display the query aka the new suspects new_suspects # We have 3 suspects for our mystery woman. We know that our mystery woman attended the SQL Symphony Concert 3 times in Dec 2017, so let's see if she checked into the Facebook event. # of the identified women, find who checked into a Facebook event for SQL Symphony Concert query_8 = """ SELECT p.name, fb.* FROM facebook_event_checkin as fb, person as p, drivers_license as dl ON fb.person_id = p.id AND p.license_id = dl.id WHERE p.license_id IN (202298,291182,918773) """ # read the query mystery_woman = pd.read_sql_query(query_8, conn) # display the query aka the new suspects mystery_woman
false
0
1,691
0
1,872
1,691
129813774
<jupyter_start><jupyter_text>Amazon,Google,Microsoft,Apple stock price(2013-18) A combination of 4 Datasets in CSV formats containing files of big Tech companies stock prices for a span of Five years (2013 - 2018). Do check out my notebook as well your upvote may help me a lot to reach Grandmaster: https://www.kaggle.com/code/darshanprabhu09/tech-titans-in-tandem-exploring-the-time-series APPLE STOCK (AAPL) : DATE : Date of the stock where data was recorded . OPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period. HIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. LOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. CLOSE : Closing value of stock VOLUME : the total number of shares traded in a specified time frame. AMAZON STOCK (AMZN.csv) DATE : Date of the stock where data was recorded . OPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period. HIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. LOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. CLOSE : Closing value of stock VOLUME : the total number of shares traded in a specified time frame. Google stock : (Googl.csv) : DATE : Date of the stock where data was recorded . OPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period. HIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. LOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. CLOSE : Closing value of stock VOLUME : the total number of shares traded in a specified time frame. MICROSOFT STOCK (MSFT_data.csv) : DATE : Date of the stock where data was recorded . OPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period. HIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. LOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price. CLOSE : Closing value of stock VOLUME : the total number of shares traded in a specified time frame. Do upvote the dataset so it can reach further kagglers Kaggle dataset identifier: stock-prices-for <jupyter_script>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ### so that u dont have warnings from warnings import filterwarnings filterwarnings("ignore") path = "/kaggle/input/stock-prices-for" # setting the path to locatioon of file for reading all dataset into just a single list. companies = [ "/kaggle/input/stock-prices-for/AAPL_data.csv ", # apple dataset "/kaggle/input/stock-prices-for/AMZN_data.csv", # amazon stock data "/kaggle/input/stock-prices-for/GOOG_data.csv", # google stock data "/kaggle/input/stock-prices-for/MSFT_data.csv", ] # Microsoft stock data # We imported all the companies into a single list known as comapnies # blank dataframe all_data = pd.DataFrame() for file in company_list: current_df = pd.read_csv(path + "/" + file) all_data = pd.concat( [all_data, current_df] ) # Concatinating or joining every dataset into a table format. all_data.shape all_data.head() all_data.dtypes # type of data in each columns all_data["date"] == pd.to_datetime( all_data["date"] ) # converting the data to proper date using to_datetime function. all_data.date[0] # verifying values/ all_data.columns # printing all the columns # # (1.) Visualizing the Closing price of all the stocks. tech_list = all_data["Name"].unique() # retrieving all unique values or name of stocks plt.figure(figsize=(19, 25)) for i, company in enumerate(tech_list, 1): plt.subplot(2, 2, i) df = all_data[all_data["Name"] == company] plt.plot(df["date"], df["close"]) plt.xlabel("Date") plt.ylabel("Closing prices") plt.title("Closing price of stocks as per as time") # # (2.) Analysis of the amount of volume been traded everyday.. plt.figure(figsize=(25, 15)) for i, company in enumerate(tech_list, 1): plt.subplot(2, 2, i) df = all_data[all_data["Name"] == company] plt.plot(df["date"], df["volume"]) plt.xlabel("Date") plt.ylabel("Volume") plt.title("Volume of stocks as per as time")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/813/129813774.ipynb
stock-prices-for
null
[{"Id": 129813774, "ScriptId": 38605320, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12830464, "CreationDate": "05/16/2023 16:41:47", "VersionNumber": 1.0, "Title": "Time series Analysis on Amazon stocks.", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 70.0, "LinesInsertedFromPrevious": 70.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186188935, "KernelVersionId": 129813774, "SourceDatasetVersionId": 5699596}]
[{"Id": 5699596, "DatasetId": 3277373, "DatasourceVersionId": 5775255, "CreatorUserId": 12830464, "LicenseName": "Other (specified in description)", "CreationDate": "05/16/2023 15:17:16", "VersionNumber": 1.0, "Title": "Amazon,Google,Microsoft,Apple stock price(2013-18)", "Slug": "stock-prices-for", "Subtitle": "Big Tech companies stock prices.", "Description": "A combination of 4 Datasets in CSV formats containing files of big Tech companies stock prices for a span of Five years (2013 - 2018).\n\nDo check out my notebook as well your upvote may help me a lot to reach Grandmaster: \n\nhttps://www.kaggle.com/code/darshanprabhu09/tech-titans-in-tandem-exploring-the-time-series\n\nAPPLE STOCK (AAPL) : \n\nDATE : Date of the stock where data was recorded . \n\nOPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period.\n\nHIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nLOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nCLOSE : Closing value of stock\n\nVOLUME : the total number of shares traded in a specified time frame. \n\nAMAZON STOCK (AMZN.csv) \n\n\nDATE : Date of the stock where data was recorded . \n\nOPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period.\n\nHIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nLOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nCLOSE : Closing value of stock\n\nVOLUME : the total number of shares traded in a specified time frame. \n\nGoogle stock : (Googl.csv) : \n\nDATE : Date of the stock where data was recorded . \n\nOPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period.\n\nHIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nLOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nCLOSE : Closing value of stock\n\nVOLUME : the total number of shares traded in a specified time frame. \n\nMICROSOFT STOCK (MSFT_data.csv) : \n\nDATE : Date of the stock where data was recorded . \n\nOPEN : the amount and value of materials that a company has available for sale or use at the beginning of an accounting period.\n\nHIGH : the highest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nLOW : the lowest price at which a stock traded during the course of the trading day and is typically higher than the closing or equal to the opening price.\n\nCLOSE : Closing value of stock\n\nVOLUME : the total number of shares traded in a specified time frame. \n\n\nDo upvote the dataset so it can reach further kagglers", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3277373, "CreatorUserId": 12830464, "OwnerUserId": 12830464.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 6044498.0, "CurrentDatasourceVersionId": 6122684.0, "ForumId": 3343062, "Type": 2, "CreationDate": "05/16/2023 15:17:16", "LastActivityDate": "05/16/2023", "TotalViews": 12565, "TotalDownloads": 2882, "TotalVotes": 77, "TotalKernels": 5}]
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ### so that u dont have warnings from warnings import filterwarnings filterwarnings("ignore") path = "/kaggle/input/stock-prices-for" # setting the path to locatioon of file for reading all dataset into just a single list. companies = [ "/kaggle/input/stock-prices-for/AAPL_data.csv ", # apple dataset "/kaggle/input/stock-prices-for/AMZN_data.csv", # amazon stock data "/kaggle/input/stock-prices-for/GOOG_data.csv", # google stock data "/kaggle/input/stock-prices-for/MSFT_data.csv", ] # Microsoft stock data # We imported all the companies into a single list known as comapnies # blank dataframe all_data = pd.DataFrame() for file in company_list: current_df = pd.read_csv(path + "/" + file) all_data = pd.concat( [all_data, current_df] ) # Concatinating or joining every dataset into a table format. all_data.shape all_data.head() all_data.dtypes # type of data in each columns all_data["date"] == pd.to_datetime( all_data["date"] ) # converting the data to proper date using to_datetime function. all_data.date[0] # verifying values/ all_data.columns # printing all the columns # # (1.) Visualizing the Closing price of all the stocks. tech_list = all_data["Name"].unique() # retrieving all unique values or name of stocks plt.figure(figsize=(19, 25)) for i, company in enumerate(tech_list, 1): plt.subplot(2, 2, i) df = all_data[all_data["Name"] == company] plt.plot(df["date"], df["close"]) plt.xlabel("Date") plt.ylabel("Closing prices") plt.title("Closing price of stocks as per as time") # # (2.) Analysis of the amount of volume been traded everyday.. plt.figure(figsize=(25, 15)) for i, company in enumerate(tech_list, 1): plt.subplot(2, 2, i) df = all_data[all_data["Name"] == company] plt.plot(df["date"], df["volume"]) plt.xlabel("Date") plt.ylabel("Volume") plt.title("Volume of stocks as per as time")
false
0
627
0
1,380
627
129813621
<jupyter_start><jupyter_text>CIFAKE: Real and AI-Generated Synthetic Images # CIFAKE: Real and AI-Generated Synthetic Images The quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness. CIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI? Further information on this dataset can be found here: [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126) ![Images from the CIFAKE dataset](https://i.imgur.com/RiOwf8i.png) ## Dataset details The dataset contains two classes - REAL and FAKE. For REAL, we collected the images from Krizhevsky & Hinton's [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) For the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4 There are 100,000 images for training (50k per class) and 20,000 for testing (10k per class) ## Papers with Code The dataset and all studies using it are linked using [Papers with Code](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images) [https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images) ## References If you use this dataset, you **must** cite the following sources [Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdfl) [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126) Real images are from Krizhevsky & Hinton (2009), fake images are from Bird & Lotfi (2023). The Bird & Lotfi study is a preprint currently available on [ArXiv](https://arxiv.org/abs/2303.14126) and this description will be updated when the paper is published. ## Notes The updates to the dataset on the 28th of March 2023 did not change anything; the file formats ".jpeg" were renamed ".jpg" and the root folder was uploaded to meet Kaggle's usability requirements. ## License This dataset is published under the [same MIT license as CIFAR-10](https://github.com/wichtounet/cifar-10/blob/master/LICENSE): *Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:* *The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.* *THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.* Kaggle dataset identifier: cifake-real-and-ai-generated-synthetic-images <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import os import random import shutil # Set the paths to your dataset folders dataset_dir = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/train" real_dir = os.path.join(dataset_dir, "REAL") fake_dir = os.path.join(dataset_dir, "FAKE") # Set the paths to the new directories that will contain the selected images train_dir = "/kaggle/working/train" real_train_dir = os.path.join(train_dir, "REAL") fake_train_dir = os.path.join(train_dir, "FAKE") # Create the new directories if they don't exist if not os.path.exists(real_train_dir): os.makedirs(real_train_dir) if not os.path.exists(fake_train_dir): os.makedirs(fake_train_dir) # Set the number of images to select from each folder num_images = 2000 # Randomly select the required number of images from the REAL folder and copy them to the new directory real_images = os.listdir(real_dir) selected_real_images = random.sample(real_images, num_images) for image_name in selected_real_images: source_path = os.path.join(real_dir, image_name) dest_path = os.path.join(real_train_dir, image_name) shutil.copyfile(source_path, dest_path) # Randomly select the required number of images from the FAKE folder and copy them to the new directory fake_images = os.listdir(fake_dir) selected_fake_images = random.sample(fake_images, num_images) for image_name in selected_fake_images: source_path = os.path.join(fake_dir, image_name) dest_path = os.path.join(fake_train_dir, image_name) shutil.copyfile(source_path, dest_path) # Set the paths to your dataset folders dataset_dir_test = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/test" real_dir = os.path.join(dataset_dir_test, "REAL") fake_dir = os.path.join(dataset_dir_test, "FAKE") # Set the paths to the new directories that will contain the selected images test_dir = "/kaggle/working/test" real_test_dir = os.path.join(test_dir, "REAL") fake_test_dir = os.path.join(test_dir, "FAKE") # Create the new directories if they don't exist if not os.path.exists(real_test_dir): os.makedirs(real_test_dir) if not os.path.exists(fake_test_dir): os.makedirs(fake_test_dir) # Set the number of images to select from each folder num_images = 200 # Randomly select the required number of images from the REAL folder and copy them to the new directory real_images = os.listdir(real_dir) selected_real_images = random.sample(real_images, num_images) for image_name in selected_real_images: source_path = os.path.join(real_dir, image_name) dest_path = os.path.join(real_test_dir, image_name) shutil.copyfile(source_path, dest_path) # Randomly select the required number of images from the FAKE folder and copy them to the new directory fake_images = os.listdir(fake_dir) selected_fake_images = random.sample(fake_images, num_images) for image_name in selected_fake_images: source_path = os.path.join(fake_dir, image_name) dest_path = os.path.join(fake_test_dir, image_name) shutil.copyfile(source_path, dest_path) import tensorflow as tf from tensorflow.keras.applications import VGG16 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np import os import cv2 from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import average_precision_score import matplotlib.pyplot as plt # Set the paths to the train and test directories train_dir = "/kaggle/working/train" test_dir = "/kaggle/working/test" # Set up the model base_model = VGG16(weights="imagenet", include_top=False, input_shape=(32, 32, 3)) for layer in base_model.layers: layer.trainable = False model = Sequential() model.add(base_model) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) batch_size = 32 # Compile the model model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) # Perform data augmentation train_datagen = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) # Load the training data train_generator = train_datagen.flow_from_directory( train_dir, target_size=(32, 32), batch_size=batch_size, class_mode="binary" ) # Train the model history = model.fit( train_generator, steps_per_epoch=train_generator.n // batch_size, epochs=50 ) # Load the test data test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(32, 32), batch_size=batch_size, class_mode="binary", shuffle=False, ) # Make predictions on the test data predictions = model.predict(test_generator) labels = [0 if pred < 0.5 else 1 for pred in predictions] # Convert labels to 'FAKE' and 'REAL' # labels = ['FAKE' if label == 0 else 'REAL' for label in labels] # Calculate accuracy accuracy = np.sum(np.array(test_generator.labels) == np.array(labels)) / len(labels) # Print the accuracy print("\nAccuracy:", accuracy) cm = confusion_matrix(test_generator.labels, labels) print("\nConfusion Matrix:") print(cm) # Compute the classification report class_names = test_generator.class_indices.keys() classification_rep = classification_report( test_generator.labels, labels, target_names=class_names ) print("\nClassification Report:") print(classification_rep) # Calculate the average precision (mAP) mAP = average_precision_score(test_generator.labels, predictions) print("\nMean Average Precision (mAP):", mAP) import matplotlib.pyplot as plt import seaborn as sns # Confusion matrix cm = confusion_matrix(test_generator.labels, labels) plt.figure(figsize=(8, 6)) sns.heatmap( cm, annot=True, cmap="Blues", fmt="d", xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.title("Confusion Matrix") plt.show() # Loss plot plt.figure(figsize=(8, 6)) plt.plot(history.history["loss"], label="Training Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.title("Training Loss") plt.legend() plt.show() import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve # Calculate precision and recall precision, recall, _ = precision_recall_curve(test_generator.labels, predictions) # Plot precision-recall curve plt.plot(recall, precision) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision-Recall Curve") plt.grid(True) plt.show() import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve, auc # Calculate precision, recall, and thresholds precision, recall, thresholds = precision_recall_curve( test_generator.labels, predictions ) # Calculate F1-score f1_scores = 2 * (precision * recall) / (precision + recall) # Calculate area under the curve (AUC) auc_score = auc(recall, precision) # Plot the F1 curve plt.plot(recall, precision, label="F1 curve (AUC = {:.2f})".format(auc_score)) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("F1 Curve") plt.legend() plt.show() # Confusion matrix cm = confusion_matrix(test_generator.labels, labels) cm_percent = cm / cm.sum(axis=1).reshape(-1, 1) * 100 plt.figure(figsize=(8, 6)) sns.heatmap( cm_percent, annot=True, cmap="Blues", fmt=".1f", xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.title("Confusion Matrix") plt.show() # Select random samples from the test data sample_indices = np.random.choice(len(test_generator), size=10, replace=False) sample_images = [] sample_actual_labels = [] sample_predicted_labels = [] sample_probabilities = [] for i in sample_indices: image, actual_labels = test_generator[i] predicted_label = labels[i] probability = predictions[i][0] sample_images.append(image[0]) # Access the first image in the batch sample_actual_labels.append( actual_labels[0] ) # Access the actual label for the first image sample_predicted_labels.append(predicted_label) sample_probabilities.append(probability) # Calculate the subplot layout based on the number of sample images num_images = len(sample_images) num_rows = int(np.ceil(num_images / 2)) num_cols = min(num_images, 2) # Plot the sample images with labels and probabilities plt.figure(figsize=(12, 6)) for i in range(len(sample_images)): plt.subplot(num_rows, num_cols, i + 1) plt.imshow(sample_images[i]) actual_label = "FAKE" if sample_actual_labels[i] == 0 else "REAL" predicted_label = "FAKE" if sample_predicted_labels[i] == 0 else "REAL" plt.title( f"Actual: {actual_label}, Predicted: {predicted_label}\nProbability: {sample_probabilities[i]:.2f}" ) plt.axis("off") plt.tight_layout() plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/813/129813621.ipynb
cifake-real-and-ai-generated-synthetic-images
birdy654
[{"Id": 129813621, "ScriptId": 38450781, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11988597, "CreationDate": "05/16/2023 16:40:17", "VersionNumber": 3.0, "Title": "Fake vs. Real Image Classification using VGG16", "EvaluationDate": "05/16/2023", "IsChange": false, "TotalLines": 280.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 280.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186188715, "KernelVersionId": 129813621, "SourceDatasetVersionId": 5256696}]
[{"Id": 5256696, "DatasetId": 3041726, "DatasourceVersionId": 5329502, "CreatorUserId": 2039603, "LicenseName": "Other (specified in description)", "CreationDate": "03/28/2023 16:00:29", "VersionNumber": 3.0, "Title": "CIFAKE: Real and AI-Generated Synthetic Images", "Slug": "cifake-real-and-ai-generated-synthetic-images", "Subtitle": "Can Computer Vision detect when images have been generated by AI?", "Description": "# CIFAKE: Real and AI-Generated Synthetic Images\nThe quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness.\n\nCIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI?\n\nFurther information on this dataset can be found here: [Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126)\n\n![Images from the CIFAKE dataset](https://i.imgur.com/RiOwf8i.png)\n\n## Dataset details\nThe dataset contains two classes - REAL and FAKE. \n\nFor REAL, we collected the images from Krizhevsky & Hinton's [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html)\n\nFor the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4\n\nThere are 100,000 images for training (50k per class) and 20,000 for testing (10k per class)\n\n## Papers with Code\nThe dataset and all studies using it are linked using [Papers with Code](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images)\n[https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images](https://paperswithcode.com/dataset/cifake-real-and-ai-generated-synthetic-images)\n\n\n## References\nIf you use this dataset, you **must** cite the following sources\n\n[Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdfl)\n\n[Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.](https://arxiv.org/abs/2303.14126)\n\nReal images are from Krizhevsky & Hinton (2009), fake images are from Bird & Lotfi (2023). The Bird & Lotfi study is a preprint currently available on [ArXiv](https://arxiv.org/abs/2303.14126) and this description will be updated when the paper is published.\n\n## Notes\n\nThe updates to the dataset on the 28th of March 2023 did not change anything; the file formats \".jpeg\" were renamed \".jpg\" and the root folder was uploaded to meet Kaggle's usability requirements.\n\n## License\nThis dataset is published under the [same MIT license as CIFAR-10](https://github.com/wichtounet/cifar-10/blob/master/LICENSE):\n\n*Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:*\n\n*The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.*\n\n*THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.*", "VersionNotes": "Kaggle compatibility fix (no actual changes)", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3041726, "CreatorUserId": 2039603, "OwnerUserId": 2039603.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5256696.0, "CurrentDatasourceVersionId": 5329502.0, "ForumId": 3081274, "Type": 2, "CreationDate": "03/24/2023 13:22:42", "LastActivityDate": "03/24/2023", "TotalViews": 13728, "TotalDownloads": 1803, "TotalVotes": 46, "TotalKernels": 15}]
[{"Id": 2039603, "UserName": "birdy654", "DisplayName": "Jordan J. Bird", "RegisterDate": "07/03/2018", "PerformanceTier": 2}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import os import random import shutil # Set the paths to your dataset folders dataset_dir = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/train" real_dir = os.path.join(dataset_dir, "REAL") fake_dir = os.path.join(dataset_dir, "FAKE") # Set the paths to the new directories that will contain the selected images train_dir = "/kaggle/working/train" real_train_dir = os.path.join(train_dir, "REAL") fake_train_dir = os.path.join(train_dir, "FAKE") # Create the new directories if they don't exist if not os.path.exists(real_train_dir): os.makedirs(real_train_dir) if not os.path.exists(fake_train_dir): os.makedirs(fake_train_dir) # Set the number of images to select from each folder num_images = 2000 # Randomly select the required number of images from the REAL folder and copy them to the new directory real_images = os.listdir(real_dir) selected_real_images = random.sample(real_images, num_images) for image_name in selected_real_images: source_path = os.path.join(real_dir, image_name) dest_path = os.path.join(real_train_dir, image_name) shutil.copyfile(source_path, dest_path) # Randomly select the required number of images from the FAKE folder and copy them to the new directory fake_images = os.listdir(fake_dir) selected_fake_images = random.sample(fake_images, num_images) for image_name in selected_fake_images: source_path = os.path.join(fake_dir, image_name) dest_path = os.path.join(fake_train_dir, image_name) shutil.copyfile(source_path, dest_path) # Set the paths to your dataset folders dataset_dir_test = "/kaggle/input/cifake-real-and-ai-generated-synthetic-images/test" real_dir = os.path.join(dataset_dir_test, "REAL") fake_dir = os.path.join(dataset_dir_test, "FAKE") # Set the paths to the new directories that will contain the selected images test_dir = "/kaggle/working/test" real_test_dir = os.path.join(test_dir, "REAL") fake_test_dir = os.path.join(test_dir, "FAKE") # Create the new directories if they don't exist if not os.path.exists(real_test_dir): os.makedirs(real_test_dir) if not os.path.exists(fake_test_dir): os.makedirs(fake_test_dir) # Set the number of images to select from each folder num_images = 200 # Randomly select the required number of images from the REAL folder and copy them to the new directory real_images = os.listdir(real_dir) selected_real_images = random.sample(real_images, num_images) for image_name in selected_real_images: source_path = os.path.join(real_dir, image_name) dest_path = os.path.join(real_test_dir, image_name) shutil.copyfile(source_path, dest_path) # Randomly select the required number of images from the FAKE folder and copy them to the new directory fake_images = os.listdir(fake_dir) selected_fake_images = random.sample(fake_images, num_images) for image_name in selected_fake_images: source_path = os.path.join(fake_dir, image_name) dest_path = os.path.join(fake_test_dir, image_name) shutil.copyfile(source_path, dest_path) import tensorflow as tf from tensorflow.keras.applications import VGG16 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np import os import cv2 from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import average_precision_score import matplotlib.pyplot as plt # Set the paths to the train and test directories train_dir = "/kaggle/working/train" test_dir = "/kaggle/working/test" # Set up the model base_model = VGG16(weights="imagenet", include_top=False, input_shape=(32, 32, 3)) for layer in base_model.layers: layer.trainable = False model = Sequential() model.add(base_model) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation="sigmoid")) batch_size = 32 # Compile the model model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) # Perform data augmentation train_datagen = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) # Load the training data train_generator = train_datagen.flow_from_directory( train_dir, target_size=(32, 32), batch_size=batch_size, class_mode="binary" ) # Train the model history = model.fit( train_generator, steps_per_epoch=train_generator.n // batch_size, epochs=50 ) # Load the test data test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(32, 32), batch_size=batch_size, class_mode="binary", shuffle=False, ) # Make predictions on the test data predictions = model.predict(test_generator) labels = [0 if pred < 0.5 else 1 for pred in predictions] # Convert labels to 'FAKE' and 'REAL' # labels = ['FAKE' if label == 0 else 'REAL' for label in labels] # Calculate accuracy accuracy = np.sum(np.array(test_generator.labels) == np.array(labels)) / len(labels) # Print the accuracy print("\nAccuracy:", accuracy) cm = confusion_matrix(test_generator.labels, labels) print("\nConfusion Matrix:") print(cm) # Compute the classification report class_names = test_generator.class_indices.keys() classification_rep = classification_report( test_generator.labels, labels, target_names=class_names ) print("\nClassification Report:") print(classification_rep) # Calculate the average precision (mAP) mAP = average_precision_score(test_generator.labels, predictions) print("\nMean Average Precision (mAP):", mAP) import matplotlib.pyplot as plt import seaborn as sns # Confusion matrix cm = confusion_matrix(test_generator.labels, labels) plt.figure(figsize=(8, 6)) sns.heatmap( cm, annot=True, cmap="Blues", fmt="d", xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.title("Confusion Matrix") plt.show() # Loss plot plt.figure(figsize=(8, 6)) plt.plot(history.history["loss"], label="Training Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.title("Training Loss") plt.legend() plt.show() import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve # Calculate precision and recall precision, recall, _ = precision_recall_curve(test_generator.labels, predictions) # Plot precision-recall curve plt.plot(recall, precision) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("Precision-Recall Curve") plt.grid(True) plt.show() import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve, auc # Calculate precision, recall, and thresholds precision, recall, thresholds = precision_recall_curve( test_generator.labels, predictions ) # Calculate F1-score f1_scores = 2 * (precision * recall) / (precision + recall) # Calculate area under the curve (AUC) auc_score = auc(recall, precision) # Plot the F1 curve plt.plot(recall, precision, label="F1 curve (AUC = {:.2f})".format(auc_score)) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("F1 Curve") plt.legend() plt.show() # Confusion matrix cm = confusion_matrix(test_generator.labels, labels) cm_percent = cm / cm.sum(axis=1).reshape(-1, 1) * 100 plt.figure(figsize=(8, 6)) sns.heatmap( cm_percent, annot=True, cmap="Blues", fmt=".1f", xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.title("Confusion Matrix") plt.show() # Select random samples from the test data sample_indices = np.random.choice(len(test_generator), size=10, replace=False) sample_images = [] sample_actual_labels = [] sample_predicted_labels = [] sample_probabilities = [] for i in sample_indices: image, actual_labels = test_generator[i] predicted_label = labels[i] probability = predictions[i][0] sample_images.append(image[0]) # Access the first image in the batch sample_actual_labels.append( actual_labels[0] ) # Access the actual label for the first image sample_predicted_labels.append(predicted_label) sample_probabilities.append(probability) # Calculate the subplot layout based on the number of sample images num_images = len(sample_images) num_rows = int(np.ceil(num_images / 2)) num_cols = min(num_images, 2) # Plot the sample images with labels and probabilities plt.figure(figsize=(12, 6)) for i in range(len(sample_images)): plt.subplot(num_rows, num_cols, i + 1) plt.imshow(sample_images[i]) actual_label = "FAKE" if sample_actual_labels[i] == 0 else "REAL" predicted_label = "FAKE" if sample_predicted_labels[i] == 0 else "REAL" plt.title( f"Actual: {actual_label}, Predicted: {predicted_label}\nProbability: {sample_probabilities[i]:.2f}" ) plt.axis("off") plt.tight_layout() plt.show()
false
0
2,906
0
3,949
2,906
129602055
<jupyter_start><jupyter_text>Air Passenger Data for Time Series Analysis ### Context This data is used for making ARIMA model forecasting. ### Content This contains the increasing rate of passenger Kaggle dataset identifier: air-passenger-data-for-time-series-analysis <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Load Dataset df = pd.read_csv( "/kaggle/input/air-passenger-data-for-time-series-analysis/AirPassengers.csv" ) df # # Exploratory Data Analysis (EDA) # ## View Dataset Description df.info() # ## Data Visualization import matplotlib.pyplot as plt import datetime plt.figure(figsize=(12, 6)) plt.plot(df["Month"], df["#Passengers"]) plt.xlabel("Time") # plt.xticks(rotation=45) plt.ylabel("Num of Passengers") plt.title("US Airline Num of Passengers Trend 1949 - 1960") plt.show() # There is a positive trend with some repetitive pattern # # Time Series Decomposition from statsmodels.tsa.seasonal import seasonal_decompose from dateutil.parser import parse # ## Additive Decomposition additive_dec = seasonal_decompose(df["#Passengers"], model="additive", period=30) plt.figure(figsize=(12, 8)) additive_dec.plot() plt.suptitle("Additive Decomposition", fontsize=12) plt.tight_layout() plt.show() multiplicative_dec = seasonal_decompose( df["#Passengers"], model="multiplicative", period=30 ) plt.figure(figsize=(12, 8)) multiplicative_dec.plot() plt.suptitle("Multiplicative Decomposition", fontsize=12) plt.tight_layout() plt.show() # Residual in additive decomposition still have a pattern, while in multiplicative is not really showing and quite random. So we will preferred to use multiplicative decomposition. # # Stationary Test for Time Series from statsmodels.tsa.stattools import adfuller, kpss from statsmodels.graphics.tsaplots import plot_acf # ## Augmented Dickey Fuller Test (ADF Test) # H0: time series data is non-stationary # H1: time series data is stationary # p-value reject null hypothesis (H0) result = adfuller(df["#Passengers"].values, autolag="AIC") print(f"ADF Statistic: {result[0]}") print(f"p-value: {result[1]}") # ## KPSS Test # H0: time series data is stationary # H1: time series data is non-stationary # p-value reject null hypothesis (H0) result = kpss(df["#Passengers"]) print("KPSS Statistic:", result[0]) print("p-value:", result[1]) # From two test result above, We can see that current data is non-stationary # # Autocorrelation # Measure how correlated time series data is at a given point in time with past values. autocorr_lag1 = df["#Passengers"].autocorr(lag=1) print("One Month Lag: ", autocorr_lag1) autocorr_lag3 = df["#Passengers"].autocorr(lag=3) print("Three Month Lag: ", autocorr_lag3) autocorr_lag6 = df["#Passengers"].autocorr(lag=6) print("Six Month Lag: ", autocorr_lag6) autocorr_lag9 = df["#Passengers"].autocorr(lag=9) print("Nine Month Lag: ", autocorr_lag9)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/602/129602055.ipynb
air-passenger-data-for-time-series-analysis
ashfakyeafi
[{"Id": 129602055, "ScriptId": 38534427, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 6654637, "CreationDate": "05/15/2023 07:00:58", "VersionNumber": 1.0, "Title": "Airline Passenger Forecasting using ARIMA", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 113.0, "LinesInsertedFromPrevious": 113.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185836756, "KernelVersionId": 129602055, "SourceDatasetVersionId": 2504188}]
[{"Id": 2504188, "DatasetId": 1516462, "DatasourceVersionId": 2546888, "CreatorUserId": 5154008, "LicenseName": "CC0: Public Domain", "CreationDate": "08/06/2021 14:46:29", "VersionNumber": 1.0, "Title": "Air Passenger Data for Time Series Analysis", "Slug": "air-passenger-data-for-time-series-analysis", "Subtitle": "There is a list of passenger data from year 1949 to 1960", "Description": "### Context\n\nThis data is used for making ARIMA model forecasting.\n\n\n### Content\n\nThis contains the increasing rate of passenger\n\n\n### Acknowledgements\n\nWe wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.\n\n\n### Inspiration\n\nYour data will be in front of the world's largest data science community. What questions do you want to see answered?", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1516462, "CreatorUserId": 5154008, "OwnerUserId": 5154008.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 2504188.0, "CurrentDatasourceVersionId": 2546888.0, "ForumId": 1536251, "Type": 2, "CreationDate": "08/06/2021 14:46:29", "LastActivityDate": "08/06/2021", "TotalViews": 11264, "TotalDownloads": 1480, "TotalVotes": 43, "TotalKernels": 9}]
[{"Id": 5154008, "UserName": "ashfakyeafi", "DisplayName": "Ashfak Yeafi", "RegisterDate": "05/24/2020", "PerformanceTier": 3}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Load Dataset df = pd.read_csv( "/kaggle/input/air-passenger-data-for-time-series-analysis/AirPassengers.csv" ) df # # Exploratory Data Analysis (EDA) # ## View Dataset Description df.info() # ## Data Visualization import matplotlib.pyplot as plt import datetime plt.figure(figsize=(12, 6)) plt.plot(df["Month"], df["#Passengers"]) plt.xlabel("Time") # plt.xticks(rotation=45) plt.ylabel("Num of Passengers") plt.title("US Airline Num of Passengers Trend 1949 - 1960") plt.show() # There is a positive trend with some repetitive pattern # # Time Series Decomposition from statsmodels.tsa.seasonal import seasonal_decompose from dateutil.parser import parse # ## Additive Decomposition additive_dec = seasonal_decompose(df["#Passengers"], model="additive", period=30) plt.figure(figsize=(12, 8)) additive_dec.plot() plt.suptitle("Additive Decomposition", fontsize=12) plt.tight_layout() plt.show() multiplicative_dec = seasonal_decompose( df["#Passengers"], model="multiplicative", period=30 ) plt.figure(figsize=(12, 8)) multiplicative_dec.plot() plt.suptitle("Multiplicative Decomposition", fontsize=12) plt.tight_layout() plt.show() # Residual in additive decomposition still have a pattern, while in multiplicative is not really showing and quite random. So we will preferred to use multiplicative decomposition. # # Stationary Test for Time Series from statsmodels.tsa.stattools import adfuller, kpss from statsmodels.graphics.tsaplots import plot_acf # ## Augmented Dickey Fuller Test (ADF Test) # H0: time series data is non-stationary # H1: time series data is stationary # p-value reject null hypothesis (H0) result = adfuller(df["#Passengers"].values, autolag="AIC") print(f"ADF Statistic: {result[0]}") print(f"p-value: {result[1]}") # ## KPSS Test # H0: time series data is stationary # H1: time series data is non-stationary # p-value reject null hypothesis (H0) result = kpss(df["#Passengers"]) print("KPSS Statistic:", result[0]) print("p-value:", result[1]) # From two test result above, We can see that current data is non-stationary # # Autocorrelation # Measure how correlated time series data is at a given point in time with past values. autocorr_lag1 = df["#Passengers"].autocorr(lag=1) print("One Month Lag: ", autocorr_lag1) autocorr_lag3 = df["#Passengers"].autocorr(lag=3) print("Three Month Lag: ", autocorr_lag3) autocorr_lag6 = df["#Passengers"].autocorr(lag=6) print("Six Month Lag: ", autocorr_lag6) autocorr_lag9 = df["#Passengers"].autocorr(lag=9) print("Nine Month Lag: ", autocorr_lag9)
false
1
1,034
0
1,102
1,034
129602912
# **additon # subtraction # multiplication # divison** sales_A = 100 sales_B = 200 total_sales = sales_A + sales_B diff_sales = sales_A - sales_B print(total_sales) print(diff_sales) sales_per_unit = 40 no_of_units = 45 total = sales_per_unit * no_of_units print(total) yearly_sales = 28000 average_sale_per_month = 28000 / 12 print(average_sale_per_month) # **modulus** **division** for finding remainder a = 21 remainder = 21 % 2 print(remainder) if remainder == 1: print("odd") # **exponentiation** x = 2 power = 2 answer = x**2 print(answer) # **floor division** a = 50 b = 12 c = a // b print(c)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/602/129602912.ipynb
null
null
[{"Id": 129602912, "ScriptId": 38503985, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12850343, "CreationDate": "05/15/2023 07:08:16", "VersionNumber": 1.0, "Title": "Arithmetic operations", "EvaluationDate": NaN, "IsChange": true, "TotalLines": 45.0, "LinesInsertedFromPrevious": 45.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# **additon # subtraction # multiplication # divison** sales_A = 100 sales_B = 200 total_sales = sales_A + sales_B diff_sales = sales_A - sales_B print(total_sales) print(diff_sales) sales_per_unit = 40 no_of_units = 45 total = sales_per_unit * no_of_units print(total) yearly_sales = 28000 average_sale_per_month = 28000 / 12 print(average_sale_per_month) # **modulus** **division** for finding remainder a = 21 remainder = 21 % 2 print(remainder) if remainder == 1: print("odd") # **exponentiation** x = 2 power = 2 answer = x**2 print(answer) # **floor division** a = 50 b = 12 c = a // b print(c)
false
0
256
0
256
256
129602169
<jupyter_start><jupyter_text>Real estate prices in Tashkent, Uzbekistan ### Context The dataset containt the prices for real estate in Tashkent, Uzbekistan. Data was scraped from uybor.uz, real-estate advertisement website. Data was scraped back in 2019. ### Content The dataset contains following columns: address - approximate address of the real-estate district - the district the real-estate located in rooms - number of rooms size - total size of the unit in **square meters** level - which level the unit located at max_levels - maximum levels of the building price - price in **USD** lat - latitude lng - longitude Kaggle dataset identifier: tashkent-real-estate-2019 <jupyter_script>import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style from matplotlib.gridspec import GridSpec import seaborn as sns sns.set() from scipy import stats from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_selector, make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, train_test_split import sklearn.metrics as metrics style.use("fivethirtyeight") pd.options.mode.chained_assignment = None # default='warn' # we are using excel file that's why I import openpyxl # # Loading Dataset data = pd.read_excel("../input/tashkent-real-estate-2019/uybor.xlsx") # # EDA + FE: Exploratory Data Analysis and Feature Engineering data.head() data.shape data.nunique() # ### We can see that this dataset doesn't have NaN values data.info() data.describe() df = data.drop("address", axis=1, inplace=True) # ### Price # #### Price-Column has got outliers sns.histplot(data.price) plt.show() # #### For a good result, i am looking a for normal distrubution, so trying to remove outliers def remove_outliers(data, x): std_dev = np.std(data[x]) mean = np.mean(data[x]) cut_off = std_dev * 1.5 lower, upper = mean - cut_off, mean + cut_off data = data[(data[x] < upper) & (data[x] > lower)] print(f"Outliers of {x} are removed\n") return data data = remove_outliers(data, "price") sns.histplot(data.price) plt.show() q = data["price"].quantile(0.99) df = data[data["price"] < q] df.describe(include="all") df = data.copy() sns.histplot(df["price"]) plt.show() fig = plt.figure(figsize=(16, 12)) grid = GridSpec(ncols=1, nrows=2, figure=fig) # Histogram ax1 = fig.add_subplot(grid[0, :]) sns.histplot(df["price"], ax=ax1, kde=True) # QQ plot ax2 = fig.add_subplot(grid[1, :]) stats.probplot(df["price"], plot=ax2) df.shape sns.distplot(df["size"]) q = df["size"].quantile(0.99) df2 = df[df["size"] < q] sns.distplot(df2["size"]) sns.displot(df["rooms"]) df3 = df[df.rooms < 7] sns.displot(df3.rooms) sns.displot(df["level"]) q = df3["level"].quantile(0.99) df4 = df3[df3["level"] < q] sns.displot(df4["level"]) sns.displot(df4["max_levels"]) q = df4["level"].quantile(0.99) df5 = df4[df4["level"] < q] sns.displot(df5["max_levels"]) data_cleaned = df5.reset_index(drop=True) data_cleaned.head() distdf = df.groupby("district").mean() # Grafiklarni chizamiz fig, ax = plt.subplots(2, 2, figsize=(15, 10)) # Umumiy chizma nomini beramiz: sns.histplot(ax=ax[0, 0], data=data_cleaned, x="price") sns.histplot(ax=ax[0, 1], data=data_cleaned, x="size") sns.scatterplot( ax=ax[1, 0], data=data_cleaned, x=data_cleaned["size"], y=data_cleaned["price"] ) sns.barplot(ax=ax[1, 1], x=distdf.index, y=distdf["price"]) # Har bir grafik uchun nom: ax[0, 0].set_title("Uylarning narxi bo'yicha taqsimoti") ax[0, 1].set_title("Uylarning maydoni bo'yicha taqsimoti") ax[1, 0].set_title("Uylarning narxi va maydoni o'rtasioda bog'liqlik") ax[1, 1].set_title("Tumanlar bo'yicha o'rtacha narxlar") plt.xticks(rotation=90) plt.show() # **I will create interaction terms between different features to capture their combined effect on the target variable. For example, multiply size and level features to create an interaction term.** data_cleaned["size_level"] = data_cleaned["level"] * data_cleaned["size"] data_cleaned.describe(include="all") print("Below the most important features relative to Price-target") corr = data_cleaned.corr() corr.sort_values(["price"], ascending=False, inplace=True) print(corr.price) from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools.tools import add_constant variables = data_cleaned[["size", "level", "max_levels"]] vif = pd.DataFrame() vif["VIF"] = [ variance_inflation_factor(variables.values, i) for i in range(variables.shape[1]) ] vif["features"] = variables.columns vif # **Before I added rooms column and correlation between size and rooms was high when i was checking VIF, so Im gonna drop this column** data_no_multicollinearity = data_cleaned.drop(["rooms"], axis=1) data_with_dummies = pd.get_dummies(data_no_multicollinearity, drop_first=True) data_with_dummies.head() data_with_dummies.shape # import necessary libraries from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LassoCV from sklearn.metrics import mean_squared_error, mean_absolute_error # define features and target X = data_with_dummies.drop(["price"], axis=1) y = data_with_dummies["price"] # split data into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # define preprocessing pipeline preprocessor = make_pipeline(StandardScaler()) # define Lasso regression model with cross-validation model = LassoCV(cv=5) # define pipeline with preprocessor and Lasso regression pipe = make_pipeline(preprocessor, model) # define parameter grid for hyperparameter tuning param_grid = { "lassocv__alphas": [[0.001, 0.01, 0.1, 1, 10]], "lassocv__max_iter": [10000], "lassocv__tol": [1e-4], } # perform grid search with cross-validation grid_search = GridSearchCV(pipe, param_grid, cv=5) grid_search.fit(X_train, y_train) # evaluate model with best hyperparameters model = grid_search.best_estimator_ train_score = model.score(X_train, y_train) test_score = model.score(X_test, y_test) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_test, y_pred) # print evaluation metrics and example predictions print("MSE:", mse) print("RMSE:", rmse) print("MAE:", mae) print("Score (train):", train_score) print("Score (test):", test_score) for i in range(5): print( "Real Value: ${}, Predicted Value: ${}".format( y_test.values[i], round(y_pred[i]) ) ) def visualize_model_results(data, model): fig = plt.figure(figsize=(17, 10)) data = data.sort_values(by=["price"]) X = data.drop("price", axis=1) y = data.price.astype(int) plt.scatter(range(X.shape[0]), y, color="red", label="Real") plt.scatter(range(X.shape[0]), model.predict(X), marker=".", label="Predicted") plt.legend(loc=2, prop={"size": 25}) plt.show() visualize_model_results(data_with_dummies, model)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/602/129602169.ipynb
tashkent-real-estate-2019
anvarnarz
[{"Id": 129602169, "ScriptId": 38539008, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 4558105, "CreationDate": "05/15/2023 07:01:50", "VersionNumber": 1.0, "Title": "Tashkent house price prediction", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 237.0, "LinesInsertedFromPrevious": 237.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 3}]
[{"Id": 185836896, "KernelVersionId": 129602169, "SourceDatasetVersionId": 3005925}]
[{"Id": 3005925, "DatasetId": 1841368, "DatasourceVersionId": 3053775, "CreatorUserId": 2223916, "LicenseName": "CC0: Public Domain", "CreationDate": "01/05/2022 03:04:59", "VersionNumber": 1.0, "Title": "Real estate prices in Tashkent, Uzbekistan", "Slug": "tashkent-real-estate-2019", "Subtitle": "Data scraped from uybor.uz", "Description": "### Context\n\nThe dataset containt the prices for real estate in Tashkent, Uzbekistan. Data was scraped from uybor.uz, real-estate advertisement website. Data was scraped back in 2019.\n\n\n### Content\n\nThe dataset contains following columns:\naddress - approximate address of the real-estate\ndistrict - the district the real-estate located in\nrooms - number of rooms\nsize - total size of the unit in **square meters**\nlevel - which level the unit located at\nmax_levels - maximum levels of the building\nprice - price in **USD**\nlat - latitude\nlng - longitude", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1841368, "CreatorUserId": 2223916, "OwnerUserId": 2223916.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3005925.0, "CurrentDatasourceVersionId": 3053775.0, "ForumId": 1864221, "Type": 2, "CreationDate": "01/05/2022 03:04:59", "LastActivityDate": "01/05/2022", "TotalViews": 3662, "TotalDownloads": 394, "TotalVotes": 33, "TotalKernels": 27}]
[{"Id": 2223916, "UserName": "anvarnarz", "DisplayName": "Anvar", "RegisterDate": "09/08/2018", "PerformanceTier": 0}]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style from matplotlib.gridspec import GridSpec import seaborn as sns sns.set() from scipy import stats from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_selector, make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, train_test_split import sklearn.metrics as metrics style.use("fivethirtyeight") pd.options.mode.chained_assignment = None # default='warn' # we are using excel file that's why I import openpyxl # # Loading Dataset data = pd.read_excel("../input/tashkent-real-estate-2019/uybor.xlsx") # # EDA + FE: Exploratory Data Analysis and Feature Engineering data.head() data.shape data.nunique() # ### We can see that this dataset doesn't have NaN values data.info() data.describe() df = data.drop("address", axis=1, inplace=True) # ### Price # #### Price-Column has got outliers sns.histplot(data.price) plt.show() # #### For a good result, i am looking a for normal distrubution, so trying to remove outliers def remove_outliers(data, x): std_dev = np.std(data[x]) mean = np.mean(data[x]) cut_off = std_dev * 1.5 lower, upper = mean - cut_off, mean + cut_off data = data[(data[x] < upper) & (data[x] > lower)] print(f"Outliers of {x} are removed\n") return data data = remove_outliers(data, "price") sns.histplot(data.price) plt.show() q = data["price"].quantile(0.99) df = data[data["price"] < q] df.describe(include="all") df = data.copy() sns.histplot(df["price"]) plt.show() fig = plt.figure(figsize=(16, 12)) grid = GridSpec(ncols=1, nrows=2, figure=fig) # Histogram ax1 = fig.add_subplot(grid[0, :]) sns.histplot(df["price"], ax=ax1, kde=True) # QQ plot ax2 = fig.add_subplot(grid[1, :]) stats.probplot(df["price"], plot=ax2) df.shape sns.distplot(df["size"]) q = df["size"].quantile(0.99) df2 = df[df["size"] < q] sns.distplot(df2["size"]) sns.displot(df["rooms"]) df3 = df[df.rooms < 7] sns.displot(df3.rooms) sns.displot(df["level"]) q = df3["level"].quantile(0.99) df4 = df3[df3["level"] < q] sns.displot(df4["level"]) sns.displot(df4["max_levels"]) q = df4["level"].quantile(0.99) df5 = df4[df4["level"] < q] sns.displot(df5["max_levels"]) data_cleaned = df5.reset_index(drop=True) data_cleaned.head() distdf = df.groupby("district").mean() # Grafiklarni chizamiz fig, ax = plt.subplots(2, 2, figsize=(15, 10)) # Umumiy chizma nomini beramiz: sns.histplot(ax=ax[0, 0], data=data_cleaned, x="price") sns.histplot(ax=ax[0, 1], data=data_cleaned, x="size") sns.scatterplot( ax=ax[1, 0], data=data_cleaned, x=data_cleaned["size"], y=data_cleaned["price"] ) sns.barplot(ax=ax[1, 1], x=distdf.index, y=distdf["price"]) # Har bir grafik uchun nom: ax[0, 0].set_title("Uylarning narxi bo'yicha taqsimoti") ax[0, 1].set_title("Uylarning maydoni bo'yicha taqsimoti") ax[1, 0].set_title("Uylarning narxi va maydoni o'rtasioda bog'liqlik") ax[1, 1].set_title("Tumanlar bo'yicha o'rtacha narxlar") plt.xticks(rotation=90) plt.show() # **I will create interaction terms between different features to capture their combined effect on the target variable. For example, multiply size and level features to create an interaction term.** data_cleaned["size_level"] = data_cleaned["level"] * data_cleaned["size"] data_cleaned.describe(include="all") print("Below the most important features relative to Price-target") corr = data_cleaned.corr() corr.sort_values(["price"], ascending=False, inplace=True) print(corr.price) from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools.tools import add_constant variables = data_cleaned[["size", "level", "max_levels"]] vif = pd.DataFrame() vif["VIF"] = [ variance_inflation_factor(variables.values, i) for i in range(variables.shape[1]) ] vif["features"] = variables.columns vif # **Before I added rooms column and correlation between size and rooms was high when i was checking VIF, so Im gonna drop this column** data_no_multicollinearity = data_cleaned.drop(["rooms"], axis=1) data_with_dummies = pd.get_dummies(data_no_multicollinearity, drop_first=True) data_with_dummies.head() data_with_dummies.shape # import necessary libraries from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LassoCV from sklearn.metrics import mean_squared_error, mean_absolute_error # define features and target X = data_with_dummies.drop(["price"], axis=1) y = data_with_dummies["price"] # split data into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # define preprocessing pipeline preprocessor = make_pipeline(StandardScaler()) # define Lasso regression model with cross-validation model = LassoCV(cv=5) # define pipeline with preprocessor and Lasso regression pipe = make_pipeline(preprocessor, model) # define parameter grid for hyperparameter tuning param_grid = { "lassocv__alphas": [[0.001, 0.01, 0.1, 1, 10]], "lassocv__max_iter": [10000], "lassocv__tol": [1e-4], } # perform grid search with cross-validation grid_search = GridSearchCV(pipe, param_grid, cv=5) grid_search.fit(X_train, y_train) # evaluate model with best hyperparameters model = grid_search.best_estimator_ train_score = model.score(X_train, y_train) test_score = model.score(X_test, y_test) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_test, y_pred) # print evaluation metrics and example predictions print("MSE:", mse) print("RMSE:", rmse) print("MAE:", mae) print("Score (train):", train_score) print("Score (test):", test_score) for i in range(5): print( "Real Value: ${}, Predicted Value: ${}".format( y_test.values[i], round(y_pred[i]) ) ) def visualize_model_results(data, model): fig = plt.figure(figsize=(17, 10)) data = data.sort_values(by=["price"]) X = data.drop("price", axis=1) y = data.price.astype(int) plt.scatter(range(X.shape[0]), y, color="red", label="Real") plt.scatter(range(X.shape[0]), model.predict(X), marker=".", label="Predicted") plt.legend(loc=2, prop={"size": 25}) plt.show() visualize_model_results(data_with_dummies, model)
false
0
2,217
3
2,407
2,217
129602235
<jupyter_start><jupyter_text>Unemployment in India ### Context The story behind this datasets is how lock-down affects employment opportunities and how the unemployment rate increases during the Covid-19. ### Content This dataset contains the unemployment rate of all the states in India Region = states in India Date = date which the unemployment rate observed Frequency = measuring frequency (Monthly) Estimated Unemployment Rate (%) = percentage of people unemployed in each States of India Estimated Employed = percentage of people employed Estimated Labour Participation Rate (%) = labour force participation rate by dividing the number of people actively participating in the labour force by the total number of people eligible to participate in the labor force force Kaggle dataset identifier: unemployment-in-india <jupyter_script>import pandas as pd import numpy as np import seaborn as sns import pandas as pd # Dataset from - https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection df = pd.read_csv( "/kaggle/input/sms-spam-collection-dataset/spam.csv", encoding="ISO-8859-1" ) df.head() df["v2"].value_counts() df["v1"].value_counts() # separate x and y x = df.v2.values y = df.v1.values # split train and test from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.25) # Data preprocessing from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() X_train = cv.fit_transform(xtrain) X_train.toarray() # ML ALgorithm from sklearn.naive_bayes import MultinomialNB model = MultinomialNB() model.fit(X_train, ytrain) x_test = cv.transform(xtest) x_test.toarray() model.score(x_test, ytest) email = [ "get an iphone 14 for free", "use this product to be fair within 7 days, otherwise money return", "give your account number of bank ,to get 1000000 dollar free", "i am looking for english language tutorials", ] cv_email = cv.transform(email) model.predict(cv_email)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/602/129602235.ipynb
unemployment-in-india
gokulrajkmv
[{"Id": 129602235, "ScriptId": 38501424, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12132064, "CreationDate": "05/15/2023 07:02:24", "VersionNumber": 1.0, "Title": "Spam Email", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 69.0, "LinesInsertedFromPrevious": 69.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 3}]
[{"Id": 185836979, "KernelVersionId": 129602235, "SourceDatasetVersionId": 1621146}, {"Id": 185836978, "KernelVersionId": 129602235, "SourceDatasetVersionId": 982}]
[{"Id": 1621146, "DatasetId": 752131, "DatasourceVersionId": 1656837, "CreatorUserId": 5012903, "LicenseName": "Other (specified in description)", "CreationDate": "11/05/2020 12:41:41", "VersionNumber": 5.0, "Title": "Unemployment in India", "Slug": "unemployment-in-india", "Subtitle": "during this darker times, we need to understand unemployment rate", "Description": "### Context\n\nThe story behind this datasets is how lock-down affects employment opportunities and how the unemployment rate increases during the Covid-19.\n\n### Content\n\nThis dataset contains the unemployment rate of all the states in India\n\nRegion = states in India\nDate = \t date which the unemployment rate observed \nFrequency = measuring frequency (Monthly)\t \nEstimated Unemployment Rate (%) = percentage of people unemployed in each States of India\nEstimated Employed\t = percentage of people employed\nEstimated Labour Participation Rate (%) =\t labour force participation rate by dividing the number of people actively participating in the labour force by the \n total number of people eligible to participate in the labor force\n force\n\n\n### Acknowledgements\n\nI wouldn't be here without the help of my friends. I owe you thanks !!\n\n\n### Inspiration\n\nquestions?\n1. How Covid-19 affects the employment\n2. how far the unemployment rate will go\n\nsource of datasets\nhttps://unemploymentinindia.cmie.com/", "VersionNotes": "location update", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 752131, "CreatorUserId": 5012903, "OwnerUserId": 5012903.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1621146.0, "CurrentDatasourceVersionId": 1656837.0, "ForumId": 767051, "Type": 2, "CreationDate": "07/02/2020 10:58:52", "LastActivityDate": "07/02/2020", "TotalViews": 40084, "TotalDownloads": 8967, "TotalVotes": 52, "TotalKernels": 27}]
[{"Id": 5012903, "UserName": "gokulrajkmv", "DisplayName": "Gokul raj K.", "RegisterDate": "05/03/2020", "PerformanceTier": 2}]
import pandas as pd import numpy as np import seaborn as sns import pandas as pd # Dataset from - https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection df = pd.read_csv( "/kaggle/input/sms-spam-collection-dataset/spam.csv", encoding="ISO-8859-1" ) df.head() df["v2"].value_counts() df["v1"].value_counts() # separate x and y x = df.v2.values y = df.v1.values # split train and test from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.25) # Data preprocessing from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() X_train = cv.fit_transform(xtrain) X_train.toarray() # ML ALgorithm from sklearn.naive_bayes import MultinomialNB model = MultinomialNB() model.fit(X_train, ytrain) x_test = cv.transform(xtest) x_test.toarray() model.score(x_test, ytest) email = [ "get an iphone 14 for free", "use this product to be fair within 7 days, otherwise money return", "give your account number of bank ,to get 1000000 dollar free", "i am looking for english language tutorials", ] cv_email = cv.transform(email) model.predict(cv_email)
false
1
394
3
607
394
129675358
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session def dot_product(a, b): c = [[0] * a.shape[0] for _ in range(b.shape[1])] if a.shape[0] == b.shape[1]: for i in range(a.shape[0]): for j in range(b.shape[1]): c[i][j] = np.sum(a[i, :] * b[:, j]) print("Dot product of a and b is:\n", c) else: print( "No. of columns of first vector should match with \ No. of rows of the second vector" ) sample1 = [1, 2, 3, 4, 5] sample2 = [2, 1, 1, 1, 1] # dot_product(sample1, sample2) a = np.array([[1, 2, 3], [5, 6, 4]]) b = np.array([[3, 4], [5, 7], [4, 8]]) c = np.array([[1, 2], [5, 6]]) b.shape dot_product(b, a) b.dot(a)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/675/129675358.ipynb
null
null
[{"Id": 129675358, "ScriptId": 38555066, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14335370, "CreationDate": "05/15/2023 16:48:05", "VersionNumber": 1.0, "Title": "dotProduct", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 52.0, "LinesInsertedFromPrevious": 52.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session def dot_product(a, b): c = [[0] * a.shape[0] for _ in range(b.shape[1])] if a.shape[0] == b.shape[1]: for i in range(a.shape[0]): for j in range(b.shape[1]): c[i][j] = np.sum(a[i, :] * b[:, j]) print("Dot product of a and b is:\n", c) else: print( "No. of columns of first vector should match with \ No. of rows of the second vector" ) sample1 = [1, 2, 3, 4, 5] sample2 = [2, 1, 1, 1, 1] # dot_product(sample1, sample2) a = np.array([[1, 2, 3], [5, 6, 4]]) b = np.array([[3, 4], [5, 7], [4, 8]]) c = np.array([[1, 2], [5, 6]]) b.shape dot_product(b, a) b.dot(a)
false
0
459
0
459
459
129232572
# ![transformer Model Encoder and Decoder](https://machinelearningmastery.com/wp-content/uploads/2021/10/transformer_1.png) from tensorflow.keras.layers import LayerNormalization, Layer, Dense, ReLU, Dropout # **Import For Multi-head Attention Layer** from tensorflow import matmul, math, reshape, shape, transpose, cast, float32 from tensorflow.keras.layers import Dense, Layer from keras.backend import softmax from numpy import random # ****Implement the the scaled-dot product attention**** class DotProductAttention(Layer): def __init__(self, **kwargs): super(DotProductAttention, self).__init__(**kwargs) def call(self, queries, keys, values, d_k, mask=None): scores = matmul(queries, keys, transpose_b=True) / math.sqrt(cast(d_k, float32)) if mask is not None: scores += -1e9 * mask weights = softmax(scores) return matmul(weights, values) # **Implementing Multi-head attention** class MultiHeadAttention(Layer): def __init__(self, h, d_k, d_v, d_model, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.attention = DotProductAttention() self.heads = h self.d_k = d_k self.d_v = d_v self.d_model = d_model self.W_q = Dense(d_k) self.W_k = Dense(d_k) self.W_v = Dense(d_v) self.W_o = Dense(d_model) def reshape_tensor(self, x, heads, flag): if flag: # (batch_size, heads, seq_lenght, -1) x = reshape(x, shape=(shape(x)[0], shape(x)[1], heads, -1)) x = transpose(x, perm=(0, 2, 1, 3)) else: # Reverting the reshaping and transposing operations: (batch_size, seq_length, d_k) x = transpose(x, perm=(0, 2, 1, 3)) x = reshape(x, shape=(shape(x)[0], shape(x)[1], self.d_k)) return x def call(self, queries, keys, values, mask=None): q_reshaped = self.reshape_tensor(self.W_q(queries), self.heads, True) k_reshaped = self.reshape_tensor(self.W_k(keys), self.heads, True) v_reshaped = self.reshape_tensor(self.W_v(values), self.heads, True) o_reshaped = self.attention(q_reshaped, k_reshaped, v_reshaped, self.d_k, mask) output = self.reshape_tensor(o_reshaped, self.heads, False) return self.W_o(output) # ## **Positional Embedding Fixed Layers** import tensorflow as tf from tensorflow import convert_to_tensor, string from tensorflow.keras.layers import TextVectorization, Embedding, Layer from tensorflow.data import Dataset import numpy as np import matplotlib.pyplot as plt class PositionEmbeddingFixedWeights(Layer): def __init__(self, sequence_length, vocab_size, output_dim, **kwargs): super(PositionEmbeddingFixedWeights, self).__init__(**kwargs) word_embedding_matrix = self.get_position_encoding(vocab_size, output_dim) position_embedding_matrix = self.get_position_encoding( sequence_length, output_dim ) self.word_embedding_layer = Embedding( input_dim=vocab_size, output_dim=output_dim, weights=[word_embedding_matrix], trainable=False, ) self.position_embedding_layer = Embedding( input_dim=sequence_length, output_dim=output_dim, weights=[position_embedding_matrix], trainable=False, ) def get_position_encoding(self, seq_len, d, n=10000): P = np.zeros((seq_len, d)) for k in range(seq_len): for i in np.arange(int(d / 2)): denominator = np.power(n, 2 * i / d) P[k, 2 * i] = np.sin(k / denominator) P[k, 2 * i + 1] = np.cos(k / denominator) return P def call(self, inputs): position_indices = tf.range(tf.shape(inputs)[-1]) embedded_indices = self.position_embedding_layer(position_indices) embedded_words = self.word_embedding_layer(inputs) return embedded_words + embedded_indices # ## **Transformer Encoder** from tensorflow.keras.layers import LayerNormalization, Layer, Dense, ReLU, Dropout # **Implementing the Add and Norm Layer** class AddNormalization(Layer): def __init__(self, **kwargs): super(AddNormalization, self).__init__(**kwargs) self.layer_norm = LayerNormalization() # Layer Normalization Layer def call(self, x, sublayer_x): # The sublayer input and output need to be of the same shape to be summed add = x + sublayer_x # Apply layer normalization to the sum return self.layer_norm(add) # **Implementing the Feed-Forward Layer** class FeedForward(Layer): def __init__(self, d_ff, d_model, **kwargs): super(FeedForward, self).__init__(**kwargs) self.fully_connected1 = Dense( d_ff ) # First fully connected layer shape(batch_size, seq_length, d_ff) self.activation = ( ReLU() ) # ReLU activation layer shape(batch_size, seq_length, d_ff) self.fully_connected2 = Dense( d_model ) # Second fully connected layer shape(batch_size, seq_length, d_model) def call(self, x): # The input is passed into the two fully-connected layers, with a ReLU in between x_fc1 = self.fully_connected1(x) # return self.fully_connected2(self.activation(x_fc1)) # **Implementing the Encoder Layer** class EncoderLayer(Layer): def __init__(self, h, d_k, d_v, d_model, d_ff, rate, **kwargs): super(EncoderLayer, self).__init__(**kwargs) self.multihead_attention = MultiHeadAttention(h, d_k, d_v, d_model) self.dropout1 = Dropout(rate) self.add_norm1 = AddNormalization() self.feed_forward = FeedForward(d_ff, d_model) self.dropout2 = Dropout(rate) self.add_norm2 = AddNormalization() def call(self, x, padding_mask, training): # Multi-head attention layer multihead_output = self.multihead_attention(x, x, x, padding_mask) # Expected output shape = (batch_size, sequence_length, d_model) # Add in a dropout layer multihead_output = self.dropout1(multihead_output, training=training) # Followed by an add & norm layer addnorm_output = self.add_norm1(x, multihead_output) # Expected output shape = (batch_size, sequence_length, d_model) # Followed by a fully connected layer feedforward_output = self.feed_forward(addnorm_output) # Expected output shape = (batch_size, sequence_length, d_model) # Add in another dropout layer feedforward_output = self.dropout2(feedforward_output, training=training) # Expected output shape = (batch_size, sequence_length, d_model) # Followed by another Add & Norm Layer return self.add_norm2(addnorm_output, feedforward_output) # Expected output shape = (batch_size, sequence_length, d_model) # **Implementing the Encoder** class Encoder(Layer): def __init__( self, vocab_size, sequence_length, h, d_k, d_v, d_model, d_ff, n, rate, **kwargs ): super(Encoder, self).__init__(**kwargs) self.pos_encoding = PositionEmbeddingFixedWeights( sequence_length, vocab_size, d_model ) self.dropout = Dropout(rate) self.encoder_layer = [ EncoderLayer(h, d_k, d_v, d_model, d_ff, rate) for _ in range(n) ] def call(self, input_sentence, padding_mask, training): # Generate the positional encoding pos_encoding_output = self.pos_encoding(input_sentence) # Expected output shape = (batch_size, sequence_length, d_model) # Add in a dropout layer x = self.dropout(pos_encoding_output, training=training) # Pass on the positional encoded values to each encoder layer for i, layer in enumerate(self.encoder_layer): x = layer( x, padding_mask, training ) # this the arguments of call() function of EncoderLayer class return x # ## **Testing out the code** h = 8 # Number of self-attention heads d_k = 64 # Dimentionality of the linearly projected queries and keys d_v = 64 # Dimentionality of the linearly projected values d_ff = 2048 # Dimentionality of the inner fully connected layer d_model = 512 # Dimentionality of the model sub-layers' outputs n = 6 # Number of layers in the encoder stack batch_size = 64 # Batch size from the training process dropout_rate = 0.1 # Frequency of dropping the input units in the dropout layers enc_vocab_size = 20 # vocabulary size for the encoder input_seq_length = 5 # Maximum length of the input sequence input_seq = random.random((batch_size, input_seq_length)) len(input_seq[0]) encoder = Encoder( enc_vocab_size, input_seq_length, h, d_k, d_v, d_model, d_ff, n, dropout_rate ) print(encoder(input_seq, None, True))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/232/129232572.ipynb
null
null
[{"Id": 129232572, "ScriptId": 38144128, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 6877706, "CreationDate": "05/12/2023 03:47:13", "VersionNumber": 1.0, "Title": "Transformer_encoder", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 211.0, "LinesInsertedFromPrevious": 211.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# ![transformer Model Encoder and Decoder](https://machinelearningmastery.com/wp-content/uploads/2021/10/transformer_1.png) from tensorflow.keras.layers import LayerNormalization, Layer, Dense, ReLU, Dropout # **Import For Multi-head Attention Layer** from tensorflow import matmul, math, reshape, shape, transpose, cast, float32 from tensorflow.keras.layers import Dense, Layer from keras.backend import softmax from numpy import random # ****Implement the the scaled-dot product attention**** class DotProductAttention(Layer): def __init__(self, **kwargs): super(DotProductAttention, self).__init__(**kwargs) def call(self, queries, keys, values, d_k, mask=None): scores = matmul(queries, keys, transpose_b=True) / math.sqrt(cast(d_k, float32)) if mask is not None: scores += -1e9 * mask weights = softmax(scores) return matmul(weights, values) # **Implementing Multi-head attention** class MultiHeadAttention(Layer): def __init__(self, h, d_k, d_v, d_model, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.attention = DotProductAttention() self.heads = h self.d_k = d_k self.d_v = d_v self.d_model = d_model self.W_q = Dense(d_k) self.W_k = Dense(d_k) self.W_v = Dense(d_v) self.W_o = Dense(d_model) def reshape_tensor(self, x, heads, flag): if flag: # (batch_size, heads, seq_lenght, -1) x = reshape(x, shape=(shape(x)[0], shape(x)[1], heads, -1)) x = transpose(x, perm=(0, 2, 1, 3)) else: # Reverting the reshaping and transposing operations: (batch_size, seq_length, d_k) x = transpose(x, perm=(0, 2, 1, 3)) x = reshape(x, shape=(shape(x)[0], shape(x)[1], self.d_k)) return x def call(self, queries, keys, values, mask=None): q_reshaped = self.reshape_tensor(self.W_q(queries), self.heads, True) k_reshaped = self.reshape_tensor(self.W_k(keys), self.heads, True) v_reshaped = self.reshape_tensor(self.W_v(values), self.heads, True) o_reshaped = self.attention(q_reshaped, k_reshaped, v_reshaped, self.d_k, mask) output = self.reshape_tensor(o_reshaped, self.heads, False) return self.W_o(output) # ## **Positional Embedding Fixed Layers** import tensorflow as tf from tensorflow import convert_to_tensor, string from tensorflow.keras.layers import TextVectorization, Embedding, Layer from tensorflow.data import Dataset import numpy as np import matplotlib.pyplot as plt class PositionEmbeddingFixedWeights(Layer): def __init__(self, sequence_length, vocab_size, output_dim, **kwargs): super(PositionEmbeddingFixedWeights, self).__init__(**kwargs) word_embedding_matrix = self.get_position_encoding(vocab_size, output_dim) position_embedding_matrix = self.get_position_encoding( sequence_length, output_dim ) self.word_embedding_layer = Embedding( input_dim=vocab_size, output_dim=output_dim, weights=[word_embedding_matrix], trainable=False, ) self.position_embedding_layer = Embedding( input_dim=sequence_length, output_dim=output_dim, weights=[position_embedding_matrix], trainable=False, ) def get_position_encoding(self, seq_len, d, n=10000): P = np.zeros((seq_len, d)) for k in range(seq_len): for i in np.arange(int(d / 2)): denominator = np.power(n, 2 * i / d) P[k, 2 * i] = np.sin(k / denominator) P[k, 2 * i + 1] = np.cos(k / denominator) return P def call(self, inputs): position_indices = tf.range(tf.shape(inputs)[-1]) embedded_indices = self.position_embedding_layer(position_indices) embedded_words = self.word_embedding_layer(inputs) return embedded_words + embedded_indices # ## **Transformer Encoder** from tensorflow.keras.layers import LayerNormalization, Layer, Dense, ReLU, Dropout # **Implementing the Add and Norm Layer** class AddNormalization(Layer): def __init__(self, **kwargs): super(AddNormalization, self).__init__(**kwargs) self.layer_norm = LayerNormalization() # Layer Normalization Layer def call(self, x, sublayer_x): # The sublayer input and output need to be of the same shape to be summed add = x + sublayer_x # Apply layer normalization to the sum return self.layer_norm(add) # **Implementing the Feed-Forward Layer** class FeedForward(Layer): def __init__(self, d_ff, d_model, **kwargs): super(FeedForward, self).__init__(**kwargs) self.fully_connected1 = Dense( d_ff ) # First fully connected layer shape(batch_size, seq_length, d_ff) self.activation = ( ReLU() ) # ReLU activation layer shape(batch_size, seq_length, d_ff) self.fully_connected2 = Dense( d_model ) # Second fully connected layer shape(batch_size, seq_length, d_model) def call(self, x): # The input is passed into the two fully-connected layers, with a ReLU in between x_fc1 = self.fully_connected1(x) # return self.fully_connected2(self.activation(x_fc1)) # **Implementing the Encoder Layer** class EncoderLayer(Layer): def __init__(self, h, d_k, d_v, d_model, d_ff, rate, **kwargs): super(EncoderLayer, self).__init__(**kwargs) self.multihead_attention = MultiHeadAttention(h, d_k, d_v, d_model) self.dropout1 = Dropout(rate) self.add_norm1 = AddNormalization() self.feed_forward = FeedForward(d_ff, d_model) self.dropout2 = Dropout(rate) self.add_norm2 = AddNormalization() def call(self, x, padding_mask, training): # Multi-head attention layer multihead_output = self.multihead_attention(x, x, x, padding_mask) # Expected output shape = (batch_size, sequence_length, d_model) # Add in a dropout layer multihead_output = self.dropout1(multihead_output, training=training) # Followed by an add & norm layer addnorm_output = self.add_norm1(x, multihead_output) # Expected output shape = (batch_size, sequence_length, d_model) # Followed by a fully connected layer feedforward_output = self.feed_forward(addnorm_output) # Expected output shape = (batch_size, sequence_length, d_model) # Add in another dropout layer feedforward_output = self.dropout2(feedforward_output, training=training) # Expected output shape = (batch_size, sequence_length, d_model) # Followed by another Add & Norm Layer return self.add_norm2(addnorm_output, feedforward_output) # Expected output shape = (batch_size, sequence_length, d_model) # **Implementing the Encoder** class Encoder(Layer): def __init__( self, vocab_size, sequence_length, h, d_k, d_v, d_model, d_ff, n, rate, **kwargs ): super(Encoder, self).__init__(**kwargs) self.pos_encoding = PositionEmbeddingFixedWeights( sequence_length, vocab_size, d_model ) self.dropout = Dropout(rate) self.encoder_layer = [ EncoderLayer(h, d_k, d_v, d_model, d_ff, rate) for _ in range(n) ] def call(self, input_sentence, padding_mask, training): # Generate the positional encoding pos_encoding_output = self.pos_encoding(input_sentence) # Expected output shape = (batch_size, sequence_length, d_model) # Add in a dropout layer x = self.dropout(pos_encoding_output, training=training) # Pass on the positional encoded values to each encoder layer for i, layer in enumerate(self.encoder_layer): x = layer( x, padding_mask, training ) # this the arguments of call() function of EncoderLayer class return x # ## **Testing out the code** h = 8 # Number of self-attention heads d_k = 64 # Dimentionality of the linearly projected queries and keys d_v = 64 # Dimentionality of the linearly projected values d_ff = 2048 # Dimentionality of the inner fully connected layer d_model = 512 # Dimentionality of the model sub-layers' outputs n = 6 # Number of layers in the encoder stack batch_size = 64 # Batch size from the training process dropout_rate = 0.1 # Frequency of dropping the input units in the dropout layers enc_vocab_size = 20 # vocabulary size for the encoder input_seq_length = 5 # Maximum length of the input sequence input_seq = random.random((batch_size, input_seq_length)) len(input_seq[0]) encoder = Encoder( enc_vocab_size, input_seq_length, h, d_k, d_v, d_model, d_ff, n, dropout_rate ) print(encoder(input_seq, None, True))
false
0
2,509
0
2,509
2,509
129232687
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import transformers import tensorflow as tf from transformers import TFAutoModel, AutoTokenizer from datasets import Dataset, DatasetDict from sklearn.model_selection import train_test_split, KFold from tensorflow.keras.callbacks import EarlyStopping, Callback from tensorflow.keras.optimizers.schedules import ExponentialDecay from kerastuner.tuners import RandomSearch from kerastuner.engine.hyperparameters import HyperParameters train_df = pd.read_csv("/kaggle/input/nlp-disaster-tweets/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-disaster-tweets/test.csv") X_train = train_df.drop(columns=["keyword", "location", "target"]) y_train = train_df["target"] from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.2, random_state=42 ) import tensorflow as tf import transformers # Load the pre-trained BERT tokenizer tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") # Define the model architecture model = transformers.TFBertForSequenceClassification.from_pretrained( "bert-base-uncased" ) # Tokenize the input text train_encodings = tokenizer(X_train["text"].tolist(), truncation=True, padding=True) val_encodings = tokenizer(X_val["text"].tolist(), truncation=True, padding=True) # Create TensorFlow datasets from the tokenized encodings and labels train_dataset = ( tf.data.Dataset.from_tensor_slices((dict(train_encodings), y_train.values)) .shuffle(len(X_train)) .batch(32) ) val_dataset = tf.data.Dataset.from_tensor_slices( (dict(val_encodings), y_val.values) ).batch(32) # Train the model optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) model.fit(train_dataset, validation_data=val_dataset, epochs=3) # Tokenize the test input text test_encodings = tokenizer(test_df["text"].tolist(), truncation=True, padding=True) # Create a TensorFlow dataset from the tokenized encodings test_dataset = tf.data.Dataset.from_tensor_slices(dict(test_encodings)).batch(32) # Use the trained model to predict the target labels for the test data predictions = model.predict(test_dataset) # Convert the predicted probabilities to predicted labels predicted_labels = tf.argmax(predictions.logits, axis=1) # Print the predicted labels print(predicted_labels) # Predict on the validation set y_pred = model.predict(val_dataset) # Get the predicted labels y_pred_labels = np.argmax(y_pred.logits, axis=1) # Get the true labels y_true = y_val.values # Compute the evaluation metrics from sklearn.metrics import classification_report print(classification_report(y_true, y_pred_labels))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/232/129232687.ipynb
null
null
[{"Id": 129232687, "ScriptId": 38414468, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13908764, "CreationDate": "05/12/2023 03:48:56", "VersionNumber": 1.0, "Title": "nlp-disaster-tweets1", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 102.0, "LinesInsertedFromPrevious": 102.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import transformers import tensorflow as tf from transformers import TFAutoModel, AutoTokenizer from datasets import Dataset, DatasetDict from sklearn.model_selection import train_test_split, KFold from tensorflow.keras.callbacks import EarlyStopping, Callback from tensorflow.keras.optimizers.schedules import ExponentialDecay from kerastuner.tuners import RandomSearch from kerastuner.engine.hyperparameters import HyperParameters train_df = pd.read_csv("/kaggle/input/nlp-disaster-tweets/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-disaster-tweets/test.csv") X_train = train_df.drop(columns=["keyword", "location", "target"]) y_train = train_df["target"] from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.2, random_state=42 ) import tensorflow as tf import transformers # Load the pre-trained BERT tokenizer tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") # Define the model architecture model = transformers.TFBertForSequenceClassification.from_pretrained( "bert-base-uncased" ) # Tokenize the input text train_encodings = tokenizer(X_train["text"].tolist(), truncation=True, padding=True) val_encodings = tokenizer(X_val["text"].tolist(), truncation=True, padding=True) # Create TensorFlow datasets from the tokenized encodings and labels train_dataset = ( tf.data.Dataset.from_tensor_slices((dict(train_encodings), y_train.values)) .shuffle(len(X_train)) .batch(32) ) val_dataset = tf.data.Dataset.from_tensor_slices( (dict(val_encodings), y_val.values) ).batch(32) # Train the model optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) model.fit(train_dataset, validation_data=val_dataset, epochs=3) # Tokenize the test input text test_encodings = tokenizer(test_df["text"].tolist(), truncation=True, padding=True) # Create a TensorFlow dataset from the tokenized encodings test_dataset = tf.data.Dataset.from_tensor_slices(dict(test_encodings)).batch(32) # Use the trained model to predict the target labels for the test data predictions = model.predict(test_dataset) # Convert the predicted probabilities to predicted labels predicted_labels = tf.argmax(predictions.logits, axis=1) # Print the predicted labels print(predicted_labels) # Predict on the validation set y_pred = model.predict(val_dataset) # Get the predicted labels y_pred_labels = np.argmax(y_pred.logits, axis=1) # Get the true labels y_true = y_val.values # Compute the evaluation metrics from sklearn.metrics import classification_report print(classification_report(y_true, y_pred_labels))
false
0
1,007
0
1,007
1,007
129232996
# Running on GPU: # Helper function, used these for debugging purposes # detector2 build only succeeds if CUDA version is correct #!nvidia-smi #!nvcc --version # import torch # torch.__version__ # import torchvision # torchvision.__version__ # Base setup: # detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # common libraries import numpy as np import os, json, cv2, random import matplotlib.pyplot as plt # detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.structures import BoxMode # ## Running model on a single frame im = cv2.imread("/kaggle/working/input.jpg") plt.figure(figsize=(15, 7.5)) plt.imshow(im[..., ::-1]) # bgr to rgb from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import torch from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import math def get_persons_objects(instances): pred_classes = instances.pred_classes pred_boxes = instances.pred_boxes pred_scores = instances.scores new_boxes = Boxes(torch.tensor([])) new_classes = torch.tensor([]) new_scores = torch.tensor([]) for i, t in enumerate(pred_classes): if t.item() == 0: new_classes = torch.cat((new_classes, t.unsqueeze(0).to("cpu:0"))) new_boxes = Boxes.cat((new_boxes, pred_boxes[i].to("cpu:0"))) new_scores = torch.cat( (new_scores, pred_scores[i].unsqueeze(0).to("cpu:0")) ) pred_classes = new_classes pred_boxes = new_boxes scores = new_scores return pred_classes, pred_boxes, scores cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") ) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) predictor = DefaultPredictor(cfg) outputs = predictor(im[..., ::-1]) pred_classes, pred_boxes, pred_scores = get_persons_objects( outputs["instances"].to("cpu") ) instances = Instances( image_size=im.shape[:2], pred_boxes=pred_boxes, pred_classes=pred_classes.int(), ) v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_instance_predictions(instances.to("cpu")) plt.figure(figsize=(15, 7.5)) plt.imshow(out.get_image()) # #### Running the same code over 10 different frames from the video # input_file = "video5.mp4" print("Execution starts....") # Open the input video file input_video = cv2.VideoCapture(input_file) detections = np.empty((0, 5)) frame_count = 0 # Loop over the frames in the input video while True: # Read the next frame from the input video ret, im = input_video.read() if not ret: break print(f"Processing frame:{frame_count}", end=" | ") outputs = predictor(im) instances = outputs["instances"].to("cpu") pred_classes, pred_boxes, scores = get_persons_objects(instances) instances = Instances( image_size=im.shape[:2], pred_boxes=pred_boxes, pred_classes=pred_classes.int(), scores=scores, ) v = Visualizer( im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2 ) out = v.draw_instance_predictions(instances.to("cpu")) plt.figure(figsize=(15, 7.5)) plt.imshow(out.get_image()) print("Total Person objects found: ", pred_classes.shape[0]) frame_count += 100 # each Nth frame input_video.set(cv2.CAP_PROP_POS_FRAMES, frame_count) print("ALL DONE!") input_video.release() # # Segmentation # #### On a single frame im2 = cv2.imread("/kaggle/working/input2.jpg") from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import torch from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import math def get_persons_objects(instances): pred_classes = instances.pred_classes pred_boxes = instances.pred_boxes pred_scores = instances.scores new_boxes = Boxes(torch.tensor([])) new_classes = torch.tensor([]) new_scores = torch.tensor([]) for i, t in enumerate(pred_classes): if t.item() == 0: new_classes = torch.cat((new_classes, t.unsqueeze(0).to("cpu:0"))) new_boxes = Boxes.cat((new_boxes, pred_boxes[i].to("cpu:0"))) new_scores = torch.cat( (new_scores, pred_scores[i].unsqueeze(0).to("cpu:0")) ) pred_classes = new_classes pred_boxes = new_boxes scores = new_scores return pred_classes, pred_boxes, scores cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml") ) cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( "COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml" ) predictor = DefaultPredictor(cfg) panoptic_seg, segments_info = predictor(im2)["panoptic_seg"] v = Visualizer(im2[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info) plt.figure(figsize=(25, 15)) plt.imshow(out.get_image()[:, :, ::-1][..., ::-1])
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/232/129232996.ipynb
null
null
[{"Id": 129232996, "ScriptId": 38420584, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 1780352, "CreationDate": "05/12/2023 03:52:39", "VersionNumber": 1.0, "Title": "Detectron2 over video frames", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 206.0, "LinesInsertedFromPrevious": 151.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 55.0, "LinesInsertedFromFork": 151.0, "LinesDeletedFromFork": 367.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 55.0, "TotalVotes": 0}]
null
null
null
null
# Running on GPU: # Helper function, used these for debugging purposes # detector2 build only succeeds if CUDA version is correct #!nvidia-smi #!nvcc --version # import torch # torch.__version__ # import torchvision # torchvision.__version__ # Base setup: # detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # common libraries import numpy as np import os, json, cv2, random import matplotlib.pyplot as plt # detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.structures import BoxMode # ## Running model on a single frame im = cv2.imread("/kaggle/working/input.jpg") plt.figure(figsize=(15, 7.5)) plt.imshow(im[..., ::-1]) # bgr to rgb from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import torch from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import math def get_persons_objects(instances): pred_classes = instances.pred_classes pred_boxes = instances.pred_boxes pred_scores = instances.scores new_boxes = Boxes(torch.tensor([])) new_classes = torch.tensor([]) new_scores = torch.tensor([]) for i, t in enumerate(pred_classes): if t.item() == 0: new_classes = torch.cat((new_classes, t.unsqueeze(0).to("cpu:0"))) new_boxes = Boxes.cat((new_boxes, pred_boxes[i].to("cpu:0"))) new_scores = torch.cat( (new_scores, pred_scores[i].unsqueeze(0).to("cpu:0")) ) pred_classes = new_classes pred_boxes = new_boxes scores = new_scores return pred_classes, pred_boxes, scores cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") ) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) predictor = DefaultPredictor(cfg) outputs = predictor(im[..., ::-1]) pred_classes, pred_boxes, pred_scores = get_persons_objects( outputs["instances"].to("cpu") ) instances = Instances( image_size=im.shape[:2], pred_boxes=pred_boxes, pred_classes=pred_classes.int(), ) v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_instance_predictions(instances.to("cpu")) plt.figure(figsize=(15, 7.5)) plt.imshow(out.get_image()) # #### Running the same code over 10 different frames from the video # input_file = "video5.mp4" print("Execution starts....") # Open the input video file input_video = cv2.VideoCapture(input_file) detections = np.empty((0, 5)) frame_count = 0 # Loop over the frames in the input video while True: # Read the next frame from the input video ret, im = input_video.read() if not ret: break print(f"Processing frame:{frame_count}", end=" | ") outputs = predictor(im) instances = outputs["instances"].to("cpu") pred_classes, pred_boxes, scores = get_persons_objects(instances) instances = Instances( image_size=im.shape[:2], pred_boxes=pred_boxes, pred_classes=pred_classes.int(), scores=scores, ) v = Visualizer( im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2 ) out = v.draw_instance_predictions(instances.to("cpu")) plt.figure(figsize=(15, 7.5)) plt.imshow(out.get_image()) print("Total Person objects found: ", pred_classes.shape[0]) frame_count += 100 # each Nth frame input_video.set(cv2.CAP_PROP_POS_FRAMES, frame_count) print("ALL DONE!") input_video.release() # # Segmentation # #### On a single frame im2 = cv2.imread("/kaggle/working/input2.jpg") from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import torch from detectron2.structures import Boxes import detectron2.structures.boxes as box_ops from detectron2.structures import Boxes, Instances import math def get_persons_objects(instances): pred_classes = instances.pred_classes pred_boxes = instances.pred_boxes pred_scores = instances.scores new_boxes = Boxes(torch.tensor([])) new_classes = torch.tensor([]) new_scores = torch.tensor([]) for i, t in enumerate(pred_classes): if t.item() == 0: new_classes = torch.cat((new_classes, t.unsqueeze(0).to("cpu:0"))) new_boxes = Boxes.cat((new_boxes, pred_boxes[i].to("cpu:0"))) new_scores = torch.cat( (new_scores, pred_scores[i].unsqueeze(0).to("cpu:0")) ) pred_classes = new_classes pred_boxes = new_boxes scores = new_scores return pred_classes, pred_boxes, scores cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml") ) cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( "COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml" ) predictor = DefaultPredictor(cfg) panoptic_seg, segments_info = predictor(im2)["panoptic_seg"] v = Visualizer(im2[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info) plt.figure(figsize=(25, 15)) plt.imshow(out.get_image()[:, :, ::-1][..., ::-1])
false
0
1,744
0
1,744
1,744
129348580
<jupyter_start><jupyter_text>Photovoltaic System O&M inspection According to [one of the three articles](https://onlinelibrary.wiley.com/doi/10.1002/pip.3564) that explains how [PV-HAWK](https://lukasbommes.github.io/PV-Hawk/index.html) ([MIT License](https://github.com/LukasBommes/PV-Hawk/blob/master/LICENSE)) tool works, five different PV plants were used to train one of the models used by this tool. The plants were named A, B, C, D and E for anonymization purposes. This dataset is a sample from the first 12 arrays of PV plant A. --- # 1. Context Both large and small photovoltaic systems are susceptible to failures in their equipment, especially in modules due to operational stresses that are exposed and errors during the installation process of these devices. Although numerous internal and external factors originate these failures, the common phenomenon presented by several of them is hot spots on module defective area. The immediate impact is perceptible in the reduction of the generated power and, in the long term, in the reduction of the useful life of the equipment due to the high temperatures presented. The preventive maintenance method for recognizing this phenomenon is the use of thermography images in inspections of photovoltaic modules. Through this procedure, faulty modules are immediately identified with failures at an early stage due to their high heat signatures compared to the others, captured by cameras with infrared sensors. Currently, the use of this type of camera attached to drones stands out for providing an increase in the inspection area and a reduction in its execution time. To understand more about this, read these reports by International energy agency (IEA): - [ Review of failures of PV modules](https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf); - [Review of IR and EL images applications for PV systems](https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_for_PV_Field_Applications_by_Task_13.pdf). ## 1.1 Photovoltaic system specifications Acording to the [dataset article](https://onlinelibrary.wiley.com/doi/10.1002/pip.3564), the photovoltaic system on which the thermographic inspection was carried out is located in Germany and it's composed of 2376 PV polycrystalline silicon modules, measuring 1650 x 992 mm (60-cell) each. The images in this dataset refer to the region marked in red in the google maps screenshot of the photovoltaic system location. <br> ![mmap-view](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2Feec309356a2e4c8952760988cd2821af%2Fsingle_row_view_marked.png?generation=1683922301029439&alt=media) <br> ## 1.2 Thermal inspection specifications The inspection took place under clearsky conditions and solar irradiance above 700 W/m². In the table bellow more detail are presented for the weather parameters that influence thermography inspections. | Number of modules | Distance (m) | Peak velocity (m/s) | Air Temperature (ºC)| Global radiation (J/cm²)| Wind speed (m/s)| | --- | --- | -- | --- | --- | --- | | 13640 | 7612 | 4.1 | 25 | 39.7 | 2.8 | The drone used was a DJI model MATRICE 210 coupled with a FLIR XT2 thermal camera and with the following specifications: - Thermal resolution of 640x512 pixels; - Visual resolution of 1280x720 pixels; - Focal length of 13 mm; - Frame rate of 8 Hz . The drone was controlled manually, positioned at an altitude of 10 m to 30 m from the ground with a velocity that ensures blur-free images. The camera orientation was facing vertically downwards (nadir) at all times. Aiming at reducing inspection cost and duration, especially for increasing the drone range before a battery change is needed, the images were sequentially scanned considering two types of PV arrays layouts: only one single array appears in the image and then two arrays. <br> ![single-row](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2F91a35c44b2ad32d177f58cbffa5af01b%2Fflight_modes_single_row.png?generation=1683916389566047&alt=media) <br> ![double-row](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2F0b6230c3ccefac739b36cbd99205b9de%2Fflight_modes_double_row.png?generation=1683916409173718&alt=media) <br> As showed in the table bellow, scanning two rows simultaneously speeds up the flight duration by a factor of 2.1, decreases flight distance by a factor of 1.9 and increases module throughput by a factor of 2.09. Despite these benefits, the resolution of extracted PV module images reduces. | Inspection layout | Flight distance (m) | Flight duration (s) | Average module resolution (px) |Module throughput (1/s) | | --- | --- | --- | --- | --- | | Single row | 1307 | 707 | 141 X 99 | 3.36 | | Double row | 681 | 338 | 73 X 50 | 7.03 | ## 1.3 Dataset organization The images are separated by type of inspection in different folders (single or double rows). In each folder, there are thermographic images in TIFF format and a CSV file with drone's geospatial and temporal data during the inspection. Only for the double row inspection type that visual (RGB) images were acquired. Besides, I've uploaded files to use for calibrate infrared and visual cameras to correct any type of distortion that camera lenses cause. # 2. Resources - This guides by [FLIR](http://support.flir.com/appstories/AppStories/Electrical&Mechanical/Testing_solar_panels_EN.pdf) and [TESTO](https://www.murcal.com/pdf%20folder/15.testo_thermography_guide.pdf) companies are good resources to understand more about thermography in the solar modules context; - There's [another one by FLIR](https://thermalcapture.com/wp-content/uploads/2019/08/pv-system-inspection-thermal-drones-07-15-19.pdf) that explains in depth how aerial thermal inspections of photovoltaic systems are made and their importance in this field; - To understand the level of influence that the module degradation has on the yield of the photovoltaic system you can read the [IEC TS-62446-3]( https://ayscomdatatec.com/wp-content/uploads/2019/09/Normativa-IEC-TS-62446-3.pdf) and the [Raptor maps's knoledge hub](https://raptormaps.com/solar-tech-docs/). # 3. Inspiration A service often provided by companies in this area is a SaaS that displays the detected faulty modules in an bird's eye view of the photovoltaic system and calculate the energy loss, like the image bellow shows. One can create a web app (using streamlit or plotly/dash) that detect PV modules with a instance segmentation model, track them with a object tracker and classify their integrity (binary or multiclass classification) with a image classification model. <br> ![solution-example](https://raptormaps.com/wp-content/uploads/2021/04/Raptor-Maps-Solar-Asset-Deliverables.png) <br> This idea can be used for guiding a maintenance team in order to intervene and replace panels if necessary. Kaggle dataset identifier: photovoltaic-system-o-and-m-inspection <jupyter_script>import pickle from pathlib import Path import tifffile as tif import cv2 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import pandas as pd # # 1. Dataset Reading # The best way is to first read the metadata files from both datasets SINGLE_ROW_METADATA_PATH = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/single-row/metadata.csv" columns_to_rename = {"thermal image name": "thermal_image_name"} sr_metadata = pd.read_csv(SINGLE_ROW_METADATA_PATH).rename(columns=columns_to_rename) sr_metadata.head() DOUBLE_ROW_METADATA_PATH = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/metadata.csv" columns_to_rename = { "thermal image name": "thermal_image_name", "rgb image name": "rgb_image_name", } dr_metadata = pd.read_csv(DOUBLE_ROW_METADATA_PATH).rename(columns=columns_to_rename) dr_metadata.head() # We need to get the full path for the images def get_image_full_path(image_name, image_type): if image_type == "single_row_thermal": origin_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/single-row/thermal images" elif image_type == "double_row_thermal": origin_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/thermal images" elif image_type == "double_row_rgb": origin_path = ( origin_path ) = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/rgb images" return Path(origin_path, image_name) sr_metadata = sr_metadata.assign( thermal_image_name=sr_metadata.thermal_image_name.apply( lambda x: get_image_full_path(x, "single_row_thermal") ) ).assign(timestamp=pd.to_datetime(sr_metadata.timestamp)) dr_metadata = ( dr_metadata.assign( thermal_image_name=dr_metadata.thermal_image_name.apply( lambda x: get_image_full_path(x, "double_row_thermal") ) ) .assign( rgb_image_name=dr_metadata.rgb_image_name.apply( lambda x: get_image_full_path(x, "double_row_rgb") ) ) .assign(timestamp=pd.to_datetime(sr_metadata.timestamp)) ) # **Now we can load the images!** # I've created the Thermogram class just to be possible to get the thermal image and the converted one in the same object like [Flyr library](https://bitbucket.org/nimmerwoner/flyr/src/master/) does class Thermogram: def __init__(self, path: Path): self.path = path @property def celsius(self) -> np.ndarray: return (tif.imread(self.path.as_posix()) * 0.04) - 273.15 def render(self) -> np.ndarray: image = self.celsius image = (image - np.min(image)) / (np.max(image) - np.min(image)) return (image * 255.0).astype(np.uint8) def load_image(image_path: Path): image_format = image_path.suffix if image_format == ".jpg": return cv2.imread(image_path.as_posix()) elif image_format == ".tiff": return Thermogram(image_path) image_number = 57 thermogram = load_image(sr_metadata.thermal_image_name[image_number]) _, ax = plt.subplots(1, 2) im = ax[0].imshow(thermogram.celsius, cmap="inferno") ax[0].set_title("Thermography image") ax[0].set_axis_off() ax[1].imshow(thermogram.render(), cmap="gray") ax[1].set_title("Rendered image (8 bit image)") ax[1].set_axis_off() cax = make_axes_locatable(ax[0]).append_axes("right", size="5%", pad=0.05) plt.colorbar( im, cax=cax, values=np.unique(thermogram.celsius), label="Temperature (ºC)" ) plt.tight_layout() plt.show() thermogram = load_image(dr_metadata.thermal_image_name[image_number]) visual = load_image(dr_metadata.rgb_image_name[image_number]) _, ax = plt.subplots(1, 3, figsize=(10, 5)) im = ax[0].imshow(thermogram.celsius, cmap="inferno") ax[0].set_title("Thermography image") ax[0].set_axis_off() ax[1].imshow(thermogram.render(), cmap="gray") ax[1].set_title("Rendered image (8 bit image)") ax[1].set_axis_off() ax[2].imshow(visual[:, :, ::-1]) ax[2].set_title("Visual image") ax[2].set_axis_off() cax = make_axes_locatable(ax[0]).append_axes("right", size="5%", pad=0.05) plt.colorbar( im, cax=cax, values=np.unique(thermogram.celsius), label="Temperature (ºC)" ) plt.tight_layout() plt.show() # # 2. Camera calibration # This step is important because often times the lenses of cameras create distortions in the images. In this dataset only the RGB ones were affected, but the intrinsic and extrinsic camera parameters from the IR camera can be used for other tasks like Structure from motion (as PV-HAWK does). def remove_distortion(image: np.ndarray, image_type: str = "rgb"): mapx_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/RGB/mapx.pkl" mapy_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/RGB/mapy.pkl" if image_type == "ir": mapx_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/IR/mapx.pkl" mapy_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/IR/mapy.pkl" with open(mapx_path, "rb") as mapx_file, open(mapy_path, "rb") as mapy_file: mapx = pickle.load(mapx_file) mapy = pickle.load(mapy_file) return cv2.remap( image, mapx, mapy, cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE ) undistorted_rgb = remove_distortion(visual) _, ax = plt.subplots(1, 2, figsize=(20, 5)) ax[0].imshow(visual[:, :, ::-1]) ax[0].set_title("RGB distorted") ax[0].set_axis_off() ax[1].imshow(undistorted_rgb[:, :, ::-1]) ax[1].set_title("RGB undistorted") ax[1].set_axis_off() plt.tight_layout() plt.show() undistorted_ir = remove_distortion(thermogram.render(), "ir") _, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(thermogram.render(), cmap="gray") ax[0].set_title("IR distorted") ax[0].set_axis_off() ax[1].imshow(undistorted_ir, cmap="gray") ax[1].set_title("IR undistorted") ax[1].set_axis_off() plt.tight_layout() plt.show() # # 3. Images Alignment # The best way of align the two images is by using a feature extractor and descriptor # like ORB together with ransac to determine the correlation points between them instead of this. But something odd is the fact that although the thermographic image has a lower resolution than the RGB one, it has a larger field of view because more modules appear in it from PIL import Image def get_position_for_image_fusion(fg_shape, bg_shape): bg_height = bg_shape[0] // 2 bg_width = bg_shape[1] // 2 fg_height = fg_shape[0] // 2 fg_width = fg_shape[1] // 2 return bg_width - fg_width, bg_height - fg_height position = get_position_for_image_fusion(undistorted_ir.shape, undistorted_rgb.shape) fg_image = Image.fromarray(undistorted_ir) bg_image = Image.fromarray(undistorted_rgb[:, :, ::-1]) back_image = bg_image.copy() back_image.paste(fg_image, position) back_image # # 4. Thermal Inspection # Is possible to determine parameters like the inspection time and drone path sr_inspection_time = sr_metadata.timestamp.filter([0, 5294]).diff().iloc[1].seconds dr_inspection_time = dr_metadata.timestamp.filter([0, 2540]).diff().iloc[1].seconds print( f"Single row inspection time: {sr_inspection_time // 60} minutes and {sr_inspection_time % 60} seconds" ) print( f"Double row inspection time: {dr_inspection_time // 60} minutes and {dr_inspection_time % 60} seconds" ) _, ax = plt.subplots(1, 2, figsize=(15, 5)) ax[0].scatter(sr_metadata.longitude, sr_metadata.latitude) ax[0].set_title("Single row inspection") ax[1].scatter(dr_metadata.longitude, dr_metadata.latitude) ax[1].set_title("Double row inspection") plt.show() # # 5. Defected modules # Highlight defected modules when the modules masks were created # # 6. Thermal image orthomosaic¶ # # Show how to make a thermal orthomosaic with this dataset
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/348/129348580.ipynb
photovoltaic-system-o-and-m-inspection
marcosgabriel
[{"Id": 129348580, "ScriptId": 38452073, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 5048762, "CreationDate": "05/13/2023 02:56:13", "VersionNumber": 2.0, "Title": "[DATASET INTRO] Photovoltaic System O&M inspection", "EvaluationDate": "05/13/2023", "IsChange": false, "TotalLines": 218.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 218.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185309654, "KernelVersionId": 129348580, "SourceDatasetVersionId": 5672295}]
[{"Id": 5672295, "DatasetId": 3256284, "DatasourceVersionId": 5747827, "CreatorUserId": 5048762, "LicenseName": "Other (specified in description)", "CreationDate": "05/12/2023 19:53:23", "VersionNumber": 2.0, "Title": "Photovoltaic System O&M inspection", "Slug": "photovoltaic-system-o-and-m-inspection", "Subtitle": "Thermal and RGB images from inspection of a photovoltaic system", "Description": "According to [one of the three articles](https://onlinelibrary.wiley.com/doi/10.1002/pip.3564) that explains how [PV-HAWK](https://lukasbommes.github.io/PV-Hawk/index.html) ([MIT License](https://github.com/LukasBommes/PV-Hawk/blob/master/LICENSE)) tool works, five different PV plants were used to train one of the models used by this tool. The plants were named A, B, C, D and E for anonymization purposes. This dataset is a sample from the first 12 arrays of PV plant A.\n\n---\n\n# 1. Context\n\nBoth large and small photovoltaic systems are susceptible to failures in their equipment, especially in modules due to operational stresses that are exposed and errors during the installation process of these devices. Although numerous internal and external factors originate these failures, the common phenomenon presented by several of them is hot spots on module defective area. The immediate impact is perceptible in the reduction of the generated power and, in the long term, in the reduction of the useful life of the equipment due to the high temperatures presented. The preventive maintenance method for recognizing this phenomenon is the use of thermography images in inspections of photovoltaic modules. Through this procedure, faulty modules are immediately identified with failures at an early stage due to their high heat signatures compared to the others, captured by cameras with infrared sensors. Currently, the use of this type of camera attached to drones stands out for providing an increase in the inspection area and a reduction in its execution time.\n\nTo understand more about this, read these reports by International energy agency (IEA):\n- [ Review of failures of PV modules](https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf);\n- [Review of IR and EL images applications for PV systems](https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_for_PV_Field_Applications_by_Task_13.pdf).\n\n## 1.1 Photovoltaic system specifications\n\nAcording to the [dataset article](https://onlinelibrary.wiley.com/doi/10.1002/pip.3564), the photovoltaic system on which the thermographic inspection was carried out is located in Germany and it's composed of 2376 PV polycrystalline silicon modules, measuring 1650 x 992 mm (60-cell) each.\n\nThe images in this dataset refer to the region marked in red in the google maps screenshot of the photovoltaic system location.\n\n<br>\n\n![mmap-view](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2Feec309356a2e4c8952760988cd2821af%2Fsingle_row_view_marked.png?generation=1683922301029439&alt=media)\n\n<br>\n\n## 1.2 Thermal inspection specifications\n\nThe inspection took place under clearsky conditions and solar irradiance above 700\u2009W/m\u00b2. In the table bellow more detail are presented for the weather parameters that influence thermography inspections.\n\n| Number of modules | Distance (m) | Peak velocity (m/s) | Air Temperature (\u00baC)| Global radiation (J/cm\u00b2)| Wind speed (m/s)|\n| --- | --- | -- | --- | --- | --- |\n| 13640 | 7612 | 4.1 | 25 | 39.7 | 2.8 |\n\n The drone used was a DJI model MATRICE 210 coupled with a FLIR XT2 thermal camera and with the following specifications: \n\n- Thermal resolution of 640x512 pixels;\n- Visual resolution of 1280x720 pixels;\n- Focal length of 13 mm;\n- Frame rate of 8 Hz .\n\nThe drone was controlled manually, positioned at an altitude of 10 m to 30\u2009m from the ground with a velocity that ensures blur-free images. The camera orientation was facing vertically downwards (nadir) at all times.\n\nAiming at reducing inspection cost and duration, especially for increasing the drone range before a battery change is needed, the images were sequentially scanned considering two types of PV arrays layouts: only one single array appears in the image and then two arrays.\n\n<br>\n\n![single-row](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2F91a35c44b2ad32d177f58cbffa5af01b%2Fflight_modes_single_row.png?generation=1683916389566047&alt=media)\n\n<br>\n\n![double-row](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5048762%2F0b6230c3ccefac739b36cbd99205b9de%2Fflight_modes_double_row.png?generation=1683916409173718&alt=media)\n\n<br>\n\nAs showed in the table bellow, scanning two rows simultaneously speeds up the flight duration by a factor of 2.1, decreases flight distance by a factor of 1.9 and increases module throughput by a factor of 2.09. Despite these benefits, the resolution of extracted PV module images reduces.\n\n| Inspection layout | Flight distance (m) | Flight duration (s) | Average module resolution (px) |Module throughput (1/s) |\n| --- | --- | --- | --- | --- |\n| Single row | 1307 | 707 | 141 X 99 | 3.36 |\n| Double row | 681 | 338 | 73 X 50 | 7.03 |\n\n## 1.3 Dataset organization\n\nThe images are separated by type of inspection in different folders (single or double rows). In each folder, there are thermographic images in TIFF format and a CSV file with drone's geospatial and temporal data during the inspection. Only for the double row inspection type that visual (RGB) images were acquired.\n\nBesides, I've uploaded files to use for calibrate infrared and visual cameras to correct any type of distortion that camera lenses cause. \n\n# 2. Resources\n\n- This guides by [FLIR](http://support.flir.com/appstories/AppStories/Electrical&Mechanical/Testing_solar_panels_EN.pdf) and [TESTO](https://www.murcal.com/pdf%20folder/15.testo_thermography_guide.pdf) companies are good resources to understand more about thermography in the solar modules context;\n\n- There's [another one by FLIR](https://thermalcapture.com/wp-content/uploads/2019/08/pv-system-inspection-thermal-drones-07-15-19.pdf) that explains in depth how aerial thermal inspections of photovoltaic systems are made and their importance in this field;\n\n- To understand the level of influence that the module degradation has on the yield of the photovoltaic system you can read the [IEC TS-62446-3]( https://ayscomdatatec.com/wp-content/uploads/2019/09/Normativa-IEC-TS-62446-3.pdf) and the [Raptor maps's knoledge hub](https://raptormaps.com/solar-tech-docs/).\n\n# 3. Inspiration\n\nA service often provided by companies in this area is a SaaS that displays the detected faulty modules in an bird's eye view of the photovoltaic system and calculate the energy loss, like the image bellow shows. One can create a web app (using streamlit or plotly/dash) that detect PV modules with a instance segmentation model, track them with a object tracker and classify their integrity (binary or multiclass classification) with a image classification model.\n\n<br>\n\n![solution-example](https://raptormaps.com/wp-content/uploads/2021/04/Raptor-Maps-Solar-Asset-Deliverables.png)\n\n<br>\n\nThis idea can be used for guiding a maintenance team in order to intervene and replace panels if necessary.", "VersionNotes": "Data Update 2023-05-12", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3256284, "CreatorUserId": 5048762, "OwnerUserId": 5048762.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5672295.0, "CurrentDatasourceVersionId": 5747827.0, "ForumId": 3321771, "Type": 2, "CreationDate": "05/11/2023 18:26:40", "LastActivityDate": "05/11/2023", "TotalViews": 1219, "TotalDownloads": 142, "TotalVotes": 1, "TotalKernels": 1}]
[{"Id": 5048762, "UserName": "marcosgabriel", "DisplayName": "Marcos Gabriel", "RegisterDate": "05/08/2020", "PerformanceTier": 0}]
import pickle from pathlib import Path import tifffile as tif import cv2 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import pandas as pd # # 1. Dataset Reading # The best way is to first read the metadata files from both datasets SINGLE_ROW_METADATA_PATH = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/single-row/metadata.csv" columns_to_rename = {"thermal image name": "thermal_image_name"} sr_metadata = pd.read_csv(SINGLE_ROW_METADATA_PATH).rename(columns=columns_to_rename) sr_metadata.head() DOUBLE_ROW_METADATA_PATH = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/metadata.csv" columns_to_rename = { "thermal image name": "thermal_image_name", "rgb image name": "rgb_image_name", } dr_metadata = pd.read_csv(DOUBLE_ROW_METADATA_PATH).rename(columns=columns_to_rename) dr_metadata.head() # We need to get the full path for the images def get_image_full_path(image_name, image_type): if image_type == "single_row_thermal": origin_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/single-row/thermal images" elif image_type == "double_row_thermal": origin_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/thermal images" elif image_type == "double_row_rgb": origin_path = ( origin_path ) = "/kaggle/input/photovoltaic-system-o-and-m-inspection/datasets/double-row/rgb images" return Path(origin_path, image_name) sr_metadata = sr_metadata.assign( thermal_image_name=sr_metadata.thermal_image_name.apply( lambda x: get_image_full_path(x, "single_row_thermal") ) ).assign(timestamp=pd.to_datetime(sr_metadata.timestamp)) dr_metadata = ( dr_metadata.assign( thermal_image_name=dr_metadata.thermal_image_name.apply( lambda x: get_image_full_path(x, "double_row_thermal") ) ) .assign( rgb_image_name=dr_metadata.rgb_image_name.apply( lambda x: get_image_full_path(x, "double_row_rgb") ) ) .assign(timestamp=pd.to_datetime(sr_metadata.timestamp)) ) # **Now we can load the images!** # I've created the Thermogram class just to be possible to get the thermal image and the converted one in the same object like [Flyr library](https://bitbucket.org/nimmerwoner/flyr/src/master/) does class Thermogram: def __init__(self, path: Path): self.path = path @property def celsius(self) -> np.ndarray: return (tif.imread(self.path.as_posix()) * 0.04) - 273.15 def render(self) -> np.ndarray: image = self.celsius image = (image - np.min(image)) / (np.max(image) - np.min(image)) return (image * 255.0).astype(np.uint8) def load_image(image_path: Path): image_format = image_path.suffix if image_format == ".jpg": return cv2.imread(image_path.as_posix()) elif image_format == ".tiff": return Thermogram(image_path) image_number = 57 thermogram = load_image(sr_metadata.thermal_image_name[image_number]) _, ax = plt.subplots(1, 2) im = ax[0].imshow(thermogram.celsius, cmap="inferno") ax[0].set_title("Thermography image") ax[0].set_axis_off() ax[1].imshow(thermogram.render(), cmap="gray") ax[1].set_title("Rendered image (8 bit image)") ax[1].set_axis_off() cax = make_axes_locatable(ax[0]).append_axes("right", size="5%", pad=0.05) plt.colorbar( im, cax=cax, values=np.unique(thermogram.celsius), label="Temperature (ºC)" ) plt.tight_layout() plt.show() thermogram = load_image(dr_metadata.thermal_image_name[image_number]) visual = load_image(dr_metadata.rgb_image_name[image_number]) _, ax = plt.subplots(1, 3, figsize=(10, 5)) im = ax[0].imshow(thermogram.celsius, cmap="inferno") ax[0].set_title("Thermography image") ax[0].set_axis_off() ax[1].imshow(thermogram.render(), cmap="gray") ax[1].set_title("Rendered image (8 bit image)") ax[1].set_axis_off() ax[2].imshow(visual[:, :, ::-1]) ax[2].set_title("Visual image") ax[2].set_axis_off() cax = make_axes_locatable(ax[0]).append_axes("right", size="5%", pad=0.05) plt.colorbar( im, cax=cax, values=np.unique(thermogram.celsius), label="Temperature (ºC)" ) plt.tight_layout() plt.show() # # 2. Camera calibration # This step is important because often times the lenses of cameras create distortions in the images. In this dataset only the RGB ones were affected, but the intrinsic and extrinsic camera parameters from the IR camera can be used for other tasks like Structure from motion (as PV-HAWK does). def remove_distortion(image: np.ndarray, image_type: str = "rgb"): mapx_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/RGB/mapx.pkl" mapy_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/RGB/mapy.pkl" if image_type == "ir": mapx_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/IR/mapx.pkl" mapy_path = "/kaggle/input/photovoltaic-system-o-and-m-inspection/calibration files/IR/mapy.pkl" with open(mapx_path, "rb") as mapx_file, open(mapy_path, "rb") as mapy_file: mapx = pickle.load(mapx_file) mapy = pickle.load(mapy_file) return cv2.remap( image, mapx, mapy, cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE ) undistorted_rgb = remove_distortion(visual) _, ax = plt.subplots(1, 2, figsize=(20, 5)) ax[0].imshow(visual[:, :, ::-1]) ax[0].set_title("RGB distorted") ax[0].set_axis_off() ax[1].imshow(undistorted_rgb[:, :, ::-1]) ax[1].set_title("RGB undistorted") ax[1].set_axis_off() plt.tight_layout() plt.show() undistorted_ir = remove_distortion(thermogram.render(), "ir") _, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(thermogram.render(), cmap="gray") ax[0].set_title("IR distorted") ax[0].set_axis_off() ax[1].imshow(undistorted_ir, cmap="gray") ax[1].set_title("IR undistorted") ax[1].set_axis_off() plt.tight_layout() plt.show() # # 3. Images Alignment # The best way of align the two images is by using a feature extractor and descriptor # like ORB together with ransac to determine the correlation points between them instead of this. But something odd is the fact that although the thermographic image has a lower resolution than the RGB one, it has a larger field of view because more modules appear in it from PIL import Image def get_position_for_image_fusion(fg_shape, bg_shape): bg_height = bg_shape[0] // 2 bg_width = bg_shape[1] // 2 fg_height = fg_shape[0] // 2 fg_width = fg_shape[1] // 2 return bg_width - fg_width, bg_height - fg_height position = get_position_for_image_fusion(undistorted_ir.shape, undistorted_rgb.shape) fg_image = Image.fromarray(undistorted_ir) bg_image = Image.fromarray(undistorted_rgb[:, :, ::-1]) back_image = bg_image.copy() back_image.paste(fg_image, position) back_image # # 4. Thermal Inspection # Is possible to determine parameters like the inspection time and drone path sr_inspection_time = sr_metadata.timestamp.filter([0, 5294]).diff().iloc[1].seconds dr_inspection_time = dr_metadata.timestamp.filter([0, 2540]).diff().iloc[1].seconds print( f"Single row inspection time: {sr_inspection_time // 60} minutes and {sr_inspection_time % 60} seconds" ) print( f"Double row inspection time: {dr_inspection_time // 60} minutes and {dr_inspection_time % 60} seconds" ) _, ax = plt.subplots(1, 2, figsize=(15, 5)) ax[0].scatter(sr_metadata.longitude, sr_metadata.latitude) ax[0].set_title("Single row inspection") ax[1].scatter(dr_metadata.longitude, dr_metadata.latitude) ax[1].set_title("Double row inspection") plt.show() # # 5. Defected modules # Highlight defected modules when the modules masks were created # # 6. Thermal image orthomosaic¶ # # Show how to make a thermal orthomosaic with this dataset
false
0
2,663
0
4,857
2,663
129238175
<jupyter_start><jupyter_text>pracdataset Kaggle dataset identifier: pracdataset <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np data = pd.read_csv("/kaggle/input/pracdataset/practicedataset.csv") data data = data.drop("Category", axis=1) data.head() data.info() data.shape data.columns # data['Class'].replace('Benign',1,inplace=True) # data['Class'].replace('Malware',0,inplace=True) data data["Class"].unique() x_col = data.columns.to_list() x_col.pop(-1) y_col = "Class" from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split( data[x_col], data[y_col].values, test_size=0.1 ) train_x.shape, test_x.shape, train_y.shape, test_y.shape from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score rf = RandomForestClassifier() rf.fit(train_x, train_y) test_y_pred = rf.predict(test_x) print("Testing Accuracy:", accuracy_score(test_y, test_y_pred))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/238/129238175.ipynb
pracdataset
saidevansh
[{"Id": 129238175, "ScriptId": 38422845, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11551086, "CreationDate": "05/12/2023 05:07:45", "VersionNumber": 1.0, "Title": "last_model", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 56.0, "LinesInsertedFromPrevious": 56.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185109197, "KernelVersionId": 129238175, "SourceDatasetVersionId": 5502878}]
[{"Id": 5502878, "DatasetId": 3174517, "DatasourceVersionId": 5577274, "CreatorUserId": 12364005, "LicenseName": "Unknown", "CreationDate": "04/24/2023 04:41:01", "VersionNumber": 1.0, "Title": "pracdataset", "Slug": "pracdataset", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3174517, "CreatorUserId": 12364005, "OwnerUserId": 12364005.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5502878.0, "CurrentDatasourceVersionId": 5577274.0, "ForumId": 3238770, "Type": 2, "CreationDate": "04/24/2023 04:41:01", "LastActivityDate": "04/24/2023", "TotalViews": 76, "TotalDownloads": 6, "TotalVotes": 0, "TotalKernels": 2}]
[{"Id": 12364005, "UserName": "saidevansh", "DisplayName": "Sai Devansh", "RegisterDate": "11/12/2022", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np data = pd.read_csv("/kaggle/input/pracdataset/practicedataset.csv") data data = data.drop("Category", axis=1) data.head() data.info() data.shape data.columns # data['Class'].replace('Benign',1,inplace=True) # data['Class'].replace('Malware',0,inplace=True) data data["Class"].unique() x_col = data.columns.to_list() x_col.pop(-1) y_col = "Class" from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split( data[x_col], data[y_col].values, test_size=0.1 ) train_x.shape, test_x.shape, train_y.shape, test_y.shape from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score rf = RandomForestClassifier() rf.fit(train_x, train_y) test_y_pred = rf.predict(test_x) print("Testing Accuracy:", accuracy_score(test_y, test_y_pred))
false
1
481
0
501
481
129238337
<jupyter_start><jupyter_text>Uber Request Data.csv ### Context This dataset is a part of assignment given by IIITB and Upgrad for Data Science Course. ### Content This data set is a masked data set which is similar to what data analysts at Uber handle. Kaggle dataset identifier: uber-request-data <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/uber-request-data/Uber Request Data.csv") df.head() df.tail() df.describe() df.shape df.info() # Convert Request_timestamp to uniform datetime format df["Request timestamp"] = pd.to_datetime(df["Request timestamp"]) df["Drop timestamp"] = pd.to_datetime(df["Drop timestamp"]) df.info() df.isnull().sum() df.Status.value_counts() # # 1. Which date had the most completed trip durig the two week period? # Calculate the duration of each trip in minutes df["trip_duration"] = ( df["Drop timestamp"] - df["Request timestamp"] ).dt.total_seconds() / 60 # Add a new column 'is_completed' that indicates whether a trip is completed or not df["is_completed"] = df["Status"].apply(lambda x: 1 if x == "Trip Completed" else 0) # Group the data by date and calculate the number of completed trips and the mean of trip duration on each date completed_trips_by_date = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1D")) .agg({"is_completed": "sum", "trip_duration": "mean"}) ) # Find the date with the highest number of completed trips and the mean of completed trip duration on that date max_completed_trips_date = completed_trips_by_date["is_completed"].idxmax() max_completed_trips = completed_trips_by_date["is_completed"].max() mean_trip_duration = completed_trips_by_date.loc[ max_completed_trips_date, "trip_duration" ] print("The date with the most completed trips is:", max_completed_trips_date) print("The number of completed trips on that date is:", max_completed_trips) print("The mean of completed trip duration on that date is:", mean_trip_duration) import matplotlib.pyplot as plt import seaborn as sns # Group the data by hour and calculate the number of completed trips in each hour completed_trips_by_hour = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1H")) .sum()["is_completed"] ) # Calculate the daily total of completed trips completed_trips_by_day = completed_trips_by_hour.resample("D").sum() # Create a line plot of the completed trips over time sns.lineplot(x=completed_trips_by_day.index, y=completed_trips_by_day.values) plt.xlabel("Date") plt.ylabel("Number of Completed Trips") plt.title("Completed Trips over Time") plt.show() # ### Insights: # - The date with the most completed trips is: 7th Nov, 2016 # - The date with second highest completed trips is: Dec, 2016 # - The number of completed trips on that date is: 601 # - The mean of completed trip duration on that date is: 1372.5707154742097 # # 2. What was the highest no. of completed trips within a 24 hour period? # Extract the hour from requested timestamp df["Request hour"] = df["Request timestamp"].dt.hour df.head() import matplotlib.pyplot as plt import seaborn as sns # Calculate the frequency of each hour hour_freq = df["Request hour"].value_counts() # Sort the frequencies in descending order hour_freq_sorted = hour_freq.sort_values(ascending=False) # Select the top 3 frequencies top_3 = hour_freq_sorted.head(3) # Create the histogram plt.hist(df["Request hour"], edgecolor="RED", bins=24, color="blue") plt.xlabel("Request hour") plt.ylabel("No. of Requests") # Loop through the top 3 frequencies and add a text label to the corresponding bar for hour, freq in top_3.iteritems(): plt.text(hour, freq, str(freq), ha="center", va="bottom", color="Green") plt.show() df.columns # Calculate the duration of each trip in minutes df["trip_duration"] = ( df["Drop timestamp"] - df["Request timestamp"] ).dt.total_seconds() / 60 # Add a new column 'is_completed' that indicates whether a trip is completed or not df["is_completed"] = df["Status"].apply(lambda x: 1 if x == "Trip Completed" else 0) # Group the data by hour and calculate the number of completed trips in each hour completed_trips_by_hour = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1H")) .sum()["is_completed"] ) # Find the highest number of completed trips and the date when it occurred max_completed_trips = completed_trips_by_hour.max() max_completed_trips_date = completed_trips_by_hour.idxmax() print( "The highest number of completed trips within a 24-hour period is:", max_completed_trips, ) print( "The date when the highest number of completed trips occurred is:", max_completed_trips_date, ) # Plot the number of completed trips by hour completed_trips_by_hour.plot(kind="line") # Set the plot title and axis labels plt.title("Completed trips by hour") plt.xlabel("Hour") plt.ylabel("Number of completed trips") # Show the plot plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/238/129238337.ipynb
uber-request-data
anupammajhi
[{"Id": 129238337, "ScriptId": 38419899, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11189402, "CreationDate": "05/12/2023 05:10:11", "VersionNumber": 1.0, "Title": "Uber Data Analysis", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 156.0, "LinesInsertedFromPrevious": 156.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185109488, "KernelVersionId": 129238337, "SourceDatasetVersionId": 182068}]
[{"Id": 182068, "DatasetId": 78953, "DatasourceVersionId": 192927, "CreatorUserId": 1125300, "LicenseName": "Unknown", "CreationDate": "11/17/2018 23:22:01", "VersionNumber": 1.0, "Title": "Uber Request Data.csv", "Slug": "uber-request-data", "Subtitle": "For Uber Supply Demand Gap - EDA", "Description": "### Context\n\nThis dataset is a part of assignment given by IIITB and Upgrad for Data Science Course.\n\n\n### Content\n\nThis data set is a masked data set which is similar to what data analysts at Uber handle.\n\n\n### Acknowledgements\n\nSources are taken from the PGD Data Science course from Upgrad", "VersionNotes": "Initial release", "TotalCompressedBytes": 395061.0, "TotalUncompressedBytes": 395061.0}]
[{"Id": 78953, "CreatorUserId": 1125300, "OwnerUserId": 1125300.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 182068.0, "CurrentDatasourceVersionId": 192927.0, "ForumId": 88310, "Type": 2, "CreationDate": "11/17/2018 23:22:01", "LastActivityDate": "11/17/2018", "TotalViews": 36167, "TotalDownloads": 4630, "TotalVotes": 32, "TotalKernels": 15}]
[{"Id": 1125300, "UserName": "anupammajhi", "DisplayName": "Anupam Majhi", "RegisterDate": "06/14/2017", "PerformanceTier": 1}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/uber-request-data/Uber Request Data.csv") df.head() df.tail() df.describe() df.shape df.info() # Convert Request_timestamp to uniform datetime format df["Request timestamp"] = pd.to_datetime(df["Request timestamp"]) df["Drop timestamp"] = pd.to_datetime(df["Drop timestamp"]) df.info() df.isnull().sum() df.Status.value_counts() # # 1. Which date had the most completed trip durig the two week period? # Calculate the duration of each trip in minutes df["trip_duration"] = ( df["Drop timestamp"] - df["Request timestamp"] ).dt.total_seconds() / 60 # Add a new column 'is_completed' that indicates whether a trip is completed or not df["is_completed"] = df["Status"].apply(lambda x: 1 if x == "Trip Completed" else 0) # Group the data by date and calculate the number of completed trips and the mean of trip duration on each date completed_trips_by_date = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1D")) .agg({"is_completed": "sum", "trip_duration": "mean"}) ) # Find the date with the highest number of completed trips and the mean of completed trip duration on that date max_completed_trips_date = completed_trips_by_date["is_completed"].idxmax() max_completed_trips = completed_trips_by_date["is_completed"].max() mean_trip_duration = completed_trips_by_date.loc[ max_completed_trips_date, "trip_duration" ] print("The date with the most completed trips is:", max_completed_trips_date) print("The number of completed trips on that date is:", max_completed_trips) print("The mean of completed trip duration on that date is:", mean_trip_duration) import matplotlib.pyplot as plt import seaborn as sns # Group the data by hour and calculate the number of completed trips in each hour completed_trips_by_hour = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1H")) .sum()["is_completed"] ) # Calculate the daily total of completed trips completed_trips_by_day = completed_trips_by_hour.resample("D").sum() # Create a line plot of the completed trips over time sns.lineplot(x=completed_trips_by_day.index, y=completed_trips_by_day.values) plt.xlabel("Date") plt.ylabel("Number of Completed Trips") plt.title("Completed Trips over Time") plt.show() # ### Insights: # - The date with the most completed trips is: 7th Nov, 2016 # - The date with second highest completed trips is: Dec, 2016 # - The number of completed trips on that date is: 601 # - The mean of completed trip duration on that date is: 1372.5707154742097 # # 2. What was the highest no. of completed trips within a 24 hour period? # Extract the hour from requested timestamp df["Request hour"] = df["Request timestamp"].dt.hour df.head() import matplotlib.pyplot as plt import seaborn as sns # Calculate the frequency of each hour hour_freq = df["Request hour"].value_counts() # Sort the frequencies in descending order hour_freq_sorted = hour_freq.sort_values(ascending=False) # Select the top 3 frequencies top_3 = hour_freq_sorted.head(3) # Create the histogram plt.hist(df["Request hour"], edgecolor="RED", bins=24, color="blue") plt.xlabel("Request hour") plt.ylabel("No. of Requests") # Loop through the top 3 frequencies and add a text label to the corresponding bar for hour, freq in top_3.iteritems(): plt.text(hour, freq, str(freq), ha="center", va="bottom", color="Green") plt.show() df.columns # Calculate the duration of each trip in minutes df["trip_duration"] = ( df["Drop timestamp"] - df["Request timestamp"] ).dt.total_seconds() / 60 # Add a new column 'is_completed' that indicates whether a trip is completed or not df["is_completed"] = df["Status"].apply(lambda x: 1 if x == "Trip Completed" else 0) # Group the data by hour and calculate the number of completed trips in each hour completed_trips_by_hour = ( df[df["is_completed"] == 1] .groupby(pd.Grouper(key="Request timestamp", freq="1H")) .sum()["is_completed"] ) # Find the highest number of completed trips and the date when it occurred max_completed_trips = completed_trips_by_hour.max() max_completed_trips_date = completed_trips_by_hour.idxmax() print( "The highest number of completed trips within a 24-hour period is:", max_completed_trips, ) print( "The date when the highest number of completed trips occurred is:", max_completed_trips_date, ) # Plot the number of completed trips by hour completed_trips_by_hour.plot(kind="line") # Set the plot title and axis labels plt.title("Completed trips by hour") plt.xlabel("Hour") plt.ylabel("Number of completed trips") # Show the plot plt.show()
false
1
1,574
0
1,653
1,574
129342514
<jupyter_start><jupyter_text>Coconut Leaf Dataset for Pest Identification The dataset includes 5 types of coconut leaf diseases: - Leaflets - Caterpillars - Yellowing - Drying - Flaccidity Use the dataset to classify and predict pest-infected leaves to be made easy for agriculture. Kaggle dataset identifier: coconut-leaf-dataset-for-pest-identification <jupyter_script>import os import shutil import random import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # **Data preprocessing for Coconut Leaf Pest Identification :** # This code performs the preprocessing of data required for training a model to identify pests in coconut leaves. It defines the directories for the training, validation, and test sets, splits the images into these sets based on a given ratio, and moves the images into the appropriate directories. The code shuffles the images in each class folder to ensure the randomness of the splits. Finally, it copies the image files from the source directory to the respective destination directories. data_dir = "/kaggle/input/coconut-leaf-dataset-for-pest-identification/archive" saved_data_dir = "/kaggle/working/" train_dir = os.path.join(saved_data_dir, "train") validation_dir = os.path.join(saved_data_dir, "validation") test_dir = os.path.join(saved_data_dir, "test") os.makedirs(train_dir, exist_ok=True) os.makedirs(validation_dir, exist_ok=True) os.makedirs(test_dir, exist_ok=True) train_ratio = 0.7 validation_ratio = 0.15 test_ratio = 0.15 for class_name in [ "CCI_Caterpillars", "CCI_Leaflets", "WCLWD_DryingofLeaflets", "WCLWD_Flaccidity", "WCLWD_Yellowing", ]: class_dir = os.path.join(data_dir, class_name) files = os.listdir(class_dir) random.shuffle(files) train_split_idx = int(train_ratio * len(files)) validation_split_idx = int((train_ratio + validation_ratio) * len(files)) train_files = files[:train_split_idx] validation_files = files[train_split_idx:validation_split_idx] test_files = files[validation_split_idx:] for filename in train_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(train_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) for filename in validation_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(validation_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) for filename in test_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(test_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) # **importing data :** # Define the paths to the datasets train_dir = "/kaggle/working/train" validation_dir = "/kaggle/working/validation" test_dir = "/kaggle/working/test" # Define the input image dimensions img_height = 224 img_width = 224 # Define the number of classes num_classes = 5 # **Instantiate data generators for training, validation, and test sets :** train_datagen = ImageDataGenerator( rescale=1.0 / 255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, fill_mode="nearest", ) validation_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_height, img_width), batch_size=28, class_mode="categorical", ) validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(img_height, img_width), batch_size=32, class_mode="categorical", ) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(img_height, img_width), batch_size=32, class_mode="categorical", ) # **Define the model architecture :** model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D( 32, (3, 3), activation="relu", input_shape=(img_height, img_width, 3) ), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(64, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(128, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(256, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(256, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation="relu"), tf.keras.layers.Dense(num_classes, activation="softmax"), ] ) # **Compile the model :** model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # **Train the model :** history = model.fit(train_generator, epochs=10, validation_data=validation_generator) # **Evaluate the model on the test set :** test_loss, test_acc = model.evaluate(test_generator) print("Test accuracy:", test_acc)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/342/129342514.ipynb
coconut-leaf-dataset-for-pest-identification
shravanatirtha
[{"Id": 129342514, "ScriptId": 38454962, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14180659, "CreationDate": "05/13/2023 01:09:35", "VersionNumber": 1.0, "Title": "Classification using DCNN - 98% Accuracy", "EvaluationDate": "05/13/2023", "IsChange": true, "TotalLines": 134.0, "LinesInsertedFromPrevious": 134.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 3}]
[{"Id": 185297739, "KernelVersionId": 129342514, "SourceDatasetVersionId": 5384645}]
[{"Id": 5384645, "DatasetId": 3122487, "DatasourceVersionId": 5458309, "CreatorUserId": 7940226, "LicenseName": "Database: Open Database, Contents: \u00a9 Original Authors", "CreationDate": "04/12/2023 15:38:07", "VersionNumber": 1.0, "Title": "Coconut Leaf Dataset for Pest Identification", "Slug": "coconut-leaf-dataset-for-pest-identification", "Subtitle": "Use the dataset for Deep Learning Algorithms", "Description": "The dataset includes 5 types of coconut leaf diseases:\n- Leaflets\n- Caterpillars\n- Yellowing\n- Drying\n- Flaccidity\n\nUse the dataset to classify and predict pest-infected leaves to be made easy for agriculture.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3122487, "CreatorUserId": 7940226, "OwnerUserId": 7940226.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5384645.0, "CurrentDatasourceVersionId": 5458309.0, "ForumId": 3185992, "Type": 2, "CreationDate": "04/12/2023 15:38:07", "LastActivityDate": "04/12/2023", "TotalViews": 2027, "TotalDownloads": 153, "TotalVotes": 11, "TotalKernels": 2}]
[{"Id": 7940226, "UserName": "shravanatirtha", "DisplayName": "Shravana Tirtha", "RegisterDate": "07/20/2021", "PerformanceTier": 1}]
import os import shutil import random import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # **Data preprocessing for Coconut Leaf Pest Identification :** # This code performs the preprocessing of data required for training a model to identify pests in coconut leaves. It defines the directories for the training, validation, and test sets, splits the images into these sets based on a given ratio, and moves the images into the appropriate directories. The code shuffles the images in each class folder to ensure the randomness of the splits. Finally, it copies the image files from the source directory to the respective destination directories. data_dir = "/kaggle/input/coconut-leaf-dataset-for-pest-identification/archive" saved_data_dir = "/kaggle/working/" train_dir = os.path.join(saved_data_dir, "train") validation_dir = os.path.join(saved_data_dir, "validation") test_dir = os.path.join(saved_data_dir, "test") os.makedirs(train_dir, exist_ok=True) os.makedirs(validation_dir, exist_ok=True) os.makedirs(test_dir, exist_ok=True) train_ratio = 0.7 validation_ratio = 0.15 test_ratio = 0.15 for class_name in [ "CCI_Caterpillars", "CCI_Leaflets", "WCLWD_DryingofLeaflets", "WCLWD_Flaccidity", "WCLWD_Yellowing", ]: class_dir = os.path.join(data_dir, class_name) files = os.listdir(class_dir) random.shuffle(files) train_split_idx = int(train_ratio * len(files)) validation_split_idx = int((train_ratio + validation_ratio) * len(files)) train_files = files[:train_split_idx] validation_files = files[train_split_idx:validation_split_idx] test_files = files[validation_split_idx:] for filename in train_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(train_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) for filename in validation_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(validation_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) for filename in test_files: src_path = os.path.join(class_dir, filename) dst_path = os.path.join(test_dir, class_name, filename) os.makedirs(os.path.dirname(dst_path), exist_ok=True) shutil.copy(src_path, dst_path) # **importing data :** # Define the paths to the datasets train_dir = "/kaggle/working/train" validation_dir = "/kaggle/working/validation" test_dir = "/kaggle/working/test" # Define the input image dimensions img_height = 224 img_width = 224 # Define the number of classes num_classes = 5 # **Instantiate data generators for training, validation, and test sets :** train_datagen = ImageDataGenerator( rescale=1.0 / 255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, fill_mode="nearest", ) validation_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_height, img_width), batch_size=28, class_mode="categorical", ) validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(img_height, img_width), batch_size=32, class_mode="categorical", ) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(img_height, img_width), batch_size=32, class_mode="categorical", ) # **Define the model architecture :** model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D( 32, (3, 3), activation="relu", input_shape=(img_height, img_width, 3) ), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(64, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(128, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(256, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(256, (3, 3), activation="relu"), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation="relu"), tf.keras.layers.Dense(num_classes, activation="softmax"), ] ) # **Compile the model :** model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # **Train the model :** history = model.fit(train_generator, epochs=10, validation_data=validation_generator) # **Evaluate the model on the test set :** test_loss, test_acc = model.evaluate(test_generator) print("Test accuracy:", test_acc)
false
0
1,511
3
1,612
1,511
129335135
<jupyter_start><jupyter_text>Flickr8k-Images-Captions ### Dataset A small image captioning dataset that is perfect to get started in image captioning. I have also made a video on building an image captioning model in PyTorch where we use this dataset that you could check out: https://youtu.be/y2BaTt1fxJU Kaggle dataset identifier: flickr8kimagescaptions <jupyter_script># # **Image Captioning** # Image captioning is a computer vision and natural language processing task that involves generating a textual description of the content in an image. It combines techniques from computer vision, such as object detection and scene understanding, with natural language processing to create human-like descriptions of visual content. # The goal of image captioning is to create a system that can accurately describe an image in a way that is both concise and informative. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import cv2 as cv2 import matplotlib.pyplot as plt import tensorflow as tf # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **Look into the data** # First we need to understand the structure of the dataset. # The Dataset used in this project is 'flickr8kimagescaptions'. It is a benchmark collection for sentence-based image description consisting of 8,000 images that are each paired with five different captions which provide clear descriptions of the salient entities and events. … The images were chosen from six different Flickr groups, and tend not to contain any well-known people or locations, but were manually selected to depict a variety of scenes and situations. # The dataset was uploaded to Kaggle server so they can be imported to Kaggle environment seamlessly. # >**Folders** # The dataset contains one folder and text file. The folder contains 8000 colored images. The captions.txt file contains all the image captioning for each images. Looking into the structure of the textfile we can see the text file content as below # * *image,caption # * 1000268201_693b08cb0e.jpg,A child in a pink dress is climbing up a set of stairs in an entry way . # * 1000268201_693b08cb0e.jpg,A girl going into a wooden building . # * 1000268201_693b08cb0e.jpg,A little girl climbing into a wooden playhouse . # * 1000268201_693b08cb0e.jpg,A little girl climbing the stairs to her playhouse . # * 1000268201_693b08cb0e.jpg,A little girl in a pink dress going into a wooden cabin . # * 1001773457_577c3a7d70.jpg,A black dog and a spotted dog are fighting # * 1001773457_577c3a7d70.jpg,A black dog and a tri-colored dog playing with each other on the road . # * 1001773457_577c3a7d70.jpg,A black dog and a white dog with brown spots are staring at each other in the street . # * 1001773457_577c3a7d70.jpg,Two dogs of different breeds looking at each other on the road . # * 1001773457_577c3a7d70.jpg,Two dogs on pavement moving toward each other . # * 1002674143_1b742ab4b8.jpg,A little girl covered in paint sits in front of a painted rainbow with her hands in a bowl . # * 1002674143_1b742ab4b8.jpg,A little girl is sitting in front of a large painted rainbow . # * 1002674143_1b742ab4b8.jpg,A small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow on it . # * 1002674143_1b742ab4b8.jpg,There is a girl with pigtails sitting in front of a rainbow painting . # * 1002674143_1b742ab4b8.jpg,Young girl with pigtails painting outside in the grass . # * 1003163366_44323f5815.jpg,A man lays on a bench while his dog sits by him .* # It can be observed that the image name and captions are seperated by the coma. The sentences seems to be well formated as all of them started with uppercase character and ended with a fullstop. During data pre-processing, I will clean the captioning by removing all punctuations, numbers and converting them into lowercase. # load the image caption data = pd.read_csv("/kaggle/input/flickr8kimagescaptions/flickr8k/captions.txt") data.head() # **Import image file name** # load the image information from tensorflow.keras.preprocessing.image import load_img, img_to_array def load_data(): import glob image_path = "images" file_name = [] file_path = os.path.join( "/kaggle/input/flickr8kimagescaptions/flickr8k/images", "*" ) for filename in sorted(glob.glob(file_path)): file_name.append(filename) file_name = np.asarray(file_name) return file_name def readImage(path, img_size=224): img = load_img( path, color_mode="rgb", target_size=(img_size, img_size), interpolation="bilinear", keep_aspect_ratio=True, ) img = img_to_array(img) img = img / 255.0 return img # call the load_data function and test if they work file_name = load_data() fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(10, 10)) axs = axs.flatten() for i in range(6): img = readImage(file_name[i], 224) axs[i].imshow(img) # Display image - code from https://www.kaggle.com/code/quadeer15sh/flickr8k-image-captioning-using-cnns-lstms def display_images(temp_df): from textwrap import wrap temp_df = temp_df.reset_index(drop=True) plt.figure(figsize=(20, 20)) n = 0 for i in range(15): n += 1 plt.subplot(5, 5, n) plt.subplots_adjust(hspace=0.7, wspace=0.3) image = readImage( f"/kaggle/input/flickr8kimagescaptions/flickr8k/images/{temp_df.image[i]}" ) plt.imshow(image) plt.title("\n".join(wrap(temp_df.caption[i], 20))) plt.axis("off") display_images(data.sample(15)) # **Caption text pre-processing** def text_preprocessing(data): data["caption"] = data["caption"].apply( lambda x: x.lower() ) # convert sentences into lowercase data["caption"] = data["caption"].apply( lambda x: x.replace("[^A-Za-z]", "") ) # remove all character that is not a-z (remove punctation and number character) data["caption"] = data["caption"].apply( lambda x: x.replace(" is ", "").replace(" are ", "") ) # r emove 'is' and 'are' data["caption"] = data["caption"].apply( lambda x: " ".join([word for word in x.split() if len(word) > 1]) ) # remove single character data["caption"] = "startseq " + data["caption"] + " endseq" return data data = text_preprocessing(data) captions = data["caption"].tolist() captions[:10]
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/335/129335135.ipynb
flickr8kimagescaptions
aladdinpersson
[{"Id": 129335135, "ScriptId": 37363164, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 3990085, "CreationDate": "05/12/2023 22:26:47", "VersionNumber": 1.0, "Title": "image captioning project", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 121.0, "LinesInsertedFromPrevious": 121.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185283485, "KernelVersionId": 129335135, "SourceDatasetVersionId": 1328792}]
[{"Id": 1328792, "DatasetId": 771078, "DatasourceVersionId": 1361085, "CreatorUserId": 2085560, "LicenseName": "Unknown", "CreationDate": "07/12/2020 09:20:01", "VersionNumber": 1.0, "Title": "Flickr8k-Images-Captions", "Slug": "flickr8kimagescaptions", "Subtitle": "Clean version of Flickr8k with images and their corresponding captions in txt", "Description": "### Dataset\n\nA small image captioning dataset that is perfect to get started in image captioning. I have also made a video on building an image captioning model in PyTorch where we use this dataset that you could check out: https://youtu.be/y2BaTt1fxJU", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 771078, "CreatorUserId": 2085560, "OwnerUserId": 2085560.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1328792.0, "CurrentDatasourceVersionId": 1361085.0, "ForumId": 786053, "Type": 2, "CreationDate": "07/12/2020 09:20:01", "LastActivityDate": "07/12/2020", "TotalViews": 16465, "TotalDownloads": 3311, "TotalVotes": 52, "TotalKernels": 8}]
[{"Id": 2085560, "UserName": "aladdinpersson", "DisplayName": "Aladdin Persson", "RegisterDate": "07/20/2018", "PerformanceTier": 2}]
# # **Image Captioning** # Image captioning is a computer vision and natural language processing task that involves generating a textual description of the content in an image. It combines techniques from computer vision, such as object detection and scene understanding, with natural language processing to create human-like descriptions of visual content. # The goal of image captioning is to create a system that can accurately describe an image in a way that is both concise and informative. import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import cv2 as cv2 import matplotlib.pyplot as plt import tensorflow as tf # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # **Look into the data** # First we need to understand the structure of the dataset. # The Dataset used in this project is 'flickr8kimagescaptions'. It is a benchmark collection for sentence-based image description consisting of 8,000 images that are each paired with five different captions which provide clear descriptions of the salient entities and events. … The images were chosen from six different Flickr groups, and tend not to contain any well-known people or locations, but were manually selected to depict a variety of scenes and situations. # The dataset was uploaded to Kaggle server so they can be imported to Kaggle environment seamlessly. # >**Folders** # The dataset contains one folder and text file. The folder contains 8000 colored images. The captions.txt file contains all the image captioning for each images. Looking into the structure of the textfile we can see the text file content as below # * *image,caption # * 1000268201_693b08cb0e.jpg,A child in a pink dress is climbing up a set of stairs in an entry way . # * 1000268201_693b08cb0e.jpg,A girl going into a wooden building . # * 1000268201_693b08cb0e.jpg,A little girl climbing into a wooden playhouse . # * 1000268201_693b08cb0e.jpg,A little girl climbing the stairs to her playhouse . # * 1000268201_693b08cb0e.jpg,A little girl in a pink dress going into a wooden cabin . # * 1001773457_577c3a7d70.jpg,A black dog and a spotted dog are fighting # * 1001773457_577c3a7d70.jpg,A black dog and a tri-colored dog playing with each other on the road . # * 1001773457_577c3a7d70.jpg,A black dog and a white dog with brown spots are staring at each other in the street . # * 1001773457_577c3a7d70.jpg,Two dogs of different breeds looking at each other on the road . # * 1001773457_577c3a7d70.jpg,Two dogs on pavement moving toward each other . # * 1002674143_1b742ab4b8.jpg,A little girl covered in paint sits in front of a painted rainbow with her hands in a bowl . # * 1002674143_1b742ab4b8.jpg,A little girl is sitting in front of a large painted rainbow . # * 1002674143_1b742ab4b8.jpg,A small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow on it . # * 1002674143_1b742ab4b8.jpg,There is a girl with pigtails sitting in front of a rainbow painting . # * 1002674143_1b742ab4b8.jpg,Young girl with pigtails painting outside in the grass . # * 1003163366_44323f5815.jpg,A man lays on a bench while his dog sits by him .* # It can be observed that the image name and captions are seperated by the coma. The sentences seems to be well formated as all of them started with uppercase character and ended with a fullstop. During data pre-processing, I will clean the captioning by removing all punctuations, numbers and converting them into lowercase. # load the image caption data = pd.read_csv("/kaggle/input/flickr8kimagescaptions/flickr8k/captions.txt") data.head() # **Import image file name** # load the image information from tensorflow.keras.preprocessing.image import load_img, img_to_array def load_data(): import glob image_path = "images" file_name = [] file_path = os.path.join( "/kaggle/input/flickr8kimagescaptions/flickr8k/images", "*" ) for filename in sorted(glob.glob(file_path)): file_name.append(filename) file_name = np.asarray(file_name) return file_name def readImage(path, img_size=224): img = load_img( path, color_mode="rgb", target_size=(img_size, img_size), interpolation="bilinear", keep_aspect_ratio=True, ) img = img_to_array(img) img = img / 255.0 return img # call the load_data function and test if they work file_name = load_data() fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(10, 10)) axs = axs.flatten() for i in range(6): img = readImage(file_name[i], 224) axs[i].imshow(img) # Display image - code from https://www.kaggle.com/code/quadeer15sh/flickr8k-image-captioning-using-cnns-lstms def display_images(temp_df): from textwrap import wrap temp_df = temp_df.reset_index(drop=True) plt.figure(figsize=(20, 20)) n = 0 for i in range(15): n += 1 plt.subplot(5, 5, n) plt.subplots_adjust(hspace=0.7, wspace=0.3) image = readImage( f"/kaggle/input/flickr8kimagescaptions/flickr8k/images/{temp_df.image[i]}" ) plt.imshow(image) plt.title("\n".join(wrap(temp_df.caption[i], 20))) plt.axis("off") display_images(data.sample(15)) # **Caption text pre-processing** def text_preprocessing(data): data["caption"] = data["caption"].apply( lambda x: x.lower() ) # convert sentences into lowercase data["caption"] = data["caption"].apply( lambda x: x.replace("[^A-Za-z]", "") ) # remove all character that is not a-z (remove punctation and number character) data["caption"] = data["caption"].apply( lambda x: x.replace(" is ", "").replace(" are ", "") ) # r emove 'is' and 'are' data["caption"] = data["caption"].apply( lambda x: " ".join([word for word in x.split() if len(word) > 1]) ) # remove single character data["caption"] = "startseq " + data["caption"] + " endseq" return data data = text_preprocessing(data) captions = data["caption"].tolist() captions[:10]
false
0
2,111
0
2,202
2,111
129335122
<jupyter_start><jupyter_text>Cyclistic_Bike_Share_Apr_22-Mar_23 Kaggle dataset identifier: cyclistic-bike-share-apr-22-mar-23 <jupyter_script># "Tidyverse package is being installed." install.packages("tidyverse") library(tidyverse) # "Directory containing the 12 month data is first selected and then the Cyclists data for # each month is uploaded separately." setwd("/kaggle/input/google-casestudy-1-2022-2023") year2022_03 < -read_csv("202202-divvy-tripdata.csv") year2022_04 < -read_csv("202203-divvy-tripdata.csv") year2022_05 < -read_csv("202204-divvy-tripdata.csv") year2022_06 < -read_csv("202205-divvy-tripdata.csv") year2022_07 < -read_csv("202206-divvy-tripdata.csv") year2022_08 < -read_csv("202207-divvy-tripdata.csv") year2022_09 < -read_csv("202208-divvy-tripdata.csv") year2022_10 < -read_csv("202209-divvy-publictripdata.csv") year2022_11 < -read_csv("202210-divvy-tripdata.csv") year2022_12 < -read_csv("202211-divvy-tripdata.csv") year2023_01 < -read_csv("202212-divvy-tripdata.csv") setwd("/kaggle/input/cyclistic-bike-share-apr-22-mar-23/New folder") year2023_02 < -read_csv("Chic_bike_Feb_23.csv")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/335/129335122.ipynb
cyclistic-bike-share-apr-22-mar-23
mariusborel
[{"Id": 129335122, "ScriptId": 38451717, "ParentScriptVersionId": NaN, "ScriptLanguageId": 12, "AuthorUserId": 12937034, "CreationDate": "05/12/2023 22:26:30", "VersionNumber": 2.0, "Title": "notebook3b433deabd", "EvaluationDate": "05/12/2023", "IsChange": false, "TotalLines": 23.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 23.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185283472, "KernelVersionId": 129335122, "SourceDatasetVersionId": 5656018}, {"Id": 185283471, "KernelVersionId": 129335122, "SourceDatasetVersionId": 4993619}]
[{"Id": 5656018, "DatasetId": 3250899, "DatasourceVersionId": 5731404, "CreatorUserId": 10060125, "LicenseName": "Unknown", "CreationDate": "05/10/2023 14:15:11", "VersionNumber": 1.0, "Title": "Cyclistic_Bike_Share_Apr_22-Mar_23", "Slug": "cyclistic-bike-share-apr-22-mar-23", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3250899, "CreatorUserId": 10060125, "OwnerUserId": 10060125.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5656018.0, "CurrentDatasourceVersionId": 5731404.0, "ForumId": 3316274, "Type": 2, "CreationDate": "05/10/2023 14:15:11", "LastActivityDate": "05/10/2023", "TotalViews": 540, "TotalDownloads": 17, "TotalVotes": 5, "TotalKernels": 18}]
[{"Id": 10060125, "UserName": "mariusborel", "DisplayName": "Marius Borel", "RegisterDate": "03/27/2022", "PerformanceTier": 0}]
# "Tidyverse package is being installed." install.packages("tidyverse") library(tidyverse) # "Directory containing the 12 month data is first selected and then the Cyclists data for # each month is uploaded separately." setwd("/kaggle/input/google-casestudy-1-2022-2023") year2022_03 < -read_csv("202202-divvy-tripdata.csv") year2022_04 < -read_csv("202203-divvy-tripdata.csv") year2022_05 < -read_csv("202204-divvy-tripdata.csv") year2022_06 < -read_csv("202205-divvy-tripdata.csv") year2022_07 < -read_csv("202206-divvy-tripdata.csv") year2022_08 < -read_csv("202207-divvy-tripdata.csv") year2022_09 < -read_csv("202208-divvy-tripdata.csv") year2022_10 < -read_csv("202209-divvy-publictripdata.csv") year2022_11 < -read_csv("202210-divvy-tripdata.csv") year2022_12 < -read_csv("202211-divvy-tripdata.csv") year2023_01 < -read_csv("202212-divvy-tripdata.csv") setwd("/kaggle/input/cyclistic-bike-share-apr-22-mar-23/New folder") year2023_02 < -read_csv("Chic_bike_Feb_23.csv")
false
0
473
0
523
473
129335440
# # ICR Challenge - Identifying Age-Related Conditions 👨‍⚕️👴👵 # ## Table of contents # 1. [Introduction](#Introduction) # 2. [Load libraries](#Load-libraries) # 3. [Data set](#Data-set) # - [Load data set](#Load-data-set) # - [Data set description](#Data-set-description) # - [Data statistics](#Data-statistics) # - [Check for missing data](#Check-for-missing-data) # 4. [Exploratory Data Analysis](#Exploratory-Data-Analysis) # - [Distribution of age-related conditions](#Distribution-of-age-related-conditions) # - [Distribution of type of age-related condition](#Distribution-of-type-of-age-related-condition) # - [Time distribution of data collection](#Time-distribution-of-data-collection) # - [Experimental Characteristics](#Experimental-Characteristics) # - [Health Characteristics](#Health-Characteristics) # - [Feature correlation](#Feature-correlation) # - [Data cleaning](#Data-cleaning) # 5. [Model Training](#Model-Training) # 6. [Submission](#Submission) # # Introduction # The goal of this competition is to predict if a person has or has not been diagnosed with one of three medical conditions (a binary classification problem), using various measurements of health characteristics. # # Load Libraries import warnings warnings.simplefilter("ignore") import os import datetime from pathlib import Path import numpy as np import pandas as pd pd.set_option("display.max_rows", None) import plotly import plotly.io as pio import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.figure_factory as ff import seaborn as sb import matplotlib.pyplot as plt from sklearn.preprocessing import RobustScaler from sklearn.model_selection import ( train_test_split, KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold, ) from xgboost import XGBClassifier import optuna from tqdm.notebook import tqdm pd.set_option("display.max_columns", None) pd.set_option("display.max_colwidth", None) plotly.offline.init_notebook_mode() class color: PURPLE = "\033[95m" CYAN = "\033[96m" DARKCYAN = "\033[36m" BLUE = "\033[94m" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" BOLD = "\033[1m" END = "\033[0m" pio.templates.default = "plotly_white" palette = px.colors.sequential.Plasma print(f"{color.BOLD}Color palette:{color.END}\n") sb.color_palette(palette) # # Data set # ## Data set description # The competition data comprises over fifty anonymized health characteristics linked to three age-related conditions. # ### Training set # - __Id:__ Unique identifier for each observation. # - __AB-GL:__ Fifty-six anonymized health characteristics. All are numeric except for EJ, which is categorical. # - __Class:__ A binary target. 1 indicates the subject has been diagnosed with one of the three conditions, 0 indicates they have not. # ### Test set # - Our goal is to predict the probability that a subject in this set belongs to each of the two classes. # ### greeks.csv - supplemental metadata, only available for the training set. # - __Alpha:__ Identifies the type of age-related condition, if present. # - __A:__ No age-related condition. Corresponds to class 0. # - __B, D, G:__ The three age-related conditions. Correspond to class 1. # - __Beta, Gamma, Delta:__ Three experimental characteristics. # - __Epsilon:__ The date the data for this subject was collected. Note that all of the data in the test set was collected after the training set was collected. # __💡 We can model relationships between the three diseases separately instead of computing the joint probability of having any one of the three conditions.__ # ## Load data set for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) data_dir = Path("/kaggle/input/icr-identify-age-related-conditions/") train_df = pd.read_csv(data_dir / "train.csv", index_col=0) test_df = pd.read_csv(data_dir / "test.csv", index_col=0) supplemental_df = pd.read_csv(data_dir / "greeks.csv", index_col=0) # ## Data statistics train_df.shape, test_df.shape, supplemental_df.shape train_df.head() test_df # __Note: When the submission is scored, this example test data will be replaced with the full test set. There are about 400 rows in the full test set.__ supplemental_df.head() supplemental_df["Epsilon"] = supplemental_df["Epsilon"].replace("Unknown", pd.NaT) train_df = pd.concat([train_df, supplemental_df], axis=1) # ## Check for missing data train_df.isnull().sum() # # Exploratory Data Analysis target = "Class" # ## Distribution of age-related conditions fig = px.histogram( train_df, x=target, color_discrete_sequence=palette[:1], text_auto=True ) fig.update_layout( showlegend=False, xaxis=dict( categoryorder="category ascending", title="Diagnosed", tickfont=dict(size=16), titlefont=dict(size=18), ), yaxis=dict( title="Number of patients", tickfont=dict(size=16), titlefont=dict(size=18) ), ) fig.update_xaxes(type="category") fig.show() # ## Distribution of type of age-related condition fig = px.histogram( train_df.loc[train_df[target] == 1], x="Alpha", color="Alpha", color_discrete_sequence=palette[:3], text_auto=True, ) fig.update_layout( showlegend=False, xaxis=dict(categoryorder="category ascending"), ) fig.show() # ## Time distribution of data collection fig = px.histogram( train_df, y=target, x="Epsilon", color=target, color_discrete_sequence=[palette[5], palette[0]], histfunc="count", text_auto=True, ) fig.update_layout( showlegend=True, xaxis=dict(categoryorder="category ascending"), ) fig.show() # ## Experimental Characteristics # #### ⚠️ These features are only available for training data. experimental_characteristics = ["Alpha", "Beta", "Gamma", "Delta", "Epsilon"] for c in ["Beta", "Gamma", "Delta"]: fig = px.histogram( train_df, x=c, color=target, barmode="group", color_discrete_sequence=[palette[7], palette[0]], text_auto=True, ) fig.update_layout( showlegend=True, xaxis=dict( categoryorder="category ascending", tickfont=dict(size=16), titlefont=dict(size=18), ), yaxis=dict( title="Number of patients", tickfont=dict(size=16), titlefont=dict(size=18) ), ) fig.show() # ## Health Characteristics train_df = train_df.rename(columns={c: c.rstrip() for c in train_df.columns}) test_df = test_df.rename(columns={c: c.rstrip() for c in test_df.columns}) health_characteristics_columns = train_df.drop( columns=[target] + experimental_characteristics ).columns.tolist() print(f"Number of health characteristics: {len(health_characteristics_columns)}") # ## Feature correlation corr_df = train_df[health_characteristics_columns].corr() fig = px.imshow(corr_df, text_auto=True, color_continuous_scale=palette) fig.update_traces( hovertemplate="Feature 1: %{x} <br>Feature 2: %{y} <br> Correlation: %{z}", name="", showlegend=False, texttemplate="%{z:.3f}", ) fig.show() fig = make_subplots(28, 2, subplot_titles=health_characteristics_columns) for i, c in enumerate(health_characteristics_columns): if c == "EJ": for c in train_df["EJ"].unique(): subset_df = train_df.loc[train_df["EJ"] == c] fig.add_trace( go.Histogram(x=subset_df["Alpha"], y=subset_df["EJ"]), row=1 + i // 2, col=1 + i % 2, ) else: fig.add_trace( go.Box(x=train_df["Alpha"], y=train_df[c]), row=1 + i // 2, col=1 + i % 2 ) fig.update_layout( height=3200, showlegend=False, xaxis=dict(categoryorder="category ascending") ) fig.show() # ## Data cleaning """Fill missing values.""" for c in health_characteristics_columns: if c == "EJ": m = train_df["EJ"].mode() else: m = train_df[c].median() train_df[c] = train_df[c].fillna(m) test_df[c] = test_df[c].fillna(m) """Encode categorical features.""" df = pd.concat([train_df, test_df]) df = pd.concat([df.drop(columns="EJ"), pd.get_dummies(df["EJ"])], axis=1) train_df = df.iloc[: len(train_df)] test_df = df.iloc[len(train_df) :] # # Model Training features_to_drop = ["BQ", "EL"] + experimental_characteristics X_train, Y_train = train_df.drop(columns=[target] + features_to_drop), train_df[target] X_test = test_df.copy().drop(columns=[target] + features_to_drop) X_train.shape, Y_train.shape, X_test.shape scaler = RobustScaler() X_train.loc[:] = scaler.fit_transform(X_train) X_test.loc[:] = scaler.transform(X_test) def objective_xgb(trial): params = { "objective": "binary:logistic", "tree_method": trial.suggest_categorical("tree_method", ["gpu_hist"]), "reg_lambda": trial.suggest_float("reg_lambda", 1e-3, 1e2, log=True), "colsample_bytree": trial.suggest_float("colsample_bytree", 0.5, 1.0, step=0.1), "colsample_bylevel": trial.suggest_float( "colsample_bylevel", 0.5, 1.0, step=0.1 ), "subsample": trial.suggest_float("subsample", 0.5, 1.0, step=0.1), "learning_rate": trial.suggest_float("learning_rate", 1e-2, 1e0, log=True), "n_estimators": trial.suggest_int("n_estimators", 50, 200, step=10), "max_depth": trial.suggest_int("max_depth", 4, 10, step=2), "grow_policy": trial.suggest_categorical( "grow_policy", ["depthwise", "lossguide"] ), } kf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) val_split_loss = [] for train_idx, val_idx in kf.split(X_train, Y_train): X_train_split, X_val_split = X_train.iloc[train_idx], X_train.iloc[val_idx] Y_train_split, Y_val_split = Y_train.iloc[train_idx], Y_train.iloc[val_idx] estimator = XGBClassifier(**params) estimator.fit( X_train_split, Y_train_split, eval_set=[(X_val_split, Y_val_split)], early_stopping_rounds=5, verbose=0, ) Y_pred_val = pd.Series( estimator.predict_proba(X_val_split)[:, 1], index=X_val_split.index ) loss = balanced_logarithmic_loss(Y_val_split, Y_pred_val) val_split_loss.append(loss) val_log_loss = np.mean(val_split_loss) return val_log_loss def balanced_logarithmic_loss(y_true, y_pred): """Takes true binary labels and probability of class 1, and returns balanced log loss.""" y_true_expanded = np.zeros((len(y_true), 2)) y_true_expanded[np.arange(len(y_true)), y_true.astype(int)] = 1.0 y_pred_expanded = np.zeros((len(y_true), 2)) y_pred_expanded[:, 1] = y_pred y_pred_expanded[:, 0] = 1 - y_pred class_weights = np.sum(y_true_expanded, axis=0) / len(y_true_expanded) y_pred = np.maximum(np.minimum(y_pred, 1 - 1e-15), 1e-15) loss = -np.sum(y_true_expanded * np.log(y_pred_expanded), axis=0) balanced_loss = np.sum(loss * class_weights) return balanced_loss study = optuna.create_study(direction="minimize") study.optimize(objective_xgb, n_trials=20, show_progress_bar=True) print("Number of finished trials:", len(study.trials)) study.trials_dataframe().sort_values(by="value").head() # ### Best hyper-parameters best_params = study.best_trial.params best_params Y_pred_test_xgb = [] val_split_loss = [] feature_importances = [] n_repeats = 1 n_splits = 5 kf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=1) for i, (train_idx, val_idx) in enumerate(kf.split(X_train)): X_train_split, X_val_split = X_train.iloc[train_idx], X_train.iloc[val_idx] Y_train_split, Y_val_split = Y_train.iloc[train_idx], Y_train.iloc[val_idx] estimator = XGBClassifier(**best_params, eval_metric=balanced_logarithmic_loss) estimator.fit( X_train_split, Y_train_split, eval_set=[(X_val_split, Y_val_split)], early_stopping_rounds=3, verbose=0, ) Y_pred_val = pd.Series( estimator.predict_proba(X_val_split)[:, 1], index=X_val_split.index ) loss = balanced_logarithmic_loss(Y_val_split, Y_pred_val) val_split_loss.append(loss) Y_pred_test_xgb.append(estimator.predict_proba(X_test)) feature_importances.append(estimator.feature_importances_) print(f"Validation set loss for fold {i}: {loss:.4f}") feature_importances = np.mean(feature_importances, axis=0) val_loss = np.mean(val_split_loss) Y_pred_test_xgb_1 = np.mean(Y_pred_test_xgb, axis=0) # ## Evaluation on Validation set print( f"{color.BOLD}Loss for validation set for final XGBoost model: {val_loss:.3f}{color.BOLD}" ) feature_importances = ( pd.Series(data=feature_importances, index=X_train.columns.tolist()) .sort_values(ascending=False) .head(15) ) fig = px.bar( feature_importances.reset_index(), y="index", x=0, height=800, color=0, text_auto=True, ) fig.update_layout( yaxis_automargin=True, xaxis_title="Feature importance", yaxis_title="Feature", coloraxis_showscale=False, ) fig.update_traces(textposition="outside", texttemplate="%{x:.3f}") fig.show() # # Submission Y_pred_test = pd.DataFrame( data=Y_pred_test_xgb_1, index=X_test.index, columns=["class_0", "class_1"] ) Y_pred_test.sample(5) submission_df = Y_pred_test.reset_index() submission_df.head() submission_df.to_csv("submission.csv", index=False)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/335/129335440.ipynb
null
null
[{"Id": 129335440, "ScriptId": 38454451, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 1382879, "CreationDate": "05/12/2023 22:34:12", "VersionNumber": 1.0, "Title": "Plotly EDA \ud83c\udfa8 | XGBoost | Optuna tuning", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 354.0, "LinesInsertedFromPrevious": 38.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 316.0, "LinesInsertedFromFork": 38.0, "LinesDeletedFromFork": 46.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 316.0, "TotalVotes": 0}]
null
null
null
null
# # ICR Challenge - Identifying Age-Related Conditions 👨‍⚕️👴👵 # ## Table of contents # 1. [Introduction](#Introduction) # 2. [Load libraries](#Load-libraries) # 3. [Data set](#Data-set) # - [Load data set](#Load-data-set) # - [Data set description](#Data-set-description) # - [Data statistics](#Data-statistics) # - [Check for missing data](#Check-for-missing-data) # 4. [Exploratory Data Analysis](#Exploratory-Data-Analysis) # - [Distribution of age-related conditions](#Distribution-of-age-related-conditions) # - [Distribution of type of age-related condition](#Distribution-of-type-of-age-related-condition) # - [Time distribution of data collection](#Time-distribution-of-data-collection) # - [Experimental Characteristics](#Experimental-Characteristics) # - [Health Characteristics](#Health-Characteristics) # - [Feature correlation](#Feature-correlation) # - [Data cleaning](#Data-cleaning) # 5. [Model Training](#Model-Training) # 6. [Submission](#Submission) # # Introduction # The goal of this competition is to predict if a person has or has not been diagnosed with one of three medical conditions (a binary classification problem), using various measurements of health characteristics. # # Load Libraries import warnings warnings.simplefilter("ignore") import os import datetime from pathlib import Path import numpy as np import pandas as pd pd.set_option("display.max_rows", None) import plotly import plotly.io as pio import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.figure_factory as ff import seaborn as sb import matplotlib.pyplot as plt from sklearn.preprocessing import RobustScaler from sklearn.model_selection import ( train_test_split, KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold, ) from xgboost import XGBClassifier import optuna from tqdm.notebook import tqdm pd.set_option("display.max_columns", None) pd.set_option("display.max_colwidth", None) plotly.offline.init_notebook_mode() class color: PURPLE = "\033[95m" CYAN = "\033[96m" DARKCYAN = "\033[36m" BLUE = "\033[94m" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" BOLD = "\033[1m" END = "\033[0m" pio.templates.default = "plotly_white" palette = px.colors.sequential.Plasma print(f"{color.BOLD}Color palette:{color.END}\n") sb.color_palette(palette) # # Data set # ## Data set description # The competition data comprises over fifty anonymized health characteristics linked to three age-related conditions. # ### Training set # - __Id:__ Unique identifier for each observation. # - __AB-GL:__ Fifty-six anonymized health characteristics. All are numeric except for EJ, which is categorical. # - __Class:__ A binary target. 1 indicates the subject has been diagnosed with one of the three conditions, 0 indicates they have not. # ### Test set # - Our goal is to predict the probability that a subject in this set belongs to each of the two classes. # ### greeks.csv - supplemental metadata, only available for the training set. # - __Alpha:__ Identifies the type of age-related condition, if present. # - __A:__ No age-related condition. Corresponds to class 0. # - __B, D, G:__ The three age-related conditions. Correspond to class 1. # - __Beta, Gamma, Delta:__ Three experimental characteristics. # - __Epsilon:__ The date the data for this subject was collected. Note that all of the data in the test set was collected after the training set was collected. # __💡 We can model relationships between the three diseases separately instead of computing the joint probability of having any one of the three conditions.__ # ## Load data set for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) data_dir = Path("/kaggle/input/icr-identify-age-related-conditions/") train_df = pd.read_csv(data_dir / "train.csv", index_col=0) test_df = pd.read_csv(data_dir / "test.csv", index_col=0) supplemental_df = pd.read_csv(data_dir / "greeks.csv", index_col=0) # ## Data statistics train_df.shape, test_df.shape, supplemental_df.shape train_df.head() test_df # __Note: When the submission is scored, this example test data will be replaced with the full test set. There are about 400 rows in the full test set.__ supplemental_df.head() supplemental_df["Epsilon"] = supplemental_df["Epsilon"].replace("Unknown", pd.NaT) train_df = pd.concat([train_df, supplemental_df], axis=1) # ## Check for missing data train_df.isnull().sum() # # Exploratory Data Analysis target = "Class" # ## Distribution of age-related conditions fig = px.histogram( train_df, x=target, color_discrete_sequence=palette[:1], text_auto=True ) fig.update_layout( showlegend=False, xaxis=dict( categoryorder="category ascending", title="Diagnosed", tickfont=dict(size=16), titlefont=dict(size=18), ), yaxis=dict( title="Number of patients", tickfont=dict(size=16), titlefont=dict(size=18) ), ) fig.update_xaxes(type="category") fig.show() # ## Distribution of type of age-related condition fig = px.histogram( train_df.loc[train_df[target] == 1], x="Alpha", color="Alpha", color_discrete_sequence=palette[:3], text_auto=True, ) fig.update_layout( showlegend=False, xaxis=dict(categoryorder="category ascending"), ) fig.show() # ## Time distribution of data collection fig = px.histogram( train_df, y=target, x="Epsilon", color=target, color_discrete_sequence=[palette[5], palette[0]], histfunc="count", text_auto=True, ) fig.update_layout( showlegend=True, xaxis=dict(categoryorder="category ascending"), ) fig.show() # ## Experimental Characteristics # #### ⚠️ These features are only available for training data. experimental_characteristics = ["Alpha", "Beta", "Gamma", "Delta", "Epsilon"] for c in ["Beta", "Gamma", "Delta"]: fig = px.histogram( train_df, x=c, color=target, barmode="group", color_discrete_sequence=[palette[7], palette[0]], text_auto=True, ) fig.update_layout( showlegend=True, xaxis=dict( categoryorder="category ascending", tickfont=dict(size=16), titlefont=dict(size=18), ), yaxis=dict( title="Number of patients", tickfont=dict(size=16), titlefont=dict(size=18) ), ) fig.show() # ## Health Characteristics train_df = train_df.rename(columns={c: c.rstrip() for c in train_df.columns}) test_df = test_df.rename(columns={c: c.rstrip() for c in test_df.columns}) health_characteristics_columns = train_df.drop( columns=[target] + experimental_characteristics ).columns.tolist() print(f"Number of health characteristics: {len(health_characteristics_columns)}") # ## Feature correlation corr_df = train_df[health_characteristics_columns].corr() fig = px.imshow(corr_df, text_auto=True, color_continuous_scale=palette) fig.update_traces( hovertemplate="Feature 1: %{x} <br>Feature 2: %{y} <br> Correlation: %{z}", name="", showlegend=False, texttemplate="%{z:.3f}", ) fig.show() fig = make_subplots(28, 2, subplot_titles=health_characteristics_columns) for i, c in enumerate(health_characteristics_columns): if c == "EJ": for c in train_df["EJ"].unique(): subset_df = train_df.loc[train_df["EJ"] == c] fig.add_trace( go.Histogram(x=subset_df["Alpha"], y=subset_df["EJ"]), row=1 + i // 2, col=1 + i % 2, ) else: fig.add_trace( go.Box(x=train_df["Alpha"], y=train_df[c]), row=1 + i // 2, col=1 + i % 2 ) fig.update_layout( height=3200, showlegend=False, xaxis=dict(categoryorder="category ascending") ) fig.show() # ## Data cleaning """Fill missing values.""" for c in health_characteristics_columns: if c == "EJ": m = train_df["EJ"].mode() else: m = train_df[c].median() train_df[c] = train_df[c].fillna(m) test_df[c] = test_df[c].fillna(m) """Encode categorical features.""" df = pd.concat([train_df, test_df]) df = pd.concat([df.drop(columns="EJ"), pd.get_dummies(df["EJ"])], axis=1) train_df = df.iloc[: len(train_df)] test_df = df.iloc[len(train_df) :] # # Model Training features_to_drop = ["BQ", "EL"] + experimental_characteristics X_train, Y_train = train_df.drop(columns=[target] + features_to_drop), train_df[target] X_test = test_df.copy().drop(columns=[target] + features_to_drop) X_train.shape, Y_train.shape, X_test.shape scaler = RobustScaler() X_train.loc[:] = scaler.fit_transform(X_train) X_test.loc[:] = scaler.transform(X_test) def objective_xgb(trial): params = { "objective": "binary:logistic", "tree_method": trial.suggest_categorical("tree_method", ["gpu_hist"]), "reg_lambda": trial.suggest_float("reg_lambda", 1e-3, 1e2, log=True), "colsample_bytree": trial.suggest_float("colsample_bytree", 0.5, 1.0, step=0.1), "colsample_bylevel": trial.suggest_float( "colsample_bylevel", 0.5, 1.0, step=0.1 ), "subsample": trial.suggest_float("subsample", 0.5, 1.0, step=0.1), "learning_rate": trial.suggest_float("learning_rate", 1e-2, 1e0, log=True), "n_estimators": trial.suggest_int("n_estimators", 50, 200, step=10), "max_depth": trial.suggest_int("max_depth", 4, 10, step=2), "grow_policy": trial.suggest_categorical( "grow_policy", ["depthwise", "lossguide"] ), } kf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True) val_split_loss = [] for train_idx, val_idx in kf.split(X_train, Y_train): X_train_split, X_val_split = X_train.iloc[train_idx], X_train.iloc[val_idx] Y_train_split, Y_val_split = Y_train.iloc[train_idx], Y_train.iloc[val_idx] estimator = XGBClassifier(**params) estimator.fit( X_train_split, Y_train_split, eval_set=[(X_val_split, Y_val_split)], early_stopping_rounds=5, verbose=0, ) Y_pred_val = pd.Series( estimator.predict_proba(X_val_split)[:, 1], index=X_val_split.index ) loss = balanced_logarithmic_loss(Y_val_split, Y_pred_val) val_split_loss.append(loss) val_log_loss = np.mean(val_split_loss) return val_log_loss def balanced_logarithmic_loss(y_true, y_pred): """Takes true binary labels and probability of class 1, and returns balanced log loss.""" y_true_expanded = np.zeros((len(y_true), 2)) y_true_expanded[np.arange(len(y_true)), y_true.astype(int)] = 1.0 y_pred_expanded = np.zeros((len(y_true), 2)) y_pred_expanded[:, 1] = y_pred y_pred_expanded[:, 0] = 1 - y_pred class_weights = np.sum(y_true_expanded, axis=0) / len(y_true_expanded) y_pred = np.maximum(np.minimum(y_pred, 1 - 1e-15), 1e-15) loss = -np.sum(y_true_expanded * np.log(y_pred_expanded), axis=0) balanced_loss = np.sum(loss * class_weights) return balanced_loss study = optuna.create_study(direction="minimize") study.optimize(objective_xgb, n_trials=20, show_progress_bar=True) print("Number of finished trials:", len(study.trials)) study.trials_dataframe().sort_values(by="value").head() # ### Best hyper-parameters best_params = study.best_trial.params best_params Y_pred_test_xgb = [] val_split_loss = [] feature_importances = [] n_repeats = 1 n_splits = 5 kf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=1) for i, (train_idx, val_idx) in enumerate(kf.split(X_train)): X_train_split, X_val_split = X_train.iloc[train_idx], X_train.iloc[val_idx] Y_train_split, Y_val_split = Y_train.iloc[train_idx], Y_train.iloc[val_idx] estimator = XGBClassifier(**best_params, eval_metric=balanced_logarithmic_loss) estimator.fit( X_train_split, Y_train_split, eval_set=[(X_val_split, Y_val_split)], early_stopping_rounds=3, verbose=0, ) Y_pred_val = pd.Series( estimator.predict_proba(X_val_split)[:, 1], index=X_val_split.index ) loss = balanced_logarithmic_loss(Y_val_split, Y_pred_val) val_split_loss.append(loss) Y_pred_test_xgb.append(estimator.predict_proba(X_test)) feature_importances.append(estimator.feature_importances_) print(f"Validation set loss for fold {i}: {loss:.4f}") feature_importances = np.mean(feature_importances, axis=0) val_loss = np.mean(val_split_loss) Y_pred_test_xgb_1 = np.mean(Y_pred_test_xgb, axis=0) # ## Evaluation on Validation set print( f"{color.BOLD}Loss for validation set for final XGBoost model: {val_loss:.3f}{color.BOLD}" ) feature_importances = ( pd.Series(data=feature_importances, index=X_train.columns.tolist()) .sort_values(ascending=False) .head(15) ) fig = px.bar( feature_importances.reset_index(), y="index", x=0, height=800, color=0, text_auto=True, ) fig.update_layout( yaxis_automargin=True, xaxis_title="Feature importance", yaxis_title="Feature", coloraxis_showscale=False, ) fig.update_traces(textposition="outside", texttemplate="%{x:.3f}") fig.show() # # Submission Y_pred_test = pd.DataFrame( data=Y_pred_test_xgb_1, index=X_test.index, columns=["class_0", "class_1"] ) Y_pred_test.sample(5) submission_df = Y_pred_test.reset_index() submission_df.head() submission_df.to_csv("submission.csv", index=False)
false
0
4,337
0
4,337
4,337
129335974
<jupyter_start><jupyter_text>Mushroom Classification ### Context Although this dataset was originally contributed to the UCI Machine Learning repository nearly 30 years ago, mushroom hunting (otherwise known as "shrooming") is enjoying new peaks in popularity. Learn which features spell certain death and which are most palatable in this dataset of mushroom characteristics. And how certain can your model be? ### Content This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family Mushroom drawn from The Audubon Society Field Guide to North American Mushrooms (1981). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like "leaflets three, let it be'' for Poisonous Oak and Ivy. - **Time period**: Donated to UCI ML 27 April 1987 ### Inspiration - What types of machine learning models perform best on this dataset? - Which features are most indicative of a poisonous mushroom? Kaggle dataset identifier: mushroom-classification <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/mushrooms.csv") X_train, X_test, y_train, y_test = train_test_split( df.drop("class", axis=1), df["class"] ) from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.metrics import f1_score def transform_labels_to_01(labels, pos_lab): return [1 if y == pos_lab else 0 for y in labels] y_train_01 = transform_labels_to_01(y_train, "e") y_test_01 = transform_labels_to_01(y_test, "e") one_hot = OneHotEncoder() X_train_tr = one_hot.fit_transform(X_train) rnd_clf = RandomForestClassifier() params = {"n_estimators": [100, 250], "max_leaf_nodes": [20, 30]} grid_cv = GridSearchCV(rnd_clf, params, verbose=3, cv=3, scoring="f1") grid_cv.fit(X_train_tr, y_train_01) best_clf = grid_cv.best_estimator_ full_pipeline = Pipeline([("one_hot", one_hot), ("clf", best_clf)]) y_pred = full_pipeline.predict(X_test) f1_score(y_test_01, y_pred)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/335/129335974.ipynb
mushroom-classification
null
[{"Id": 129335974, "ScriptId": 38454440, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 15078612, "CreationDate": "05/12/2023 22:46:10", "VersionNumber": 1.0, "Title": "Random Forest method for mushroom classification", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 54.0, "LinesInsertedFromPrevious": 43.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 11.0, "LinesInsertedFromFork": 43.0, "LinesDeletedFromFork": 41.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 11.0, "TotalVotes": 0}]
[{"Id": 185284648, "KernelVersionId": 129335974, "SourceDatasetVersionId": 974}]
[{"Id": 974, "DatasetId": 478, "DatasourceVersionId": 974, "CreatorUserId": 495305, "LicenseName": "CC0: Public Domain", "CreationDate": "12/01/2016 23:08:00", "VersionNumber": 1.0, "Title": "Mushroom Classification", "Slug": "mushroom-classification", "Subtitle": "Safe to eat or deadly poison?", "Description": "### Context\n\nAlthough this dataset was originally contributed to the UCI Machine Learning repository nearly 30 years ago, mushroom hunting (otherwise known as \"shrooming\") is enjoying new peaks in popularity. Learn which features spell certain death and which are most palatable in this dataset of mushroom characteristics. And how certain can your model be?\n\n### Content \n\nThis dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family Mushroom drawn from The Audubon Society Field Guide to North American Mushrooms (1981). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like \"leaflets three, let it be'' for Poisonous Oak and Ivy.\n\n- **Time period**: Donated to UCI ML 27 April 1987\n\n### Inspiration\n\n- What types of machine learning models perform best on this dataset?\n\n- Which features are most indicative of a poisonous mushroom?\n\n### Acknowledgements\n\nThis dataset was originally donated to the UCI Machine Learning repository. You can learn more about past research using the data [here][1]. \n\n#[Start a new kernel][2]\n\n\n [1]: https://archive.ics.uci.edu/ml/datasets/Mushroom\n [2]: https://www.kaggle.com/uciml/mushroom-classification/kernels?modal=true", "VersionNotes": "Initial release", "TotalCompressedBytes": 374003.0, "TotalUncompressedBytes": 374003.0}]
[{"Id": 478, "CreatorUserId": 495305, "OwnerUserId": NaN, "OwnerOrganizationId": 7.0, "CurrentDatasetVersionId": 974.0, "CurrentDatasourceVersionId": 974.0, "ForumId": 2099, "Type": 2, "CreationDate": "12/01/2016 23:08:00", "LastActivityDate": "02/06/2018", "TotalViews": 873597, "TotalDownloads": 114985, "TotalVotes": 2206, "TotalKernels": 1371}]
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv("/kaggle/input/mushrooms.csv") X_train, X_test, y_train, y_test = train_test_split( df.drop("class", axis=1), df["class"] ) from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.metrics import f1_score def transform_labels_to_01(labels, pos_lab): return [1 if y == pos_lab else 0 for y in labels] y_train_01 = transform_labels_to_01(y_train, "e") y_test_01 = transform_labels_to_01(y_test, "e") one_hot = OneHotEncoder() X_train_tr = one_hot.fit_transform(X_train) rnd_clf = RandomForestClassifier() params = {"n_estimators": [100, 250], "max_leaf_nodes": [20, 30]} grid_cv = GridSearchCV(rnd_clf, params, verbose=3, cv=3, scoring="f1") grid_cv.fit(X_train_tr, y_train_01) best_clf = grid_cv.best_estimator_ full_pipeline = Pipeline([("one_hot", one_hot), ("clf", best_clf)]) y_pred = full_pipeline.predict(X_test) f1_score(y_test_01, y_pred)
false
0
570
0
873
570
129335912
<jupyter_start><jupyter_text>Flicktime Kaggle dataset identifier: flicktime <jupyter_script>import pandas as pd import numpy as np from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import json import gc from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer import pickle with open("/kaggle/input/flicktime/movielens1.json", "r") as f: data = json.load(f) tmdb_data = pd.json_normalize(data) link = pd.read_csv("/kaggle/input/flicktime/link.csv") rating = pd.read_csv("/kaggle/input/flicktime/rating.csv") tmdb_data.drop( [ "belongs_to_collection", "belongs_to_collection.backdrop_path", "belongs_to_collection.poster_path", "belongs_to_collection.name", "belongs_to_collection.id", ], inplace=True, axis=1, ) tmdb_data.dropna(inplace=True) merged_df = tmdb_data.merge(link, left_on="id", right_on="tmdbId") del tmdb_data gc.collect() merged_df.head() merged_df[merged_df["title"].str.startswith("Thor")] merged_rating = rating.loc[rating["movieId"].isin(merged_df.movieId.values)] merged_rating.userId.max() merged_rating.head() # try: # value = merged_rating.loc[(merged_rating['userId'] == 1) & (merged_rating['movieId'] == 100000000), 'rating'].iloc[0] # except IndexError: # value = None # print(value) # user_df = pd.DataFrame(columns=['email','userId']) # max( merged_rating[['userID']]) # pickle.dump(user_df, open('user_df.pkl', 'wb')) # user_df.columns # user_df.loc[user_df['email'] == email, 'userId'].iloc[0] if not user_df.loc[user_df['email'] == email].empty else None # userid = df.loc[df['Email'] == email, 'UserID'].iloc[0] if not df.loc[df['Email'] == email].empty else None # merged_rating.head() # # Original dictionary with string keys # original_dict = {'1': 3.5, '2': 4.5, '3': 5} # # Create a new dictionary with integer keys # new_dict = {} # for key, value in original_dict.items(): # new_dict[int(key)] = value # # Print the new dictionary # print(new_dict) # def add_rating(merged_rating, ratingsMap, userId): # # Create a new dictionary with integer keys # new_dict = {} # for key, value in ratingsMap.items(): # new_dict[int(key)] = value # # Filter the merged_rating dataframe for the specific user and the movies in the rating map # user_ratings = merged_rating[(merged_rating['userId'] == userId) & (merged_rating['movieId'].isin(ratingsMap.keys()))] # print(user_ratings) # # Loop over the movie IDs in the rating map # for movie_id in ratingsMap.keys(): # # Check if the movie ID is already in the user_ratings dataframe # if movie_id not in user_ratings['movieId'].values: # # If not, add the new rating as a new row to the user_ratings dataframe # new_row = pd.DataFrame({'userId': [userId], 'movieId': [movie_id], 'rating': [ratingsMap[movie_id]], 'timestamp': [pd.Timestamp.now()]}) # user_ratings = user_ratings.append(new_row) # # print(user_ratings) # # Update the merged_rating dataframe with the updated user_ratings dataframe # merged_rating.update(user_ratings) # print(merged_rating.head()) # add_rating(merged_rating, original_dict, 1) # Define a TF-IDF vectorizer for the overview field tfidf = TfidfVectorizer(stop_words="english") # Compute the TF-IDF matrix for the overviews tfidf_matrix = tfidf.fit_transform(merged_df["overview"].fillna("")) # Compute the cosine similarities between movies based on the overviews cosine_similarities = cosine_similarity(tfidf_matrix) del tfidf_matrix gc.collect() # pickle.dump(cosine_similarities, open('cosine_similarities.pkl', 'wb')) # pickle.dump(merged_rating, open('merged_rating.pkl', 'wb')) # pickle.dump(merged_df, open('merged_df.pkl', 'wb')) # temp = pickle.load(open('/kaggle/working/merged_rating.pkl', 'rb')) # temp1 = pickle.load(open('/kaggle/working/merged_df.pkl', 'rb')) # del temp, temp1 # gc.collect() # Define the number of recommendations to make num_recommendations = 20 print(1 in merged_rating["userId"].values) def get_hybrid_recommendations( user_id, watch_history, collaborative_model, content_model ): # Get the user's movie history user_history = merged_rating[merged_rating["userId"] == user_id]["movieId"].unique() temp = [] for i in watch_history: temp.extend(merged_df.loc[merged_df["id"] == i]["movieId"].values) watch_history = np.array(temp) if len(watch_history) > 0: print("append") user_history = np.append(user_history, watch_history) user_history = np.unique(user_history) # Make predictions for all unseen movies using the collaborative model unseen_movies = np.setdiff1d(merged_df["movieId"].unique(), user_history) test_movie_ids = np.array(unseen_movies) test_user_ids = np.array(len(unseen_movies) * [user_id]) test_input = [test_user_ids, test_movie_ids] unseen_ratings = model_nn_84.predict(test_input).flatten() unseen_indices = np.argsort(unseen_ratings)[::-1][:num_recommendations] collaborative_recommendations = unseen_movies[unseen_indices] # Get the top similar movies to the user's history using the content model content_recommendations = [] for movie_id in user_history: movie_index = merged_df[merged_df["movieId"] == movie_id].index[0] similar_indices = cosine_similarities[movie_index].argsort()[::-1][ 1 : num_recommendations + 1 ] content_recommendations += list( merged_df.iloc[similar_indices]["movieId"].values ) content_recommendations = np.array(content_recommendations) # Combine the two lists of recommendations hybrid_recommendations = np.array( np.union1d(collaborative_recommendations, content_recommendations) ) hybrid_test_user_ids = np.array(len(hybrid_recommendations) * [user_id]) hybrid_test_input = [hybrid_test_user_ids, hybrid_recommendations] hybrid_ratings = model_nn_84.predict(hybrid_test_input).flatten() hybrid_indices = np.argsort(hybrid_ratings)[::-1][:num_recommendations] hybrid_recommendations = hybrid_recommendations[hybrid_indices] del ( user_history, unseen_movies, unseen_ratings, unseen_indices, collaborative_recommendations, content_recommendations, hybrid_ratings, hybrid_indices, ) gc.collect() return hybrid_recommendations model_nn_84 = pickle.load(open("/kaggle/input/flicktime/model_nn_84.pkl", "rb")) user_id = 1 watch_history = [434, 85, 12506, 16320, 186, 388] hybrid_recommendations = get_hybrid_recommendations( user_id, watch_history, model_nn_84, cosine_similarities ) recommended_movies = merged_df[merged_df["movieId"].isin(hybrid_recommendations)] recommended_movies[["id", "overview", "title"]] # 434, 85, 12506, 16320, 186, 388
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/335/129335912.ipynb
flicktime
jy2040
[{"Id": 129335912, "ScriptId": 38372924, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 1591561, "CreationDate": "05/12/2023 22:44:46", "VersionNumber": 1.0, "Title": "flicktime_final", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 204.0, "LinesInsertedFromPrevious": 204.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 1}]
[{"Id": 185284558, "KernelVersionId": 129335912, "SourceDatasetVersionId": 5658766}]
[{"Id": 5658766, "DatasetId": 3232464, "DatasourceVersionId": 5734182, "CreatorUserId": 1591561, "LicenseName": "Unknown", "CreationDate": "05/10/2023 21:15:49", "VersionNumber": 6.0, "Title": "Flicktime", "Slug": "flicktime", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2023-05-10", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3232464, "CreatorUserId": 1591561, "OwnerUserId": 1591561.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5658766.0, "CurrentDatasourceVersionId": 5734182.0, "ForumId": 3297613, "Type": 2, "CreationDate": "05/07/2023 01:12:33", "LastActivityDate": "05/07/2023", "TotalViews": 65, "TotalDownloads": 4, "TotalVotes": 0, "TotalKernels": 4}]
[{"Id": 1591561, "UserName": "jy2040", "DisplayName": "Jay Bharadva", "RegisterDate": "01/29/2018", "PerformanceTier": 1}]
import pandas as pd import numpy as np from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import json import gc from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer import pickle with open("/kaggle/input/flicktime/movielens1.json", "r") as f: data = json.load(f) tmdb_data = pd.json_normalize(data) link = pd.read_csv("/kaggle/input/flicktime/link.csv") rating = pd.read_csv("/kaggle/input/flicktime/rating.csv") tmdb_data.drop( [ "belongs_to_collection", "belongs_to_collection.backdrop_path", "belongs_to_collection.poster_path", "belongs_to_collection.name", "belongs_to_collection.id", ], inplace=True, axis=1, ) tmdb_data.dropna(inplace=True) merged_df = tmdb_data.merge(link, left_on="id", right_on="tmdbId") del tmdb_data gc.collect() merged_df.head() merged_df[merged_df["title"].str.startswith("Thor")] merged_rating = rating.loc[rating["movieId"].isin(merged_df.movieId.values)] merged_rating.userId.max() merged_rating.head() # try: # value = merged_rating.loc[(merged_rating['userId'] == 1) & (merged_rating['movieId'] == 100000000), 'rating'].iloc[0] # except IndexError: # value = None # print(value) # user_df = pd.DataFrame(columns=['email','userId']) # max( merged_rating[['userID']]) # pickle.dump(user_df, open('user_df.pkl', 'wb')) # user_df.columns # user_df.loc[user_df['email'] == email, 'userId'].iloc[0] if not user_df.loc[user_df['email'] == email].empty else None # userid = df.loc[df['Email'] == email, 'UserID'].iloc[0] if not df.loc[df['Email'] == email].empty else None # merged_rating.head() # # Original dictionary with string keys # original_dict = {'1': 3.5, '2': 4.5, '3': 5} # # Create a new dictionary with integer keys # new_dict = {} # for key, value in original_dict.items(): # new_dict[int(key)] = value # # Print the new dictionary # print(new_dict) # def add_rating(merged_rating, ratingsMap, userId): # # Create a new dictionary with integer keys # new_dict = {} # for key, value in ratingsMap.items(): # new_dict[int(key)] = value # # Filter the merged_rating dataframe for the specific user and the movies in the rating map # user_ratings = merged_rating[(merged_rating['userId'] == userId) & (merged_rating['movieId'].isin(ratingsMap.keys()))] # print(user_ratings) # # Loop over the movie IDs in the rating map # for movie_id in ratingsMap.keys(): # # Check if the movie ID is already in the user_ratings dataframe # if movie_id not in user_ratings['movieId'].values: # # If not, add the new rating as a new row to the user_ratings dataframe # new_row = pd.DataFrame({'userId': [userId], 'movieId': [movie_id], 'rating': [ratingsMap[movie_id]], 'timestamp': [pd.Timestamp.now()]}) # user_ratings = user_ratings.append(new_row) # # print(user_ratings) # # Update the merged_rating dataframe with the updated user_ratings dataframe # merged_rating.update(user_ratings) # print(merged_rating.head()) # add_rating(merged_rating, original_dict, 1) # Define a TF-IDF vectorizer for the overview field tfidf = TfidfVectorizer(stop_words="english") # Compute the TF-IDF matrix for the overviews tfidf_matrix = tfidf.fit_transform(merged_df["overview"].fillna("")) # Compute the cosine similarities between movies based on the overviews cosine_similarities = cosine_similarity(tfidf_matrix) del tfidf_matrix gc.collect() # pickle.dump(cosine_similarities, open('cosine_similarities.pkl', 'wb')) # pickle.dump(merged_rating, open('merged_rating.pkl', 'wb')) # pickle.dump(merged_df, open('merged_df.pkl', 'wb')) # temp = pickle.load(open('/kaggle/working/merged_rating.pkl', 'rb')) # temp1 = pickle.load(open('/kaggle/working/merged_df.pkl', 'rb')) # del temp, temp1 # gc.collect() # Define the number of recommendations to make num_recommendations = 20 print(1 in merged_rating["userId"].values) def get_hybrid_recommendations( user_id, watch_history, collaborative_model, content_model ): # Get the user's movie history user_history = merged_rating[merged_rating["userId"] == user_id]["movieId"].unique() temp = [] for i in watch_history: temp.extend(merged_df.loc[merged_df["id"] == i]["movieId"].values) watch_history = np.array(temp) if len(watch_history) > 0: print("append") user_history = np.append(user_history, watch_history) user_history = np.unique(user_history) # Make predictions for all unseen movies using the collaborative model unseen_movies = np.setdiff1d(merged_df["movieId"].unique(), user_history) test_movie_ids = np.array(unseen_movies) test_user_ids = np.array(len(unseen_movies) * [user_id]) test_input = [test_user_ids, test_movie_ids] unseen_ratings = model_nn_84.predict(test_input).flatten() unseen_indices = np.argsort(unseen_ratings)[::-1][:num_recommendations] collaborative_recommendations = unseen_movies[unseen_indices] # Get the top similar movies to the user's history using the content model content_recommendations = [] for movie_id in user_history: movie_index = merged_df[merged_df["movieId"] == movie_id].index[0] similar_indices = cosine_similarities[movie_index].argsort()[::-1][ 1 : num_recommendations + 1 ] content_recommendations += list( merged_df.iloc[similar_indices]["movieId"].values ) content_recommendations = np.array(content_recommendations) # Combine the two lists of recommendations hybrid_recommendations = np.array( np.union1d(collaborative_recommendations, content_recommendations) ) hybrid_test_user_ids = np.array(len(hybrid_recommendations) * [user_id]) hybrid_test_input = [hybrid_test_user_ids, hybrid_recommendations] hybrid_ratings = model_nn_84.predict(hybrid_test_input).flatten() hybrid_indices = np.argsort(hybrid_ratings)[::-1][:num_recommendations] hybrid_recommendations = hybrid_recommendations[hybrid_indices] del ( user_history, unseen_movies, unseen_ratings, unseen_indices, collaborative_recommendations, content_recommendations, hybrid_ratings, hybrid_indices, ) gc.collect() return hybrid_recommendations model_nn_84 = pickle.load(open("/kaggle/input/flicktime/model_nn_84.pkl", "rb")) user_id = 1 watch_history = [434, 85, 12506, 16320, 186, 388] hybrid_recommendations = get_hybrid_recommendations( user_id, watch_history, model_nn_84, cosine_similarities ) recommended_movies = merged_df[merged_df["movieId"].isin(hybrid_recommendations)] recommended_movies[["id", "overview", "title"]] # 434, 85, 12506, 16320, 186, 388
false
2
2,125
1
2,145
2,125
129608134
<jupyter_start><jupyter_text>Car damage detection Kaggle dataset identifier: car-damage-detection <jupyter_script>import random import numpy as np import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image from tqdm.notebook import tqdm from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.image import img_to_array from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import load_img import scipy import os seed = 0 random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) DIRECTORY = "/kaggle/input/car-damage-detection/data1a/training/" DIRECTORY2 = "/kaggle/input/car-damage-detection/data1a/validation/" CATEGORIES = ["00-damage", "01-whole"] # grab the list of images in our dataset directory, then initialize # the list of data (i.e., images) and class images print("[INFO] loading images...") data = [] labels = [] for category in CATEGORIES: path = os.path.join(DIRECTORY, category) for img in tqdm(os.listdir(path)): img_path = os.path.join(path, img) image = load_img(img_path, target_size=(224, 224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) labels.append(category) for category in CATEGORIES: path = os.path.join(DIRECTORY2, category) for img in tqdm(os.listdir(path)): img_path = os.path.join(path, img) image = load_img(img_path, target_size=(224, 224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) labels.append(category) # use 0 for non damaged cars and 0 for the ones who are damaged labels = [0 if element == "01-whole" else 1 for element in labels] labels = to_categorical(labels) data = np.array(data, dtype="float32") labels = np.array(labels) (trainX, testX, trainY, testY) = train_test_split( data, labels, test_size=0.20, stratify=labels, random_state=42 ) num_classes = 2 resnet_weights_path = ( "/kaggle/input/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5" ) my_new_model = Sequential() my_new_model.add(ResNet50(include_top=False, pooling="avg")) my_new_model.add(Dense(num_classes, activation="softmax")) # Say not to train first layer (ResNet) model. It is already trained my_new_model.layers[0].trainable = False my_new_model.summary() my_new_model.compile( optimizer="sgd", loss="categorical_crossentropy", metrics=["accuracy"] ) image_size = 224 EPOCHS = 50 BS = 64 # construct the training image generator for data augmentation aug = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest", ) H = my_new_model.fit( aug.flow(trainX, trainY, batch_size=BS), steps_per_epoch=len(trainX) // BS, validation_data=(testX, testY), validation_steps=len(testX) // BS, epochs=EPOCHS, ) # Load the image test_image = image.load_img( "/kaggle/input/imagenonacci/anticonstitutionalism.jpg", target_size=(image_size, image_size), ) # Convert the image to an array test_image_arr = image.img_to_array(test_image) # Preprocess the image test_image_preprocessed = preprocess_input(test_image_arr) test_image_preprocessed = np.expand_dims(test_image_preprocessed, axis=0) # Get the prediction for the test image prediction = my_new_model.predict(test_image_preprocessed) # Print the predicted class if prediction[0][0] > prediction[0][1]: print("Non-accidented car") else: print("Accidented car")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/608/129608134.ipynb
car-damage-detection
anujms
[{"Id": 129608134, "ScriptId": 38065757, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11426286, "CreationDate": "05/15/2023 07:52:05", "VersionNumber": 1.0, "Title": "notebookd41145691a", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 121.0, "LinesInsertedFromPrevious": 121.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185849354, "KernelVersionId": 129608134, "SourceDatasetVersionId": 575693}]
[{"Id": 575693, "DatasetId": 278578, "DatasourceVersionId": 592402, "CreatorUserId": 3327828, "LicenseName": "Unknown", "CreationDate": "07/27/2019 15:19:27", "VersionNumber": 1.0, "Title": "Car damage detection", "Slug": "car-damage-detection", "Subtitle": "Damaged and Whole cars image dataset", "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 129459883.0, "TotalUncompressedBytes": 129459883.0}]
[{"Id": 278578, "CreatorUserId": 3327828, "OwnerUserId": 3327828.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 575693.0, "CurrentDatasourceVersionId": 592402.0, "ForumId": 289959, "Type": 2, "CreationDate": "07/27/2019 15:19:27", "LastActivityDate": "07/27/2019", "TotalViews": 44814, "TotalDownloads": 4541, "TotalVotes": 97, "TotalKernels": 13}]
[{"Id": 3327828, "UserName": "anujms", "DisplayName": "Anuj Shah", "RegisterDate": "06/08/2019", "PerformanceTier": 0}]
import random import numpy as np import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image from tqdm.notebook import tqdm from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.image import img_to_array from sklearn.model_selection import train_test_split from tensorflow.keras.preprocessing.image import load_img import scipy import os seed = 0 random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) DIRECTORY = "/kaggle/input/car-damage-detection/data1a/training/" DIRECTORY2 = "/kaggle/input/car-damage-detection/data1a/validation/" CATEGORIES = ["00-damage", "01-whole"] # grab the list of images in our dataset directory, then initialize # the list of data (i.e., images) and class images print("[INFO] loading images...") data = [] labels = [] for category in CATEGORIES: path = os.path.join(DIRECTORY, category) for img in tqdm(os.listdir(path)): img_path = os.path.join(path, img) image = load_img(img_path, target_size=(224, 224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) labels.append(category) for category in CATEGORIES: path = os.path.join(DIRECTORY2, category) for img in tqdm(os.listdir(path)): img_path = os.path.join(path, img) image = load_img(img_path, target_size=(224, 224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) labels.append(category) # use 0 for non damaged cars and 0 for the ones who are damaged labels = [0 if element == "01-whole" else 1 for element in labels] labels = to_categorical(labels) data = np.array(data, dtype="float32") labels = np.array(labels) (trainX, testX, trainY, testY) = train_test_split( data, labels, test_size=0.20, stratify=labels, random_state=42 ) num_classes = 2 resnet_weights_path = ( "/kaggle/input/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5" ) my_new_model = Sequential() my_new_model.add(ResNet50(include_top=False, pooling="avg")) my_new_model.add(Dense(num_classes, activation="softmax")) # Say not to train first layer (ResNet) model. It is already trained my_new_model.layers[0].trainable = False my_new_model.summary() my_new_model.compile( optimizer="sgd", loss="categorical_crossentropy", metrics=["accuracy"] ) image_size = 224 EPOCHS = 50 BS = 64 # construct the training image generator for data augmentation aug = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest", ) H = my_new_model.fit( aug.flow(trainX, trainY, batch_size=BS), steps_per_epoch=len(trainX) // BS, validation_data=(testX, testY), validation_steps=len(testX) // BS, epochs=EPOCHS, ) # Load the image test_image = image.load_img( "/kaggle/input/imagenonacci/anticonstitutionalism.jpg", target_size=(image_size, image_size), ) # Convert the image to an array test_image_arr = image.img_to_array(test_image) # Preprocess the image test_image_preprocessed = preprocess_input(test_image_arr) test_image_preprocessed = np.expand_dims(test_image_preprocessed, axis=0) # Get the prediction for the test image prediction = my_new_model.predict(test_image_preprocessed) # Print the predicted class if prediction[0][0] > prediction[0][1]: print("Non-accidented car") else: print("Accidented car")
false
0
1,164
0
1,186
1,164
129608063
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score train = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") test = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") train.head() train["clonesize"].max() - train["clonesize"].min() clone_mean = train["clonesize"].mean() train["clonesize"] = train["clonesize"].apply(lambda x: (x - clone_mean) / 30.0) Max_upperTrange_mean = train["MaxOfUpperTRange"].mean() train["MaxOfUpperTRange"] = train["MaxOfUpperTRange"].apply( lambda x: (x - Max_upperTrange_mean) / 24.9 ) Min_upperTrange_mean = train["MinOfUpperTRange"].mean() train["MinOfUpperTRange"] = train["MinOfUpperTRange"].apply( lambda x: (x - Min_upperTrange_mean) / 18.2 ) avg_upperTrange_mean = train["AverageOfUpperTRange"].mean() train["AverageOfUpperTRange"] = train["AverageOfUpperTRange"].apply( lambda x: (x - avg_upperTrange_mean) / 20.8 ) Max_lowerTrange_mean = train["MaxOfLowerTRange"].mean() train["MaxOfLowerTRange"] = train["MaxOfLowerTRange"].apply( lambda x: (x - Max_lowerTrange_mean) / 18.0 ) Min_lowerTrange_mean = train["MinOfLowerTRange"].mean() train["MinOfLowerTRange"] = train["MinOfLowerTRange"].apply( lambda x: (x - Min_lowerTrange_mean) / 8.7 ) avg_lowerTrange_mean = train["AverageOfLowerTRange"].mean() train["AverageOfLowerTRange"] = train["AverageOfLowerTRange"].apply( lambda x: (x - avg_lowerTrange_mean) / 14.7 ) rain_days = train["RainingDays"].mean() train["RainingDays"] = train["RainingDays"].apply(lambda x: (x - rain_days) / 33.0) seeds = train["seeds"].mean() train["seeds"] = train["seeds"].apply(lambda x: (x - seeds) / 24.50) train train.columns features = [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", "fruitset", "fruitmass", "seeds", ] X = train[features] y = train["yield"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) print(X.shape, X_train.shape, X_test.shape) model = LinearRegression() model.fit(X_train, y_train) preds = model.predict(X_test) preds mae = mean_absolute_error(y_test, preds) print(mae) id = test["id"] test = test[features] clone_mean = test["clonesize"].mean() r = test["clonesize"].max() - test["clonesize"].min() test["clonesize"] = test["clonesize"].apply(lambda x: (x - clone_mean) / r) Max_upperTrange_mean = test["MaxOfUpperTRange"].mean() test["MaxOfUpperTRange"] = test["MaxOfUpperTRange"].apply( lambda x: (x - Max_upperTrange_mean) / r ) Min_upperTrange_mean = test["MinOfUpperTRange"].mean() test["MinOfUpperTRange"] = test["MinOfUpperTRange"].apply( lambda x: (x - Min_upperTrange_mean) / r ) avg_upperTrange_mean = test["AverageOfUpperTRange"].mean() test["AverageOfUpperTRange"] = test["AverageOfUpperTRange"].apply( lambda x: (x - avg_upperTrange_mean) / r ) Max_lowerTrange_mean = test["MaxOfLowerTRange"].mean() test["MaxOfLowerTRange"] = test["MaxOfLowerTRange"].apply( lambda x: (x - Max_lowerTrange_mean) / r ) Min_lowerTrange_mean = test["MinOfLowerTRange"].mean() test["MinOfLowerTRange"] = test["MinOfLowerTRange"].apply( lambda x: (x - Min_lowerTrange_mean) / r ) avg_lowerTrange_mean = test["AverageOfLowerTRange"].mean() test["AverageOfLowerTRange"] = test["AverageOfLowerTRange"].apply( lambda x: (x - avg_lowerTrange_mean) / r ) rain_days = test["RainingDays"].mean() test["RainingDays"] = test["RainingDays"].apply(lambda x: (x - rain_days) / r) seeds = test["seeds"].mean() test["seeds"] = test["seeds"].apply(lambda x: (x - seeds) / r) cols = [ "clonesize", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "seeds", ] for col in cols: mean = test[col].mean() rang = test[col].max() - test[col].min() test[col] = test[col].apply(lambda x: (x - mean) / rang) model.fit(X, y) predictions = model.predict(test) predictions final = pd.DataFrame() final.index = id final["yield"] = predictions final.to_csv("submission.csv")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/608/129608063.ipynb
null
null
[{"Id": 129608063, "ScriptId": 38537243, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 10554992, "CreationDate": "05/15/2023 07:51:38", "VersionNumber": 2.0, "Title": "Blueberry prediction", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 114.0, "LinesInsertedFromPrevious": 69.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 45.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score train = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") test = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") train.head() train["clonesize"].max() - train["clonesize"].min() clone_mean = train["clonesize"].mean() train["clonesize"] = train["clonesize"].apply(lambda x: (x - clone_mean) / 30.0) Max_upperTrange_mean = train["MaxOfUpperTRange"].mean() train["MaxOfUpperTRange"] = train["MaxOfUpperTRange"].apply( lambda x: (x - Max_upperTrange_mean) / 24.9 ) Min_upperTrange_mean = train["MinOfUpperTRange"].mean() train["MinOfUpperTRange"] = train["MinOfUpperTRange"].apply( lambda x: (x - Min_upperTrange_mean) / 18.2 ) avg_upperTrange_mean = train["AverageOfUpperTRange"].mean() train["AverageOfUpperTRange"] = train["AverageOfUpperTRange"].apply( lambda x: (x - avg_upperTrange_mean) / 20.8 ) Max_lowerTrange_mean = train["MaxOfLowerTRange"].mean() train["MaxOfLowerTRange"] = train["MaxOfLowerTRange"].apply( lambda x: (x - Max_lowerTrange_mean) / 18.0 ) Min_lowerTrange_mean = train["MinOfLowerTRange"].mean() train["MinOfLowerTRange"] = train["MinOfLowerTRange"].apply( lambda x: (x - Min_lowerTrange_mean) / 8.7 ) avg_lowerTrange_mean = train["AverageOfLowerTRange"].mean() train["AverageOfLowerTRange"] = train["AverageOfLowerTRange"].apply( lambda x: (x - avg_lowerTrange_mean) / 14.7 ) rain_days = train["RainingDays"].mean() train["RainingDays"] = train["RainingDays"].apply(lambda x: (x - rain_days) / 33.0) seeds = train["seeds"].mean() train["seeds"] = train["seeds"].apply(lambda x: (x - seeds) / 24.50) train train.columns features = [ "clonesize", "honeybee", "bumbles", "andrena", "osmia", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "AverageRainingDays", "fruitset", "fruitmass", "seeds", ] X = train[features] y = train["yield"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) print(X.shape, X_train.shape, X_test.shape) model = LinearRegression() model.fit(X_train, y_train) preds = model.predict(X_test) preds mae = mean_absolute_error(y_test, preds) print(mae) id = test["id"] test = test[features] clone_mean = test["clonesize"].mean() r = test["clonesize"].max() - test["clonesize"].min() test["clonesize"] = test["clonesize"].apply(lambda x: (x - clone_mean) / r) Max_upperTrange_mean = test["MaxOfUpperTRange"].mean() test["MaxOfUpperTRange"] = test["MaxOfUpperTRange"].apply( lambda x: (x - Max_upperTrange_mean) / r ) Min_upperTrange_mean = test["MinOfUpperTRange"].mean() test["MinOfUpperTRange"] = test["MinOfUpperTRange"].apply( lambda x: (x - Min_upperTrange_mean) / r ) avg_upperTrange_mean = test["AverageOfUpperTRange"].mean() test["AverageOfUpperTRange"] = test["AverageOfUpperTRange"].apply( lambda x: (x - avg_upperTrange_mean) / r ) Max_lowerTrange_mean = test["MaxOfLowerTRange"].mean() test["MaxOfLowerTRange"] = test["MaxOfLowerTRange"].apply( lambda x: (x - Max_lowerTrange_mean) / r ) Min_lowerTrange_mean = test["MinOfLowerTRange"].mean() test["MinOfLowerTRange"] = test["MinOfLowerTRange"].apply( lambda x: (x - Min_lowerTrange_mean) / r ) avg_lowerTrange_mean = test["AverageOfLowerTRange"].mean() test["AverageOfLowerTRange"] = test["AverageOfLowerTRange"].apply( lambda x: (x - avg_lowerTrange_mean) / r ) rain_days = test["RainingDays"].mean() test["RainingDays"] = test["RainingDays"].apply(lambda x: (x - rain_days) / r) seeds = test["seeds"].mean() test["seeds"] = test["seeds"].apply(lambda x: (x - seeds) / r) cols = [ "clonesize", "MaxOfUpperTRange", "MinOfUpperTRange", "AverageOfUpperTRange", "MaxOfLowerTRange", "MinOfLowerTRange", "AverageOfLowerTRange", "RainingDays", "seeds", ] for col in cols: mean = test[col].mean() rang = test[col].max() - test[col].min() test[col] = test[col].apply(lambda x: (x - mean) / rang) model.fit(X, y) predictions = model.predict(test) predictions final = pd.DataFrame() final.index = id final["yield"] = predictions final.to_csv("submission.csv")
false
0
1,553
0
1,553
1,553
129608829
<jupyter_start><jupyter_text>Students Performance in Exams ### Context Marks secured by the students ### Content This data set consists of the marks secured by the students in various subjects. Kaggle dataset identifier: students-performance-in-exams <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## I will use Advertising Dataset df = pd.read_csv("/kaggle/input/advertising-dataset/advertising.csv") df # ## I will use two columns, reading score and math score, reading score will be independant and math score will be dependant (predict math score based on the reading score) TV = df["TV"].values TV # len (TV) Sales = df["Sales"].values Sales # len (Sales) # ## Now will see the shape from matplotlib import pyplot as plt x = TV # x: independent variable y = Sales # y : dependent variable plt.scatter(x, y, color="black") plt.xlabel("TV") plt.ylabel("Sales") plt.plot # ## The Shape is linear, so I will continue # ### Create a Column Vector x = x.reshape(-1, 1) len(x) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( x, y, train_size=0.90, random_state=600 ) # i will set 85% of data for train and 15% for test # x_train len(x_train) # x_test len(x_test) # ## presenting the data that for machine learning modeling plt.scatter(x_train, y_train, color="red") plt.xlabel("Reading score") plt.ylabel("Math score") plt.plot from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(x_train, y_train) y_predict = lr.predict([[3.0], [4.5], [2.1]]) y_predict lr.score(x_test, y_test) * 100 # ## Here i can see the predicted 100 values for test y_predict = lr.predict(x_test) y_predict plt.scatter(x_train, y_train, color="red") plt.scatter(x_test, y_predict, color="blue") plt.xlabel("Reading score") plt.ylabel("Math score") plt.plot
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/608/129608829.ipynb
students-performance-in-exams
spscientist
[{"Id": 129608829, "ScriptId": 38523744, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14996764, "CreationDate": "05/15/2023 07:57:59", "VersionNumber": 2.0, "Title": "Linear Regression", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 93.0, "LinesInsertedFromPrevious": 25.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 68.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185850843, "KernelVersionId": 129608829, "SourceDatasetVersionId": 169835}, {"Id": 185850844, "KernelVersionId": 129608829, "SourceDatasetVersionId": 317184}]
[{"Id": 169835, "DatasetId": 74977, "DatasourceVersionId": 180443, "CreatorUserId": 2094163, "LicenseName": "Unknown", "CreationDate": "11/09/2018 18:25:25", "VersionNumber": 1.0, "Title": "Students Performance in Exams", "Slug": "students-performance-in-exams", "Subtitle": "Marks secured by the students in various subjects", "Description": "### Context\n\nMarks secured by the students\n\n\n### Content\n\nThis data set consists of the marks secured by the students in various subjects. \n\n\n### Acknowledgements\n\nhttp://roycekimmons.com/tools/generated_data/exams\n\n\n### Inspiration\n\nTo understand the influence of the parents background, test preparation etc on students performance", "VersionNotes": "Initial release", "TotalCompressedBytes": 72036.0, "TotalUncompressedBytes": 72036.0}]
[{"Id": 74977, "CreatorUserId": 2094163, "OwnerUserId": 2094163.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 169835.0, "CurrentDatasourceVersionId": 180443.0, "ForumId": 84238, "Type": 2, "CreationDate": "11/09/2018 18:25:25", "LastActivityDate": "11/09/2018", "TotalViews": 1423654, "TotalDownloads": 235440, "TotalVotes": 3848, "TotalKernels": 1151}]
[{"Id": 2094163, "UserName": "spscientist", "DisplayName": "Jakki Seshapanpu", "RegisterDate": "07/24/2018", "PerformanceTier": 1}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## I will use Advertising Dataset df = pd.read_csv("/kaggle/input/advertising-dataset/advertising.csv") df # ## I will use two columns, reading score and math score, reading score will be independant and math score will be dependant (predict math score based on the reading score) TV = df["TV"].values TV # len (TV) Sales = df["Sales"].values Sales # len (Sales) # ## Now will see the shape from matplotlib import pyplot as plt x = TV # x: independent variable y = Sales # y : dependent variable plt.scatter(x, y, color="black") plt.xlabel("TV") plt.ylabel("Sales") plt.plot # ## The Shape is linear, so I will continue # ### Create a Column Vector x = x.reshape(-1, 1) len(x) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split( x, y, train_size=0.90, random_state=600 ) # i will set 85% of data for train and 15% for test # x_train len(x_train) # x_test len(x_test) # ## presenting the data that for machine learning modeling plt.scatter(x_train, y_train, color="red") plt.xlabel("Reading score") plt.ylabel("Math score") plt.plot from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(x_train, y_train) y_predict = lr.predict([[3.0], [4.5], [2.1]]) y_predict lr.score(x_test, y_test) * 100 # ## Here i can see the predicted 100 values for test y_predict = lr.predict(x_test) y_predict plt.scatter(x_train, y_train, color="red") plt.scatter(x_test, y_predict, color="blue") plt.xlabel("Reading score") plt.ylabel("Math score") plt.plot
false
1
711
0
771
711
129772633
<jupyter_start><jupyter_text>Top 10000 popular Movies TMDB This is a collection of metadata about the top 10,000 most popular movies on **The Movie Database (TMDB)** as of May 2023. The dataset includes information such as movie titles, release dates, runtime, genres, production companies, budget, and revenue. This data is collected from TMDB's public [API](https://developer.themoviedb.org/docs). #### Little bit about [TMDB](https://www.themoviedb.org/) TMDB (The Movie Database) is a popular online database and community platform that provides a vast collection of information about movies, TV shows, and other related content. TMDB allows users to browse and search for movies and TV shows, view information such as cast, crew, synopsis, and ratings, and also contribute to the community by adding their own reviews, ratings, and other content. #### Purpose The dataset is intended for use by data analysts, researchers, and developers who are interested in studying or analyzing the popularity and characteristics of movies. The dataset can be used to perform a wide range of analyses, such as exploring trends in movie genres over time, identifying patterns in movie budgets and revenues, and analyzing the impact of different attributes on a movie's popularity. ####Attributes - **id**: Unique identifier assigned to each movie in the TMDB database. - **title**: Title of the movie. - **release_date**: Date on which the movie was released. - **genres**: List of genres associated with the movie. - **original_language**: Language in which the movie was originally produced. - **vote_average**: Average rating given to the movie by TMDB users. - **vote_count**: Number of votes cast for the movie on TMDB. - **popularity**: Popularity score assigned to the movie by TMDB based on user engagement. - **overview**: Brief description or synopsis of the movie. - **budget**: Estimated budget for producing the movie in USD. - **production_companies**: List of production companies involved in making the movie. - **revenue**: Total revenue generated by the movie in USD. - **runtime**: Total runtime of the movie in minutes. - **tagline**: Short, memorable phrase associated with the movie, often used in promotional material. #### [Dataset Creation](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook) The dataset mentioned has been created by fetching raw data from TMDB's public API, and then cleaning and preprocessing the data to improve its quality and make it easier to work with. The cleaning process has been done using a notebook available [here](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook), which outlines the steps taken to transform the raw data into a more usable format. Kaggle dataset identifier: top-10000-popular-movies-tmdb-05-2023 <jupyter_script># /kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv import pandas as pd data = pd.read_csv( "/kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv" ) data.isnull().sum() # For my analysys I dont need tagline and overview, So I'm gonna delete those columns data.drop(["tagline", "overview"], axis="columns", inplace=True) # Deleting rows with null date data.dropna(inplace=True) data["year"] = data["release_date"].apply(lambda x: int(x[:4])) grpData = data.groupby("year", as_index=False) grpData = grpData.count()[["year", "id"]] grpData = grpData[(grpData["year"] >= 2000) & (grpData["year"] <= 2023)] import matplotlib.pyplot as plt plt.plot(grpData["year"], grpData["id"]) plt.ylabel("Number of movies") plt.xlabel("Year") # getting all available genres genre = [] import ast def getGenre(arr): arr = ast.literal_eval(arr) for i in arr: genre.append(i) return arr data["genres"].apply(lambda x: getGenre(x)) genre = set(genre) # Here we got all the genres genre # Let see genre wise movie count genre_count = {} for g in genre: genre_count[g] = [0] def getCount(arr): for g in genre: if g in arr: genre_count[g][0] += 1 data["genres"].apply(lambda x: getCount(x)) genre_count = pd.DataFrame(genre_count).transpose() plt.bar(genre_count.index, height=genre_count[0]) plt.xticks(rotation=80) plt.ylabel("Number of movies") plt.xlabel("Genre of movie") # genre_count # This graphs shows :- **Production of *Drama* genre is very high compared to others** genre_count = {} for g in genre: genre_count[g] = [0, 0] def getCount(i): arr = data["genres"][i] rating = data["vote_average"][i] for g in genre: if g in arr: curr = genre_count[g][0] * genre_count[g][1] + rating genre_count[g][0] += 1 genre_count[g][1] = round(curr / genre_count[g][0], 1) data.index.map(lambda x: getCount(x)) genre_count = pd.DataFrame(genre_count).transpose() plt.bar(genre_count.index, height=genre_count[1]) plt.xticks(rotation=80) # genre_count plt.ylabel("Average rating") plt.xlabel("Genre of movies") # This graph shows : "**Although production of *Drama* genre is higher but *War* genre's rating is higher**" # Getting Production companies list Production = [] def getProduction(arr): arr = ast.literal_eval(arr) for i in arr: Production.append(i) return arr data["production_companies"].apply(lambda x: getProduction(x)) Production = set(Production) # Here we got all the Production Companies Production production_count = {} for p in Production: production_count[p] = [0] def getCount(arr): for p in Production: if p in arr: production_count[p][0] += 1 data["production_companies"].apply(lambda x: getCount(x)) production_count = pd.DataFrame(production_count).transpose() production_count = production_count.sort_values(0, ascending=False).head(10) plt.bar(production_count.index, height=production_count[0]) plt.xticks(rotation=80) plt.ylabel("Number of movies") plt.xlabel("Top 10 production Companies") # This shows : **Warner Bros. Pictures** *is making most of the movies* budget = data.sort_values("budget", ascending=False).head(10)[["title", "budget"]] plt.bar(budget["title"], height=budget["budget"]) plt.xticks(rotation=90) plt.ylabel("Budget (1 unit = 10million)") plt.xlabel("Name of the movie") language = ( data["original_language"].value_counts().sort_values(ascending=False).head(10) ) plt.bar(language.index, height=language) plt.xticks(rotation=90) plt.ylabel("Number of movies") plt.xlabel("Language") data
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/772/129772633.ipynb
top-10000-popular-movies-tmdb-05-2023
ursmaheshj
[{"Id": 129772633, "ScriptId": 38590502, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14688602, "CreationDate": "05/16/2023 11:14:38", "VersionNumber": 1.0, "Title": "notebook687af5fb32", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 128.0, "LinesInsertedFromPrevious": 128.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186133987, "KernelVersionId": 129772633, "SourceDatasetVersionId": 5643863}]
[{"Id": 5643863, "DatasetId": 3240464, "DatasourceVersionId": 5719190, "CreatorUserId": 7397148, "LicenseName": "CC0: Public Domain", "CreationDate": "05/09/2023 13:43:53", "VersionNumber": 4.0, "Title": "Top 10000 popular Movies TMDB", "Slug": "top-10000-popular-movies-tmdb-05-2023", "Subtitle": "A Comprehensive Collection of Metadata for the Top 10,000 Popular Movies on TMDB", "Description": "This is a collection of metadata about the top 10,000 most popular movies on **The Movie Database (TMDB)** as of May 2023. The dataset includes information such as movie titles, release dates, runtime, genres, production companies, budget, and revenue. This data is collected from TMDB's public [API](https://developer.themoviedb.org/docs). \n\n#### Little bit about [TMDB](https://www.themoviedb.org/)\nTMDB (The Movie Database) is a popular online database and community platform that provides a vast collection of information about movies, TV shows, and other related content. TMDB allows users to browse and search for movies and TV shows, view information such as cast, crew, synopsis, and ratings, and also contribute to the community by adding their own reviews, ratings, and other content.\n\n#### Purpose\nThe dataset is intended for use by data analysts, researchers, and developers who are interested in studying or analyzing the popularity and characteristics of movies. The dataset can be used to perform a wide range of analyses, such as exploring trends in movie genres over time, identifying patterns in movie budgets and revenues, and analyzing the impact of different attributes on a movie's popularity.\n\n####Attributes\n- **id**: Unique identifier assigned to each movie in the TMDB database.\n- **title**: Title of the movie.\n- **release_date**: Date on which the movie was released.\n- **genres**: List of genres associated with the movie.\n- **original_language**: Language in which the movie was originally produced.\n- **vote_average**: Average rating given to the movie by TMDB users.\n- **vote_count**: Number of votes cast for the movie on TMDB.\n- **popularity**: Popularity score assigned to the movie by TMDB based on user engagement.\n- **overview**: Brief description or synopsis of the movie.\n- **budget**: Estimated budget for producing the movie in USD.\n- **production_companies**: List of production companies involved in making the movie.\n- **revenue**: Total revenue generated by the movie in USD.\n- **runtime**: Total runtime of the movie in minutes.\n- **tagline**: Short, memorable phrase associated with the movie, often used in promotional material.\n\n#### [Dataset Creation](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook)\nThe dataset mentioned has been created by fetching raw data from TMDB's public API, and then cleaning and preprocessing the data to improve its quality and make it easier to work with. The cleaning process has been done using a notebook available [here](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook), which outlines the steps taken to transform the raw data into a more usable format.", "VersionNotes": "Data Update 2023-05-09", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3240464, "CreatorUserId": 7397148, "OwnerUserId": 7397148.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5921776.0, "CurrentDatasourceVersionId": 5999208.0, "ForumId": 3305699, "Type": 2, "CreationDate": "05/08/2023 19:50:26", "LastActivityDate": "05/08/2023", "TotalViews": 7400, "TotalDownloads": 1454, "TotalVotes": 37, "TotalKernels": 10}]
[{"Id": 7397148, "UserName": "ursmaheshj", "DisplayName": "Mahesh Jadhav", "RegisterDate": "05/11/2021", "PerformanceTier": 1}]
# /kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv import pandas as pd data = pd.read_csv( "/kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv" ) data.isnull().sum() # For my analysys I dont need tagline and overview, So I'm gonna delete those columns data.drop(["tagline", "overview"], axis="columns", inplace=True) # Deleting rows with null date data.dropna(inplace=True) data["year"] = data["release_date"].apply(lambda x: int(x[:4])) grpData = data.groupby("year", as_index=False) grpData = grpData.count()[["year", "id"]] grpData = grpData[(grpData["year"] >= 2000) & (grpData["year"] <= 2023)] import matplotlib.pyplot as plt plt.plot(grpData["year"], grpData["id"]) plt.ylabel("Number of movies") plt.xlabel("Year") # getting all available genres genre = [] import ast def getGenre(arr): arr = ast.literal_eval(arr) for i in arr: genre.append(i) return arr data["genres"].apply(lambda x: getGenre(x)) genre = set(genre) # Here we got all the genres genre # Let see genre wise movie count genre_count = {} for g in genre: genre_count[g] = [0] def getCount(arr): for g in genre: if g in arr: genre_count[g][0] += 1 data["genres"].apply(lambda x: getCount(x)) genre_count = pd.DataFrame(genre_count).transpose() plt.bar(genre_count.index, height=genre_count[0]) plt.xticks(rotation=80) plt.ylabel("Number of movies") plt.xlabel("Genre of movie") # genre_count # This graphs shows :- **Production of *Drama* genre is very high compared to others** genre_count = {} for g in genre: genre_count[g] = [0, 0] def getCount(i): arr = data["genres"][i] rating = data["vote_average"][i] for g in genre: if g in arr: curr = genre_count[g][0] * genre_count[g][1] + rating genre_count[g][0] += 1 genre_count[g][1] = round(curr / genre_count[g][0], 1) data.index.map(lambda x: getCount(x)) genre_count = pd.DataFrame(genre_count).transpose() plt.bar(genre_count.index, height=genre_count[1]) plt.xticks(rotation=80) # genre_count plt.ylabel("Average rating") plt.xlabel("Genre of movies") # This graph shows : "**Although production of *Drama* genre is higher but *War* genre's rating is higher**" # Getting Production companies list Production = [] def getProduction(arr): arr = ast.literal_eval(arr) for i in arr: Production.append(i) return arr data["production_companies"].apply(lambda x: getProduction(x)) Production = set(Production) # Here we got all the Production Companies Production production_count = {} for p in Production: production_count[p] = [0] def getCount(arr): for p in Production: if p in arr: production_count[p][0] += 1 data["production_companies"].apply(lambda x: getCount(x)) production_count = pd.DataFrame(production_count).transpose() production_count = production_count.sort_values(0, ascending=False).head(10) plt.bar(production_count.index, height=production_count[0]) plt.xticks(rotation=80) plt.ylabel("Number of movies") plt.xlabel("Top 10 production Companies") # This shows : **Warner Bros. Pictures** *is making most of the movies* budget = data.sort_values("budget", ascending=False).head(10)[["title", "budget"]] plt.bar(budget["title"], height=budget["budget"]) plt.xticks(rotation=90) plt.ylabel("Budget (1 unit = 10million)") plt.xlabel("Name of the movie") language = ( data["original_language"].value_counts().sort_values(ascending=False).head(10) ) plt.bar(language.index, height=language) plt.xticks(rotation=90) plt.ylabel("Number of movies") plt.xlabel("Language") data
false
1
1,204
0
1,902
1,204
129772682
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk( "/kaggle/input/icr-identify-age-related-conditions" ): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from xgboost import XGBClassifier # Load data train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") test = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/test.csv") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) test = pd.get_dummies(test, columns=["EJ"]) # If test data EJ has only one category, we ensure to have the same structure as in train set if "EJ_B" not in test.columns: test["EJ_B"] = 0 # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Define target column target_col = "Class" # Create the preprocessing pipelines for both numeric and categorical data numeric_features = ( train[feature_cols].select_dtypes(include=["int64", "float64"]).columns ) numeric_transformer = Pipeline( steps=[("imputer", SimpleImputer(strategy="mean")), ("scaler", StandardScaler())] ) categorical_features = train[feature_cols].select_dtypes(include=["object"]).columns categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) # Append classifier to preprocessing pipeline clf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", XGBClassifier(use_label_encoder=False, eval_metric="logloss")), ] ) # Split data into features and target X_train = train[feature_cols] y_train = train[target_col] # Fit the model clf.fit(X_train, y_train) # Create a DataFrame for the probabilities probabilities = pd.DataFrame( clf.predict_proba(test[feature_cols]), columns=[f"class_{i}" for i in range(2)] ) # Concatenate the test IDs with their associated probabilities submission = pd.concat([test["Id"], probabilities], axis=1) # Save the DataFrame to a csv file submission.to_csv("submission.csv", index=False) submission.head() # TESTING THE MODEL (no submit!) from sklearn.metrics import log_loss import xgboost as xgb model_xgb = xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss") # Fit the model with the training data model_xgb.fit(X_train, y_train) # Get probabilities instead of predicted labels, since log loss is a probabilistic metric y_train_proba = model_xgb.predict_proba(X_train) y_val_proba = model_xgb.predict_proba(X_val) # Calculate log loss for training and validation sets train_log_loss = log_loss(y_train, y_train_proba) val_log_loss = log_loss(y_val, y_val_proba) print(f"Train Log Loss: {train_log_loss}") print(f"Validation Log Loss: {val_log_loss}") # test the statistical significance of the parameters using Logistic Regression import statsmodels.api as sm # Preprocess the data X_train_preprocessed = preprocessor.fit_transform(X_train) # Add a constant to the features X_train_with_constant = sm.add_constant(X_train_preprocessed) # Fit the logistic regression model model = sm.Logit(y_train, X_train_with_constant) result = model.fit() # Print the summary print(result.summary()) # use cross-validation to find the best value of lambda (via LassoCV), # fit a Lasso model, and get the absolute values of the coefficients from sklearn.linear_model import LassoCV from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline # Define your preprocessing pipeline preprocessing = make_pipeline(SimpleImputer(strategy="mean"), StandardScaler()) # Apply preprocessing X_train_preprocessed = preprocessing.fit_transform(X_train) X_val_preprocessed = preprocessing.transform(X_val) # Initialize a LassoCV model lasso = LassoCV(cv=5) # Fit the LassoCV model on the preprocessed data lasso.fit(X_train_preprocessed, y_train) # Get the feature importance (the coefficients of each feature) importance = np.abs(lasso.coef_) # Get the features selected by Lasso (features with non-zero coefficients) features_selected = X_train.columns[importance > 0] print("Features selected by Lasso:") print(features_selected) # Identify multicollinearity by computing the Variance Inflation Factor (VIF) for each feature in the model import pandas as pd import numpy as np from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline # Load data train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) # If train data EJ has only one category, we ensure to have the same structure as in train set if "EJ_B" not in train.columns: train["EJ_B"] = 0 # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Preprocess the data preprocessing = make_pipeline(SimpleImputer(strategy="mean"), StandardScaler()) X = preprocessing.fit_transform(train[feature_cols]) # Compute VIF for each feature vif = pd.DataFrame() vif["features"] = feature_cols vif["VIF"] = [variance_inflation_factor(X, i) for i in range(X.shape[1])] print(vif) # From the output, we see that variables 'DV', 'EH', 'FD', 'GL', 'EJ_A', and 'EJ_B' have a high # variance inflation factor (VIF > 8), suggesting a high level of multicollinearity. # The 'inf' (infinite) VIF values for 'EJ_A' and 'EJ_B' are due to these variables being perfectly multicollinear # (since they were one-hot encoded from the same original variable). # Since multicollinearity doesn't necessarily harm the model's predictive power, we'll keep it fro now # introducing the Greeks # Load 'greeks.csv' greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") # Merge 'train' and 'greeks' train_merged = pd.merge(train, greeks, on="Id") train_merged.head() # done some exploration in Stata of the relationship between the features in 'greeks.csv' and the target variable 'Class'. # The results suggest that 'Alpha', 'Beta', and 'Gamma' are perfect predictors of the target variable, # which is why logistic regression is failing (it can't deal with perfect predictors). # On the other side, 'Delta' and 'EJ' do seem to have a significant relationship with 'Class'. # The odds ratio for 'Delta' and 'EJ' is greater than 1, which means that as these features increase, # the odds of 'Class' being 1 (having the condition) also increases. # include these features in the model and start over import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from xgboost import XGBClassifier # Load greeks data greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Merge 'train' and 'greeks' train = pd.merge(train, greeks, on="Id") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Define target column target_col = "Class" # Create the preprocessing pipelines for both numeric and categorical data numeric_features = ( train[feature_cols].select_dtypes(include=["int64", "float64"]).columns ) numeric_transformer = Pipeline( steps=[("imputer", SimpleImputer(strategy="mean")), ("scaler", StandardScaler())] ) categorical_features = train[feature_cols].select_dtypes(include=["object"]).columns categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) # Append classifier to preprocessing pipeline clf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", XGBClassifier(use_label_encoder=False, eval_metric="logloss")), ] ) # Split data into features and target X_train = train[feature_cols] y_train = train[target_col] # Fit the model clf.fit(X_train, y_train) # Create a DataFrame for the probabilities probabilities = pd.DataFrame( clf.predict_proba(test[feature_cols]), columns=[f"class_{i}" for i in range(2)] ) # Concatenate the test IDs with their associated probabilities submission = pd.concat([test["Id"], probabilities], axis=1) # Save the DataFrame to a csv file submission.to_csv("submission.csv", index=False) submission.head()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/772/129772682.ipynb
null
null
[{"Id": 129772682, "ScriptId": 38583114, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 381948, "CreationDate": "05/16/2023 11:15:03", "VersionNumber": 4.0, "Title": "age-related condition", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 272.0, "LinesInsertedFromPrevious": 184.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 88.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk( "/kaggle/input/icr-identify-age-related-conditions" ): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from xgboost import XGBClassifier # Load data train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") test = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/test.csv") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) test = pd.get_dummies(test, columns=["EJ"]) # If test data EJ has only one category, we ensure to have the same structure as in train set if "EJ_B" not in test.columns: test["EJ_B"] = 0 # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Define target column target_col = "Class" # Create the preprocessing pipelines for both numeric and categorical data numeric_features = ( train[feature_cols].select_dtypes(include=["int64", "float64"]).columns ) numeric_transformer = Pipeline( steps=[("imputer", SimpleImputer(strategy="mean")), ("scaler", StandardScaler())] ) categorical_features = train[feature_cols].select_dtypes(include=["object"]).columns categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) # Append classifier to preprocessing pipeline clf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", XGBClassifier(use_label_encoder=False, eval_metric="logloss")), ] ) # Split data into features and target X_train = train[feature_cols] y_train = train[target_col] # Fit the model clf.fit(X_train, y_train) # Create a DataFrame for the probabilities probabilities = pd.DataFrame( clf.predict_proba(test[feature_cols]), columns=[f"class_{i}" for i in range(2)] ) # Concatenate the test IDs with their associated probabilities submission = pd.concat([test["Id"], probabilities], axis=1) # Save the DataFrame to a csv file submission.to_csv("submission.csv", index=False) submission.head() # TESTING THE MODEL (no submit!) from sklearn.metrics import log_loss import xgboost as xgb model_xgb = xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss") # Fit the model with the training data model_xgb.fit(X_train, y_train) # Get probabilities instead of predicted labels, since log loss is a probabilistic metric y_train_proba = model_xgb.predict_proba(X_train) y_val_proba = model_xgb.predict_proba(X_val) # Calculate log loss for training and validation sets train_log_loss = log_loss(y_train, y_train_proba) val_log_loss = log_loss(y_val, y_val_proba) print(f"Train Log Loss: {train_log_loss}") print(f"Validation Log Loss: {val_log_loss}") # test the statistical significance of the parameters using Logistic Regression import statsmodels.api as sm # Preprocess the data X_train_preprocessed = preprocessor.fit_transform(X_train) # Add a constant to the features X_train_with_constant = sm.add_constant(X_train_preprocessed) # Fit the logistic regression model model = sm.Logit(y_train, X_train_with_constant) result = model.fit() # Print the summary print(result.summary()) # use cross-validation to find the best value of lambda (via LassoCV), # fit a Lasso model, and get the absolute values of the coefficients from sklearn.linear_model import LassoCV from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline # Define your preprocessing pipeline preprocessing = make_pipeline(SimpleImputer(strategy="mean"), StandardScaler()) # Apply preprocessing X_train_preprocessed = preprocessing.fit_transform(X_train) X_val_preprocessed = preprocessing.transform(X_val) # Initialize a LassoCV model lasso = LassoCV(cv=5) # Fit the LassoCV model on the preprocessed data lasso.fit(X_train_preprocessed, y_train) # Get the feature importance (the coefficients of each feature) importance = np.abs(lasso.coef_) # Get the features selected by Lasso (features with non-zero coefficients) features_selected = X_train.columns[importance > 0] print("Features selected by Lasso:") print(features_selected) # Identify multicollinearity by computing the Variance Inflation Factor (VIF) for each feature in the model import pandas as pd import numpy as np from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline # Load data train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) # If train data EJ has only one category, we ensure to have the same structure as in train set if "EJ_B" not in train.columns: train["EJ_B"] = 0 # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Preprocess the data preprocessing = make_pipeline(SimpleImputer(strategy="mean"), StandardScaler()) X = preprocessing.fit_transform(train[feature_cols]) # Compute VIF for each feature vif = pd.DataFrame() vif["features"] = feature_cols vif["VIF"] = [variance_inflation_factor(X, i) for i in range(X.shape[1])] print(vif) # From the output, we see that variables 'DV', 'EH', 'FD', 'GL', 'EJ_A', and 'EJ_B' have a high # variance inflation factor (VIF > 8), suggesting a high level of multicollinearity. # The 'inf' (infinite) VIF values for 'EJ_A' and 'EJ_B' are due to these variables being perfectly multicollinear # (since they were one-hot encoded from the same original variable). # Since multicollinearity doesn't necessarily harm the model's predictive power, we'll keep it fro now # introducing the Greeks # Load 'greeks.csv' greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") # Merge 'train' and 'greeks' train_merged = pd.merge(train, greeks, on="Id") train_merged.head() # done some exploration in Stata of the relationship between the features in 'greeks.csv' and the target variable 'Class'. # The results suggest that 'Alpha', 'Beta', and 'Gamma' are perfect predictors of the target variable, # which is why logistic regression is failing (it can't deal with perfect predictors). # On the other side, 'Delta' and 'EJ' do seem to have a significant relationship with 'Class'. # The odds ratio for 'Delta' and 'EJ' is greater than 1, which means that as these features increase, # the odds of 'Class' being 1 (having the condition) also increases. # include these features in the model and start over import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from xgboost import XGBClassifier # Load greeks data greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Merge 'train' and 'greeks' train = pd.merge(train, greeks, on="Id") # Convert 'EJ' to one-hot encoding train = pd.get_dummies(train, columns=["EJ"]) # Define feature columns feature_cols = train.drop(["Id", "Class"], axis=1).columns # Define target column target_col = "Class" # Create the preprocessing pipelines for both numeric and categorical data numeric_features = ( train[feature_cols].select_dtypes(include=["int64", "float64"]).columns ) numeric_transformer = Pipeline( steps=[("imputer", SimpleImputer(strategy="mean")), ("scaler", StandardScaler())] ) categorical_features = train[feature_cols].select_dtypes(include=["object"]).columns categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) # Append classifier to preprocessing pipeline clf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", XGBClassifier(use_label_encoder=False, eval_metric="logloss")), ] ) # Split data into features and target X_train = train[feature_cols] y_train = train[target_col] # Fit the model clf.fit(X_train, y_train) # Create a DataFrame for the probabilities probabilities = pd.DataFrame( clf.predict_proba(test[feature_cols]), columns=[f"class_{i}" for i in range(2)] ) # Concatenate the test IDs with their associated probabilities submission = pd.concat([test["Id"], probabilities], axis=1) # Save the DataFrame to a csv file submission.to_csv("submission.csv", index=False) submission.head()
false
0
2,618
0
2,618
2,618
129772732
<jupyter_start><jupyter_text>Copper Mining Company - Stock Price Prediction "The 'KGHM Dataset' is a meticulously curated collection of financial and economic data specifically designed for the purpose of stock price prediction for KGHM, a leading copper mining company. This dataset encompasses a wide range of features including historical prices, macroeconomic indicators, industry-related metrics, company-specific financials, and technical indicators. The dataset comprises 59 carefully selected features that have the potential to influence the stock price of KGHM. The data has been sourced from reputable platforms such as Yahoo Finance, Wikipedia, and the official website of KGHM. The dataset has undergone rigorous pre-processing and feature engineering to ensure data quality and relevance for the machine learning models used in the stock price prediction analysis. It serves as a valuable resource for conducting in-depth analysis and developing accurate predictive models for KGHM's stock price movements." Kaggle dataset identifier: cooper-mining-company-stock-price-prediction <jupyter_script>import os import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score import os import matplotlib.pyplot as plt import seaborn as sns import pickle from sklearn.model_selection import GridSearchCV import numpy as np import datetime import sklearn.metrics as metrics #!pip install yfinance import yfinance as yf for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) ticker = "KGH.WA" kurs = 4.21 # USD/PLN currency = "USD" # IMPORTANT READ BEFORE SETUP # startdate you set will be x-14 (reason behind is that there's no access to # lagged 14 adj closing price, that why first 14 records are being dropped) startdate = "2017-03-01" # IMPORTANT READ BEFORE SETUP # enddate you set will be x-21 (reason behind it is that last 21 days, will have no target variable) # target variables predicted for the last 21 days will also be predicition for next 21 days. # so for example if you set enddate to 2023-01-01, you will be able to predict from # 2023-01-02 till 2023-01-23 (21 days) enddate = "2023-03-10" model_version = "1.0" data_version = "v1" shift_back_num = -21 data = yf.download(ticker, startdate, enddate) # # ***Introduction*** # Hello everyone! Welcome to this Kaggle notebook where we will be exploring the fascinating world of stock price prediction. Predicting stock prices has always been an attractive topic to both newbies and experienced traders in the financial industry. In this notebook, we will dive into the complexities of financial market data, and we will attempt to make sense of it using Machine Learning. # We will start by importing and cleaning our data, which is a critical step in any data science project. The dataset we'll be using contains daily stock prices, with features like Open, High, Low, Close prices, and Volume of transactions. Our target variable, which we'll aim to predict, is the 'target_class' column. # "target_class" contains 4 values: # "up_more_5%" # "down_more_5%" # "up_less_5%" # "down_less_5%" # In this notebook I will try to predict target label for KGHM price 21 into the future. As data I gathered is between 2017-03-01 and 2023-03-10 we will be able to compare our predictions to actual KGHM price. # I will explain and show how I collected the data from the scratch, including cleaning process, but you can access final dataset here : https://www.kaggle.com/datasets/maciejgronczynski/cooper-mining-company-stock-price-prediction # First we will start with defining few functions, that we will need in next steps: # The **exchange_rates** function retrieves historical exchange rate data for a selection of currencies (EUR, JPY, CNY, and PLN) relative to USD. It requires two date parameters: startdate and enddate to specify the data collection period. # The function uses the yfinance library to download data from Yahoo Finance, keeping only the adjusted close price for each day. Each currency's data is stored in a .csv file and combined into a single DataFrame, with each column representing a different currency pair's daily exchange rate. # Finally, the DataFrame is returned, providing a consolidated view of exchange rate trends over the specified time period. def exchange_rates(startdate, enddate): ex_rates = ["EURUSD=X", "JPY=X", "CNY=X", "PLN=X"] final_data = pd.DataFrame() for ticker in ex_rates: data = yf.download(ticker, startdate, enddate) data = data.drop(["Open", "High", "Low", "Close", "Volume"], axis=1) name = ticker + "_price" data.rename(columns={"Adj Close": name}, inplace=True) data.to_csv("dissertation_data.csv") # merge dataframes using pd.concat() final_data = pd.concat([final_data, data[name]], axis=1) final_data = final_data.rename_axis("Date") final_data.index = pd.to_datetime(final_data.index) return final_data # # The **convert_volume_to_number** function takes as an input a string that represents a volume of stocks, potentially ending in the letter 'M' to denote 'million'. # This function checks whether the last character of the input string is 'M'. If it is, the function removes the 'M' and converts the rest of the string to a float, then multiplies it by 1,000,000 to get the volume in numeric form. This allows us to handle stock volumes given in millions in a numerical format. # If the last character is not 'M', the function simply converts the string to an integer. This is done under the assumption that if the volume is not denoted in millions, it is an exact numeric representation. # In both cases, the function returns the volume as an integer. def convert_volume_to_number(volume_str): if volume_str[-1] == "M": return int(float(volume_str[:-1]) * 1000000) else: return int(volume_str) # # The **classify_movement** function is used to categorize changes in stock prices between the current and future periods. This function takes two arguments: current, which represents the current stock price, and future, which is the stock price at a future time. # The function returns an integer representing one of four categories based on the percentage change in stock price: # If the future price is more than 5% higher than the current price, the function returns 0, indicating a significant price increase. # If the future price is more than 5% lower than the current price, the function returns 1, indicating a significant price decrease. # If the future price is higher but less than 5% above the current price, the function returns 2, indicating a minor price increase. # If none of the above conditions are met, the function returns 3, implying a minor price decrease (less than 5%). def classify_movement(current, future): if future > current * 1.05: # Up more than 5% return 0 elif future < current * 0.95: # Down more than 5% return 1 elif future > current: # Up less than 5% return 2 else: # Down less than 5% return 3 # In addition to the data we'll be downloading directly via the yfinance library, we've also manually web scraped some crucial economic indicators that are not readily available on Yahoo Finance. These indicators include the inflation rate, interest rate, and the M3 money supply for Poland. inflation_dict = { # 2017 "2017-03-01": 2, "2017-04-01": 2, "2017-05-01": 1.9, "2017-06-01": 1.5, "2017-07-01": 1.7, "2017-08-01": 1.8, "2017-09-01": 2.2, "2017-10-01": 2.1, "2017-11-01": 2.5, "2017-12-01": 2.1, # 2018 "2018-01-01": 1.9, "2018-02-01": 1.4, "2018-03-01": 1.3, "2018-04-01": 1.6, "2018-05-01": 1.7, "2018-06-01": 2, "2018-07-01": 2, "2018-08-01": 2, "2018-09-01": 1.9, "2018-10-01": 1.7, "2018-11-01": 1.3, "2018-12-01": 1.1, # 2019 "2019-01-01": 0.7, "2019-02-01": 1.2, "2019-03-01": 1.7, "2019-04-01": 2.2, "2019-05-01": 2.4, "2019-06-01": 2.6, "2019-07-01": 2.9, "2019-08-01": 2.9, "2019-09-01": 2.6, "2019-10-01": 2.5, "2019-11-01": 2.6, "2019-12-01": 3.4, # 2020 "2020-01-01": 4.4, "2020-02-01": 4.7, "2020-03-01": 4.6, "2020-04-01": 3.4, "2020-05-01": 2.9, "2020-06-01": 3.3, "2020-07-01": 3, "2020-08-01": 2.9, "2020-09-01": 3.2, "2020-10-01": 3.1, "2020-11-01": 3, "2020-12-01": 2.4, # 2021 "2021-01-01": 2.6, "2021-02-01": 2.4, "2021-03-01": 3.2, "2021-04-01": 4.3, "2021-05-01": 4.7, "2021-06-01": 4.4, "2021-07-01": 5, "2021-08-01": 5.5, "2021-09-01": 5.9, "2021-10-01": 6.8, "2021-11-01": 7.8, "2021-12-01": 8.6, # 2022 "2022-01-01": 9.4, "2022-02-01": 8.5, "2022-03-01": 11, "2022-04-01": 12.3, "2022-05-01": 13.9, "2022-06-01": 15.5, "2022-07-01": 15.6, "2022-08-01": 16.1, "2022-09-01": 17.2, "2022-10-01": 17.9, "2022-11-01": 17.5, "2022-12-01": 16.6, # 2023 "2023-01-01": 16.6, "2023-02-01": 18.4, "2023-03-01": 16.2, } interest_dict = { # 2017 "2017-03-01": 1.5, "2017-04-01": 1.5, "2017-05-01": 1.5, "2017-06-01": 1.5, "2017-07-01": 1.5, "2017-08-01": 1.5, "2017-09-01": 1.5, "2017-10-01": 1.5, "2017-11-01": 1.5, "2017-12-01": 1.5, # 2018 "2018-01-01": 1.5, "2018-02-01": 1.5, "2018-03-01": 1.5, "2018-04-01": 1.5, "2018-05-01": 1.5, "2018-06-01": 1.5, "2018-07-01": 1.5, "2018-08-01": 1.5, "2018-09-01": 1.5, "2018-10-01": 1.5, "2018-11-01": 1.5, "2018-12-01": 1.5, # 2019 "2019-01-01": 1.5, "2019-02-01": 1.5, "2019-03-01": 1.5, "2019-04-01": 1.5, "2019-05-01": 1.5, "2019-06-01": 1.5, "2019-07-01": 1.5, "2019-08-01": 1.5, "2019-09-01": 1.5, "2019-10-01": 1.5, "2019-11-01": 1.5, "2019-12-01": 1.5, # 2020 "2020-01-01": 1.5, "2020-02-01": 1.5, "2020-03-01": 1, "2020-04-01": 0.5, "2020-05-01": 0.1, "2020-06-01": 0.1, "2020-07-01": 0.1, "2020-08-01": 0.1, "2020-09-01": 0.1, "2020-10-01": 0.1, "2020-11-01": 0.1, "2020-12-01": 0.1, # 2021 "2021-01-01": 0.1, "2021-02-01": 0.1, "2021-03-01": 0.1, "2021-04-01": 0.1, "2021-05-01": 0.1, "2021-06-01": 0.1, "2021-07-01": 0.1, "2021-08-01": 0.1, "2021-09-01": 0.1, "2021-10-01": 0.5, "2021-11-01": 1.25, "2021-12-01": 1.75, # 2022 "2022-01-01": 2.25, "2022-02-01": 2.75, "2022-03-01": 3.5, "2022-04-01": 4.5, "2022-05-01": 5.25, "2022-06-01": 6, "2022-07-01": 6.5, "2022-08-01": 6.75, "2022-09-01": 6.75, "2022-10-01": 6.75, "2022-11-01": 6.75, "2022-12-01": 6.75, # 2023 "2023-01-01": 6.75, "2023-02-01": 6.75, "2023-03-01": 6.75, } m3poland_dict = { "2023-01-01": 2091314.88, "2023-02-01": 2131400.00, "2023-03-01": 2131400.00, # 2022 "2022-01-01": 1985020.62, "2022-02-01": 1985020.62, "2022-03-01": 2009566.25, "2022-04-01": 2009566.25, "2022-05-01": 2009566.25, "2022-06-01": 1998843.50, "2022-07-01": 1998843.50, "2022-08-01": 1998843.50, "2022-09-01": 2062092.75, "2022-10-01": 2062092.75, "2022-11-01": 2062092.75, "2022-12-01": 2091314.88, # 2021 "2021-01-01": 1822650.12, "2021-02-01": 1822650.12, "2021-03-01": 1862487.75, "2021-04-01": 1862487.75, "2021-05-01": 1862487.75, "2021-06-01": 1876000.62, "2021-07-01": 1876000.62, "2021-08-01": 1876000.62, "2021-09-01": 1985020.62, "2021-10-01": 1985020.62, "2021-11-01": 1985020.62, "2021-12-01": 1985020.62, # 2020 "2020-01-01": 1565639.75, "2020-02-01": 1565639.75, "2020-03-01": 1628423.38, "2020-04-01": 1628423.38, "2020-05-01": 1628423.38, "2020-06-01": 1746224.75, "2020-07-01": 1746224.75, "2020-08-01": 1746224.75, "2020-09-01": 1762175.62, "2020-10-01": 1762175.62, "2020-11-01": 1762175.62, "2020-12-01": 1822650.12, # 2019 "2019-01-01": 1446093.38, "2019-02-01": 1446093.38, "2019-03-01": 1457187.12, "2019-04-01": 1457187.12, "2019-05-01": 1457187.12, "2019-06-01": 1478217.75, "2019-07-01": 1478217.75, "2019-08-01": 1478217.75, "2019-09-01": 1506171.25, "2019-10-01": 1506171.25, "2019-11-01": 1506171.25, "2019-12-01": 1565639.75, # 2018 "2018-01-01": 1324383.25, "2018-02-01": 1324383.25, "2018-03-01": 1325795.62, "2018-04-01": 1325795.62, "2018-05-01": 1325795.62, "2018-06-01": 1352491.88, "2018-07-01": 1352491.88, "2018-08-01": 1352491.88, "2018-09-01": 1376164.75, "2018-10-01": 1376164.75, "2018-11-01": 1376164.75, "2018-12-01": 1446093.38, # 2017 "2017-03-01": 1261178.12, "2017-04-01": 1261178.12, "2017-05-01": 1261178.12, "2017-06-01": 1261178.12, "2017-07-01": 1261178.12, "2017-08-01": 1261178.12, "2017-09-01": 1275942.38, "2017-10-01": 1275942.38, "2017-11-01": 1275942.38, "2017-12-01": 1324383.25, } def clean_data(data): last_index = data.iloc[-1].name print( "Last available date in data is:", last_index, "Live Prediction will be on that date.", ) data[["Adj Close"]] = data[["Adj Close"]].div(kurs) copper = yf.download("HG=F", start=startdate, end=enddate) silver = yf.download("SI=F", start=startdate, end=enddate) gold = yf.download("GLD", start=startdate, end=enddate) sp500 = yf.download("^GSPC", start=startdate, end=enddate) DJIA = yf.download("^DJI", start=startdate, end=enddate) NASDAQ_Composite = yf.download("^IXIC", start=startdate, end=enddate) FTSE_100 = yf.download("^FTSE", start=startdate, end=enddate) DAX = yf.download("^GDAXI", start=startdate, end=enddate) CAC_40 = yf.download("^FCHI", start=startdate, end=enddate) NIKKEI_225 = yf.download("^N225", start=startdate, end=enddate) SHANGHAI_Composite = yf.download("000001.SS", start=startdate, end=enddate) Hang_Seng_Index = yf.download("^HSI", start=startdate, end=enddate) BSE_Sensex = yf.download("^BSESN", start=startdate, end=enddate) ASX_200 = yf.download("^AXJO", start=startdate, end=enddate) GMMP_ETF = yf.download("PICK", start=startdate, end=enddate) RESM_ETF = yf.download("REMX", start=startdate, end=enddate) copper = pd.DataFrame(copper["Adj Close"]) silver = pd.DataFrame(silver["Adj Close"]) gold = pd.DataFrame(gold["Adj Close"]) rates = exchange_rates(startdate, enddate) sp500 = pd.DataFrame(sp500["Adj Close"]) DJIA = pd.DataFrame(DJIA["Adj Close"]) NASDAQ_Composite = pd.DataFrame(NASDAQ_Composite["Adj Close"]) FTSE_100 = pd.DataFrame(FTSE_100["Adj Close"]) DAX = pd.DataFrame(DAX["Adj Close"]) CAC_40 = pd.DataFrame(CAC_40["Adj Close"]) NIKKEI_225 = pd.DataFrame(NIKKEI_225["Adj Close"]) SHANGHAI_Composite = pd.DataFrame(SHANGHAI_Composite["Adj Close"]) Hang_Seng_Index = pd.DataFrame(Hang_Seng_Index["Adj Close"]) BSE_Sensex = pd.DataFrame(BSE_Sensex["Adj Close"]) ASX_200 = pd.DataFrame(ASX_200["Adj Close"]) GMMP_ETF = pd.DataFrame(GMMP_ETF["Adj Close"]) RESM_ETF = pd.DataFrame(RESM_ETF["Adj Close"]) # Rename the "Adj Close" column to "copper_price" and "silver_price" copper.rename(columns={"Adj Close": "copper_price"}, inplace=True) silver.rename(columns={"Adj Close": "silver_price"}, inplace=True) gold.rename(columns={"Adj Close": "gold_price"}, inplace=True) sp500.rename(columns={"Adj Close": "sp500_price"}, inplace=True) DJIA.rename(columns={"Adj Close": "DJIA_price"}, inplace=True) NASDAQ_Composite.rename( columns={"Adj Close": "NASDAQ_Composite_price"}, inplace=True ) FTSE_100.rename(columns={"Adj Close": "FTSE_100_price"}, inplace=True) DAX.rename(columns={"Adj Close": "DAX_price"}, inplace=True) CAC_40.rename(columns={"Adj Close": "CAC_40_price"}, inplace=True) NIKKEI_225.rename(columns={"Adj Close": "NIKKEI_225_price"}, inplace=True) SHANGHAI_Composite.rename( columns={"Adj Close": "SHANGHAI_Composite_price"}, inplace=True ) Hang_Seng_Index.rename(columns={"Adj Close": "Hang_Seng_Index_price"}, inplace=True) BSE_Sensex.rename(columns={"Adj Close": "BSE_Sensex_price"}, inplace=True) ASX_200.rename(columns={"Adj Close": "ASX_200_price"}, inplace=True) GMMP_ETF.rename(columns={"Adj Close": "GMMP_ETF_price"}, inplace=True) RESM_ETF.rename(columns={"Adj Close": "RESM_ETF_price"}, inplace=True) data = pd.merge(data, copper, how="left", on="Date") data = pd.merge(data, silver, how="left", on="Date") data = pd.merge(data, gold, how="left", on="Date") data = pd.merge(data, rates, how="left", on="Date") data = pd.merge(data, sp500, how="left", on="Date") data = pd.merge(data, DJIA, how="left", on="Date") data = pd.merge(data, NASDAQ_Composite, how="left", on="Date") data = pd.merge(data, FTSE_100, how="left", on="Date") data = pd.merge(data, DAX, how="left", on="Date") data = pd.merge(data, CAC_40, how="left", on="Date") data = pd.merge(data, NIKKEI_225, how="left", on="Date") data = pd.merge(data, SHANGHAI_Composite, how="left", on="Date") data = pd.merge(data, Hang_Seng_Index, how="left", on="Date") data = pd.merge(data, BSE_Sensex, how="left", on="Date") data = pd.merge(data, ASX_200, how="left", on="Date") data = pd.merge(data, GMMP_ETF, how="left", on="Date") data = pd.merge(data, RESM_ETF, how="left", on="Date") wig20 = pd.read_csv("/dissertation_data/WIG20_historical_data.csv", index_col=0) wig20["WIG20_volume"] = wig20["WIG20_volume"].apply(convert_volume_to_number) wig20 = wig20.reset_index() wig20["Date"] = pd.to_datetime(wig20["Date"], format="%d/%m/%Y").dt.strftime( "%Y-%m-%d %H:%M:%S" ) wig20.set_index("Date", inplace=True) wig20.index = pd.to_datetime(wig20.index) data = pd.merge(data, wig20, how="left", on="Date") data = data.drop(["Open", "High", "Low", "Close"], axis=1) # create a new column with month and year only data["month_year"] = pd.to_datetime(data.index.strftime("%Y-%m")) # loop through the inflation_dict and assign inflation rate to corresponding month for date_str, rate in inflation_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "inflation_rate"] = rate # loop through the intrest_dict and assign inflation rate to corresponding month for date_str, rate in interest_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "interest_rate"] = rate # loop through the intrest_dict and assign inflation rate to corresponding month for date_str, rate in m3poland_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "M3_rate"] = rate data[["M3_rate"]] = data[["M3_rate"]].div(kurs) data["ma14"] = data["Adj Close"].rolling(window=14).mean() data["ma50"] = data["Adj Close"].rolling(window=50).mean() data["ma100"] = data["Adj Close"].rolling(window=100).mean() data["ma200"] = data["Adj Close"].rolling(window=200).mean() data["copper_price"] = data["copper_price"].ffill() data["silver_price"] = data["silver_price"].ffill() data["gold_price"] = data["gold_price"].ffill() data["sp500_price"] = data["sp500_price"].ffill() data["DJIA_price"] = data["DJIA_price"].ffill() data["NASDAQ_Composite_price"] = data["NASDAQ_Composite_price"].ffill() data["FTSE_100_price"] = data["FTSE_100_price"].ffill() data["DAX_price"] = data["DAX_price"].ffill() data["CAC_40_price"] = data["CAC_40_price"].ffill() data["NIKKEI_225_price"] = data["NIKKEI_225_price"].ffill() data["SHANGHAI_Composite_price"] = data["SHANGHAI_Composite_price"].ffill() data["Hang_Seng_Index_price"] = data["Hang_Seng_Index_price"].ffill() data["BSE_Sensex_price"] = data["BSE_Sensex_price"].ffill() data["ASX_200_price"] = data["ASX_200_price"].ffill() data["GMMP_ETF_price"] = data["GMMP_ETF_price"].ffill() data["RESM_ETF_price"] = data["RESM_ETF_price"].ffill() data["EURUSD=X_price"] = data["EURUSD=X_price"].ffill() data["JPY=X_price"] = data["JPY=X_price"].ffill() data["CNY=X_price"] = data["CNY=X_price"].ffill() data["PLN=X_price"] = data["PLN=X_price"].ffill() data["WIG20_price"] = data["WIG20_price"].ffill() data["WIG20_volume"] = data["WIG20_volume"].ffill() data["WIG20_change"] = data["WIG20_change"].ffill() # convert WIG20_price to float data["WIG20_price"] = data["WIG20_price"].str.replace(",", "").astype(float) # convert WIG20_change to float data["WIG20_change"] = data["WIG20_change"].str.replace("%", "").astype(float) ma14_mean = data["ma14"].mean() data["ma14"].fillna(ma14_mean, inplace=True) ma50_mean = data["ma50"].mean() data["ma50"].fillna(ma50_mean, inplace=True) ma100_mean = data["ma100"].mean() data["ma100"].fillna(ma100_mean, inplace=True) ma200_mean = data["ma200"].mean() data["ma200"].fillna(ma200_mean, inplace=True) financial_results = pd.read_csv( cwd + "/dissertation_data/financial_results.csv", index_col=0 ) financial_results.index = pd.to_datetime(financial_results.index) financial_results["month_year"] = financial_results.index.strftime("%Y-%m") financial_results["month_year"] = pd.to_datetime(financial_results["month_year"]) # create new 'dates' column data["dates"] = data.index # merge the two dataframes based on the month_year column data = pd.merge(data, financial_results, on="month_year") # Extract month from month_year column data["month"] = data["month_year"].dt.month # Create quarters column data["quarters"] = data["month"].apply(lambda x: (x - 1) // 3 + 1) data = data.drop(["month_year", "month"], axis=1) data["target"] = data["Adj Close"].shift( shift_back_num ) # Shift the close price 21 days up # List of features to create lagged values for features = ["Adj Close"] # Add lagged values for each feature for feature in features: for i in range(1, 15): data[f"{feature}_lag_{i}"] = data[feature].shift(i) # current #future data["target_class"] = list( map(classify_movement, data["Adj Close"], data["target"]) ) # Get all rows with NaN target value last_21_records = data[data["target"].isna()] new_startdate = data["dates"].iloc[0] new_enddate = data["dates"].iloc[-1] print( "\n\n\n***IMPORTANT INFORMATION***\n there is new startdate and endate due to cleaning process..." ) print("NEW STARTDATE: ", new_startdate) print("NEW ENDDATE: ", new_enddate) data.dropna(inplace=True) data = data.drop(["dates", "target"], axis=1) last_21_records = last_21_records.drop(["target", "target_class"], axis=1) # Create the directory if it doesn't exist if not os.path.exists(model_version_folder_path): os.makedirs(model_version_folder_path) data.to_csv("/dissertation_data/kghm_" + data_version + ".csv") last_21_records.to_csv( "/dissertation_data/kghm_validation_" + data_version + ".csv" ) return data, last_index, new_startdate, new_enddate, last_21_records data, last_index, new_startdate, new_enddate, last_21_records = clean_data(data)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/772/129772732.ipynb
cooper-mining-company-stock-price-prediction
maciejgronczynski
[{"Id": 129772732, "ScriptId": 38592772, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 5276846, "CreationDate": "05/16/2023 11:15:28", "VersionNumber": 1.0, "Title": "KGHM Stock Price Prediction 21 days in future.80%", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 455.0, "LinesInsertedFromPrevious": 455.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186134091, "KernelVersionId": 129772732, "SourceDatasetVersionId": 5697920}]
[{"Id": 5697920, "DatasetId": 3275598, "DatasourceVersionId": 5773564, "CreatorUserId": 5276846, "LicenseName": "Other (specified in description)", "CreationDate": "05/16/2023 11:14:27", "VersionNumber": 2.0, "Title": "Copper Mining Company - Stock Price Prediction", "Slug": "cooper-mining-company-stock-price-prediction", "Subtitle": "KGHM Dataset: A Comprehensive Financial and Economic Data Collection for Stock", "Description": "\"The 'KGHM Dataset' is a meticulously curated collection of financial and economic data specifically designed for the purpose of stock price prediction for KGHM, a leading copper mining company. This dataset encompasses a wide range of features including historical prices, macroeconomic indicators, industry-related metrics, company-specific financials, and technical indicators. The dataset comprises 59 carefully selected features that have the potential to influence the stock price of KGHM. The data has been sourced from reputable platforms such as Yahoo Finance, Wikipedia, and the official website of KGHM. The dataset has undergone rigorous pre-processing and feature engineering to ensure data quality and relevance for the machine learning models used in the stock price prediction analysis. It serves as a valuable resource for conducting in-depth analysis and developing accurate predictive models for KGHM's stock price movements.\"", "VersionNotes": "Data Update 2023-05-16", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3275598, "CreatorUserId": 5276846, "OwnerUserId": 5276846.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5697920.0, "CurrentDatasourceVersionId": 5773564.0, "ForumId": 3341273, "Type": 2, "CreationDate": "05/16/2023 08:42:48", "LastActivityDate": "05/16/2023", "TotalViews": 883, "TotalDownloads": 111, "TotalVotes": 1, "TotalKernels": 2}]
[{"Id": 5276846, "UserName": "maciejgronczynski", "DisplayName": "Maciej Gronczynski", "RegisterDate": "06/10/2020", "PerformanceTier": 2}]
import os import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score import os import matplotlib.pyplot as plt import seaborn as sns import pickle from sklearn.model_selection import GridSearchCV import numpy as np import datetime import sklearn.metrics as metrics #!pip install yfinance import yfinance as yf for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) ticker = "KGH.WA" kurs = 4.21 # USD/PLN currency = "USD" # IMPORTANT READ BEFORE SETUP # startdate you set will be x-14 (reason behind is that there's no access to # lagged 14 adj closing price, that why first 14 records are being dropped) startdate = "2017-03-01" # IMPORTANT READ BEFORE SETUP # enddate you set will be x-21 (reason behind it is that last 21 days, will have no target variable) # target variables predicted for the last 21 days will also be predicition for next 21 days. # so for example if you set enddate to 2023-01-01, you will be able to predict from # 2023-01-02 till 2023-01-23 (21 days) enddate = "2023-03-10" model_version = "1.0" data_version = "v1" shift_back_num = -21 data = yf.download(ticker, startdate, enddate) # # ***Introduction*** # Hello everyone! Welcome to this Kaggle notebook where we will be exploring the fascinating world of stock price prediction. Predicting stock prices has always been an attractive topic to both newbies and experienced traders in the financial industry. In this notebook, we will dive into the complexities of financial market data, and we will attempt to make sense of it using Machine Learning. # We will start by importing and cleaning our data, which is a critical step in any data science project. The dataset we'll be using contains daily stock prices, with features like Open, High, Low, Close prices, and Volume of transactions. Our target variable, which we'll aim to predict, is the 'target_class' column. # "target_class" contains 4 values: # "up_more_5%" # "down_more_5%" # "up_less_5%" # "down_less_5%" # In this notebook I will try to predict target label for KGHM price 21 into the future. As data I gathered is between 2017-03-01 and 2023-03-10 we will be able to compare our predictions to actual KGHM price. # I will explain and show how I collected the data from the scratch, including cleaning process, but you can access final dataset here : https://www.kaggle.com/datasets/maciejgronczynski/cooper-mining-company-stock-price-prediction # First we will start with defining few functions, that we will need in next steps: # The **exchange_rates** function retrieves historical exchange rate data for a selection of currencies (EUR, JPY, CNY, and PLN) relative to USD. It requires two date parameters: startdate and enddate to specify the data collection period. # The function uses the yfinance library to download data from Yahoo Finance, keeping only the adjusted close price for each day. Each currency's data is stored in a .csv file and combined into a single DataFrame, with each column representing a different currency pair's daily exchange rate. # Finally, the DataFrame is returned, providing a consolidated view of exchange rate trends over the specified time period. def exchange_rates(startdate, enddate): ex_rates = ["EURUSD=X", "JPY=X", "CNY=X", "PLN=X"] final_data = pd.DataFrame() for ticker in ex_rates: data = yf.download(ticker, startdate, enddate) data = data.drop(["Open", "High", "Low", "Close", "Volume"], axis=1) name = ticker + "_price" data.rename(columns={"Adj Close": name}, inplace=True) data.to_csv("dissertation_data.csv") # merge dataframes using pd.concat() final_data = pd.concat([final_data, data[name]], axis=1) final_data = final_data.rename_axis("Date") final_data.index = pd.to_datetime(final_data.index) return final_data # # The **convert_volume_to_number** function takes as an input a string that represents a volume of stocks, potentially ending in the letter 'M' to denote 'million'. # This function checks whether the last character of the input string is 'M'. If it is, the function removes the 'M' and converts the rest of the string to a float, then multiplies it by 1,000,000 to get the volume in numeric form. This allows us to handle stock volumes given in millions in a numerical format. # If the last character is not 'M', the function simply converts the string to an integer. This is done under the assumption that if the volume is not denoted in millions, it is an exact numeric representation. # In both cases, the function returns the volume as an integer. def convert_volume_to_number(volume_str): if volume_str[-1] == "M": return int(float(volume_str[:-1]) * 1000000) else: return int(volume_str) # # The **classify_movement** function is used to categorize changes in stock prices between the current and future periods. This function takes two arguments: current, which represents the current stock price, and future, which is the stock price at a future time. # The function returns an integer representing one of four categories based on the percentage change in stock price: # If the future price is more than 5% higher than the current price, the function returns 0, indicating a significant price increase. # If the future price is more than 5% lower than the current price, the function returns 1, indicating a significant price decrease. # If the future price is higher but less than 5% above the current price, the function returns 2, indicating a minor price increase. # If none of the above conditions are met, the function returns 3, implying a minor price decrease (less than 5%). def classify_movement(current, future): if future > current * 1.05: # Up more than 5% return 0 elif future < current * 0.95: # Down more than 5% return 1 elif future > current: # Up less than 5% return 2 else: # Down less than 5% return 3 # In addition to the data we'll be downloading directly via the yfinance library, we've also manually web scraped some crucial economic indicators that are not readily available on Yahoo Finance. These indicators include the inflation rate, interest rate, and the M3 money supply for Poland. inflation_dict = { # 2017 "2017-03-01": 2, "2017-04-01": 2, "2017-05-01": 1.9, "2017-06-01": 1.5, "2017-07-01": 1.7, "2017-08-01": 1.8, "2017-09-01": 2.2, "2017-10-01": 2.1, "2017-11-01": 2.5, "2017-12-01": 2.1, # 2018 "2018-01-01": 1.9, "2018-02-01": 1.4, "2018-03-01": 1.3, "2018-04-01": 1.6, "2018-05-01": 1.7, "2018-06-01": 2, "2018-07-01": 2, "2018-08-01": 2, "2018-09-01": 1.9, "2018-10-01": 1.7, "2018-11-01": 1.3, "2018-12-01": 1.1, # 2019 "2019-01-01": 0.7, "2019-02-01": 1.2, "2019-03-01": 1.7, "2019-04-01": 2.2, "2019-05-01": 2.4, "2019-06-01": 2.6, "2019-07-01": 2.9, "2019-08-01": 2.9, "2019-09-01": 2.6, "2019-10-01": 2.5, "2019-11-01": 2.6, "2019-12-01": 3.4, # 2020 "2020-01-01": 4.4, "2020-02-01": 4.7, "2020-03-01": 4.6, "2020-04-01": 3.4, "2020-05-01": 2.9, "2020-06-01": 3.3, "2020-07-01": 3, "2020-08-01": 2.9, "2020-09-01": 3.2, "2020-10-01": 3.1, "2020-11-01": 3, "2020-12-01": 2.4, # 2021 "2021-01-01": 2.6, "2021-02-01": 2.4, "2021-03-01": 3.2, "2021-04-01": 4.3, "2021-05-01": 4.7, "2021-06-01": 4.4, "2021-07-01": 5, "2021-08-01": 5.5, "2021-09-01": 5.9, "2021-10-01": 6.8, "2021-11-01": 7.8, "2021-12-01": 8.6, # 2022 "2022-01-01": 9.4, "2022-02-01": 8.5, "2022-03-01": 11, "2022-04-01": 12.3, "2022-05-01": 13.9, "2022-06-01": 15.5, "2022-07-01": 15.6, "2022-08-01": 16.1, "2022-09-01": 17.2, "2022-10-01": 17.9, "2022-11-01": 17.5, "2022-12-01": 16.6, # 2023 "2023-01-01": 16.6, "2023-02-01": 18.4, "2023-03-01": 16.2, } interest_dict = { # 2017 "2017-03-01": 1.5, "2017-04-01": 1.5, "2017-05-01": 1.5, "2017-06-01": 1.5, "2017-07-01": 1.5, "2017-08-01": 1.5, "2017-09-01": 1.5, "2017-10-01": 1.5, "2017-11-01": 1.5, "2017-12-01": 1.5, # 2018 "2018-01-01": 1.5, "2018-02-01": 1.5, "2018-03-01": 1.5, "2018-04-01": 1.5, "2018-05-01": 1.5, "2018-06-01": 1.5, "2018-07-01": 1.5, "2018-08-01": 1.5, "2018-09-01": 1.5, "2018-10-01": 1.5, "2018-11-01": 1.5, "2018-12-01": 1.5, # 2019 "2019-01-01": 1.5, "2019-02-01": 1.5, "2019-03-01": 1.5, "2019-04-01": 1.5, "2019-05-01": 1.5, "2019-06-01": 1.5, "2019-07-01": 1.5, "2019-08-01": 1.5, "2019-09-01": 1.5, "2019-10-01": 1.5, "2019-11-01": 1.5, "2019-12-01": 1.5, # 2020 "2020-01-01": 1.5, "2020-02-01": 1.5, "2020-03-01": 1, "2020-04-01": 0.5, "2020-05-01": 0.1, "2020-06-01": 0.1, "2020-07-01": 0.1, "2020-08-01": 0.1, "2020-09-01": 0.1, "2020-10-01": 0.1, "2020-11-01": 0.1, "2020-12-01": 0.1, # 2021 "2021-01-01": 0.1, "2021-02-01": 0.1, "2021-03-01": 0.1, "2021-04-01": 0.1, "2021-05-01": 0.1, "2021-06-01": 0.1, "2021-07-01": 0.1, "2021-08-01": 0.1, "2021-09-01": 0.1, "2021-10-01": 0.5, "2021-11-01": 1.25, "2021-12-01": 1.75, # 2022 "2022-01-01": 2.25, "2022-02-01": 2.75, "2022-03-01": 3.5, "2022-04-01": 4.5, "2022-05-01": 5.25, "2022-06-01": 6, "2022-07-01": 6.5, "2022-08-01": 6.75, "2022-09-01": 6.75, "2022-10-01": 6.75, "2022-11-01": 6.75, "2022-12-01": 6.75, # 2023 "2023-01-01": 6.75, "2023-02-01": 6.75, "2023-03-01": 6.75, } m3poland_dict = { "2023-01-01": 2091314.88, "2023-02-01": 2131400.00, "2023-03-01": 2131400.00, # 2022 "2022-01-01": 1985020.62, "2022-02-01": 1985020.62, "2022-03-01": 2009566.25, "2022-04-01": 2009566.25, "2022-05-01": 2009566.25, "2022-06-01": 1998843.50, "2022-07-01": 1998843.50, "2022-08-01": 1998843.50, "2022-09-01": 2062092.75, "2022-10-01": 2062092.75, "2022-11-01": 2062092.75, "2022-12-01": 2091314.88, # 2021 "2021-01-01": 1822650.12, "2021-02-01": 1822650.12, "2021-03-01": 1862487.75, "2021-04-01": 1862487.75, "2021-05-01": 1862487.75, "2021-06-01": 1876000.62, "2021-07-01": 1876000.62, "2021-08-01": 1876000.62, "2021-09-01": 1985020.62, "2021-10-01": 1985020.62, "2021-11-01": 1985020.62, "2021-12-01": 1985020.62, # 2020 "2020-01-01": 1565639.75, "2020-02-01": 1565639.75, "2020-03-01": 1628423.38, "2020-04-01": 1628423.38, "2020-05-01": 1628423.38, "2020-06-01": 1746224.75, "2020-07-01": 1746224.75, "2020-08-01": 1746224.75, "2020-09-01": 1762175.62, "2020-10-01": 1762175.62, "2020-11-01": 1762175.62, "2020-12-01": 1822650.12, # 2019 "2019-01-01": 1446093.38, "2019-02-01": 1446093.38, "2019-03-01": 1457187.12, "2019-04-01": 1457187.12, "2019-05-01": 1457187.12, "2019-06-01": 1478217.75, "2019-07-01": 1478217.75, "2019-08-01": 1478217.75, "2019-09-01": 1506171.25, "2019-10-01": 1506171.25, "2019-11-01": 1506171.25, "2019-12-01": 1565639.75, # 2018 "2018-01-01": 1324383.25, "2018-02-01": 1324383.25, "2018-03-01": 1325795.62, "2018-04-01": 1325795.62, "2018-05-01": 1325795.62, "2018-06-01": 1352491.88, "2018-07-01": 1352491.88, "2018-08-01": 1352491.88, "2018-09-01": 1376164.75, "2018-10-01": 1376164.75, "2018-11-01": 1376164.75, "2018-12-01": 1446093.38, # 2017 "2017-03-01": 1261178.12, "2017-04-01": 1261178.12, "2017-05-01": 1261178.12, "2017-06-01": 1261178.12, "2017-07-01": 1261178.12, "2017-08-01": 1261178.12, "2017-09-01": 1275942.38, "2017-10-01": 1275942.38, "2017-11-01": 1275942.38, "2017-12-01": 1324383.25, } def clean_data(data): last_index = data.iloc[-1].name print( "Last available date in data is:", last_index, "Live Prediction will be on that date.", ) data[["Adj Close"]] = data[["Adj Close"]].div(kurs) copper = yf.download("HG=F", start=startdate, end=enddate) silver = yf.download("SI=F", start=startdate, end=enddate) gold = yf.download("GLD", start=startdate, end=enddate) sp500 = yf.download("^GSPC", start=startdate, end=enddate) DJIA = yf.download("^DJI", start=startdate, end=enddate) NASDAQ_Composite = yf.download("^IXIC", start=startdate, end=enddate) FTSE_100 = yf.download("^FTSE", start=startdate, end=enddate) DAX = yf.download("^GDAXI", start=startdate, end=enddate) CAC_40 = yf.download("^FCHI", start=startdate, end=enddate) NIKKEI_225 = yf.download("^N225", start=startdate, end=enddate) SHANGHAI_Composite = yf.download("000001.SS", start=startdate, end=enddate) Hang_Seng_Index = yf.download("^HSI", start=startdate, end=enddate) BSE_Sensex = yf.download("^BSESN", start=startdate, end=enddate) ASX_200 = yf.download("^AXJO", start=startdate, end=enddate) GMMP_ETF = yf.download("PICK", start=startdate, end=enddate) RESM_ETF = yf.download("REMX", start=startdate, end=enddate) copper = pd.DataFrame(copper["Adj Close"]) silver = pd.DataFrame(silver["Adj Close"]) gold = pd.DataFrame(gold["Adj Close"]) rates = exchange_rates(startdate, enddate) sp500 = pd.DataFrame(sp500["Adj Close"]) DJIA = pd.DataFrame(DJIA["Adj Close"]) NASDAQ_Composite = pd.DataFrame(NASDAQ_Composite["Adj Close"]) FTSE_100 = pd.DataFrame(FTSE_100["Adj Close"]) DAX = pd.DataFrame(DAX["Adj Close"]) CAC_40 = pd.DataFrame(CAC_40["Adj Close"]) NIKKEI_225 = pd.DataFrame(NIKKEI_225["Adj Close"]) SHANGHAI_Composite = pd.DataFrame(SHANGHAI_Composite["Adj Close"]) Hang_Seng_Index = pd.DataFrame(Hang_Seng_Index["Adj Close"]) BSE_Sensex = pd.DataFrame(BSE_Sensex["Adj Close"]) ASX_200 = pd.DataFrame(ASX_200["Adj Close"]) GMMP_ETF = pd.DataFrame(GMMP_ETF["Adj Close"]) RESM_ETF = pd.DataFrame(RESM_ETF["Adj Close"]) # Rename the "Adj Close" column to "copper_price" and "silver_price" copper.rename(columns={"Adj Close": "copper_price"}, inplace=True) silver.rename(columns={"Adj Close": "silver_price"}, inplace=True) gold.rename(columns={"Adj Close": "gold_price"}, inplace=True) sp500.rename(columns={"Adj Close": "sp500_price"}, inplace=True) DJIA.rename(columns={"Adj Close": "DJIA_price"}, inplace=True) NASDAQ_Composite.rename( columns={"Adj Close": "NASDAQ_Composite_price"}, inplace=True ) FTSE_100.rename(columns={"Adj Close": "FTSE_100_price"}, inplace=True) DAX.rename(columns={"Adj Close": "DAX_price"}, inplace=True) CAC_40.rename(columns={"Adj Close": "CAC_40_price"}, inplace=True) NIKKEI_225.rename(columns={"Adj Close": "NIKKEI_225_price"}, inplace=True) SHANGHAI_Composite.rename( columns={"Adj Close": "SHANGHAI_Composite_price"}, inplace=True ) Hang_Seng_Index.rename(columns={"Adj Close": "Hang_Seng_Index_price"}, inplace=True) BSE_Sensex.rename(columns={"Adj Close": "BSE_Sensex_price"}, inplace=True) ASX_200.rename(columns={"Adj Close": "ASX_200_price"}, inplace=True) GMMP_ETF.rename(columns={"Adj Close": "GMMP_ETF_price"}, inplace=True) RESM_ETF.rename(columns={"Adj Close": "RESM_ETF_price"}, inplace=True) data = pd.merge(data, copper, how="left", on="Date") data = pd.merge(data, silver, how="left", on="Date") data = pd.merge(data, gold, how="left", on="Date") data = pd.merge(data, rates, how="left", on="Date") data = pd.merge(data, sp500, how="left", on="Date") data = pd.merge(data, DJIA, how="left", on="Date") data = pd.merge(data, NASDAQ_Composite, how="left", on="Date") data = pd.merge(data, FTSE_100, how="left", on="Date") data = pd.merge(data, DAX, how="left", on="Date") data = pd.merge(data, CAC_40, how="left", on="Date") data = pd.merge(data, NIKKEI_225, how="left", on="Date") data = pd.merge(data, SHANGHAI_Composite, how="left", on="Date") data = pd.merge(data, Hang_Seng_Index, how="left", on="Date") data = pd.merge(data, BSE_Sensex, how="left", on="Date") data = pd.merge(data, ASX_200, how="left", on="Date") data = pd.merge(data, GMMP_ETF, how="left", on="Date") data = pd.merge(data, RESM_ETF, how="left", on="Date") wig20 = pd.read_csv("/dissertation_data/WIG20_historical_data.csv", index_col=0) wig20["WIG20_volume"] = wig20["WIG20_volume"].apply(convert_volume_to_number) wig20 = wig20.reset_index() wig20["Date"] = pd.to_datetime(wig20["Date"], format="%d/%m/%Y").dt.strftime( "%Y-%m-%d %H:%M:%S" ) wig20.set_index("Date", inplace=True) wig20.index = pd.to_datetime(wig20.index) data = pd.merge(data, wig20, how="left", on="Date") data = data.drop(["Open", "High", "Low", "Close"], axis=1) # create a new column with month and year only data["month_year"] = pd.to_datetime(data.index.strftime("%Y-%m")) # loop through the inflation_dict and assign inflation rate to corresponding month for date_str, rate in inflation_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "inflation_rate"] = rate # loop through the intrest_dict and assign inflation rate to corresponding month for date_str, rate in interest_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "interest_rate"] = rate # loop through the intrest_dict and assign inflation rate to corresponding month for date_str, rate in m3poland_dict.items(): date = datetime.datetime.strptime(date_str, "%Y-%m-%d") mask = data["month_year"] == date.replace(day=1) data.loc[mask, "M3_rate"] = rate data[["M3_rate"]] = data[["M3_rate"]].div(kurs) data["ma14"] = data["Adj Close"].rolling(window=14).mean() data["ma50"] = data["Adj Close"].rolling(window=50).mean() data["ma100"] = data["Adj Close"].rolling(window=100).mean() data["ma200"] = data["Adj Close"].rolling(window=200).mean() data["copper_price"] = data["copper_price"].ffill() data["silver_price"] = data["silver_price"].ffill() data["gold_price"] = data["gold_price"].ffill() data["sp500_price"] = data["sp500_price"].ffill() data["DJIA_price"] = data["DJIA_price"].ffill() data["NASDAQ_Composite_price"] = data["NASDAQ_Composite_price"].ffill() data["FTSE_100_price"] = data["FTSE_100_price"].ffill() data["DAX_price"] = data["DAX_price"].ffill() data["CAC_40_price"] = data["CAC_40_price"].ffill() data["NIKKEI_225_price"] = data["NIKKEI_225_price"].ffill() data["SHANGHAI_Composite_price"] = data["SHANGHAI_Composite_price"].ffill() data["Hang_Seng_Index_price"] = data["Hang_Seng_Index_price"].ffill() data["BSE_Sensex_price"] = data["BSE_Sensex_price"].ffill() data["ASX_200_price"] = data["ASX_200_price"].ffill() data["GMMP_ETF_price"] = data["GMMP_ETF_price"].ffill() data["RESM_ETF_price"] = data["RESM_ETF_price"].ffill() data["EURUSD=X_price"] = data["EURUSD=X_price"].ffill() data["JPY=X_price"] = data["JPY=X_price"].ffill() data["CNY=X_price"] = data["CNY=X_price"].ffill() data["PLN=X_price"] = data["PLN=X_price"].ffill() data["WIG20_price"] = data["WIG20_price"].ffill() data["WIG20_volume"] = data["WIG20_volume"].ffill() data["WIG20_change"] = data["WIG20_change"].ffill() # convert WIG20_price to float data["WIG20_price"] = data["WIG20_price"].str.replace(",", "").astype(float) # convert WIG20_change to float data["WIG20_change"] = data["WIG20_change"].str.replace("%", "").astype(float) ma14_mean = data["ma14"].mean() data["ma14"].fillna(ma14_mean, inplace=True) ma50_mean = data["ma50"].mean() data["ma50"].fillna(ma50_mean, inplace=True) ma100_mean = data["ma100"].mean() data["ma100"].fillna(ma100_mean, inplace=True) ma200_mean = data["ma200"].mean() data["ma200"].fillna(ma200_mean, inplace=True) financial_results = pd.read_csv( cwd + "/dissertation_data/financial_results.csv", index_col=0 ) financial_results.index = pd.to_datetime(financial_results.index) financial_results["month_year"] = financial_results.index.strftime("%Y-%m") financial_results["month_year"] = pd.to_datetime(financial_results["month_year"]) # create new 'dates' column data["dates"] = data.index # merge the two dataframes based on the month_year column data = pd.merge(data, financial_results, on="month_year") # Extract month from month_year column data["month"] = data["month_year"].dt.month # Create quarters column data["quarters"] = data["month"].apply(lambda x: (x - 1) // 3 + 1) data = data.drop(["month_year", "month"], axis=1) data["target"] = data["Adj Close"].shift( shift_back_num ) # Shift the close price 21 days up # List of features to create lagged values for features = ["Adj Close"] # Add lagged values for each feature for feature in features: for i in range(1, 15): data[f"{feature}_lag_{i}"] = data[feature].shift(i) # current #future data["target_class"] = list( map(classify_movement, data["Adj Close"], data["target"]) ) # Get all rows with NaN target value last_21_records = data[data["target"].isna()] new_startdate = data["dates"].iloc[0] new_enddate = data["dates"].iloc[-1] print( "\n\n\n***IMPORTANT INFORMATION***\n there is new startdate and endate due to cleaning process..." ) print("NEW STARTDATE: ", new_startdate) print("NEW ENDDATE: ", new_enddate) data.dropna(inplace=True) data = data.drop(["dates", "target"], axis=1) last_21_records = last_21_records.drop(["target", "target_class"], axis=1) # Create the directory if it doesn't exist if not os.path.exists(model_version_folder_path): os.makedirs(model_version_folder_path) data.to_csv("/dissertation_data/kghm_" + data_version + ".csv") last_21_records.to_csv( "/dissertation_data/kghm_validation_" + data_version + ".csv" ) return data, last_index, new_startdate, new_enddate, last_21_records data, last_index, new_startdate, new_enddate, last_21_records = clean_data(data)
false
0
10,039
0
10,270
10,039
129691389
# # Import libraries import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # # Load data data_folder = "../input/icr-identify-age-related-conditions/" train = pd.read_csv(f"{data_folder}train.csv") greeks = pd.read_csv(f"{data_folder}greeks.csv") sample_submission = pd.read_csv(f"{data_folder}sample_submission.csv") test = pd.read_csv(f"{data_folder}test.csv") train.head() train.columns test.head() # # Data preparation to_keep = [ "DU", "AB", "CR", "FI", "EG", "DA", "CC", "FL", "EE", "EB", "DI", "GH", "DE", "EH", "AY", "FC", "CD ", "GL", "EP", "CS", "CH", "FD ", "BC", "AM", "FS", "EU", "DH", ] X_train = train[to_keep] y_train = train["Class"] imputer = SimpleImputer(missing_values=np.nan, strategy="median") imputer.fit(X_train) X_train = imputer.transform(X_train) # # Model fit m = RandomForestClassifier( criterion="entropy", max_features=1.0, min_samples_leaf=3, n_jobs=-1 ) m.fit(X_train, y_train) # # Submission submission = pd.DataFrame(columns=sample_submission.columns) submission.head() submission["Id"] = test["Id"] X_test = test[to_keep] X_test = imputer.transform(X_test) submission["class_0"] = m.predict_proba(X_test)[:, 0] submission["class_1"] = m.predict_proba(X_test)[:, 1] submission.head() submission.loc[:, ["class_0", "class_1"]] = submission.loc[ :, ["class_0", "class_1"] ].astype(np.float64) submission.to_csv("submission.csv", index=False)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/691/129691389.ipynb
null
null
[{"Id": 129691389, "ScriptId": 38548418, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 737692, "CreationDate": "05/15/2023 19:30:20", "VersionNumber": 2.0, "Title": "AML_baseline", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 91.0, "LinesInsertedFromPrevious": 21.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 70.0, "LinesInsertedFromFork": 65.0, "LinesDeletedFromFork": 12.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 26.0, "TotalVotes": 1}]
null
null
null
null
# # Import libraries import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # # Load data data_folder = "../input/icr-identify-age-related-conditions/" train = pd.read_csv(f"{data_folder}train.csv") greeks = pd.read_csv(f"{data_folder}greeks.csv") sample_submission = pd.read_csv(f"{data_folder}sample_submission.csv") test = pd.read_csv(f"{data_folder}test.csv") train.head() train.columns test.head() # # Data preparation to_keep = [ "DU", "AB", "CR", "FI", "EG", "DA", "CC", "FL", "EE", "EB", "DI", "GH", "DE", "EH", "AY", "FC", "CD ", "GL", "EP", "CS", "CH", "FD ", "BC", "AM", "FS", "EU", "DH", ] X_train = train[to_keep] y_train = train["Class"] imputer = SimpleImputer(missing_values=np.nan, strategy="median") imputer.fit(X_train) X_train = imputer.transform(X_train) # # Model fit m = RandomForestClassifier( criterion="entropy", max_features=1.0, min_samples_leaf=3, n_jobs=-1 ) m.fit(X_train, y_train) # # Submission submission = pd.DataFrame(columns=sample_submission.columns) submission.head() submission["Id"] = test["Id"] X_test = test[to_keep] X_test = imputer.transform(X_test) submission["class_0"] = m.predict_proba(X_test)[:, 0] submission["class_1"] = m.predict_proba(X_test)[:, 1] submission.head() submission.loc[:, ["class_0", "class_1"]] = submission.loc[ :, ["class_0", "class_1"] ].astype(np.float64) submission.to_csv("submission.csv", index=False)
false
0
561
1
561
561
129691527
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from sklearn.model_selection import learning_curve import optuna from keras.backend import clear_session import matplotlib.pyplot as plt df = pd.read_csv("/kaggle/input/bacteria/my.csv") df # random_values = np.random.rand(len(df[df.Beta_corrige == 0.001])) # df['Beta_corrige'][df.Beta_corrige == 0.001] = random_values df = df[df.Beta_corrige != 0.001] X = df[["ENT", "NOCA"]].values y = df["Beta_corrige"].values X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = keras.Sequential( [ layers.Dense(2, activation="relu", input_shape=[2]), layers.Dense(1, activation="relu"), ] ) model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.001), loss="mse", metrics=["mae", "mse", "accuracy"], ) callback = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=10) history = model.fit( X_train, y_train, validation_data=(X_test, y_test), epochs=1000, validation_split=0.1, callbacks=[callback], verbose=0, ) test_loss, test_mae, test_mse, test_acc = model.evaluate(X_test, y_test, verbose=0) print("MAE score:", test_mae) print("MSE score:", test_mse) # Plot MAE and MSE scores plt.figure(figsize=(10, 6)) # plt.plot(history.history['mae'], label='MAE') # plt.plot(history.history['mse'], label='MSE') plt.plot(history.history["val_loss"], label="VAL_LOSS") plt.plot(history.history["loss"], label="LOSS") plt.xlabel("Epoch") plt.ylabel("Score") plt.title("MAE and MSE Scores") plt.legend() plt.show() y_pred = model.predict(X_test) test_df = pd.DataFrame( {"y_test": y_test.tolist(), "y_pred": y_pred.tolist(), "X_test": X_test.tolist()} ) test_df.head(10) # Retrieve weights and biases for each layer weights = [] biases = [] for layer in model.layers: layer_weights, layer_biases = layer.get_weights() weights.append(layer_weights) biases.append(layer_biases) def forward_propagation(inputs): print("input", inputs.shape) hidden = inputs for i in range(len(weights)): # print(i, 'w', weights[i].shape) # print(i, 'b', biases[i].shape) print(f"hidden {i} : ", hidden) print("W1 * input:", np.dot(hidden, weights[i])) print(weights[i].shape) print(biases[i].shape) hidden = np.dot(hidden, weights[i]) + biases[i] hidden = np.maximum(hidden, 0) # ReLU activation function return hidden # Example usage inputs = np.array([[-0.6742486351912229, -1.0585763576446536]]) # Example input data output = forward_propagation(inputs) print("These inputs data are the first row of test_df") print(output) import numpy as np hid_activ_fun = lambda x: np.maximum(0, x) # ReLU, most used within hidden neurons out_activ_fun = lambda x: np.maximum( 0, x ) # Identity, most used within output neurons in regressions def forward_propagation(inputs, W1, B1, W2, B2): hidden1 = hid_activ_fun(np.dot(W1, inputs) + B1) # shape = (nhid1, ncases) hidden2 = out_activ_fun(np.dot(W2, hidden1) + B2) return hidden2 # shape = (nout, ncases) = (1, ncases) if __name__ == "__main__": inputs = np.array( [[-0.6742486351912229, -1.0585763576446536]] ) # shape = (ndim, ncases) def model_get_weights(): W1, B1 = model.layers[0].get_weights() print(W1.shape) print(B1.shape) W2, B2 = model.layers[1].get_weights() print(W2.shape) print(B2.shape) return W1, B1, W2, B2 W1, B1, W2, B2 = model_get_weights() print("For 3 cases (datapoint with 2 dimensions), all outputs are:") outputs = forward_propagation(inputs, W1, B1, W2, B2).reshape( ncases, ) print("Input => Output") for case in range(inputs.shape[1]): print(inputs[:, case], " => ", outputs[case]) print(weights) print(biases) # **The Function for getting the best numbers of the neurons for the model** """ W1, B1, W2, B2, W3, B3 = model.get_weights() def forward_propagation(inputs): hidden1 = np.dot(inputs, W1) + B1 hidden1 = np.maximum(hidden1, 0) # ReLU activation function hidden2 = np.dot(hidden1, W2) + B2 hidden2 = np.maximum(hidden2, 0) # ReLU activation function output = np.dot(hidden2, W3) + B3 return output[0] """ import numpy as np # This way you can play with different activation functions: hid_activ_fun = lambda x: np.maximum(0, x) # ReLU, most used within hidden neurons out_activ_fun = lambda x: np.maximum( 0, x ) # Identity, most used within output neurons in regressions # For example, you can change ReLU to: # - Leaky ReLU => lambda x : np.max(alpha*x, x), with alpha = 0.01, 0.02, ... # - ReLU6 => lambda x : np.minimum(np.maximum(0, x), 6) # https://towardsdatascience.com/how-to-choose-the-right-activation-function-for-neural-networks-3941ff0e6f9c def forward_propagation(inputs, W1, B1, W2, B2): # """Droping the transposing operator due to previously ensuring shape of weights""" # ensure inputs.shape = (ndim, ncases) # ensure W1.shape = (nhid1, ndim) # ensure B1.shape = (nhid1, 1) # hidden1 = hid_activ_fun(W1 @ inputs + B1) # shape = (nhid1, ncases) hidden1 = hid_activ_fun(np.dot(W1, inputs) + B1) print("W1 * input: ", W1 @ inputs) print("W1 * input+ B1 : ", W1 @ inputs + B1) print("hidden1: ", hidden1) # ensure W2.shape = (nhid2, nhid1) # ensure B2.shape = (nhid2, 1) # hidden2 = hid_activ_fun(W2 @ hidden1 + B2) # shape = (nhid2, ncases) # ensure W3.shape = (nout, nhid2) = (1, nhid2), as in a single neuron output # ensure B3.shape = (nout, 1) = (1, 1), as in a single neuron output # hidden2 = out_activ_fun(W2 @ hidden1 + B2) hidden2 = out_activ_fun(np.dot(W2, hidden1) + B2) print("hidden2: ", hidden2) return hidden2 # shape = (nout, ncases) = (1, ncases) if __name__ == "__main__": # Example: inputs.ndim = 2, inputs.ncases = 3 inputs = np.array( [[-0.6742486351912229, -1.0585763576446536]] ).T # shape = (ndim, ncases) ndim, ncases = inputs.shape # Neural network 2x6x5x1 (2 inputs, 6 and 5 hiden, 1 output) def model_get_weights(): # """Just a fake one, in order to produce a proof of concept; # Weights and biases in [-1,1] at random. # This is NOT a trained network!!""" W1, B1 = model.layers[0].get_weights() W1 = W1.reshape(W1.shape[1], W1.shape[0]) B1 = B1.reshape(-1, 1) print("W1: ", W1) print("B1: ", B1) W2, B2 = model.layers[1].get_weights() W2 = W2.reshape(W2.shape[1], W2.shape[0]) B2 = B2.reshape(-1, 1) print(W2) print(B2) # W3, B3 = model.layers[2].get_weights() # W3 = W3.reshape(W3.shape[1],W3.shape[0]) # B3 = B3.reshape(-1,1) # return W1, B1, W2, B2, W3, B3 return W1, B1, W2, B2 W1, B1, W2, B2 = model_get_weights() print("For 3 cases (datapoint with 2 dimensions), all outputs are:") outputs = forward_propagation(inputs, W1, B1, W2, B2).reshape( ncases, ) print("Input => Output") for case in range(inputs.shape[1]): print(inputs[:, case], " => ", outputs[case]) def objective(trial): clear_session() df = pd.read_csv("/kaggle/input/bacteria/my.csv") random_values = np.random.rand(len(df[df.Beta_corrige == 0.001])) df["Beta_corrige"][df.Beta_corrige == 0.001] = random_values X = df[["ENT", "NOCA"]].values y = df["Beta_corrige"].values x_train, x_valid, y_train, y_valid = train_test_split( X, y, test_size=0.2, random_state=42 ) # scaler = StandardScaler() # x_train = scaler.fit_transform(x_train) model = keras.Sequential( [ layers.Dense( trial.suggest_int("first_layer", 1, 2), activation="relu", input_shape=[2], ), layers.Dense(trial.suggest_int("hidden_layer", 1, 4), activation="relu"), layers.Dense(1, activation="relu"), ] ) # We compile our model with a sampled learning rate. learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-1, log=True) model.compile( optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss="mse", metrics=["mae", "mse", "accuracy"], ) model.fit( x_train, y_train, validation_data=(x_valid, y_valid), shuffle=True, epochs=2000, verbose=False, ) # Evaluate the model accuracy on the validation set. test_loss, test_mae, test_mse, test_acc = model.evaluate( x_valid, y_valid, verbose=0 ) print("MAE score:", test_mae) print("MSE score:", test_mse) return test_loss study = optuna.create_study(direction="minimize") study.optimize(objective, n_trials=10) print("Number of finished trials: {}".format(len(study.trials))) print("Best trial:") trial = study.best_trial print(" Value: {}".format(trial.value)) print(" Params: ") for key, value in trial.params.items(): print(" {}: {}".format(key, value))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/691/129691527.ipynb
null
null
[{"Id": 129691527, "ScriptId": 38305845, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 7985664, "CreationDate": "05/15/2023 19:31:53", "VersionNumber": 1.0, "Title": "New_model", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 323.0, "LinesInsertedFromPrevious": 323.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from sklearn.model_selection import learning_curve import optuna from keras.backend import clear_session import matplotlib.pyplot as plt df = pd.read_csv("/kaggle/input/bacteria/my.csv") df # random_values = np.random.rand(len(df[df.Beta_corrige == 0.001])) # df['Beta_corrige'][df.Beta_corrige == 0.001] = random_values df = df[df.Beta_corrige != 0.001] X = df[["ENT", "NOCA"]].values y = df["Beta_corrige"].values X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = keras.Sequential( [ layers.Dense(2, activation="relu", input_shape=[2]), layers.Dense(1, activation="relu"), ] ) model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.001), loss="mse", metrics=["mae", "mse", "accuracy"], ) callback = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=10) history = model.fit( X_train, y_train, validation_data=(X_test, y_test), epochs=1000, validation_split=0.1, callbacks=[callback], verbose=0, ) test_loss, test_mae, test_mse, test_acc = model.evaluate(X_test, y_test, verbose=0) print("MAE score:", test_mae) print("MSE score:", test_mse) # Plot MAE and MSE scores plt.figure(figsize=(10, 6)) # plt.plot(history.history['mae'], label='MAE') # plt.plot(history.history['mse'], label='MSE') plt.plot(history.history["val_loss"], label="VAL_LOSS") plt.plot(history.history["loss"], label="LOSS") plt.xlabel("Epoch") plt.ylabel("Score") plt.title("MAE and MSE Scores") plt.legend() plt.show() y_pred = model.predict(X_test) test_df = pd.DataFrame( {"y_test": y_test.tolist(), "y_pred": y_pred.tolist(), "X_test": X_test.tolist()} ) test_df.head(10) # Retrieve weights and biases for each layer weights = [] biases = [] for layer in model.layers: layer_weights, layer_biases = layer.get_weights() weights.append(layer_weights) biases.append(layer_biases) def forward_propagation(inputs): print("input", inputs.shape) hidden = inputs for i in range(len(weights)): # print(i, 'w', weights[i].shape) # print(i, 'b', biases[i].shape) print(f"hidden {i} : ", hidden) print("W1 * input:", np.dot(hidden, weights[i])) print(weights[i].shape) print(biases[i].shape) hidden = np.dot(hidden, weights[i]) + biases[i] hidden = np.maximum(hidden, 0) # ReLU activation function return hidden # Example usage inputs = np.array([[-0.6742486351912229, -1.0585763576446536]]) # Example input data output = forward_propagation(inputs) print("These inputs data are the first row of test_df") print(output) import numpy as np hid_activ_fun = lambda x: np.maximum(0, x) # ReLU, most used within hidden neurons out_activ_fun = lambda x: np.maximum( 0, x ) # Identity, most used within output neurons in regressions def forward_propagation(inputs, W1, B1, W2, B2): hidden1 = hid_activ_fun(np.dot(W1, inputs) + B1) # shape = (nhid1, ncases) hidden2 = out_activ_fun(np.dot(W2, hidden1) + B2) return hidden2 # shape = (nout, ncases) = (1, ncases) if __name__ == "__main__": inputs = np.array( [[-0.6742486351912229, -1.0585763576446536]] ) # shape = (ndim, ncases) def model_get_weights(): W1, B1 = model.layers[0].get_weights() print(W1.shape) print(B1.shape) W2, B2 = model.layers[1].get_weights() print(W2.shape) print(B2.shape) return W1, B1, W2, B2 W1, B1, W2, B2 = model_get_weights() print("For 3 cases (datapoint with 2 dimensions), all outputs are:") outputs = forward_propagation(inputs, W1, B1, W2, B2).reshape( ncases, ) print("Input => Output") for case in range(inputs.shape[1]): print(inputs[:, case], " => ", outputs[case]) print(weights) print(biases) # **The Function for getting the best numbers of the neurons for the model** """ W1, B1, W2, B2, W3, B3 = model.get_weights() def forward_propagation(inputs): hidden1 = np.dot(inputs, W1) + B1 hidden1 = np.maximum(hidden1, 0) # ReLU activation function hidden2 = np.dot(hidden1, W2) + B2 hidden2 = np.maximum(hidden2, 0) # ReLU activation function output = np.dot(hidden2, W3) + B3 return output[0] """ import numpy as np # This way you can play with different activation functions: hid_activ_fun = lambda x: np.maximum(0, x) # ReLU, most used within hidden neurons out_activ_fun = lambda x: np.maximum( 0, x ) # Identity, most used within output neurons in regressions # For example, you can change ReLU to: # - Leaky ReLU => lambda x : np.max(alpha*x, x), with alpha = 0.01, 0.02, ... # - ReLU6 => lambda x : np.minimum(np.maximum(0, x), 6) # https://towardsdatascience.com/how-to-choose-the-right-activation-function-for-neural-networks-3941ff0e6f9c def forward_propagation(inputs, W1, B1, W2, B2): # """Droping the transposing operator due to previously ensuring shape of weights""" # ensure inputs.shape = (ndim, ncases) # ensure W1.shape = (nhid1, ndim) # ensure B1.shape = (nhid1, 1) # hidden1 = hid_activ_fun(W1 @ inputs + B1) # shape = (nhid1, ncases) hidden1 = hid_activ_fun(np.dot(W1, inputs) + B1) print("W1 * input: ", W1 @ inputs) print("W1 * input+ B1 : ", W1 @ inputs + B1) print("hidden1: ", hidden1) # ensure W2.shape = (nhid2, nhid1) # ensure B2.shape = (nhid2, 1) # hidden2 = hid_activ_fun(W2 @ hidden1 + B2) # shape = (nhid2, ncases) # ensure W3.shape = (nout, nhid2) = (1, nhid2), as in a single neuron output # ensure B3.shape = (nout, 1) = (1, 1), as in a single neuron output # hidden2 = out_activ_fun(W2 @ hidden1 + B2) hidden2 = out_activ_fun(np.dot(W2, hidden1) + B2) print("hidden2: ", hidden2) return hidden2 # shape = (nout, ncases) = (1, ncases) if __name__ == "__main__": # Example: inputs.ndim = 2, inputs.ncases = 3 inputs = np.array( [[-0.6742486351912229, -1.0585763576446536]] ).T # shape = (ndim, ncases) ndim, ncases = inputs.shape # Neural network 2x6x5x1 (2 inputs, 6 and 5 hiden, 1 output) def model_get_weights(): # """Just a fake one, in order to produce a proof of concept; # Weights and biases in [-1,1] at random. # This is NOT a trained network!!""" W1, B1 = model.layers[0].get_weights() W1 = W1.reshape(W1.shape[1], W1.shape[0]) B1 = B1.reshape(-1, 1) print("W1: ", W1) print("B1: ", B1) W2, B2 = model.layers[1].get_weights() W2 = W2.reshape(W2.shape[1], W2.shape[0]) B2 = B2.reshape(-1, 1) print(W2) print(B2) # W3, B3 = model.layers[2].get_weights() # W3 = W3.reshape(W3.shape[1],W3.shape[0]) # B3 = B3.reshape(-1,1) # return W1, B1, W2, B2, W3, B3 return W1, B1, W2, B2 W1, B1, W2, B2 = model_get_weights() print("For 3 cases (datapoint with 2 dimensions), all outputs are:") outputs = forward_propagation(inputs, W1, B1, W2, B2).reshape( ncases, ) print("Input => Output") for case in range(inputs.shape[1]): print(inputs[:, case], " => ", outputs[case]) def objective(trial): clear_session() df = pd.read_csv("/kaggle/input/bacteria/my.csv") random_values = np.random.rand(len(df[df.Beta_corrige == 0.001])) df["Beta_corrige"][df.Beta_corrige == 0.001] = random_values X = df[["ENT", "NOCA"]].values y = df["Beta_corrige"].values x_train, x_valid, y_train, y_valid = train_test_split( X, y, test_size=0.2, random_state=42 ) # scaler = StandardScaler() # x_train = scaler.fit_transform(x_train) model = keras.Sequential( [ layers.Dense( trial.suggest_int("first_layer", 1, 2), activation="relu", input_shape=[2], ), layers.Dense(trial.suggest_int("hidden_layer", 1, 4), activation="relu"), layers.Dense(1, activation="relu"), ] ) # We compile our model with a sampled learning rate. learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-1, log=True) model.compile( optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss="mse", metrics=["mae", "mse", "accuracy"], ) model.fit( x_train, y_train, validation_data=(x_valid, y_valid), shuffle=True, epochs=2000, verbose=False, ) # Evaluate the model accuracy on the validation set. test_loss, test_mae, test_mse, test_acc = model.evaluate( x_valid, y_valid, verbose=0 ) print("MAE score:", test_mae) print("MSE score:", test_mse) return test_loss study = optuna.create_study(direction="minimize") study.optimize(objective, n_trials=10) print("Number of finished trials: {}".format(len(study.trials))) print("Best trial:") trial = study.best_trial print(" Value: {}".format(trial.value)) print(" Params: ") for key, value in trial.params.items(): print(" {}: {}".format(key, value))
false
0
3,291
0
3,291
3,291
129705666
# ========================= # Import libraries # ========================= # default import gc, os, glob, random from os import path from pathlib import Path # make data import polars as pl import pandas as pd pd.set_option("display.max_columns", None) # pd.set_option('display.max_rows', None) import numpy as np from tqdm.auto import tqdm import ydata_profiling as pdp def show_df(df, num=3, tail=True): print(df.shape) display(df.head(num)) if tail: display(df.tail(num)) defog_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/defog/*.csv" ) tdcsfog_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/tdcsfog/*.csv" ) notype_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/notype/*.csv" ) # # Tasks # ============================================================================== # Tasks - Task metadata for series in the defog dataset.(not tdcsfog & daily)- # ============================================================================== tasks = pd.read_csv("/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/tasks.csv") tasks["Duration"] = tasks["End"] - tasks["Begin"] print("-" * 80) print("Tasks - Task metadata for series in the defog dataset.(not tdcsfog & daily)-") print("-" * 80) show_df(tasks) tasks_pivot = pd.pivot_table( tasks, values=["Duration"], index=["Id"], columns=["Task"], aggfunc="sum", fill_value=0, ) tasks_pivot train_defog_list = [os.path.basename(path).split(".cs")[0] for path in defog_path] task_list = list(tasks.Id.unique()) print(f"lentgh of train_defog_list: {len(train_defog_list)}") print(f"lentgh of Task : {len(task_list)}") test_defog_list = [path for path in task_list if path not in train_defog_list] print(*test_defog_list) test_defog_table = tasks_pivot[tasks_pivot.index.isin(test_defog_list)] def color_background_lightgreen(val): color = "lightgreen" if val > 1 else "" # 1より大なら薄緑、その他は白 return "background-color: %s" % color # 表示 test_defog_table.style.applymap(color_background_lightgreen)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705666.ipynb
null
null
[{"Id": 129705666, "ScriptId": 38572005, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 5196442, "CreationDate": "05/15/2023 22:46:59", "VersionNumber": 1.0, "Title": "Task -metadata-", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 64.0, "LinesInsertedFromPrevious": 64.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# ========================= # Import libraries # ========================= # default import gc, os, glob, random from os import path from pathlib import Path # make data import polars as pl import pandas as pd pd.set_option("display.max_columns", None) # pd.set_option('display.max_rows', None) import numpy as np from tqdm.auto import tqdm import ydata_profiling as pdp def show_df(df, num=3, tail=True): print(df.shape) display(df.head(num)) if tail: display(df.tail(num)) defog_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/defog/*.csv" ) tdcsfog_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/tdcsfog/*.csv" ) notype_path = glob.glob( "/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/train/notype/*.csv" ) # # Tasks # ============================================================================== # Tasks - Task metadata for series in the defog dataset.(not tdcsfog & daily)- # ============================================================================== tasks = pd.read_csv("/kaggle/input/tlvmc-parkinsons-freezing-gait-prediction/tasks.csv") tasks["Duration"] = tasks["End"] - tasks["Begin"] print("-" * 80) print("Tasks - Task metadata for series in the defog dataset.(not tdcsfog & daily)-") print("-" * 80) show_df(tasks) tasks_pivot = pd.pivot_table( tasks, values=["Duration"], index=["Id"], columns=["Task"], aggfunc="sum", fill_value=0, ) tasks_pivot train_defog_list = [os.path.basename(path).split(".cs")[0] for path in defog_path] task_list = list(tasks.Id.unique()) print(f"lentgh of train_defog_list: {len(train_defog_list)}") print(f"lentgh of Task : {len(task_list)}") test_defog_list = [path for path in task_list if path not in train_defog_list] print(*test_defog_list) test_defog_table = tasks_pivot[tasks_pivot.index.isin(test_defog_list)] def color_background_lightgreen(val): color = "lightgreen" if val > 1 else "" # 1より大なら薄緑、その他は白 return "background-color: %s" % color # 表示 test_defog_table.style.applymap(color_background_lightgreen)
false
0
696
0
696
696
129705437
<jupyter_start><jupyter_text>Chest X-Ray Images (Pneumonia) ### Context http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 ![](https://i.imgur.com/jZqpV51.png) Figure S6. Illustrative Examples of Chest X-Rays in Patients with Pneumonia, Related to Figure 6 The normal chest X-ray (left panel) depicts clear lungs without any areas of abnormal opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) manifests with a more diffuse ‘‘interstitial’’ pattern in both lungs. http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 ### Content The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal). There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal). Chest X-ray images (anterior-posterior) were selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients’ routine clinical care. For the analysis of chest x-ray images, all chest radiographs were initially screened for quality control by removing all low quality or unreadable scans. The diagnoses for the images were then graded by two expert physicians before being cleared for training the AI system. In order to account for any grading errors, the evaluation set was also checked by a third expert. Kaggle dataset identifier: chest-xray-pneumonia <jupyter_script># If you like my work don't forget to upvote the kernel. import tensorflow as tf import keras_preprocessing from keras_preprocessing import image from keras_preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import random from sklearn.metrics import confusion_matrix from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns import numpy as np IMG_SIZE = 224 TRAINING_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/train" training_datagen = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2 ) train_generator = training_datagen.flow_from_directory( TRAINING_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=True, ) TEST_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/test" test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory( TEST_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode=None, batch_size=200, shuffle=False, ) VAL_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/val" val_datagen = ImageDataGenerator(rescale=1.0 / 255) # val_generator = val_datagen.flow_from_directory(TEST_DIR,target_size=(IMG_SIZE,IMG_SIZE),class_mode='categorical', # batch_size=200,shuffle= False) val_generator = val_datagen.flow_from_directory( VAL_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=False, ) x, y = train_generator.next() for i in range(0, 1): image = x[i] plt.imshow(image) plt.show() import tensorflow_hub as hub URL = "https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4" feature_extractor = hub.KerasLayer(URL, input_shape=(224, 224, 3)) feature_extractor.trainable = False model = tf.keras.models.Sequential( [ feature_extractor, tf.keras.layers.Dense(200, activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64, activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(2, activation="softmax"), ] ) model.summary() class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if logs["accuracy"] >= 0.95: self.model.stop_training = True callbacks = myCallback() METRICS = [ "accuracy", tf.keras.metrics.Precision(name="precision"), tf.keras.metrics.Recall(name="recall"), ] random.seed(40) model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.0001), loss="binary_crossentropy", metrics=METRICS, ) history = model.fit( train_generator, epochs=50, callbacks=[callbacks], validation_data=val_generator ) fig, ax = plt.subplots(1, 4, figsize=(20, 3)) ax = ax.ravel() for i, met in enumerate(["precision", "recall", "accuracy", "loss"]): ax[i].plot(history.history[met]) ax[i].plot(history.history["val_" + met]) ax[i].set_title("Model {}".format(met)) ax[i].set_xlabel("epochs") ax[i].set_ylabel(met) ax[i].legend(["train", "val"]) model.evaluate(val_generator) model.save("Inception_V3.2.h5") # Predict labels for the test set predictions = model.predict(test_generator) predicted_labels = np.argmax(predictions, axis=1) # Get the true labels for the test set true_labels = test_generator.classes # Compute the confusion matrix cm = confusion_matrix(true_labels, predicted_labels) # Compute the classification report report = classification_report( true_labels, predicted_labels, target_names=test_generator.class_indices.keys() ) # Compute the accuracy, precision, recall, f1 score, and specificity accuracy = (true_labels == predicted_labels).mean() precision = cm[1, 1] / (cm[1, 1] + cm[0, 1]) recall = cm[1, 1] / (cm[1, 1] + cm[1, 0]) f1_score = 2 * precision * recall / (precision + recall) npv = cm[0, 0] / (cm[0, 0] + cm[1, 0]) specificity = cm[0, 0] / (cm[0, 0] + cm[0, 1]) print("Accuracy: {:.2%}".format(accuracy)) print("Precision/PPV: {:.2%}".format(precision)) print("Recall/Sensitivity: {:.2%}".format(recall)) print("F1 Score: {:.2%}".format(f1_score)) print("NPV: {:.2%}".format(npv)) print("Specificity: {:.2%}".format(specificity)) # Plot the confusion matrix plt.figure(figsize=(8, 8)) plt.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues) plt.title("Confusion matrix") plt.colorbar() tick_marks = np.arange(len(test_generator.class_indices)) plt.xticks(tick_marks, test_generator.class_indices.keys(), rotation=90) plt.yticks(tick_marks, test_generator.class_indices.keys()) plt.tight_layout() plt.xlabel("Predicted") plt.ylabel("True") plt.show() # Plot the training and validation accuracy plt.figure(figsize=(8, 8)) plt.plot(history.history["accuracy"], label="Training Accuracy") plt.plot(history.history["val_accuracy"], label="Validation Accuracy") plt.title("Training and Validation Accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend(loc="lower right") plt.show() # Plot the training and validation loss plt.figure(figsize=(8, 8)) plt.plot(history.history["loss"], label="Training Loss") plt.plot(history.history["val_loss"], label="Validation Loss") plt.title("Training and Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend(loc="upper right") plt.show() # Plot the heat map test_data = test_datagen.flow_from_directory( TEST_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=False, ) image_batch, label_batch = next(test_data) class_names = list(test_generator.class_indices.keys()) predictions = model.predict(image_batch) predicted_labels = np.argmax(predictions, axis=1) true_labels = np.argmax(label_batch, axis=1) cm = confusion_matrix(true_labels, predicted_labels) plt.figure(figsize=(10, 10)) sns.heatmap( cm, annot=True, fmt="d", cmap="Blues", cbar=False, xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted") plt.ylabel("True") plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705437.ipynb
chest-xray-pneumonia
paultimothymooney
[{"Id": 129705437, "ScriptId": 38565018, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 10694652, "CreationDate": "05/15/2023 22:42:40", "VersionNumber": 1.0, "Title": "85% Accuracy with Transfer Learning(Inception v3)", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 170.0, "LinesInsertedFromPrevious": 98.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 72.0, "LinesInsertedFromFork": 98.0, "LinesDeletedFromFork": 8.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 72.0, "TotalVotes": 0}]
[{"Id": 186037390, "KernelVersionId": 129705437, "SourceDatasetVersionId": 23812}]
[{"Id": 23812, "DatasetId": 17810, "DatasourceVersionId": 23851, "CreatorUserId": 1314380, "LicenseName": "Other (specified in description)", "CreationDate": "03/24/2018 19:41:59", "VersionNumber": 2.0, "Title": "Chest X-Ray Images (Pneumonia)", "Slug": "chest-xray-pneumonia", "Subtitle": "5,863 images, 2 categories", "Description": "### Context\n\nhttp://www.cell.com/cell/fulltext/S0092-8674(18)30154-5\n\n![](https://i.imgur.com/jZqpV51.png)\n\nFigure S6. Illustrative Examples of Chest X-Rays in Patients with Pneumonia, Related to Figure 6\nThe normal chest X-ray (left panel) depicts clear lungs without any areas of abnormal opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) manifests with a more diffuse \u2018\u2018interstitial\u2019\u2019 pattern in both lungs.\nhttp://www.cell.com/cell/fulltext/S0092-8674(18)30154-5\n\n### Content\n\nThe dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal). There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal). \n\nChest X-ray images (anterior-posterior) were selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children\u2019s Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients\u2019 routine clinical care. \n\nFor the analysis of chest x-ray images, all chest radiographs were initially screened for quality control by removing all low quality or unreadable scans. The diagnoses for the images were then graded by two expert physicians before being cleared for training the AI system. In order to account for any grading errors, the evaluation set was also checked by a third expert.\n\n### Acknowledgements\n\nData: https://data.mendeley.com/datasets/rscbjbr9sj/2\n\nLicense: [CC BY 4.0][1]\n\nCitation: http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5\n\n![enter image description here][2]\n\n\n### Inspiration\n\nAutomated methods to detect and classify human diseases from medical images.\n\n\n [1]: https://creativecommons.org/licenses/by/4.0/\n [2]: https://i.imgur.com/8AUJkin.png", "VersionNotes": "train/test/val", "TotalCompressedBytes": 1237249419.0, "TotalUncompressedBytes": 1237249419.0}]
[{"Id": 17810, "CreatorUserId": 1314380, "OwnerUserId": 1314380.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 23812.0, "CurrentDatasourceVersionId": 23851.0, "ForumId": 25540, "Type": 2, "CreationDate": "03/22/2018 05:42:41", "LastActivityDate": "03/22/2018", "TotalViews": 2063138, "TotalDownloads": 237932, "TotalVotes": 5834, "TotalKernels": 2058}]
[{"Id": 1314380, "UserName": "paultimothymooney", "DisplayName": "Paul Mooney", "RegisterDate": "10/05/2017", "PerformanceTier": 5}]
# If you like my work don't forget to upvote the kernel. import tensorflow as tf import keras_preprocessing from keras_preprocessing import image from keras_preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import random from sklearn.metrics import confusion_matrix from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns import numpy as np IMG_SIZE = 224 TRAINING_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/train" training_datagen = ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2 ) train_generator = training_datagen.flow_from_directory( TRAINING_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=True, ) TEST_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/test" test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory( TEST_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode=None, batch_size=200, shuffle=False, ) VAL_DIR = "/kaggle/input/chest-xray-pneumonia/chest_xray/chest_xray/val" val_datagen = ImageDataGenerator(rescale=1.0 / 255) # val_generator = val_datagen.flow_from_directory(TEST_DIR,target_size=(IMG_SIZE,IMG_SIZE),class_mode='categorical', # batch_size=200,shuffle= False) val_generator = val_datagen.flow_from_directory( VAL_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=False, ) x, y = train_generator.next() for i in range(0, 1): image = x[i] plt.imshow(image) plt.show() import tensorflow_hub as hub URL = "https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4" feature_extractor = hub.KerasLayer(URL, input_shape=(224, 224, 3)) feature_extractor.trainable = False model = tf.keras.models.Sequential( [ feature_extractor, tf.keras.layers.Dense(200, activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64, activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(2, activation="softmax"), ] ) model.summary() class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if logs["accuracy"] >= 0.95: self.model.stop_training = True callbacks = myCallback() METRICS = [ "accuracy", tf.keras.metrics.Precision(name="precision"), tf.keras.metrics.Recall(name="recall"), ] random.seed(40) model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.0001), loss="binary_crossentropy", metrics=METRICS, ) history = model.fit( train_generator, epochs=50, callbacks=[callbacks], validation_data=val_generator ) fig, ax = plt.subplots(1, 4, figsize=(20, 3)) ax = ax.ravel() for i, met in enumerate(["precision", "recall", "accuracy", "loss"]): ax[i].plot(history.history[met]) ax[i].plot(history.history["val_" + met]) ax[i].set_title("Model {}".format(met)) ax[i].set_xlabel("epochs") ax[i].set_ylabel(met) ax[i].legend(["train", "val"]) model.evaluate(val_generator) model.save("Inception_V3.2.h5") # Predict labels for the test set predictions = model.predict(test_generator) predicted_labels = np.argmax(predictions, axis=1) # Get the true labels for the test set true_labels = test_generator.classes # Compute the confusion matrix cm = confusion_matrix(true_labels, predicted_labels) # Compute the classification report report = classification_report( true_labels, predicted_labels, target_names=test_generator.class_indices.keys() ) # Compute the accuracy, precision, recall, f1 score, and specificity accuracy = (true_labels == predicted_labels).mean() precision = cm[1, 1] / (cm[1, 1] + cm[0, 1]) recall = cm[1, 1] / (cm[1, 1] + cm[1, 0]) f1_score = 2 * precision * recall / (precision + recall) npv = cm[0, 0] / (cm[0, 0] + cm[1, 0]) specificity = cm[0, 0] / (cm[0, 0] + cm[0, 1]) print("Accuracy: {:.2%}".format(accuracy)) print("Precision/PPV: {:.2%}".format(precision)) print("Recall/Sensitivity: {:.2%}".format(recall)) print("F1 Score: {:.2%}".format(f1_score)) print("NPV: {:.2%}".format(npv)) print("Specificity: {:.2%}".format(specificity)) # Plot the confusion matrix plt.figure(figsize=(8, 8)) plt.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues) plt.title("Confusion matrix") plt.colorbar() tick_marks = np.arange(len(test_generator.class_indices)) plt.xticks(tick_marks, test_generator.class_indices.keys(), rotation=90) plt.yticks(tick_marks, test_generator.class_indices.keys()) plt.tight_layout() plt.xlabel("Predicted") plt.ylabel("True") plt.show() # Plot the training and validation accuracy plt.figure(figsize=(8, 8)) plt.plot(history.history["accuracy"], label="Training Accuracy") plt.plot(history.history["val_accuracy"], label="Validation Accuracy") plt.title("Training and Validation Accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend(loc="lower right") plt.show() # Plot the training and validation loss plt.figure(figsize=(8, 8)) plt.plot(history.history["loss"], label="Training Loss") plt.plot(history.history["val_loss"], label="Validation Loss") plt.title("Training and Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend(loc="upper right") plt.show() # Plot the heat map test_data = test_datagen.flow_from_directory( TEST_DIR, target_size=(IMG_SIZE, IMG_SIZE), class_mode="categorical", batch_size=200, shuffle=False, ) image_batch, label_batch = next(test_data) class_names = list(test_generator.class_indices.keys()) predictions = model.predict(image_batch) predicted_labels = np.argmax(predictions, axis=1) true_labels = np.argmax(label_batch, axis=1) cm = confusion_matrix(true_labels, predicted_labels) plt.figure(figsize=(10, 10)) sns.heatmap( cm, annot=True, fmt="d", cmap="Blues", cbar=False, xticklabels=class_names, yticklabels=class_names, ) plt.xlabel("Predicted") plt.ylabel("True") plt.show()
false
0
1,998
0
2,474
1,998
129705508
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.impute import SimpleImputer import warnings def load_data(): train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") test = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/test.csv") greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") return train, test, greeks def preprocess_data(train): num_cols = train.drop(["Id", "Class", "EJ"], axis=1).columns cat_cols = ["EJ"] numerical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler()), ] ) categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, num_cols), ("cat", categorical_transformer, cat_cols), ] ) return preprocessor def train_model(X_train, y_train, preprocessor): best_params = { "bootstrap": False, "max_depth": None, "min_samples_leaf": 1, "min_samples_split": 2, "n_estimators": 100, } rf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", RandomForestClassifier(**best_params, random_state=1)), ] ) rf.fit(X_train, y_train) return rf def evaluate_model(rf, X_train, y_train, X_valid, y_valid): y_train_pred = rf.predict(X_train) y_valid_pred = rf.predict(X_valid) print("Training accuracy: ", accuracy_score(y_train, y_train_pred)) print("Validation accuracy: ", accuracy_score(y_valid, y_valid_pred)) def make_predictions(rf, test): X_test = test.drop("Id", axis=1) predictions = rf.predict_proba(X_test) assert len(predictions) == len( test ), "Number of predictions must match number of rows in test set" return predictions def create_submission(predictions, test): submission = pd.DataFrame(predictions, columns=["class_0", "class_1"]) submission.insert(0, "Id", test["Id"]) return submission def main(): warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) # Load data train, test, greeks = load_data() # Define features and target X = train.drop("Class", axis=1) y = train["Class"] # Preprocess data preprocessor = preprocess_data(train) # Split data into training and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, test_size=0.2, random_state=1 ) # Train model rf = train_model(X_train, y_train, preprocessor) # Evaluate model evaluate_model(rf, X_train, y_train, X_valid, y_valid) # Make predictions predictions = make_predictions(rf, test) # Create submission submission = create_submission(predictions, test) # Save submission to csv submission.to_csv("submission.csv", index=False) if __name__ == "__main__": main()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705508.ipynb
null
null
[{"Id": 129705508, "ScriptId": 38481998, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11408729, "CreationDate": "05/15/2023 22:44:04", "VersionNumber": 5.0, "Title": "Age Related Conditions", "EvaluationDate": "05/15/2023", "IsChange": false, "TotalLines": 96.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 96.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 3}]
null
null
null
null
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.impute import SimpleImputer import warnings def load_data(): train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") test = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/test.csv") greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") return train, test, greeks def preprocess_data(train): num_cols = train.drop(["Id", "Class", "EJ"], axis=1).columns cat_cols = ["EJ"] numerical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler()), ] ) categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, num_cols), ("cat", categorical_transformer, cat_cols), ] ) return preprocessor def train_model(X_train, y_train, preprocessor): best_params = { "bootstrap": False, "max_depth": None, "min_samples_leaf": 1, "min_samples_split": 2, "n_estimators": 100, } rf = Pipeline( steps=[ ("preprocessor", preprocessor), ("classifier", RandomForestClassifier(**best_params, random_state=1)), ] ) rf.fit(X_train, y_train) return rf def evaluate_model(rf, X_train, y_train, X_valid, y_valid): y_train_pred = rf.predict(X_train) y_valid_pred = rf.predict(X_valid) print("Training accuracy: ", accuracy_score(y_train, y_train_pred)) print("Validation accuracy: ", accuracy_score(y_valid, y_valid_pred)) def make_predictions(rf, test): X_test = test.drop("Id", axis=1) predictions = rf.predict_proba(X_test) assert len(predictions) == len( test ), "Number of predictions must match number of rows in test set" return predictions def create_submission(predictions, test): submission = pd.DataFrame(predictions, columns=["class_0", "class_1"]) submission.insert(0, "Id", test["Id"]) return submission def main(): warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) # Load data train, test, greeks = load_data() # Define features and target X = train.drop("Class", axis=1) y = train["Class"] # Preprocess data preprocessor = preprocess_data(train) # Split data into training and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, test_size=0.2, random_state=1 ) # Train model rf = train_model(X_train, y_train, preprocessor) # Evaluate model evaluate_model(rf, X_train, y_train, X_valid, y_valid) # Make predictions predictions = make_predictions(rf, test) # Create submission submission = create_submission(predictions, test) # Save submission to csv submission.to_csv("submission.csv", index=False) if __name__ == "__main__": main()
false
0
941
3
941
941
129705293
<jupyter_start><jupyter_text>Property Listings in Kuala Lumpur # Property Listings in Kuala Lumpur This is the tabular result of scraping a property listing website for properties for sale in Kuala Lumpur, Malaysia. Only the overview page was scraped so individual property details are scarce. Kaggle dataset identifier: property-listings-in-kuala-lumpur <jupyter_script># Performing House Price Prediction for Malaysia # This will only be solved using simple regression techniques # importing the dependencies import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from ydata_profiling import ProfileReport # load the data df = pd.read_csv("/kaggle/input/property-listings-in-kuala-lumpur/data_kaggle.csv") df.info() # Fast EDA using Profile Report # Cheating our way a bit and understanding the data using Profile Report # let's do some profile report Report = ProfileReport(df, title="KL Property Dataset") Report.to_notebook_iframe() # Based on the report above, we have a lot of missing data, and a lot of works needs to be done. # 1. Firstly, we need to set our target. We will be using price as our target column. But it needs to be cleaned first. # 2. Next, we need to handled the missing value. The highest missing values comes from car parks, furnishings, bathrooms and rooms. All needs to be handled. All of this will need some preprocessing first # 3. Next, we need to do some label encoding. Rooms and Size is the tricky part here. For rooms, need to think of a way to handle the + sign. For size, I think it's better if i split it, and keep the built/land into a separate column, while size in numbers would be a separate column. Then,only then we can handle the data. # Pre-Processing # Let's do some preprocessing by defining what we want to do to each columns # let's set our target column def target_preprocess(df, col): df[col] = df[col].str.replace("RM", "").str.replace(",", "").apply(pd.to_numeric) df = df.loc[df[col].notna()] return df df = target_preprocess(df, "Price") df.isna().sum() # Alright, let's talk about missing values. # 1. For furnishing and car parks we can make same assumption. We can fill that with value of 0. Because, the missing values might comes from trhe property doesn't have furnishing or car parks to begin with. # 2. For rooms, bathrooms and size, I think that is abit trick. Rooms and bathrooms can be filled using mode/median. However, because both of these columns have high correlations with price, I think that is not advisable. Let's just drop this value so that it does not mess up our predictions # define the functions to fill the missing values and drop the missing values def fill_nan(df, column): """ This function takes a DataFrame and a column name as input and fills the missing values in the specified column with 0. It returns the modified DataFrame. """ df[column] = df[column].fillna(0) return df def drop_nan(df, column): """ This function takes a DataFrame and a column name as input and drop the missing vaalue. It returns the modified DataFrame. """ df = df.loc[df[column].notna()] return df df = fill_nan(df, "Car Parks") df = fill_nan(df, "Furnishing") df.isna().sum() df = drop_nan(df, "Rooms") df = drop_nan(df, "Bathrooms") df = drop_nan(df, "Size") df.isna().sum() # Allright, now our missing values are handle. Let's check how many columns we have left df.info() # Allright, time to handle our size and room columns df["Rooms"].value_counts() # define functions to clean room columns def clean_room_type(x): if isinstance(x, int): return float(x) elif isinstance(x, str): if "+" in x: nums = [int(n) for n in x.split("+") if n] return sum(nums) / len(nums) elif x == "20 above": return 25.0 elif x == "studio": return 4.0 return 3 # apply the functions df["Rooms"] = df["Rooms"].apply(clean_room_type) df["Rooms"].value_counts() df["Size"].value_counts() # defining clean up functions import ast def clean_up_size(df, col): df[["SizeType", "SizeValue"]] = df[col].str.extract(r"^([^:]+) : (.*) sq\. ft\.$") df["SizeValue"] = ( df["SizeValue"].str.replace(",", "").str.replace("x", "*").str.replace("X", "*") ) def evaluate_expression(expr): try: return ast.literal_eval(expr) except: return None df["SizeValue"] = df["SizeValue"].apply(evaluate_expression).astype(float) return df df = clean_up_size(df, "Size") df # All right, we have done our preprocessing. Let's clean it up a bit before we move on to label encoding # first, let us look wether our preprocessing has created a new nan value df.isna().sum() # let's fill the nan with our pre-define function df = fill_nan(df, "SizeValue") df = fill_nan(df, "SizeType") df.isna().sum() # and now let's drop some columns df = df.drop("Size", axis=1) df.info() # Label Encoding # Let's prepare our data for training from sklearn.preprocessing import LabelEncoder # let's define the function for label encoding def label_encoding(df): for column in df.columns: if df[column].dtype == "object": df[column] = df[column].astype(str) le = LabelEncoder() df[column] = le.fit_transform(df[column]) return df # let's label encode them df = label_encoding(df) df # and now let's split our data for X and y X = df.drop("Price", axis=1) y = df.Price # Let's do some cross validation # With Repeated K Fold # import additional libraries and dependencies from sklearn.model_selection import RepeatedKFold from sklearn.metrics import r2_score import xgboost as xgb
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705293.ipynb
property-listings-in-kuala-lumpur
dragonduck
[{"Id": 129705293, "ScriptId": 38418539, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14329920, "CreationDate": "05/15/2023 22:40:01", "VersionNumber": 1.0, "Title": "KL House Price Prediction", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 166.0, "LinesInsertedFromPrevious": 166.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 3}]
[{"Id": 186037057, "KernelVersionId": 129705293, "SourceDatasetVersionId": 533897}]
[{"Id": 533897, "DatasetId": 254011, "DatasourceVersionId": 550262, "CreatorUserId": 1347858, "LicenseName": "CC0: Public Domain", "CreationDate": "07/04/2019 06:31:19", "VersionNumber": 1.0, "Title": "Property Listings in Kuala Lumpur", "Slug": "property-listings-in-kuala-lumpur", "Subtitle": "Web scraping results of a property listing portal", "Description": "# Property Listings in Kuala Lumpur\nThis is the tabular result of scraping a property listing website for properties for sale in Kuala Lumpur, Malaysia. Only the overview page was scraped so individual property details are scarce.", "VersionNotes": "Initial release", "TotalCompressedBytes": 5914989.0, "TotalUncompressedBytes": 611897.0}]
[{"Id": 254011, "CreatorUserId": 1347858, "OwnerUserId": 1347858.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 533897.0, "CurrentDatasourceVersionId": 550262.0, "ForumId": 265269, "Type": 2, "CreationDate": "07/04/2019 06:31:19", "LastActivityDate": "07/04/2019", "TotalViews": 22081, "TotalDownloads": 2655, "TotalVotes": 55, "TotalKernels": 6}]
[{"Id": 1347858, "UserName": "dragonduck", "DisplayName": "Jan S", "RegisterDate": "10/20/2017", "PerformanceTier": 1}]
# Performing House Price Prediction for Malaysia # This will only be solved using simple regression techniques # importing the dependencies import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from ydata_profiling import ProfileReport # load the data df = pd.read_csv("/kaggle/input/property-listings-in-kuala-lumpur/data_kaggle.csv") df.info() # Fast EDA using Profile Report # Cheating our way a bit and understanding the data using Profile Report # let's do some profile report Report = ProfileReport(df, title="KL Property Dataset") Report.to_notebook_iframe() # Based on the report above, we have a lot of missing data, and a lot of works needs to be done. # 1. Firstly, we need to set our target. We will be using price as our target column. But it needs to be cleaned first. # 2. Next, we need to handled the missing value. The highest missing values comes from car parks, furnishings, bathrooms and rooms. All needs to be handled. All of this will need some preprocessing first # 3. Next, we need to do some label encoding. Rooms and Size is the tricky part here. For rooms, need to think of a way to handle the + sign. For size, I think it's better if i split it, and keep the built/land into a separate column, while size in numbers would be a separate column. Then,only then we can handle the data. # Pre-Processing # Let's do some preprocessing by defining what we want to do to each columns # let's set our target column def target_preprocess(df, col): df[col] = df[col].str.replace("RM", "").str.replace(",", "").apply(pd.to_numeric) df = df.loc[df[col].notna()] return df df = target_preprocess(df, "Price") df.isna().sum() # Alright, let's talk about missing values. # 1. For furnishing and car parks we can make same assumption. We can fill that with value of 0. Because, the missing values might comes from trhe property doesn't have furnishing or car parks to begin with. # 2. For rooms, bathrooms and size, I think that is abit trick. Rooms and bathrooms can be filled using mode/median. However, because both of these columns have high correlations with price, I think that is not advisable. Let's just drop this value so that it does not mess up our predictions # define the functions to fill the missing values and drop the missing values def fill_nan(df, column): """ This function takes a DataFrame and a column name as input and fills the missing values in the specified column with 0. It returns the modified DataFrame. """ df[column] = df[column].fillna(0) return df def drop_nan(df, column): """ This function takes a DataFrame and a column name as input and drop the missing vaalue. It returns the modified DataFrame. """ df = df.loc[df[column].notna()] return df df = fill_nan(df, "Car Parks") df = fill_nan(df, "Furnishing") df.isna().sum() df = drop_nan(df, "Rooms") df = drop_nan(df, "Bathrooms") df = drop_nan(df, "Size") df.isna().sum() # Allright, now our missing values are handle. Let's check how many columns we have left df.info() # Allright, time to handle our size and room columns df["Rooms"].value_counts() # define functions to clean room columns def clean_room_type(x): if isinstance(x, int): return float(x) elif isinstance(x, str): if "+" in x: nums = [int(n) for n in x.split("+") if n] return sum(nums) / len(nums) elif x == "20 above": return 25.0 elif x == "studio": return 4.0 return 3 # apply the functions df["Rooms"] = df["Rooms"].apply(clean_room_type) df["Rooms"].value_counts() df["Size"].value_counts() # defining clean up functions import ast def clean_up_size(df, col): df[["SizeType", "SizeValue"]] = df[col].str.extract(r"^([^:]+) : (.*) sq\. ft\.$") df["SizeValue"] = ( df["SizeValue"].str.replace(",", "").str.replace("x", "*").str.replace("X", "*") ) def evaluate_expression(expr): try: return ast.literal_eval(expr) except: return None df["SizeValue"] = df["SizeValue"].apply(evaluate_expression).astype(float) return df df = clean_up_size(df, "Size") df # All right, we have done our preprocessing. Let's clean it up a bit before we move on to label encoding # first, let us look wether our preprocessing has created a new nan value df.isna().sum() # let's fill the nan with our pre-define function df = fill_nan(df, "SizeValue") df = fill_nan(df, "SizeType") df.isna().sum() # and now let's drop some columns df = df.drop("Size", axis=1) df.info() # Label Encoding # Let's prepare our data for training from sklearn.preprocessing import LabelEncoder # let's define the function for label encoding def label_encoding(df): for column in df.columns: if df[column].dtype == "object": df[column] = df[column].astype(str) le = LabelEncoder() df[column] = le.fit_transform(df[column]) return df # let's label encode them df = label_encoding(df) df # and now let's split our data for X and y X = df.drop("Price", axis=1) y = df.Price # Let's do some cross validation # With Repeated K Fold # import additional libraries and dependencies from sklearn.model_selection import RepeatedKFold from sklearn.metrics import r2_score import xgboost as xgb
false
1
1,517
3
1,612
1,517
129705360
<jupyter_start><jupyter_text>Preprocessed FOG Dataset Kaggle dataset identifier: fog-dataset <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data = pd.read_csv("/kaggle/input/fog-dataset/fog_dataset.csv") data X = data[["AccV", "AccML", "AccAP"]] y_StartHes = data["StartHesitation"] y_Turn = data["Turn"] y_Walk = data["Walking"] from sklearn.model_selection import train_test_split # для переменной Turn X_Turn_train, X_Turn_test, y_Turn_train, y_Turn_test = train_test_split( X, y_Turn, test_size=0.2, random_state=42 ) # для переменной Turn X_StartHes_train, X_StartHes_test, y_StartHes_train, y_StartHes_test = train_test_split( X, y_StartHes, test_size=0.2, random_state=42 ) # для переменной Turn X_Walk_train, X_Walk_test, y_Walk_train, y_Walk_test = train_test_split( X, y_Walk, test_size=0.2, random_state=42 ) def chunk(x, y, chunksize=20000): l = len(x) for ndx in range(0, l, chunksize): yield x[ndx : min(ndx + chunksize, l)], y[ndx : min(ndx + chunksize, l)] clf_Turn = SGDClassifier( alpha=0.0001, loss="log_loss", n_jobs=-1, shuffle=True, max_iter=100 ) chunk_generator = chunk(X_Turn_train, y_Turn_train) for index, (chunk_X, chunk_y) in enumerate(chunk_generator): clf_Turn.partial_fit(chunk_X, chunk_y, classes=[0, 1]) y_Turn_predicted = clf_Turn.predict(X_test) print(accuracy_score(y_Turn_test, y_Turn_predicted)) from sklearn.linear_model import SGDClassifier import random clf2 = SGDClassifier(loss="log") shuffledRange = range(len(X)) n_iter = 5 for n in range(n_iter): random.shuffle(shuffledRange) shuffledX = [X[i] for i in shuffledRange] shuffledY = [Y[i] for i in shuffledRange] for batch in batches(range(len(shuffledX)), 10000): clf2.partial_fit( shuffledX[batch[0] : batch[-1] + 1], shuffledY[batch[0] : batch[-1] + 1], classes=numpy.unique(Y), ) from sklearn.linear_model import SGDClassifier from tqdm.notebook import tqdm chunksize = 20000 clf_SH = SGDClassifier(alpha=0.0001, loss="log", penalty="l2", n_jobs=-1, shuffle=True) for train_df in tqdm( pd.read_csv( "/kaggle/input/fog-dataset/fog_dataset.csv", chunksize=chunksize, iterator=True ) ): X = train_df[["AccV", "AccML", "AccAP"]] Y = train_df["StartHesitation"] clf_SH.partial_fit(X, Y, classes=[0, 1]) from sklearn.metrics import average_precision_score
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705360.ipynb
fog-dataset
aerikg
[{"Id": 129705360, "ScriptId": 38519248, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 6171471, "CreationDate": "05/15/2023 22:41:15", "VersionNumber": 2.0, "Title": "notebook1127797ef2", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 74.0, "LinesInsertedFromPrevious": 43.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 31.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186037170, "KernelVersionId": 129705360, "SourceDatasetVersionId": 5573463}]
[{"Id": 5573463, "DatasetId": 3168620, "DatasourceVersionId": 5648287, "CreatorUserId": 12406707, "LicenseName": "Unknown", "CreationDate": "05/01/2023 11:15:51", "VersionNumber": 4.0, "Title": "Preprocessed FOG Dataset", "Slug": "fog-dataset", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2023-05-01", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3168620, "CreatorUserId": 12406707, "OwnerUserId": 12406707.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5573463.0, "CurrentDatasourceVersionId": 5648287.0, "ForumId": 3232837, "Type": 2, "CreationDate": "04/22/2023 19:25:46", "LastActivityDate": "04/22/2023", "TotalViews": 176, "TotalDownloads": 19, "TotalVotes": 0, "TotalKernels": 4}]
[{"Id": 12406707, "UserName": "aerikg", "DisplayName": "\u042d\u0440\u0438\u043a \u0410\u0431\u0434\u0443\u0440\u0430\u0445\u043c\u0430\u043d\u043e\u0432", "RegisterDate": "11/14/2022", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session data = pd.read_csv("/kaggle/input/fog-dataset/fog_dataset.csv") data X = data[["AccV", "AccML", "AccAP"]] y_StartHes = data["StartHesitation"] y_Turn = data["Turn"] y_Walk = data["Walking"] from sklearn.model_selection import train_test_split # для переменной Turn X_Turn_train, X_Turn_test, y_Turn_train, y_Turn_test = train_test_split( X, y_Turn, test_size=0.2, random_state=42 ) # для переменной Turn X_StartHes_train, X_StartHes_test, y_StartHes_train, y_StartHes_test = train_test_split( X, y_StartHes, test_size=0.2, random_state=42 ) # для переменной Turn X_Walk_train, X_Walk_test, y_Walk_train, y_Walk_test = train_test_split( X, y_Walk, test_size=0.2, random_state=42 ) def chunk(x, y, chunksize=20000): l = len(x) for ndx in range(0, l, chunksize): yield x[ndx : min(ndx + chunksize, l)], y[ndx : min(ndx + chunksize, l)] clf_Turn = SGDClassifier( alpha=0.0001, loss="log_loss", n_jobs=-1, shuffle=True, max_iter=100 ) chunk_generator = chunk(X_Turn_train, y_Turn_train) for index, (chunk_X, chunk_y) in enumerate(chunk_generator): clf_Turn.partial_fit(chunk_X, chunk_y, classes=[0, 1]) y_Turn_predicted = clf_Turn.predict(X_test) print(accuracy_score(y_Turn_test, y_Turn_predicted)) from sklearn.linear_model import SGDClassifier import random clf2 = SGDClassifier(loss="log") shuffledRange = range(len(X)) n_iter = 5 for n in range(n_iter): random.shuffle(shuffledRange) shuffledX = [X[i] for i in shuffledRange] shuffledY = [Y[i] for i in shuffledRange] for batch in batches(range(len(shuffledX)), 10000): clf2.partial_fit( shuffledX[batch[0] : batch[-1] + 1], shuffledY[batch[0] : batch[-1] + 1], classes=numpy.unique(Y), ) from sklearn.linear_model import SGDClassifier from tqdm.notebook import tqdm chunksize = 20000 clf_SH = SGDClassifier(alpha=0.0001, loss="log", penalty="l2", n_jobs=-1, shuffle=True) for train_df in tqdm( pd.read_csv( "/kaggle/input/fog-dataset/fog_dataset.csv", chunksize=chunksize, iterator=True ) ): X = train_df[["AccV", "AccML", "AccAP"]] Y = train_df["StartHesitation"] clf_SH.partial_fit(X, Y, classes=[0, 1]) from sklearn.metrics import average_precision_score
false
1
1,028
0
1,050
1,028
129705408
<jupyter_start><jupyter_text>NBA Database <blockquote><h2>Welcome to the <i><b>NBA Database</b></i>! 👋 🏀 ⛹️‍♂️ </h2></blockquote> This dataset is updated daily and includes: - **30** teams - **4800+** players - **60,000+** games (every game since the inaugural 1946-47 NBA season) - **Box Scores** for over 95% of all games - **Play-by-Play** game data with ***13M+ rows*** of Play-by-Play data in all! --- - See [here](https://www.kaggle.com/wyattowalsh/using-sql) for tips on using SQL with this database - [daily updater notebook](https://www.kaggle.com/code/wyattowalsh/database-updater-daily) and [monthly updater notebook](https://www.kaggle.com/code/wyattowalsh/database-updater-monthly) ⮕ View the <a href="https://github.com/wyattowalsh/nba-db">associated GitHub repo<img src="https://gist.githubusercontent.com/wyattowalsh/33b635109116e07044c6336527681051/raw/6b24b749532f4e167657fcc014a310b8c4bfa661/github.svg"></a> and [code base docs site 📄](https://nba-db.readthedocs.io/) ⮕ Sponsor project: <a href="https://github.com/sponsors/wyattowalsh"><img src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"></a> --- <h5>Built With:</h5> <a href="https://www.kaggle.com/docs" target="_blank"><img alt="Kaggle" src="https://img.shields.io/badge/kaggle-%2320BEFF.svg?&style=for-the-badge&logo=kaggle&logoColor=white"></a><a href="https://docs.github.com/en" target="_blank"><img alt="GitHub" src="https://img.shields.io/badge/github-%23181717.svg?&style=for-the-badge&logo=github&logoColor=white"></a><a href="https://docs.python.org/3/" target="_blank"><img alt="Python" src="https://img.shields.io/badge/python%20-%2314354C.svg?&style=for-the-badge&logo=python&logoColor=white"></a><a href="https://sqlite.org/docs.html" target="_blank"><img alt="SQLite" src="https://img.shields.io/badge/sqlite%20-%23003B57.svg?&style=for-the-badge&logo=sqlite&logoColor=white"></a> <img src="https://raw.githubusercontent.com/wyattowalsh/nba-db/main/docs/_static/img/logo.svg"> Kaggle dataset identifier: basketball <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np from scipy.stats import ttest_ind games = pd.read_csv("/kaggle/input/basketball/csv/game.csv") print(games.head()) games["game_date"] = pd.to_datetime(games["game_date"]) last_10 = games[games["game_date"] >= "2013-07-07"] print(last_10.head()) # This code was to filter games only in the past 10 seasons. home_wins = (last_10["wl_home"] == "W").sum() home_losses = (last_10["wl_home"] == "L").sum() home_winning_pct = home_wins / (home_wins + home_losses) print("Number of Home Wins:", home_wins) print("Number of Home Losses:", home_losses) print("Home Winning Percentage:", home_winning_pct) # We can see that home teams win about 57.2% of the time. last_10_t = last_10[ (~pd.isnull(last_10["fg3_pct_home"])) & (~pd.isnull(last_10["fg3_pct_away"])) ] t_statistic, p_value = ttest_ind(last_10["fg3_pct_home"], last_10["fg3_pct_away"]) print("t-statistic:", t_statistic) print("p-value:", p_value) avg_3_home = last_10["fg3_pct_home"].mean() avg_3_away = last_10["fg3_pct_away"].mean() print("Average Home 3 Point Shooting:", avg_3_home) print("Average Away 3 Point Shooting:", avg_3_away) diff_3_home_away = avg_3_home - avg_3_away print("Home Court 3 Point Advantage:", diff_3_home_away) # We can see that the average advantage gained by home teams is worth ~0.865% in 3 point shooting. However, because the sample size is so large, this is a statistically significant result. The p-value is extremely small in our 2 sample t-test last_10_t = last_10[ (~pd.isnull(last_10["fg_pct_home"])) & (~pd.isnull(last_10["fg_pct_away"])) ] t_statistic, p_value = ttest_ind(last_10["fg_pct_home"], last_10["fg_pct_away"]) print("t-statistic:", t_statistic) print("p-value:", p_value) avg_fg_home = last_10["fg_pct_home"].mean() avg_fg_away = last_10["fg_pct_away"].mean() print("Average Home FG Shooting:", avg_fg_home) print("Average Away FG Shooting:", avg_fg_away) diff_fg_home_away = avg_fg_home - avg_fg_away print("Home Court FG% Advantage:", diff_fg_home_away) # Again, we see a similar trend, with a slightly larger 0.953% home team advantage for FGs. The p-value is even smaller this time, indicating an even more siginificant statistical difference between home and away team FG shooting performance compared to 3s. teams = last_10["team_abbreviation_home"].unique() for team in teams: team_data = last_10[last_10["team_abbreviation_home"] == team] num_wins = (team_data["wl_home"] == "W").sum() num_losses = (team_data["wl_home"] == "L").sum() win_pct = num_wins / (num_wins + num_losses) print(team, "Win Pct at Home:", win_pct)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/705/129705408.ipynb
basketball
null
[{"Id": 129705408, "ScriptId": 38571230, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13405093, "CreationDate": "05/15/2023 22:42:11", "VersionNumber": 1.0, "Title": "NBA Home/Away Shooting", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 86.0, "LinesInsertedFromPrevious": 86.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186037336, "KernelVersionId": 129705408, "SourceDatasetVersionId": 5620892}]
[{"Id": 5620892, "DatasetId": 1218020, "DatasourceVersionId": 5696085, "CreatorUserId": 2507257, "LicenseName": "CC BY-SA 4.0", "CreationDate": "05/06/2023 19:46:24", "VersionNumber": 228.0, "Title": "NBA Database", "Slug": "basketball", "Subtitle": "Daily Updated SQLite Database \u2014 64,000+ Games, 4800+ Players, and 30 Teams \ud83c\udfc0", "Description": "<blockquote><h2>Welcome to the <i><b>NBA Database</b></i>! \ud83d\udc4b \ud83c\udfc0 \u26f9\ufe0f\u200d\u2642\ufe0f </h2></blockquote>\n\nThis dataset is updated daily and includes:\n\n- **30** teams\n- **4800+** players\n- **60,000+** games (every game since the inaugural 1946-47 NBA season)\n- **Box Scores** for over 95% of all games\n- **Play-by-Play** game data with ***13M+ rows*** of Play-by-Play data in all!\n\n\n---\n\n- See [here](https://www.kaggle.com/wyattowalsh/using-sql) for tips on using SQL with this database\n- [daily updater notebook](https://www.kaggle.com/code/wyattowalsh/database-updater-daily) and [monthly updater notebook](https://www.kaggle.com/code/wyattowalsh/database-updater-monthly)\n\n\u2b95 View the <a href=\"https://github.com/wyattowalsh/nba-db\">associated GitHub repo<img src=\"https://gist.githubusercontent.com/wyattowalsh/33b635109116e07044c6336527681051/raw/6b24b749532f4e167657fcc014a310b8c4bfa661/github.svg\"></a> and [code base docs site \ud83d\udcc4](https://nba-db.readthedocs.io/)\n\u2b95 Sponsor project: <a href=\"https://github.com/sponsors/wyattowalsh\"><img src=\"https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86\"></a>\n\n---\n\n<h5>Built With:</h5>\n \n<a href=\"https://www.kaggle.com/docs\" target=\"_blank\"><img alt=\"Kaggle\" src=\"https://img.shields.io/badge/kaggle-%2320BEFF.svg?&style=for-the-badge&logo=kaggle&logoColor=white\"></a><a href=\"https://docs.github.com/en\" target=\"_blank\"><img alt=\"GitHub\" src=\"https://img.shields.io/badge/github-%23181717.svg?&style=for-the-badge&logo=github&logoColor=white\"></a><a href=\"https://docs.python.org/3/\" target=\"_blank\"><img alt=\"Python\" src=\"https://img.shields.io/badge/python%20-%2314354C.svg?&style=for-the-badge&logo=python&logoColor=white\"></a><a href=\"https://sqlite.org/docs.html\" target=\"_blank\"><img alt=\"SQLite\" src=\"https://img.shields.io/badge/sqlite%20-%23003B57.svg?&style=for-the-badge&logo=sqlite&logoColor=white\"></a> <img src=\"https://raw.githubusercontent.com/wyattowalsh/nba-db/main/docs/_static/img/logo.svg\">", "VersionNotes": "Monthly update: 2023-05-06", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1218020, "CreatorUserId": 2507257, "OwnerUserId": 2507257.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 6090760.0, "CurrentDatasourceVersionId": 6169227.0, "ForumId": 1236110, "Type": 2, "CreationDate": "03/18/2021 00:21:25", "LastActivityDate": "03/18/2021", "TotalViews": 193588, "TotalDownloads": 19989, "TotalVotes": 513, "TotalKernels": 30}]
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np from scipy.stats import ttest_ind games = pd.read_csv("/kaggle/input/basketball/csv/game.csv") print(games.head()) games["game_date"] = pd.to_datetime(games["game_date"]) last_10 = games[games["game_date"] >= "2013-07-07"] print(last_10.head()) # This code was to filter games only in the past 10 seasons. home_wins = (last_10["wl_home"] == "W").sum() home_losses = (last_10["wl_home"] == "L").sum() home_winning_pct = home_wins / (home_wins + home_losses) print("Number of Home Wins:", home_wins) print("Number of Home Losses:", home_losses) print("Home Winning Percentage:", home_winning_pct) # We can see that home teams win about 57.2% of the time. last_10_t = last_10[ (~pd.isnull(last_10["fg3_pct_home"])) & (~pd.isnull(last_10["fg3_pct_away"])) ] t_statistic, p_value = ttest_ind(last_10["fg3_pct_home"], last_10["fg3_pct_away"]) print("t-statistic:", t_statistic) print("p-value:", p_value) avg_3_home = last_10["fg3_pct_home"].mean() avg_3_away = last_10["fg3_pct_away"].mean() print("Average Home 3 Point Shooting:", avg_3_home) print("Average Away 3 Point Shooting:", avg_3_away) diff_3_home_away = avg_3_home - avg_3_away print("Home Court 3 Point Advantage:", diff_3_home_away) # We can see that the average advantage gained by home teams is worth ~0.865% in 3 point shooting. However, because the sample size is so large, this is a statistically significant result. The p-value is extremely small in our 2 sample t-test last_10_t = last_10[ (~pd.isnull(last_10["fg_pct_home"])) & (~pd.isnull(last_10["fg_pct_away"])) ] t_statistic, p_value = ttest_ind(last_10["fg_pct_home"], last_10["fg_pct_away"]) print("t-statistic:", t_statistic) print("p-value:", p_value) avg_fg_home = last_10["fg_pct_home"].mean() avg_fg_away = last_10["fg_pct_away"].mean() print("Average Home FG Shooting:", avg_fg_home) print("Average Away FG Shooting:", avg_fg_away) diff_fg_home_away = avg_fg_home - avg_fg_away print("Home Court FG% Advantage:", diff_fg_home_away) # Again, we see a similar trend, with a slightly larger 0.953% home team advantage for FGs. The p-value is even smaller this time, indicating an even more siginificant statistical difference between home and away team FG shooting performance compared to 3s. teams = last_10["team_abbreviation_home"].unique() for team in teams: team_data = last_10[last_10["team_abbreviation_home"] == team] num_wins = (team_data["wl_home"] == "W").sum() num_losses = (team_data["wl_home"] == "L").sum() win_pct = num_wins / (num_wins + num_losses) print(team, "Win Pct at Home:", win_pct)
false
0
1,130
0
1,940
1,130
129036266
<jupyter_start><jupyter_text>Connecticut Real Estate Sales Data ``` The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. ``` | Column Name | Description | |-------------------|------------------------------------------------------------| | Serial Number | A unique identifier for each record in the dataset. | | List Year | The grand list year in which the sale was recorded. | | Date Recorded | The date when the sale was recorded. | | Town | The town where the property is located. | | Address | The address of the property. | | Assessed Value | The assessed value of the property. | | Sale Amount | The sales price of the property. | | Sales Ratio | The sales ratio of the property. | | Property Type | The type of the property (residential, apartment, commercial, industrial, or vacant land). | | Residential Type | The type of residential property (if applicable). | | Non Use Code | The non-use code associated with the property (if applicable). | | Assessor Remarks | Remarks or comments provided by the assessor (if available). | | OPM Remarks | Remarks or comments provided by the Office of Policy and Management (if available). | | Location | The location of the property (if available). | Kaggle dataset identifier: real-estate-sales-2001-2020-gl <jupyter_script>import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px df = pd.read_csv( "/kaggle/input/real-estate-sales-2001-2020-gl/Real_Estate_Sales_2001-2020_GL.csv" ) df.info() # for numerical data df.describe() # for categorical data df.describe(include="all") df.sample(2) df["OPM remarks"].value_counts() df = df.drop("OPM remarks", axis=1) df = df.dropna() df.info() df["Date Recorded"].values # # **Time series analysis** # **convert type (object) to datetime** df["Date Recorded"] = pd.to_datetime(df["Date Recorded"]) df["Date Recorded"].values # **Make column for year** df["Year"] = df["Date Recorded"].dt.year # **Make column for month name** # df["Month"] = df["Date Recorded"].dt.month_name() # **Make column for day name** df["Day"] = df["Date Recorded"].dt.day_name() # **Make column for quarter (1,2,3,4)** df["Quarter"] = df["Date Recorded"].dt.quarter # **it looks perfect now** df.sample(3)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/036/129036266.ipynb
real-estate-sales-2001-2020-gl
utkarshx27
[{"Id": 129036266, "ScriptId": 38357389, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9663382, "CreationDate": "05/10/2023 13:28:41", "VersionNumber": 1.0, "Title": "\u23f2 Time series analysis", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 58.0, "LinesInsertedFromPrevious": 58.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 25}]
[{"Id": 184738905, "KernelVersionId": 129036266, "SourceDatasetVersionId": 5606108}]
[{"Id": 5606108, "DatasetId": 3224580, "DatasourceVersionId": 5681188, "CreatorUserId": 13364933, "LicenseName": "U.S. Government Works", "CreationDate": "05/05/2023 04:22:05", "VersionNumber": 1.0, "Title": "Connecticut Real Estate Sales Data", "Slug": "real-estate-sales-2001-2020-gl", "Subtitle": "Property Sales, Assessments, and Trends in Connecticut 2001 - 2020", "Description": "```\nThe Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment.\n\nData are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019.\n```\n| Column Name | Description |\n|-------------------|------------------------------------------------------------|\n| Serial Number | A unique identifier for each record in the dataset. |\n| List Year | The grand list year in which the sale was recorded. |\n| Date Recorded | The date when the sale was recorded. |\n| Town | The town where the property is located. |\n| Address | The address of the property. |\n| Assessed Value | The assessed value of the property. |\n| Sale Amount | The sales price of the property. |\n| Sales Ratio | The sales ratio of the property. |\n| Property Type | The type of the property (residential, apartment, commercial, industrial, or vacant land). |\n| Residential Type | The type of residential property (if applicable). |\n| Non Use Code | The non-use code associated with the property (if applicable). |\n| Assessor Remarks | Remarks or comments provided by the assessor (if available). |\n| OPM Remarks | Remarks or comments provided by the Office of Policy and Management (if available). |\n| Location | The location of the property (if available). |", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3224580, "CreatorUserId": 13364933, "OwnerUserId": 13364933.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5606108.0, "CurrentDatasourceVersionId": 5681188.0, "ForumId": 3289617, "Type": 2, "CreationDate": "05/05/2023 04:22:05", "LastActivityDate": "05/05/2023", "TotalViews": 6426, "TotalDownloads": 1241, "TotalVotes": 35, "TotalKernels": 1}]
[{"Id": 13364933, "UserName": "utkarshx27", "DisplayName": "Utkarsh Singh", "RegisterDate": "01/21/2023", "PerformanceTier": 2}]
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px df = pd.read_csv( "/kaggle/input/real-estate-sales-2001-2020-gl/Real_Estate_Sales_2001-2020_GL.csv" ) df.info() # for numerical data df.describe() # for categorical data df.describe(include="all") df.sample(2) df["OPM remarks"].value_counts() df = df.drop("OPM remarks", axis=1) df = df.dropna() df.info() df["Date Recorded"].values # # **Time series analysis** # **convert type (object) to datetime** df["Date Recorded"] = pd.to_datetime(df["Date Recorded"]) df["Date Recorded"].values # **Make column for year** df["Year"] = df["Date Recorded"].dt.year # **Make column for month name** # df["Month"] = df["Date Recorded"].dt.month_name() # **Make column for day name** df["Day"] = df["Date Recorded"].dt.day_name() # **Make column for quarter (1,2,3,4)** df["Quarter"] = df["Date Recorded"].dt.quarter # **it looks perfect now** df.sample(3)
false
1
347
25
920
347
129041903
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.metrics import ( confusion_matrix, roc_curve, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score, ) import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout # Load data data = pd.read_csv("/kaggle/input/datas-req/natural prod toxic.csv") # Drop rows with missing data data = data.dropna() # Drop rows with invalid SMILES data = data.dropna() # Label encode SMILES le = LabelEncoder() data["SMILES"] = le.fit_transform(data["SMILES"]) # Standardize features scaler = StandardScaler() X = data[["SMILES", "HBA", "HBD", "MW", "ROT", "logP", "TPSA"]] data df = data df import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import cross_val_score from sklearn import metrics import shap import catboost from catboost import CatBoostClassifier, Pool import numpy as np import matplotlib from sklearn.model_selection import train_test_split from catboost import CatBoostClassifier from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay from sklearn.metrics import classification_report from sklearn import svm, datasets from sklearn.metrics import ConfusionMatrixDisplay # df = pd.read_csv("kc3.csv") # df['c'] = df['c'].replace(False, 0) # df['c'] = df['c'].replace(True, 1) # df=df.drop(['coconut_id'], axis=1) print(f"Size of Dataset {df.shape}") features = [feat for feat in list(df) if feat != "toxic"] # print(features) X_train, X_test, y_train, y_test = train_test_split( df[features], df[["toxic"]], test_size=0.2, random_state=1 ) params = {"iterations": 2500, "verbose": False} cat_model = CatBoostClassifier(**params) cat_model.fit(X_train, y_train) from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator=cat_model, X=df[features], y=df[["toxic"]], cv=5) print("Accuracy:{:.6f} %".format(accuracies.mean() * 100)) titles_options = [ ("Confusion matrix, without normalization", None), ("Normalized confusion matrix", "true"), ] for title, normalize in titles_options: disp = ConfusionMatrixDisplay.from_estimator( cat_model, X_test, y_test, display_labels=["NoBug", "Bug"], cmap=plt.cm.Blues, normalize=normalize, ) disp.ax_.set_title(title) # print(title) # print(disp.confusion_matrix) plt.show() # model = cat_model # shap_values = cat_model.get_feature_importance(Pool(X_test, label=y_test) , # type="ShapValues") # y_pred = model.predict(X_test) # expected_value = shap_values[0,-1] # shap_values = shap_values[:,:-1] # shap.dependence_plot(features[0], shap_values, X_test) # shap.initjs() # explainer = shap.TreeExplainer(model) # shap_values = explainer.shap_values(X_test) # # shap.summary_plot(shap_values, X_test,plot_type = 'bar') # shap_valuesnew = [-shap_values,shap_values] # shap.summary_plot(shap_valuesnew, X_test,class_names= ["NoBug","Bug"]) # combined # shap.summary_plot(shap_valuesnew[0], X_test, plot_type = 'violin') # shap.summary_plot(shap_valuesnew[1], X_test, plot_type = 'violin') # for i in features: # shap.dependence_plot(i,shap_values,X_test) # shap.force_plot(explainer.expected_value, shap_values, X_test)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/041/129041903.ipynb
null
null
[{"Id": 129041903, "ScriptId": 37511225, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13980349, "CreationDate": "05/10/2023 14:10:34", "VersionNumber": 1.0, "Title": "Natural_prod", "EvaluationDate": "05/10/2023", "IsChange": true, "TotalLines": 148.0, "LinesInsertedFromPrevious": 148.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.metrics import ( confusion_matrix, roc_curve, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score, ) import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout # Load data data = pd.read_csv("/kaggle/input/datas-req/natural prod toxic.csv") # Drop rows with missing data data = data.dropna() # Drop rows with invalid SMILES data = data.dropna() # Label encode SMILES le = LabelEncoder() data["SMILES"] = le.fit_transform(data["SMILES"]) # Standardize features scaler = StandardScaler() X = data[["SMILES", "HBA", "HBD", "MW", "ROT", "logP", "TPSA"]] data df = data df import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import cross_val_score from sklearn import metrics import shap import catboost from catboost import CatBoostClassifier, Pool import numpy as np import matplotlib from sklearn.model_selection import train_test_split from catboost import CatBoostClassifier from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay from sklearn.metrics import classification_report from sklearn import svm, datasets from sklearn.metrics import ConfusionMatrixDisplay # df = pd.read_csv("kc3.csv") # df['c'] = df['c'].replace(False, 0) # df['c'] = df['c'].replace(True, 1) # df=df.drop(['coconut_id'], axis=1) print(f"Size of Dataset {df.shape}") features = [feat for feat in list(df) if feat != "toxic"] # print(features) X_train, X_test, y_train, y_test = train_test_split( df[features], df[["toxic"]], test_size=0.2, random_state=1 ) params = {"iterations": 2500, "verbose": False} cat_model = CatBoostClassifier(**params) cat_model.fit(X_train, y_train) from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator=cat_model, X=df[features], y=df[["toxic"]], cv=5) print("Accuracy:{:.6f} %".format(accuracies.mean() * 100)) titles_options = [ ("Confusion matrix, without normalization", None), ("Normalized confusion matrix", "true"), ] for title, normalize in titles_options: disp = ConfusionMatrixDisplay.from_estimator( cat_model, X_test, y_test, display_labels=["NoBug", "Bug"], cmap=plt.cm.Blues, normalize=normalize, ) disp.ax_.set_title(title) # print(title) # print(disp.confusion_matrix) plt.show() # model = cat_model # shap_values = cat_model.get_feature_importance(Pool(X_test, label=y_test) , # type="ShapValues") # y_pred = model.predict(X_test) # expected_value = shap_values[0,-1] # shap_values = shap_values[:,:-1] # shap.dependence_plot(features[0], shap_values, X_test) # shap.initjs() # explainer = shap.TreeExplainer(model) # shap_values = explainer.shap_values(X_test) # # shap.summary_plot(shap_values, X_test,plot_type = 'bar') # shap_valuesnew = [-shap_values,shap_values] # shap.summary_plot(shap_valuesnew, X_test,class_names= ["NoBug","Bug"]) # combined # shap.summary_plot(shap_valuesnew[0], X_test, plot_type = 'violin') # shap.summary_plot(shap_valuesnew[1], X_test, plot_type = 'violin') # for i in features: # shap.dependence_plot(i,shap_values,X_test) # shap.force_plot(explainer.expected_value, shap_values, X_test)
false
0
1,318
0
1,318
1,318
129951563
<jupyter_start><jupyter_text>Top 10000 popular Movies TMDB This is a collection of metadata about the top 10,000 most popular movies on **The Movie Database (TMDB)** as of May 2023. The dataset includes information such as movie titles, release dates, runtime, genres, production companies, budget, and revenue. This data is collected from TMDB's public [API](https://developer.themoviedb.org/docs). #### Little bit about [TMDB](https://www.themoviedb.org/) TMDB (The Movie Database) is a popular online database and community platform that provides a vast collection of information about movies, TV shows, and other related content. TMDB allows users to browse and search for movies and TV shows, view information such as cast, crew, synopsis, and ratings, and also contribute to the community by adding their own reviews, ratings, and other content. #### Purpose The dataset is intended for use by data analysts, researchers, and developers who are interested in studying or analyzing the popularity and characteristics of movies. The dataset can be used to perform a wide range of analyses, such as exploring trends in movie genres over time, identifying patterns in movie budgets and revenues, and analyzing the impact of different attributes on a movie's popularity. ####Attributes - **id**: Unique identifier assigned to each movie in the TMDB database. - **title**: Title of the movie. - **release_date**: Date on which the movie was released. - **genres**: List of genres associated with the movie. - **original_language**: Language in which the movie was originally produced. - **vote_average**: Average rating given to the movie by TMDB users. - **vote_count**: Number of votes cast for the movie on TMDB. - **popularity**: Popularity score assigned to the movie by TMDB based on user engagement. - **overview**: Brief description or synopsis of the movie. - **budget**: Estimated budget for producing the movie in USD. - **production_companies**: List of production companies involved in making the movie. - **revenue**: Total revenue generated by the movie in USD. - **runtime**: Total runtime of the movie in minutes. - **tagline**: Short, memorable phrase associated with the movie, often used in promotional material. #### [Dataset Creation](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook) The dataset mentioned has been created by fetching raw data from TMDB's public API, and then cleaning and preprocessing the data to improve its quality and make it easier to work with. The cleaning process has been done using a notebook available [here](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook), which outlines the steps taken to transform the raw data into a more usable format. Kaggle dataset identifier: top-10000-popular-movies-tmdb-05-2023 <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv" ) df # # top 10 popular movie of the dataset top_10 = df[["title", "popularity"]] top_10 = top_10.sort_values(["popularity"], ascending=False) top_10.head(10) # # the average of popularity for each language most_popularity_lng = df.groupby("original_language")["popularity"].mean() # most_popularity_lng = df[['original_language',"popularity"]] most_popularity_lng # # Top 5 selling movie top_5_selling_movie = df[["title", "revenue"]] top_5_selling_movie = top_5_selling_movie.sort_values(["revenue"], ascending=False) top_5_selling_movie = top_5_selling_movie.head(5) top_5_selling_movie # # Verbalize your insights in Markdown cells. # ## Top 10,000 Popular Movies # This dataset provides information about the top 10,000 popular movies as of May 2023, sourced from TMDB (The Movie Database). Let's explore some insights from this dataset: # Movie Genres The dataset includes a wide range of movie genres. By analyzing the genre distribution, we can observe the popularity of different genres among the top 10,000 movies. It would be interesting to see which genres are most prevalent and if there are any emerging trends in movie preferences. # Ratings and Reviews The dataset likely contains ratings and reviews for the movies, which can be used to evaluate the overall reception of these films. We can analyze the average ratings and sentiments expressed in the reviews to identify the most well-received movies among the top 10,000. # Box Office Performance Movies that make it to the top 10,000 popular list often have significant box office success. By exploring the dataset, we can gather information on the worldwide and domestic box office earnings for these movies. It would be fascinating to examine the correlation between a film's popularity and its financial performance. # Movie Directors and Cast Identifying the directors and cast members associated with the top 10,000 movies can provide insights into popular trends in the film industry. We can determine if specific directors or actors/actresses are more frequently associated with successful movies and explore any patterns or preferences among the filmmakers and actors involved. # Release Year Distribution Analyzing the distribution of movie release years in the dataset can help us understand if there are any temporal patterns or preferences among the top 10,000 popular movies. We can identify if recent releases dominate the list or if there are notable classics that continue to maintain their popularity over time. # Movie Runtimes Examining the movie runtimes can give us an idea of the preferred duration among the top 10,000 movies. We can analyze the distribution of runtimes and identify any trends or patterns in movie length. This insight could help filmmakers and studios understand audience preferences when it comes to movie duration. # Language Diversity By analyzing the languages of the top 10,000 movies, we can gain insights into the diversity and distribution of films from different regions. It would be interesting to identify which languages are most prevalent and if there are any emerging international cinema trends. # Production Companies Exploring the production companies associated with the top 10,000 movies can reveal patterns in successful collaborations. We can identify if certain production companies are consistently associated with popular movies and analyze any relationships between production companies and film success. # These insights provide a starting point for exploring the dataset of the top 10,000 popular movies from TMDB in May 2023. By diving deeper into these aspects, we can gain a better understanding of the movie industry's current trends, preferences, and patterns. import seaborn as sns import matplotlib.pyplot as plt # # visualization of the top 5 popular movies top_10 = top_10.head(5) plt.figure() sns.barplot(x="popularity", y="title", data=top_10, palette="viridis") plt.title("top 5 popular movies") plt.xlabel("popularity") plt.ylabel("title") plt.show() # # visualization of The Average of popularity for each language plt.figure(figsize=(20, 30)) sns.barplot(x=most_popularity_lng.values, y=most_popularity_lng.index, data=top_10) plt.title("The Average of popularity for each language") plt.xlabel("Avg") plt.ylabel("Language") plt.show() # # visualization the top 10 selling movies plt.figure(figsize=(20, 10)) sns.barplot(x="revenue", y="title", data=top_5_selling_movie)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/951/129951563.ipynb
top-10000-popular-movies-tmdb-05-2023
ursmaheshj
[{"Id": 129951563, "ScriptId": 38608636, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14982285, "CreationDate": "05/17/2023 16:43:00", "VersionNumber": 1.0, "Title": "top_10000_movies", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 90.0, "LinesInsertedFromPrevious": 90.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186383825, "KernelVersionId": 129951563, "SourceDatasetVersionId": 5643863}, {"Id": 186383824, "KernelVersionId": 129951563, "SourceDatasetVersionId": 1094}]
[{"Id": 5643863, "DatasetId": 3240464, "DatasourceVersionId": 5719190, "CreatorUserId": 7397148, "LicenseName": "CC0: Public Domain", "CreationDate": "05/09/2023 13:43:53", "VersionNumber": 4.0, "Title": "Top 10000 popular Movies TMDB", "Slug": "top-10000-popular-movies-tmdb-05-2023", "Subtitle": "A Comprehensive Collection of Metadata for the Top 10,000 Popular Movies on TMDB", "Description": "This is a collection of metadata about the top 10,000 most popular movies on **The Movie Database (TMDB)** as of May 2023. The dataset includes information such as movie titles, release dates, runtime, genres, production companies, budget, and revenue. This data is collected from TMDB's public [API](https://developer.themoviedb.org/docs). \n\n#### Little bit about [TMDB](https://www.themoviedb.org/)\nTMDB (The Movie Database) is a popular online database and community platform that provides a vast collection of information about movies, TV shows, and other related content. TMDB allows users to browse and search for movies and TV shows, view information such as cast, crew, synopsis, and ratings, and also contribute to the community by adding their own reviews, ratings, and other content.\n\n#### Purpose\nThe dataset is intended for use by data analysts, researchers, and developers who are interested in studying or analyzing the popularity and characteristics of movies. The dataset can be used to perform a wide range of analyses, such as exploring trends in movie genres over time, identifying patterns in movie budgets and revenues, and analyzing the impact of different attributes on a movie's popularity.\n\n####Attributes\n- **id**: Unique identifier assigned to each movie in the TMDB database.\n- **title**: Title of the movie.\n- **release_date**: Date on which the movie was released.\n- **genres**: List of genres associated with the movie.\n- **original_language**: Language in which the movie was originally produced.\n- **vote_average**: Average rating given to the movie by TMDB users.\n- **vote_count**: Number of votes cast for the movie on TMDB.\n- **popularity**: Popularity score assigned to the movie by TMDB based on user engagement.\n- **overview**: Brief description or synopsis of the movie.\n- **budget**: Estimated budget for producing the movie in USD.\n- **production_companies**: List of production companies involved in making the movie.\n- **revenue**: Total revenue generated by the movie in USD.\n- **runtime**: Total runtime of the movie in minutes.\n- **tagline**: Short, memorable phrase associated with the movie, often used in promotional material.\n\n#### [Dataset Creation](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook)\nThe dataset mentioned has been created by fetching raw data from TMDB's public API, and then cleaning and preprocessing the data to improve its quality and make it easier to work with. The cleaning process has been done using a notebook available [here](https://www.kaggle.com/code/ursmaheshj/creating-dataset-using-tmdb-api/notebook), which outlines the steps taken to transform the raw data into a more usable format.", "VersionNotes": "Data Update 2023-05-09", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3240464, "CreatorUserId": 7397148, "OwnerUserId": 7397148.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5921776.0, "CurrentDatasourceVersionId": 5999208.0, "ForumId": 3305699, "Type": 2, "CreationDate": "05/08/2023 19:50:26", "LastActivityDate": "05/08/2023", "TotalViews": 7400, "TotalDownloads": 1454, "TotalVotes": 37, "TotalKernels": 10}]
[{"Id": 7397148, "UserName": "ursmaheshj", "DisplayName": "Mahesh Jadhav", "RegisterDate": "05/11/2021", "PerformanceTier": 1}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv( "/kaggle/input/top-10000-popular-movies-tmdb-05-2023/popular_10000_movies_tmdb.csv" ) df # # top 10 popular movie of the dataset top_10 = df[["title", "popularity"]] top_10 = top_10.sort_values(["popularity"], ascending=False) top_10.head(10) # # the average of popularity for each language most_popularity_lng = df.groupby("original_language")["popularity"].mean() # most_popularity_lng = df[['original_language',"popularity"]] most_popularity_lng # # Top 5 selling movie top_5_selling_movie = df[["title", "revenue"]] top_5_selling_movie = top_5_selling_movie.sort_values(["revenue"], ascending=False) top_5_selling_movie = top_5_selling_movie.head(5) top_5_selling_movie # # Verbalize your insights in Markdown cells. # ## Top 10,000 Popular Movies # This dataset provides information about the top 10,000 popular movies as of May 2023, sourced from TMDB (The Movie Database). Let's explore some insights from this dataset: # Movie Genres The dataset includes a wide range of movie genres. By analyzing the genre distribution, we can observe the popularity of different genres among the top 10,000 movies. It would be interesting to see which genres are most prevalent and if there are any emerging trends in movie preferences. # Ratings and Reviews The dataset likely contains ratings and reviews for the movies, which can be used to evaluate the overall reception of these films. We can analyze the average ratings and sentiments expressed in the reviews to identify the most well-received movies among the top 10,000. # Box Office Performance Movies that make it to the top 10,000 popular list often have significant box office success. By exploring the dataset, we can gather information on the worldwide and domestic box office earnings for these movies. It would be fascinating to examine the correlation between a film's popularity and its financial performance. # Movie Directors and Cast Identifying the directors and cast members associated with the top 10,000 movies can provide insights into popular trends in the film industry. We can determine if specific directors or actors/actresses are more frequently associated with successful movies and explore any patterns or preferences among the filmmakers and actors involved. # Release Year Distribution Analyzing the distribution of movie release years in the dataset can help us understand if there are any temporal patterns or preferences among the top 10,000 popular movies. We can identify if recent releases dominate the list or if there are notable classics that continue to maintain their popularity over time. # Movie Runtimes Examining the movie runtimes can give us an idea of the preferred duration among the top 10,000 movies. We can analyze the distribution of runtimes and identify any trends or patterns in movie length. This insight could help filmmakers and studios understand audience preferences when it comes to movie duration. # Language Diversity By analyzing the languages of the top 10,000 movies, we can gain insights into the diversity and distribution of films from different regions. It would be interesting to identify which languages are most prevalent and if there are any emerging international cinema trends. # Production Companies Exploring the production companies associated with the top 10,000 movies can reveal patterns in successful collaborations. We can identify if certain production companies are consistently associated with popular movies and analyze any relationships between production companies and film success. # These insights provide a starting point for exploring the dataset of the top 10,000 popular movies from TMDB in May 2023. By diving deeper into these aspects, we can gain a better understanding of the movie industry's current trends, preferences, and patterns. import seaborn as sns import matplotlib.pyplot as plt # # visualization of the top 5 popular movies top_10 = top_10.head(5) plt.figure() sns.barplot(x="popularity", y="title", data=top_10, palette="viridis") plt.title("top 5 popular movies") plt.xlabel("popularity") plt.ylabel("title") plt.show() # # visualization of The Average of popularity for each language plt.figure(figsize=(20, 30)) sns.barplot(x=most_popularity_lng.values, y=most_popularity_lng.index, data=top_10) plt.title("The Average of popularity for each language") plt.xlabel("Avg") plt.ylabel("Language") plt.show() # # visualization the top 10 selling movies plt.figure(figsize=(20, 10)) sns.barplot(x="revenue", y="title", data=top_5_selling_movie)
false
1
1,392
0
2,091
1,392
129951819
<jupyter_start><jupyter_text>Fraud Detection in Electricity and Gas Consumption The Tunisian Company of Electricity and Gas (STEG) is a public and a non-administrative company, it is responsible for delivering electricity and gas across Tunisia. The company suffered tremendous losses in the order of 200 million Tunisian Dinars due to fraudulent manipulations of meters by consumers. Kaggle dataset identifier: fraud-detection-in-electricity-and-gas-consumption <jupyter_script># ## Load necessary packages # Ignore Warnings import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) invoice_test = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/invoice_test.csv", low_memory=False, ) invoice_train = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/invoice_train.csv", low_memory=False, ) client_test = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/client_test.csv", low_memory=False, ) client_train = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/client_train.csv", low_memory=False, ) sample_submission = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/SampleSubmission (2).csv", low_memory=False, ) # compare size of the various datasets print(client_train.shape, invoice_train.shape, client_test.shape, invoice_train.shape) client_train.head() invoice_train.head() # ## Exploratory data analysis (EDA) L = pd.to_datetime(client_train["creation_date"], dayfirst=True) client_train["creation_year"] = L.dt.year years = set(L.dt.year) # ### Invoice counter type (ELEC, GAZ) C = invoice_train["counter_type"].tolist() elec = C.count("ELEC") * 100 / len(C) gaz = C.count("GAZ") * 100 / len(C) plt.figure(figsize=(6, 6)) plt.pie([elec, gaz], labels=["ELEC", "GAZ"], autopct="%1.1f%%") plt.title("Proportion of Counter type (ELEC to GAZ)") plt.show() year = client_train.groupby(["creation_year"])["client_id"].count() plt.figure(figsize=(12, 6)) # increase figure size to make it larger plt.plot(year) plt.title("Number of Clients by Creation Year") plt.xlabel("Creation Year") plt.ylabel("Number of Clients") # set x-axis tick labels to show every 5 years plt.xticks(range(min(year.index), max(year.index) + 1, 5), rotation=45) plt.show() E1 = [i for i in years] groups = client_train.groupby(["creation_year", "client_catg"])["client_id"].count() L11 = [] L12 = [] L51 = [] for i in years: L11.append(groups[i][11]) L12.append(groups[i][12]) L51.append(groups[i][51]) fig, ax = plt.subplots() fig.set_size_inches(10, 5) ax.plot(E1, L11, label="cat_11") ax.plot(E1, L12, label="cat_12") ax.plot(E1, L51, label="cat_51") plt.title("Number of customers by year") plt.legend() plt.show() # " Logarithmic plot " logL11 = list(map(np.log, L11)) logL12 = list(map(np.log, L12)) logL51 = list(map(np.log, L51)) fig, ax = plt.subplots() fig.set_size_inches(10, 5) ax.plot(E1, logL11, label="cat_11") ax.plot(E1, logL12, label="cat_12") ax.plot(E1, logL51, label="cat_51") plt.title("Logarithmic number of customers by year") plt.legend() plt.show() ds = client_train.groupby(["target"])["client_id"].count() plt.bar(x=ds.index, height=ds.values, tick_label=[0, 1]) plt.title("target distribution") plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/951/129951819.ipynb
fraud-detection-in-electricity-and-gas-consumption
mrmorj
[{"Id": 129951819, "ScriptId": 38653004, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9028201, "CreationDate": "05/17/2023 16:45:11", "VersionNumber": 1.0, "Title": "Energy EDA and Prediction\u26a1", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 99.0, "LinesInsertedFromPrevious": 99.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186384170, "KernelVersionId": 129951819, "SourceDatasetVersionId": 1439341}]
[{"Id": 1439341, "DatasetId": 678596, "DatasourceVersionId": 1472785, "CreatorUserId": 3511431, "LicenseName": "Other (specified in description)", "CreationDate": "08/24/2020 12:29:16", "VersionNumber": 2.0, "Title": "Fraud Detection in Electricity and Gas Consumption", "Slug": "fraud-detection-in-electricity-and-gas-consumption", "Subtitle": "Client\u2019s billing history", "Description": "The Tunisian Company of Electricity and Gas (STEG) is a public and a non-administrative company, it is responsible for delivering electricity and gas across Tunisia. The company suffered tremendous losses in the order of 200 million Tunisian Dinars due to fraudulent manipulations of meters by consumers.", "VersionNotes": "Fraud Detection in Electricity and Gas Consumption", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 678596, "CreatorUserId": 3511431, "OwnerUserId": 3511431.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1439341.0, "CurrentDatasourceVersionId": 1472785.0, "ForumId": 693128, "Type": 2, "CreationDate": "05/27/2020 16:59:49", "LastActivityDate": "05/27/2020", "TotalViews": 24769, "TotalDownloads": 1878, "TotalVotes": 46, "TotalKernels": 7}]
[{"Id": 3511431, "UserName": "mrmorj", "DisplayName": "Andrii Samoshyn", "RegisterDate": "07/26/2019", "PerformanceTier": 2}]
# ## Load necessary packages # Ignore Warnings import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) invoice_test = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/invoice_test.csv", low_memory=False, ) invoice_train = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/invoice_train.csv", low_memory=False, ) client_test = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/client_test.csv", low_memory=False, ) client_train = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/client_train.csv", low_memory=False, ) sample_submission = pd.read_csv( "/kaggle/input/fraud-detection-in-electricity-and-gas-consumption/SampleSubmission (2).csv", low_memory=False, ) # compare size of the various datasets print(client_train.shape, invoice_train.shape, client_test.shape, invoice_train.shape) client_train.head() invoice_train.head() # ## Exploratory data analysis (EDA) L = pd.to_datetime(client_train["creation_date"], dayfirst=True) client_train["creation_year"] = L.dt.year years = set(L.dt.year) # ### Invoice counter type (ELEC, GAZ) C = invoice_train["counter_type"].tolist() elec = C.count("ELEC") * 100 / len(C) gaz = C.count("GAZ") * 100 / len(C) plt.figure(figsize=(6, 6)) plt.pie([elec, gaz], labels=["ELEC", "GAZ"], autopct="%1.1f%%") plt.title("Proportion of Counter type (ELEC to GAZ)") plt.show() year = client_train.groupby(["creation_year"])["client_id"].count() plt.figure(figsize=(12, 6)) # increase figure size to make it larger plt.plot(year) plt.title("Number of Clients by Creation Year") plt.xlabel("Creation Year") plt.ylabel("Number of Clients") # set x-axis tick labels to show every 5 years plt.xticks(range(min(year.index), max(year.index) + 1, 5), rotation=45) plt.show() E1 = [i for i in years] groups = client_train.groupby(["creation_year", "client_catg"])["client_id"].count() L11 = [] L12 = [] L51 = [] for i in years: L11.append(groups[i][11]) L12.append(groups[i][12]) L51.append(groups[i][51]) fig, ax = plt.subplots() fig.set_size_inches(10, 5) ax.plot(E1, L11, label="cat_11") ax.plot(E1, L12, label="cat_12") ax.plot(E1, L51, label="cat_51") plt.title("Number of customers by year") plt.legend() plt.show() # " Logarithmic plot " logL11 = list(map(np.log, L11)) logL12 = list(map(np.log, L12)) logL51 = list(map(np.log, L51)) fig, ax = plt.subplots() fig.set_size_inches(10, 5) ax.plot(E1, logL11, label="cat_11") ax.plot(E1, logL12, label="cat_12") ax.plot(E1, logL51, label="cat_51") plt.title("Logarithmic number of customers by year") plt.legend() plt.show() ds = client_train.groupby(["target"])["client_id"].count() plt.bar(x=ds.index, height=ds.values, tick_label=[0, 1]) plt.title("target distribution") plt.show()
false
5
1,145
0
1,269
1,145
129951496
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime import matplotlib.dates as mdates import seaborn as sns # visualization df = pd.read_csv("../input/walmart-recruiting-store-sales-forecasting/train.csv.zip") df df["Month"] = pd.to_datetime(df["Date"]).dt.month df["Month"].unique() df sales_by_month = df.groupby("Month")["Weekly_Sales"].sum() # Plot the data using a line chart import matplotlib.pyplot as plt plt.plot(sales_by_month.index, sales_by_month.values) plt.xticks(range(1, 13)) # Set the x-tick labels to show 1 to 12 plt.xlabel("Month") plt.ylabel("Total Weekly Sales") plt.title("Weekly Sales by Month") plt.show() store_sales = df.groupby(["Store"]).sum() # Create a bar chart using Matplotlib fig, ax = plt.subplots(figsize=(20, 10)) ax.bar(store_sales.index, store_sales["Weekly_Sales"], color="orange") # Add labels and a title to the chart plt.xticks(range(1, 46)) ax.set_xlabel("Stores") ax.set_ylabel("Weekly Sales") ax.set_title("Sales of stores") # Display the chart plt.show() sales_by_store = df.groupby("Store")["Weekly_Sales"].sum() top_stores = sales_by_store.sort_values(ascending=False).head(10) display(top_stores) fig, ax = plt.subplots(figsize=(20, 10)) ax.bar(top_stores.index, top_stores.values, color="orange") # Add labels and a title to the chart plt.xticks(range(1, 46)) ax.set_xlabel("Stores") ax.set_ylabel("Weekly Sales") ax.set_title("Sales of stores") # Display the chart plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/951/129951496.ipynb
null
null
[{"Id": 129951496, "ScriptId": 38644919, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8219936, "CreationDate": "05/17/2023 16:42:20", "VersionNumber": 1.0, "Title": "intelligent database project", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 82.0, "LinesInsertedFromPrevious": 82.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime import matplotlib.dates as mdates import seaborn as sns # visualization df = pd.read_csv("../input/walmart-recruiting-store-sales-forecasting/train.csv.zip") df df["Month"] = pd.to_datetime(df["Date"]).dt.month df["Month"].unique() df sales_by_month = df.groupby("Month")["Weekly_Sales"].sum() # Plot the data using a line chart import matplotlib.pyplot as plt plt.plot(sales_by_month.index, sales_by_month.values) plt.xticks(range(1, 13)) # Set the x-tick labels to show 1 to 12 plt.xlabel("Month") plt.ylabel("Total Weekly Sales") plt.title("Weekly Sales by Month") plt.show() store_sales = df.groupby(["Store"]).sum() # Create a bar chart using Matplotlib fig, ax = plt.subplots(figsize=(20, 10)) ax.bar(store_sales.index, store_sales["Weekly_Sales"], color="orange") # Add labels and a title to the chart plt.xticks(range(1, 46)) ax.set_xlabel("Stores") ax.set_ylabel("Weekly Sales") ax.set_title("Sales of stores") # Display the chart plt.show() sales_by_store = df.groupby("Store")["Weekly_Sales"].sum() top_stores = sales_by_store.sort_values(ascending=False).head(10) display(top_stores) fig, ax = plt.subplots(figsize=(20, 10)) ax.bar(top_stores.index, top_stores.values, color="orange") # Add labels and a title to the chart plt.xticks(range(1, 46)) ax.set_xlabel("Stores") ax.set_ylabel("Weekly Sales") ax.set_title("Sales of stores") # Display the chart plt.show()
false
0
684
0
684
684
129926625
<jupyter_start><jupyter_text>World Population Insights: 1970-2022 This dataset provides comprehensive information on global population dynamics. It includes attributes such as rank, country details, capital, continent, and population data from various years. Additional details like area, density, growth rate, and world population percentage are also included. This dataset allows for insightful analysis of worldwide demographic trends and patterns. Kaggle dataset identifier: world-population-insights-1970-2022 <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px df = pd.read_csv("/kaggle/input/world-population-insights-1970-2022/population.csv") df.shape df.info() df.describe() df.isna().sum() df.head() years = [] names = [] sums = [] for i in df.columns: if i[0] == "1" or i[0] == "2": names += [i] years += [int(i.split()[0])] sums += [np.sum(df[i])] names # # Growth throughout years fig = px.line(x=names[::-1], y=sums[::-1]) fig.update_layout(xaxis_title="Years", yaxis_title="Population in Billions") def plots(df, x, y, mean=False): group_data = df.groupby(y) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(25, 10)) bars = group_data[x].sum() if not mean else group_data[x].mean() sns.barplot(x=bars.index, y=bars, ax=axes[0]) for container in axes[0].containers: axes[0].bar_label(container, size=15, color="black") sns.histplot(df, x=x, hue=y, kde=True, ax=axes[1]) if not mean: plt.suptitle("{} by {}".format(x, y), size=20) else: plt.suptitle("Mean {} by {}".format(x, y), size=20) plt.show() plt.pie( df["Continent"].value_counts(), labels=df["Continent"].value_counts().index, autopct="%0.2f%%", ) df["Continent"].value_counts() # # Grouped data's barplots and Histplots for i in df.columns[6:14]: plots(df, i, "Continent") for i in df.columns[14:]: plots(df, i, "Continent", True)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/926/129926625.ipynb
world-population-insights-1970-2022
gyaswanth297
[{"Id": 129926625, "ScriptId": 38619311, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11036701, "CreationDate": "05/17/2023 13:27:46", "VersionNumber": 1.0, "Title": "notebookec785e1b6a", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 71.0, "LinesInsertedFromPrevious": 71.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 4}]
[{"Id": 186349932, "KernelVersionId": 129926625, "SourceDatasetVersionId": 5700066}]
[{"Id": 5700066, "DatasetId": 3277670, "DatasourceVersionId": 5775728, "CreatorUserId": 11623113, "LicenseName": "Unknown", "CreationDate": "05/16/2023 16:25:59", "VersionNumber": 1.0, "Title": "World Population Insights: 1970-2022", "Slug": "world-population-insights-1970-2022", "Subtitle": "Global Population Trends: Exploring the Changing Dynamics of People Worldwide", "Description": "This dataset provides comprehensive information on global population dynamics. It includes attributes such as rank, country details, capital, continent, and population data from various years. Additional details like area, density, growth rate, and world population percentage are also included. This dataset allows for insightful analysis of worldwide demographic trends and patterns.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3277670, "CreatorUserId": 11623113, "OwnerUserId": 11623113.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5700066.0, "CurrentDatasourceVersionId": 5775728.0, "ForumId": 3343365, "Type": 2, "CreationDate": "05/16/2023 16:25:59", "LastActivityDate": "05/16/2023", "TotalViews": 5641, "TotalDownloads": 1200, "TotalVotes": 35, "TotalKernels": 4}]
[{"Id": 11623113, "UserName": "gyaswanth297", "DisplayName": "gYaswanth297", "RegisterDate": "09/17/2022", "PerformanceTier": 2}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px df = pd.read_csv("/kaggle/input/world-population-insights-1970-2022/population.csv") df.shape df.info() df.describe() df.isna().sum() df.head() years = [] names = [] sums = [] for i in df.columns: if i[0] == "1" or i[0] == "2": names += [i] years += [int(i.split()[0])] sums += [np.sum(df[i])] names # # Growth throughout years fig = px.line(x=names[::-1], y=sums[::-1]) fig.update_layout(xaxis_title="Years", yaxis_title="Population in Billions") def plots(df, x, y, mean=False): group_data = df.groupby(y) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(25, 10)) bars = group_data[x].sum() if not mean else group_data[x].mean() sns.barplot(x=bars.index, y=bars, ax=axes[0]) for container in axes[0].containers: axes[0].bar_label(container, size=15, color="black") sns.histplot(df, x=x, hue=y, kde=True, ax=axes[1]) if not mean: plt.suptitle("{} by {}".format(x, y), size=20) else: plt.suptitle("Mean {} by {}".format(x, y), size=20) plt.show() plt.pie( df["Continent"].value_counts(), labels=df["Continent"].value_counts().index, autopct="%0.2f%%", ) df["Continent"].value_counts() # # Grouped data's barplots and Histplots for i in df.columns[6:14]: plots(df, i, "Continent") for i in df.columns[14:]: plots(df, i, "Continent", True)
false
1
566
4
678
566
129926915
# # Projeto Final # - Curso EBAC # ## 1\. Apresentação # A intenção deste projeto é fazer a exploração, manipulação, limpeza e visualização de dados disponibilizados no curso da EBAC, para desta forma, testar nossos conhecimentos e identificar nossa aptidez com a ferramenta google colab, além de nossa habilidade com a linguagem python exercida até o momento. # ### 1.1. Descrição # Os dados que serão submetidos a análise estão neste [link](https://raw.githubusercontent.com/andre-marcos-perez/ebac-course-utils/develop/dataset/credito.csv), este arquivo está em formato csv e nele sse encontra informações de cliente de uma instituição financeira, como salário, sexo, idade, tipo do cartão, entre outros. Cabe ao objetivo deste projeto fazer a análise destes dados e saber o por quê de um cliente não pagar suas dívidas baseando neste estudo. Este dado será na forma de 0 ou 1 na coluna default, sendo que, 0 = adimplente ou 1= inadimplente. # Podemos ver que seria inacessível analisarmos este dado como em sua forma orginal devido sua quantidade de colunas e linhas, por isso, iremos deixá-lo o mais simples possível para uma análise mais efetiva. # ``` # -> As bibliotecas usadas são: # pandas==1.5.3 # seaborn==0.12.2 # matplotlib==3.7.1 # ``` # ## 2\. Exploração de Dados import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv( "/kaggle/input/adimplente-inadimplente/Python_M10_support material (4).csv", na_values="na", ) df.head(n=5) # Para termos uma noção da quantidade de dados que estamos lidando usamos o código: # df.shape # Ou seja, estamos lidando com 10127 linhas e 16 colunas. # Para filtrarmos e sabermos a proporção em números brutos destes clientes quais são adimplentes e inadimplentes: df[df["default"] == 0].shape df[df["default"] == 1].shape # São 8500 clientes adimplentes e 1627 inadimplentes. qtd_total, _ = df.shape qtd_adimplentes, _ = df[df["default"] == 0].shape qtd_inadimplentes, _ = df[df["default"] == 1].shape print( f"A proporcão clientes adimplentes é de {round(100 * qtd_adimplentes / qtd_total, 2)}%" ) print( f"A proporcão clientes inadimplentes é de {round(100 * qtd_inadimplentes / qtd_total, 2)}%" ) df.dtypes # Para sabermos se esão faltando dados usaremos o seguinte código: df.select_dtypes("object").describe().transpose() # Podemos observar na coluna acima 2 problemas: # 1- Que os itens escolaridade, estado civil e salário anual não estão coerentes com a quantidade total de linhas, ou seja, possuímos neste dataframe alguns dados faltando. # 2- O fato de que os itens limite de crédito e valor das transações estão se encaixando como formato objeto. df.drop("id", axis=1).select_dtypes("number").describe().transpose() # No caso das colunas numéricas podemos observar que não há falta de informmação, pois a quantidade de itens na coluna "count" se alinham com a quantidade de linhas totais. # Para começarmos a filtrar os dados, precisamos primeiramente de retirar os dados faltantes. df.isna().any() # Com estes dados coinfirmamos que no caso da escolaridade, estado civil e # salario_anual estão faltando informações. def stats_dados_faltantes(df: pd.DataFrame) -> None: stats_dados_faltantes = [] for col in df.columns: if df[col].isna().any(): qtd, _ = df[df[col].isna()].shape total, _ = df.shape dict_dados_faltantes = { col: {"quantidade": qtd, "porcentagem": round(100 * qtd / total, 2)} } stats_dados_faltantes.append(dict_dados_faltantes) for stat in stats_dados_faltantes: print(stat) stats_dados_faltantes(df=df) stats_dados_faltantes(df=df[df["default"] == 0]) stats_dados_faltantes(df=df[df["default"] == 1]) # Por meio deste último dois códigos podemos obsservar que apesar da nossa base de dados terem mais pessoas adimplentes que inadimplentes, os dados faltantes são relativamente proporcionais a ambas categorias, isso nos deixa excluir linhas mais tranquilamente. # ### 2.1. Correção de valores # Vamos corrigir o problema dos dados limite de credito e valor das transações se encaixarem como objeto e não como números. # Isso se dá pelo fato do python não identificar vírugulas como um separador de partes inteiras e decimais além de não identificar como separador de casa de milhares para centenas. fn = lambda valor: float(valor.replace(".", "").replace(",", ".")) df["valor_transacoes_12m"] = df["valor_transacoes_12m"].apply(fn) df["limite_credito"] = df["limite_credito"].apply(fn) # Para termos certeza se a função alcançou todos os dados e fez a conversão corretamente vamos ver os tipos de dados presente de novo. df.dtypes # ### 2.2. Limpeza de Dados df = df.dropna() # Neste código acima nós retiramos todos os dados vazios. df.shape qtd_total_novo, _ = df.shape qtd_adimplentes_novo, _ = df[df["default"] == 0].shape qtd_inadimplentes_novo, _ = df[df["default"] == 1].shape print( f"A proporcão adimplentes ativos é de {round(100 * qtd_adimplentes / qtd_total, 2)}%" ) print( f"A nova proporcão de clientes adimplentes é de {round(100 * qtd_adimplentes_novo / qtd_total_novo, 2)}%" ) print("") print( f"A proporcão clientes inadimplentes é de {round(100 * qtd_inadimplentes / qtd_total, 2)}%" ) print( f"A nova proporcão de clientes inadimplentes é de {round(100 * qtd_inadimplentes_novo / qtd_total_novo, 2)}%" ) # Podemos notar com esta informação que apesar das linhas excluídas a proporção se manteve. # ## 3\. Representação dos Dados # Agora, para uma melhor interpretação, vamos represntar todos esses dados em forma de gráficos. # Vamos observar primeiramente a relação entre o nível de escolaridade total e comparado em relação aos clientes adimplentes e inadimplentes. sns.set_style("whitegrid") df_adimplente = df[df["default"] == 0] df_inadimplente = df[df["default"] == 1] coluna = "escolaridade" titulos = [ "Escolaridade dos Clientes", "Escolaridade dos Clientes Adimplentes", "Escolaridade dos Clientes Inadimplentes", ] eixo = 0 max_y = 0 max = df.select_dtypes("object").describe()[coluna]["freq"] * 1.1 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: df_to_plot = dataframe[coluna].value_counts().to_frame() df_to_plot.rename(columns={coluna: "frequencia_absoluta"}, inplace=True) df_to_plot[coluna] = df_to_plot.index df_to_plot.sort_values(by=[coluna], inplace=True) df_to_plot.sort_values(by=[coluna]) f = sns.barplot( x=df_to_plot[coluna], y=df_to_plot["frequencia_absoluta"], ax=eixos[eixo] ) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") f.set_xticklabels(labels=f.get_xticklabels(), rotation=90) _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora um gráfico em relaçao aos salários dos clientes. coluna = "salario_anual" titulos = [ "Salário Anual dos Clientes", "Salário Anual dos Clientes Adimplentes", "Salário Anual dos Clientes Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: df_to_plot = dataframe[coluna].value_counts().to_frame() df_to_plot.rename(columns={coluna: "frequencia_absoluta"}, inplace=True) df_to_plot[coluna] = df_to_plot.index df_to_plot.reset_index(inplace=True, drop=True) df_to_plot.sort_values(by=[coluna], inplace=True) f = sns.barplot( x=df_to_plot[coluna], y=df_to_plot["frequencia_absoluta"], ax=eixos[eixo] ) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") f.set_xticklabels(labels=f.get_xticklabels(), rotation=90) _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora vamos visualizar um gráfico do número de transações em relação ao cliente ser adimplente ou inadimplente. coluna = "qtd_transacoes_12m" titulos = [ "Qtd. de Transações no Último Ano", "Qtd. de Transações no Último Ano de Adimplentes", "Qtd. de Transações no Último Ano de Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: f = sns.histplot(x=coluna, data=dataframe, stat="count", ax=eixos[eixo]) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora vamos visualizar um gráfico em relação ao valor das transações em relação ao cliente adimplente e inadimplente. coluna = "valor_transacoes_12m" titulos = [ "Valor das Transações no Último Ano", "Valor das Transações no Último Ano de Adimplentes", "Valor das Transações no Último Ano de Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: f = sns.histplot(x=coluna, data=dataframe, stat="count", ax=eixos[eixo]) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # E o último gráfico que se refere a quantidade de transações em relação ao vlaor das transações. f = sns.relplot( x="valor_transacoes_12m", y="qtd_transacoes_12m", data=df, hue="default" ) _ = f.set( title="Relação entre Valor e Quantidade de Transações no Último Ano", xlabel="Valor das Transações no Último Ano", ylabel="Quantidade das Transações no Último Ano", )
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/926/129926915.ipynb
null
null
[{"Id": 129926915, "ScriptId": 38647851, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14840733, "CreationDate": "05/17/2023 13:29:45", "VersionNumber": 1.0, "Title": "Projeto Final | Curso de Python", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 259.0, "LinesInsertedFromPrevious": 259.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# # Projeto Final # - Curso EBAC # ## 1\. Apresentação # A intenção deste projeto é fazer a exploração, manipulação, limpeza e visualização de dados disponibilizados no curso da EBAC, para desta forma, testar nossos conhecimentos e identificar nossa aptidez com a ferramenta google colab, além de nossa habilidade com a linguagem python exercida até o momento. # ### 1.1. Descrição # Os dados que serão submetidos a análise estão neste [link](https://raw.githubusercontent.com/andre-marcos-perez/ebac-course-utils/develop/dataset/credito.csv), este arquivo está em formato csv e nele sse encontra informações de cliente de uma instituição financeira, como salário, sexo, idade, tipo do cartão, entre outros. Cabe ao objetivo deste projeto fazer a análise destes dados e saber o por quê de um cliente não pagar suas dívidas baseando neste estudo. Este dado será na forma de 0 ou 1 na coluna default, sendo que, 0 = adimplente ou 1= inadimplente. # Podemos ver que seria inacessível analisarmos este dado como em sua forma orginal devido sua quantidade de colunas e linhas, por isso, iremos deixá-lo o mais simples possível para uma análise mais efetiva. # ``` # -> As bibliotecas usadas são: # pandas==1.5.3 # seaborn==0.12.2 # matplotlib==3.7.1 # ``` # ## 2\. Exploração de Dados import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv( "/kaggle/input/adimplente-inadimplente/Python_M10_support material (4).csv", na_values="na", ) df.head(n=5) # Para termos uma noção da quantidade de dados que estamos lidando usamos o código: # df.shape # Ou seja, estamos lidando com 10127 linhas e 16 colunas. # Para filtrarmos e sabermos a proporção em números brutos destes clientes quais são adimplentes e inadimplentes: df[df["default"] == 0].shape df[df["default"] == 1].shape # São 8500 clientes adimplentes e 1627 inadimplentes. qtd_total, _ = df.shape qtd_adimplentes, _ = df[df["default"] == 0].shape qtd_inadimplentes, _ = df[df["default"] == 1].shape print( f"A proporcão clientes adimplentes é de {round(100 * qtd_adimplentes / qtd_total, 2)}%" ) print( f"A proporcão clientes inadimplentes é de {round(100 * qtd_inadimplentes / qtd_total, 2)}%" ) df.dtypes # Para sabermos se esão faltando dados usaremos o seguinte código: df.select_dtypes("object").describe().transpose() # Podemos observar na coluna acima 2 problemas: # 1- Que os itens escolaridade, estado civil e salário anual não estão coerentes com a quantidade total de linhas, ou seja, possuímos neste dataframe alguns dados faltando. # 2- O fato de que os itens limite de crédito e valor das transações estão se encaixando como formato objeto. df.drop("id", axis=1).select_dtypes("number").describe().transpose() # No caso das colunas numéricas podemos observar que não há falta de informmação, pois a quantidade de itens na coluna "count" se alinham com a quantidade de linhas totais. # Para começarmos a filtrar os dados, precisamos primeiramente de retirar os dados faltantes. df.isna().any() # Com estes dados coinfirmamos que no caso da escolaridade, estado civil e # salario_anual estão faltando informações. def stats_dados_faltantes(df: pd.DataFrame) -> None: stats_dados_faltantes = [] for col in df.columns: if df[col].isna().any(): qtd, _ = df[df[col].isna()].shape total, _ = df.shape dict_dados_faltantes = { col: {"quantidade": qtd, "porcentagem": round(100 * qtd / total, 2)} } stats_dados_faltantes.append(dict_dados_faltantes) for stat in stats_dados_faltantes: print(stat) stats_dados_faltantes(df=df) stats_dados_faltantes(df=df[df["default"] == 0]) stats_dados_faltantes(df=df[df["default"] == 1]) # Por meio deste último dois códigos podemos obsservar que apesar da nossa base de dados terem mais pessoas adimplentes que inadimplentes, os dados faltantes são relativamente proporcionais a ambas categorias, isso nos deixa excluir linhas mais tranquilamente. # ### 2.1. Correção de valores # Vamos corrigir o problema dos dados limite de credito e valor das transações se encaixarem como objeto e não como números. # Isso se dá pelo fato do python não identificar vírugulas como um separador de partes inteiras e decimais além de não identificar como separador de casa de milhares para centenas. fn = lambda valor: float(valor.replace(".", "").replace(",", ".")) df["valor_transacoes_12m"] = df["valor_transacoes_12m"].apply(fn) df["limite_credito"] = df["limite_credito"].apply(fn) # Para termos certeza se a função alcançou todos os dados e fez a conversão corretamente vamos ver os tipos de dados presente de novo. df.dtypes # ### 2.2. Limpeza de Dados df = df.dropna() # Neste código acima nós retiramos todos os dados vazios. df.shape qtd_total_novo, _ = df.shape qtd_adimplentes_novo, _ = df[df["default"] == 0].shape qtd_inadimplentes_novo, _ = df[df["default"] == 1].shape print( f"A proporcão adimplentes ativos é de {round(100 * qtd_adimplentes / qtd_total, 2)}%" ) print( f"A nova proporcão de clientes adimplentes é de {round(100 * qtd_adimplentes_novo / qtd_total_novo, 2)}%" ) print("") print( f"A proporcão clientes inadimplentes é de {round(100 * qtd_inadimplentes / qtd_total, 2)}%" ) print( f"A nova proporcão de clientes inadimplentes é de {round(100 * qtd_inadimplentes_novo / qtd_total_novo, 2)}%" ) # Podemos notar com esta informação que apesar das linhas excluídas a proporção se manteve. # ## 3\. Representação dos Dados # Agora, para uma melhor interpretação, vamos represntar todos esses dados em forma de gráficos. # Vamos observar primeiramente a relação entre o nível de escolaridade total e comparado em relação aos clientes adimplentes e inadimplentes. sns.set_style("whitegrid") df_adimplente = df[df["default"] == 0] df_inadimplente = df[df["default"] == 1] coluna = "escolaridade" titulos = [ "Escolaridade dos Clientes", "Escolaridade dos Clientes Adimplentes", "Escolaridade dos Clientes Inadimplentes", ] eixo = 0 max_y = 0 max = df.select_dtypes("object").describe()[coluna]["freq"] * 1.1 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: df_to_plot = dataframe[coluna].value_counts().to_frame() df_to_plot.rename(columns={coluna: "frequencia_absoluta"}, inplace=True) df_to_plot[coluna] = df_to_plot.index df_to_plot.sort_values(by=[coluna], inplace=True) df_to_plot.sort_values(by=[coluna]) f = sns.barplot( x=df_to_plot[coluna], y=df_to_plot["frequencia_absoluta"], ax=eixos[eixo] ) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") f.set_xticklabels(labels=f.get_xticklabels(), rotation=90) _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora um gráfico em relaçao aos salários dos clientes. coluna = "salario_anual" titulos = [ "Salário Anual dos Clientes", "Salário Anual dos Clientes Adimplentes", "Salário Anual dos Clientes Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: df_to_plot = dataframe[coluna].value_counts().to_frame() df_to_plot.rename(columns={coluna: "frequencia_absoluta"}, inplace=True) df_to_plot[coluna] = df_to_plot.index df_to_plot.reset_index(inplace=True, drop=True) df_to_plot.sort_values(by=[coluna], inplace=True) f = sns.barplot( x=df_to_plot[coluna], y=df_to_plot["frequencia_absoluta"], ax=eixos[eixo] ) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") f.set_xticklabels(labels=f.get_xticklabels(), rotation=90) _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora vamos visualizar um gráfico do número de transações em relação ao cliente ser adimplente ou inadimplente. coluna = "qtd_transacoes_12m" titulos = [ "Qtd. de Transações no Último Ano", "Qtd. de Transações no Último Ano de Adimplentes", "Qtd. de Transações no Último Ano de Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: f = sns.histplot(x=coluna, data=dataframe, stat="count", ax=eixos[eixo]) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # Agora vamos visualizar um gráfico em relação ao valor das transações em relação ao cliente adimplente e inadimplente. coluna = "valor_transacoes_12m" titulos = [ "Valor das Transações no Último Ano", "Valor das Transações no Último Ano de Adimplentes", "Valor das Transações no Último Ano de Inadimplentes", ] eixo = 0 max_y = 0 figura, eixos = plt.subplots(1, 3, figsize=(20, 5), sharex=True) for dataframe in [df, df_adimplente, df_inadimplente]: f = sns.histplot(x=coluna, data=dataframe, stat="count", ax=eixos[eixo]) f.set(title=titulos[eixo], xlabel=coluna.capitalize(), ylabel="Frequência Absoluta") _, max_y_f = f.get_ylim() max_y = max_y_f if max_y_f > max_y else max_y f.set(ylim=(0, max_y)) eixo += 1 figura.show() # E o último gráfico que se refere a quantidade de transações em relação ao vlaor das transações. f = sns.relplot( x="valor_transacoes_12m", y="qtd_transacoes_12m", data=df, hue="default" ) _ = f.set( title="Relação entre Valor e Quantidade de Transações no Último Ano", xlabel="Valor das Transações no Último Ano", ylabel="Quantidade das Transações no Último Ano", )
false
0
3,585
0
3,585
3,585
129926128
import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn import preprocessing import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.svm import SVC from sklearn.metrics import jaccard_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, accuracy_score import sklearn.metrics as metrics df = pd.read_csv( "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillUp/labs/ML-FinalAssignment/Weather_Data.csv" ) df.head() df.info() df_sydney_processed = pd.get_dummies( data=df, columns=["RainToday", "WindGustDir", "WindDir9am", "WindDir3pm"] ) df_sydney_processed.replace(["No", "Yes"], [0, 1], inplace=True) df_sydney_processed.drop("Date", axis=1, inplace=True) df_sydney_processed = df_sydney_processed.astype(float) # #1.Splitting the dataset into training and testing data for regression features = df_sydney_processed.drop(columns="RainTomorrow", axis=1) Y = df_sydney_processed["RainTomorrow"] x_train, x_test, y_train, y_test = train_test_split( features, Y, test_size=0.2, random_state=10 ) # #1.Linear Regression # 2.Building and training a model using Linear Regression and calculating evaluation metrics LinearReg = LinearRegression() LinearReg.fit(x_train, y_train) LinearReg.score(x_test, y_test) predictions = LinearReg.predict(x_test) LinearRegression_MAE = metrics.mean_absolute_error(y_test, predictions) LinearRegression_MSE = metrics.mean_squared_error(y_test, predictions) LinearRegression_R2 = metrics.r2_score(y_test, predictions) print( f"LinearRegression_MAE is :{LinearRegression_MAE},LinearRegression_MSE is :{LinearRegression_MSE},LinearRegression_R2 is :{LinearRegression_R2}" ) print( "LinearRegression_MAE is :{},LinearRegression_MSE is :{},LinearRegression_R2 is :{}".format( LinearRegression_MAE, LinearRegression_MSE, LinearRegression_R2 ) ) # #2.KNN k = 4 KNN = KNeighborsClassifier(n_neighbors=k).fit(x_train, y_train) KNN predictions = KNN.predict(x_test) KNN_Accuracy_Score = metrics.accuracy_score(y_test, predictions) KNN_JaccardIndex = metrics.jaccard_score(y_test, predictions) KNN_F1_Score = metrics.f1_score(y_test, predictions) print( "KNN_Accuracy_Score is :{},KNN_JaccardIndex is :{},KNN_F1_Score is :{}".format( KNN_Accuracy_Score, KNN_JaccardIndex, KNN_F1_Score ) ) # #3.Decison Tree Tree = DecisionTreeClassifier(criterion="entropy", max_depth=4) Tree Tree.fit(x_train, y_train) predictions = Tree.predict(x_test) Tree_Accuracy_Score = metrics.accuracy_score(y_test, predictions) Tree_JaccardIndex = metrics.jaccard_score(y_test, predictions) Tree_F1_Score = metrics.f1_score(y_test, predictions) print( "Tree_Accuracy_Score is :{},Tree_JaccardIndex is :{},Tree_F1_Score is :{}".format( Tree_Accuracy_Score, Tree_JaccardIndex, Tree_F1_Score ) ) # #4.Logistic Regression x_train, x_test, y_train, y_test = train_test_split( features, Y, test_size=0.2, random_state=1 ) LR = LogisticRegression(solver="liblinear") LR.fit(x_train, y_train) predictions = LR.predict(x_test) LR_Accuracy_Score = metrics.accuracy_score(y_test, predictions) LR_JaccardIndex = metrics.jaccard_score(y_test, predictions) LR_F1_Score = metrics.f1_score(y_test, predictions) LR_Log_Loss = metrics.log_loss(y_test, predictions) print( "LR_Accuracy_Score is :{},LR_JaccardIndex is :{},LR_F1_Score is :{},LR_Log_Loss is :{}".format( LR_Accuracy_Score, LR_JaccardIndex, LR_F1_Score, LR_Log_Loss ) ) # #5.SVM SVM = SVC(kernel="linear", random_state=0) SVM.fit(x_train, y_train) predictions = SVM.predict(x_test) SVM_Accuracy_Score = metrics.accuracy_score(y_test, predictions) SVM_JaccardIndex = metrics.jaccard_score(y_test, predictions) SVM_F1_Score = metrics.f1_score(y_test, predictions) print( "SVM_Accuracy_Score is :{},SVM_JaccardIndex is :{},SVM_F1_Score is :{}".format( SVM_Accuracy_Score, SVM_JaccardIndex, SVM_F1_Score ) ) cm = confusion_matrix(y_test, predictions) print(cm) from tabulate import tabulate d = { "KNN": [KNN_Accuracy_Score, KNN_JaccardIndex, KNN_F1_Score, "-"], "Tree": [Tree_Accuracy_Score, Tree_JaccardIndex, Tree_F1_Score, "-"], "LR": [LR_Accuracy_Score, LR_JaccardIndex, LR_F1_Score, LR_Log_Loss], "SVM": [SVM_Accuracy_Score, SVM_JaccardIndex, SVM_F1_Score, "-"], } Report = pd.DataFrame( data=d, index=["Accuracy", "Jaccard Index", "F1-Score", "Log Loss"] ).T print(tabulate(Report, headers="keys", tablefmt="psql"))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/926/129926128.ipynb
null
null
[{"Id": 129926128, "ScriptId": 38648061, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13993579, "CreationDate": "05/17/2023 13:24:03", "VersionNumber": 1.0, "Title": "Sydney_Weather_ML", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 129.0, "LinesInsertedFromPrevious": 129.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 2}]
null
null
null
null
import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn import preprocessing import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.svm import SVC from sklearn.metrics import jaccard_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, accuracy_score import sklearn.metrics as metrics df = pd.read_csv( "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillUp/labs/ML-FinalAssignment/Weather_Data.csv" ) df.head() df.info() df_sydney_processed = pd.get_dummies( data=df, columns=["RainToday", "WindGustDir", "WindDir9am", "WindDir3pm"] ) df_sydney_processed.replace(["No", "Yes"], [0, 1], inplace=True) df_sydney_processed.drop("Date", axis=1, inplace=True) df_sydney_processed = df_sydney_processed.astype(float) # #1.Splitting the dataset into training and testing data for regression features = df_sydney_processed.drop(columns="RainTomorrow", axis=1) Y = df_sydney_processed["RainTomorrow"] x_train, x_test, y_train, y_test = train_test_split( features, Y, test_size=0.2, random_state=10 ) # #1.Linear Regression # 2.Building and training a model using Linear Regression and calculating evaluation metrics LinearReg = LinearRegression() LinearReg.fit(x_train, y_train) LinearReg.score(x_test, y_test) predictions = LinearReg.predict(x_test) LinearRegression_MAE = metrics.mean_absolute_error(y_test, predictions) LinearRegression_MSE = metrics.mean_squared_error(y_test, predictions) LinearRegression_R2 = metrics.r2_score(y_test, predictions) print( f"LinearRegression_MAE is :{LinearRegression_MAE},LinearRegression_MSE is :{LinearRegression_MSE},LinearRegression_R2 is :{LinearRegression_R2}" ) print( "LinearRegression_MAE is :{},LinearRegression_MSE is :{},LinearRegression_R2 is :{}".format( LinearRegression_MAE, LinearRegression_MSE, LinearRegression_R2 ) ) # #2.KNN k = 4 KNN = KNeighborsClassifier(n_neighbors=k).fit(x_train, y_train) KNN predictions = KNN.predict(x_test) KNN_Accuracy_Score = metrics.accuracy_score(y_test, predictions) KNN_JaccardIndex = metrics.jaccard_score(y_test, predictions) KNN_F1_Score = metrics.f1_score(y_test, predictions) print( "KNN_Accuracy_Score is :{},KNN_JaccardIndex is :{},KNN_F1_Score is :{}".format( KNN_Accuracy_Score, KNN_JaccardIndex, KNN_F1_Score ) ) # #3.Decison Tree Tree = DecisionTreeClassifier(criterion="entropy", max_depth=4) Tree Tree.fit(x_train, y_train) predictions = Tree.predict(x_test) Tree_Accuracy_Score = metrics.accuracy_score(y_test, predictions) Tree_JaccardIndex = metrics.jaccard_score(y_test, predictions) Tree_F1_Score = metrics.f1_score(y_test, predictions) print( "Tree_Accuracy_Score is :{},Tree_JaccardIndex is :{},Tree_F1_Score is :{}".format( Tree_Accuracy_Score, Tree_JaccardIndex, Tree_F1_Score ) ) # #4.Logistic Regression x_train, x_test, y_train, y_test = train_test_split( features, Y, test_size=0.2, random_state=1 ) LR = LogisticRegression(solver="liblinear") LR.fit(x_train, y_train) predictions = LR.predict(x_test) LR_Accuracy_Score = metrics.accuracy_score(y_test, predictions) LR_JaccardIndex = metrics.jaccard_score(y_test, predictions) LR_F1_Score = metrics.f1_score(y_test, predictions) LR_Log_Loss = metrics.log_loss(y_test, predictions) print( "LR_Accuracy_Score is :{},LR_JaccardIndex is :{},LR_F1_Score is :{},LR_Log_Loss is :{}".format( LR_Accuracy_Score, LR_JaccardIndex, LR_F1_Score, LR_Log_Loss ) ) # #5.SVM SVM = SVC(kernel="linear", random_state=0) SVM.fit(x_train, y_train) predictions = SVM.predict(x_test) SVM_Accuracy_Score = metrics.accuracy_score(y_test, predictions) SVM_JaccardIndex = metrics.jaccard_score(y_test, predictions) SVM_F1_Score = metrics.f1_score(y_test, predictions) print( "SVM_Accuracy_Score is :{},SVM_JaccardIndex is :{},SVM_F1_Score is :{}".format( SVM_Accuracy_Score, SVM_JaccardIndex, SVM_F1_Score ) ) cm = confusion_matrix(y_test, predictions) print(cm) from tabulate import tabulate d = { "KNN": [KNN_Accuracy_Score, KNN_JaccardIndex, KNN_F1_Score, "-"], "Tree": [Tree_Accuracy_Score, Tree_JaccardIndex, Tree_F1_Score, "-"], "LR": [LR_Accuracy_Score, LR_JaccardIndex, LR_F1_Score, LR_Log_Loss], "SVM": [SVM_Accuracy_Score, SVM_JaccardIndex, SVM_F1_Score, "-"], } Report = pd.DataFrame( data=d, index=["Accuracy", "Jaccard Index", "F1-Score", "Log Loss"] ).T print(tabulate(Report, headers="keys", tablefmt="psql"))
false
0
1,655
2
1,655
1,655
129926623
<jupyter_start><jupyter_text>Tutorial2_data Kaggle dataset identifier: tutorial2-data <jupyter_script># Part1. Extract the city part ourside the AOI and export it as 'outside.shp' import geopandas as gpd import matplotlib.pyplot as plt # 导入数据 cities = gpd.read_file("../input/tutorial2-data/belgian_cities.shp") AOI = gpd.read_file("../input/tutorial2-data/area_of_interest_.shp") # aoi之外的城市 cities_out_AOI = gpd.overlay(cities, AOI, how="difference") cities_out_AOI.plot(figsize=(10, 10), cmap="winter", column="NAME_4") # 保存文件 cities_out_AOI.to_file("./outside.shp.shp") # Part2. Extract the centroids of each district and make a buffer of 30 meters for them # 提取每个行政区划的中心点 centroids = cities.centroid centroids.plot() # 创建缓冲区 buffered_centroids = centroids.buffer(3000) # 将缓冲区存储到新的列中 cities["buffered_centroids"] = buffered_centroids # buffer 为啥不显示啊,可能是投影的问题,buffer范围调成3000好一点 ax = cities.plot(color="white", edgecolor="black") buffered_centroids.plot(ax=ax, color="red", alpha=0.5) # Part3. export the buffers as 'centroid_buffer.shp' buffered_centroids.to_file("./buffered_centroids.shp") # Part4. add your mapbox tile in the folium map ** (optional)** import folium # 创建地图并指定地图中心和缩放级别 m = folium.Map(location=[22.352, 113.584], zoom_start=10) # 添加Mapbox tile图层 folium.TileLayer( tiles="https://api.mapbox.com/styles/v1/lewdsama/clhhmmtyq01dg01qu8mrihaim.html?title=copy&access_token=pk.eyJ1IjoibGV3ZHNhbWEiLCJhIjoiY2xoZzg2OXVnMDF5NzNocXlzMXdvdnFvaCJ9.XNSK15Gtm0bgWy7BeDyhfg&zoomwheel=true&fresh=true#14.96/22.35194/113.58342", name="My Custom Tile", attr="My attribution", ).add_to(m) # 将图例添加到地图中 folium.LayerControl().add_to(m) # 显示地图 m
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/926/129926623.ipynb
tutorial2-data
kyrenchen
[{"Id": 129926623, "ScriptId": 38642231, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 15147144, "CreationDate": "05/17/2023 13:27:45", "VersionNumber": 1.0, "Title": "YinZicheng_homework 2", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 64.0, "LinesInsertedFromPrevious": 64.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186349928, "KernelVersionId": 129926623, "SourceDatasetVersionId": 3529467}]
[{"Id": 3529467, "DatasetId": 2123013, "DatasourceVersionId": 3582279, "CreatorUserId": 3948686, "LicenseName": "Unknown", "CreationDate": "04/26/2022 04:38:00", "VersionNumber": 2.0, "Title": "Tutorial2_data", "Slug": "tutorial2-data", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Data Update 2022/04/26", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2123013, "CreatorUserId": 3948686, "OwnerUserId": 3948686.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3529467.0, "CurrentDatasourceVersionId": 3582279.0, "ForumId": 2148571, "Type": 2, "CreationDate": "04/26/2022 03:37:14", "LastActivityDate": "04/26/2022", "TotalViews": 184, "TotalDownloads": 35, "TotalVotes": 0, "TotalKernels": 19}]
[{"Id": 3948686, "UserName": "kyrenchen", "DisplayName": "Kyren Chen", "RegisterDate": "10/30/2019", "PerformanceTier": 0}]
# Part1. Extract the city part ourside the AOI and export it as 'outside.shp' import geopandas as gpd import matplotlib.pyplot as plt # 导入数据 cities = gpd.read_file("../input/tutorial2-data/belgian_cities.shp") AOI = gpd.read_file("../input/tutorial2-data/area_of_interest_.shp") # aoi之外的城市 cities_out_AOI = gpd.overlay(cities, AOI, how="difference") cities_out_AOI.plot(figsize=(10, 10), cmap="winter", column="NAME_4") # 保存文件 cities_out_AOI.to_file("./outside.shp.shp") # Part2. Extract the centroids of each district and make a buffer of 30 meters for them # 提取每个行政区划的中心点 centroids = cities.centroid centroids.plot() # 创建缓冲区 buffered_centroids = centroids.buffer(3000) # 将缓冲区存储到新的列中 cities["buffered_centroids"] = buffered_centroids # buffer 为啥不显示啊,可能是投影的问题,buffer范围调成3000好一点 ax = cities.plot(color="white", edgecolor="black") buffered_centroids.plot(ax=ax, color="red", alpha=0.5) # Part3. export the buffers as 'centroid_buffer.shp' buffered_centroids.to_file("./buffered_centroids.shp") # Part4. add your mapbox tile in the folium map ** (optional)** import folium # 创建地图并指定地图中心和缩放级别 m = folium.Map(location=[22.352, 113.584], zoom_start=10) # 添加Mapbox tile图层 folium.TileLayer( tiles="https://api.mapbox.com/styles/v1/lewdsama/clhhmmtyq01dg01qu8mrihaim.html?title=copy&access_token=pk.eyJ1IjoibGV3ZHNhbWEiLCJhIjoiY2xoZzg2OXVnMDF5NzNocXlzMXdvdnFvaCJ9.XNSK15Gtm0bgWy7BeDyhfg&zoomwheel=true&fresh=true#14.96/22.35194/113.58342", name="My Custom Tile", attr="My attribution", ).add_to(m) # 将图例添加到地图中 folium.LayerControl().add_to(m) # 显示地图 m
false
0
652
0
673
652
129406453
<jupyter_start><jupyter_text>Saudi Arabia Real Estate (AQAR) ### Context The goal of this statistical analysis is to help us understand the relationship between house features and how these variables are used to predict the house price. The chosen cities are Riyadh, Jeddah, Dammam, and Al-Khobar - Riyadh is the capital and largest city in Saudi Arabia, with the largest municipal population in the Middle East. Riyadh has a diverse range of people and cultures, it is still growing day by day. - Jeddah which located in the middle of the eastern coast of the red sea and is considered the economic and tourism capital of the country. - Dammam it lies on the Persian Gulf northwest of Bahrain Island and forms a larger metropolitan and industrial complex with Khobar, Qatif, and Dhahran. - Al-Khobar city is one of the three main cities in the Eastern Province, the others being Dammam and Dhahran. It is developing into an important industrial city, with factories turning out industrial gas, dairy products, carbonated water, tissue paper and ready-made garments. This dataset will only focused on the rental houses. ### Content -city: city where house locate in -district: district where house locate in -front: What is the house front is north, west .. etc -size: size in m^2 -property_age: property age for the house -bedrooms: number of bedrooms -bathrooms: number of bathrooms -livingrooms: number of livingrooms -kitchen: show whether the house have a kitchen or not -garage: show whether the house have a garage or not -driver_room: show whether the house have a driver_room or not -maid_room: show whether the house have a maid_room or not -furnished: show whether the house is furnished or not -ac: show whether the house have a ac or not -roof: show whether the house have a space for roof on top or not -pool: show whether the house have a pool or not -frontyard: show whether the house have a frontyard or not -basement: show whether the house have a basement or not -duplex: show whether the house is a duplex or not -stairs: show whether the house have a stairs or not -elevator: show whether the house have an elevator or not -fireplace: show whether the house have a fireplace or not -price: show the price of the house -details: shows any additional details from the house owner about the house ### Aims This dataset aims to help analyzing the real estate of those cities to investigate the relationships of prices with other features. The dataset is collected and scrapped from [Aqar website](https://sa.aqar.fm). Kaggle dataset identifier: saudi-arabia-real-estate-aqar <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv("/kaggle/input/saudi-arabia-real-estate-aqar/SA_Aqar.csv") df.head(2) df.shape print(df.isnull().sum()) df.drop("details", axis=1, inplace=True) df.duplicated().sum() df.drop_duplicates(inplace=True) import matplotlib.pyplot as plt import seaborn as sns sns.histplot(df.price) plt.show() sns.boxplot(data=df, y=df.price) plt.show() target = df.price.values import numpy as np logged_target = np.log(target) sns.boxplot(logged_target) plt.show() # df[['city']].apply(lambda x: x.astype('category')) # df=df.drop(["city", "district", "front","front"],axis=1) df.dtypes # sns.pairplot(data=df) # plt.show() num_features = df.select_dtypes("number").reset_index(drop=True) text_features = df.select_dtypes("object").reset_index(drop=True) from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(sparse_output=False) ohe.fit(text_features) ohe_data = ohe.transform(text_features) ohe_data = pd.DataFrame(ohe_data, columns=ohe.get_feature_names_out()) ohe_data.head() full_data = pd.concat([ohe_data, num_features], axis=1) full_data.head() features = full_data.drop("price", axis=1) target = full_data.price logged_taget = np.log(target) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( features, logged_taget, test_size=0.2, random_state=42 ) from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score mae = mean_absolute_error(y_test, model.predict(X_test)) print("mae= " + str(mae)) msr = mean_squared_error(y_test, model.predict(X_test)) print("msr= " + str(msr)) r2_score(y_test, model.predict(X_test)) r2score = r2_score(y_test, model.predict(X_test)) print("r2score= " + str(r2score)) comp = np.column_stack((y_test, model.predict(X_test))) comp[:4, :] import seaborn as sns sns.regplot(x=comp[:, 0], y=comp[:, 1]) from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import * dt = DecisionTreeRegressor() dt.fit(X_train, y_train) pre = dt.predict(X_test) mae = mean_absolute_error(y_test, pre) mse = mean_squared_error(y_test, pre) r2s = r2_score(y_test, pre) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) comp = np.column_stack((y_test, model.predict(X_test))) comp[:3, :] import seaborn as sns sns.regplot(x=comp[:, 0], y=comp[:, 1]) # 1-Scaling # 2-svd # model # ## Pipeline from sklearn.preprocessing import RobustScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.decomposition import TruncatedSVD from sklearn.model_selection import GridSearchCV reg = make_pipeline( RobustScaler(), TruncatedSVD(n_components=2), DecisionTreeRegressor(max_depth=5, random_state=42), ) reg.fit(X_train, y_train) predictions = reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Decision Tree Tuning # #### 1- max depth # #### 2- min_samples_leaf # #### 3- min_samples_split reg = Pipeline( steps=[ ("scaler", RobustScaler()), ("tsvd", TruncatedSVD()), ("model", DecisionTreeRegressor(random_state=42)), ] ) reg.fit(X_train, y_train) predictions = reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) params = { "model__max_depth": [2, 3, 4, 5, 8, 10, 15, 20], "model__min_samples_split": [5, 10, 15, 20], "model__min_samples_leaf": [2, 3, 4, 5, 6, 7, 8, 9, 10], } dt_grid_model = GridSearchCV(estimator=reg, param_grid=params, n_jobs=-1) dt_grid_model.fit(X_train, y_train) dt_grid_model.best_params_ predictions = dt_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Save Model import pickle with open("pipe_dt_model.pkl", "wb") as file: f = pickle.dump(dt_grid_model.best_estimator_, file) model = pickle.load(open("/kaggle/working/pipe_dt_model.pkl", "rb")) model.predict(X_test) # ## Random Forest regression # #### Vanilla Model # from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=100, random_state=42) rf.fit(X_train, y_train) X_train.shape predictions = rf.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) sns.set() sns.regplot(x=y_test, y=predictions, line_kws={"color": "red"}) plt.show() # ## Random Forest with pipeline from sklearn.preprocessing import StandardScaler rf_reg = Pipeline( steps=[ ("scaler", StandardScaler()), ("tsvd", TruncatedSVD()), ( "model", RandomForestRegressor(n_estimators=100, max_features=None, random_state=42), ), ] ) rf_reg.fit(X_train, y_train) predictions = rf_reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) sns.regplot(x=y_test, y=predictions, line_kws={"color": "red"}) plt.show() from sklearn.model_selection import RandomizedSearchCV params = { "tsvd__n_components": [2, 3, 4, 5, 10], "model__n_estimators": [100, 120, 150, 200], "model__max_depth": [2, 3, 4, 5, 8, 10, 15, 20], "model__min_samples_split": [5, 10, 15, 20], "model__min_samples_leaf": [2, 3, 4, 5, 6, 7, 8, 9, 10], } rf_grid_model = RandomizedSearchCV(rf_reg, params, n_iter=30, n_jobs=-1) rf_grid_model.fit(X_train, y_train) rf_grid_model.best_params_ predictions = rf_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) from sklearn.ensemble import BaggingRegressor bag_reg = BaggingRegressor( estimator=DecisionTreeRegressor(), n_estimators=200, max_samples=0.6, max_features=0.8, bootstrap_features=False, n_jobs=-1, ) bag_reg.fit(X_train, y_train) predictions = bag_reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Ada boost from sklearn.ensemble import AdaBoostRegressor ada = AdaBoostRegressor(n_estimators=50, learning_rate=0.01) ada.fit(X_train, y_train) predictions = ada.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) ada.estimator_errors_.shape # ## Tuning Ada boost params = { "learning_rate": np.linspace(0.001, 1, 15), "n_estimators": [50, 100, 150, 200, 250], } ada_grid_model = GridSearchCV(ada, param_grid=params, n_jobs=-1) ada_grid_model.fit(X_train, y_train) ada_grid_model.best_params_ predictions = ada_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Gradient Boosting Regression from sklearn.ensemble import GradientBoostingRegressor gbr = GradientBoostingRegressor(random_state=42) gbr.fit(X_train, y_train) predictions = gbr.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Tune GBR params = dict( max_depth=[1, 2, 3, 4], n_estimators=[100, 200, 300], learning_rate=np.linspace(0.01, 1, 15), min_samples_split=[5, 7, 10, 15, 20, 25], subsample=[0.3, 0.5, 0.7, 1], min_samples_leaf=[2, 3, 4, 7, 10, 15], ) gbr_grid_model = GridSearchCV(gbr, param_grid=params, n_jobs=-1) gbr_grid_model.fit(X_train, y_train)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/406/129406453.ipynb
saudi-arabia-real-estate-aqar
lama122
[{"Id": 129406453, "ScriptId": 38233181, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 7938977, "CreationDate": "05/13/2023 14:12:44", "VersionNumber": 3.0, "Title": "Riyadh-house-price", "EvaluationDate": "05/13/2023", "IsChange": true, "TotalLines": 335.0, "LinesInsertedFromPrevious": 124.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 211.0, "LinesInsertedFromFork": 237.0, "LinesDeletedFromFork": 93.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 98.0, "TotalVotes": 0}]
[{"Id": 185425899, "KernelVersionId": 129406453, "SourceDatasetVersionId": 1888100}]
[{"Id": 1888100, "DatasetId": 1124657, "DatasourceVersionId": 1926298, "CreatorUserId": 3851174, "LicenseName": "Data files \u00a9 Original Authors", "CreationDate": "01/28/2021 17:41:44", "VersionNumber": 4.0, "Title": "Saudi Arabia Real Estate (AQAR)", "Slug": "saudi-arabia-real-estate-aqar", "Subtitle": "Rental house dataset for Riyadh, Jeddah, Dammam, and Alkhobar", "Description": "### Context\n\nThe goal of this statistical analysis is to help us understand the relationship between house features and how these variables are used to predict the house price.\n\nThe chosen cities are Riyadh, Jeddah, Dammam, and Al-Khobar\n\n- Riyadh is the capital and largest city in Saudi Arabia, with the largest municipal population in the Middle East. Riyadh has a diverse range of people and cultures, it is still growing day by day. \n\n- Jeddah which located in the middle of the eastern coast of the red sea and is considered the economic and tourism capital of the country.\n\n- Dammam it lies on the Persian Gulf northwest of Bahrain Island and forms a larger metropolitan and industrial complex with Khobar, Qatif, and Dhahran.\n\n- Al-Khobar city is one of the three main cities in the Eastern Province, the others being Dammam and Dhahran. It is developing into an important industrial city, with factories turning out industrial gas, dairy products, carbonated water, tissue paper and ready-made garments. \n\n\nThis dataset will only focused on the rental houses.\n\n### Content\n-city: city where house locate in\n-district: district where house locate in\n-front: What is the house front is north, west .. etc\n-size: size in m^2\n-property_age: property age for the house\n-bedrooms: number of bedrooms\n-bathrooms: number of bathrooms\n-livingrooms: number of livingrooms\n-kitchen: show whether the house have a kitchen or not\n-garage: show whether the house have a garage or not\n-driver_room: show whether the house have a driver_room or not\n-maid_room: show whether the house have a maid_room or not\n-furnished: show whether the house is furnished or not\n-ac: show whether the house have a ac or not\n-roof: show whether the house have a space for roof on top or not\n-pool: show whether the house have a pool or not\n-frontyard: show whether the house have a frontyard or not\n-basement: show whether the house have a basement or not\n-duplex: show whether the house is a duplex or not\n-stairs: show whether the house have a stairs or not\n-elevator: show whether the house have an elevator or not\n-fireplace: show whether the house have a fireplace or not\n-price: show the price of the house\n-details: shows any additional details from the house owner about the house\n\n\n### Aims\n\nThis dataset aims to help analyzing the real estate of those cities to investigate the relationships of prices with other features. The dataset is collected and scrapped from [Aqar website](https://sa.aqar.fm).", "VersionNotes": "SA real estate (AQAR)", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1124657, "CreatorUserId": 3851174, "OwnerUserId": 3851174.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1888100.0, "CurrentDatasourceVersionId": 1926298.0, "ForumId": 1142042, "Type": 2, "CreationDate": "01/28/2021 16:29:38", "LastActivityDate": "01/28/2021", "TotalViews": 10591, "TotalDownloads": 1105, "TotalVotes": 31, "TotalKernels": 6}]
[{"Id": 3851174, "UserName": "lama122", "DisplayName": "Lama Alharbi", "RegisterDate": "10/13/2019", "PerformanceTier": 0}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv("/kaggle/input/saudi-arabia-real-estate-aqar/SA_Aqar.csv") df.head(2) df.shape print(df.isnull().sum()) df.drop("details", axis=1, inplace=True) df.duplicated().sum() df.drop_duplicates(inplace=True) import matplotlib.pyplot as plt import seaborn as sns sns.histplot(df.price) plt.show() sns.boxplot(data=df, y=df.price) plt.show() target = df.price.values import numpy as np logged_target = np.log(target) sns.boxplot(logged_target) plt.show() # df[['city']].apply(lambda x: x.astype('category')) # df=df.drop(["city", "district", "front","front"],axis=1) df.dtypes # sns.pairplot(data=df) # plt.show() num_features = df.select_dtypes("number").reset_index(drop=True) text_features = df.select_dtypes("object").reset_index(drop=True) from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(sparse_output=False) ohe.fit(text_features) ohe_data = ohe.transform(text_features) ohe_data = pd.DataFrame(ohe_data, columns=ohe.get_feature_names_out()) ohe_data.head() full_data = pd.concat([ohe_data, num_features], axis=1) full_data.head() features = full_data.drop("price", axis=1) target = full_data.price logged_taget = np.log(target) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( features, logged_taget, test_size=0.2, random_state=42 ) from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score mae = mean_absolute_error(y_test, model.predict(X_test)) print("mae= " + str(mae)) msr = mean_squared_error(y_test, model.predict(X_test)) print("msr= " + str(msr)) r2_score(y_test, model.predict(X_test)) r2score = r2_score(y_test, model.predict(X_test)) print("r2score= " + str(r2score)) comp = np.column_stack((y_test, model.predict(X_test))) comp[:4, :] import seaborn as sns sns.regplot(x=comp[:, 0], y=comp[:, 1]) from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import * dt = DecisionTreeRegressor() dt.fit(X_train, y_train) pre = dt.predict(X_test) mae = mean_absolute_error(y_test, pre) mse = mean_squared_error(y_test, pre) r2s = r2_score(y_test, pre) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) comp = np.column_stack((y_test, model.predict(X_test))) comp[:3, :] import seaborn as sns sns.regplot(x=comp[:, 0], y=comp[:, 1]) # 1-Scaling # 2-svd # model # ## Pipeline from sklearn.preprocessing import RobustScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.decomposition import TruncatedSVD from sklearn.model_selection import GridSearchCV reg = make_pipeline( RobustScaler(), TruncatedSVD(n_components=2), DecisionTreeRegressor(max_depth=5, random_state=42), ) reg.fit(X_train, y_train) predictions = reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Decision Tree Tuning # #### 1- max depth # #### 2- min_samples_leaf # #### 3- min_samples_split reg = Pipeline( steps=[ ("scaler", RobustScaler()), ("tsvd", TruncatedSVD()), ("model", DecisionTreeRegressor(random_state=42)), ] ) reg.fit(X_train, y_train) predictions = reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) params = { "model__max_depth": [2, 3, 4, 5, 8, 10, 15, 20], "model__min_samples_split": [5, 10, 15, 20], "model__min_samples_leaf": [2, 3, 4, 5, 6, 7, 8, 9, 10], } dt_grid_model = GridSearchCV(estimator=reg, param_grid=params, n_jobs=-1) dt_grid_model.fit(X_train, y_train) dt_grid_model.best_params_ predictions = dt_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Save Model import pickle with open("pipe_dt_model.pkl", "wb") as file: f = pickle.dump(dt_grid_model.best_estimator_, file) model = pickle.load(open("/kaggle/working/pipe_dt_model.pkl", "rb")) model.predict(X_test) # ## Random Forest regression # #### Vanilla Model # from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=100, random_state=42) rf.fit(X_train, y_train) X_train.shape predictions = rf.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) sns.set() sns.regplot(x=y_test, y=predictions, line_kws={"color": "red"}) plt.show() # ## Random Forest with pipeline from sklearn.preprocessing import StandardScaler rf_reg = Pipeline( steps=[ ("scaler", StandardScaler()), ("tsvd", TruncatedSVD()), ( "model", RandomForestRegressor(n_estimators=100, max_features=None, random_state=42), ), ] ) rf_reg.fit(X_train, y_train) predictions = rf_reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) sns.regplot(x=y_test, y=predictions, line_kws={"color": "red"}) plt.show() from sklearn.model_selection import RandomizedSearchCV params = { "tsvd__n_components": [2, 3, 4, 5, 10], "model__n_estimators": [100, 120, 150, 200], "model__max_depth": [2, 3, 4, 5, 8, 10, 15, 20], "model__min_samples_split": [5, 10, 15, 20], "model__min_samples_leaf": [2, 3, 4, 5, 6, 7, 8, 9, 10], } rf_grid_model = RandomizedSearchCV(rf_reg, params, n_iter=30, n_jobs=-1) rf_grid_model.fit(X_train, y_train) rf_grid_model.best_params_ predictions = rf_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) from sklearn.ensemble import BaggingRegressor bag_reg = BaggingRegressor( estimator=DecisionTreeRegressor(), n_estimators=200, max_samples=0.6, max_features=0.8, bootstrap_features=False, n_jobs=-1, ) bag_reg.fit(X_train, y_train) predictions = bag_reg.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Ada boost from sklearn.ensemble import AdaBoostRegressor ada = AdaBoostRegressor(n_estimators=50, learning_rate=0.01) ada.fit(X_train, y_train) predictions = ada.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) ada.estimator_errors_.shape # ## Tuning Ada boost params = { "learning_rate": np.linspace(0.001, 1, 15), "n_estimators": [50, 100, 150, 200, 250], } ada_grid_model = GridSearchCV(ada, param_grid=params, n_jobs=-1) ada_grid_model.fit(X_train, y_train) ada_grid_model.best_params_ predictions = ada_grid_model.best_estimator_.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Gradient Boosting Regression from sklearn.ensemble import GradientBoostingRegressor gbr = GradientBoostingRegressor(random_state=42) gbr.fit(X_train, y_train) predictions = gbr.predict(X_test) mae = mean_absolute_error(y_test, predictions) mse = mean_squared_error(y_test, predictions) r2s = r2_score(y_test, predictions) print("mae= ", mae) print("mse= ", mse) print("r2s= ", r2s) # ## Tune GBR params = dict( max_depth=[1, 2, 3, 4], n_estimators=[100, 200, 300], learning_rate=np.linspace(0.01, 1, 15), min_samples_split=[5, 7, 10, 15, 20, 25], subsample=[0.3, 0.5, 0.7, 1], min_samples_leaf=[2, 3, 4, 7, 10, 15], ) gbr_grid_model = GridSearchCV(gbr, param_grid=params, n_jobs=-1) gbr_grid_model.fit(X_train, y_train)
false
1
3,268
0
3,966
3,268
129592337
# # Setup import tensorflow as tf import numpy as np import IPython.display as display # # `tf.train.Example` # ### Data types for `tf.train.Example` # The following functions can be used to convert a value to a type compatible # with tf.train.Example. def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) print(_bytes_feature(b"test_string")) print(_bytes_feature("test_bytes".encode("utf-8"))) print(_float_feature(np.exp(1))) print(_int64_feature(True)) print(_int64_feature(1)) feature = _float_feature(np.exp(1)) feature.SerializeToString() # ### Creating a `tf.train.Example` message # The number of observations in the dataset. n_observations = int(1e4) # Boolean feature, encoded as False or True. feature0 = np.random.choice([False, True], n_observations) # Integer feature, random from 0 to 4. feature1 = np.random.randint(0, 5, n_observations) # String feature. strings = np.array([b"cat", b"dog", b"chicken", b"horse", b"goat"]) feature2 = strings[feature1] # Float feature, from a standard normal deviation. feature3 = np.random.randn(n_observations) def serialize_example(feature0, feature1, feature2, feature3): """ Creates a tf.train.Example message ready to be written to a file. """ # Create a dictionary mapping the feature name to the tf.train.Example-compatible # data type. feature = { "feature0": _int64_feature(feature0), "feature1": _int64_feature(feature1), "feature2": _bytes_feature(feature2), "feature3": _float_feature(feature3), } # Create a Features message using tf.train.Example. example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() # This is an example observation from the dataset. example_observation = [] serialized_example = serialize_example(False, 4, b"goat", 0.9876) serialized_example example_proto = tf.train.Example.FromString(serialized_example) example_proto # # TFRecords format details # uint64 length # uint32 masked_crc32_of_length # byte data[length] # uint32 masked_crc32_of_data # # masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul # # TFRecord files using tf.data # ### Writing a TFRecord file tf.data.Dataset.from_tensor_slices(feature1) features_dataset = tf.data.Dataset.from_tensor_slices( (feature0, feature1, feature2, feature3) ) features_dataset # Use `take(1)` to only pull one example from the dataset. for f0, f1, f2, f3 in features_dataset.take(1): print(f0) print(f1) print(f2) print(f3) def tf_serialize_example(f0, f1, f2, f3): tf_string = tf.py_function( serialize_example, (f0, f1, f2, f3), # Pass these args to the above function. tf.string, ) # The return type is `tf.string`. return tf.reshape(tf_string, ()) # The result is a scalar tf_serialize_example(f0, f1, f2, f3) serialized_features_dataset = features_dataset.map(tf_serialize_example) serialized_features_dataset def generator(): for features in features_dataset: yield serialize_example(*features) serialized_features_dataset = tf.data.Dataset.from_generator( generator, output_types=tf.string, output_shapes=() ) serialized_features_dataset filename = "test.tfrecord" writer = tf.data.experimental.TFRecordWriter(filename) writer.write(serialized_features_dataset) # ### Reading a TFRecord file filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(10): print(repr(raw_record)) # Create a description of the features. feature_description = { "feature0": tf.io.FixedLenFeature([], tf.int64, default_value=0), "feature1": tf.io.FixedLenFeature([], tf.int64, default_value=0), "feature2": tf.io.FixedLenFeature([], tf.string, default_value=""), "feature3": tf.io.FixedLenFeature([], tf.float32, default_value=0.0), } def _parse_function(example_proto): # Parse the input `tf.train.Example` proto using the dictionary above. return tf.io.parse_single_example(example_proto, feature_description) parsed_dataset = raw_dataset.map(_parse_function) parsed_dataset for parsed_record in parsed_dataset.take(10): print(repr(parsed_record)) # # TFRecord files in Python # ### Writing a TFRecord file # Write the `tf.train.Example` observations to the file. with tf.io.TFRecordWriter(filename) as writer: for i in range(n_observations): example = serialize_example(feature0[i], feature1[i], feature2[i], feature3[i]) writer.write(example) # ### Reading a TFRecord file filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(1): example = tf.train.Example() example.ParseFromString(raw_record.numpy()) print(example) # # Dict[str, # Union[List[float], # List[int], # List[str]]] # result = {} # example.features.feature is the dictionary for key, feature in example.features.feature.items(): # The values are the Feature objects which contain a `kind` which contains: # one of three fields: bytes_list, float_list, int64_list kind = feature.WhichOneof("kind") result[key] = np.array(getattr(feature, kind).value) result # # Walkthrough: Reading and writing image data cat_in_snow = tf.keras.utils.get_file( "320px-Felis_catus-cat_on_snow.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", ) williamsburg_bridge = tf.keras.utils.get_file( "194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg", ) display.display(display.Image(filename=cat_in_snow)) display.display( display.HTML( 'Image cc-by: <a "href=https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">Von.grzanka</a>' ) ) display.display(display.Image(filename=williamsburg_bridge)) display.display( display.HTML( '<a "href=https://commons.wikimedia.org/wiki/File:New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg">From Wikimedia</a>' ) ) # ## Write the TFRecord file image_labels = { cat_in_snow: 0, williamsburg_bridge: 1, } # This is an example, just using the cat image. image_string = open(cat_in_snow, "rb").read() label = image_labels[cat_in_snow] # Create a dictionary with features that may be relevant. def image_example(image_string, label): image_shape = tf.io.decode_jpeg(image_string).shape feature = { "height": _int64_feature(image_shape[0]), "width": _int64_feature(image_shape[1]), "depth": _int64_feature(image_shape[2]), "label": _int64_feature(label), "image_raw": _bytes_feature(image_string), } return tf.train.Example(features=tf.train.Features(feature=feature)) for line in str(image_example(image_string, label)).split("\n")[:15]: print(line) print("...") # Write the raw image files to `images.tfrecords`. # First, process the two images into `tf.train.Example` messages. # Then, write to a `.tfrecords` file. record_file = "images.tfrecords" with tf.io.TFRecordWriter(record_file) as writer: for filename, label in image_labels.items(): image_string = open(filename, "rb").read() tf_example = image_example(image_string, label) writer.write(tf_example.SerializeToString()) # # Read the TFRecord file raw_image_dataset = tf.data.TFRecordDataset("images.tfrecords") # Create a dictionary describing the features. image_feature_description = { "height": tf.io.FixedLenFeature([], tf.int64), "width": tf.io.FixedLenFeature([], tf.int64), "depth": tf.io.FixedLenFeature([], tf.int64), "label": tf.io.FixedLenFeature([], tf.int64), "image_raw": tf.io.FixedLenFeature([], tf.string), } def _parse_image_function(example_proto): # Parse the input tf.train.Example proto using the dictionary above. return tf.io.parse_single_example(example_proto, image_feature_description) parsed_image_dataset = raw_image_dataset.map(_parse_image_function) parsed_image_dataset for image_features in parsed_image_dataset: image_raw = image_features["image_raw"].numpy() display.display(display.Image(data=image_raw))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/592/129592337.ipynb
null
null
[{"Id": 129592337, "ScriptId": 38533518, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13215358, "CreationDate": "05/15/2023 05:20:06", "VersionNumber": 1.0, "Title": "TensorFlow: TFRecord and tf.train.Example", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 280.0, "LinesInsertedFromPrevious": 280.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 4}]
null
null
null
null
# # Setup import tensorflow as tf import numpy as np import IPython.display as display # # `tf.train.Example` # ### Data types for `tf.train.Example` # The following functions can be used to convert a value to a type compatible # with tf.train.Example. def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) print(_bytes_feature(b"test_string")) print(_bytes_feature("test_bytes".encode("utf-8"))) print(_float_feature(np.exp(1))) print(_int64_feature(True)) print(_int64_feature(1)) feature = _float_feature(np.exp(1)) feature.SerializeToString() # ### Creating a `tf.train.Example` message # The number of observations in the dataset. n_observations = int(1e4) # Boolean feature, encoded as False or True. feature0 = np.random.choice([False, True], n_observations) # Integer feature, random from 0 to 4. feature1 = np.random.randint(0, 5, n_observations) # String feature. strings = np.array([b"cat", b"dog", b"chicken", b"horse", b"goat"]) feature2 = strings[feature1] # Float feature, from a standard normal deviation. feature3 = np.random.randn(n_observations) def serialize_example(feature0, feature1, feature2, feature3): """ Creates a tf.train.Example message ready to be written to a file. """ # Create a dictionary mapping the feature name to the tf.train.Example-compatible # data type. feature = { "feature0": _int64_feature(feature0), "feature1": _int64_feature(feature1), "feature2": _bytes_feature(feature2), "feature3": _float_feature(feature3), } # Create a Features message using tf.train.Example. example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() # This is an example observation from the dataset. example_observation = [] serialized_example = serialize_example(False, 4, b"goat", 0.9876) serialized_example example_proto = tf.train.Example.FromString(serialized_example) example_proto # # TFRecords format details # uint64 length # uint32 masked_crc32_of_length # byte data[length] # uint32 masked_crc32_of_data # # masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul # # TFRecord files using tf.data # ### Writing a TFRecord file tf.data.Dataset.from_tensor_slices(feature1) features_dataset = tf.data.Dataset.from_tensor_slices( (feature0, feature1, feature2, feature3) ) features_dataset # Use `take(1)` to only pull one example from the dataset. for f0, f1, f2, f3 in features_dataset.take(1): print(f0) print(f1) print(f2) print(f3) def tf_serialize_example(f0, f1, f2, f3): tf_string = tf.py_function( serialize_example, (f0, f1, f2, f3), # Pass these args to the above function. tf.string, ) # The return type is `tf.string`. return tf.reshape(tf_string, ()) # The result is a scalar tf_serialize_example(f0, f1, f2, f3) serialized_features_dataset = features_dataset.map(tf_serialize_example) serialized_features_dataset def generator(): for features in features_dataset: yield serialize_example(*features) serialized_features_dataset = tf.data.Dataset.from_generator( generator, output_types=tf.string, output_shapes=() ) serialized_features_dataset filename = "test.tfrecord" writer = tf.data.experimental.TFRecordWriter(filename) writer.write(serialized_features_dataset) # ### Reading a TFRecord file filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(10): print(repr(raw_record)) # Create a description of the features. feature_description = { "feature0": tf.io.FixedLenFeature([], tf.int64, default_value=0), "feature1": tf.io.FixedLenFeature([], tf.int64, default_value=0), "feature2": tf.io.FixedLenFeature([], tf.string, default_value=""), "feature3": tf.io.FixedLenFeature([], tf.float32, default_value=0.0), } def _parse_function(example_proto): # Parse the input `tf.train.Example` proto using the dictionary above. return tf.io.parse_single_example(example_proto, feature_description) parsed_dataset = raw_dataset.map(_parse_function) parsed_dataset for parsed_record in parsed_dataset.take(10): print(repr(parsed_record)) # # TFRecord files in Python # ### Writing a TFRecord file # Write the `tf.train.Example` observations to the file. with tf.io.TFRecordWriter(filename) as writer: for i in range(n_observations): example = serialize_example(feature0[i], feature1[i], feature2[i], feature3[i]) writer.write(example) # ### Reading a TFRecord file filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(1): example = tf.train.Example() example.ParseFromString(raw_record.numpy()) print(example) # # Dict[str, # Union[List[float], # List[int], # List[str]]] # result = {} # example.features.feature is the dictionary for key, feature in example.features.feature.items(): # The values are the Feature objects which contain a `kind` which contains: # one of three fields: bytes_list, float_list, int64_list kind = feature.WhichOneof("kind") result[key] = np.array(getattr(feature, kind).value) result # # Walkthrough: Reading and writing image data cat_in_snow = tf.keras.utils.get_file( "320px-Felis_catus-cat_on_snow.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", ) williamsburg_bridge = tf.keras.utils.get_file( "194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg", ) display.display(display.Image(filename=cat_in_snow)) display.display( display.HTML( 'Image cc-by: <a "href=https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">Von.grzanka</a>' ) ) display.display(display.Image(filename=williamsburg_bridge)) display.display( display.HTML( '<a "href=https://commons.wikimedia.org/wiki/File:New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg">From Wikimedia</a>' ) ) # ## Write the TFRecord file image_labels = { cat_in_snow: 0, williamsburg_bridge: 1, } # This is an example, just using the cat image. image_string = open(cat_in_snow, "rb").read() label = image_labels[cat_in_snow] # Create a dictionary with features that may be relevant. def image_example(image_string, label): image_shape = tf.io.decode_jpeg(image_string).shape feature = { "height": _int64_feature(image_shape[0]), "width": _int64_feature(image_shape[1]), "depth": _int64_feature(image_shape[2]), "label": _int64_feature(label), "image_raw": _bytes_feature(image_string), } return tf.train.Example(features=tf.train.Features(feature=feature)) for line in str(image_example(image_string, label)).split("\n")[:15]: print(line) print("...") # Write the raw image files to `images.tfrecords`. # First, process the two images into `tf.train.Example` messages. # Then, write to a `.tfrecords` file. record_file = "images.tfrecords" with tf.io.TFRecordWriter(record_file) as writer: for filename, label in image_labels.items(): image_string = open(filename, "rb").read() tf_example = image_example(image_string, label) writer.write(tf_example.SerializeToString()) # # Read the TFRecord file raw_image_dataset = tf.data.TFRecordDataset("images.tfrecords") # Create a dictionary describing the features. image_feature_description = { "height": tf.io.FixedLenFeature([], tf.int64), "width": tf.io.FixedLenFeature([], tf.int64), "depth": tf.io.FixedLenFeature([], tf.int64), "label": tf.io.FixedLenFeature([], tf.int64), "image_raw": tf.io.FixedLenFeature([], tf.string), } def _parse_image_function(example_proto): # Parse the input tf.train.Example proto using the dictionary above. return tf.io.parse_single_example(example_proto, image_feature_description) parsed_image_dataset = raw_image_dataset.map(_parse_image_function) parsed_image_dataset for image_features in parsed_image_dataset: image_raw = image_features["image_raw"].numpy() display.display(display.Image(data=image_raw))
false
0
2,782
4
2,782
2,782
129592558
<jupyter_start><jupyter_text>Medical Insurance Premium Prediction ### Context A Medical Insurance Company Has Released Data For Almost 1000 Customers. Create A Model That Predicts The Yearly Medical Cover Cost. The Data Is Voluntarily Given By Customers. ### Content The Dataset Contains Health Related Parameters Of The Customers. Use Them To Build A Model And Also Perform EDA On The Same. The Premium Price Is In INR(₹) Currency And Showcases Prices For A Whole Year. ### Inspiration Help Solve A Crucial Finance Problem That Would Potentially Impact Many People And Would Help Them Make Better Decisions. Don't Forget To Submit Your EDAs And Models In The Task Section. These Will Be Keenly Reviewed Hope You Enjoy Working On The Data. note- This is a dummy dataset used for teaching and training purposes. It is free to use, Image Credits-Unsplash Kaggle dataset identifier: medical-insurance-premium-prediction <jupyter_code>import pandas as pd df = pd.read_csv('medical-insurance-premium-prediction/Medicalpremium.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 986 entries, 0 to 985 Data columns (total 11 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 986 non-null int64 1 Diabetes 986 non-null int64 2 BloodPressureProblems 986 non-null int64 3 AnyTransplants 986 non-null int64 4 AnyChronicDiseases 986 non-null int64 5 Height 986 non-null int64 6 Weight 986 non-null int64 7 KnownAllergies 986 non-null int64 8 HistoryOfCancerInFamily 986 non-null int64 9 NumberOfMajorSurgeries 986 non-null int64 10 PremiumPrice 986 non-null int64 dtypes: int64(11) memory usage: 84.9 KB <jupyter_text>Examples: { "Age": 45, "Diabetes": 0, "BloodPressureProblems": 0, "AnyTransplants": 0, "AnyChronicDiseases": 0, "Height": 155, "Weight": 57, "KnownAllergies": 0, "HistoryOfCancerInFamily": 0, "NumberOfMajorSurgeries": 0, "PremiumPrice": 25000 } { "Age": 60, "Diabetes": 1, "BloodPressureProblems": 0, "AnyTransplants": 0, "AnyChronicDiseases": 0, "Height": 180, "Weight": 73, "KnownAllergies": 0, "HistoryOfCancerInFamily": 0, "NumberOfMajorSurgeries": 0, "PremiumPrice": 29000 } { "Age": 36, "Diabetes": 1, "BloodPressureProblems": 1, "AnyTransplants": 0, "AnyChronicDiseases": 0, "Height": 158, "Weight": 59, "KnownAllergies": 0, "HistoryOfCancerInFamily": 0, "NumberOfMajorSurgeries": 1, "PremiumPrice": 23000 } { "Age": 52, "Diabetes": 1, "BloodPressureProblems": 1, "AnyTransplants": 0, "AnyChronicDiseases": 1, "Height": 183, "Weight": 93, "KnownAllergies": 0, "HistoryOfCancerInFamily": 0, "NumberOfMajorSurgeries": 2, "PremiumPrice": 28000 } <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Importing Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet from sklearn.metrics import r2_score, mean_squared_error from sklearn.pipeline import Pipeline from sklearn.linear_model import RidgeCV, LassoCV, ElasticNetCV import warnings warnings.filterwarnings("ignore") # # Importing Data data = pd.read_csv( "/kaggle/input/medical-insurance-premium-prediction/Medicalpremium.csv" ) data.head() # # EDA data.info() data.describe() from ydata_profiling import ProfileReport profile = ProfileReport(data, title="Medical Insurance") profile.to_notebook_iframe() # regression plots of price against all features cols = [col for col in data.columns if col != "PremiumPrice"] for i in cols: plt.figure(figsize=(16, 8)) sns.regplot( x=data[i], y=data.PremiumPrice, data=data, line_kws={"color": "red"}, scatter_kws={"color": "blue"}, ) plt.show() print("-" * 128) # # Linear Regression Models # The function below will plot the distribution of two inputs. # def plot_dis(y, yhat): plt.figure() ax1 = sns.distplot(y, hist=False, color="r", label="Actual Value") sns.distplot(yhat, hist=False, color="b", label="Fitted Values", ax=ax1) plt.legend() plt.title("Actual vs Fitted Values") plt.xlabel("Price (in rupees)") plt.ylabel("Proportion of records") plt.show() plt.close() rmse_df = pd.DataFrame(columns=["Model", "RMSE"]) cols = [col for col in data.columns if col != "PremiumPrice"] X = data[cols] X.head() y = data["PremiumPrice"] y.head() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) print("Number of test samples:", X_test.shape[0]) print("Number of training samples:", X_train.shape[0]) # ### without Scaling lr = LinearRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", lr.score(X_train, y_train)) print("R^2 on testing data ", lr.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_without_Scaling", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ### with Scaling steps = [("scaler", StandardScaler()), ("lm", LinearRegression())] pipe = Pipeline(steps=steps) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", pipe.score(X_train, y_train)) print("R^2 on testing data ", pipe.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_with_Scaling(SS)", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # From above we can see that there is no difference with and without scaling, so we can continue in either ways plot_dis(y_test, y_pred) # ## Polynomial Regression Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("model", LinearRegression()), ] pipe = Pipeline(Input) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", pipe.score(X_train, y_train)) print("R^2 on testing data ", pipe.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_PolynomialFeatures(PF)", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # ## Polynomial Regression with StandardScaler, GridSearchCV Input = [ ("scaler", StandardScaler()), ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("model", LinearRegression()), ] pipe = Pipeline(Input) param_grid = {"polynomial__degree": [1, 2, 3]} search = GridSearchCV(pipe, param_grid, n_jobs=1) pipe.fit(X_train, y_train) search.fit(X_test, y_test) best = search.best_estimator_ best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) def rmse(ytrue, ypredicted): return np.sqrt(mean_squared_error(ytrue, ypredicted)) # ## Lasso Regression from sklearn.linear_model import LassoCV alphas2 = np.array([1e-5, 5e-5, 0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10, 100]) lassoCV = LassoCV(alphas=alphas2, max_iter=50000, cv=3).fit(X_train, y_train) y_pred = lassoCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", lassoCV.alpha_) print("R^2 on training data ", lassoCV.score(X_train, y_train)) print("R^2 on testing data ", lassoCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Lasso", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) print( "Of {} coefficients, {} are non-zero with Lasso.".format( len(lassoCV.coef_), len(lassoCV.coef_.nonzero()[0]) ) ) # ## Lasso with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("ss", StandardScaler()), ("model", Lasso(alpha=1, tol=0.2)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4, 5, 6], "model__alpha": [1e-5, 5e-5, 0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Lasso_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # Ridge Regression from sklearn.linear_model import RidgeCV alphas = [0.005, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 80] ridgeCV = RidgeCV(alphas=alphas, cv=4).fit(X_train, y_train) y_pred = ridgeCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", ridgeCV.alpha_) print("R^2 on training data ", ridgeCV.score(X_train, y_train)) print("R^2 on testing data ", ridgeCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Ridge", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ## Ridge with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("ss", StandardScaler()), ("model", Ridge(alpha=1)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4, 5, 6], "model__alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Ridge_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # ElasticNet from sklearn.linear_model import ElasticNetCV l1_ratios = np.linspace(0.1, 0.9, 9) elasticNetCV = ElasticNetCV(alphas=alphas2, l1_ratio=l1_ratios, max_iter=10000).fit( X_train, y_train ) y_pred = elasticNetCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", elasticNetCV.alpha_, "l1_ratio : ", elasticNetCV.l1_ratio_) print("R^2 on training data ", elasticNetCV.score(X_train, y_train)) print("R^2 on testing data ", elasticNetCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "ElasticNet", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ## ElasticNet with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("scaler", StandardScaler()), ("model", ElasticNet(tol=0.2, alpha=0.1, l1_ratio=0.1)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4], "model__alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10], "model__l1_ratio": [0.1, 0.5, 0.9], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "ElasticNet_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # Insights rmse_df rmse_df[rmse_df["RMSE"] == rmse_df.RMSE.min()]
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/592/129592558.ipynb
medical-insurance-premium-prediction
tejashvi14
[{"Id": 129592558, "ScriptId": 38532185, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12654687, "CreationDate": "05/15/2023 05:22:55", "VersionNumber": 1.0, "Title": "Medical Insurance Prediction", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 350.0, "LinesInsertedFromPrevious": 350.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 5}]
[{"Id": 185819026, "KernelVersionId": 129592558, "SourceDatasetVersionId": 2497017}]
[{"Id": 2497017, "DatasetId": 1507683, "DatasourceVersionId": 2539640, "CreatorUserId": 5472192, "LicenseName": "CC0: Public Domain", "CreationDate": "08/04/2021 05:48:58", "VersionNumber": 2.0, "Title": "Medical Insurance Premium Prediction", "Slug": "medical-insurance-premium-prediction", "Subtitle": "Predict Yearly Medical Cover Cost(\u20b9)", "Description": "### Context\n\nA Medical Insurance Company Has Released Data For Almost 1000 Customers. Create A Model That Predicts The Yearly Medical Cover Cost. The Data Is Voluntarily Given By Customers.\n\n\n### Content\n\nThe Dataset Contains Health Related Parameters Of The Customers. Use Them To Build A Model And Also Perform EDA On The Same. \nThe Premium Price Is In INR(\u20b9) Currency And Showcases Prices For A Whole Year.\n\n### Inspiration\n\nHelp Solve A Crucial Finance Problem That Would Potentially Impact Many People And Would Help Them Make Better Decisions.\nDon't Forget To Submit Your EDAs And Models In The Task Section. These Will Be Keenly Reviewed\nHope You Enjoy Working On The Data.\nnote- This is a dummy dataset used for teaching and training purposes. It is free to use,\nImage Credits-Unsplash", "VersionNotes": "Data Update 2021/08/04", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1507683, "CreatorUserId": 5472192, "OwnerUserId": 5472192.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 2497017.0, "CurrentDatasourceVersionId": 2539640.0, "ForumId": 1527430, "Type": 2, "CreationDate": "08/02/2021 07:49:44", "LastActivityDate": "08/02/2021", "TotalViews": 47770, "TotalDownloads": 5196, "TotalVotes": 88, "TotalKernels": 17}]
[{"Id": 5472192, "UserName": "tejashvi14", "DisplayName": "Tejashvi", "RegisterDate": "07/15/2020", "PerformanceTier": 3}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # Importing Libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet from sklearn.metrics import r2_score, mean_squared_error from sklearn.pipeline import Pipeline from sklearn.linear_model import RidgeCV, LassoCV, ElasticNetCV import warnings warnings.filterwarnings("ignore") # # Importing Data data = pd.read_csv( "/kaggle/input/medical-insurance-premium-prediction/Medicalpremium.csv" ) data.head() # # EDA data.info() data.describe() from ydata_profiling import ProfileReport profile = ProfileReport(data, title="Medical Insurance") profile.to_notebook_iframe() # regression plots of price against all features cols = [col for col in data.columns if col != "PremiumPrice"] for i in cols: plt.figure(figsize=(16, 8)) sns.regplot( x=data[i], y=data.PremiumPrice, data=data, line_kws={"color": "red"}, scatter_kws={"color": "blue"}, ) plt.show() print("-" * 128) # # Linear Regression Models # The function below will plot the distribution of two inputs. # def plot_dis(y, yhat): plt.figure() ax1 = sns.distplot(y, hist=False, color="r", label="Actual Value") sns.distplot(yhat, hist=False, color="b", label="Fitted Values", ax=ax1) plt.legend() plt.title("Actual vs Fitted Values") plt.xlabel("Price (in rupees)") plt.ylabel("Proportion of records") plt.show() plt.close() rmse_df = pd.DataFrame(columns=["Model", "RMSE"]) cols = [col for col in data.columns if col != "PremiumPrice"] X = data[cols] X.head() y = data["PremiumPrice"] y.head() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) print("Number of test samples:", X_test.shape[0]) print("Number of training samples:", X_train.shape[0]) # ### without Scaling lr = LinearRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", lr.score(X_train, y_train)) print("R^2 on testing data ", lr.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_without_Scaling", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ### with Scaling steps = [("scaler", StandardScaler()), ("lm", LinearRegression())] pipe = Pipeline(steps=steps) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", pipe.score(X_train, y_train)) print("R^2 on testing data ", pipe.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_with_Scaling(SS)", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # From above we can see that there is no difference with and without scaling, so we can continue in either ways plot_dis(y_test, y_pred) # ## Polynomial Regression Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("model", LinearRegression()), ] pipe = Pipeline(Input) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", pipe.score(X_train, y_train)) print("R^2 on testing data ", pipe.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_PolynomialFeatures(PF)", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # ## Polynomial Regression with StandardScaler, GridSearchCV Input = [ ("scaler", StandardScaler()), ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("model", LinearRegression()), ] pipe = Pipeline(Input) param_grid = {"polynomial__degree": [1, 2, 3]} search = GridSearchCV(pipe, param_grid, n_jobs=1) pipe.fit(X_train, y_train) search.fit(X_test, y_test) best = search.best_estimator_ best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "LR_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) def rmse(ytrue, ypredicted): return np.sqrt(mean_squared_error(ytrue, ypredicted)) # ## Lasso Regression from sklearn.linear_model import LassoCV alphas2 = np.array([1e-5, 5e-5, 0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10, 100]) lassoCV = LassoCV(alphas=alphas2, max_iter=50000, cv=3).fit(X_train, y_train) y_pred = lassoCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", lassoCV.alpha_) print("R^2 on training data ", lassoCV.score(X_train, y_train)) print("R^2 on testing data ", lassoCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Lasso", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) print( "Of {} coefficients, {} are non-zero with Lasso.".format( len(lassoCV.coef_), len(lassoCV.coef_.nonzero()[0]) ) ) # ## Lasso with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("ss", StandardScaler()), ("model", Lasso(alpha=1, tol=0.2)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4, 5, 6], "model__alpha": [1e-5, 5e-5, 0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Lasso_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # Ridge Regression from sklearn.linear_model import RidgeCV alphas = [0.005, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 80] ridgeCV = RidgeCV(alphas=alphas, cv=4).fit(X_train, y_train) y_pred = ridgeCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", ridgeCV.alpha_) print("R^2 on training data ", ridgeCV.score(X_train, y_train)) print("R^2 on testing data ", ridgeCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Ridge", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ## Ridge with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("ss", StandardScaler()), ("model", Ridge(alpha=1)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4, 5, 6], "model__alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "Ridge_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # ElasticNet from sklearn.linear_model import ElasticNetCV l1_ratios = np.linspace(0.1, 0.9, 9) elasticNetCV = ElasticNetCV(alphas=alphas2, l1_ratio=l1_ratios, max_iter=10000).fit( X_train, y_train ) y_pred = elasticNetCV.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("alpha : ", elasticNetCV.alpha_, "l1_ratio : ", elasticNetCV.l1_ratio_) print("R^2 on training data ", elasticNetCV.score(X_train, y_train)) print("R^2 on testing data ", elasticNetCV.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "ElasticNet", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) # ## ElasticNet with Polynomial Features, StandardScaler and GridSearchCV Input = [ ("polynomial", PolynomialFeatures(include_bias=False, degree=2)), ("scaler", StandardScaler()), ("model", ElasticNet(tol=0.2, alpha=0.1, l1_ratio=0.1)), ] pipe = Pipeline(Input) param_grid = { "polynomial__degree": [1, 2, 3, 4], "model__alpha": [0.0001, 0.001, 0.01, 0.1, 1, 10], "model__l1_ratio": [0.1, 0.5, 0.9], } search = GridSearchCV(pipe, param_grid, n_jobs=2) search.fit(X_train, y_train) best = search.best_estimator_ print("best_score_: ", search.best_score_) print("best_params_: ", search.best_params_) best y_pred = best.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("R^2 on training data ", best.score(X_train, y_train)) print("R^2 on testing data ", best.score(X_test, y_test)) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) print("R2_score : ", r2_score(y_pred, y_test)) new_row = {"Model": "ElasticNet_PF_SS", "RMSE": np.sqrt(mse)} rmse_df = rmse_df.append(new_row, ignore_index=True) plot_dis(y_test, y_pred) # # Insights rmse_df rmse_df[rmse_df["RMSE"] == rmse_df.RMSE.min()]
[{"medical-insurance-premium-prediction/Medicalpremium.csv": {"column_names": "[\"Age\", \"Diabetes\", \"BloodPressureProblems\", \"AnyTransplants\", \"AnyChronicDiseases\", \"Height\", \"Weight\", \"KnownAllergies\", \"HistoryOfCancerInFamily\", \"NumberOfMajorSurgeries\", \"PremiumPrice\"]", "column_data_types": "{\"Age\": \"int64\", \"Diabetes\": \"int64\", \"BloodPressureProblems\": \"int64\", \"AnyTransplants\": \"int64\", \"AnyChronicDiseases\": \"int64\", \"Height\": \"int64\", \"Weight\": \"int64\", \"KnownAllergies\": \"int64\", \"HistoryOfCancerInFamily\": \"int64\", \"NumberOfMajorSurgeries\": \"int64\", \"PremiumPrice\": \"int64\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 986 entries, 0 to 985\nData columns (total 11 columns):\n # Column Non-Null Count Dtype\n--- ------ -------------- -----\n 0 Age 986 non-null int64\n 1 Diabetes 986 non-null int64\n 2 BloodPressureProblems 986 non-null int64\n 3 AnyTransplants 986 non-null int64\n 4 AnyChronicDiseases 986 non-null int64\n 5 Height 986 non-null int64\n 6 Weight 986 non-null int64\n 7 KnownAllergies 986 non-null int64\n 8 HistoryOfCancerInFamily 986 non-null int64\n 9 NumberOfMajorSurgeries 986 non-null int64\n 10 PremiumPrice 986 non-null int64\ndtypes: int64(11)\nmemory usage: 84.9 KB\n", "summary": "{\"Age\": {\"count\": 986.0, \"mean\": 41.74543610547667, \"std\": 13.963371389855682, \"min\": 18.0, \"25%\": 30.0, \"50%\": 42.0, \"75%\": 53.0, \"max\": 66.0}, \"Diabetes\": {\"count\": 986.0, \"mean\": 0.4198782961460446, \"std\": 0.49378922875252945, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 1.0, \"max\": 1.0}, \"BloodPressureProblems\": {\"count\": 986.0, \"mean\": 0.4685598377281947, \"std\": 0.49926377774285313, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 1.0, \"max\": 1.0}, \"AnyTransplants\": {\"count\": 986.0, \"mean\": 0.055780933062880324, \"std\": 0.22961465994678726, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 0.0, \"max\": 1.0}, \"AnyChronicDiseases\": {\"count\": 986.0, \"mean\": 0.18052738336713997, \"std\": 0.3848213056997442, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 0.0, \"max\": 1.0}, \"Height\": {\"count\": 986.0, \"mean\": 168.18255578093306, \"std\": 10.098154827654469, \"min\": 145.0, \"25%\": 161.0, \"50%\": 168.0, \"75%\": 176.0, \"max\": 188.0}, \"Weight\": {\"count\": 986.0, \"mean\": 76.95030425963489, \"std\": 14.265095839082017, \"min\": 51.0, \"25%\": 67.0, \"50%\": 75.0, \"75%\": 87.0, \"max\": 132.0}, \"KnownAllergies\": {\"count\": 986.0, \"mean\": 0.2150101419878296, \"std\": 0.41103787158451843, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 0.0, \"max\": 1.0}, \"HistoryOfCancerInFamily\": {\"count\": 986.0, \"mean\": 0.11764705882352941, \"std\": 0.3223532463115337, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 0.0, \"max\": 1.0}, \"NumberOfMajorSurgeries\": {\"count\": 986.0, \"mean\": 0.6673427991886409, \"std\": 0.749204951277794, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 3.0}, \"PremiumPrice\": {\"count\": 986.0, \"mean\": 24336.713995943206, \"std\": 6248.184382239677, \"min\": 15000.0, \"25%\": 21000.0, \"50%\": 23000.0, \"75%\": 28000.0, \"max\": 40000.0}}", "examples": "{\"Age\":{\"0\":45,\"1\":60,\"2\":36,\"3\":52},\"Diabetes\":{\"0\":0,\"1\":1,\"2\":1,\"3\":1},\"BloodPressureProblems\":{\"0\":0,\"1\":0,\"2\":1,\"3\":1},\"AnyTransplants\":{\"0\":0,\"1\":0,\"2\":0,\"3\":0},\"AnyChronicDiseases\":{\"0\":0,\"1\":0,\"2\":0,\"3\":1},\"Height\":{\"0\":155,\"1\":180,\"2\":158,\"3\":183},\"Weight\":{\"0\":57,\"1\":73,\"2\":59,\"3\":93},\"KnownAllergies\":{\"0\":0,\"1\":0,\"2\":0,\"3\":0},\"HistoryOfCancerInFamily\":{\"0\":0,\"1\":0,\"2\":0,\"3\":0},\"NumberOfMajorSurgeries\":{\"0\":0,\"1\":0,\"2\":1,\"3\":2},\"PremiumPrice\":{\"0\":25000,\"1\":29000,\"2\":23000,\"3\":28000}}"}}]
true
1
<start_data_description><data_path>medical-insurance-premium-prediction/Medicalpremium.csv: <column_names> ['Age', 'Diabetes', 'BloodPressureProblems', 'AnyTransplants', 'AnyChronicDiseases', 'Height', 'Weight', 'KnownAllergies', 'HistoryOfCancerInFamily', 'NumberOfMajorSurgeries', 'PremiumPrice'] <column_types> {'Age': 'int64', 'Diabetes': 'int64', 'BloodPressureProblems': 'int64', 'AnyTransplants': 'int64', 'AnyChronicDiseases': 'int64', 'Height': 'int64', 'Weight': 'int64', 'KnownAllergies': 'int64', 'HistoryOfCancerInFamily': 'int64', 'NumberOfMajorSurgeries': 'int64', 'PremiumPrice': 'int64'} <dataframe_Summary> {'Age': {'count': 986.0, 'mean': 41.74543610547667, 'std': 13.963371389855682, 'min': 18.0, '25%': 30.0, '50%': 42.0, '75%': 53.0, 'max': 66.0}, 'Diabetes': {'count': 986.0, 'mean': 0.4198782961460446, 'std': 0.49378922875252945, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 1.0, 'max': 1.0}, 'BloodPressureProblems': {'count': 986.0, 'mean': 0.4685598377281947, 'std': 0.49926377774285313, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 1.0, 'max': 1.0}, 'AnyTransplants': {'count': 986.0, 'mean': 0.055780933062880324, 'std': 0.22961465994678726, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 0.0, 'max': 1.0}, 'AnyChronicDiseases': {'count': 986.0, 'mean': 0.18052738336713997, 'std': 0.3848213056997442, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 0.0, 'max': 1.0}, 'Height': {'count': 986.0, 'mean': 168.18255578093306, 'std': 10.098154827654469, 'min': 145.0, '25%': 161.0, '50%': 168.0, '75%': 176.0, 'max': 188.0}, 'Weight': {'count': 986.0, 'mean': 76.95030425963489, 'std': 14.265095839082017, 'min': 51.0, '25%': 67.0, '50%': 75.0, '75%': 87.0, 'max': 132.0}, 'KnownAllergies': {'count': 986.0, 'mean': 0.2150101419878296, 'std': 0.41103787158451843, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 0.0, 'max': 1.0}, 'HistoryOfCancerInFamily': {'count': 986.0, 'mean': 0.11764705882352941, 'std': 0.3223532463115337, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 0.0, 'max': 1.0}, 'NumberOfMajorSurgeries': {'count': 986.0, 'mean': 0.6673427991886409, 'std': 0.749204951277794, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 1.0, 'max': 3.0}, 'PremiumPrice': {'count': 986.0, 'mean': 24336.713995943206, 'std': 6248.184382239677, 'min': 15000.0, '25%': 21000.0, '50%': 23000.0, '75%': 28000.0, 'max': 40000.0}} <dataframe_info> RangeIndex: 986 entries, 0 to 985 Data columns (total 11 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 986 non-null int64 1 Diabetes 986 non-null int64 2 BloodPressureProblems 986 non-null int64 3 AnyTransplants 986 non-null int64 4 AnyChronicDiseases 986 non-null int64 5 Height 986 non-null int64 6 Weight 986 non-null int64 7 KnownAllergies 986 non-null int64 8 HistoryOfCancerInFamily 986 non-null int64 9 NumberOfMajorSurgeries 986 non-null int64 10 PremiumPrice 986 non-null int64 dtypes: int64(11) memory usage: 84.9 KB <some_examples> {'Age': {'0': 45, '1': 60, '2': 36, '3': 52}, 'Diabetes': {'0': 0, '1': 1, '2': 1, '3': 1}, 'BloodPressureProblems': {'0': 0, '1': 0, '2': 1, '3': 1}, 'AnyTransplants': {'0': 0, '1': 0, '2': 0, '3': 0}, 'AnyChronicDiseases': {'0': 0, '1': 0, '2': 0, '3': 1}, 'Height': {'0': 155, '1': 180, '2': 158, '3': 183}, 'Weight': {'0': 57, '1': 73, '2': 59, '3': 93}, 'KnownAllergies': {'0': 0, '1': 0, '2': 0, '3': 0}, 'HistoryOfCancerInFamily': {'0': 0, '1': 0, '2': 0, '3': 0}, 'NumberOfMajorSurgeries': {'0': 0, '1': 0, '2': 1, '3': 2}, 'PremiumPrice': {'0': 25000, '1': 29000, '2': 23000, '3': 28000}} <end_description>
4,020
5
5,031
4,020
129471011
import pandas as pd data = pd.read_csv("/kaggle/input/review/IMDB Dataset.csv") data.head() import nltk def fun(text): t = nltk.word_tokenize(text) return t data["tokens"] = data["review"].apply(lambda x: fun(x)) data.head() from nltk.corpus import stopwords nltk.download("stopwords") sw = set(stopwords.words("english")) def nfun(text): t = [word for word in text if word.lower() not in sw] return t data["filteredtokens"] = data["tokens"].apply(lambda x: nfun(x)) data.head() data = data.drop(["review", "tokens"], axis=1) data = pd.get_dummies(columns=["sentiment"], data=data) def merge(l): s = " ".join(l) return s data["filteredtokens"] = data["filteredtokens"].apply(lambda x: merge(x)) from sklearn.model_selection import train_test_split x = data["filteredtokens"] y = data.drop(["filteredtokens"], axis=1) from sklearn.feature_extraction.text import CountVectorizer v = CountVectorizer() x = v.fit_transform(x) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(x_train, y_train) y = model.predict(x_test) model.score(x_test, y_test) y
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/471/129471011.ipynb
null
null
[{"Id": 129471011, "ScriptId": 38358585, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14115484, "CreationDate": "05/14/2023 05:39:25", "VersionNumber": 1.0, "Title": "review analysis", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 65.0, "LinesInsertedFromPrevious": 65.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import pandas as pd data = pd.read_csv("/kaggle/input/review/IMDB Dataset.csv") data.head() import nltk def fun(text): t = nltk.word_tokenize(text) return t data["tokens"] = data["review"].apply(lambda x: fun(x)) data.head() from nltk.corpus import stopwords nltk.download("stopwords") sw = set(stopwords.words("english")) def nfun(text): t = [word for word in text if word.lower() not in sw] return t data["filteredtokens"] = data["tokens"].apply(lambda x: nfun(x)) data.head() data = data.drop(["review", "tokens"], axis=1) data = pd.get_dummies(columns=["sentiment"], data=data) def merge(l): s = " ".join(l) return s data["filteredtokens"] = data["filteredtokens"].apply(lambda x: merge(x)) from sklearn.model_selection import train_test_split x = data["filteredtokens"] y = data.drop(["filteredtokens"], axis=1) from sklearn.feature_extraction.text import CountVectorizer v = CountVectorizer() x = v.fit_transform(x) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(x_train, y_train) y = model.predict(x_test) model.score(x_test, y_test) y
false
0
403
0
403
403
129471331
# This is the overview class """Data Analytics class with Python - Weekends in FITA Academy""" print("Welcome to Data Analytics") a = 5 print(a) b = 2.8 c = "Data" print(type(a)) print(type(b)) print(type(c)) print(a // b) print(a**2) # Comparison (<,<=,>,>=,==,!=) d = 5 print(a < b) print(a <= b) print(a > b) print(a >= b) print(a == b) print(a == d) print(a != b) # Assignment - =,+=,-=,*=,/=,%=,**=,//= a += b # (a=a+b) print(a) a -= b print(a) a *= b print(a) a /= b print(a) a %= b print(a) a **= b print(a) a //= b print(a) # Logical - and, or, not print(b and a) print(a or b) print(not b) # Membership operator - in, not in fruits = ["lemon", "jack", "grapes", "lichie"] print("lemon" in fruits) print("venilla" in fruits) print("Fig" not in fruits) # Identity operator - is, is not e = 5 print(d is e) print(c is e) print(c is not e) # Bitwise operators - &, |, ^, ~ g = 8 h = 1 print(d & f) print(f | g) print(h ^ f) print(~g) print(~1) print(a * b**2 + 3) # Python Numbers - int,float id = int(10) print(type(id)) no = 99.5 print(type(no)) print(oct(id)) print(hex(id)) id = id + no print(id, type(id)) no = no + 0.5 print(no, type(no)) no = int(no) print(no, type(no)) import math as m km = 345.76 print(m.ceil(km)) print(m.floor(km)) print(m.factorial(5)) print(m.fabs(-11)) print(m.trunc(-11.11)) print(m.pow(2, 3)) print(m.log(5)) # Strings course = "Python" spe_cou = "Data Analytics with Python" stu = course + spe_cou print(stu) course * 3 print("f" in spe_cou) print(ord("d")) print(ord("#")) print(chr(100)) print(chr(35)) print(len(course)) print(len(spe_cou)) print(str("Fita")) print(str(45.5)) print(str(10 + 3)) print(course[5]) print(course[-2]) print(course[0:4]) print(course[2:]) print(course[:4])
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/471/129471331.ipynb
null
null
[{"Id": 129471331, "ScriptId": 38464017, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 3854517, "CreationDate": "05/14/2023 05:43:30", "VersionNumber": 2.0, "Title": "Data Analytics", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 150.0, "LinesInsertedFromPrevious": 142.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 8.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# This is the overview class """Data Analytics class with Python - Weekends in FITA Academy""" print("Welcome to Data Analytics") a = 5 print(a) b = 2.8 c = "Data" print(type(a)) print(type(b)) print(type(c)) print(a // b) print(a**2) # Comparison (<,<=,>,>=,==,!=) d = 5 print(a < b) print(a <= b) print(a > b) print(a >= b) print(a == b) print(a == d) print(a != b) # Assignment - =,+=,-=,*=,/=,%=,**=,//= a += b # (a=a+b) print(a) a -= b print(a) a *= b print(a) a /= b print(a) a %= b print(a) a **= b print(a) a //= b print(a) # Logical - and, or, not print(b and a) print(a or b) print(not b) # Membership operator - in, not in fruits = ["lemon", "jack", "grapes", "lichie"] print("lemon" in fruits) print("venilla" in fruits) print("Fig" not in fruits) # Identity operator - is, is not e = 5 print(d is e) print(c is e) print(c is not e) # Bitwise operators - &, |, ^, ~ g = 8 h = 1 print(d & f) print(f | g) print(h ^ f) print(~g) print(~1) print(a * b**2 + 3) # Python Numbers - int,float id = int(10) print(type(id)) no = 99.5 print(type(no)) print(oct(id)) print(hex(id)) id = id + no print(id, type(id)) no = no + 0.5 print(no, type(no)) no = int(no) print(no, type(no)) import math as m km = 345.76 print(m.ceil(km)) print(m.floor(km)) print(m.factorial(5)) print(m.fabs(-11)) print(m.trunc(-11.11)) print(m.pow(2, 3)) print(m.log(5)) # Strings course = "Python" spe_cou = "Data Analytics with Python" stu = course + spe_cou print(stu) course * 3 print("f" in spe_cou) print(ord("d")) print(ord("#")) print(chr(100)) print(chr(35)) print(len(course)) print(len(spe_cou)) print(str("Fita")) print(str(45.5)) print(str(10 + 3)) print(course[5]) print(course[-2]) print(course[0:4]) print(course[2:]) print(course[:4])
false
0
798
0
798
798
129576488
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") df.head() df.hist() df["Pollinators"] = df.honeybee + df.bumbles + df.andrena + df.osmia plt.figure(figsize=(20, 20)) sns.heatmap(df.corr(), annot=True, mask=np.zeros_like(df.corr(), dtype=bool)) sample = pd.read_csv("/kaggle/input/playground-series-s3e14/sample_submission.csv") sample.head() # remove the id because it has an natural structure and should not explain the crop yields crop_yield_train = df.pop("yield") train_id = df.pop("id") X_train, X_test, y_train, y_test = train_test_split(df, crop_yield_train) model = LinearRegression() model.fit(X_train, y_train) model.score(X_test, y_test) test_df = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") test_id = test_df.pop("id") test_model = LinearRegression() test_model.fit(df, crop_yield_train) pred = test_model.predict(test_df) ret_df = pd.DataFrame({"id": test_id, "yield": pred}) ret_df.head() ret_df.to_csv("crop_yield_submission.csv", index=False) # ## With Scaling # initialize the scaler and fit transform the explanatory variables scaler = StandardScaler() df_scaled = df.copy() df_scaled = scaler.fit_transform(df_scaled) # get performance of the model on the training set X_train, X_test, y_train, y_test = train_test_split(df_scaled, crop_yield_train) model_scale = LinearRegression() model_scale.fit(X_train, y_train) model_scale.score(X_test, y_test) # # As expected since the data was normal to start with using the standard scaler does not effect performance positivly test_df_scale = test_df.copy() test_df_scale = scaler.fit_transform(test_df_scale) model_scale.fit(df_scaled, crop_yield_train) scale_pred = model_scale.predict(test_df_scale) ret_df_scale = pd.DataFrame({"id": test_id, "yield": scale_pred}) ret_df.to_csv("crop_yield_submission_scaled.csv", index=False) # ## Random Forest classifier = RandomForestRegressor() X_train, X_test, y_train, y_test = train_test_split(df, crop_yield_train) classifier.fit(X_train, y_train) classifier.score(X_test, y_test) classifier.fit(df, crop_yield_train) pred = classifier.predict(test_df) random_forest_df = pd.DataFrame({"id": test_id, "yield": pred}) random_forest_df.to_csv("crop_yield_submission_random_forest.csv", index=False) # # Lasso Regression Lasso_clf = Lasso(2) Lasso_clf.fit(X_train, y_train) Lasso_clf.score(X_test, y_test)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/576/129576488.ipynb
null
null
[{"Id": 129576488, "ScriptId": 38037997, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12180553, "CreationDate": "05/15/2023 01:44:40", "VersionNumber": 1.0, "Title": "Crop Yields", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 91.0, "LinesInsertedFromPrevious": 91.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv("/kaggle/input/playground-series-s3e14/train.csv") df.head() df.hist() df["Pollinators"] = df.honeybee + df.bumbles + df.andrena + df.osmia plt.figure(figsize=(20, 20)) sns.heatmap(df.corr(), annot=True, mask=np.zeros_like(df.corr(), dtype=bool)) sample = pd.read_csv("/kaggle/input/playground-series-s3e14/sample_submission.csv") sample.head() # remove the id because it has an natural structure and should not explain the crop yields crop_yield_train = df.pop("yield") train_id = df.pop("id") X_train, X_test, y_train, y_test = train_test_split(df, crop_yield_train) model = LinearRegression() model.fit(X_train, y_train) model.score(X_test, y_test) test_df = pd.read_csv("/kaggle/input/playground-series-s3e14/test.csv") test_id = test_df.pop("id") test_model = LinearRegression() test_model.fit(df, crop_yield_train) pred = test_model.predict(test_df) ret_df = pd.DataFrame({"id": test_id, "yield": pred}) ret_df.head() ret_df.to_csv("crop_yield_submission.csv", index=False) # ## With Scaling # initialize the scaler and fit transform the explanatory variables scaler = StandardScaler() df_scaled = df.copy() df_scaled = scaler.fit_transform(df_scaled) # get performance of the model on the training set X_train, X_test, y_train, y_test = train_test_split(df_scaled, crop_yield_train) model_scale = LinearRegression() model_scale.fit(X_train, y_train) model_scale.score(X_test, y_test) # # As expected since the data was normal to start with using the standard scaler does not effect performance positivly test_df_scale = test_df.copy() test_df_scale = scaler.fit_transform(test_df_scale) model_scale.fit(df_scaled, crop_yield_train) scale_pred = model_scale.predict(test_df_scale) ret_df_scale = pd.DataFrame({"id": test_id, "yield": scale_pred}) ret_df.to_csv("crop_yield_submission_scaled.csv", index=False) # ## Random Forest classifier = RandomForestRegressor() X_train, X_test, y_train, y_test = train_test_split(df, crop_yield_train) classifier.fit(X_train, y_train) classifier.score(X_test, y_test) classifier.fit(df, crop_yield_train) pred = classifier.predict(test_df) random_forest_df = pd.DataFrame({"id": test_id, "yield": pred}) random_forest_df.to_csv("crop_yield_submission_random_forest.csv", index=False) # # Lasso Regression Lasso_clf = Lasso(2) Lasso_clf.fit(X_train, y_train) Lasso_clf.score(X_test, y_test)
false
0
972
0
972
972
129495798
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## This dataset includes movie rates which are published in Netflix between 2006-1016 and this notebook is created for Nurullah Cildag's first assignment in his data science course. # ### This notebook is created together with @MertUrper in one of his study group working sessions. import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") df = pd.read_csv("/kaggle/input/imdb-movie-data-2006-2016/IMDB-Movie-Data.csv") df.head() # let's make the index column the title of the movie df.set_index("Title", inplace=True) df.head(3)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/495/129495798.ipynb
null
null
[{"Id": 129495798, "ScriptId": 38505328, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 5266661, "CreationDate": "05/14/2023 09:46:56", "VersionNumber": 1.0, "Title": "notebook92045c6e59", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 40.0, "LinesInsertedFromPrevious": 40.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## This dataset includes movie rates which are published in Netflix between 2006-1016 and this notebook is created for Nurullah Cildag's first assignment in his data science course. # ### This notebook is created together with @MertUrper in one of his study group working sessions. import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") df = pd.read_csv("/kaggle/input/imdb-movie-data-2006-2016/IMDB-Movie-Data.csv") df.head() # let's make the index column the title of the movie df.set_index("Title", inplace=True) df.head(3)
false
0
367
0
367
367
129495012
<jupyter_start><jupyter_text>Bank Customer Churn RowNumber—corresponds to the record (row) number and has no effect on the output. CustomerId—contains random values and has no effect on customer leaving the bank. Surname—the surname of a customer has no impact on their decision to leave the bank. CreditScore—can have an effect on customer churn, since a customer with a higher credit score is less likely to leave the bank. Geography—a customer’s location can affect their decision to leave the bank. Gender—it’s interesting to explore whether gender plays a role in a customer leaving the bank. Age—this is certainly relevant, since older customers are less likely to leave their bank than younger ones. Tenure—refers to the number of years that the customer has been a client of the bank. Normally, older clients are more loyal and less likely to leave a bank. Balance—also a very good indicator of customer churn, as people with a higher balance in their accounts are less likely to leave the bank compared to those with lower balances. NumOfProducts—refers to the number of products that a customer has purchased through the bank. HasCrCard—denotes whether or not a customer has a credit card. This column is also relevant, since people with a credit card are less likely to leave the bank. IsActiveMember—active customers are less likely to leave the bank. EstimatedSalary—as with balance, people with lower salaries are more likely to leave the bank compared to those with higher salaries. Exited—whether or not the customer left the bank. Complain—customer has complaint or not. Satisfaction Score—Score provided by the customer for their complaint resolution. Card Type—type of card hold by the customer. Points Earned—the points earned by the customer for using credit card. Acknowledgements As we know, it is much more expensive to sign in a new client than keeping an existing one. It is advantageous for banks to know what leads a client towards the decision to leave the company. Churn prevention allows companies to develop loyalty programs and retention campaigns to keep as many customers as possible. Kaggle dataset identifier: bank-customer-churn <jupyter_script>import warnings warnings.filterwarnings("ignore") import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns cp = sns.color_palette("pastel") plt.style.use(plt.style.available) # plt.style.use('darkgrid') # plt.style.available data = pd.read_csv("/kaggle/input/bank-customer-churn/Customer-Churn-Records.csv") data feat = [ "Geography", "Gender", "NumOfProducts", "HasCrCard", "IsActiveMember", "Exited", "Complain", "Satisfaction Score", "Card Type", ] fig, axes = plt.subplots(3, 3, figsize=(15, 13), sharex=False, sharey=False) for i, feature in enumerate(feat): row = i // 3 column = i % 3 ax = axes[row, column] data.groupby(feature).count()["RowNumber"].sort_values(ascending=False).plot( kind="bar", ax=ax, color=cp[1:] ) ax.set_title(feature, backgroundcolor="skyblue", font="Arial", fontsize=14) ax.tick_params(axis="x", labelrotation=0) labels = data.groupby(feature).count()["RowNumber"].sort_values(ascending=False) ax.bar_label(ax.containers[0], labels=labels, label_type="edge") plt.tight_layout() plt.show() feat = ["CreditScore", "Age", "Balance"] fig, axes = plt.subplots(2, 2, figsize=(15, 7), sharex=False, sharey=False) for i, feature in enumerate(feat): row = i // 2 column = i % 2 ax = axes[row, column] sns.histplot(data, x=feature, ax=ax, kde=True, palette="pastel") ax.tick_params(axis="x", labelrotation=45) ax.set_title(feature, backgroundcolor="skyblue", font="Arial", fontsize=14) plt.tight_layout() plt.show() sns.boxplot(data=data, x="Balance")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/495/129495012.ipynb
bank-customer-churn
radheshyamkollipara
[{"Id": 129495012, "ScriptId": 38503843, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9201197, "CreationDate": "05/14/2023 09:38:22", "VersionNumber": 1.0, "Title": "Subplots_Customer_churn", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 49.0, "LinesInsertedFromPrevious": 49.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185609731, "KernelVersionId": 129495012, "SourceDatasetVersionId": 5550559}]
[{"Id": 5550559, "DatasetId": 3197960, "DatasourceVersionId": 5625285, "CreatorUserId": 14862076, "LicenseName": "Other (specified in description)", "CreationDate": "04/28/2023 16:32:01", "VersionNumber": 1.0, "Title": "Bank Customer Churn", "Slug": "bank-customer-churn", "Subtitle": "Bank Customer Data for Customer Churn", "Description": "RowNumber\u2014corresponds to the record (row) number and has no effect on the output.\nCustomerId\u2014contains random values and has no effect on customer leaving the bank.\nSurname\u2014the surname of a customer has no impact on their decision to leave the bank.\nCreditScore\u2014can have an effect on customer churn, since a customer with a higher credit score is less likely to leave the bank.\nGeography\u2014a customer\u2019s location can affect their decision to leave the bank.\nGender\u2014it\u2019s interesting to explore whether gender plays a role in a customer leaving the bank.\nAge\u2014this is certainly relevant, since older customers are less likely to leave their bank than younger ones.\nTenure\u2014refers to the number of years that the customer has been a client of the bank. Normally, older clients are more loyal and less likely to leave a bank.\nBalance\u2014also a very good indicator of customer churn, as people with a higher balance in their accounts are less likely to leave the bank compared to those with lower balances.\nNumOfProducts\u2014refers to the number of products that a customer has purchased through the bank.\nHasCrCard\u2014denotes whether or not a customer has a credit card. This column is also relevant, since people with a credit card are less likely to leave the bank.\nIsActiveMember\u2014active customers are less likely to leave the bank.\nEstimatedSalary\u2014as with balance, people with lower salaries are more likely to leave the bank compared to those with higher salaries.\nExited\u2014whether or not the customer left the bank.\nComplain\u2014customer has complaint or not.\nSatisfaction Score\u2014Score provided by the customer for their complaint resolution.\nCard Type\u2014type of card hold by the customer.\nPoints Earned\u2014the points earned by the customer for using credit card.\n\nAcknowledgements\n\nAs we know, it is much more expensive to sign in a new client than keeping an existing one.\n\nIt is advantageous for banks to know what leads a client towards the decision to leave the company.\n\nChurn prevention allows companies to develop loyalty programs and retention campaigns to keep as many customers as possible.", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 3197960, "CreatorUserId": 14862076, "OwnerUserId": 14862076.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 5550559.0, "CurrentDatasourceVersionId": 5625285.0, "ForumId": 3262570, "Type": 2, "CreationDate": "04/28/2023 16:32:01", "LastActivityDate": "04/28/2023", "TotalViews": 39315, "TotalDownloads": 6814, "TotalVotes": 97, "TotalKernels": 52}]
[{"Id": 14862076, "UserName": "radheshyamkollipara", "DisplayName": "Radheshyam Kollipara", "RegisterDate": "04/28/2023", "PerformanceTier": 0}]
import warnings warnings.filterwarnings("ignore") import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns cp = sns.color_palette("pastel") plt.style.use(plt.style.available) # plt.style.use('darkgrid') # plt.style.available data = pd.read_csv("/kaggle/input/bank-customer-churn/Customer-Churn-Records.csv") data feat = [ "Geography", "Gender", "NumOfProducts", "HasCrCard", "IsActiveMember", "Exited", "Complain", "Satisfaction Score", "Card Type", ] fig, axes = plt.subplots(3, 3, figsize=(15, 13), sharex=False, sharey=False) for i, feature in enumerate(feat): row = i // 3 column = i % 3 ax = axes[row, column] data.groupby(feature).count()["RowNumber"].sort_values(ascending=False).plot( kind="bar", ax=ax, color=cp[1:] ) ax.set_title(feature, backgroundcolor="skyblue", font="Arial", fontsize=14) ax.tick_params(axis="x", labelrotation=0) labels = data.groupby(feature).count()["RowNumber"].sort_values(ascending=False) ax.bar_label(ax.containers[0], labels=labels, label_type="edge") plt.tight_layout() plt.show() feat = ["CreditScore", "Age", "Balance"] fig, axes = plt.subplots(2, 2, figsize=(15, 7), sharex=False, sharey=False) for i, feature in enumerate(feat): row = i // 2 column = i % 2 ax = axes[row, column] sns.histplot(data, x=feature, ax=ax, kde=True, palette="pastel") ax.tick_params(axis="x", labelrotation=45) ax.set_title(feature, backgroundcolor="skyblue", font="Arial", fontsize=14) plt.tight_layout() plt.show() sns.boxplot(data=data, x="Balance")
false
1
561
0
1,062
561
129501058
<jupyter_start><jupyter_text>Analyzing Screen Time This dataset contains the usage statistics of various apps on a phone. Inspiration: - Do the number of notifications and the number of times the user opens an app have a correlation? - Does usage have a correlation with the number of notifications? Kaggle dataset identifier: analyzing-screen-time <jupyter_script># # **Screen Time Analysis** # Screen Time Analysis is the task of analyzing and creating a report on which applications and websites are used by the user for how much time. Apple devices have one of the best ways of creating a screen time report. # **Screen Time Analysis on iPhone:** # ![image.png](attachment:0d37e060-a309-435f-9318-a63a804f394f.png) # For the task of screen time analysis, I found an ideal dataset that contains data about: # # * Date # * Usage of Applications # * Number of Notifications from Applications # * Number of times apps opened # # **Screen Time Analysis using Python** # Let’s start the task of screen time analysis by importing the necessary Python libraries and the dataset: import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go data = pd.read_csv("/kaggle/input/analyzing-screen-time/Screentime - App Details.csv") print(data.head()) # Now let’s have a look if the dataset has any null values or not: data.isnull().sum() # The dataset doesn’t have any null values. Now let’s have a look at the descriptive statistics of the data: print(data.describe()) # Now let’s start with analyzing the screen time of the user. I will first look at the amount of usage of the apps: figure = px.bar(data_frame=data, x="Date", y="Usage", color="App", title="Usage") figure.show() # Now let’s have a look at the number of notifications from the apps: figure = px.bar( data_frame=data, x="Date", y="Notifications", color="App", title="Notifications" ) figure.show() # Now let’s have a look at the number of times the apps opened: figure = px.bar( data_frame=data, x="Date", y="Times opened", color="App", title="Times Opened" ) figure.show() # We generally use our smartphones when we get notified by any app. So let’s have a look at the relationship between the number of notifications and the amount of usage: figure = px.scatter( data_frame=data, x="Notifications", y="Usage", size="Notifications", trendline="ols", title="Relationship Between Number of Notifications and Usage", ) figure.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/501/129501058.ipynb
analyzing-screen-time
ruchi798
[{"Id": 129501058, "ScriptId": 38506417, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11302066, "CreationDate": "05/14/2023 10:42:00", "VersionNumber": 1.0, "Title": "Screen Time Analysis using Python", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 70.0, "LinesInsertedFromPrevious": 70.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185621811, "KernelVersionId": 129501058, "SourceDatasetVersionId": 4238944}]
[{"Id": 4238944, "DatasetId": 2498258, "DatasourceVersionId": 4296262, "CreatorUserId": 3309826, "LicenseName": "CC0: Public Domain", "CreationDate": "09/22/2022 23:58:02", "VersionNumber": 2.0, "Title": "Analyzing Screen Time", "Slug": "analyzing-screen-time", "Subtitle": "Cumulative and individual Screen Time of apps", "Description": "This dataset contains the usage statistics of various apps on a phone.\n\nInspiration:\n- Do the number of notifications and the number of times the user opens an app have a correlation?\n- Does usage have a correlation with the number of notifications?", "VersionNotes": "Data Update 2022/09/22", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2498258, "CreatorUserId": 3309826, "OwnerUserId": 3309826.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 4238944.0, "CurrentDatasourceVersionId": 4296262.0, "ForumId": 2526436, "Type": 2, "CreationDate": "09/22/2022 23:56:40", "LastActivityDate": "09/22/2022", "TotalViews": 13806, "TotalDownloads": 1886, "TotalVotes": 61, "TotalKernels": 11}]
[{"Id": 3309826, "UserName": "ruchi798", "DisplayName": "Ruchi Bhatia", "RegisterDate": "06/04/2019", "PerformanceTier": 4}]
# # **Screen Time Analysis** # Screen Time Analysis is the task of analyzing and creating a report on which applications and websites are used by the user for how much time. Apple devices have one of the best ways of creating a screen time report. # **Screen Time Analysis on iPhone:** # ![image.png](attachment:0d37e060-a309-435f-9318-a63a804f394f.png) # For the task of screen time analysis, I found an ideal dataset that contains data about: # # * Date # * Usage of Applications # * Number of Notifications from Applications # * Number of times apps opened # # **Screen Time Analysis using Python** # Let’s start the task of screen time analysis by importing the necessary Python libraries and the dataset: import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go data = pd.read_csv("/kaggle/input/analyzing-screen-time/Screentime - App Details.csv") print(data.head()) # Now let’s have a look if the dataset has any null values or not: data.isnull().sum() # The dataset doesn’t have any null values. Now let’s have a look at the descriptive statistics of the data: print(data.describe()) # Now let’s start with analyzing the screen time of the user. I will first look at the amount of usage of the apps: figure = px.bar(data_frame=data, x="Date", y="Usage", color="App", title="Usage") figure.show() # Now let’s have a look at the number of notifications from the apps: figure = px.bar( data_frame=data, x="Date", y="Notifications", color="App", title="Notifications" ) figure.show() # Now let’s have a look at the number of times the apps opened: figure = px.bar( data_frame=data, x="Date", y="Times opened", color="App", title="Times Opened" ) figure.show() # We generally use our smartphones when we get notified by any app. So let’s have a look at the relationship between the number of notifications and the amount of usage: figure = px.scatter( data_frame=data, x="Notifications", y="Usage", size="Notifications", trendline="ols", title="Relationship Between Number of Notifications and Usage", ) figure.show()
false
1
593
0
670
593
129501781
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # ICR - Identifying Age-Related Conditions # ## Use Machine Learning to detect conditions with measurements of anonymous characteristics # ## Context # They say age is just a number but a whole host of health issues come with aging. From heart disease and dementia to hearing loss and arthritis, aging is a risk factor for numerous diseases and complications. The growing field of bioinformatics includes research into interventions that can help slow and reverse biological aging and prevent major age-related ailments. Data science could have a role to play in developing new methods to solve problems with diverse data, even if the number of samples is small. # Currently, models like XGBoost and random forest are used to predict medical conditions yet the models' performance is not good enough. Dealing with critical problems where lives are on the line, models need to make correct predictions reliably and consistently between different cases. # Founded in 2015, competition host InVitro Cell Research, LLC (ICR) is a privately funded company focused on regenerative and preventive personalized medicine. Their offices and labs in the greater New York City area offer state-of-the-art research space. InVitro Cell Research's Scientists are what set them apart, helping guide and defining their mission of researching how to repair aging people fast. # In this competition, you’ll work with measurements of health characteristic data to solve critical problems in bioinformatics. Based on minimal training, you’ll create a model to predict if a person has any of three medical conditions, with an aim to improve on existing methods. # You could help advance the growing field of bioinformatics and explore new methods to solve complex problems with diverse data. # ### Importing necessary libraries import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px # ## 1. Data Understanding and inspection of missing and incompatible values # Loading training dataset df_train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Loading greeks dataset df_greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") # Inspecting the Training dataset df_train.info() # Inspecting the Greeks dataset df_greeks.info() # Also let us merge the two datasets to form a final master dataset containing all the necessary details df = pd.merge(df_train, df_greeks, on="Id") # Inspecting the data df.info() # We have therefore, columns Id,EJ and the greek columns with categorical values and the rest being numerical # Therefore, Class is our target variable. Also, it seems there are a few missing values in the training and master dataset. Let us handle these values # Checking the percentage of missing value by columns missing_values = df_train.isnull().mean() * 100 missing_values[missing_values > 0] # Checking the percentage of missing value by columns in the master data set too missing_values_2 = df.isnull().mean() * 100 missing_values_2[missing_values_2 > 0] # Thus, these are the columns that have missing values. Among them, BQ and EL are the highest with almost 9.7% values missing # # 2. EDA and Data correction # ### Handling missing data # Let us first check the distribution of the columns with null values # Printing missing columns missing_cols = missing_values_2[missing_values_2 > 0].index.to_list() missing_cols # Printing the distribution for BQ and EL multiple missing value columns df[missing_cols].hist(bins=100) plt.show() # For this, we can use KNN imputer for the following reasons. # Some Advantages of KNN # 1. Quick calculation time # # 2. Simple algorithm – to interpret # # 3. Versatile – useful for regression and classification # # 4. High accuracy – you do not need to compare with better-supervised learning models # # 5. No assumptions about data – no need to make additional assumptions, tune several parameters, or build a model. This makes it crucial in nonlinear data case. # from sklearn.impute import KNNImputer imputer01 = KNNImputer(n_neighbors=3) tr_data_01 = imputer01.fit_transform(df[missing_cols]) df[missing_cols] = tr_data_01 df_train[missing_cols] = tr_data_01 # Checking the null value distribution now # Checking the percentage of missing value by columns missing_values = df_train.isnull().mean() * 100 missing_values[missing_values > 0] # Checking the percentage of missing value by columns missing_values = df.isnull().mean() * 100 missing_values[missing_values > 0] # ### Checking the distribution of the target variable df["Class"].hist() # Plotting a pie chart to understand this better data = df["Class"].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Therefore, the dataset is highly imbalanced as the classes 1 and 0 are 17.5% and 82.5% of the dataset respectively # We will be handling this imbalance a little later # ### Univariate Analysis # We begin with setting up a column list # Setting up column list target_col = ["Class"] greek_cols = list(df_greeks.columns) id_col = ["Id"] cat_cols = ["EJ"] num_cols = [ col for col in df.columns if col not in greek_cols + cat_cols + target_col + id_col ] print(greek_cols + cat_cols + target_col + id_col) # Checking for categorical columns df[cat_cols[0]].hist() # Plotting a pie chart to understand this better data = df[cat_cols[0]].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Therefore, the values A and B can be mapped to 1 and 0 # Transforming EJ by mapping A and B to 1 and 0 respectively df[cat_cols[0]] = df[cat_cols[0]].map({"A": 1, "B": 0}) # Plotting a pie chart to understand this better data = df[cat_cols[0]].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Checking the distribution of numeric columns # Setting max column width pd.set_option("display.max_columns", 500) # Printing the description of numerical columns df.describe() # Going forward we would have to scale the numeric columns during model building # Plotting the distribution of numerical columns for i, col in enumerate(num_cols): plt.figure(i) # sns.boxplot(x=df[col]) sns.histplot(df, x=col, kde=True)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/501/129501781.ipynb
null
null
[{"Id": 129501781, "ScriptId": 38468484, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 2145674, "CreationDate": "05/14/2023 10:49:39", "VersionNumber": 1.0, "Title": "notebooke1f3660014", "EvaluationDate": "05/14/2023", "IsChange": true, "TotalLines": 188.0, "LinesInsertedFromPrevious": 188.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # ICR - Identifying Age-Related Conditions # ## Use Machine Learning to detect conditions with measurements of anonymous characteristics # ## Context # They say age is just a number but a whole host of health issues come with aging. From heart disease and dementia to hearing loss and arthritis, aging is a risk factor for numerous diseases and complications. The growing field of bioinformatics includes research into interventions that can help slow and reverse biological aging and prevent major age-related ailments. Data science could have a role to play in developing new methods to solve problems with diverse data, even if the number of samples is small. # Currently, models like XGBoost and random forest are used to predict medical conditions yet the models' performance is not good enough. Dealing with critical problems where lives are on the line, models need to make correct predictions reliably and consistently between different cases. # Founded in 2015, competition host InVitro Cell Research, LLC (ICR) is a privately funded company focused on regenerative and preventive personalized medicine. Their offices and labs in the greater New York City area offer state-of-the-art research space. InVitro Cell Research's Scientists are what set them apart, helping guide and defining their mission of researching how to repair aging people fast. # In this competition, you’ll work with measurements of health characteristic data to solve critical problems in bioinformatics. Based on minimal training, you’ll create a model to predict if a person has any of three medical conditions, with an aim to improve on existing methods. # You could help advance the growing field of bioinformatics and explore new methods to solve complex problems with diverse data. # ### Importing necessary libraries import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px # ## 1. Data Understanding and inspection of missing and incompatible values # Loading training dataset df_train = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/train.csv") # Loading greeks dataset df_greeks = pd.read_csv("/kaggle/input/icr-identify-age-related-conditions/greeks.csv") # Inspecting the Training dataset df_train.info() # Inspecting the Greeks dataset df_greeks.info() # Also let us merge the two datasets to form a final master dataset containing all the necessary details df = pd.merge(df_train, df_greeks, on="Id") # Inspecting the data df.info() # We have therefore, columns Id,EJ and the greek columns with categorical values and the rest being numerical # Therefore, Class is our target variable. Also, it seems there are a few missing values in the training and master dataset. Let us handle these values # Checking the percentage of missing value by columns missing_values = df_train.isnull().mean() * 100 missing_values[missing_values > 0] # Checking the percentage of missing value by columns in the master data set too missing_values_2 = df.isnull().mean() * 100 missing_values_2[missing_values_2 > 0] # Thus, these are the columns that have missing values. Among them, BQ and EL are the highest with almost 9.7% values missing # # 2. EDA and Data correction # ### Handling missing data # Let us first check the distribution of the columns with null values # Printing missing columns missing_cols = missing_values_2[missing_values_2 > 0].index.to_list() missing_cols # Printing the distribution for BQ and EL multiple missing value columns df[missing_cols].hist(bins=100) plt.show() # For this, we can use KNN imputer for the following reasons. # Some Advantages of KNN # 1. Quick calculation time # # 2. Simple algorithm – to interpret # # 3. Versatile – useful for regression and classification # # 4. High accuracy – you do not need to compare with better-supervised learning models # # 5. No assumptions about data – no need to make additional assumptions, tune several parameters, or build a model. This makes it crucial in nonlinear data case. # from sklearn.impute import KNNImputer imputer01 = KNNImputer(n_neighbors=3) tr_data_01 = imputer01.fit_transform(df[missing_cols]) df[missing_cols] = tr_data_01 df_train[missing_cols] = tr_data_01 # Checking the null value distribution now # Checking the percentage of missing value by columns missing_values = df_train.isnull().mean() * 100 missing_values[missing_values > 0] # Checking the percentage of missing value by columns missing_values = df.isnull().mean() * 100 missing_values[missing_values > 0] # ### Checking the distribution of the target variable df["Class"].hist() # Plotting a pie chart to understand this better data = df["Class"].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Therefore, the dataset is highly imbalanced as the classes 1 and 0 are 17.5% and 82.5% of the dataset respectively # We will be handling this imbalance a little later # ### Univariate Analysis # We begin with setting up a column list # Setting up column list target_col = ["Class"] greek_cols = list(df_greeks.columns) id_col = ["Id"] cat_cols = ["EJ"] num_cols = [ col for col in df.columns if col not in greek_cols + cat_cols + target_col + id_col ] print(greek_cols + cat_cols + target_col + id_col) # Checking for categorical columns df[cat_cols[0]].hist() # Plotting a pie chart to understand this better data = df[cat_cols[0]].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Therefore, the values A and B can be mapped to 1 and 0 # Transforming EJ by mapping A and B to 1 and 0 respectively df[cat_cols[0]] = df[cat_cols[0]].map({"A": 1, "B": 0}) # Plotting a pie chart to understand this better data = df[cat_cols[0]].value_counts() fig = px.pie(data, values=data, names=data.index) fig.show() # Checking the distribution of numeric columns # Setting max column width pd.set_option("display.max_columns", 500) # Printing the description of numerical columns df.describe() # Going forward we would have to scale the numeric columns during model building # Plotting the distribution of numerical columns for i, col in enumerate(num_cols): plt.figure(i) # sns.boxplot(x=df[col]) sns.histplot(df, x=col, kde=True)
false
0
1,903
0
1,903
1,903
129821434
<jupyter_start><jupyter_text>moviereviews Kaggle dataset identifier: moviereviews <jupyter_script># ## Perform imports and load the dataset # The dataset contains the text of 2000 movie reviews. 1000 are positive, 1000 are negative, and the text has been preprocessed as a tab-delimited file. import numpy as np import pandas as pd df = pd.read_csv("/kaggle/input/moviereviews/moviereviews.tsv", sep="\t") df.head() len(df) # ### Take a look at a typical review. This one is labeled "negative": from IPython.display import Markdown, display display(Markdown("> " + df["review"][0])) # ## Check for missing values: # We have intentionally included records with missing data. Some have NaN values, others have short strings composed of only spaces. This might happen if a reviewer declined to provide a comment with their review. We will show two ways using pandas to identify and remove records containing empty data. # * NaN records are efficiently handled with [.isnull()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isnull.html) and [.dropna()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html) # * Strings that contain only whitespace can be handled with [.isspace()](https://docs.python.org/3/library/stdtypes.html#str.isspace), [.itertuples()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.itertuples.html), and [.drop()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html) # ### Detect & remove NaN values: # Check for the existence of NaN values in a cell: df.isnull().sum() # 35 records show **NaN** (this stands for "not a number" and is equivalent to *None*). These are easily removed using the `.dropna()` pandas function. # CAUTION: By setting inplace=True, we permanently affect the DataFrame currently in memory, and this can't be undone. However, it does *not* affect the original source data. If we needed to, we could always load the original DataFrame from scratch. df.dropna(inplace=True) len(df) # ### Detect & remove empty strings # Technically, we're dealing with "whitespace only" strings. If the original .tsv file had contained empty strings, pandas **.read_csv()** would have assigned NaN values to those cells by default. # In order to detect these strings we need to iterate over each row in the DataFrame. The **.itertuples()** pandas method is a good tool for this as it provides access to every field. For brevity we'll assign the names `i`, `lb` and `rv` to the `index`, `label` and `review` columns. blanks = [] # start with an empty list for i, lb, rv in df.itertuples(): # iterate over the DataFrame if type(rv) == str: # avoid NaN values if rv.isspace(): # test 'review' for whitespace blanks.append(i) # add matching index numbers to the list print(len(blanks), "blanks: ", blanks) # Next we'll pass our list of index numbers to the **.drop()** method, and set `inplace=True` to make the change permanent. df.drop(blanks, inplace=True) len(df) # Great! We dropped 62 records from the original 2000. Let's continue with the analysis. # ## Take a quick look at the `label` column: df["label"].value_counts() # ## Split the data into train & test sets: from sklearn.model_selection import train_test_split X = df["review"] y = df["label"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) # ## Build pipelines to vectorize the data, then train and fit a model # Now that we have sets to train and test, we'll develop a selection of pipelines, each with a different model. from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC # Naïve Bayes: text_clf_nb = Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", MultinomialNB()), ] ) # Linear SVC: text_clf_lsvc = Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", LinearSVC()), ] ) # ## Feed the training data through the first pipeline # We'll run naïve Bayes first text_clf_nb.fit(X_train, y_train) # ## Run predictions and analyze the results (naïve Bayes) # Form a prediction set predictions = text_clf_nb.predict(X_test) # Report the confusion matrix from sklearn import metrics print(metrics.confusion_matrix(y_test, predictions)) # Print a classification report print(metrics.classification_report(y_test, predictions)) # Print the overall accuracy print(metrics.accuracy_score(y_test, predictions)) # Naïve Bayes gave us better-than-average results at 76.4% for classifying reviews as positive or negative based on text alone. Let's see if we can do better. # ## Feed the training data through the second pipeline # Next we'll run Linear SVC text_clf_lsvc.fit(X_train, y_train) # ## Run predictions and analyze the results (Linear SVC) # Form a prediction set predictions = text_clf_lsvc.predict(X_test) # Report the confusion matrix from sklearn import metrics print(metrics.confusion_matrix(y_test, predictions)) # Print a classification report print(metrics.classification_report(y_test, predictions)) # Print the overall accuracy print(metrics.accuracy_score(y_test, predictions)) # Not bad! Based on text alone we correctly classified reviews as positive or negative **84.7%** of the time. In an upcoming section we'll try to improve this score even further by performing *sentiment analysis* on the reviews. # ## Advanced Topic - Adding Stopwords to CountVectorizer # By default, **CountVectorizer** and **TfidfVectorizer** do *not* filter stopwords. However, they offer some optional settings, including passing in your own stopword list. # CAUTION: There are some [known issues](http://aclweb.org/anthology/W18-2502) using Scikit-learn's built-in stopwords list. Some words that are filtered may in fact aid in classification. In this section we'll pass in our own stopword list, so that we know exactly what's being filtered. # The [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) class accepts the following arguments: # > *CountVectorizer(input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, **stop_words=None**, token_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=)* # [TfidVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) supports the same arguments and more. Under *stop_words* we have the following options: # > stop_words : *string {'english'}, list, or None (default)* # That is, we can run `TfidVectorizer(stop_words='english')` to accept scikit-learn's built-in list, # or `TfidVectorizer(stop_words=[a, and, the])` to filter these three words. In practice we would assign our list to a variable and pass that in instead. # Scikit-learn's built-in list contains 318 stopwords: # > from sklearn.feature_extraction import text # > print(text.ENGLISH_STOP_WORDS) # ['a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'amoungst', 'amount', 'an', 'and', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both', 'bottom', 'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'con', 'could', 'couldnt', 'cry', 'de', 'describe', 'detail', 'do', 'done', 'down', 'due', 'during', 'each', 'eg', 'eight', 'either', 'eleven', 'else', 'elsewhere', 'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything', 'everywhere', 'except', 'few', 'fifteen', 'fifty', 'fill', 'find', 'fire', 'first', 'five', 'for', 'former', 'formerly', 'forty', 'found', 'four', 'from', 'front', 'full', 'further', 'get', 'give', 'go', 'had', 'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'ie', 'if', 'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its', 'itself', 'keep', 'last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may', 'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most', 'mostly', 'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put', 'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming', 'seems', 'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'sincere', 'six', 'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime', 'sometimes', 'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than', 'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these', 'they', 'thick', 'thin', 'third', 'this', 'those', 'though', 'three', 'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top', 'toward', 'towards', 'twelve', 'twenty', 'two', 'un', 'under', 'until', 'up', 'upon', 'us', 'very', 'via', 'was', 'we', 'well', 'were', 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within', 'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves'] # However, there are words in this list that may influence a classification of movie reviews. With this in mind, let's trim the list to just 60 words: stopwords = [ "a", "about", "an", "and", "are", "as", "at", "be", "been", "but", "by", "can", "even", "ever", "for", "from", "get", "had", "has", "have", "he", "her", "hers", "his", "how", "i", "if", "in", "into", "is", "it", "its", "just", "me", "my", "of", "on", "or", "see", "seen", "she", "so", "than", "that", "the", "their", "there", "they", "this", "to", "was", "we", "were", "what", "when", "which", "who", "will", "with", "you", ] # Now let's repeat the process above and see if the removal of stopwords improves or impairs our score. # RUN THIS CELL TO ADD STOPWORDS TO THE LINEAR SVC PIPELINE: text_clf_lsvc2 = Pipeline( [ ("tfidf", TfidfVectorizer(stop_words=stopwords)), ("clf", LinearSVC()), ] ) text_clf_lsvc2.fit(X_train, y_train) predictions = text_clf_lsvc2.predict(X_test) print(metrics.confusion_matrix(y_test, predictions)) print(metrics.classification_report(y_test, predictions)) print(metrics.accuracy_score(y_test, predictions)) # Our score didn't change that much. We went from 84.7% without filtering stopwords to 84.4% after adding a stopword filter to our pipeline. Keep in mind that 2000 movie reviews is a relatively small dataset. The real gain from stripping stopwords is improved processing speed; depending on the size of the corpus, it might save hours. # ## Feed new data into a trained model # Once we've developed a fairly accurate model, it's time to feed new data through it. In this last section we'll write our own review, and see how accurately our model assigns a "positive" or "negative" label to it. # ### First, train the model # ### Next, feed new data to the model's `predict()` method myreview = "below average" print( text_clf_nb.predict([myreview]) ) # be sure to put "myreview" inside square brackets print(text_clf_lsvc.predict([myreview]))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/821/129821434.ipynb
moviereviews
alawdisoft
[{"Id": 129821434, "ScriptId": 38609948, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13408885, "CreationDate": "05/16/2023 17:58:34", "VersionNumber": 1.0, "Title": "movie_review_pipeline_posneg", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 185.0, "LinesInsertedFromPrevious": 185.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 186198542, "KernelVersionId": 129821434, "SourceDatasetVersionId": 4741983}]
[{"Id": 4741983, "DatasetId": 2744123, "DatasourceVersionId": 4805001, "CreatorUserId": 12594195, "LicenseName": "Unknown", "CreationDate": "12/19/2022 01:51:28", "VersionNumber": 1.0, "Title": "moviereviews", "Slug": "moviereviews", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 2744123, "CreatorUserId": 12594195, "OwnerUserId": 12594195.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 4741983.0, "CurrentDatasourceVersionId": 4805001.0, "ForumId": 2777619, "Type": 2, "CreationDate": "12/19/2022 01:51:28", "LastActivityDate": "12/19/2022", "TotalViews": 79, "TotalDownloads": 1, "TotalVotes": 1, "TotalKernels": 1}]
[{"Id": 12594195, "UserName": "alawdisoft", "DisplayName": "Ala'a Abdu Saleh Alawdi", "RegisterDate": "11/24/2022", "PerformanceTier": 2}]
# ## Perform imports and load the dataset # The dataset contains the text of 2000 movie reviews. 1000 are positive, 1000 are negative, and the text has been preprocessed as a tab-delimited file. import numpy as np import pandas as pd df = pd.read_csv("/kaggle/input/moviereviews/moviereviews.tsv", sep="\t") df.head() len(df) # ### Take a look at a typical review. This one is labeled "negative": from IPython.display import Markdown, display display(Markdown("> " + df["review"][0])) # ## Check for missing values: # We have intentionally included records with missing data. Some have NaN values, others have short strings composed of only spaces. This might happen if a reviewer declined to provide a comment with their review. We will show two ways using pandas to identify and remove records containing empty data. # * NaN records are efficiently handled with [.isnull()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isnull.html) and [.dropna()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html) # * Strings that contain only whitespace can be handled with [.isspace()](https://docs.python.org/3/library/stdtypes.html#str.isspace), [.itertuples()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.itertuples.html), and [.drop()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html) # ### Detect & remove NaN values: # Check for the existence of NaN values in a cell: df.isnull().sum() # 35 records show **NaN** (this stands for "not a number" and is equivalent to *None*). These are easily removed using the `.dropna()` pandas function. # CAUTION: By setting inplace=True, we permanently affect the DataFrame currently in memory, and this can't be undone. However, it does *not* affect the original source data. If we needed to, we could always load the original DataFrame from scratch. df.dropna(inplace=True) len(df) # ### Detect & remove empty strings # Technically, we're dealing with "whitespace only" strings. If the original .tsv file had contained empty strings, pandas **.read_csv()** would have assigned NaN values to those cells by default. # In order to detect these strings we need to iterate over each row in the DataFrame. The **.itertuples()** pandas method is a good tool for this as it provides access to every field. For brevity we'll assign the names `i`, `lb` and `rv` to the `index`, `label` and `review` columns. blanks = [] # start with an empty list for i, lb, rv in df.itertuples(): # iterate over the DataFrame if type(rv) == str: # avoid NaN values if rv.isspace(): # test 'review' for whitespace blanks.append(i) # add matching index numbers to the list print(len(blanks), "blanks: ", blanks) # Next we'll pass our list of index numbers to the **.drop()** method, and set `inplace=True` to make the change permanent. df.drop(blanks, inplace=True) len(df) # Great! We dropped 62 records from the original 2000. Let's continue with the analysis. # ## Take a quick look at the `label` column: df["label"].value_counts() # ## Split the data into train & test sets: from sklearn.model_selection import train_test_split X = df["review"] y = df["label"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) # ## Build pipelines to vectorize the data, then train and fit a model # Now that we have sets to train and test, we'll develop a selection of pipelines, each with a different model. from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC # Naïve Bayes: text_clf_nb = Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", MultinomialNB()), ] ) # Linear SVC: text_clf_lsvc = Pipeline( [ ("tfidf", TfidfVectorizer()), ("clf", LinearSVC()), ] ) # ## Feed the training data through the first pipeline # We'll run naïve Bayes first text_clf_nb.fit(X_train, y_train) # ## Run predictions and analyze the results (naïve Bayes) # Form a prediction set predictions = text_clf_nb.predict(X_test) # Report the confusion matrix from sklearn import metrics print(metrics.confusion_matrix(y_test, predictions)) # Print a classification report print(metrics.classification_report(y_test, predictions)) # Print the overall accuracy print(metrics.accuracy_score(y_test, predictions)) # Naïve Bayes gave us better-than-average results at 76.4% for classifying reviews as positive or negative based on text alone. Let's see if we can do better. # ## Feed the training data through the second pipeline # Next we'll run Linear SVC text_clf_lsvc.fit(X_train, y_train) # ## Run predictions and analyze the results (Linear SVC) # Form a prediction set predictions = text_clf_lsvc.predict(X_test) # Report the confusion matrix from sklearn import metrics print(metrics.confusion_matrix(y_test, predictions)) # Print a classification report print(metrics.classification_report(y_test, predictions)) # Print the overall accuracy print(metrics.accuracy_score(y_test, predictions)) # Not bad! Based on text alone we correctly classified reviews as positive or negative **84.7%** of the time. In an upcoming section we'll try to improve this score even further by performing *sentiment analysis* on the reviews. # ## Advanced Topic - Adding Stopwords to CountVectorizer # By default, **CountVectorizer** and **TfidfVectorizer** do *not* filter stopwords. However, they offer some optional settings, including passing in your own stopword list. # CAUTION: There are some [known issues](http://aclweb.org/anthology/W18-2502) using Scikit-learn's built-in stopwords list. Some words that are filtered may in fact aid in classification. In this section we'll pass in our own stopword list, so that we know exactly what's being filtered. # The [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) class accepts the following arguments: # > *CountVectorizer(input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, **stop_words=None**, token_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=)* # [TfidVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) supports the same arguments and more. Under *stop_words* we have the following options: # > stop_words : *string {'english'}, list, or None (default)* # That is, we can run `TfidVectorizer(stop_words='english')` to accept scikit-learn's built-in list, # or `TfidVectorizer(stop_words=[a, and, the])` to filter these three words. In practice we would assign our list to a variable and pass that in instead. # Scikit-learn's built-in list contains 318 stopwords: # > from sklearn.feature_extraction import text # > print(text.ENGLISH_STOP_WORDS) # ['a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'amoungst', 'amount', 'an', 'and', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both', 'bottom', 'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'con', 'could', 'couldnt', 'cry', 'de', 'describe', 'detail', 'do', 'done', 'down', 'due', 'during', 'each', 'eg', 'eight', 'either', 'eleven', 'else', 'elsewhere', 'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything', 'everywhere', 'except', 'few', 'fifteen', 'fifty', 'fill', 'find', 'fire', 'first', 'five', 'for', 'former', 'formerly', 'forty', 'found', 'four', 'from', 'front', 'full', 'further', 'get', 'give', 'go', 'had', 'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'ie', 'if', 'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its', 'itself', 'keep', 'last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may', 'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most', 'mostly', 'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put', 'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming', 'seems', 'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'sincere', 'six', 'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime', 'sometimes', 'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than', 'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these', 'they', 'thick', 'thin', 'third', 'this', 'those', 'though', 'three', 'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top', 'toward', 'towards', 'twelve', 'twenty', 'two', 'un', 'under', 'until', 'up', 'upon', 'us', 'very', 'via', 'was', 'we', 'well', 'were', 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within', 'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves'] # However, there are words in this list that may influence a classification of movie reviews. With this in mind, let's trim the list to just 60 words: stopwords = [ "a", "about", "an", "and", "are", "as", "at", "be", "been", "but", "by", "can", "even", "ever", "for", "from", "get", "had", "has", "have", "he", "her", "hers", "his", "how", "i", "if", "in", "into", "is", "it", "its", "just", "me", "my", "of", "on", "or", "see", "seen", "she", "so", "than", "that", "the", "their", "there", "they", "this", "to", "was", "we", "were", "what", "when", "which", "who", "will", "with", "you", ] # Now let's repeat the process above and see if the removal of stopwords improves or impairs our score. # RUN THIS CELL TO ADD STOPWORDS TO THE LINEAR SVC PIPELINE: text_clf_lsvc2 = Pipeline( [ ("tfidf", TfidfVectorizer(stop_words=stopwords)), ("clf", LinearSVC()), ] ) text_clf_lsvc2.fit(X_train, y_train) predictions = text_clf_lsvc2.predict(X_test) print(metrics.confusion_matrix(y_test, predictions)) print(metrics.classification_report(y_test, predictions)) print(metrics.accuracy_score(y_test, predictions)) # Our score didn't change that much. We went from 84.7% without filtering stopwords to 84.4% after adding a stopword filter to our pipeline. Keep in mind that 2000 movie reviews is a relatively small dataset. The real gain from stripping stopwords is improved processing speed; depending on the size of the corpus, it might save hours. # ## Feed new data into a trained model # Once we've developed a fairly accurate model, it's time to feed new data through it. In this last section we'll write our own review, and see how accurately our model assigns a "positive" or "negative" label to it. # ### First, train the model # ### Next, feed new data to the model's `predict()` method myreview = "below average" print( text_clf_nb.predict([myreview]) ) # be sure to put "myreview" inside square brackets print(text_clf_lsvc.predict([myreview]))
false
0
3,733
0
3,752
3,733
129821893
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # for the graphs import seaborn as sns plt.style.use("ggplot") import nltk # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Read In Data # Read in data in a data frame df = pd.read_csv("../input/movie-reviews-dataset/ALL_AUDIENCE_REVIEWS.csv") df.head() df["reviewContent"].values[0] print(df.shape) # 1100 rows, 7 columns df = df.head(550) df.head() # ## Quick Exploratory Data Analysis (EDA) ax = ( df["reviewRating"] .value_counts() .sort_index() .plot(kind="bar", title="Count of Reviews by Ratings", figsize=(10, 5)) ) ax.set_xlabel("Review Ratings") plt.show() # ## Basic NLTK example = df["reviewContent"][50] print(example) tokens = nltk.word_tokenize(example) tokens[:10] tagged = nltk.pos_tag(tokens) tagged[:10] entities = nltk.chunk.ne_chunk(tagged) entities.pprint()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/821/129821893.ipynb
null
null
[{"Id": 129821893, "ScriptId": 38604764, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 15133337, "CreationDate": "05/16/2023 18:03:09", "VersionNumber": 1.0, "Title": "Sentiment Analysis CSS2", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 72.0, "LinesInsertedFromPrevious": 72.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt # for the graphs import seaborn as sns plt.style.use("ggplot") import nltk # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # ## Read In Data # Read in data in a data frame df = pd.read_csv("../input/movie-reviews-dataset/ALL_AUDIENCE_REVIEWS.csv") df.head() df["reviewContent"].values[0] print(df.shape) # 1100 rows, 7 columns df = df.head(550) df.head() # ## Quick Exploratory Data Analysis (EDA) ax = ( df["reviewRating"] .value_counts() .sort_index() .plot(kind="bar", title="Count of Reviews by Ratings", figsize=(10, 5)) ) ax.set_xlabel("Review Ratings") plt.show() # ## Basic NLTK example = df["reviewContent"][50] print(example) tokens = nltk.word_tokenize(example) tokens[:10] tagged = nltk.pos_tag(tokens) tagged[:10] entities = nltk.chunk.ne_chunk(tagged) entities.pprint()
false
0
462
0
462
462
129821114
<jupyter_start><jupyter_text>Predicting Critical Heat Flux ### Context This dataset was prepared for the journal article entitled "On the prediction of critical heat flux using a physics-informed machine learning-aided framework" (doi: 10.1016/j.applthermaleng.2019.114540). The dataset contains processed and compiled records of experimental critical heat flux and boundary conditions used for the work presented in the article. Kaggle dataset identifier: predicting-heat-flux <jupyter_script># # Imports try: from fancyimpute import IterativeSVD from fancyimpute import KNN print("Library is already installed.") except ImportError: print("Library is not installed. Proceed with installation.") from fancyimpute import IterativeSVD from fancyimpute import KNN import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder import xgboost as xgb import lightgbm as lgb from catboost import CatBoostRegressor from sklearn.model_selection import KFold from sklearn.metrics import mean_absolute_error import optuna # ### Path management base: str if os.getcwd() == "/kaggle/working": base = "/kaggle" else: base = os.path.join(os.getcwd()) def get_full_dir(sub_dir: str) -> str: return os.path.join(base, sub_dir) # # EDA df_sample_submission: pd.DataFrame = pd.read_csv( get_full_dir("input/playground-series-s3e15/sample_submission.csv") ) df_data: pd.DataFrame = pd.read_csv( get_full_dir("input/playground-series-s3e15/data.csv"), index_col="id" ) df_og: pd.DataFrame = pd.read_csv( get_full_dir("input/predicting-heat-flux/Data_CHF_Zhao_2020_ATE.csv"), index_col="id", ) df_data.isna().sum() df_og.isna().sum() # ##### Our training data contains lots of missing values, we could impute them using a very simple strategy like mean or median however this will likely result is poor model quality due to the about of missing value. Instead, we can also predict what value the missing value should have based off the other non-null value in these columns. The original data could be very he puff for that purpose since it does not contain any missing values. df_sample_submission.head() # ##### As describe in the completions we are prediction the missing values for x_e_out, our test data consist of all the row with missing x_e_out. df_data.head() df_og.head() fig, axes = plt.subplots(nrows=len(df_data.columns), ncols=4, figsize=(26, 50)) axes = axes.flatten() def graph_numerical_feature( data: list[tuple[pd.DataFrame, str, str]], target: str, axes_start_i: int ) -> None: # Plot densities for df, column, label in data: sns.kdeplot(df[column], label=label, ax=axes[axes_start_i], fill=False) for df, column, label in data: sns.histplot( df[column], label=label, ax=axes[axes_start_i + 1], stat="density", bins=50 ) # Plot boxplot tmp_data_dict = {} for df, column, label in data: tmp_data_dict[label] = df[column] df_tmp = pd.DataFrame(tmp_data_dict) sns.boxplot(data=df_tmp, ax=axes[axes_start_i + 2]) axes[axes_start_i + 2].set_xlabel(col) # Plot target correlation for df, column, label in data: sns.scatterplot( x=column, y=target, label=label, ax=axes[axes_start_i + 3], data=df ) # Plot legends axes[axes_start_i].legend() axes[axes_start_i + 1].legend() axes[axes_start_i + 3].legend() def graph_categorical_feature( data: list[tuple[pd.DataFrame, str, str]], target: str, axes_start_i: int ) -> None: # Makes sure that the categories are shown in the same order category_order: list[str] = data[0][0][data[0][1]].unique() # Plot barplots for il, data_pack in enumerate(data): df, column, label = data_pack sns.countplot( x=column, data=df, label=label, order=category_order, ax=axes[axes_start_i + il], ) axes[axes_start_i + il].tick_params( axis="x", rotation=90 ) # Rotate x-axis labels # Plot target correlation for il, data_pack in enumerate(data): df, column, label = data_pack sns.barplot( x=column, y=target, data=df, label=label, order=category_order, ax=axes[axes_start_i + 2 + il], ) axes[axes_start_i + 2 + il].tick_params( axis="x", rotation=90 ) # Rotate x-axis labels # Plot legends axes[axes_start_i].legend() axes[axes_start_i + 1].legend() axes[axes_start_i + 2].legend() axes[axes_start_i + 3].legend() i = 0 for col in df_data.columns: if pd.api.types.is_numeric_dtype(df_data[col]): graph_numerical_feature( [(df_data, col, "given"), (df_og, col, "original")], "x_e_out [-]", i ) else: graph_categorical_feature( [(df_data, col, "given"), (df_og, col, "original")], "x_e_out [-]", i ) i += 4 plt.show() # ##### The original data closely follows the distribution of our given synthetic data. This suggesting the value where nulled in our given data set evenly across all features, this means that original data should be good to use without introduction feature or distribution bias. def show_feature_correlation(df: pd.DataFrame, title: str): plt.figure(figsize=(20, 20)) corr_matrix = df.select_dtypes(include="number").corr() # Generate a mask for the upper triangle mask = np.zeros_like(corr_matrix, dtype=bool) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr_matrix, cmap="coolwarm", annot=True, mask=mask) plt.title(title) plt.show() show_feature_correlation(df_data, "Given") show_feature_correlation(df_og, "Original") # # Data Prep numerical_columns = [ "pressure [MPa]", "mass_flux [kg/m2-s]", "x_e_out [-]", "D_e [mm]", "D_h [mm]", "length [mm]", "chf_exp [MW/m2]", ] numerical_features = [ "pressure [MPa]", "mass_flux [kg/m2-s]", "D_e [mm]", "D_h [mm]", "length [mm]", "chf_exp [MW/m2]", ] categorical_columns = ["author", "geometry"] target = "x_e_out [-]" label_encoders = {} def label_encode(df: pd.DataFrame) -> None: for column in categorical_columns: label_encoder: LabelEncoder = LabelEncoder() df[column] = label_encoder.fit_transform(df[column]) label_encoders[column] = label_encoder def reverse_encode(df: pd.DataFrame) -> None: for column in label_encoders.keys(): df[column] = df[column].astype(int) df[column] = label_encoders[column].inverse_transform(df[column]) df_train: pd.DataFrame = pd.concat([df_data, df_og]) label_encode(df_train) # # Train # ## Baseline 0: Impute all missing numerical value including target using MICE # Create an instance of imputer imputer = IterativeSVD() # imputer = KNN() # Perform the imputation df_train_imputed = pd.DataFrame( imputer.fit_transform(df_train), columns=df_train.columns ) # Print the imputed DataFrame print("Imputed DataFrame:") df_train_imputed df_train_imputed.isna().sum() # ## Baseline 1: Tree boosting on imputed data # ### Construct new training data for column in numerical_features: if df_train[column].isna().sum() > 0: df_train[f"{column}_was_an"] = df_train[column].isna().astype(int) for column in numerical_features: if df_train[column].isna().sum() > 0: df_train[column] = df_train_imputed[column] df_test = df_train[df_train[target].isna()] df_train = df_train[~df_train[target].isna()] import re def remove_special_characters(column_name): # Remove special characters using regular expressions return re.sub(r"[^a-zA-Z0-9_]+", "", column_name) def remove_special_characters_from_dataframe(df): # Remove special characters from all column names in the DataFrame df.columns = [remove_special_characters(col) for col in df.columns] return df df_test = remove_special_characters_from_dataframe(df_test) df_train = remove_special_characters_from_dataframe(df_train) import optuna import lightgbm as lgb from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split def objective(trial): # Define the hyperparameter search space params = { "objective": "regression", "metric": "mae", "boosting_type": "gbdt", "num_leaves": trial.suggest_int("num_leaves", 10, 100), "learning_rate": trial.suggest_float("learning_rate", 0.01, 0.1), "feature_fraction": trial.suggest_float("feature_fraction", 0.1, 1.0), "bagging_fraction": trial.suggest_float("bagging_fraction", 0.1, 1.0), "bagging_freq": trial.suggest_int("bagging_freq", 1, 10), "min_child_samples": trial.suggest_int("min_child_samples", 1, 20), "lambda_l1": trial.suggest_float("lambda_l1", 0.01, 10.0), "lambda_l2": trial.suggest_float("lambda_l2", 0.01, 10.0), "verbosity": -1, } # Split the data into training and validation sets X = df_train.drop("x_e_out", axis=1) y = df_train["x_e_out"] X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42 ) # Train the LGBM regressor model = lgb.LGBMRegressor(**params) model.fit(X_train, y_train) # Predict on the validation set and calculate MAE y_pred = model.predict(X_val) mae = mean_absolute_error(y_val, y_pred) return mae # Create the Optuna study study = optuna.create_study(direction="minimize") # Start the hyperparameter search study.optimize(objective, n_trials=200) # Print the best parameters and the best MAE best_params = study.best_params best_mae = study.best_value print(f"Best Parameters: {best_params}") print(f"Best MAE: {best_mae}") class Pipeline: def __init__(self, model_type: str): self.model_type = model_type if model_type == "LightGBM": self.model = lgb.LGBMRegressor(**study.best_params) # elif model_type == 'CatBoost': # self.model = CatBoostRegressor(**best_param[model_type]) # elif model_type == 'XGBoost': # self.model = xgb.XGBRegressor(**best_param[model_type]) else: raise ValueError( f"Given model type is not supported! {model_type} was given." ) def fit(self, X, y, X_val, y_val): if self.model_type in [ "GradientBoostingRegressor", "HuberRegressor", "AdaBoostRegressor", "RandomForestRegressor", "ARDRegression", "PLSRegression", "ExtraTreesRegressor", ]: self.model.fit(X, y.ravel()) else: self.model.fit( X, y.ravel(), eval_set=[(X_val, y_val.ravel())], verbose=False ) def predict(self, X): return self.model.predict(X) def train(model_type): X = df_train.drop(["x_e_out"], axis=1) y = df_train["x_e_out"] SKFs = KFold(n_splits=5, shuffle=True, random_state=1) losses = [] pipelines = [] idx_vls = [] for fold, (idx_tr, idx_vl) in enumerate(SKFs.split(X, y)): train_dataframe = df_train.iloc[idx_tr] # train_dataframe = pd.concat([train_dataframe, df_og]) # train_dataframe.reset_index(drop=True, inplace=True) dev_dataframe = df_train.iloc[idx_vl] # splits data to features and target X_train = train_dataframe.drop("x_e_out", axis=1) y_train = train_dataframe["x_e_out"] X_dev = dev_dataframe.drop("x_e_out", axis=1) y_dev = dev_dataframe["x_e_out"] # crates and fits a pipeline pipelineMy = Pipeline(model_type) pipelineMy.fit(X_train, y_train, X_dev, y_dev) # evaluates the model pipelines.append(pipelineMy) loss = mean_absolute_error(y_dev, pipelineMy.predict(X_dev)) losses.append(loss) idx_vls.append(idx_vl) print(f"Fold {fold} loss: {loss}") print(f"Mean loss: {np.array(losses).mean()}") return losses, pipelines, idx_vls losses, pipelines, eval_sets = train("LightGBM") # # Make predictions predictions = 0 df_test = df_test.drop("x_e_out", axis=1) for pipeline in pipelines: predictions += pipeline.predict(df_test) predictions = predictions / float(len(pipelines)) df_test["x_e_out [-]"] = predictions df_test["x_e_out [-]"].to_csv("submission.csv")
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/821/129821114.ipynb
predicting-heat-flux
saurabhshahane
[{"Id": 129821114, "ScriptId": 38599064, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13329284, "CreationDate": "05/16/2023 17:55:09", "VersionNumber": 2.0, "Title": "Feature Imputation on Heat Flux | EDA | Baseline", "EvaluationDate": "05/16/2023", "IsChange": true, "TotalLines": 319.0, "LinesInsertedFromPrevious": 154.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 165.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 2}]
[{"Id": 186198127, "KernelVersionId": 129821114, "SourceDatasetVersionId": 1921393}]
[{"Id": 1921393, "DatasetId": 1145869, "DatasourceVersionId": 1959907, "CreatorUserId": 2411256, "LicenseName": "Attribution 4.0 International (CC BY 4.0)", "CreationDate": "02/08/2021 11:44:07", "VersionNumber": 1.0, "Title": "Predicting Critical Heat Flux", "Slug": "predicting-heat-flux", "Subtitle": "prediction of critical heat flux using Machine Learning", "Description": "### Context\n\nThis dataset was prepared for the journal article entitled \"On the prediction of critical heat flux using a physics-informed machine learning-aided framework\" (doi: 10.1016/j.applthermaleng.2019.114540). The dataset contains processed and compiled records of experimental critical heat flux and boundary conditions used for the work presented in the article. \n\n### Acknowledgements\n\nZhao, Xingang (2020), \u201cData for: On the prediction of critical heat flux using a physics-informed machine learning-aided framework\u201d, Mendeley Data, V1, doi: 10.17632/5p5h37tyv7.1", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1145869, "CreatorUserId": 2411256, "OwnerUserId": 2411256.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 1921393.0, "CurrentDatasourceVersionId": 1959907.0, "ForumId": 1163376, "Type": 2, "CreationDate": "02/08/2021 11:44:07", "LastActivityDate": "02/08/2021", "TotalViews": 6889, "TotalDownloads": 589, "TotalVotes": 42, "TotalKernels": 78}]
[{"Id": 2411256, "UserName": "saurabhshahane", "DisplayName": "Saurabh Shahane", "RegisterDate": "10/26/2018", "PerformanceTier": 4}]
# # Imports try: from fancyimpute import IterativeSVD from fancyimpute import KNN print("Library is already installed.") except ImportError: print("Library is not installed. Proceed with installation.") from fancyimpute import IterativeSVD from fancyimpute import KNN import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder import xgboost as xgb import lightgbm as lgb from catboost import CatBoostRegressor from sklearn.model_selection import KFold from sklearn.metrics import mean_absolute_error import optuna # ### Path management base: str if os.getcwd() == "/kaggle/working": base = "/kaggle" else: base = os.path.join(os.getcwd()) def get_full_dir(sub_dir: str) -> str: return os.path.join(base, sub_dir) # # EDA df_sample_submission: pd.DataFrame = pd.read_csv( get_full_dir("input/playground-series-s3e15/sample_submission.csv") ) df_data: pd.DataFrame = pd.read_csv( get_full_dir("input/playground-series-s3e15/data.csv"), index_col="id" ) df_og: pd.DataFrame = pd.read_csv( get_full_dir("input/predicting-heat-flux/Data_CHF_Zhao_2020_ATE.csv"), index_col="id", ) df_data.isna().sum() df_og.isna().sum() # ##### Our training data contains lots of missing values, we could impute them using a very simple strategy like mean or median however this will likely result is poor model quality due to the about of missing value. Instead, we can also predict what value the missing value should have based off the other non-null value in these columns. The original data could be very he puff for that purpose since it does not contain any missing values. df_sample_submission.head() # ##### As describe in the completions we are prediction the missing values for x_e_out, our test data consist of all the row with missing x_e_out. df_data.head() df_og.head() fig, axes = plt.subplots(nrows=len(df_data.columns), ncols=4, figsize=(26, 50)) axes = axes.flatten() def graph_numerical_feature( data: list[tuple[pd.DataFrame, str, str]], target: str, axes_start_i: int ) -> None: # Plot densities for df, column, label in data: sns.kdeplot(df[column], label=label, ax=axes[axes_start_i], fill=False) for df, column, label in data: sns.histplot( df[column], label=label, ax=axes[axes_start_i + 1], stat="density", bins=50 ) # Plot boxplot tmp_data_dict = {} for df, column, label in data: tmp_data_dict[label] = df[column] df_tmp = pd.DataFrame(tmp_data_dict) sns.boxplot(data=df_tmp, ax=axes[axes_start_i + 2]) axes[axes_start_i + 2].set_xlabel(col) # Plot target correlation for df, column, label in data: sns.scatterplot( x=column, y=target, label=label, ax=axes[axes_start_i + 3], data=df ) # Plot legends axes[axes_start_i].legend() axes[axes_start_i + 1].legend() axes[axes_start_i + 3].legend() def graph_categorical_feature( data: list[tuple[pd.DataFrame, str, str]], target: str, axes_start_i: int ) -> None: # Makes sure that the categories are shown in the same order category_order: list[str] = data[0][0][data[0][1]].unique() # Plot barplots for il, data_pack in enumerate(data): df, column, label = data_pack sns.countplot( x=column, data=df, label=label, order=category_order, ax=axes[axes_start_i + il], ) axes[axes_start_i + il].tick_params( axis="x", rotation=90 ) # Rotate x-axis labels # Plot target correlation for il, data_pack in enumerate(data): df, column, label = data_pack sns.barplot( x=column, y=target, data=df, label=label, order=category_order, ax=axes[axes_start_i + 2 + il], ) axes[axes_start_i + 2 + il].tick_params( axis="x", rotation=90 ) # Rotate x-axis labels # Plot legends axes[axes_start_i].legend() axes[axes_start_i + 1].legend() axes[axes_start_i + 2].legend() axes[axes_start_i + 3].legend() i = 0 for col in df_data.columns: if pd.api.types.is_numeric_dtype(df_data[col]): graph_numerical_feature( [(df_data, col, "given"), (df_og, col, "original")], "x_e_out [-]", i ) else: graph_categorical_feature( [(df_data, col, "given"), (df_og, col, "original")], "x_e_out [-]", i ) i += 4 plt.show() # ##### The original data closely follows the distribution of our given synthetic data. This suggesting the value where nulled in our given data set evenly across all features, this means that original data should be good to use without introduction feature or distribution bias. def show_feature_correlation(df: pd.DataFrame, title: str): plt.figure(figsize=(20, 20)) corr_matrix = df.select_dtypes(include="number").corr() # Generate a mask for the upper triangle mask = np.zeros_like(corr_matrix, dtype=bool) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr_matrix, cmap="coolwarm", annot=True, mask=mask) plt.title(title) plt.show() show_feature_correlation(df_data, "Given") show_feature_correlation(df_og, "Original") # # Data Prep numerical_columns = [ "pressure [MPa]", "mass_flux [kg/m2-s]", "x_e_out [-]", "D_e [mm]", "D_h [mm]", "length [mm]", "chf_exp [MW/m2]", ] numerical_features = [ "pressure [MPa]", "mass_flux [kg/m2-s]", "D_e [mm]", "D_h [mm]", "length [mm]", "chf_exp [MW/m2]", ] categorical_columns = ["author", "geometry"] target = "x_e_out [-]" label_encoders = {} def label_encode(df: pd.DataFrame) -> None: for column in categorical_columns: label_encoder: LabelEncoder = LabelEncoder() df[column] = label_encoder.fit_transform(df[column]) label_encoders[column] = label_encoder def reverse_encode(df: pd.DataFrame) -> None: for column in label_encoders.keys(): df[column] = df[column].astype(int) df[column] = label_encoders[column].inverse_transform(df[column]) df_train: pd.DataFrame = pd.concat([df_data, df_og]) label_encode(df_train) # # Train # ## Baseline 0: Impute all missing numerical value including target using MICE # Create an instance of imputer imputer = IterativeSVD() # imputer = KNN() # Perform the imputation df_train_imputed = pd.DataFrame( imputer.fit_transform(df_train), columns=df_train.columns ) # Print the imputed DataFrame print("Imputed DataFrame:") df_train_imputed df_train_imputed.isna().sum() # ## Baseline 1: Tree boosting on imputed data # ### Construct new training data for column in numerical_features: if df_train[column].isna().sum() > 0: df_train[f"{column}_was_an"] = df_train[column].isna().astype(int) for column in numerical_features: if df_train[column].isna().sum() > 0: df_train[column] = df_train_imputed[column] df_test = df_train[df_train[target].isna()] df_train = df_train[~df_train[target].isna()] import re def remove_special_characters(column_name): # Remove special characters using regular expressions return re.sub(r"[^a-zA-Z0-9_]+", "", column_name) def remove_special_characters_from_dataframe(df): # Remove special characters from all column names in the DataFrame df.columns = [remove_special_characters(col) for col in df.columns] return df df_test = remove_special_characters_from_dataframe(df_test) df_train = remove_special_characters_from_dataframe(df_train) import optuna import lightgbm as lgb from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split def objective(trial): # Define the hyperparameter search space params = { "objective": "regression", "metric": "mae", "boosting_type": "gbdt", "num_leaves": trial.suggest_int("num_leaves", 10, 100), "learning_rate": trial.suggest_float("learning_rate", 0.01, 0.1), "feature_fraction": trial.suggest_float("feature_fraction", 0.1, 1.0), "bagging_fraction": trial.suggest_float("bagging_fraction", 0.1, 1.0), "bagging_freq": trial.suggest_int("bagging_freq", 1, 10), "min_child_samples": trial.suggest_int("min_child_samples", 1, 20), "lambda_l1": trial.suggest_float("lambda_l1", 0.01, 10.0), "lambda_l2": trial.suggest_float("lambda_l2", 0.01, 10.0), "verbosity": -1, } # Split the data into training and validation sets X = df_train.drop("x_e_out", axis=1) y = df_train["x_e_out"] X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42 ) # Train the LGBM regressor model = lgb.LGBMRegressor(**params) model.fit(X_train, y_train) # Predict on the validation set and calculate MAE y_pred = model.predict(X_val) mae = mean_absolute_error(y_val, y_pred) return mae # Create the Optuna study study = optuna.create_study(direction="minimize") # Start the hyperparameter search study.optimize(objective, n_trials=200) # Print the best parameters and the best MAE best_params = study.best_params best_mae = study.best_value print(f"Best Parameters: {best_params}") print(f"Best MAE: {best_mae}") class Pipeline: def __init__(self, model_type: str): self.model_type = model_type if model_type == "LightGBM": self.model = lgb.LGBMRegressor(**study.best_params) # elif model_type == 'CatBoost': # self.model = CatBoostRegressor(**best_param[model_type]) # elif model_type == 'XGBoost': # self.model = xgb.XGBRegressor(**best_param[model_type]) else: raise ValueError( f"Given model type is not supported! {model_type} was given." ) def fit(self, X, y, X_val, y_val): if self.model_type in [ "GradientBoostingRegressor", "HuberRegressor", "AdaBoostRegressor", "RandomForestRegressor", "ARDRegression", "PLSRegression", "ExtraTreesRegressor", ]: self.model.fit(X, y.ravel()) else: self.model.fit( X, y.ravel(), eval_set=[(X_val, y_val.ravel())], verbose=False ) def predict(self, X): return self.model.predict(X) def train(model_type): X = df_train.drop(["x_e_out"], axis=1) y = df_train["x_e_out"] SKFs = KFold(n_splits=5, shuffle=True, random_state=1) losses = [] pipelines = [] idx_vls = [] for fold, (idx_tr, idx_vl) in enumerate(SKFs.split(X, y)): train_dataframe = df_train.iloc[idx_tr] # train_dataframe = pd.concat([train_dataframe, df_og]) # train_dataframe.reset_index(drop=True, inplace=True) dev_dataframe = df_train.iloc[idx_vl] # splits data to features and target X_train = train_dataframe.drop("x_e_out", axis=1) y_train = train_dataframe["x_e_out"] X_dev = dev_dataframe.drop("x_e_out", axis=1) y_dev = dev_dataframe["x_e_out"] # crates and fits a pipeline pipelineMy = Pipeline(model_type) pipelineMy.fit(X_train, y_train, X_dev, y_dev) # evaluates the model pipelines.append(pipelineMy) loss = mean_absolute_error(y_dev, pipelineMy.predict(X_dev)) losses.append(loss) idx_vls.append(idx_vl) print(f"Fold {fold} loss: {loss}") print(f"Mean loss: {np.array(losses).mean()}") return losses, pipelines, idx_vls losses, pipelines, eval_sets = train("LightGBM") # # Make predictions predictions = 0 df_test = df_test.drop("x_e_out", axis=1) for pipeline in pipelines: predictions += pipeline.predict(df_test) predictions = predictions / float(len(pipelines)) df_test["x_e_out [-]"] = predictions df_test["x_e_out [-]"].to_csv("submission.csv")
false
0
3,720
2
3,836
3,720
129856838
import pandas as pd data = [ ["SUNNY", "HOT", "HIGH", False, "NO"], ["SUNNY", "HOT", "HIGH", True, "NO"], ["CLOUDY", "HOT", "HIGH", False, "YES"], ["RAINY", "MILD", "HIGH", False, "YES"], ["RAINY", "COOL", "NORMAL", False, "YES"], ["RAINY", "COOL", "NORMAL", True, "YES"], ["CLOUDY", "COOL", "NORMAL", True, "YES"], ["SUNNY", "MILD", "HIGH", False, "NO"], ["SUNNY", "COOL", "NORMAL", False, "YES"], ["RAINY", "MILD", "NORMAL", False, "YES"], ["SUNNY", "MILD", "NORMAL", True, "YES"], ["CLOUDY", "MILD", "HIGH", True, "YES"], ["CLOUDY", "HOT", "NORMAL", False, "YES"], ["RAINY", "MILD", "HIGH", True, "NO"], ] # Create a pandas DataFrame columns = ["Outlook", "Temperature", "Humidity", "Windy", "Play"] df = pd.DataFrame(data, columns=columns) df.head(5) class Question: """A Question is used to partition a dataset. This class just records a 'column number' (e.g., 0 for Color) and a 'column value' (e.g., Green). The 'match' method is used to compare the feature value in an example to the feature value stored in the question. See the demo below. """ def __init__(self, column, value): self.column = column self.value = value def match(self, df, index): # Compare the feature value in an example to the # feature value in this question. val = df.iloc[index, self.column] if pd.api.types.is_numeric_dtype(val): return val >= self.value else: return val == self.value def __repr__(self): # This is just a helper method to print # the question in a readable format. condition = "==" if pd.api.types.is_numeric_dtype(self.value): condition = ">=" return "Is %s %s %s?" % (df.columns[self.column], condition, str(self.value)) Question(4, True) q = Question(0, "SUNNY") # Column Outlook = SUNNY q.match(df, 2) # Matching values pada df ROW 2 apakah = SUNNY def class_counts(df): """Counts the number of each type of example in a DataFrame.""" counts = {} # a dictionary of label -> count. for index, row in df.iterrows(): # in our dataset format, the label is always the last column label = row.iloc[-1] if label not in counts: counts[label] = 0 counts[label] += 1 return counts def partition(df, question): true_rows, false_rows = [], [] for index, row in df.iterrows(): if question.match(df, index): true_rows.append(row) else: false_rows.append(row) true_df = pd.DataFrame(true_rows, columns=df.columns) false_df = pd.DataFrame(false_rows, columns=df.columns) return true_df, false_df true_rows, false_rows = partition(df, Question(0, "CLOUDY")) # This will contain all the 'Red' rows. true_rows def gini(df): """Calculate the Gini Impurity for a DataFrame.""" counts = class_counts(df) impurity = 1 total_rows = len(df) for lbl in counts: prob_of_lbl = counts[lbl] / total_rows impurity -= prob_of_lbl**2 return impurity no_mixing = [["SUNNY"], ["SUNNY"]] test_noMIX = pd.DataFrame(no_mixing, columns=["Fruit"]) # this will return 0 gini(test_noMIX) def info_gain(left, right, current_uncertainty): """Information Gain. The uncertainty of the starting node, minus the weighted impurity of two child nodes. """ p = float(len(left)) / (len(left) + len(right)) return current_uncertainty - p * gini(left) - (1 - p) * gini(right) current_uncertainty = gini(df) current_uncertainty true_rows true_rows, false_rows = partition(df, Question(0, "SUNNY")) info_gain(true_rows, false_rows, current_uncertainty) invoke = ["SUNNY", "CLOUDY", "RAINY"] for i in invoke: true_rows, false_rows = partition(df, Question(0, i)) print(i, ":", info_gain(true_rows, false_rows, current_uncertainty)) true_rows def find_best_split(df): """Find the best question to ask by iterating over every feature / value and calculating the information gain.""" best_gain = 0 best_question = None current_uncertainty = gini(df) n_features = len(df.columns) - 1 for col in range(n_features): values = df.iloc[:, col].unique() for val in values: question = Question(col, val) true_rows, false_rows = partition(df, question) if len(true_rows) == 0 or len(false_rows) == 0: continue gain = info_gain(true_rows, false_rows, current_uncertainty) if gain >= best_gain: best_gain, best_question = gain, question return best_gain, best_question best_gain, best_question = find_best_split(df) best_question class Leaf: """A Leaf node classifies data. This holds a dictionary of class (e.g., "Apple") -> number of times it appears in the rows from the training data that reach this leaf. """ def __init__(self, df): self.predictions = class_counts(df) class Decision_Node: """A Decision Node asks a question. This holds a reference to the question (column name), and the corresponding values that lead to the true branch and false branch. """ def __init__(self, question, true_values, false_values): self.question = question self.true_values = true_values self.false_values = false_values def partition(self, dataframe): """Partition the dataframe based on the question.""" true_data = dataframe[dataframe[self.question].isin(self.true_values)] false_data = dataframe[dataframe[self.question].isin(self.false_values)] return true_data, false_data def build_tree(df): # Try partitioning the dataset on each of the unique attribute, # calculate the information gain, # and return the question that produces the highest gain. gain, question = find_best_split(df) # Base case: no further info gain # Since we can ask no further questions, # we'll return a leaf. if gain == 0: return Leaf(df) # If we reach here, we have found a useful feature / value # to partition on. true_rows, false_rows = partition(df, question) # Recursively build the true branch. true_branch = build_tree(true_rows) # Recursively build the false branch. false_branch = build_tree(false_rows) # Return a Question node. # This records the best feature / value to ask at this point, # as well as the branches to follow # depending on the answer. return Decision_Node(question, true_branch, false_branch) build_tree(df) from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder import pandas as pd # Define the dataset data = [ ["SUNNY", "HOT", "HIGH", False, "NO"], ["SUNNY", "HOT", "HIGH", True, "NO"], ["CLOUDY", "HOT", "HIGH", False, "YES"], ["RAINY", "MILD", "HIGH", False, "YES"], ["RAINY", "COOL", "NORMAL", False, "YES"], ["RAINY", "COOL", "NORMAL", True, "YES"], ["CLOUDY", "COOL", "NORMAL", True, "YES"], ["SUNNY", "MILD", "HIGH", False, "NO"], ["SUNNY", "COOL", "NORMAL", False, "YES"], ["RAINY", "MILD", "NORMAL", False, "YES"], ["SUNNY", "MILD", "NORMAL", True, "YES"], ["CLOUDY", "MILD", "HIGH", True, "YES"], ["CLOUDY", "HOT", "NORMAL", False, "YES"], ["RAINY", "MILD", "HIGH", True, "NO"], ] # Convert the dataset to a pandas DataFrame df = pd.DataFrame( data, columns=["Outlook", "Temperature", "Humidity", "Windy", "Label"] ) # Encode categorical features label_encoder = LabelEncoder() for feature in df.columns[:-1]: df[feature] = label_encoder.fit_transform(df[feature]) # Separate the features and labels X = df.iloc[:, :-1] y = df.iloc[:, -1] # Create the decision tree classifier clf = DecisionTreeClassifier() # Train the decision tree classifier clf.fit(X, y) # Make predictions new_data = [[2, 1, 0, 0]] predicted_label = clf.predict(new_data) print("Predicted label:", predicted_label)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/856/129856838.ipynb
null
null
[{"Id": 129856838, "ScriptId": 38596800, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8500408, "CreationDate": "05/17/2023 02:22:15", "VersionNumber": 1.0, "Title": "DecisionTree", "EvaluationDate": "05/17/2023", "IsChange": true, "TotalLines": 275.0, "LinesInsertedFromPrevious": 275.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import pandas as pd data = [ ["SUNNY", "HOT", "HIGH", False, "NO"], ["SUNNY", "HOT", "HIGH", True, "NO"], ["CLOUDY", "HOT", "HIGH", False, "YES"], ["RAINY", "MILD", "HIGH", False, "YES"], ["RAINY", "COOL", "NORMAL", False, "YES"], ["RAINY", "COOL", "NORMAL", True, "YES"], ["CLOUDY", "COOL", "NORMAL", True, "YES"], ["SUNNY", "MILD", "HIGH", False, "NO"], ["SUNNY", "COOL", "NORMAL", False, "YES"], ["RAINY", "MILD", "NORMAL", False, "YES"], ["SUNNY", "MILD", "NORMAL", True, "YES"], ["CLOUDY", "MILD", "HIGH", True, "YES"], ["CLOUDY", "HOT", "NORMAL", False, "YES"], ["RAINY", "MILD", "HIGH", True, "NO"], ] # Create a pandas DataFrame columns = ["Outlook", "Temperature", "Humidity", "Windy", "Play"] df = pd.DataFrame(data, columns=columns) df.head(5) class Question: """A Question is used to partition a dataset. This class just records a 'column number' (e.g., 0 for Color) and a 'column value' (e.g., Green). The 'match' method is used to compare the feature value in an example to the feature value stored in the question. See the demo below. """ def __init__(self, column, value): self.column = column self.value = value def match(self, df, index): # Compare the feature value in an example to the # feature value in this question. val = df.iloc[index, self.column] if pd.api.types.is_numeric_dtype(val): return val >= self.value else: return val == self.value def __repr__(self): # This is just a helper method to print # the question in a readable format. condition = "==" if pd.api.types.is_numeric_dtype(self.value): condition = ">=" return "Is %s %s %s?" % (df.columns[self.column], condition, str(self.value)) Question(4, True) q = Question(0, "SUNNY") # Column Outlook = SUNNY q.match(df, 2) # Matching values pada df ROW 2 apakah = SUNNY def class_counts(df): """Counts the number of each type of example in a DataFrame.""" counts = {} # a dictionary of label -> count. for index, row in df.iterrows(): # in our dataset format, the label is always the last column label = row.iloc[-1] if label not in counts: counts[label] = 0 counts[label] += 1 return counts def partition(df, question): true_rows, false_rows = [], [] for index, row in df.iterrows(): if question.match(df, index): true_rows.append(row) else: false_rows.append(row) true_df = pd.DataFrame(true_rows, columns=df.columns) false_df = pd.DataFrame(false_rows, columns=df.columns) return true_df, false_df true_rows, false_rows = partition(df, Question(0, "CLOUDY")) # This will contain all the 'Red' rows. true_rows def gini(df): """Calculate the Gini Impurity for a DataFrame.""" counts = class_counts(df) impurity = 1 total_rows = len(df) for lbl in counts: prob_of_lbl = counts[lbl] / total_rows impurity -= prob_of_lbl**2 return impurity no_mixing = [["SUNNY"], ["SUNNY"]] test_noMIX = pd.DataFrame(no_mixing, columns=["Fruit"]) # this will return 0 gini(test_noMIX) def info_gain(left, right, current_uncertainty): """Information Gain. The uncertainty of the starting node, minus the weighted impurity of two child nodes. """ p = float(len(left)) / (len(left) + len(right)) return current_uncertainty - p * gini(left) - (1 - p) * gini(right) current_uncertainty = gini(df) current_uncertainty true_rows true_rows, false_rows = partition(df, Question(0, "SUNNY")) info_gain(true_rows, false_rows, current_uncertainty) invoke = ["SUNNY", "CLOUDY", "RAINY"] for i in invoke: true_rows, false_rows = partition(df, Question(0, i)) print(i, ":", info_gain(true_rows, false_rows, current_uncertainty)) true_rows def find_best_split(df): """Find the best question to ask by iterating over every feature / value and calculating the information gain.""" best_gain = 0 best_question = None current_uncertainty = gini(df) n_features = len(df.columns) - 1 for col in range(n_features): values = df.iloc[:, col].unique() for val in values: question = Question(col, val) true_rows, false_rows = partition(df, question) if len(true_rows) == 0 or len(false_rows) == 0: continue gain = info_gain(true_rows, false_rows, current_uncertainty) if gain >= best_gain: best_gain, best_question = gain, question return best_gain, best_question best_gain, best_question = find_best_split(df) best_question class Leaf: """A Leaf node classifies data. This holds a dictionary of class (e.g., "Apple") -> number of times it appears in the rows from the training data that reach this leaf. """ def __init__(self, df): self.predictions = class_counts(df) class Decision_Node: """A Decision Node asks a question. This holds a reference to the question (column name), and the corresponding values that lead to the true branch and false branch. """ def __init__(self, question, true_values, false_values): self.question = question self.true_values = true_values self.false_values = false_values def partition(self, dataframe): """Partition the dataframe based on the question.""" true_data = dataframe[dataframe[self.question].isin(self.true_values)] false_data = dataframe[dataframe[self.question].isin(self.false_values)] return true_data, false_data def build_tree(df): # Try partitioning the dataset on each of the unique attribute, # calculate the information gain, # and return the question that produces the highest gain. gain, question = find_best_split(df) # Base case: no further info gain # Since we can ask no further questions, # we'll return a leaf. if gain == 0: return Leaf(df) # If we reach here, we have found a useful feature / value # to partition on. true_rows, false_rows = partition(df, question) # Recursively build the true branch. true_branch = build_tree(true_rows) # Recursively build the false branch. false_branch = build_tree(false_rows) # Return a Question node. # This records the best feature / value to ask at this point, # as well as the branches to follow # depending on the answer. return Decision_Node(question, true_branch, false_branch) build_tree(df) from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder import pandas as pd # Define the dataset data = [ ["SUNNY", "HOT", "HIGH", False, "NO"], ["SUNNY", "HOT", "HIGH", True, "NO"], ["CLOUDY", "HOT", "HIGH", False, "YES"], ["RAINY", "MILD", "HIGH", False, "YES"], ["RAINY", "COOL", "NORMAL", False, "YES"], ["RAINY", "COOL", "NORMAL", True, "YES"], ["CLOUDY", "COOL", "NORMAL", True, "YES"], ["SUNNY", "MILD", "HIGH", False, "NO"], ["SUNNY", "COOL", "NORMAL", False, "YES"], ["RAINY", "MILD", "NORMAL", False, "YES"], ["SUNNY", "MILD", "NORMAL", True, "YES"], ["CLOUDY", "MILD", "HIGH", True, "YES"], ["CLOUDY", "HOT", "NORMAL", False, "YES"], ["RAINY", "MILD", "HIGH", True, "NO"], ] # Convert the dataset to a pandas DataFrame df = pd.DataFrame( data, columns=["Outlook", "Temperature", "Humidity", "Windy", "Label"] ) # Encode categorical features label_encoder = LabelEncoder() for feature in df.columns[:-1]: df[feature] = label_encoder.fit_transform(df[feature]) # Separate the features and labels X = df.iloc[:, :-1] y = df.iloc[:, -1] # Create the decision tree classifier clf = DecisionTreeClassifier() # Train the decision tree classifier clf.fit(X, y) # Make predictions new_data = [[2, 1, 0, 0]] predicted_label = clf.predict(new_data) print("Predicted label:", predicted_label)
false
0
2,353
0
2,353
2,353
129598879
<jupyter_start><jupyter_text>Mushroom Classification ### Context Although this dataset was originally contributed to the UCI Machine Learning repository nearly 30 years ago, mushroom hunting (otherwise known as "shrooming") is enjoying new peaks in popularity. Learn which features spell certain death and which are most palatable in this dataset of mushroom characteristics. And how certain can your model be? ### Content This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family Mushroom drawn from The Audubon Society Field Guide to North American Mushrooms (1981). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like "leaflets three, let it be'' for Poisonous Oak and Ivy. - **Time period**: Donated to UCI ML 27 April 1987 ### Inspiration - What types of machine learning models perform best on this dataset? - Which features are most indicative of a poisonous mushroom? Kaggle dataset identifier: mushroom-classification <jupyter_script># Hanming Jing import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.metrics import roc_curve, auc, f1_score import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split df = pd.read_csv("../input/mushroom-classification/mushrooms.csv") encoder = LabelEncoder() df = df.apply(encoder.fit_transform) df.head() X = df.drop(columns=["class"]) y = df["class"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) print("X_train = ", X_train.shape) print("y_train = ", y_train.shape) print("X_test = ", X_test.shape) print("y_test = ", y_test.shape) rfc = RandomForestClassifier(n_estimators=100, random_state=0) gnb = GaussianNB() rfc.fit(X_train, y_train) gnb.fit(X_train, y_train) rfc_probs = rfc.predict_proba(X_test)[:, 1] gnb_probs = gnb.predict_proba(X_test)[:, 1] rfc_fpr, rfc_tpr, _ = roc_curve(y_test, rfc_probs) gnb_fpr, gnb_tpr, _ = roc_curve(y_test, gnb_probs) rfc_auc = auc(rfc_fpr, rfc_tpr) gnb_auc = auc(gnb_fpr, gnb_tpr) plt.figure(figsize=(8, 6)) plt.plot(rfc_fpr, rfc_tpr, label="Random Forest (AUC = %0.2f)" % rfc_auc) plt.plot(gnb_fpr, gnb_tpr, label="Gaussian NB (AUC = %0.2f)" % gnb_auc) plt.plot([0, 1], [0, 1], "k--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic") plt.legend(loc="lower right") plt.show() rfc_preds = rfc.predict(X_test) gnb_preds = gnb.predict(X_test) rfc_f1 = f1_score(y_test, rfc_preds) gnb_f1 = f1_score(y_test, gnb_preds) print("Random Forest F1 Score: %.2f" % rfc_f1) print("Bayes F1 Score: %.2f" % gnb_f1)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/598/129598879.ipynb
mushroom-classification
null
[{"Id": 129598879, "ScriptId": 38535384, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 13332464, "CreationDate": "05/15/2023 06:32:42", "VersionNumber": 2.0, "Title": "mushroom classification", "EvaluationDate": "05/15/2023", "IsChange": true, "TotalLines": 72.0, "LinesInsertedFromPrevious": 4.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 68.0, "LinesInsertedFromFork": 39.0, "LinesDeletedFromFork": 57.0, "LinesChangedFromFork": 0.0, "LinesUnchangedFromFork": 33.0, "TotalVotes": 0}]
[{"Id": 185830475, "KernelVersionId": 129598879, "SourceDatasetVersionId": 974}]
[{"Id": 974, "DatasetId": 478, "DatasourceVersionId": 974, "CreatorUserId": 495305, "LicenseName": "CC0: Public Domain", "CreationDate": "12/01/2016 23:08:00", "VersionNumber": 1.0, "Title": "Mushroom Classification", "Slug": "mushroom-classification", "Subtitle": "Safe to eat or deadly poison?", "Description": "### Context\n\nAlthough this dataset was originally contributed to the UCI Machine Learning repository nearly 30 years ago, mushroom hunting (otherwise known as \"shrooming\") is enjoying new peaks in popularity. Learn which features spell certain death and which are most palatable in this dataset of mushroom characteristics. And how certain can your model be?\n\n### Content \n\nThis dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family Mushroom drawn from The Audubon Society Field Guide to North American Mushrooms (1981). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like \"leaflets three, let it be'' for Poisonous Oak and Ivy.\n\n- **Time period**: Donated to UCI ML 27 April 1987\n\n### Inspiration\n\n- What types of machine learning models perform best on this dataset?\n\n- Which features are most indicative of a poisonous mushroom?\n\n### Acknowledgements\n\nThis dataset was originally donated to the UCI Machine Learning repository. You can learn more about past research using the data [here][1]. \n\n#[Start a new kernel][2]\n\n\n [1]: https://archive.ics.uci.edu/ml/datasets/Mushroom\n [2]: https://www.kaggle.com/uciml/mushroom-classification/kernels?modal=true", "VersionNotes": "Initial release", "TotalCompressedBytes": 374003.0, "TotalUncompressedBytes": 374003.0}]
[{"Id": 478, "CreatorUserId": 495305, "OwnerUserId": NaN, "OwnerOrganizationId": 7.0, "CurrentDatasetVersionId": 974.0, "CurrentDatasourceVersionId": 974.0, "ForumId": 2099, "Type": 2, "CreationDate": "12/01/2016 23:08:00", "LastActivityDate": "02/06/2018", "TotalViews": 873597, "TotalDownloads": 114985, "TotalVotes": 2206, "TotalKernels": 1371}]
null
# Hanming Jing import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.metrics import roc_curve, auc, f1_score import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split df = pd.read_csv("../input/mushroom-classification/mushrooms.csv") encoder = LabelEncoder() df = df.apply(encoder.fit_transform) df.head() X = df.drop(columns=["class"]) y = df["class"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) print("X_train = ", X_train.shape) print("y_train = ", y_train.shape) print("X_test = ", X_test.shape) print("y_test = ", y_test.shape) rfc = RandomForestClassifier(n_estimators=100, random_state=0) gnb = GaussianNB() rfc.fit(X_train, y_train) gnb.fit(X_train, y_train) rfc_probs = rfc.predict_proba(X_test)[:, 1] gnb_probs = gnb.predict_proba(X_test)[:, 1] rfc_fpr, rfc_tpr, _ = roc_curve(y_test, rfc_probs) gnb_fpr, gnb_tpr, _ = roc_curve(y_test, gnb_probs) rfc_auc = auc(rfc_fpr, rfc_tpr) gnb_auc = auc(gnb_fpr, gnb_tpr) plt.figure(figsize=(8, 6)) plt.plot(rfc_fpr, rfc_tpr, label="Random Forest (AUC = %0.2f)" % rfc_auc) plt.plot(gnb_fpr, gnb_tpr, label="Gaussian NB (AUC = %0.2f)" % gnb_auc) plt.plot([0, 1], [0, 1], "k--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic") plt.legend(loc="lower right") plt.show() rfc_preds = rfc.predict(X_test) gnb_preds = gnb.predict(X_test) rfc_f1 = f1_score(y_test, rfc_preds) gnb_f1 = f1_score(y_test, gnb_preds) print("Random Forest F1 Score: %.2f" % rfc_f1) print("Bayes F1 Score: %.2f" % gnb_f1)
false
0
765
0
1,067
765
129146739
<jupyter_start><jupyter_text>Data science DAY1 Titanic Kaggle dataset identifier: data-science-day1-titanic <jupyter_script># 重庆邮电大学 《人工智能与机器学习》实验课 第2次实验 基础代码 # 利用神经网络模型预测泰坦尼克号乘客能否幸免遇难 # 版本2023.05.10.16.00 # 实验要求: # 1 理解掌握基础代码 # 2 改良基础代码,提升预测准确率 import numpy as np from keras.models import Sequential from keras.layers import Dense import tensorflow.compat.v1 as tf import pandas as pd tf.disable_v2_behavior() # 定义训练、测试和输出文件名 train_file = "./titanic/train.csv" test_file = "./titanic/test.csv" reslut_file = "./titanic/myreslut.csv" # 预测结果写为myresult.csv文件,以便上传到比赛网址进行评分 def train(): # 获取训练数据 train_data = np.genfromtxt( train_file, dtype=float, delimiter=",", skip_header=1, usecols=(6, 10) ) # 之所以这里是6和10,不是5和9,是因为Name属性有逗号分割为了姓和名2个属性 train_label = np.genfromtxt( train_file, dtype=float, delimiter=",", skip_header=1, usecols=(1) ) # 填充缺失值为平均值 tmp = np.nanmean(train_data[:, 0]) np.nan_to_num(train_data[:, 0], nan=tmp, copy=False) tmp = np.nanmean(train_data[:, 1]) np.nan_to_num(train_data[:, 1], nan=tmp, copy=False) # 数据规范化 train_data = train_data / 1000 # 年龄都在100以内,费用都在1000以内,直接除以1000全部规范化到[0,1]区间内 # 搭建神经网络模型 model = Sequential() model.add(Dense(units=4, input_dim=2)) # 2个输入(根据年龄和消费金额),units个输出 model.add( Dense(units=1, activation="sigmoid") ) # 根据上一层默认输出数作为输入数,1输出(输出获救还是遇难),激活函数sigmoid # 编译模型 model.compile(loss="binary_crossentropy", optimizer="sgd", metrics=["accuracy"]) # 训练 t = 0 # 记录迭代次数 T = 50000 # 设置迭代次数 print("开始训练:") while t < T: loss, acc = model.train_on_batch(train_data, train_label) if t % 100 == 0: print(t, ": loss=", loss, "; acc=", acc) t = t + 1 # 累计迭代次数 print("训练完成:") print("共训练", t, "轮") print("最终: loss=", loss, "; acc=", acc) return model def test(model): # 获取测试数据 test_data = np.genfromtxt( test_file, dtype=float, delimiter=",", skip_header=1, usecols=(5, 9) ) # 填充缺失值为平均值 tmp = np.nanmean(test_data[:, 0]) np.nan_to_num(test_data[:, 0], nan=tmp, copy=False) tmp = np.nanmean(test_data[:, 1]) np.nan_to_num(test_data[:, 1], nan=tmp, copy=False) # 数据规范化 test_data = test_data / 1000 # 年龄都在100以内,费用都在1000以内,直接除以1000全部规范化到[0,1]区间内 # 预测 print("开始预测:") y_hat = model.predict(test_data) # 小于0.5的标0,大于等于0.5的标1 y_hat[y_hat < 0.5] = 0 y_hat[y_hat >= 0.5] = 1 # 输出结果文件 tmp = np.arange(892, 1310) # 第一列为乘客序号,从892号到1309号 result_data = np.c_[tmp, y_hat.astype(int)] # 合并两个向量 np.savetxt( reslut_file, result_data, fmt="%d", delimiter=",", header="PassengerId,Survived", comments="", ) print("预测完成,结论已写入文件") if __name__ == "__main__": model = train() # 训练,返回模型 test(model) # 用模型预测 ## 1.导包和读取文件 import os import numpy as np import pandas as pd import tensorflow.compat.v1 as tf tf.disable_v2_behavior() train_data = pd.read_csv("/kaggle/input/titaniccsv/titanic.csv") print(train_data.info()) ## 2.数据清洗 from sklearn.ensemble import RandomForestRegressor age = train_data[["Age", "Survived", "Fare", "Parch", "SibSp", "Pclass"]] age_notnull = age.loc[(train_data.Age.notnull())] age_isnull = age.loc[(train_data.Age.isnull())] X = age_notnull.values[:, 1:] Y = age_notnull.values[:, 0] rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1) rfr.fit(X, Y) predictAges = rfr.predict(age_isnull.values[:, 1:]) train_data.loc[(train_data.Age.isnull()), "Age"] = predictAges train_data.loc[train_data["Sex"] == "male", "Sex"] = 0 train_data.loc[train_data["Sex"] == "female", "Sex"] = 1 train_data["Embarked"] = train_data["Embarked"].fillna("S") train_data.loc[train_data["Embarked"] == "S", "Embarked"] = 0 train_data.loc[train_data["Embarked"] == "C", "Embarked"] = 1 train_data.loc[train_data["Embarked"] == "Q", "Embarked"] = 2 train_data.drop(["Cabin"], axis=1, inplace=True) train_data["Deceased"] = train_data["Survived"].apply(lambda s: 1 - s) train_data.info() ## 3.模型建立 dataset_X = train_data[["Sex", "Age", "Pclass", "SibSp", "Parch", "Fare"]] dataset_Y = train_data[["Deceased", "Survived"]] from sklearn.model_selection import train_test_split X_train, X_val, Y_train, Y_val = train_test_split( dataset_X.iloc[:, :].values, dataset_Y.iloc[:, :].values, test_size=0.2, random_state=42, ) x = tf.placeholder(tf.float32, shape=[None, 6], name="input") y = tf.placeholder(tf.float32, shape=[None, 2], name="label") weights1 = tf.Variable(tf.random_normal([6, 6]), name="weights1") bias1 = tf.Variable(tf.zeros([6]), name="bias1") a = tf.nn.relu(tf.matmul(x, weights1) + bias1) weights2 = tf.Variable(tf.random_normal([6, 2]), name="weights2") bias2 = tf.Variable(tf.zeros([2]), name="bias2") z = tf.matmul(a, weights2) + bias2 y_pred = tf.nn.softmax(z) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=z)) correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1)) acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) train_op = tf.train.AdamOptimizer(0.001).minimize(cost) # 存档入口 # saver = tf.train.Saver() # 在Saver声明之后定义的变量将不会被存储 # non_storable_variable = tf.Variable(777) # ckpt_dir = './ckpt_dir' # if not os.path.exists(ckpt_dir): # os.makedirs(ckpt_dir) with tf.Session() as sess: tf.global_variables_initializer().run() # ckpt = tf.train.latest_checkpoint(ckpt_dir) # if ckpt: # print('Restoring from checkpoint: %s' % ckpt) # saver.restore(sess, ckpt) for epoch in range(30): total_loss = 0.0 for i in range(len(X_train)): feed_dict = {x: [X_train[i]], y: [Y_train[i]]} _, loss = sess.run([train_op, cost], feed_dict=feed_dict) total_loss += loss print("Epoch: %4d, total loss = %.12f" % (epoch, total_loss)) if epoch % 10 == 0: accuracy = sess.run(acc_op, feed_dict={x: X_val, y: Y_val}) print("Accuracy on validation set: %.9f" % accuracy) saver.save(sess, ckpt_dir + "/logistic.ckpt") print("training complete!") accuracy = sess.run(acc_op, feed_dict={x: X_val, y: Y_val}) print("Accuracy on validation set: %.9f" % accuracy) pred = sess.run(y_pred, feed_dict={x: X_val}) correct = np.equal(np.argmax(pred, 1), np.argmax(Y_val, 1)) numpy_accuracy = np.mean(correct.astype(np.float32)) print("Accuracy on validation set (numpy): %.9f" % numpy_accuracy) # saver.save(sess, ckpt_dir + '/logistic.ckpt') """ 测试数据的清洗和训练数据一样,两者可以共同完成 """ # 读测试数据 test_data = pd.read_csv("/kaggle/input/titaniccsv/test.csv") # 数据清洗, 数据预处理 test_data.loc[test_data["Sex"] == "male", "Sex"] = 0 test_data.loc[test_data["Sex"] == "female", "Sex"] = 1 age = test_data[["Age", "Sex", "Parch", "SibSp", "Pclass"]] age_notnull = age.loc[(test_data.Age.notnull())] age_isnull = age.loc[(test_data.Age.isnull())] X = age_notnull.values[:, 1:] Y = age_notnull.values[:, 0] rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1) rfr.fit(X, Y) predictAges = rfr.predict(age_isnull.values[:, 1:]) test_data.loc[(test_data.Age.isnull()), "Age"] = predictAges test_data["Embarked"] = test_data["Embarked"].fillna("S") test_data.loc[test_data["Embarked"] == "S", "Embarked"] = 0 test_data.loc[test_data["Embarked"] == "C", "Embarked"] = 1 test_data.loc[test_data["Embarked"] == "Q", "Embarked"] = 2 test_data.drop(["Cabin"], axis=1, inplace=True) # 特征选择 X_test = test_data[["Sex", "Age", "Pclass", "SibSp", "Parch", "Fare"]] # 评估模型 predictions = np.argmax(sess.run(y_pred, feed_dict={x: X_test}), 1) # 保存结果 submission = pd.DataFrame( {"PassengerId": test_data["PassengerId"], "Survived": predictions} ) submission.to_csv("/kaggle/working/machine-learning-homework-2.csv", index=False)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/146/129146739.ipynb
data-science-day1-titanic
soutarokirihara
[{"Id": 129146739, "ScriptId": 38384735, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14936350, "CreationDate": "05/11/2023 10:42:47", "VersionNumber": 1.0, "Title": "notebook71db19d4f8", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 227.0, "LinesInsertedFromPrevious": 227.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 184937529, "KernelVersionId": 129146739, "SourceDatasetVersionId": 2080558}, {"Id": 184937530, "KernelVersionId": 129146739, "SourceDatasetVersionId": 2361242}]
[{"Id": 2080558, "DatasetId": 1247358, "DatasourceVersionId": 2120923, "CreatorUserId": 7088777, "LicenseName": "Unknown", "CreationDate": "04/02/2021 13:27:16", "VersionNumber": 1.0, "Title": "Data science DAY1 Titanic", "Slug": "data-science-day1-titanic", "Subtitle": NaN, "Description": NaN, "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1247358, "CreatorUserId": 7088777, "OwnerUserId": 7088777.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 2080558.0, "CurrentDatasourceVersionId": 2120923.0, "ForumId": 1265674, "Type": 2, "CreationDate": "04/02/2021 13:27:16", "LastActivityDate": "04/02/2021", "TotalViews": 6175, "TotalDownloads": 385, "TotalVotes": 16, "TotalKernels": 88}]
[{"Id": 7088777, "UserName": "soutarokirihara", "DisplayName": "Soutaro Kirihara", "RegisterDate": "04/02/2021", "PerformanceTier": 0}]
# 重庆邮电大学 《人工智能与机器学习》实验课 第2次实验 基础代码 # 利用神经网络模型预测泰坦尼克号乘客能否幸免遇难 # 版本2023.05.10.16.00 # 实验要求: # 1 理解掌握基础代码 # 2 改良基础代码,提升预测准确率 import numpy as np from keras.models import Sequential from keras.layers import Dense import tensorflow.compat.v1 as tf import pandas as pd tf.disable_v2_behavior() # 定义训练、测试和输出文件名 train_file = "./titanic/train.csv" test_file = "./titanic/test.csv" reslut_file = "./titanic/myreslut.csv" # 预测结果写为myresult.csv文件,以便上传到比赛网址进行评分 def train(): # 获取训练数据 train_data = np.genfromtxt( train_file, dtype=float, delimiter=",", skip_header=1, usecols=(6, 10) ) # 之所以这里是6和10,不是5和9,是因为Name属性有逗号分割为了姓和名2个属性 train_label = np.genfromtxt( train_file, dtype=float, delimiter=",", skip_header=1, usecols=(1) ) # 填充缺失值为平均值 tmp = np.nanmean(train_data[:, 0]) np.nan_to_num(train_data[:, 0], nan=tmp, copy=False) tmp = np.nanmean(train_data[:, 1]) np.nan_to_num(train_data[:, 1], nan=tmp, copy=False) # 数据规范化 train_data = train_data / 1000 # 年龄都在100以内,费用都在1000以内,直接除以1000全部规范化到[0,1]区间内 # 搭建神经网络模型 model = Sequential() model.add(Dense(units=4, input_dim=2)) # 2个输入(根据年龄和消费金额),units个输出 model.add( Dense(units=1, activation="sigmoid") ) # 根据上一层默认输出数作为输入数,1输出(输出获救还是遇难),激活函数sigmoid # 编译模型 model.compile(loss="binary_crossentropy", optimizer="sgd", metrics=["accuracy"]) # 训练 t = 0 # 记录迭代次数 T = 50000 # 设置迭代次数 print("开始训练:") while t < T: loss, acc = model.train_on_batch(train_data, train_label) if t % 100 == 0: print(t, ": loss=", loss, "; acc=", acc) t = t + 1 # 累计迭代次数 print("训练完成:") print("共训练", t, "轮") print("最终: loss=", loss, "; acc=", acc) return model def test(model): # 获取测试数据 test_data = np.genfromtxt( test_file, dtype=float, delimiter=",", skip_header=1, usecols=(5, 9) ) # 填充缺失值为平均值 tmp = np.nanmean(test_data[:, 0]) np.nan_to_num(test_data[:, 0], nan=tmp, copy=False) tmp = np.nanmean(test_data[:, 1]) np.nan_to_num(test_data[:, 1], nan=tmp, copy=False) # 数据规范化 test_data = test_data / 1000 # 年龄都在100以内,费用都在1000以内,直接除以1000全部规范化到[0,1]区间内 # 预测 print("开始预测:") y_hat = model.predict(test_data) # 小于0.5的标0,大于等于0.5的标1 y_hat[y_hat < 0.5] = 0 y_hat[y_hat >= 0.5] = 1 # 输出结果文件 tmp = np.arange(892, 1310) # 第一列为乘客序号,从892号到1309号 result_data = np.c_[tmp, y_hat.astype(int)] # 合并两个向量 np.savetxt( reslut_file, result_data, fmt="%d", delimiter=",", header="PassengerId,Survived", comments="", ) print("预测完成,结论已写入文件") if __name__ == "__main__": model = train() # 训练,返回模型 test(model) # 用模型预测 ## 1.导包和读取文件 import os import numpy as np import pandas as pd import tensorflow.compat.v1 as tf tf.disable_v2_behavior() train_data = pd.read_csv("/kaggle/input/titaniccsv/titanic.csv") print(train_data.info()) ## 2.数据清洗 from sklearn.ensemble import RandomForestRegressor age = train_data[["Age", "Survived", "Fare", "Parch", "SibSp", "Pclass"]] age_notnull = age.loc[(train_data.Age.notnull())] age_isnull = age.loc[(train_data.Age.isnull())] X = age_notnull.values[:, 1:] Y = age_notnull.values[:, 0] rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1) rfr.fit(X, Y) predictAges = rfr.predict(age_isnull.values[:, 1:]) train_data.loc[(train_data.Age.isnull()), "Age"] = predictAges train_data.loc[train_data["Sex"] == "male", "Sex"] = 0 train_data.loc[train_data["Sex"] == "female", "Sex"] = 1 train_data["Embarked"] = train_data["Embarked"].fillna("S") train_data.loc[train_data["Embarked"] == "S", "Embarked"] = 0 train_data.loc[train_data["Embarked"] == "C", "Embarked"] = 1 train_data.loc[train_data["Embarked"] == "Q", "Embarked"] = 2 train_data.drop(["Cabin"], axis=1, inplace=True) train_data["Deceased"] = train_data["Survived"].apply(lambda s: 1 - s) train_data.info() ## 3.模型建立 dataset_X = train_data[["Sex", "Age", "Pclass", "SibSp", "Parch", "Fare"]] dataset_Y = train_data[["Deceased", "Survived"]] from sklearn.model_selection import train_test_split X_train, X_val, Y_train, Y_val = train_test_split( dataset_X.iloc[:, :].values, dataset_Y.iloc[:, :].values, test_size=0.2, random_state=42, ) x = tf.placeholder(tf.float32, shape=[None, 6], name="input") y = tf.placeholder(tf.float32, shape=[None, 2], name="label") weights1 = tf.Variable(tf.random_normal([6, 6]), name="weights1") bias1 = tf.Variable(tf.zeros([6]), name="bias1") a = tf.nn.relu(tf.matmul(x, weights1) + bias1) weights2 = tf.Variable(tf.random_normal([6, 2]), name="weights2") bias2 = tf.Variable(tf.zeros([2]), name="bias2") z = tf.matmul(a, weights2) + bias2 y_pred = tf.nn.softmax(z) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=z)) correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1)) acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) train_op = tf.train.AdamOptimizer(0.001).minimize(cost) # 存档入口 # saver = tf.train.Saver() # 在Saver声明之后定义的变量将不会被存储 # non_storable_variable = tf.Variable(777) # ckpt_dir = './ckpt_dir' # if not os.path.exists(ckpt_dir): # os.makedirs(ckpt_dir) with tf.Session() as sess: tf.global_variables_initializer().run() # ckpt = tf.train.latest_checkpoint(ckpt_dir) # if ckpt: # print('Restoring from checkpoint: %s' % ckpt) # saver.restore(sess, ckpt) for epoch in range(30): total_loss = 0.0 for i in range(len(X_train)): feed_dict = {x: [X_train[i]], y: [Y_train[i]]} _, loss = sess.run([train_op, cost], feed_dict=feed_dict) total_loss += loss print("Epoch: %4d, total loss = %.12f" % (epoch, total_loss)) if epoch % 10 == 0: accuracy = sess.run(acc_op, feed_dict={x: X_val, y: Y_val}) print("Accuracy on validation set: %.9f" % accuracy) saver.save(sess, ckpt_dir + "/logistic.ckpt") print("training complete!") accuracy = sess.run(acc_op, feed_dict={x: X_val, y: Y_val}) print("Accuracy on validation set: %.9f" % accuracy) pred = sess.run(y_pred, feed_dict={x: X_val}) correct = np.equal(np.argmax(pred, 1), np.argmax(Y_val, 1)) numpy_accuracy = np.mean(correct.astype(np.float32)) print("Accuracy on validation set (numpy): %.9f" % numpy_accuracy) # saver.save(sess, ckpt_dir + '/logistic.ckpt') """ 测试数据的清洗和训练数据一样,两者可以共同完成 """ # 读测试数据 test_data = pd.read_csv("/kaggle/input/titaniccsv/test.csv") # 数据清洗, 数据预处理 test_data.loc[test_data["Sex"] == "male", "Sex"] = 0 test_data.loc[test_data["Sex"] == "female", "Sex"] = 1 age = test_data[["Age", "Sex", "Parch", "SibSp", "Pclass"]] age_notnull = age.loc[(test_data.Age.notnull())] age_isnull = age.loc[(test_data.Age.isnull())] X = age_notnull.values[:, 1:] Y = age_notnull.values[:, 0] rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1) rfr.fit(X, Y) predictAges = rfr.predict(age_isnull.values[:, 1:]) test_data.loc[(test_data.Age.isnull()), "Age"] = predictAges test_data["Embarked"] = test_data["Embarked"].fillna("S") test_data.loc[test_data["Embarked"] == "S", "Embarked"] = 0 test_data.loc[test_data["Embarked"] == "C", "Embarked"] = 1 test_data.loc[test_data["Embarked"] == "Q", "Embarked"] = 2 test_data.drop(["Cabin"], axis=1, inplace=True) # 特征选择 X_test = test_data[["Sex", "Age", "Pclass", "SibSp", "Parch", "Fare"]] # 评估模型 predictions = np.argmax(sess.run(y_pred, feed_dict={x: X_test}), 1) # 保存结果 submission = pd.DataFrame( {"PassengerId": test_data["PassengerId"], "Survived": predictions} ) submission.to_csv("/kaggle/working/machine-learning-homework-2.csv", index=False)
false
2
3,148
0
3,177
3,148
129146863
from duckduckgo_search import ddg_images from fastcore.all import * def search_images(term, max_images=30): return L(ddg_images(term, max_results=max_images)).itemgot("image") urls = search_images("pokemon", max_images=10) urls directory = Path("pokemon_or_not") from fastdownload import download_url searches = ["pokemon", "golden retriever"] root_file_name_pokemon = "pokemon" root_file_name_golden_retriever = "golden_retriever" file_ext = ".jpg" for search in searches: path = directory / search path.mkdir(exist_ok=True, parents=True) download_images(path, urls=search_images(f"{search} photo")) resize_images(directory / search, max_size=400, dest=directory / search) data_loaders = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method="squish")], ).dataloaders(directory, bs=32) data_loaders.show_batch(max_n=10)
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/146/129146863.ipynb
null
null
[{"Id": 129146863, "ScriptId": 38392733, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 14949693, "CreationDate": "05/11/2023 10:44:06", "VersionNumber": 2.0, "Title": "Pokemon identification", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 36.0, "LinesInsertedFromPrevious": 23.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 13.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
from duckduckgo_search import ddg_images from fastcore.all import * def search_images(term, max_images=30): return L(ddg_images(term, max_results=max_images)).itemgot("image") urls = search_images("pokemon", max_images=10) urls directory = Path("pokemon_or_not") from fastdownload import download_url searches = ["pokemon", "golden retriever"] root_file_name_pokemon = "pokemon" root_file_name_golden_retriever = "golden_retriever" file_ext = ".jpg" for search in searches: path = directory / search path.mkdir(exist_ok=True, parents=True) download_images(path, urls=search_images(f"{search} photo")) resize_images(directory / search, max_size=400, dest=directory / search) data_loaders = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method="squish")], ).dataloaders(directory, bs=32) data_loaders.show_batch(max_n=10)
false
0
322
0
322
322
129131236
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import ( OrdinalEncoder, OneHotEncoder, StandardScaler, MinMaxScaler, ) from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay from sklearn import datasets from sklearn.datasets import fetch_openml from itertools import product import warnings # Load the digits dataset X, y = datasets.load_digits(return_X_y=True) # MNIST Xm, ym = fetch_openml("mnist_784", version=1, return_X_y=True, as_frame=False) # #### Многоклассовая классификация X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=53 ) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ##### Проверка на нормализованных с помощью StandartScaler данных scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ##### Классификация второго набора Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym, test_size=0.3, random_state=53 ) clf = MLPClassifier() clf.fit(Xm_train, ym_train) clf.score(Xm_test, ym_test) # ##### Нормализация c помощью StandartScaler и проверка scaler = StandardScaler() scaler.fit(Xm_train) Xm_train = scaler.transform(Xm_train) Xm_test = scaler.transform(Xm_test) clf = MLPClassifier() clf.fit(Xm_train, ym_train) clf.score(Xm_test, ym_test) # #### Бинарная классификация на чётные и нечётные цифры # целевой критерий с двумя классами y_binary = [1 if val % 2 != 0 else 0 for val in y] # ##### Разбиение на выборки и проверка классификаторов X_train, X_test, y_train, y_test = train_test_split( X, y_binary, test_size=0.2, random_state=42 ) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # Точность очень высокая, но проверим еще с использованием нормализации scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ф-я проверки работы классификатора mlp def MLP_score(X_train, X_test, y_train, y_test): clf = MLPClassifier() clf.fit(X_train, y_train) print(clf.score(X_test, y_test)) # Приведение категориального типа целевого признака к категориальному ym = ym.astype(np.uint8) ym_binary = [1 if val % 2 != 0 else 0 for val in ym] Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym_binary, test_size=0.2, random_state=42 ) MLP_score(Xm_train, Xm_test, ym_train, ym_test) # #### Бинарная классификация на '0' и остальные цифры # Новый целевой критерий с двумя классами и следующими условиями y_binary = [0 if val == 0 else 1 for val in y] ym_binary = [0 if val == 0 else 1 for val in ym] # Для первого набора X_train, X_test, y_train, y_test = train_test_split( X, y_binary, test_size=0.2, random_state=42 ) MLP_score(X_train, X_test, y_train, y_test) # Для второго набора Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym_binary, test_size=0.2, random_state=42 ) MLP_score(Xm_train, Xm_test, ym_train, ym_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) predictions = clf.predict(X_test) cm = confusion_matrix(y_test, predictions, labels=clf.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_) disp.plot()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/131/129131236.ipynb
null
null
[{"Id": 129131236, "ScriptId": 38345921, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 6796004, "CreationDate": "05/11/2023 08:23:15", "VersionNumber": 1.0, "Title": "t6_digits", "EvaluationDate": "05/11/2023", "IsChange": true, "TotalLines": 147.0, "LinesInsertedFromPrevious": 147.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import ( OrdinalEncoder, OneHotEncoder, StandardScaler, MinMaxScaler, ) from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay from sklearn import datasets from sklearn.datasets import fetch_openml from itertools import product import warnings # Load the digits dataset X, y = datasets.load_digits(return_X_y=True) # MNIST Xm, ym = fetch_openml("mnist_784", version=1, return_X_y=True, as_frame=False) # #### Многоклассовая классификация X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=53 ) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ##### Проверка на нормализованных с помощью StandartScaler данных scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ##### Классификация второго набора Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym, test_size=0.3, random_state=53 ) clf = MLPClassifier() clf.fit(Xm_train, ym_train) clf.score(Xm_test, ym_test) # ##### Нормализация c помощью StandartScaler и проверка scaler = StandardScaler() scaler.fit(Xm_train) Xm_train = scaler.transform(Xm_train) Xm_test = scaler.transform(Xm_test) clf = MLPClassifier() clf.fit(Xm_train, ym_train) clf.score(Xm_test, ym_test) # #### Бинарная классификация на чётные и нечётные цифры # целевой критерий с двумя классами y_binary = [1 if val % 2 != 0 else 0 for val in y] # ##### Разбиение на выборки и проверка классификаторов X_train, X_test, y_train, y_test = train_test_split( X, y_binary, test_size=0.2, random_state=42 ) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # Точность очень высокая, но проверим еще с использованием нормализации scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) # ф-я проверки работы классификатора mlp def MLP_score(X_train, X_test, y_train, y_test): clf = MLPClassifier() clf.fit(X_train, y_train) print(clf.score(X_test, y_test)) # Приведение категориального типа целевого признака к категориальному ym = ym.astype(np.uint8) ym_binary = [1 if val % 2 != 0 else 0 for val in ym] Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym_binary, test_size=0.2, random_state=42 ) MLP_score(Xm_train, Xm_test, ym_train, ym_test) # #### Бинарная классификация на '0' и остальные цифры # Новый целевой критерий с двумя классами и следующими условиями y_binary = [0 if val == 0 else 1 for val in y] ym_binary = [0 if val == 0 else 1 for val in ym] # Для первого набора X_train, X_test, y_train, y_test = train_test_split( X, y_binary, test_size=0.2, random_state=42 ) MLP_score(X_train, X_test, y_train, y_test) # Для второго набора Xm_train, Xm_test, ym_train, ym_test = train_test_split( Xm, ym_binary, test_size=0.2, random_state=42 ) MLP_score(Xm_train, Xm_test, ym_train, ym_test) clf = MLPClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) predictions = clf.predict(X_test) cm = confusion_matrix(y_test, predictions, labels=clf.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_) disp.plot()
false
0
1,603
0
1,603
1,603
129280823
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # The dataset is about the kids being bullied and the data is collected from a region in USA. The dataset contains data about on-school, off-school, cyber bullying, their age, sex, how many times were they physically attacked and involved in physical fighting, how many close friends they have, whether they skip school without permission etc. # ### OnSchool_Bullying_12mo : Bullying on school premesis in the past 12 months (Yes, No) # ### OffSchool_Bullying_12mo : Bullying off school premesis in the past 12 months (Yes, No) # ### Cyberbullying_12mo : Bullying on internet in the past 12 months (Yes, No) # ### Custom_Age : Age of the victim # ### Sex : Gender of the victim # ### Physically_attacked : how many times were they attacked physically # ### Physical_fighting : how many times were they involved by themselves in fighting # ### Felt_lonely : how many times did they feel lonely because of bullying # ### Close_friends : how many close friends did the victim had # ### Days_Unexcused_Absence : how many days did the victim didn't attend the school without informing # ### Supportive_Classmates : how often were their classmates supportive to the victim (rarely, always, sometimes, never etc) # ### Supportive_Parents : how often were their parents supportive to the victim (rarely, always, sometimes, never etc) # ### Persistent_Loneliness : did they feel lonely too often (Yes, No) # ### Unexcused_Absence : did they miss the school without informing (Yes, No) # ### Underweight : was the victim underweight? (Yes, No, Unknown) # ### Overweight : was the victim overweight? (Yes, No, Unknown) # ### Obese : was the victim obese? (Yes, No, Unknown) bully = pd.read_csv("/kaggle/input/bullying/Bullying.csv") bully # #### The column names are too long to be read, hence we rename the columns with appropriate and short names bully bully.drop("record", axis=1, inplace=True) bully # #### The Custom_Age is supposed to be a numerical value but it is object with strings in it, hence we retrieve the interger values and fill the empty values with mean of existing ages bully["Custom_Age"].unique() bully.info() bully["Custom_Age"] = bully["Custom_Age"].str.extract("(\d+)").astype(float) bully["Custom_Age"].replace(" ", 14, inplace=True) bully["Custom_Age"].fillna(14, inplace=True) bully bully["Custom_Age"].unique() # #### In all the columns, there are missing values (not NULL values), hence we replace them with the value which is more frequent in the respective column bully["OnSchool_Bullying_12mo"].unique() bully["OnSchool_Bullying_12mo"].replace(" ", "Yes", inplace=True) bully["OnSchool_Bullying_12mo"].unique() bully["OffSchool_Bullying_12mo"].unique() bully["OffSchool_Bullying_12mo"].replace(" ", "Yes", inplace=True) bully["OffSchool_Bullying_12mo"].unique() bully["Cyberbullying_12mo"].unique() bully["Cyberbullying_12mo"].replace(" ", "Yes", inplace=True) bully["Cyberbullying_12mo"].unique() bully["Sex"].unique() bully["Sex"].value_counts() bully["Sex"].replace(" ", "Male", inplace=True) bully["Sex"].unique() bully["Physically_attacked"].unique() bully["Physically_attacked"].value_counts() bully["Physically_attacked"].replace(1, "1 time", inplace=True) bully["Physically_attacked"].value_counts() bully["Physically_attacked"] = ( bully["Physically_attacked"].str.extract("^(\d+)").astype(float) ) bully["Physically_attacked"].unique() bully["Physical_fighting"].unique() bully["Physical_fighting"].value_counts() bully["Physical_fighting"].replace(" ", "0 times", inplace=True) bully["Physical_fighting"].value_counts() bully["Physical_fighting"] = ( bully["Physical_fighting"].str.extract("^(\d+)").astype(int) ) bully["Physical_fighting"].unique() bully["Felt_lonely"].unique() bully["Felt_lonely"].value_counts() bully["Felt_lonely"].replace(" ", "Never", inplace=True) bully["Felt_lonely"].value_counts() bully["Close_friends"].value_counts() bully["Close_friends"].replace(" ", "3 or more", inplace=True) bully["Close_friends"] = bully["Close_friends"].str.extract("^(\d+)").astype(int) bully["Close_friends"].unique() bully["Days_Unexcused_Absence"].value_counts() bully["Days_Unexcused_Absence"].replace(" ", "0 days", inplace=True) bully["Days_Unexcused_Absence"] = ( bully["Days_Unexcused_Absence"].str.extract("^(\d+)").astype(int) ) bully["Days_Unexcused_Absence"].unique() bully["Supportive_Classmates"].value_counts() bully["Supportive_Classmates"].replace(" ", "Sometimes", inplace=True) bully["Supportive_Classmates"].unique() bully["Supportive_Parents"].value_counts() bully["Supportive_Parents"].replace(" ", "Always", inplace=True) bully["Supportive_Parents"].unique() bully["Persistent_Loneliness"].value_counts() bully["Persistent_Loneliness"].replace(" ", "No", inplace=True) bully["Persistent_Loneliness"].unique() bully["Unexcused_Absence"].value_counts() bully["Unexcused_Absence"].replace(" ", "No", inplace=True) bully["Unexcused_Absence"].unique() # #### For the last 3 columns, we could see there are lot of missing values (almost 40%) and we can't drop those rows as well, since it could be resulting in generating different insights than the original insights. Hence, we replace it with 'Unknown' string bully["Underweight"].value_counts() bully["Underweight"].replace(" ", "Unknown", inplace=True) bully["Underweight"].unique() bully["Overweight"].value_counts() bully["Overweight"].replace(" ", "Unknown", inplace=True) bully["Overweight"].unique() bully["Obese"].value_counts() bully["Obese"].replace(" ", "Unknown", inplace=True) bully["Obese"].unique() bully bully.describe() # #### The data seems to be cleaned with no outliers and no duplicates and no missing data. Hence, we proceed with the analysing the data and generating results from it # ## 1. How prevalent is bullying among the surveyed students? import matplotlib.pyplot as plt # Count the frequency of "Yes" for each type of bullying bullying_counts = bully[ ["OnSchool_Bullying_12mo", "OffSchool_Bullying_12mo", "Cyberbullying_12mo"] ].apply(lambda x: x[x == "Yes"].count()) # Define vibrant colors for each bar colors = ["#FF5F6D", "#FFC371", "#00B9A7"] # Plot the bar chart plt.bar(bullying_counts.index, bullying_counts.values, color=colors) # Add counts on top of each bar for i, count in enumerate(bullying_counts.values): plt.text(i, count, str(count), ha="center", va="bottom", fontweight="bold") # Set the labels and title plt.xlabel("Bullying Type") plt.ylabel("Frequency") plt.title("Prevalence of Bullying Among Surveyed Students") # Update x-axis tick labels plt.xticks(range(len(bullying_counts.index)), ["On-School", "Off-School", "Cyber"]) # Show the plot plt.show() # #### Students are often bullied on premisis i.e; on school but bullying tends to continue off school and on the internet as well. # ## 2. Are there any gender differences in bullying experiences? import matplotlib.pyplot as plt # Filter the dataset for rows where OnSchool_Bullying_12mo is 'Yes' on_school_bullying_yes = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each gender on_school_gender_counts = on_school_bullying_yes["Sex"].value_counts() # Filter the dataset for rows where OffSchool_Bullying_12mo is 'Yes' off_school_bullying_yes = bully[bully["OffSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each gender off_school_gender_counts = off_school_bullying_yes["Sex"].value_counts() # Filter the dataset for rows where Cyberbullying_12mo is 'Yes' cyber_bullying_yes = bully[bully["Cyberbullying_12mo"] == "Yes"] # Count the occurrences of each gender cyber_bullying_gender_counts = cyber_bullying_yes["Sex"].value_counts() # Set the colors for males and females colors = ["#FF5F6D", "#00B9A7"] # Plot the stacked bar chart plt.bar( ["On-School", "Off-School", "Cyber"], [ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ], color=colors[0], label="Male", ) plt.bar( ["On-School", "Off-School", "Cyber"], [ on_school_gender_counts["Female"], off_school_gender_counts["Female"], cyber_bullying_gender_counts["Female"], ], bottom=[ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ], color=colors[1], label="Female", ) # Add count values for males for i, count in enumerate( [ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ] ): plt.text( i, count / 2, str(count), ha="center", va="center", color="white", fontweight="bold", ) # Add count values for females for i, count in enumerate( [ on_school_gender_counts["Female"], off_school_gender_counts["Female"], cyber_bullying_gender_counts["Female"], ] ): plt.text( i, count / 2 + on_school_gender_counts["Male"], str(count), ha="center", va="center", color="white", fontweight="bold", ) # Set the labels and title plt.xlabel("Bullying Type") plt.ylabel("Count") plt.title("Gender Differences in Bullying Experiences") # Add a legend plt.legend() # Show the plot plt.show() # #### From the above plot, it could be seen that the victims are higher if they are 'Females' in all the categories. In cyber-bullying, it's almost double than that of Male victims. # ## 3. How does the number of close friends relate to the feeling of loneliness due to bullying? import matplotlib.pyplot as plt import numpy as np # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Define colors for the bar graph bar_colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple"] # Define colors for the line graphs line_colors = ["tab:gray", "tab:cyan", "tab:pink", "tab:olive"] # Count the occurrences of each value in 'Felt_Lonely' column loneliness_counts = bullying_yes_df["Felt_lonely"].value_counts() # Get unique values of 'Close_friends' close_friends_values = np.sort(bullying_yes_df["Close_friends"].unique()) # Initialize a figure with two y-axes fig, ax1 = plt.subplots() # Plot the bar graph for 'Felt_Lonely' counts ax1.bar(loneliness_counts.index, loneliness_counts.values, color=bar_colors) ax1.set_xlabel("Felt Loneliness") ax1.set_ylabel("Count", color="black") ax1.tick_params("y", colors="black") # Create line graphs for each value of 'Close_friends' ax2 = ax1.twinx() for i, close_friends_value in enumerate(close_friends_values): close_friends_count = bullying_yes_df[ bullying_yes_df["Close_friends"] == close_friends_value ]["Felt_lonely"].value_counts() ax2.plot( close_friends_count.reindex(loneliness_counts.index).index, close_friends_count.reindex(loneliness_counts.index).values, marker="o", label=f"Close Friends: {close_friends_value}", color=line_colors[i % len(line_colors)], ) ax2.set_ylabel("Number of Close Friends") ax2.tick_params("y") # Set the title and legends plt.title("Count of Felt Loneliness and Number of Close Friends") lines, labels = ax2.get_legend_handles_labels() ax2.legend(lines, labels, loc="upper right") # Rotate the x-axis labels vertically plt.xticks(rotation=90) # Adjust the layout and show the plot fig.tight_layout() plt.show() # #### Victims tend to feel lonely more only sometimes and number of close friends also have the same effect in feeling lonely, for every count of friend the victim has, the more lonely a victim feels is just sometimes during a period of bullying # ## 4. Are there any differences in the level of support from classmates and parents? bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each level of support from classmates classmates_support_counts = bullying_yes_df["Supportive_Classmates"].value_counts() # Count the occurrences of each level of support from parents parents_support_counts = bullying_yes_df["Supportive_Parents"].value_counts() # Get the unique support levels support_levels = bullying_yes_df["Supportive_Classmates"].unique() # Set the width of the bars bar_width = 0.35 # Set the positions of the bars on the x-axis r1 = range(len(support_levels)) r2 = [x + bar_width for x in r1] # Create a grouped bar chart plt.bar( r1, classmates_support_counts, color="tab:blue", width=bar_width, label="Classmates" ) plt.bar( r2, parents_support_counts, color="tab:orange", width=bar_width, label="Parents" ) # Set the x-axis labels and tick positions plt.xlabel("Support Level") plt.ylabel("Count") plt.xticks([r + bar_width / 2 for r in range(len(support_levels))], support_levels) # Set the title and legend plt.title("Comparison of Support from Classmates and Parents") plt.legend() # Show the plot plt.show() # #### From the above graph, it could be said that the parents are more supportive when a child is being bullied rather than friends. The parents are more supportive when the support levels are 'Most of the time' and 'Always' which might be a good sign for a victim # ## 5. Does persistent loneliness have an impact on school attendance? import matplotlib.pyplot as plt import seaborn as sns # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Select the attendance data for students with and without persistent loneliness attendance_with_loneliness = bullying_yes_df[ bullying_yes_df["Persistent_Loneliness"] == "Yes" ]["Days_Unexcused_Absence"] attendance_without_loneliness = bullying_yes_df[ bullying_yes_df["Persistent_Loneliness"] == "No" ]["Days_Unexcused_Absence"] # Combine the attendance data into a single DataFrame attendance_data = pd.DataFrame( { "With Persistent Loneliness": attendance_with_loneliness, "Without Persistent Loneliness": attendance_without_loneliness, } ) # Create a violin plot to compare attendance sns.violinplot(data=attendance_data) # Set the labels and title plt.xlabel("Persistent Loneliness") plt.ylabel("Days of Unexcused Absence") plt.title("Impact of Persistent Loneliness on School Attendance") # Show the plot plt.show() # #### It could be said that the loneliness might not be a factor for school attendence since a victim with and without loneliness tend to have close to 0 unexcused leaves but students without loneliness tends to be going to school regularly. # ## 6. Is there a relationship between weight status (underweight, overweight, obese) and bullying experiences? import matplotlib.pyplot as plt # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] on_school_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) bullying_yes_df = bully[bully["OffSchool_Bullying_12mo"] == "Yes"] off_school_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) bullying_yes_df = bully[bully["Cyberbullying_12mo"] == "Yes"] cyber_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) # Get the unique weight statuses weight_statuses = ["On-School", "Off-School", "Cyber"] # Set the width of the bars bar_width = 0.3 # Set the positions of the bars on the x-axis r1 = range(len(weight_statuses)) r2 = [x + bar_width for x in r1] r3 = [x + 2 * bar_width for x in r1] # Create a grouped bar chart plt.bar(r1, on_school_counts[0], color="tab:blue", width=bar_width, label="Underweight") plt.bar( r2, on_school_counts[1], color="tab:orange", width=bar_width, label="Overweight" ) plt.bar(r3, on_school_counts[2], color="tab:green", width=bar_width, label="Obese") # Set the x-axis labels and tick positions plt.xlabel("Bullying Type") plt.ylabel("Count") plt.xticks([r + bar_width for r in range(len(weight_statuses))], weight_statuses) # Set the title and legend plt.title("Weight Status by Bullying Type") plt.legend() # Show the plot plt.show()
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/280/129280823.ipynb
null
null
[{"Id": 129280823, "ScriptId": 38393769, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8605824, "CreationDate": "05/12/2023 12:15:58", "VersionNumber": 2.0, "Title": "Bullying_Analysis", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 415.0, "LinesInsertedFromPrevious": 278.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 137.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 1}]
null
null
null
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # # The dataset is about the kids being bullied and the data is collected from a region in USA. The dataset contains data about on-school, off-school, cyber bullying, their age, sex, how many times were they physically attacked and involved in physical fighting, how many close friends they have, whether they skip school without permission etc. # ### OnSchool_Bullying_12mo : Bullying on school premesis in the past 12 months (Yes, No) # ### OffSchool_Bullying_12mo : Bullying off school premesis in the past 12 months (Yes, No) # ### Cyberbullying_12mo : Bullying on internet in the past 12 months (Yes, No) # ### Custom_Age : Age of the victim # ### Sex : Gender of the victim # ### Physically_attacked : how many times were they attacked physically # ### Physical_fighting : how many times were they involved by themselves in fighting # ### Felt_lonely : how many times did they feel lonely because of bullying # ### Close_friends : how many close friends did the victim had # ### Days_Unexcused_Absence : how many days did the victim didn't attend the school without informing # ### Supportive_Classmates : how often were their classmates supportive to the victim (rarely, always, sometimes, never etc) # ### Supportive_Parents : how often were their parents supportive to the victim (rarely, always, sometimes, never etc) # ### Persistent_Loneliness : did they feel lonely too often (Yes, No) # ### Unexcused_Absence : did they miss the school without informing (Yes, No) # ### Underweight : was the victim underweight? (Yes, No, Unknown) # ### Overweight : was the victim overweight? (Yes, No, Unknown) # ### Obese : was the victim obese? (Yes, No, Unknown) bully = pd.read_csv("/kaggle/input/bullying/Bullying.csv") bully # #### The column names are too long to be read, hence we rename the columns with appropriate and short names bully bully.drop("record", axis=1, inplace=True) bully # #### The Custom_Age is supposed to be a numerical value but it is object with strings in it, hence we retrieve the interger values and fill the empty values with mean of existing ages bully["Custom_Age"].unique() bully.info() bully["Custom_Age"] = bully["Custom_Age"].str.extract("(\d+)").astype(float) bully["Custom_Age"].replace(" ", 14, inplace=True) bully["Custom_Age"].fillna(14, inplace=True) bully bully["Custom_Age"].unique() # #### In all the columns, there are missing values (not NULL values), hence we replace them with the value which is more frequent in the respective column bully["OnSchool_Bullying_12mo"].unique() bully["OnSchool_Bullying_12mo"].replace(" ", "Yes", inplace=True) bully["OnSchool_Bullying_12mo"].unique() bully["OffSchool_Bullying_12mo"].unique() bully["OffSchool_Bullying_12mo"].replace(" ", "Yes", inplace=True) bully["OffSchool_Bullying_12mo"].unique() bully["Cyberbullying_12mo"].unique() bully["Cyberbullying_12mo"].replace(" ", "Yes", inplace=True) bully["Cyberbullying_12mo"].unique() bully["Sex"].unique() bully["Sex"].value_counts() bully["Sex"].replace(" ", "Male", inplace=True) bully["Sex"].unique() bully["Physically_attacked"].unique() bully["Physically_attacked"].value_counts() bully["Physically_attacked"].replace(1, "1 time", inplace=True) bully["Physically_attacked"].value_counts() bully["Physically_attacked"] = ( bully["Physically_attacked"].str.extract("^(\d+)").astype(float) ) bully["Physically_attacked"].unique() bully["Physical_fighting"].unique() bully["Physical_fighting"].value_counts() bully["Physical_fighting"].replace(" ", "0 times", inplace=True) bully["Physical_fighting"].value_counts() bully["Physical_fighting"] = ( bully["Physical_fighting"].str.extract("^(\d+)").astype(int) ) bully["Physical_fighting"].unique() bully["Felt_lonely"].unique() bully["Felt_lonely"].value_counts() bully["Felt_lonely"].replace(" ", "Never", inplace=True) bully["Felt_lonely"].value_counts() bully["Close_friends"].value_counts() bully["Close_friends"].replace(" ", "3 or more", inplace=True) bully["Close_friends"] = bully["Close_friends"].str.extract("^(\d+)").astype(int) bully["Close_friends"].unique() bully["Days_Unexcused_Absence"].value_counts() bully["Days_Unexcused_Absence"].replace(" ", "0 days", inplace=True) bully["Days_Unexcused_Absence"] = ( bully["Days_Unexcused_Absence"].str.extract("^(\d+)").astype(int) ) bully["Days_Unexcused_Absence"].unique() bully["Supportive_Classmates"].value_counts() bully["Supportive_Classmates"].replace(" ", "Sometimes", inplace=True) bully["Supportive_Classmates"].unique() bully["Supportive_Parents"].value_counts() bully["Supportive_Parents"].replace(" ", "Always", inplace=True) bully["Supportive_Parents"].unique() bully["Persistent_Loneliness"].value_counts() bully["Persistent_Loneliness"].replace(" ", "No", inplace=True) bully["Persistent_Loneliness"].unique() bully["Unexcused_Absence"].value_counts() bully["Unexcused_Absence"].replace(" ", "No", inplace=True) bully["Unexcused_Absence"].unique() # #### For the last 3 columns, we could see there are lot of missing values (almost 40%) and we can't drop those rows as well, since it could be resulting in generating different insights than the original insights. Hence, we replace it with 'Unknown' string bully["Underweight"].value_counts() bully["Underweight"].replace(" ", "Unknown", inplace=True) bully["Underweight"].unique() bully["Overweight"].value_counts() bully["Overweight"].replace(" ", "Unknown", inplace=True) bully["Overweight"].unique() bully["Obese"].value_counts() bully["Obese"].replace(" ", "Unknown", inplace=True) bully["Obese"].unique() bully bully.describe() # #### The data seems to be cleaned with no outliers and no duplicates and no missing data. Hence, we proceed with the analysing the data and generating results from it # ## 1. How prevalent is bullying among the surveyed students? import matplotlib.pyplot as plt # Count the frequency of "Yes" for each type of bullying bullying_counts = bully[ ["OnSchool_Bullying_12mo", "OffSchool_Bullying_12mo", "Cyberbullying_12mo"] ].apply(lambda x: x[x == "Yes"].count()) # Define vibrant colors for each bar colors = ["#FF5F6D", "#FFC371", "#00B9A7"] # Plot the bar chart plt.bar(bullying_counts.index, bullying_counts.values, color=colors) # Add counts on top of each bar for i, count in enumerate(bullying_counts.values): plt.text(i, count, str(count), ha="center", va="bottom", fontweight="bold") # Set the labels and title plt.xlabel("Bullying Type") plt.ylabel("Frequency") plt.title("Prevalence of Bullying Among Surveyed Students") # Update x-axis tick labels plt.xticks(range(len(bullying_counts.index)), ["On-School", "Off-School", "Cyber"]) # Show the plot plt.show() # #### Students are often bullied on premisis i.e; on school but bullying tends to continue off school and on the internet as well. # ## 2. Are there any gender differences in bullying experiences? import matplotlib.pyplot as plt # Filter the dataset for rows where OnSchool_Bullying_12mo is 'Yes' on_school_bullying_yes = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each gender on_school_gender_counts = on_school_bullying_yes["Sex"].value_counts() # Filter the dataset for rows where OffSchool_Bullying_12mo is 'Yes' off_school_bullying_yes = bully[bully["OffSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each gender off_school_gender_counts = off_school_bullying_yes["Sex"].value_counts() # Filter the dataset for rows where Cyberbullying_12mo is 'Yes' cyber_bullying_yes = bully[bully["Cyberbullying_12mo"] == "Yes"] # Count the occurrences of each gender cyber_bullying_gender_counts = cyber_bullying_yes["Sex"].value_counts() # Set the colors for males and females colors = ["#FF5F6D", "#00B9A7"] # Plot the stacked bar chart plt.bar( ["On-School", "Off-School", "Cyber"], [ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ], color=colors[0], label="Male", ) plt.bar( ["On-School", "Off-School", "Cyber"], [ on_school_gender_counts["Female"], off_school_gender_counts["Female"], cyber_bullying_gender_counts["Female"], ], bottom=[ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ], color=colors[1], label="Female", ) # Add count values for males for i, count in enumerate( [ on_school_gender_counts["Male"], off_school_gender_counts["Male"], cyber_bullying_gender_counts["Male"], ] ): plt.text( i, count / 2, str(count), ha="center", va="center", color="white", fontweight="bold", ) # Add count values for females for i, count in enumerate( [ on_school_gender_counts["Female"], off_school_gender_counts["Female"], cyber_bullying_gender_counts["Female"], ] ): plt.text( i, count / 2 + on_school_gender_counts["Male"], str(count), ha="center", va="center", color="white", fontweight="bold", ) # Set the labels and title plt.xlabel("Bullying Type") plt.ylabel("Count") plt.title("Gender Differences in Bullying Experiences") # Add a legend plt.legend() # Show the plot plt.show() # #### From the above plot, it could be seen that the victims are higher if they are 'Females' in all the categories. In cyber-bullying, it's almost double than that of Male victims. # ## 3. How does the number of close friends relate to the feeling of loneliness due to bullying? import matplotlib.pyplot as plt import numpy as np # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Define colors for the bar graph bar_colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple"] # Define colors for the line graphs line_colors = ["tab:gray", "tab:cyan", "tab:pink", "tab:olive"] # Count the occurrences of each value in 'Felt_Lonely' column loneliness_counts = bullying_yes_df["Felt_lonely"].value_counts() # Get unique values of 'Close_friends' close_friends_values = np.sort(bullying_yes_df["Close_friends"].unique()) # Initialize a figure with two y-axes fig, ax1 = plt.subplots() # Plot the bar graph for 'Felt_Lonely' counts ax1.bar(loneliness_counts.index, loneliness_counts.values, color=bar_colors) ax1.set_xlabel("Felt Loneliness") ax1.set_ylabel("Count", color="black") ax1.tick_params("y", colors="black") # Create line graphs for each value of 'Close_friends' ax2 = ax1.twinx() for i, close_friends_value in enumerate(close_friends_values): close_friends_count = bullying_yes_df[ bullying_yes_df["Close_friends"] == close_friends_value ]["Felt_lonely"].value_counts() ax2.plot( close_friends_count.reindex(loneliness_counts.index).index, close_friends_count.reindex(loneliness_counts.index).values, marker="o", label=f"Close Friends: {close_friends_value}", color=line_colors[i % len(line_colors)], ) ax2.set_ylabel("Number of Close Friends") ax2.tick_params("y") # Set the title and legends plt.title("Count of Felt Loneliness and Number of Close Friends") lines, labels = ax2.get_legend_handles_labels() ax2.legend(lines, labels, loc="upper right") # Rotate the x-axis labels vertically plt.xticks(rotation=90) # Adjust the layout and show the plot fig.tight_layout() plt.show() # #### Victims tend to feel lonely more only sometimes and number of close friends also have the same effect in feeling lonely, for every count of friend the victim has, the more lonely a victim feels is just sometimes during a period of bullying # ## 4. Are there any differences in the level of support from classmates and parents? bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Count the occurrences of each level of support from classmates classmates_support_counts = bullying_yes_df["Supportive_Classmates"].value_counts() # Count the occurrences of each level of support from parents parents_support_counts = bullying_yes_df["Supportive_Parents"].value_counts() # Get the unique support levels support_levels = bullying_yes_df["Supportive_Classmates"].unique() # Set the width of the bars bar_width = 0.35 # Set the positions of the bars on the x-axis r1 = range(len(support_levels)) r2 = [x + bar_width for x in r1] # Create a grouped bar chart plt.bar( r1, classmates_support_counts, color="tab:blue", width=bar_width, label="Classmates" ) plt.bar( r2, parents_support_counts, color="tab:orange", width=bar_width, label="Parents" ) # Set the x-axis labels and tick positions plt.xlabel("Support Level") plt.ylabel("Count") plt.xticks([r + bar_width / 2 for r in range(len(support_levels))], support_levels) # Set the title and legend plt.title("Comparison of Support from Classmates and Parents") plt.legend() # Show the plot plt.show() # #### From the above graph, it could be said that the parents are more supportive when a child is being bullied rather than friends. The parents are more supportive when the support levels are 'Most of the time' and 'Always' which might be a good sign for a victim # ## 5. Does persistent loneliness have an impact on school attendance? import matplotlib.pyplot as plt import seaborn as sns # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] # Select the attendance data for students with and without persistent loneliness attendance_with_loneliness = bullying_yes_df[ bullying_yes_df["Persistent_Loneliness"] == "Yes" ]["Days_Unexcused_Absence"] attendance_without_loneliness = bullying_yes_df[ bullying_yes_df["Persistent_Loneliness"] == "No" ]["Days_Unexcused_Absence"] # Combine the attendance data into a single DataFrame attendance_data = pd.DataFrame( { "With Persistent Loneliness": attendance_with_loneliness, "Without Persistent Loneliness": attendance_without_loneliness, } ) # Create a violin plot to compare attendance sns.violinplot(data=attendance_data) # Set the labels and title plt.xlabel("Persistent Loneliness") plt.ylabel("Days of Unexcused Absence") plt.title("Impact of Persistent Loneliness on School Attendance") # Show the plot plt.show() # #### It could be said that the loneliness might not be a factor for school attendence since a victim with and without loneliness tend to have close to 0 unexcused leaves but students without loneliness tends to be going to school regularly. # ## 6. Is there a relationship between weight status (underweight, overweight, obese) and bullying experiences? import matplotlib.pyplot as plt # Filter the dataset for rows where bullying is 'Yes' bullying_yes_df = bully[bully["OnSchool_Bullying_12mo"] == "Yes"] on_school_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) bullying_yes_df = bully[bully["OffSchool_Bullying_12mo"] == "Yes"] off_school_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) bullying_yes_df = bully[bully["Cyberbullying_12mo"] == "Yes"] cyber_counts = ( bullying_yes_df["Underweight"].value_counts(), bullying_yes_df["Overweight"].value_counts(), bullying_yes_df["Obese"].value_counts(), ) # Get the unique weight statuses weight_statuses = ["On-School", "Off-School", "Cyber"] # Set the width of the bars bar_width = 0.3 # Set the positions of the bars on the x-axis r1 = range(len(weight_statuses)) r2 = [x + bar_width for x in r1] r3 = [x + 2 * bar_width for x in r1] # Create a grouped bar chart plt.bar(r1, on_school_counts[0], color="tab:blue", width=bar_width, label="Underweight") plt.bar( r2, on_school_counts[1], color="tab:orange", width=bar_width, label="Overweight" ) plt.bar(r3, on_school_counts[2], color="tab:green", width=bar_width, label="Obese") # Set the x-axis labels and tick positions plt.xlabel("Bullying Type") plt.ylabel("Count") plt.xticks([r + bar_width for r in range(len(weight_statuses))], weight_statuses) # Set the title and legend plt.title("Weight Status by Bullying Type") plt.legend() # Show the plot plt.show()
false
0
5,288
1
5,288
5,288
129280768
<jupyter_start><jupyter_text>Diabetic Retinopathy (resized) # Diabetic Retinopathy Detection Competition Dataset Resized/Cropped In this dataset, I have included both a resized version of the dataset, and a cropped then resized version of the data. ## trainLabels.csv This file contains the name of the file under the 'image' column and the label under the 'level' column. ## resized_train: This folder was created by simply resizing the dataset to 1024x1024 if it is bigger than this size, else it remains the same. The code used to create this dataset is: import glob import os from tqdm import tqdm import math from PIL import Image files = glob.glob('D:\\Experiments with Deep Learning\\DR Kaggle\\train\\train\\train\\*.jpeg') new_width = 1024 for i in tqdm(range(len(files))): img = Image.open(files[i]) width,height = img.size ratio = height/width if width &gt; new_width: new_image = img.resize((new_width,math.ceil(ratio*new_width))) else: new_image = img new_image.save('D:\\Experiments with Deep Learning\\DR Kaggle\\train\\train\\resized_train\\'+os.path.basename(files[i])) ` ## resized_train_cropped: In this case, as much of the black space is cropped out by trying to identify the center and radius of the circle of the fundus image. Some of the images turned out to be fully black or very close to fully black, and no mask was found. Hence, those images were manually removed. There may still be some noisy images remaining, however. The code used to create this dataset is: # import the necessary packages import numpy as np import cv2 import glob import os from tqdm import tqdm import math from PIL import Image files = glob.glob('D:\\Experiments with Deep Learning\\DR Kaggle\\train\\train\\train\\*.jpeg') new_sz = 1024 def crop_image(image): output = image.copy() gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret,gray = cv2.threshold(gray,10,255,cv2.THRESH_BINARY) contours,hierarchy = cv2.findContours(gray,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) if not contours: print('no contours!') flag = 0 return image, flag cnt = max(contours, key=cv2.contourArea) ((x, y), r) = cv2.minEnclosingCircle(cnt) x = int(x); y = int(y); r = int(r) flag = 1 #print(x,y,r) if r &gt; 100: return output[0 + (y-r)*int(r Kaggle dataset identifier: diabetic-retinopathy-resized <jupyter_script>import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau sns.set(style="white", context="notebook", palette="deep") from PIL import Image import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) data_dir = "/kaggle/input/diabetic-retinopathy-resized/resized_train/resized_train" # print('Number of training images:', len(os.listdir(data_dir))) cropped_data_dir = "/kaggle/input/diabetic-retinopathy-resized/resized_train_cropped/resized_train_cropped/" # print('Number of training images:', len(os.listdir(cropped_data_dir))) train_labels = pd.read_csv("../input/diabetic-retinopathy-resized/trainLabels.csv") train_labels.shape # Check the data train_labels.isnull().any().describe() train_labels.head() train_labels.tail() sample_img = Image.open(os.path.join(data_dir, os.listdir(data_dir)[0])) print("Image size:", sample_img.size) sample_img = Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[0])) print("Image size:", sample_img.size) f, axarr = plt.subplots(2, 2) axarr[0, 0].imshow(Image.open(os.path.join(data_dir, os.listdir(data_dir)[0]))) axarr[0, 1].imshow( Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[0])) ) axarr[1, 0].imshow(Image.open(os.path.join(data_dir, os.listdir(data_dir)[1]))) axarr[1, 1].imshow( Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[1])) ) # **Check Data Distribution** widths = [] heights = [] for img_file in os.listdir(data_dir): img = Image.open(os.path.join(data_dir, img_file)) width, height = img.size widths.append(width) heights.append(height) print("Average image size:", np.mean(widths), "x", np.mean(heights)) # Check the distribution of image sizes fig, axs = plt.subplots(1, 2, figsize=(15, 6)) axs[0].hist(widths, bins=50) axs[0].set_xlabel("Image width") axs[0].set_ylabel("Frequency") axs[1].hist(heights, bins=50) axs[1].set_xlabel("Image height") axs[1].set_ylabel("Frequency") plt.show() # Check the distribution of image modes modes = [] for img_file in os.listdir(data_dir): img = Image.open(os.path.join(data_dir, img_file)) modes.append(img.mode) print("Image modes:", set(modes)) # **Check for class distribution** # labels_df = pd.read_csv('../input/diabetic-retinopathy-resized/trainLabels.csv') train_labels["level"].hist(bins=5) plt.xlabel("Class") plt.ylabel("Frequency") plt.title("Class Distribution") plt.show() # **Converting images into their pixel values as 1D array in CSV file** import cv2 IMG_DIR = data_dir # Read train_labels.csv to obtain the image name sequence df_train = train_labels image_sequence = df_train["image"].values with open("eye_train.csv", "wb") as f: for img_name in image_sequence: img_path = os.path.join(IMG_DIR, img_name + ".jpeg") # Process the image img_array = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # if img_array is not None: img_pil = Image.fromarray(img_array) img_28x28 = np.array(img_pil.resize((28, 28), Image.ANTIALIAS)) img_array = img_28x28.flatten() # Normalize the images img_array = img_array / 255.0 # Save the image pixel values to the CSV file np.savetxt(f, img_array.reshape(1, -1), delimiter=",", header="") # else: # print(f"Failed to load image: {img_name}") # import os # os.remove("/#kaggle/working/eye_train.csv") train_labels.image.unique().shape df_eye_train = pd.read_csv( "eye_train.csv", header=None, skiprows=1 ) # not reading the column names # retrieving column names as a list column_names = pd.read_csv("eye_train.csv", nrows=1, header=None).values[0] df_eye_train.loc[-1] = column_names # adding at index -1 df_eye_train.index = df_eye_train.index + 1 # resetting index df_eye_train = df_eye_train.sort_index().reset_index( drop=True ) # resetting index to start from 0 df_eye_train.tail() df_eye_train.shape Y_train = train_labels["level"] Y_train[135:145] # ## **Performing Classification through CNN** # **Label Encoding** Y_train = to_categorical(Y_train, num_classes=5) Y_train[135:145] # **Split into training and validation set** # Set the random seed random_seed = 2 # Reshape image i 3 dimensions (height = 28px, width = 28px , channal = 1) df_eye_train = df_eye_train.values.reshape(-1, 28, 28, 1) df_eye_train.shape Y_train.shape # Split the train and the validation set for the fitting (80:20% split) X_train, X_val, Y_train, Y_val = train_test_split( df_eye_train, Y_train, test_size=0.2, random_state=random_seed ) X_train.shape Y_train.shape # ## **CNN** # Set the CNN model # my CNN architechture is In -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out model = Sequential() model.add( Conv2D( filters=32, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=(28, 28, 1), ) ) model.add(Conv2D(filters=32, kernel_size=(5, 5), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(5, activation="softmax")) # ### **Defining Optimiser and Annealer** # Define the optimizer optimizer = RMSprop(learning_rate=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # Compile the model model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) # Set a learning rate annealer learning_rate_reduction = ReduceLROnPlateau( monitor="val_acc", patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) epochs = 30 batch_size = 100 # Fit the model history = model.fit( X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, Y_val), ) # ## **Evaluating the Model** # **Training and Validation curves** # Retrieve the training and validation loss values train_loss = history.history["loss"] val_loss = history.history["val_loss"] # Retrieve the training and validation accuracy values train_acc = history.history["accuracy"] val_acc = history.history["val_accuracy"] # Plot the loss curves plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss, label="Training Loss") plt.plot(val_loss, label="Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.title("Loss Curves") plt.legend() # Plot the accuracy curves plt.subplot(1, 2, 2) plt.plot(train_acc, label="Training Accuracy") plt.plot(val_acc, label="Validation Accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.title("Accuracy Curves") plt.legend() # Display the plot plt.tight_layout() plt.show() # Look at confusion matrix def plot_confusion_matrix( cm, classes, normalize=False, title="Confusion matrix", cmap=plt.cm.Blues ): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation="nearest", cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2.0 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text( j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", ) plt.tight_layout() plt.ylabel("True label") plt.xlabel("Predicted label") # Predict the values from the validation dataset Y_pred = model.predict(X_val) # Convert predictions classes to one hot vectors Y_pred_classes = np.argmax(Y_pred, axis=1) # Convert validation observations to one hot vectors Y_true = np.argmax(Y_val, axis=1) # compute the confusion matrix confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) # plot the confusion matrix plot_confusion_matrix(confusion_mtx, classes=range(10)) # Display some error results # Errors are difference between predicted labels and true labels errors = Y_pred_classes - Y_true != 0 Y_pred_classes_errors = Y_pred_classes[errors] Y_pred_errors = Y_pred[errors] Y_true_errors = Y_true[errors] X_val_errors = X_val[errors] def display_errors(errors_index, img_errors, pred_errors, obs_errors): """This function shows 6 images with their predicted and real labels""" n = 0 nrows = 2 ncols = 3 fig, ax = plt.subplots(nrows, ncols, sharex=True, sharey=True) for row in range(nrows): for col in range(ncols): error = errors_index[n] ax[row, col].imshow((img_errors[error]).reshape((28, 28))) ax[row, col].set_title( "Predicted label :{}\nTrue label :{}".format( pred_errors[error], obs_errors[error] ) ) n += 1 # Probabilities of the wrong predicted numbers Y_pred_errors_prob = np.max(Y_pred_errors, axis=1) # Predicted probabilities of the true values in the error set true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1)) # Difference between the probability of the predicted label and the true label delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors # Sorted list of the delta prob errors sorted_dela_errors = np.argsort(delta_pred_true_errors) # Top 6 errors most_important_errors = sorted_dela_errors[-6:] # Show the top 6 errors display_errors( most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors ) # ## **Performing Classification through AlexNet** # # AlexNet # ## For AlexNet, input size should be 227x227x3. For this, another csv should be created and passed to the model. It is extremely time-consuming. And time is running out!!!! # Define the AlexNet model model = Sequential() # Layer 1: Convolutional Layer model.add( Conv2D( filters=96, kernel_size=(11, 11), strides=(4, 4), activation="relu", input_shape=(227, 227, 3), ) ) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Layer 2: Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1, 1), activation="relu")) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Layer 3: Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation="relu")) # Layer 4: Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation="relu")) # Layer 5: Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), activation="relu")) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Flatten the output from the previous layer model.add(Flatten()) # Layer 6: Fully Connected Layer model.add(Dense(units=4096, activation="relu")) model.add(Dropout(0.5)) # Layer 7: Fully Connected Layer model.add(Dense(units=4096, activation="relu")) model.add(Dropout(0.5)) # Layer 8: Output Layer model.add(Dense(units=5, activation="softmax")) # Compile the model model.compile( optimizer=Adam(learning_rate=0.001), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) # Train the model model.fit(X_train, Y_train, batch_size=128, epochs=10, validation_data=(X_val, Y_val))
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/280/129280768.ipynb
diabetic-retinopathy-resized
tanlikesmath
[{"Id": 129280768, "ScriptId": 38232837, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 972181, "CreationDate": "05/12/2023 12:15:20", "VersionNumber": 1.0, "Title": "Medical Dataset Classification through CNN & Alex", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 399.0, "LinesInsertedFromPrevious": 399.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 1}]
[{"Id": 185182010, "KernelVersionId": 129280768, "SourceDatasetVersionId": 418031}]
[{"Id": 418031, "DatasetId": 131128, "DatasourceVersionId": 433304, "CreatorUserId": 674553, "LicenseName": "Unknown", "CreationDate": "05/08/2019 01:48:17", "VersionNumber": 7.0, "Title": "Diabetic Retinopathy (resized)", "Slug": "diabetic-retinopathy-resized", "Subtitle": "Resized version of the Diabetic Retinopathy Kaggle competition dataset", "Description": "# Diabetic Retinopathy Detection Competition Dataset Resized/Cropped\n\nIn this dataset, I have included both a resized version of the dataset, and a cropped then resized version of the data.\n\n## trainLabels.csv\n\nThis file contains the name of the file under the 'image' column and the label under the 'level' column.\n\n\n## resized_train:\n\nThis folder was created by simply resizing the dataset to 1024x1024 if it is bigger than this size, else it remains the same.\nThe code used to create this dataset is:\n\n\n import glob\n import os\n from tqdm import tqdm\n import math\n from PIL import Image \n files = glob.glob('D:\\\\Experiments with Deep Learning\\\\DR Kaggle\\\\train\\\\train\\\\train\\\\*.jpeg')\n\n new_width = 1024\n\n for i in tqdm(range(len(files))):\n img = Image.open(files[i])\n width,height = img.size\n ratio = height/width\n if width &gt; new_width:\n new_image = img.resize((new_width,math.ceil(ratio*new_width))) \n else:\n new_image = img\n new_image.save('D:\\\\Experiments with Deep Learning\\\\DR \n Kaggle\\\\train\\\\train\\\\resized_train\\\\'+os.path.basename(files[i]))\n`\n\n\n## resized_train_cropped:\n\nIn this case, as much of the black space is cropped out by trying to identify the center and radius of the circle of the fundus image. Some of the images turned out to be fully black or very close to fully black, and no mask was found. Hence, those images were manually removed. There may still be some noisy images remaining, however.\n\nThe code used to create this dataset is:\n\n # import the necessary packages\n import numpy as np\n import cv2\n import glob\n import os\n from tqdm import tqdm\n import math\n from PIL import Image\n files = glob.glob('D:\\\\Experiments with Deep Learning\\\\DR Kaggle\\\\train\\\\train\\\\train\\\\*.jpeg')\n\n new_sz = 1024\n\n def crop_image(image):\n output = image.copy()\n gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n ret,gray = cv2.threshold(gray,10,255,cv2.THRESH_BINARY)\n contours,hierarchy = cv2.findContours(gray,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)\n if not contours:\n print('no contours!')\n flag = 0\n return image, flag\n cnt = max(contours, key=cv2.contourArea)\n ((x, y), r) = cv2.minEnclosingCircle(cnt)\n x = int(x); y = int(y); r = int(r)\n flag = 1\n #print(x,y,r)\n if r &gt; 100:\n return output[0 + (y-r)*int(r", "VersionNotes": "Add back the original resized trained dataset", "TotalCompressedBytes": 1299959351.0, "TotalUncompressedBytes": 7787863813.0}]
[{"Id": 131128, "CreatorUserId": 674553, "OwnerUserId": 674553.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 418031.0, "CurrentDatasourceVersionId": 433304.0, "ForumId": 141262, "Type": 2, "CreationDate": "03/04/2019 05:39:14", "LastActivityDate": "03/04/2019", "TotalViews": 101543, "TotalDownloads": 16544, "TotalVotes": 458, "TotalKernels": 132}]
[{"Id": 674553, "UserName": "tanlikesmath", "DisplayName": "ilovescience", "RegisterDate": "07/29/2016", "PerformanceTier": 4}]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau sns.set(style="white", context="notebook", palette="deep") from PIL import Image import os # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) data_dir = "/kaggle/input/diabetic-retinopathy-resized/resized_train/resized_train" # print('Number of training images:', len(os.listdir(data_dir))) cropped_data_dir = "/kaggle/input/diabetic-retinopathy-resized/resized_train_cropped/resized_train_cropped/" # print('Number of training images:', len(os.listdir(cropped_data_dir))) train_labels = pd.read_csv("../input/diabetic-retinopathy-resized/trainLabels.csv") train_labels.shape # Check the data train_labels.isnull().any().describe() train_labels.head() train_labels.tail() sample_img = Image.open(os.path.join(data_dir, os.listdir(data_dir)[0])) print("Image size:", sample_img.size) sample_img = Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[0])) print("Image size:", sample_img.size) f, axarr = plt.subplots(2, 2) axarr[0, 0].imshow(Image.open(os.path.join(data_dir, os.listdir(data_dir)[0]))) axarr[0, 1].imshow( Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[0])) ) axarr[1, 0].imshow(Image.open(os.path.join(data_dir, os.listdir(data_dir)[1]))) axarr[1, 1].imshow( Image.open(os.path.join(cropped_data_dir, os.listdir(cropped_data_dir)[1])) ) # **Check Data Distribution** widths = [] heights = [] for img_file in os.listdir(data_dir): img = Image.open(os.path.join(data_dir, img_file)) width, height = img.size widths.append(width) heights.append(height) print("Average image size:", np.mean(widths), "x", np.mean(heights)) # Check the distribution of image sizes fig, axs = plt.subplots(1, 2, figsize=(15, 6)) axs[0].hist(widths, bins=50) axs[0].set_xlabel("Image width") axs[0].set_ylabel("Frequency") axs[1].hist(heights, bins=50) axs[1].set_xlabel("Image height") axs[1].set_ylabel("Frequency") plt.show() # Check the distribution of image modes modes = [] for img_file in os.listdir(data_dir): img = Image.open(os.path.join(data_dir, img_file)) modes.append(img.mode) print("Image modes:", set(modes)) # **Check for class distribution** # labels_df = pd.read_csv('../input/diabetic-retinopathy-resized/trainLabels.csv') train_labels["level"].hist(bins=5) plt.xlabel("Class") plt.ylabel("Frequency") plt.title("Class Distribution") plt.show() # **Converting images into their pixel values as 1D array in CSV file** import cv2 IMG_DIR = data_dir # Read train_labels.csv to obtain the image name sequence df_train = train_labels image_sequence = df_train["image"].values with open("eye_train.csv", "wb") as f: for img_name in image_sequence: img_path = os.path.join(IMG_DIR, img_name + ".jpeg") # Process the image img_array = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # if img_array is not None: img_pil = Image.fromarray(img_array) img_28x28 = np.array(img_pil.resize((28, 28), Image.ANTIALIAS)) img_array = img_28x28.flatten() # Normalize the images img_array = img_array / 255.0 # Save the image pixel values to the CSV file np.savetxt(f, img_array.reshape(1, -1), delimiter=",", header="") # else: # print(f"Failed to load image: {img_name}") # import os # os.remove("/#kaggle/working/eye_train.csv") train_labels.image.unique().shape df_eye_train = pd.read_csv( "eye_train.csv", header=None, skiprows=1 ) # not reading the column names # retrieving column names as a list column_names = pd.read_csv("eye_train.csv", nrows=1, header=None).values[0] df_eye_train.loc[-1] = column_names # adding at index -1 df_eye_train.index = df_eye_train.index + 1 # resetting index df_eye_train = df_eye_train.sort_index().reset_index( drop=True ) # resetting index to start from 0 df_eye_train.tail() df_eye_train.shape Y_train = train_labels["level"] Y_train[135:145] # ## **Performing Classification through CNN** # **Label Encoding** Y_train = to_categorical(Y_train, num_classes=5) Y_train[135:145] # **Split into training and validation set** # Set the random seed random_seed = 2 # Reshape image i 3 dimensions (height = 28px, width = 28px , channal = 1) df_eye_train = df_eye_train.values.reshape(-1, 28, 28, 1) df_eye_train.shape Y_train.shape # Split the train and the validation set for the fitting (80:20% split) X_train, X_val, Y_train, Y_val = train_test_split( df_eye_train, Y_train, test_size=0.2, random_state=random_seed ) X_train.shape Y_train.shape # ## **CNN** # Set the CNN model # my CNN architechture is In -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out model = Sequential() model.add( Conv2D( filters=32, kernel_size=(5, 5), padding="Same", activation="relu", input_shape=(28, 28, 1), ) ) model.add(Conv2D(filters=32, kernel_size=(5, 5), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="Same", activation="relu")) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(5, activation="softmax")) # ### **Defining Optimiser and Annealer** # Define the optimizer optimizer = RMSprop(learning_rate=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # Compile the model model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) # Set a learning rate annealer learning_rate_reduction = ReduceLROnPlateau( monitor="val_acc", patience=3, verbose=1, factor=0.5, min_lr=0.00001 ) epochs = 30 batch_size = 100 # Fit the model history = model.fit( X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, Y_val), ) # ## **Evaluating the Model** # **Training and Validation curves** # Retrieve the training and validation loss values train_loss = history.history["loss"] val_loss = history.history["val_loss"] # Retrieve the training and validation accuracy values train_acc = history.history["accuracy"] val_acc = history.history["val_accuracy"] # Plot the loss curves plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss, label="Training Loss") plt.plot(val_loss, label="Validation Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.title("Loss Curves") plt.legend() # Plot the accuracy curves plt.subplot(1, 2, 2) plt.plot(train_acc, label="Training Accuracy") plt.plot(val_acc, label="Validation Accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.title("Accuracy Curves") plt.legend() # Display the plot plt.tight_layout() plt.show() # Look at confusion matrix def plot_confusion_matrix( cm, classes, normalize=False, title="Confusion matrix", cmap=plt.cm.Blues ): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation="nearest", cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2.0 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text( j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", ) plt.tight_layout() plt.ylabel("True label") plt.xlabel("Predicted label") # Predict the values from the validation dataset Y_pred = model.predict(X_val) # Convert predictions classes to one hot vectors Y_pred_classes = np.argmax(Y_pred, axis=1) # Convert validation observations to one hot vectors Y_true = np.argmax(Y_val, axis=1) # compute the confusion matrix confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) # plot the confusion matrix plot_confusion_matrix(confusion_mtx, classes=range(10)) # Display some error results # Errors are difference between predicted labels and true labels errors = Y_pred_classes - Y_true != 0 Y_pred_classes_errors = Y_pred_classes[errors] Y_pred_errors = Y_pred[errors] Y_true_errors = Y_true[errors] X_val_errors = X_val[errors] def display_errors(errors_index, img_errors, pred_errors, obs_errors): """This function shows 6 images with their predicted and real labels""" n = 0 nrows = 2 ncols = 3 fig, ax = plt.subplots(nrows, ncols, sharex=True, sharey=True) for row in range(nrows): for col in range(ncols): error = errors_index[n] ax[row, col].imshow((img_errors[error]).reshape((28, 28))) ax[row, col].set_title( "Predicted label :{}\nTrue label :{}".format( pred_errors[error], obs_errors[error] ) ) n += 1 # Probabilities of the wrong predicted numbers Y_pred_errors_prob = np.max(Y_pred_errors, axis=1) # Predicted probabilities of the true values in the error set true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1)) # Difference between the probability of the predicted label and the true label delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors # Sorted list of the delta prob errors sorted_dela_errors = np.argsort(delta_pred_true_errors) # Top 6 errors most_important_errors = sorted_dela_errors[-6:] # Show the top 6 errors display_errors( most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors ) # ## **Performing Classification through AlexNet** # # AlexNet # ## For AlexNet, input size should be 227x227x3. For this, another csv should be created and passed to the model. It is extremely time-consuming. And time is running out!!!! # Define the AlexNet model model = Sequential() # Layer 1: Convolutional Layer model.add( Conv2D( filters=96, kernel_size=(11, 11), strides=(4, 4), activation="relu", input_shape=(227, 227, 3), ) ) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Layer 2: Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1, 1), activation="relu")) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Layer 3: Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation="relu")) # Layer 4: Convolutional Layer model.add(Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation="relu")) # Layer 5: Convolutional Layer model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), activation="relu")) model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2))) # Flatten the output from the previous layer model.add(Flatten()) # Layer 6: Fully Connected Layer model.add(Dense(units=4096, activation="relu")) model.add(Dropout(0.5)) # Layer 7: Fully Connected Layer model.add(Dense(units=4096, activation="relu")) model.add(Dropout(0.5)) # Layer 8: Output Layer model.add(Dense(units=5, activation="softmax")) # Compile the model model.compile( optimizer=Adam(learning_rate=0.001), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) # Train the model model.fit(X_train, Y_train, batch_size=128, epochs=10, validation_data=(X_val, Y_val))
false
1
4,044
1
4,772
4,044
129314340
<jupyter_start><jupyter_text>IP102-Dataset ### Context Insect pest are one of the main factors affecting agricultural product. Accurate recognition and classification of insect pests can prevent huge economic losses. This dataset will play a great role in this regard. ### Content IP02 dataset has 75,222 images and average size of 737 samples per class. The dataset has a split of 6:1:3. There are 8 super classes. Rice, Corn, Wheat, Beet, Alfalfa belong to Field Crop(FC) and Vitis, Citrus, Mango belong to Economic Crop(EC). For details {[link](https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_IP102_A_Large-Scale_Benchmark_Dataset_for_Insect_Pest_Recognition_CVPR_2019_paper.html)} Kaggle dataset identifier: ip02-dataset <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import Necessary libreries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import ( Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, ) import warnings warnings.filterwarnings("ignore") import os from matplotlib.image import imread import random import matplotlib.image as mpimg tf.random.set_seed(5) # Data agumentation datagen = ImageDataGenerator( rotation_range=10, rescale=1.0 / 255.0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode="nearest", validation_split=0.3, # set validation split to 20% ) # Import the data into train,test and Validation subset trainimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/train", batch_size=512, class_mode="categorical", target_size=(48, 48), subset="training", ) testimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/test", batch_size=256, class_mode="categorical", target_size=(48, 48), subset="validation", ) valimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/val", batch_size=256, class_mode="categorical", target_size=(48, 48), subset="validation", ) trainimagedata.classes trainimagedata.class_indices dir_path = "/kaggle/input/ip02-dataset/classification/train" class_names = ["0", "1", "10", "100", "101", "11", "12", "13", "14", "15"] num_classes = 9 fig, axs = plt.subplots(3, 3, figsize=(12, 6)) for i, class_name in enumerate(class_names[:num_classes]): class_path = os.path.join(dir_path, class_name) images = os.listdir(class_path) image_path = os.path.join(class_path, images[0]) img = mpimg.imread(image_path) ax = axs[i // 3, i % 3] ax.imshow(img) ax.axis("off") ax.set_title(class_name) plt.tight_layout() plt.show() # ## Inference # 1) We can see that Class number 12 has Watermark hence it will affect the accuracy of the model # # 2) Means our dataset contain watermarkimages as we have print only sample images of 9 classes input_shape = trainimagedata.image_shape print(input_shape) # Model Architecture model = tf.keras.models.Sequential() model.add( tf.keras.layers.Conv2D( 128, (3, 3), input_shape=input_shape, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPool2D(2, 2)) model.add(tf.keras.layers.Conv2D(64, (3, 3), activation="relu")) model.add(tf.keras.layers.MaxPool2D(2, 2)) model.add(tf.keras.layers.Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.25)) model.add(Dense(128, activation="relu")) model.add(Dropout(0.25)) model.add(Dense(102, activation="softmax")) # Set the Hyperparameter to Adam optimizer from tensorflow.keras.optimizers import SGD optimizer = SGD(lr=0.01, momentum=0.9) # Compile the model model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) from keras.callbacks import EarlyStopping early_stop = EarlyStopping(monitor="val_loss", patience=1) # Fitting the model mdl_history = model.fit( trainimagedata, validation_data=testimagedata, epochs=2, batch_size=256, callbacks=[early_stop], )
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/314/129314340.ipynb
ip02-dataset
rtlmhjbn
[{"Id": 129314340, "ScriptId": 38365791, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 11219290, "CreationDate": "05/12/2023 17:24:38", "VersionNumber": 3.0, "Title": "IP102 Insect pest classification", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 148.0, "LinesInsertedFromPrevious": 65.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 83.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185245776, "KernelVersionId": 129314340, "SourceDatasetVersionId": 3132677}]
[{"Id": 3132677, "DatasetId": 1908726, "DatasourceVersionId": 3181768, "CreatorUserId": 6031032, "LicenseName": "Data files \u00a9 Original Authors", "CreationDate": "02/03/2022 07:58:39", "VersionNumber": 1.0, "Title": "IP102-Dataset", "Slug": "ip02-dataset", "Subtitle": "A Large-Scale Benchmark Dataset for Insect Pest Recognition", "Description": "### Context\n\nInsect pest are one of the main factors affecting agricultural product. Accurate recognition and classification of insect pests can prevent huge economic losses. This dataset will play a great role in this regard.\n\n\n### Content\n\nIP02 dataset has 75,222 images and average size of 737 samples per class. The dataset has a split of 6:1:3. There are 8 super classes. Rice, Corn, Wheat, Beet, Alfalfa belong to Field Crop(FC) and Vitis, Citrus, Mango belong to Economic Crop(EC). For details {[link](https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_IP102_A_Large-Scale_Benchmark_Dataset_for_Insect_Pest_Recognition_CVPR_2019_paper.html)}\n\n\n### Acknowledgements\n\nThis dataset was proposed and accepted by the authors={Xiaoping Wu and Chi Zhan and Yukun Lai and Ming-Ming Cheng and Jufeng Yang} in CVPR 2019\n\n\n### Inspiration\n\nWhat information can we gain by using deep learning from image to solve pest recognition and classification problem task", "VersionNotes": "Initial release", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 1908726, "CreatorUserId": 6031032, "OwnerUserId": 6031032.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 3132677.0, "CurrentDatasourceVersionId": 3181768.0, "ForumId": 1932161, "Type": 2, "CreationDate": "02/03/2022 07:58:39", "LastActivityDate": "02/03/2022", "TotalViews": 20721, "TotalDownloads": 2515, "TotalVotes": 47, "TotalKernels": 5}]
[{"Id": 6031032, "UserName": "rtlmhjbn", "DisplayName": "Ratul Mahjabin", "RegisterDate": "10/25/2020", "PerformanceTier": 1}]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import Necessary libreries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import ( Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, ) import warnings warnings.filterwarnings("ignore") import os from matplotlib.image import imread import random import matplotlib.image as mpimg tf.random.set_seed(5) # Data agumentation datagen = ImageDataGenerator( rotation_range=10, rescale=1.0 / 255.0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False, zoom_range=0.1, shear_range=0.1, brightness_range=[0.8, 1.2], fill_mode="nearest", validation_split=0.3, # set validation split to 20% ) # Import the data into train,test and Validation subset trainimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/train", batch_size=512, class_mode="categorical", target_size=(48, 48), subset="training", ) testimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/test", batch_size=256, class_mode="categorical", target_size=(48, 48), subset="validation", ) valimagedata = datagen.flow_from_directory( "/kaggle/input/ip02-dataset/classification/val", batch_size=256, class_mode="categorical", target_size=(48, 48), subset="validation", ) trainimagedata.classes trainimagedata.class_indices dir_path = "/kaggle/input/ip02-dataset/classification/train" class_names = ["0", "1", "10", "100", "101", "11", "12", "13", "14", "15"] num_classes = 9 fig, axs = plt.subplots(3, 3, figsize=(12, 6)) for i, class_name in enumerate(class_names[:num_classes]): class_path = os.path.join(dir_path, class_name) images = os.listdir(class_path) image_path = os.path.join(class_path, images[0]) img = mpimg.imread(image_path) ax = axs[i // 3, i % 3] ax.imshow(img) ax.axis("off") ax.set_title(class_name) plt.tight_layout() plt.show() # ## Inference # 1) We can see that Class number 12 has Watermark hence it will affect the accuracy of the model # # 2) Means our dataset contain watermarkimages as we have print only sample images of 9 classes input_shape = trainimagedata.image_shape print(input_shape) # Model Architecture model = tf.keras.models.Sequential() model.add( tf.keras.layers.Conv2D( 128, (3, 3), input_shape=input_shape, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPool2D(2, 2)) model.add(tf.keras.layers.Conv2D(64, (3, 3), activation="relu")) model.add(tf.keras.layers.MaxPool2D(2, 2)) model.add(tf.keras.layers.Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.25)) model.add(Dense(128, activation="relu")) model.add(Dropout(0.25)) model.add(Dense(102, activation="softmax")) # Set the Hyperparameter to Adam optimizer from tensorflow.keras.optimizers import SGD optimizer = SGD(lr=0.01, momentum=0.9) # Compile the model model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) from keras.callbacks import EarlyStopping early_stop = EarlyStopping(monitor="val_loss", patience=1) # Fitting the model mdl_history = model.fit( trainimagedata, validation_data=testimagedata, epochs=2, batch_size=256, callbacks=[early_stop], )
false
0
1,348
0
1,585
1,348
129314173
# Predicting Survival on the Titanic: A Machine Learning Case Study # All the import libraries are imported for data analysis,machine learning and visualisation. import pandas as pd import numpy as np import random as rnd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import cross_val_score train_df = pd.read_csv("/kaggle/input/titanic-dataset/train.csv") train_df.head() test_df = pd.read_csv("/kaggle/input/titanic-dataset/test.csv") test_df.head() train_df.info() train_df.isna().sum() train_df.describe(include="all") test_df.head() test_df.info() test_df.isna().sum() test_df.describe(include="all") titanic = [train_df, test_df] train_df[["Pclass", "Survived"]].groupby(["Pclass"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["SibSp", "Survived"]].groupby(["SibSp"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["Parch", "Survived"]].groupby(["Parch"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["Sex", "Survived"]].groupby(["Sex"], as_index=False).mean().sort_values( by="Survived", ascending=False ) # Plotting g = sns.FacetGrid(train_df, col="Survived") g.map(plt.hist, "Age", bins=30) grid = sns.FacetGrid(train_df, col="Survived", row="Pclass") grid.map(plt.hist, "Age", alpha=0.5, bins=20) grid.add_legend() grid = sns.FacetGrid(train_df, col="Survived") grid.map(sns.barplot, "Sex", "Fare", alpha=0.5, ci=None) grid.add_legend() # FEATURE ENGINEERING for data in titanic: data["Title"] = data.Name.str.extract(" ([A-Za-z]+)\.", expand=False) pd.crosstab(train_df["Title"], train_df["Sex"]) for data in titanic: data["Title"] = data["Title"].replace( [ "Lady", "Countess", "Capt", "Col", "Don", "Dr", "Major", "Rev", "Sir", "Jonkheer", "Dona", ], "Unknown", ) data["Title"] = data["Title"].replace("Mlle", "Miss") data["Title"] = data["Title"].replace("Ms", "Miss") data["Title"] = data["Title"].replace("Mme", "Mrs") train_df[["Title", "Survived"]].groupby(["Title"], as_index=False).mean() title_new = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Unknown": 5} for data in titanic: data["Title"] = data["Title"].map(title_new) data["Title"] = data["Title"].fillna(0) train_df.head() train_df = train_df.drop(["Name", "PassengerId"], axis=1) test_df = test_df.drop(["Name"], axis=1) titanic = [train_df, test_df] for data in titanic: data["Sex"] = data["Sex"].map({"female": 1, "male": 0}).astype(int) train_df.isna().sum() train_df["Age"] = train_df["Age"].fillna(train_df["Age"].median()) test_df["Age"] = test_df["Age"].fillna(test_df["Age"].median()) train_df["Age"] = train_df["Age"].astype(int) test_df["Age"] = test_df["Age"].astype(int) train_df.head() for data in titanic: data.loc[data["Age"] <= 16, "Age"] = 0 data.loc[(data["Age"] > 16) & (data["Age"] <= 32), "Age"] = 1 data.loc[(data["Age"] > 32) & (data["Age"] <= 48), "Age"] = 2 data.loc[(data["Age"] > 48) & (data["Age"] <= 64), "Age"] = 3 data.loc[data["Age"] > 64, "Age"] train_df.head() for data in titanic: data["FamilySize"] = data["SibSp"] + data["Parch"] + 1 train_df[["FamilySize", "Survived"]].groupby( ["FamilySize"], as_index=False ).mean().sort_values(by="Survived", ascending=False) for data in titanic: data["Alone"] = 0 data.loc[data["FamilySize"] == 1, "Alone"] = 1 train_df[["Alone", "Survived"]].groupby(["Alone"], as_index=False).mean() train_df = train_df.drop(["Parch", "SibSp", "FamilySize"], axis=1) test_df = test_df.drop(["Parch", "SibSp", "FamilySize"], axis=1) titanic = [train_df, test_df] a = train_df.Embarked.dropna().mode()[0] for data in titanic: data["Embarked"] = data["Embarked"].fillna(a) train_df[["Embarked", "Survived"]].groupby( ["Embarked"], as_index=False ).mean().sort_values(by="Survived", ascending=False) for data in titanic: data["Embarked"] = data["Embarked"].map({"S": 0, "C": 1, "Q": 2}).astype(int) train_df.head() test_df["Fare"].fillna(test_df["Fare"].dropna().median(), inplace=True) test_df.head() for data in titanic: data.loc[data["Fare"] <= 8.00, "Fare"] = 0 data.loc[(data["Fare"] > 8.00) & (data["Fare"] <= 14.500), "Fare"] = 1 data.loc[(data["Fare"] > 14.500) & (data["Fare"] <= 31), "Fare"] = 2 data.loc[data["Fare"] > 31, "Fare"] = 3 data["Fare"] = data["Fare"].astype(int) train_df.head() train_df.isna().sum() test_df.isna().sum() # MODELING X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() # LOGISTIC REGRESSION logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) Y_pred acc_log = round(logreg.score(X_train, Y_train) * 100, 2) acc_log # CORRELATION BETWEEN FEATURE AND SURVIVED coeff_df = pd.DataFrame(train_df.columns.delete(0)) coeff_df.columns = ["Feature"] coeff_df["Correlation"] = pd.Series(logreg.coef_[0]) coeff_df.sort_values(by="Correlation", ascending=False) # SUPPORT VECTOR MACHINES svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) Y_pred acc_svc = round(svc.score(X_train, Y_train) * 100, 2) acc_svc # k-Nearest NEIGHBOURS knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) Y_pred acc_knn = round(knn.score(X_train, Y_train) * 100, 2) acc_knn # GAUSSIAN NAIVE BAYES gaussian = GaussianNB() gaussian.fit(X_train, Y_train) Y_pred = gaussian.predict(X_test) Y_pred acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2) acc_gaussian # LINEAR SVC linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) Y_pred acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2) acc_linear_svc # RANDOM FOREST random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) acc_random_forest # DECISION TREE # decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) Y_pred = decision_tree.predict(X_test) Y_pred acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2) acc_decision_tree
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/314/129314173.ipynb
null
null
[{"Id": 129314173, "ScriptId": 38446457, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 12136716, "CreationDate": "05/12/2023 17:22:37", "VersionNumber": 3.0, "Title": "Predicting Survival on the Titanic: A Machine Lea", "EvaluationDate": "05/12/2023", "IsChange": false, "TotalLines": 238.0, "LinesInsertedFromPrevious": 0.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 238.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# Predicting Survival on the Titanic: A Machine Learning Case Study # All the import libraries are imported for data analysis,machine learning and visualisation. import pandas as pd import numpy as np import random as rnd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import cross_val_score train_df = pd.read_csv("/kaggle/input/titanic-dataset/train.csv") train_df.head() test_df = pd.read_csv("/kaggle/input/titanic-dataset/test.csv") test_df.head() train_df.info() train_df.isna().sum() train_df.describe(include="all") test_df.head() test_df.info() test_df.isna().sum() test_df.describe(include="all") titanic = [train_df, test_df] train_df[["Pclass", "Survived"]].groupby(["Pclass"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["SibSp", "Survived"]].groupby(["SibSp"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["Parch", "Survived"]].groupby(["Parch"], as_index=False).mean().sort_values( by="Survived", ascending=False ) train_df[["Sex", "Survived"]].groupby(["Sex"], as_index=False).mean().sort_values( by="Survived", ascending=False ) # Plotting g = sns.FacetGrid(train_df, col="Survived") g.map(plt.hist, "Age", bins=30) grid = sns.FacetGrid(train_df, col="Survived", row="Pclass") grid.map(plt.hist, "Age", alpha=0.5, bins=20) grid.add_legend() grid = sns.FacetGrid(train_df, col="Survived") grid.map(sns.barplot, "Sex", "Fare", alpha=0.5, ci=None) grid.add_legend() # FEATURE ENGINEERING for data in titanic: data["Title"] = data.Name.str.extract(" ([A-Za-z]+)\.", expand=False) pd.crosstab(train_df["Title"], train_df["Sex"]) for data in titanic: data["Title"] = data["Title"].replace( [ "Lady", "Countess", "Capt", "Col", "Don", "Dr", "Major", "Rev", "Sir", "Jonkheer", "Dona", ], "Unknown", ) data["Title"] = data["Title"].replace("Mlle", "Miss") data["Title"] = data["Title"].replace("Ms", "Miss") data["Title"] = data["Title"].replace("Mme", "Mrs") train_df[["Title", "Survived"]].groupby(["Title"], as_index=False).mean() title_new = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Unknown": 5} for data in titanic: data["Title"] = data["Title"].map(title_new) data["Title"] = data["Title"].fillna(0) train_df.head() train_df = train_df.drop(["Name", "PassengerId"], axis=1) test_df = test_df.drop(["Name"], axis=1) titanic = [train_df, test_df] for data in titanic: data["Sex"] = data["Sex"].map({"female": 1, "male": 0}).astype(int) train_df.isna().sum() train_df["Age"] = train_df["Age"].fillna(train_df["Age"].median()) test_df["Age"] = test_df["Age"].fillna(test_df["Age"].median()) train_df["Age"] = train_df["Age"].astype(int) test_df["Age"] = test_df["Age"].astype(int) train_df.head() for data in titanic: data.loc[data["Age"] <= 16, "Age"] = 0 data.loc[(data["Age"] > 16) & (data["Age"] <= 32), "Age"] = 1 data.loc[(data["Age"] > 32) & (data["Age"] <= 48), "Age"] = 2 data.loc[(data["Age"] > 48) & (data["Age"] <= 64), "Age"] = 3 data.loc[data["Age"] > 64, "Age"] train_df.head() for data in titanic: data["FamilySize"] = data["SibSp"] + data["Parch"] + 1 train_df[["FamilySize", "Survived"]].groupby( ["FamilySize"], as_index=False ).mean().sort_values(by="Survived", ascending=False) for data in titanic: data["Alone"] = 0 data.loc[data["FamilySize"] == 1, "Alone"] = 1 train_df[["Alone", "Survived"]].groupby(["Alone"], as_index=False).mean() train_df = train_df.drop(["Parch", "SibSp", "FamilySize"], axis=1) test_df = test_df.drop(["Parch", "SibSp", "FamilySize"], axis=1) titanic = [train_df, test_df] a = train_df.Embarked.dropna().mode()[0] for data in titanic: data["Embarked"] = data["Embarked"].fillna(a) train_df[["Embarked", "Survived"]].groupby( ["Embarked"], as_index=False ).mean().sort_values(by="Survived", ascending=False) for data in titanic: data["Embarked"] = data["Embarked"].map({"S": 0, "C": 1, "Q": 2}).astype(int) train_df.head() test_df["Fare"].fillna(test_df["Fare"].dropna().median(), inplace=True) test_df.head() for data in titanic: data.loc[data["Fare"] <= 8.00, "Fare"] = 0 data.loc[(data["Fare"] > 8.00) & (data["Fare"] <= 14.500), "Fare"] = 1 data.loc[(data["Fare"] > 14.500) & (data["Fare"] <= 31), "Fare"] = 2 data.loc[data["Fare"] > 31, "Fare"] = 3 data["Fare"] = data["Fare"].astype(int) train_df.head() train_df.isna().sum() test_df.isna().sum() # MODELING X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() # LOGISTIC REGRESSION logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) Y_pred acc_log = round(logreg.score(X_train, Y_train) * 100, 2) acc_log # CORRELATION BETWEEN FEATURE AND SURVIVED coeff_df = pd.DataFrame(train_df.columns.delete(0)) coeff_df.columns = ["Feature"] coeff_df["Correlation"] = pd.Series(logreg.coef_[0]) coeff_df.sort_values(by="Correlation", ascending=False) # SUPPORT VECTOR MACHINES svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) Y_pred acc_svc = round(svc.score(X_train, Y_train) * 100, 2) acc_svc # k-Nearest NEIGHBOURS knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) Y_pred acc_knn = round(knn.score(X_train, Y_train) * 100, 2) acc_knn # GAUSSIAN NAIVE BAYES gaussian = GaussianNB() gaussian.fit(X_train, Y_train) Y_pred = gaussian.predict(X_test) Y_pred acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2) acc_gaussian # LINEAR SVC linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) Y_pred acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2) acc_linear_svc # RANDOM FOREST random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) acc_random_forest # DECISION TREE # decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) Y_pred = decision_tree.predict(X_test) Y_pred acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2) acc_decision_tree
false
0
2,550
0
2,550
2,550
129363738
<jupyter_start><jupyter_text>SF Salaries One way to understand how a city government works is by looking at who it employs and how its employees are compensated. This data contains the names, job title, and compensation for San Francisco city employees on an annual basis from 2011 to 2014. [![salary distribution](https://www.kaggle.io/svf/157898/60445b7da739a3ae25f3f8b26328036d/salaryDistribution.png)](https://www.kaggle.com/benhamner/d/kaggle/sf-salaries/exploring-the-sf-city-salary-data) ## Exploration Ideas To help get you started, here are some data exploration ideas: - How have salaries changed over time between different groups of people? - How are base pay, overtime pay, and benefits allocated between different groups? - Is there any evidence of pay discrimination based on gender in this dataset? - How is budget allocated based on different groups and responsibilities? Have other ideas you're curious for someone else to explore? Post them in [this forum thread](https://www.kaggle.com/forums/f/977/sf-salaries/t/18264/sf-salaries-dataset). ## Data Description sf-salaries-release-*.zip (downloadable via the "Download Data" link in the header above) contains a CSV table and a SQLite database (with the same data as the CSV file). Here's the [code that creates this data release](https://github.com/benhamner/sf-salaries). The original source for this data is [here](http://transparentcalifornia.com/salaries/san-francisco/). We've taken the raw files here and combined/normalized them into a single CSV file as well as a SQLite database with an equivalently-defined table. Kaggle dataset identifier: sf-salaries <jupyter_script>import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import libiraries >> import pandas as pd import numpy as np import sqlite3 import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # Import Data >> database = "../input/sf-salaries/database.sqlite" conn = sqlite3.connect(database) data = pd.read_sql('select * from sqlite_master where type="table"', conn) data # Fetch Salaries table>> Salaries = pd.read_sql("select * from Salaries", conn) Salaries.head() # EDA >> Salaries["JobTitle"].nunique() Salaries.info() # there are rows # contain this value 'Not Provided' in these columns # ,so we will replace it with nan values Salaries = Salaries.replace("Not Provided", np.nan) Salaries.describe() # what is the average BasePay ?? avg_basePay = pd.read_sql("select AVG(BasePay) from Salaries", conn) avg_basePay # what is the highest amount of the TotalPay ?? Max_Overtime = pd.read_sql("select MAX(TotalPay) from Salaries", conn) Max_Overtime # what is the TotalPay of ALBERT PARDINI (inclduding benefits)?? ALBERT_TotalPay = pd.read_sql( 'select TotalPayBenefits from Salaries where EmployeeName = "ALBERT PARDINI"', conn ) ALBERT_TotalPay # what is the name of the highest and lowest paid person?? Highest_paid = pd.read_sql( """select EmployeeName from Salaries where TotalPayBenefits = (select MAX(TotalPayBenefits) from Salaries)""", conn, ) Highest_paid Lowest_paid = pd.read_sql( """select EmployeeName from Salaries where TotalPayBenefits = (select MIN(TotalPayBenefits) from Salaries)""", conn, ) Lowest_paid Lowest_paid_info = pd.read_sql( """select * from Salaries where TotalPayBenefits = (select MIN(TotalPayBenefits) from Salaries)""", conn, ) Lowest_paid_info # we notic that there is employees who do not take a salary or owe to the company # we will count their number Owe_emp = pd.read_sql( "select Count(Id) from Salaries where TotalPayBenefits <= 0", conn ) Owe_emp # what was the avarage of the TotalPay of all the employees per Year?? avg_salary_year = pd.read_sql( "select Year,AVG(TotalPay) from Salaries GROUP BY Year", conn ) avg_salary_year # what are the most common jobs?? # common_jobs = pd.read_sql( """select distinct(JobTitle) , Count(JobTitle) as count from Salaries GROUP BY JobTitle ORDER BY count DESC LIMIT 5""", conn, ) common_jobs # How many job titles were represented by only 1 person in 2013?? one_job_title = pd.read_sql( """select Count(JobTitle) from ( select JobTitle , Count(JobTitle) as count from Salaries where Year = 2013 GROUP BY JobTitle HAVING count = 1)""", conn, ) one_job_title # How many employees have the word Chief in their job title?? Chief_emp = pd.read_sql( 'select Count(EmployeeName) from Salaries where JobTitle like "%Chief%"', conn ) Chief_emp # Is there is a correlation between (lenght of the job title string) and (salary)?? Salaries["titles_lenght"] = Salaries["JobTitle"].apply(len) # apply fun is very useful when you want to perform functions and calcs on rows. Salaries["titles_lenght"] Salaries[["titles_lenght", "TotalPayBenefits"]].corr() # ##### Visualizing the correlation plt.scatter(Salaries["titles_lenght"], Salaries["TotalPayBenefits"]) plt.xlabel("Job Title Length") plt.ylabel("Total Pay Benefits") plt.title("Correlation Between Job Title Length and Total Pay Benefits") plt.show() # #### Corr is very very small ,so their is no corr # visualizing the 5 number summary of TotalPayBenefits plt.figure(figsize=(8, 3)) sns.boxplot(x=Salaries["TotalPayBenefits"]).set_title( "5 number summary of TotalPayBenefits" ) # ### Insight: # The most of employees receive a wage with approximately 100000 per year, # The number of employees that receive a wage with above 400000 is very small. # so, what is the title of these people who take more than 400000?? Title = pd.read_sql( "select JobTitle from Salaries where TotalPayBenefits > 400000", conn ) Title
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/363/129363738.ipynb
sf-salaries
null
[{"Id": 129363738, "ScriptId": 38463785, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 9435168, "CreationDate": "05/13/2023 06:39:49", "VersionNumber": 1.0, "Title": "SF Salaries-SQL-EDA-Vis", "EvaluationDate": "05/13/2023", "IsChange": true, "TotalLines": 153.0, "LinesInsertedFromPrevious": 153.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 9}]
[{"Id": 185340515, "KernelVersionId": 129363738, "SourceDatasetVersionId": 827864}]
[{"Id": 827864, "DatasetId": 14, "DatasourceVersionId": 850525, "CreatorUserId": 2326382, "LicenseName": "CC0: Public Domain", "CreationDate": "12/05/2019 23:30:07", "VersionNumber": 5.0, "Title": "SF Salaries", "Slug": "sf-salaries", "Subtitle": "Explore San Francisco city employee salary data", "Description": "One way to understand how a city government works is by looking at who it employs and how its employees are compensated. This data contains the names, job title, and compensation for San Francisco city employees on an annual basis from 2011 to 2014.\n\n[![salary distribution](https://www.kaggle.io/svf/157898/60445b7da739a3ae25f3f8b26328036d/salaryDistribution.png)](https://www.kaggle.com/benhamner/d/kaggle/sf-salaries/exploring-the-sf-city-salary-data)\n\n## Exploration Ideas\n\nTo help get you started, here are some data exploration ideas:\n\n - How have salaries changed over time between different groups of people?\n - How are base pay, overtime pay, and benefits allocated between different groups?\n - Is there any evidence of pay discrimination based on gender in this dataset?\n - How is budget allocated based on different groups and responsibilities?\n\nHave other ideas you're curious for someone else to explore? Post them in [this forum thread](https://www.kaggle.com/forums/f/977/sf-salaries/t/18264/sf-salaries-dataset).\n\n## Data Description\n\nsf-salaries-release-*.zip (downloadable via the \"Download Data\" link in the header above) contains a CSV table and a SQLite database (with the same data as the CSV file). Here's the [code that creates this data release](https://github.com/benhamner/sf-salaries).\n\nThe original source for this data is [here](http://transparentcalifornia.com/salaries/san-francisco/). We've taken the raw files here and combined/normalized them into a single CSV file as well as a SQLite database with an equivalently-defined table.", "VersionNotes": "Unzipped and re-uploaded files", "TotalCompressedBytes": 0.0, "TotalUncompressedBytes": 0.0}]
[{"Id": 14, "CreatorUserId": 993, "OwnerUserId": NaN, "OwnerOrganizationId": 4.0, "CurrentDatasetVersionId": 827864.0, "CurrentDatasourceVersionId": 850525.0, "ForumId": 977, "Type": 2, "CreationDate": "12/21/2015 19:40:00", "LastActivityDate": "02/06/2018", "TotalViews": 443682, "TotalDownloads": 69236, "TotalVotes": 805, "TotalKernels": 406}]
null
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session # Import libiraries >> import pandas as pd import numpy as np import sqlite3 import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # Import Data >> database = "../input/sf-salaries/database.sqlite" conn = sqlite3.connect(database) data = pd.read_sql('select * from sqlite_master where type="table"', conn) data # Fetch Salaries table>> Salaries = pd.read_sql("select * from Salaries", conn) Salaries.head() # EDA >> Salaries["JobTitle"].nunique() Salaries.info() # there are rows # contain this value 'Not Provided' in these columns # ,so we will replace it with nan values Salaries = Salaries.replace("Not Provided", np.nan) Salaries.describe() # what is the average BasePay ?? avg_basePay = pd.read_sql("select AVG(BasePay) from Salaries", conn) avg_basePay # what is the highest amount of the TotalPay ?? Max_Overtime = pd.read_sql("select MAX(TotalPay) from Salaries", conn) Max_Overtime # what is the TotalPay of ALBERT PARDINI (inclduding benefits)?? ALBERT_TotalPay = pd.read_sql( 'select TotalPayBenefits from Salaries where EmployeeName = "ALBERT PARDINI"', conn ) ALBERT_TotalPay # what is the name of the highest and lowest paid person?? Highest_paid = pd.read_sql( """select EmployeeName from Salaries where TotalPayBenefits = (select MAX(TotalPayBenefits) from Salaries)""", conn, ) Highest_paid Lowest_paid = pd.read_sql( """select EmployeeName from Salaries where TotalPayBenefits = (select MIN(TotalPayBenefits) from Salaries)""", conn, ) Lowest_paid Lowest_paid_info = pd.read_sql( """select * from Salaries where TotalPayBenefits = (select MIN(TotalPayBenefits) from Salaries)""", conn, ) Lowest_paid_info # we notic that there is employees who do not take a salary or owe to the company # we will count their number Owe_emp = pd.read_sql( "select Count(Id) from Salaries where TotalPayBenefits <= 0", conn ) Owe_emp # what was the avarage of the TotalPay of all the employees per Year?? avg_salary_year = pd.read_sql( "select Year,AVG(TotalPay) from Salaries GROUP BY Year", conn ) avg_salary_year # what are the most common jobs?? # common_jobs = pd.read_sql( """select distinct(JobTitle) , Count(JobTitle) as count from Salaries GROUP BY JobTitle ORDER BY count DESC LIMIT 5""", conn, ) common_jobs # How many job titles were represented by only 1 person in 2013?? one_job_title = pd.read_sql( """select Count(JobTitle) from ( select JobTitle , Count(JobTitle) as count from Salaries where Year = 2013 GROUP BY JobTitle HAVING count = 1)""", conn, ) one_job_title # How many employees have the word Chief in their job title?? Chief_emp = pd.read_sql( 'select Count(EmployeeName) from Salaries where JobTitle like "%Chief%"', conn ) Chief_emp # Is there is a correlation between (lenght of the job title string) and (salary)?? Salaries["titles_lenght"] = Salaries["JobTitle"].apply(len) # apply fun is very useful when you want to perform functions and calcs on rows. Salaries["titles_lenght"] Salaries[["titles_lenght", "TotalPayBenefits"]].corr() # ##### Visualizing the correlation plt.scatter(Salaries["titles_lenght"], Salaries["TotalPayBenefits"]) plt.xlabel("Job Title Length") plt.ylabel("Total Pay Benefits") plt.title("Correlation Between Job Title Length and Total Pay Benefits") plt.show() # #### Corr is very very small ,so their is no corr # visualizing the 5 number summary of TotalPayBenefits plt.figure(figsize=(8, 3)) sns.boxplot(x=Salaries["TotalPayBenefits"]).set_title( "5 number summary of TotalPayBenefits" ) # ### Insight: # The most of employees receive a wage with approximately 100000 per year, # The number of employees that receive a wage with above 400000 is very small. # so, what is the title of these people who take more than 400000?? Title = pd.read_sql( "select JobTitle from Salaries where TotalPayBenefits > 400000", conn ) Title
false
0
1,404
9
1,866
1,404
129363085
<jupyter_start><jupyter_text>Heart Disease Dataset ### Context This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V. It contains 76 attributes, including the predicted attribute, but all published experiments refer to using a subset of 14 of them. The "target" field refers to the presence of heart disease in the patient. It is integer valued 0 = no disease and 1 = disease. ### Content Attribute Information: &gt; 1. age &gt; 2. sex &gt; 3. chest pain type (4 values) &gt; 4. resting blood pressure &gt; 5. serum cholestoral in mg/dl &gt; 6. fasting blood sugar &gt; 120 mg/dl &gt; 7. resting electrocardiographic results (values 0,1,2) &gt; 8. maximum heart rate achieved &gt; 9. exercise induced angina &gt; 10. oldpeak = ST depression induced by exercise relative to rest &gt; 11. the slope of the peak exercise ST segment &gt; 12. number of major vessels (0-3) colored by flourosopy &gt; 13. thal: 0 = normal; 1 = fixed defect; 2 = reversable defect The names and social security numbers of the patients were recently removed from the database, replaced with dummy values. Kaggle dataset identifier: heart-disease-dataset <jupyter_code>import pandas as pd df = pd.read_csv('heart-disease-dataset/heart.csv') df.info() <jupyter_output><class 'pandas.core.frame.DataFrame'> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 age 1025 non-null int64 1 sex 1025 non-null int64 2 cp 1025 non-null int64 3 trestbps 1025 non-null int64 4 chol 1025 non-null int64 5 fbs 1025 non-null int64 6 restecg 1025 non-null int64 7 thalach 1025 non-null int64 8 exang 1025 non-null int64 9 oldpeak 1025 non-null float64 10 slope 1025 non-null int64 11 ca 1025 non-null int64 12 thal 1025 non-null int64 13 target 1025 non-null int64 dtypes: float64(1), int64(13) memory usage: 112.2 KB <jupyter_text>Examples: { "age": 52.0, "sex": 1.0, "cp": 0.0, "trestbps": 125.0, "chol": 212.0, "fbs": 0.0, "restecg": 1.0, "thalach": 168.0, "exang": 0.0, "oldpeak": 1.0, "slope": 2.0, "ca": 2.0, "thal": 3.0, "target": 0.0 } { "age": 53.0, "sex": 1.0, "cp": 0.0, "trestbps": 140.0, "chol": 203.0, "fbs": 1.0, "restecg": 0.0, "thalach": 155.0, "exang": 1.0, "oldpeak": 3.1, "slope": 0.0, "ca": 0.0, "thal": 3.0, "target": 0.0 } { "age": 70.0, "sex": 1.0, "cp": 0.0, "trestbps": 145.0, "chol": 174.0, "fbs": 0.0, "restecg": 1.0, "thalach": 125.0, "exang": 1.0, "oldpeak": 2.6, "slope": 0.0, "ca": 0.0, "thal": 3.0, "target": 0.0 } { "age": 61.0, "sex": 1.0, "cp": 0.0, "trestbps": 148.0, "chol": 203.0, "fbs": 0.0, "restecg": 1.0, "thalach": 161.0, "exang": 0.0, "oldpeak": 0.0, "slope": 2.0, "ca": 1.0, "thal": 3.0, "target": 0.0 } <jupyter_script># # **About Dataset** # **Content** # This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V. It contains 76 attributes, including the predicted attribute, but all published experiments refer to using a subset of 14 of them. The "target" field refers to the presence of heart disease in the patient. It is integer valued 0 = no disease and 1 = disease. # **Feature Dataset** # 1. Age = Age # 2. Sex = Gender (male = 1, female = 0) # 3. cp = Chest pain (4 points) # 4. tresbps = resting blood pressure in mm Hg # 5. chol = serum cholesterol in mg/dl # 6. fbs = fasting blood sugar > 120 mg/dl (yes = 1, no = 0) # 7. restecg = resting electrocardiography results (value 0,1,2) # 8. thalach = maximum heart rate # 9. exang = Exercise induced angina (yes = 1, no = 0) # 10. oldpeak = ST exercise-induced depression relative to rest # 11. slope = peak training ST segment slope # 12. ca = Blood vessels that are colored after being stained by flourosopy (0-3) # 13. thal = type of blood vessel damage 0 = normal; 1 = permanent disability; 2 = temporary disability # 14. target = Indication of heart disease (yes = 1, no = 0) # # **Define business problems, metrics, goals** # - Business Problem : Berdasarkan data Organisasi Kesehatan Dunia (WHO), 85% kematian di dunia disebabkan oleh stroke dan serangan jantung. Oleh karena itu, penting untuk memprediksi risiko seseorang terkena penyakit jantung agar dapat melakukan intervensi dini untuk mencegah atau mengurangi risiko terkena penyakit jantung. Sehingga, dengan adanya data heart disease ini akan dapat digunakan untuk analisis terkait dengan memprediksi apakah seseorang terkena penyakit jantung atau tidak. # - Tujuan: Membuat model klasifikasi yang akurat untuk memprediksi kemungkinan seseorang terkena penyakit jantung. Model ini diharapkan dapat membantu dalam pencegahan dan pengobatan penyakit jantung, sehingga dapat mengurangi risiko terkena penyakit jatung. # - Metrik: Berdasarkan tujuan nya yaitu membuat model klasifikasi untuk memprediksi apakah seseorang terkena penyakit jantung atau tidak maka metrics yang dapat digunakan dalam melihat tingkat keberhasilan model adalah dengan akurasi model klasifikasi. Selain itu, ada beberapa metrik tambahan yang dapat digunakan dalam analisis data Heart Disease dengan atribut, seperti precision, recall, F1-score, dan area under curve (AUC). Metrik-metrik ini dapat digunakan untuk mengukur performa model klasifikasi secara lebih komprehensif dan memberikan informasi tambahan tentang performa model pada setiap kelas yang diprediksi. # # **The workflow that can be performed by a data scientist in handling the heart disease dataset case can be summarized in Crisp-DM** # Alur kerja yang dapat dilakukan sebagai seorang data scientist dalam menangani case dataset heart disease dapat dirangkum dalam Crisp-DM, yaitu sebagai berikut: # 1. Understanding the Business Problem # - Menentukan business problem dan tujuan bisnis # - Mengidentifikasi sumber data yang diperlukan # - Menentukan kriteria keberhasilan/ Metrics # 2. Data Understanding # - Mengumpulkan dan memahami data heart disease yang tersedia, seperti jumlah fitur, jumlah sampel, tipe data, dan sebagainya. # - Melakukan eksplorasi data untuk memahami karakteristik datanya, seperti melihat distribusi, korelasi antar fitur, dan sebagainya. # - Melakukan eksplorasi data lebih lanjut dengan menghitung statistik deskriptif, seperti mean, median, dan modus, untuk setiap variabel. # 3. Data Preparation # - Membersihkan data dari missing value, duplikat, data yang tidak relevan, dan menangani data outlier. # - Mengubah tipe data jika diperlukan, seperti mengubah data nominal ke binary. # - Melakukan feature engineering, yaitu membuat fitur baru yang dapat membantu dalam analisis data, seperti menggabungkan beberapa fitur atau mengekstrak fitur baru dari data mentah. # - Memilih fitur yang paling relevan untuk digunakan dalam model prediksi. # 4. Modeling # - Memilih model yang paling sesuai untuk kasus klasifikasi data heart disease, seperti Decision Tree. # - Membagi data menjadi data pelatihan dan data pengujian untuk mengevaluasi performa model. # - Melatih model menggunakan data pelatihan dan mengevaluasi performa model menggunakan data pengujian. # - Membuat visualisasi untuk memahami distribusi dari masing-masing variabel dan melihat korelasi antara variabel. # 5. Evaluation # - Mengukur performa model menggunakan beberapa metrik, seperti akurasi, presisi, recall, F1-score, atau area under curve (AUC). # - Menentukan apakah model sudah cukup baik atau masih perlu dilakukan peningkatan. # 6. Deployment # - Mengimplementasikan model dalam produksi atau digunakan oleh stakeholder yang membutuhkan informasi mengenai risiko terkena penyakit jantung. # 7. Monitoring # - Melakukan monitoring terhadap performa model untuk mengetahui apakah model masih berfungsi dengan baik atau tidak, dan melakukan update model jika diperlukan. # # **Import Library and Dataset** # Import Library import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # create a dataframe data = pd.read_csv("/kaggle/input/heart-disease-dataset/heart.csv") # Call Data Table data.head() # #Feature Dataset # 1. Age = Age # 2. Sex = Gender (male = 1, female = 0) # 3. cp = Chest pain (4 points) # 4. tresbps = resting blood pressure in mm Hg # 5. chol = serum cholesterol in mg/dl # 6. fbs = fasting blood sugar > 120 mg/dl (yes = 1, no = 0) # 7. restecg = resting electrocardiography results (value 0,1,2) # 8. thalach = maximum heart rate # 9. exang = Exercise induced angina (yes = 1, no = 0) # 10. oldpeak = ST exercise-induced depression relative to rest # 11. slope = peak training ST segment slope # 12. ca = Blood vessels that are colored after being stained by flourosopy (0-3) # 13. thal = type of blood vessel damage 0 = normal; 1 = permanent disability; 2 = temporary disability # 14. target = Indication of heart disease (yes = 1, no = 0) # Info Dataset data.info() # # **Check Quality of The Missing Value, Duplicated, Outlier, Imbalance** # Check Missing Value data.isnull().sum() # **Interpretasi** : # Data menunjukkan tidak adanya missing value. # Check Duplicated data.duplicated().sum() # **Interpretasi** : Data menunjukkan adanya duplicate. Namun setelah di lihat kembali pada data, banyak data kategorik yang bernilai binary sehingga mengakibatkan kondisi data terdeteksi terduplicate # Check Outliers fig, axs = plt.subplots(ncols=len(data.columns), figsize=(25, 5)) for i, col in enumerate(data.columns): axs[i].boxplot(data[col]) axs[i].set_title(col) plt.show() # **Interpretasi :** # Pada Boxplot diatas menunjukkan adanya outliers pada beberapa feature yaitu : # - Trestbps # - Chol # - Fbs # - Thalach # - Oldpeak # - Ca # - Thal # Check Imbalance data.hist(figsize=(15, 10), bins=10) plt.show() # **Interpretasi** : # Histrogram tiap feature diatas menunjukkan bahwa hanya feature target yang memiliki kondisi balance, sedangkan feature lainnya terlihat imbalance. # # **Check the descriptive statistics of the dataset (mean, distributions, etc)** # Distribution data.describe() # Melihat histogram dari feature yang bernilai numerik pada data Heart Disease data[["age", "trestbps", "chol", "thalach", "oldpeak"]].hist(figsize=(15, 10), bins=10) # Melihat histogram dari feature yang masuk dalam data kategorik pada data Heart Disease data[ [ "sex", "cp", "fbs", "restecg", "exang", "slope", "ca", "thal", "target", ] ].hist(figsize=(15, 10), bins=10) # **Interpretation:** # **Distribution** # * Right Skewed (Mean > Median): There are some features with right-skewed distribution such as trestbps, chol, oldpeak. # * Left Skewed (Mean < Median): There are some features with left-skewed distribution such as age, thalach. # Meanwhile, for categorical data, we can see the mode (most frequent value) of the data. # * Sex: Indicates a mode of 1, which means that there are more male patients than female patients. # * Cp: Indicates a mode of 0, which means that the most common type of chest pain felt by patients is typical angina. # * Fbs: Indicates a mode of 0, which means that most patients have a fasting blood sugar level of less than 120 mg/dL. # * Restecg: Indicates a mode of 1, which means that the majority of patients have abnormal ST-T wave changes on resting electrocardiographic results. # * Exang: Indicates a mode of 0, which means that the majority of patients did not experience exercise-induced angina. # * Slope: Indicates a mode of 1, which means that the majority of patients have a slowly upsloping ST segment during peak exercise. # * Ca: Indicates a mode of 0, which means that there is a small likelihood of narrowing or damage to the major blood vessels. # * Thal: Indicates a mode of 2, which means that most patients have moderate thalassemia category. # * Target: Indicates a mode of 1, which means that based on the available features, most patients have heart disease. # # Melihat Kemiringan Feature Feature Numerik data[["age", "trestbps", "chol", "thalach", "oldpeak"]].skew() # **Interpretation:** # Here is an interpretation of the numerical data distribution in the Heart Disease dataset: # * The Age feature shows a left-skewed distribution. # * The Trestbps feature shows a right-skewed distribution. # * The Chol feature shows a right-skewed distribution. # * The Thalach feature shows a left-skewed distribution. # * The Oldpeak feature shows a right-skewed distribution. # # **Check the correlation between features** # Check Correlation corr_matrix = data.corr() corr_matrix["target"].sort_values(ascending=False) # Check Correlation with Heatmap corr = data.corr() plt.figure(figsize=(12, 10)) sns.heatmap(corr, annot=True, cmap="coolwarm") plt.show() # **Interpretation:** # * cp has a correlation of 0.434854, which means cp has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * thalach has a correlation of 0.422895, which means thalach has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * slope has a correlation of 0.345512, which means slope has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * restecg has a correlation of 0.134468, which means restecg has a weak positive correlation with the target since -0.3 < correlation value < 0.3. # * fbs has a correlation of -0.041164, which means fbs has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * chol has a correlation of -0.099966, which means chol has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * trestbps has a correlation of -0.138772, which means trestbps has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * age has a correlation of -0.229324, which means age has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * sex has a correlation of -0.279501, which means sex has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * thal has a correlation of -0.337838, which means thal has a strong negative correlation with the target since the correlation value is less than -0.7. # * ca has a correlation of -0.382085, which means ca has a strong negative correlation with the target since the correlation value is less than -0.7. # * exang has a correlation of -0.438029, which means exang has a strong negative correlation with the target since the correlation value is less than -0.7. # * oldpeak has a correlation of -0.438441, which means oldpeak has a strong negative correlation with the target since the correlation value is less than -0.7. # # Univariate Selection For categorical Variable from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 bestfeatures = SelectKBest(score_func=chi2) x = data.drop("target", axis=1) y = data["target"] fit = bestfeatures.fit(x, y) scores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(x.columns) featureScores = pd.concat([dfcolumns, scores], axis=1) featureScores.columns = ["Label", "Score"] featureScores.sort_values(by="Score", ascending=False) # Droping the features which are not correlated data.drop(["fbs", "restecg"], axis=1, inplace=True) data.head() # Pairplot of each variable sns.pairplot( data=data, vars=[ "age", "sex", "cp", "trestbps", "chol", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target", ], ) # # **Define possible feature engineering through encoding** # Feature Extraction data["heart_age"] = ( data["age"] + ((data["trestbps"] - 120) / 10) + ((data["chol"] - 200) / 10) + (0.5 * (data["oldpeak"] - 1)) ) data # **Interpretasi :** # **Heart Age:** This new feature can help in understanding a patient's heart age. The feature calculates a person's heart age based on certain variables in the heart disease data, such as age, blood pressure (trestbps), cholesterol level (chol), and physical activity (oldpeak). If a person's heart age is older than their biological age, it may indicate that they are at a higher risk of developing heart disease. # Feature Scalling x = data.drop("target", axis=1) x y = data["target"] y # Encoder data["sex"].value_counts() # **Interpretation:** # The feature "sex" is a categorical feature with two categories: 0 for male and 1 for female. In the heart disease dataset, the categorical values have been encoded using label encoding, where the categories are mapped to numerical values (in this case, 0 and 1). # Encoder data["exang"].value_counts() # **Interpretation:** # The exang feature is a categorical feature that has only two categories with category 0 (not experiencing exercise-induced angina) and 1 (experiencing exercise-induced angina). Since the data shown on the exang feature in the heart disease dataset is already numeric in one column, this is the result of label encoding. # Encoder data["slope"].value_counts() # **Interpretation:** # The slope feature is a nominal categorical feature that does not have meaningful order/levels, with categories 0 (Downsloping ST segment), 1 (Flat ST segment), 2 (Upsloping ST segment). Next, one hot encoding will be applied to the slope categories. new_slope = pd.get_dummies(data["slope"], prefix="slope") new_slope # Encode data["cp"].value_counts() # **Interpretation:** # The feature cp is a nominal categorical feature that does not have a meaningful order/level, with categories 0 (No chest pain (asymptomatic)), 1 (Typical angina chest pain), 2 (Atypical angina chest pain), 3 (Non-anginal chest pain). Therefore, for further analysis, one hot encoding will be performed on the cp category. new_cp = pd.get_dummies(data["cp"], prefix="chestPain") new_cp data["ca"].value_counts() # **Interpretation:** # The feature Ca is an ordinal categorical feature, ranging from 0 to 4, each representing the number of major blood vessels visible on the examination. The data shown in the Ca feature of the heart disease dataset is numeric in a single column, indicating that it is the result of label encoding. data["thal"].value_counts() # **Interpretation:** # The thal feature is an ordinal categorical feature with categories 0 (No thalassemia), 1 (Mild thalassemia), 2 (Moderate thalassemia), 3 (Severe thalassemia). Since the data shown in the thal feature in the heart disease dataset is already in numerical values in one column, this is the result of label encoding. data["target"].value_counts() # **Interpretation:** # The feature target is a categorical feature with categories 0 (No heart disease) and 1 (Has heart disease). Since the data shown in the target feature in the heart disease dataset is already numerical in one column, this is the result of label encoding. app = [data, new_slope, new_cp] df = pd.concat(app, axis=1) df.head() df.columns df.drop(["cp", "slope"], axis=1, inplace=True) df df.shape # Feature Scalling from sklearn.preprocessing import MinMaxScaler, StandardScaler sc = StandardScaler() x_numerik = df[{"age", "trestbps", "oldpeak", "chol", "thalach", "heart_age"}] encoder = df[ { "sex", "exang", "ca", "thal", "target", "slope_0", "slope_1", "slope_2", "chestPain_0", "chestPain_1", "chestPain_2", "chestPain_3", } ] x_numerik encoder Data = sc.fit_transform(x_numerik) X_numerik = pd.DataFrame(Data, columns=x_numerik.columns) X_numerik app1 = [X_numerik, encoder] df1 = pd.concat(app1, axis=1) df1 X = df1.drop("target", axis=1) X y = df1["target"] y # # **Automate EDA through Dataprep, Autovis, Dtale, etc.** # Dataprep from dataprep.eda import create_report create_report(df).show() # # **Model Selection** # * Random Forest Classifier: This model is chosen because it can handle complex datasets with many features such as the heart disease dataset. Additionally, random forest also addresses the problem of overfitting by building many decision trees and combining the prediction results of each tree. # * Gradient Boosting Classifier: This model is a powerful classification model and is highly suitable for the heart disease dataset. The Gradient Boosting Classifier can handle imbalanced data and overfitting problems. Additionally, this model can optimize performance by adding experience from previous iterations and identifying important features in the dataset. # * K-Nearest Neighbors Classifier: This model is a distance-based classification model. It classifies a data point based on its distance to its nearest neighbors. The advantage of this model is that it is easy to use and has the ability to handle complex data. It is suitable for use on the heart disease dataset because each data point in this dataset requires its nearest neighbors to be analyzed. However, this model does not have built-in features to extract important features, as the algorithm inherently does not calculate feature weights. Therefore, it is not possible to create feature importance with the KNN model. # # **Cross Validation and Bootstrapping.** from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, classification_report, ) from sklearn.model_selection import cross_val_score from sklearn.utils import resample from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier df1 # Split the data into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # # **Random Forest Classifier Model** # Cross Validation # Create a Random Forest Classifier model model_1 = RandomForestClassifier(n_estimators=100, random_state=42) scores_1 = cross_val_score(model_1, X_train, y_train, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_1.mean(), scores_1.std()) ) # **Interpretation:** # The output obtained using the training data with the Random Forest Classifier model is the mean score accuracy of cross-validation, which is 0.98, and the standard deviation score is 0.02. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_1.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_1.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_1 = np.mean(accuracies) std_accuracy_1 = np.std(accuracies) lower_ci = mean_accuracy_1 - 1.96 * std_accuracy_1 upper_ci = mean_accuracy_1 + 1.96 * std_accuracy_1 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_1) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # **Interpretation:** # The output obtained using the training data with the Random Forest Classifier model is the mean score accuracy from bootstrapping of 0.99, with a 95% confidence interval, the accuracy score obtained is [0.98, 1.00]. # Prediction model_1.fit(X_train, y_train) y_pred1 = model_1.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred1) precision = precision_score(y_test, y_pred1) recall = recall_score(y_test, y_pred1) f1 = f1_score(y_test, y_pred1) roc_auc1 = roc_auc_score(y_test, model_1.predict_proba(X_test)[:, 1]) # Evaluation print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred1) print("Confusion Matrix:\n", conf_matrix) # # **Gradient Boosting Classifier Model** # Cross Validation model_2 = GradientBoostingClassifier(random_state=42) scores_2 = cross_val_score(model_2, X, y, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_2.mean(), scores_2.std()) ) # **Interpretation:** # The output obtained using the training data with the Gradient Boosting Classifier model is the mean accuracy score of cross-validation, which is 0.97, and its standard deviation score is 0.01. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_2.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_2.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_2 = np.mean(accuracies) std_accuracy_2 = np.std(accuracies) lower_ci = mean_accuracy_2 - 1.96 * std_accuracy_2 upper_ci = mean_accuracy_2 + 1.96 * std_accuracy_2 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_2) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # **Interpretation:** # The output obtained using the training data with the Gradient Boosting Classifier model shows a mean score accuracy of 0.97 and a standard deviation score of 0.01 for cross-validation. Furthermore, the mean score accuracy from bootstrapping is 0.97 with a 95% confidence interval for the score accuracy of [0.96, 0.99]. # Prediction model_2.fit(X_train, y_train) y_pred2 = model_2.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred2) precision = precision_score(y_test, y_pred2) recall = recall_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) roc_auc1 = roc_auc_score(y_test, model_2.predict_proba(X_test)[:, 1]) # menampilkan hasil evaluasi print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred2) print("Confusion Matrix:\n", conf_matrix) # # **KNN Classifier Model** # Cross Validation model_3 = KNeighborsClassifier(n_neighbors=3) scores_3 = cross_val_score(model_3, X, y, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_3.mean(), scores_3.std()) ) # **Interpretation:** # The output obtained using the train data with the K-Nearest Neighbors (KNN) model is a mean accuracy score of 0.93 from cross-validation and a standard deviation score of 0.01. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_3.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_3.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_3 = np.mean(accuracies) std_accuracy_3 = np.std(accuracies) lower_ci = mean_accuracy_3 - 1.96 * std_accuracy_3 upper_ci = mean_accuracy_3 + 1.96 * std_accuracy_3 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_3) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # Prediction model_3.fit(X_train, y_train) y_pred3 = model_3.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred3) precision = precision_score(y_test, y_pred3) recall = recall_score(y_test, y_pred3) f1 = f1_score(y_test, y_pred3) roc_auc1 = roc_auc_score(y_test, model_3.predict_proba(X_test)[:, 1]) # menampilkan hasil evaluasi print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred3) print("Confusion Matrix:\n", conf_matrix) # **Interpretation:** # The output obtained using the training data with the KNN model is a mean score accuracy of 0.93 from cross-validation and a standard deviation score of 0.01. Additionally, from bootstrapping, the mean score accuracy is 0.95 and the 95% confidence interval score accuracy is [0.93, 0.97]. # # **List The Model Evaluation** import pandas as pd acc = accuracy_score(y_test, y_pred2) precision = precision_score(y_test, y_pred2) recall = recall_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) roc_auc1 = roc_auc_score(y_test, model_2.predict_proba(X_test)[:, 1]) # List of evaluation models eval_list = [ { "model": "Random Forest Classifier", " Mean Cross Validation": scores_1.mean(), "Std Cross Validation": scores_1.std(), "Mean Score Bootstrapping": mean_accuracy_1, "95% confidence interval": [ mean_accuracy_1 - 1.96 * std_accuracy_1, mean_accuracy_1 + 1.96 * std_accuracy_1, ], "accuracy": accuracy_score(y_test, y_pred1), "precision": precision_score(y_test, y_pred1), "recall": recall_score(y_test, y_pred1), "f1_score": f1_score(y_test, y_pred1), "confusion metrics": confusion_matrix(y_test, y_pred1), }, { "model": "Random Gradient Boosting", " Mean Cross Validation": scores_2.mean(), "Std Cross Validation": scores_2.std(), "Mean Score Bootstrapping": mean_accuracy_2, "95% confidence interval": [ mean_accuracy_2 - 1.96 * std_accuracy_2, mean_accuracy_2 + 1.96 * std_accuracy_2, ], "accuracy": accuracy_score(y_test, y_pred2), "precision": precision_score(y_test, y_pred2), "recall": recall_score(y_test, y_pred2), "f1_score": f1_score(y_test, y_pred2), "confusion metrics": confusion_matrix(y_test, y_pred2), }, { "model": "KNN Classfier", " Mean Cross Validation": scores_3.mean(), "Std Cross Validation": scores_3.std(), "Mean Score Bootstrapping": mean_accuracy_3, "95% confidence interval": [ mean_accuracy_3 - 1.96 * std_accuracy_3, mean_accuracy_3 + 1.96 * std_accuracy_3, ], "accuracy": accuracy_score(y_test, y_pred3), "precision": precision_score(y_test, y_pred3), "recall": recall_score(y_test, y_pred3), "f1_score": f1_score(y_test, y_pred3), "confusion metrics": confusion_matrix(y_test, y_pred3), }, ] # Dataframe of list evaluation models eval_df = pd.DataFrame(eval_list) # Print eval_df # # **List Feature Importance dari setiap Model** # Model Random Forest importances = pd.Series(model_1.feature_importances_, index=X_train.columns) importances.nlargest(10).plot(kind="barh") plt.show() # Model Gradient Boosting importances = pd.Series(model_2.feature_importances_, index=X_train.columns) importances.nlargest(10).plot(kind="barh") plt.show() # **Selected Model:** # Based on the generated output, the model with the best accuracy, precision, recall, and f1_score, as well as not overfitting by producing mean score accuracy and score std on cross-validation, and producing the best mean score accuracy with a 95% confidence interval, which means that the prediction value is within that confidence interval, is the Random Forest Classifier model. This model is chosen for the purpose of this study, which is to be used for accurate and effective classification to diagnose heart disease in patients. # Meanwhile, the Gradient Boosting and KNN models experienced overfitting, where the performance of the model with test data was smaller/worse than the performance of the model using train data. # **Feature Importance:** # * From the Random Forest Classifier model, there are 10 features that have the most influence in the model, these features are chestpain_0, thal, oldpeak, ca, thalach, heart_age, chol, trestbps, age, and exang. # * From the Gradient Boosting Classifier model, there are 10 features that have the most influence in the model, these features are chestpain_0, ca, thal, oldpeak, heart_age, thalach, chol, age, trestbps, and slope_0. # * From the feature importance information from each model, it can help us to understand the factors that are most influential in predicting the target variable in each model. Thus, we can focus our efforts on these features in improving or enhancing the model that has been created. # # **Hyperparameter Tuning** # # **Random Forest** # Fit the model on train data model1 = RandomForestClassifier(random_state=42) model1.fit(X_train, y_train) # Evaluate the model on the test data y_pred_1 = model1.predict(X_test) print(f1_score(y_test, y_pred_1)) # **Grid Search** from sklearn.model_selection import GridSearchCV # Definisikan parameter grid yang akan di-tune hyperparameter_space1 = { "n_estimators": [25, 50, 100], "criterion": ["gini", "entropy"], "class_weight": ["balanced", "balanced_subsample"], "min_samples_split": [0.1, 0.5, 1.0], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf1 = GridSearchCV( model1, hyperparameter_space1, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2 ) # Run the Grid Search CV clf1.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf1.best_params_) clf1.best_params_, clf1.best_score_ # get the best hyperparameters best_params1 = clf1.best_params_ # use the best hyperparameters to create a model best_model1 = RandomForestClassifier(**best_params1, random_state=42) # fit the model to the training data best_model1.fit(X_train, y_train) # predict the test data y_pred1 = best_model1.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred1) roc_auc = roc_auc_score(y_test, y_pred1) f1 = f1_score(y_test, y_pred1) print("Accuracy:", accuracy_score(y_test, y_pred1)) print("Best Hyperparameters:", best_params1) print("f1-score:", f1_score(y_test, y_pred1)) print("ROC AUC Score:", roc_auc) # **Random Search** from scipy.stats import randint, truncnorm from sklearn.model_selection import RandomizedSearchCV model_1 = RandomForestClassifier(random_state=42) hyperparameter_space01 = { "n_estimators": [25, 50, 100], "criterion": ["gini", "entropy"], "class_weight": ["balanced", "balanced_subsample"], "min_samples_split": [0.1, 0.5, 1.0], } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search01 = RandomizedSearchCV( model_1, hyperparameter_space01, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2, ) random_search01.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search01.best_params_) # Run the Grid Search CV random_search01.fit(X_train, y_train) random_search01.best_params_, random_search01.best_score_ # get the best hyperparameters best_params01 = random_search01.best_params_ # use the best hyperparameters to create a model best_model01 = RandomForestClassifier(**best_params01, random_state=42) # fit the model to the training data best_model01.fit(X_train, y_train) # predict the test data y_pred01 = best_model01.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred01) roc_auc = roc_auc_score(y_test, y_pred01) f1 = f1_score(y_test, y_pred01) print("Accuracy:", accuracy_score(y_test, y_pred01)) print("Best Hyperparameters:", best_params01) print("f1-score:", f1_score(y_test, y_pred01)) print("ROC AUC Score:", roc_auc) # **Learning Curve** from sklearn.model_selection import learning_curve # plot learning curve train_sizes, train_scores, test_scores = learning_curve( best_model01, X_train, y_train, cv=5, scoring="accuracy", n_jobs=-1, train_sizes=np.linspace(0.1, 1.0, 10), shuffle=True, random_state=42, ) # plot the mean training and test scores plt.plot(train_sizes, np.mean(train_scores, axis=1), label="Train") plt.plot(train_sizes, np.mean(test_scores, axis=1), label="Test") # plot the standard deviation of training and test scores plt.fill_between( train_sizes, np.mean(train_scores, axis=1) - np.std(train_scores, axis=1), np.mean(train_scores, axis=1) + np.std(train_scores, axis=1), alpha=0.1, ) plt.fill_between( train_sizes, np.mean(test_scores, axis=1) - np.std(test_scores, axis=1), np.mean(test_scores, axis=1) + np.std(test_scores, axis=1), alpha=0.1, ) # plot details plt.title("Random Forest Classifier - Learning Curve") plt.xlabel("Training Size") plt.ylabel("Accuracy Score") plt.legend(loc="best") plt.show() # *** # **Insight** # *** # Terdapat penurunan pada data latih, namun terdapat kenaikan sedikit pada data validasi. Penurunan pada data latih menunjukkan bahwa model terlalu spesifik dan telah mempelajari pola yang sangat khusus pada data latih, sehingga tidak dapat memprediksi data baru dengan akurat. Namun, karena terdapat kenaikan sedikit pada data validasi, model tersebut masih memiliki kemampuan untuk melakukan generalisasi pada data baru. # Gap yang kecil antara learning curve menunjukkan bahwa perbedaan antara akurasi pada data latih dan data validasi tidak terlalu signifikan, namun akurasi yang dihasilkan masih rendah. Hal ini menunjukkan bahwa model masih memiliki kekurangan dan perlu diperbaiki untuk menghasilkan prediksi yang lebih akurat pada data baru. Solusi untuk mengatasi hal ini dapat dilakukan dengan melakukan regularisasi pada model atau memilih model yang lebih sederhana, serta memilih fitur yang lebih relevan pada dataset. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred01) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred01 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas, namun pada curve diatas belum sangat dekat dengan titik (0,1). # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.82, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **Gradient Boosting** # Fit the model on train data model2 = GradientBoostingClassifier(random_state=42) model2.fit(X_train, y_train) # Evaluate the model on the test data y_pred_2 = model2.predict(X_test) print(f1_score(y_test, y_pred_2)) # **Grid Search** # Create the parameter grid hyperparameter_space2 = { "n_estimators": [100, 500], "learning_rate": [0.01, 0.1], "max_depth": [3, 5], "criterion": ["squared_error", "friedman_mse"], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf2 = GridSearchCV(model2, param_grid=hyperparameter_space2, cv=5) # Run the Grid Search CV clf2.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf2.best_params_) clf2.best_params_, clf2.best_score_ # get the best hyperparameters best_params2 = clf2.best_params_ # use the best hyperparameters to create a model best_model2 = GradientBoostingClassifier(**best_params2, random_state=42) # fit the model to the training data best_model2.fit(X_train, y_train) # predict the test data y_pred2 = best_model2.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred2) roc_auc = roc_auc_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) print("Accuracy:", accuracy_score(y_test, y_pred2)) print("Best Hyperparameters:", best_params2) print("f1-score:", f1_score(y_test, y_pred2)) print("ROC AUC Score:", roc_auc) # **Random Search** model_2 = GradientBoostingClassifier(random_state=42) hyperparameter_space02 = { "n_estimators": [100, 500], "learning_rate": [0.01, 0.1], "max_depth": [3, 5], "criterion": ["squared_error", "friedman_mse"], } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search02 = RandomizedSearchCV( model_2, hyperparameter_space02, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2, ) random_search02.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search02.best_params_) # Run the Grid Search CV random_search02.fit(X_train, y_train) random_search02.best_params_, random_search02.best_score_ # get the best hyperparameters best_params02 = random_search02.best_params_ # use the best hyperparameters to create a model best_model02 = GradientBoostingClassifier(**best_params02, random_state=42) # fit the model to the training data best_model02.fit(X_train, y_train) # predict the test data y_pred02 = best_model02.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred02) roc_auc = roc_auc_score(y_test, y_pred02) f1 = f1_score(y_test, y_pred02) print("Accuracy:", accuracy_score(y_test, y_pred02)) print("Best Hyperparameters:", best_params02) print("f1-score:", f1_score(y_test, y_pred02)) print("ROC AUC Score:", roc_auc) # predict the test data y_pred02 = best_model02.predict(X_test) y_pred02 # **Learning Curve** from sklearn.model_selection import learning_curve # Create the learning curve train_sizes, train_scores, test_scores = learning_curve( best_model02, X, y, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), scoring="accuracy" ) # Calculate the mean and standard deviation of the training scores train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) # Calculate the mean and standard deviation of the test scores test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the learning curve plt.plot(train_sizes, train_mean, label="Training score") plt.plot(train_sizes, test_mean, label="Cross-validation score") # Add the standard deviation bands plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1) plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1) # Add labels and legend plt.xlabel("Number of training samples") plt.ylabel("Accuracy score") plt.title("Learning Curve (Gradient Boosting Classifier)") plt.legend(loc="best") # Show the plot plt.show() # *** # **Insight** # *** # Terdapat kenaikan pada learning curve data validasi dan learning curve data latih stabil dengan akurasi yang tinggi, maka model tersebut menunjukkan bahwa model tersebut cukup baik dan mampu melakukan generalisasi pada data baru dengan akurat. # Kenaikan pada learning curve data validasi menunjukkan bahwa model dapat mempelajari pola-pola umum pada dataset dan mampu melakukan prediksi dengan akurat pada data yang belum pernah dilihat sebelumnya. Sedangkan learning curve data latih yang stabil menunjukkan bahwa model tidak terlalu overfitting pada data latih dan mampu melakukan prediksi dengan akurat pada data yang sudah dikenal sebelumnya. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred02) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred02 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas. # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.99, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **KNN Classifier** # **Grid Search** # Fit the model on train data model3 = KNeighborsClassifier() model3.fit(X_train, y_train) # Evaluate the model on the test data y_pred_3 = model3.predict(X_test) print(f1_score(y_test, y_pred_3)) # Create the parameter grid hyperparameter_space3 = { "n_neighbors": [3, 5, 7, 9, 11], "weights": ["uniform", "distance"], "algorithm": ["ball_tree", "kd_tree", "brute"], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf3 = GridSearchCV(model3, param_grid=hyperparameter_space3, cv=5) # Run the Grid Search CV clf3.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf3.best_params_) clf3.best_params_, clf3.best_score_ # get the best hyperparameters best_params3 = clf3.best_params_ # use the best hyperparameters to create a model best_model3 = KNeighborsClassifier(**best_params3) # fit the model to the training data best_model3.fit(X_train, y_train) # predict the test data y_pred3 = best_model3.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred3) roc_auc = roc_auc_score(y_test, y_pred3) f1 = f1_score(y_test, y_pred3) print("Accuracy:", accuracy_score(y_test, y_pred3)) print("Best Hyperparameters:", best_params3) print("f1-score:", f1_score(y_test, y_pred3)) print("ROC AUC Score:", roc_auc) # **Random Search** model_3 = KNeighborsClassifier() hyperparameter_space03 = { "n_neighbors": randint(1, 50), # jumlah tetangga terdekat "weights": ["uniform", "distance"], # bobot jarak tetangga terdekat "algorithm": [ "ball_tree", "kd_tree", "brute", ], # algoritma pencarian tetangga terdekat "leaf_size": randint(1, 100), # ukuran daun untuk algoritma ball_tree atau kd_tree } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search03 = RandomizedSearchCV( model_3, hyperparameter_space03, scoring="f1", cv=5, random_state=42, n_jobs=-1, refit=True, verbose=2, ) random_search03.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search03.best_params_) # Run the Grid Search CV random_search03.fit(X_train, y_train) random_search03.best_params_, random_search03.best_score_ # get the best hyperparameters best_params03 = random_search03.best_params_ # use the best hyperparameters to create a model best_model03 = KNeighborsClassifier(**best_params03) # fit the model to the training data best_model03.fit(X_train, y_train) # predict the test data y_pred03 = best_model03.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred03) roc_auc = roc_auc_score(y_test, y_pred03) f1 = f1_score(y_test, y_pred03) print("Accuracy:", accuracy_score(y_test, y_pred03)) print("Best Hyperparameters:", best_params03) print("f1-score:", f1_score(y_test, y_pred03)) print("ROC AUC Score:", roc_auc_score(y_test, y_pred03)) # **Learning Curve** from sklearn.model_selection import learning_curve # Create the learning curve train_sizes, train_scores, test_scores = learning_curve( best_model03, X, y, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), scoring="accuracy" ) # Calculate the mean and standard deviation of the training scores train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) # Calculate the mean and standard deviation of the test scores test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the learning curve plt.plot(train_sizes, train_mean, label="Training score") plt.plot(train_sizes, test_mean, label="Cross-validation score") # Add the standard deviation bands plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1) plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1) # Add labels and legend plt.xlabel("Number of training samples") plt.ylabel("Accuracy score") plt.title("Learning Curve (KNN Classifier)") plt.legend(loc="best") # Show the plot plt.show() # *** # **Insight** # *** # Terdapat kenaikan pada learning curve data validasi dan learning curve data latih stabil dengan akurasi yang tinggi, maka model tersebut menunjukkan bahwa model tersebut cukup baik dan mampu melakukan generalisasi pada data baru dengan akurat. # Kenaikan pada learning curve data validasi menunjukkan bahwa model dapat mempelajari pola-pola umum pada dataset dan mampu melakukan prediksi dengan akurat pada data yang belum pernah dilihat sebelumnya. Sedangkan learning curve data latih yang stabil menunjukkan bahwa model tidak terlalu overfitting pada data latih dan mampu melakukan prediksi dengan akurat pada data yang sudah dikenal sebelumnya. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred03) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred03 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas. # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.99, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **Interpretasi Pemilihan Model** # Membuat list hasil evaluasi model berdasarkan model yang diperoleh melalui hyperparameter tuning eval_list = [ { "model": "Random Forest Classifier", " F1-Score_train": random_search01.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred01), "Best Hyperparameters": best_params01, "F1-Score_Test": f1_score(y_test, y_pred01), "ROC AUC Score": roc_auc_score(y_test, y_pred01), }, { "model": "Gradient Boosting Classifier", " F1-Score_train": random_search02.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred02), "Best Hyperparameters": best_params02, "F1-Score_Test": f1_score(y_test, y_pred02), "ROC AUC Score": roc_auc_score(y_test, y_pred02), }, { "model": "KNN Classifier", " F1-Score_train": random_search03.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred03), "Best Hyperparameters": best_params03, "F1-Score_Test": f1_score(y_test, y_pred03), "ROC AUC Score": roc_auc_score(y_test, y_pred03), }, ] # Membuat dataframe dari list evaluasi model eval_df = pd.DataFrame(eval_list) # Menampilkan dataframe hasil evaluasi model eval_df
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/363/129363085.ipynb
heart-disease-dataset
johnsmith88
[{"Id": 129363085, "ScriptId": 38463808, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 10798005, "CreationDate": "05/13/2023 06:32:20", "VersionNumber": 1.0, "Title": "Heart Disease Prediction : A ML Approach", "EvaluationDate": "05/13/2023", "IsChange": true, "TotalLines": 1241.0, "LinesInsertedFromPrevious": 1241.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
[{"Id": 185339324, "KernelVersionId": 129363085, "SourceDatasetVersionId": 477177}]
[{"Id": 477177, "DatasetId": 216167, "DatasourceVersionId": 493143, "CreatorUserId": 3308439, "LicenseName": "Unknown", "CreationDate": "06/06/2019 15:33:55", "VersionNumber": 2.0, "Title": "Heart Disease Dataset", "Slug": "heart-disease-dataset", "Subtitle": "Public Health Dataset", "Description": "### Context\n\nThis data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V. It contains 76 attributes, including the predicted attribute, but all published experiments refer to using a subset of 14 of them. The \"target\" field refers to the presence of heart disease in the patient. It is integer valued 0 = no disease and 1 = disease.\n\n\n### Content\n\nAttribute Information: \n&gt; 1. age \n&gt; 2. sex \n&gt; 3. chest pain type (4 values) \n&gt; 4. resting blood pressure \n&gt; 5. serum cholestoral in mg/dl \n&gt; 6. fasting blood sugar &gt; 120 mg/dl\n&gt; 7. resting electrocardiographic results (values 0,1,2)\n&gt; 8. maximum heart rate achieved \n&gt; 9. exercise induced angina \n&gt; 10. oldpeak = ST depression induced by exercise relative to rest \n&gt; 11. the slope of the peak exercise ST segment \n&gt; 12. number of major vessels (0-3) colored by flourosopy \n&gt; 13. thal: 0 = normal; 1 = fixed defect; 2 = reversable defect\nThe names and social security numbers of the patients were recently removed from the database, replaced with dummy values.", "VersionNotes": "Update data", "TotalCompressedBytes": 38114.0, "TotalUncompressedBytes": 38114.0}]
[{"Id": 216167, "CreatorUserId": 3308439, "OwnerUserId": 3308439.0, "OwnerOrganizationId": NaN, "CurrentDatasetVersionId": 477177.0, "CurrentDatasourceVersionId": 493143.0, "ForumId": 227259, "Type": 2, "CreationDate": "06/04/2019 02:58:45", "LastActivityDate": "06/04/2019", "TotalViews": 578180, "TotalDownloads": 97361, "TotalVotes": 747, "TotalKernels": 308}]
[{"Id": 3308439, "UserName": "johnsmith88", "DisplayName": "David Lapp", "RegisterDate": "06/04/2019", "PerformanceTier": 0}]
# # **About Dataset** # **Content** # This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V. It contains 76 attributes, including the predicted attribute, but all published experiments refer to using a subset of 14 of them. The "target" field refers to the presence of heart disease in the patient. It is integer valued 0 = no disease and 1 = disease. # **Feature Dataset** # 1. Age = Age # 2. Sex = Gender (male = 1, female = 0) # 3. cp = Chest pain (4 points) # 4. tresbps = resting blood pressure in mm Hg # 5. chol = serum cholesterol in mg/dl # 6. fbs = fasting blood sugar > 120 mg/dl (yes = 1, no = 0) # 7. restecg = resting electrocardiography results (value 0,1,2) # 8. thalach = maximum heart rate # 9. exang = Exercise induced angina (yes = 1, no = 0) # 10. oldpeak = ST exercise-induced depression relative to rest # 11. slope = peak training ST segment slope # 12. ca = Blood vessels that are colored after being stained by flourosopy (0-3) # 13. thal = type of blood vessel damage 0 = normal; 1 = permanent disability; 2 = temporary disability # 14. target = Indication of heart disease (yes = 1, no = 0) # # **Define business problems, metrics, goals** # - Business Problem : Berdasarkan data Organisasi Kesehatan Dunia (WHO), 85% kematian di dunia disebabkan oleh stroke dan serangan jantung. Oleh karena itu, penting untuk memprediksi risiko seseorang terkena penyakit jantung agar dapat melakukan intervensi dini untuk mencegah atau mengurangi risiko terkena penyakit jantung. Sehingga, dengan adanya data heart disease ini akan dapat digunakan untuk analisis terkait dengan memprediksi apakah seseorang terkena penyakit jantung atau tidak. # - Tujuan: Membuat model klasifikasi yang akurat untuk memprediksi kemungkinan seseorang terkena penyakit jantung. Model ini diharapkan dapat membantu dalam pencegahan dan pengobatan penyakit jantung, sehingga dapat mengurangi risiko terkena penyakit jatung. # - Metrik: Berdasarkan tujuan nya yaitu membuat model klasifikasi untuk memprediksi apakah seseorang terkena penyakit jantung atau tidak maka metrics yang dapat digunakan dalam melihat tingkat keberhasilan model adalah dengan akurasi model klasifikasi. Selain itu, ada beberapa metrik tambahan yang dapat digunakan dalam analisis data Heart Disease dengan atribut, seperti precision, recall, F1-score, dan area under curve (AUC). Metrik-metrik ini dapat digunakan untuk mengukur performa model klasifikasi secara lebih komprehensif dan memberikan informasi tambahan tentang performa model pada setiap kelas yang diprediksi. # # **The workflow that can be performed by a data scientist in handling the heart disease dataset case can be summarized in Crisp-DM** # Alur kerja yang dapat dilakukan sebagai seorang data scientist dalam menangani case dataset heart disease dapat dirangkum dalam Crisp-DM, yaitu sebagai berikut: # 1. Understanding the Business Problem # - Menentukan business problem dan tujuan bisnis # - Mengidentifikasi sumber data yang diperlukan # - Menentukan kriteria keberhasilan/ Metrics # 2. Data Understanding # - Mengumpulkan dan memahami data heart disease yang tersedia, seperti jumlah fitur, jumlah sampel, tipe data, dan sebagainya. # - Melakukan eksplorasi data untuk memahami karakteristik datanya, seperti melihat distribusi, korelasi antar fitur, dan sebagainya. # - Melakukan eksplorasi data lebih lanjut dengan menghitung statistik deskriptif, seperti mean, median, dan modus, untuk setiap variabel. # 3. Data Preparation # - Membersihkan data dari missing value, duplikat, data yang tidak relevan, dan menangani data outlier. # - Mengubah tipe data jika diperlukan, seperti mengubah data nominal ke binary. # - Melakukan feature engineering, yaitu membuat fitur baru yang dapat membantu dalam analisis data, seperti menggabungkan beberapa fitur atau mengekstrak fitur baru dari data mentah. # - Memilih fitur yang paling relevan untuk digunakan dalam model prediksi. # 4. Modeling # - Memilih model yang paling sesuai untuk kasus klasifikasi data heart disease, seperti Decision Tree. # - Membagi data menjadi data pelatihan dan data pengujian untuk mengevaluasi performa model. # - Melatih model menggunakan data pelatihan dan mengevaluasi performa model menggunakan data pengujian. # - Membuat visualisasi untuk memahami distribusi dari masing-masing variabel dan melihat korelasi antara variabel. # 5. Evaluation # - Mengukur performa model menggunakan beberapa metrik, seperti akurasi, presisi, recall, F1-score, atau area under curve (AUC). # - Menentukan apakah model sudah cukup baik atau masih perlu dilakukan peningkatan. # 6. Deployment # - Mengimplementasikan model dalam produksi atau digunakan oleh stakeholder yang membutuhkan informasi mengenai risiko terkena penyakit jantung. # 7. Monitoring # - Melakukan monitoring terhadap performa model untuk mengetahui apakah model masih berfungsi dengan baik atau tidak, dan melakukan update model jika diperlukan. # # **Import Library and Dataset** # Import Library import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk("/kaggle/input"): for filename in filenames: print(os.path.join(dirname, filename)) # create a dataframe data = pd.read_csv("/kaggle/input/heart-disease-dataset/heart.csv") # Call Data Table data.head() # #Feature Dataset # 1. Age = Age # 2. Sex = Gender (male = 1, female = 0) # 3. cp = Chest pain (4 points) # 4. tresbps = resting blood pressure in mm Hg # 5. chol = serum cholesterol in mg/dl # 6. fbs = fasting blood sugar > 120 mg/dl (yes = 1, no = 0) # 7. restecg = resting electrocardiography results (value 0,1,2) # 8. thalach = maximum heart rate # 9. exang = Exercise induced angina (yes = 1, no = 0) # 10. oldpeak = ST exercise-induced depression relative to rest # 11. slope = peak training ST segment slope # 12. ca = Blood vessels that are colored after being stained by flourosopy (0-3) # 13. thal = type of blood vessel damage 0 = normal; 1 = permanent disability; 2 = temporary disability # 14. target = Indication of heart disease (yes = 1, no = 0) # Info Dataset data.info() # # **Check Quality of The Missing Value, Duplicated, Outlier, Imbalance** # Check Missing Value data.isnull().sum() # **Interpretasi** : # Data menunjukkan tidak adanya missing value. # Check Duplicated data.duplicated().sum() # **Interpretasi** : Data menunjukkan adanya duplicate. Namun setelah di lihat kembali pada data, banyak data kategorik yang bernilai binary sehingga mengakibatkan kondisi data terdeteksi terduplicate # Check Outliers fig, axs = plt.subplots(ncols=len(data.columns), figsize=(25, 5)) for i, col in enumerate(data.columns): axs[i].boxplot(data[col]) axs[i].set_title(col) plt.show() # **Interpretasi :** # Pada Boxplot diatas menunjukkan adanya outliers pada beberapa feature yaitu : # - Trestbps # - Chol # - Fbs # - Thalach # - Oldpeak # - Ca # - Thal # Check Imbalance data.hist(figsize=(15, 10), bins=10) plt.show() # **Interpretasi** : # Histrogram tiap feature diatas menunjukkan bahwa hanya feature target yang memiliki kondisi balance, sedangkan feature lainnya terlihat imbalance. # # **Check the descriptive statistics of the dataset (mean, distributions, etc)** # Distribution data.describe() # Melihat histogram dari feature yang bernilai numerik pada data Heart Disease data[["age", "trestbps", "chol", "thalach", "oldpeak"]].hist(figsize=(15, 10), bins=10) # Melihat histogram dari feature yang masuk dalam data kategorik pada data Heart Disease data[ [ "sex", "cp", "fbs", "restecg", "exang", "slope", "ca", "thal", "target", ] ].hist(figsize=(15, 10), bins=10) # **Interpretation:** # **Distribution** # * Right Skewed (Mean > Median): There are some features with right-skewed distribution such as trestbps, chol, oldpeak. # * Left Skewed (Mean < Median): There are some features with left-skewed distribution such as age, thalach. # Meanwhile, for categorical data, we can see the mode (most frequent value) of the data. # * Sex: Indicates a mode of 1, which means that there are more male patients than female patients. # * Cp: Indicates a mode of 0, which means that the most common type of chest pain felt by patients is typical angina. # * Fbs: Indicates a mode of 0, which means that most patients have a fasting blood sugar level of less than 120 mg/dL. # * Restecg: Indicates a mode of 1, which means that the majority of patients have abnormal ST-T wave changes on resting electrocardiographic results. # * Exang: Indicates a mode of 0, which means that the majority of patients did not experience exercise-induced angina. # * Slope: Indicates a mode of 1, which means that the majority of patients have a slowly upsloping ST segment during peak exercise. # * Ca: Indicates a mode of 0, which means that there is a small likelihood of narrowing or damage to the major blood vessels. # * Thal: Indicates a mode of 2, which means that most patients have moderate thalassemia category. # * Target: Indicates a mode of 1, which means that based on the available features, most patients have heart disease. # # Melihat Kemiringan Feature Feature Numerik data[["age", "trestbps", "chol", "thalach", "oldpeak"]].skew() # **Interpretation:** # Here is an interpretation of the numerical data distribution in the Heart Disease dataset: # * The Age feature shows a left-skewed distribution. # * The Trestbps feature shows a right-skewed distribution. # * The Chol feature shows a right-skewed distribution. # * The Thalach feature shows a left-skewed distribution. # * The Oldpeak feature shows a right-skewed distribution. # # **Check the correlation between features** # Check Correlation corr_matrix = data.corr() corr_matrix["target"].sort_values(ascending=False) # Check Correlation with Heatmap corr = data.corr() plt.figure(figsize=(12, 10)) sns.heatmap(corr, annot=True, cmap="coolwarm") plt.show() # **Interpretation:** # * cp has a correlation of 0.434854, which means cp has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * thalach has a correlation of 0.422895, which means thalach has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * slope has a correlation of 0.345512, which means slope has a moderate positive correlation with the target since 0.3 < correlation value < 0.7. # * restecg has a correlation of 0.134468, which means restecg has a weak positive correlation with the target since -0.3 < correlation value < 0.3. # * fbs has a correlation of -0.041164, which means fbs has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * chol has a correlation of -0.099966, which means chol has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * trestbps has a correlation of -0.138772, which means trestbps has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * age has a correlation of -0.229324, which means age has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * sex has a correlation of -0.279501, which means sex has a weak negative correlation with the target since -0.3 < correlation value < 0.3. # * thal has a correlation of -0.337838, which means thal has a strong negative correlation with the target since the correlation value is less than -0.7. # * ca has a correlation of -0.382085, which means ca has a strong negative correlation with the target since the correlation value is less than -0.7. # * exang has a correlation of -0.438029, which means exang has a strong negative correlation with the target since the correlation value is less than -0.7. # * oldpeak has a correlation of -0.438441, which means oldpeak has a strong negative correlation with the target since the correlation value is less than -0.7. # # Univariate Selection For categorical Variable from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 bestfeatures = SelectKBest(score_func=chi2) x = data.drop("target", axis=1) y = data["target"] fit = bestfeatures.fit(x, y) scores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(x.columns) featureScores = pd.concat([dfcolumns, scores], axis=1) featureScores.columns = ["Label", "Score"] featureScores.sort_values(by="Score", ascending=False) # Droping the features which are not correlated data.drop(["fbs", "restecg"], axis=1, inplace=True) data.head() # Pairplot of each variable sns.pairplot( data=data, vars=[ "age", "sex", "cp", "trestbps", "chol", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target", ], ) # # **Define possible feature engineering through encoding** # Feature Extraction data["heart_age"] = ( data["age"] + ((data["trestbps"] - 120) / 10) + ((data["chol"] - 200) / 10) + (0.5 * (data["oldpeak"] - 1)) ) data # **Interpretasi :** # **Heart Age:** This new feature can help in understanding a patient's heart age. The feature calculates a person's heart age based on certain variables in the heart disease data, such as age, blood pressure (trestbps), cholesterol level (chol), and physical activity (oldpeak). If a person's heart age is older than their biological age, it may indicate that they are at a higher risk of developing heart disease. # Feature Scalling x = data.drop("target", axis=1) x y = data["target"] y # Encoder data["sex"].value_counts() # **Interpretation:** # The feature "sex" is a categorical feature with two categories: 0 for male and 1 for female. In the heart disease dataset, the categorical values have been encoded using label encoding, where the categories are mapped to numerical values (in this case, 0 and 1). # Encoder data["exang"].value_counts() # **Interpretation:** # The exang feature is a categorical feature that has only two categories with category 0 (not experiencing exercise-induced angina) and 1 (experiencing exercise-induced angina). Since the data shown on the exang feature in the heart disease dataset is already numeric in one column, this is the result of label encoding. # Encoder data["slope"].value_counts() # **Interpretation:** # The slope feature is a nominal categorical feature that does not have meaningful order/levels, with categories 0 (Downsloping ST segment), 1 (Flat ST segment), 2 (Upsloping ST segment). Next, one hot encoding will be applied to the slope categories. new_slope = pd.get_dummies(data["slope"], prefix="slope") new_slope # Encode data["cp"].value_counts() # **Interpretation:** # The feature cp is a nominal categorical feature that does not have a meaningful order/level, with categories 0 (No chest pain (asymptomatic)), 1 (Typical angina chest pain), 2 (Atypical angina chest pain), 3 (Non-anginal chest pain). Therefore, for further analysis, one hot encoding will be performed on the cp category. new_cp = pd.get_dummies(data["cp"], prefix="chestPain") new_cp data["ca"].value_counts() # **Interpretation:** # The feature Ca is an ordinal categorical feature, ranging from 0 to 4, each representing the number of major blood vessels visible on the examination. The data shown in the Ca feature of the heart disease dataset is numeric in a single column, indicating that it is the result of label encoding. data["thal"].value_counts() # **Interpretation:** # The thal feature is an ordinal categorical feature with categories 0 (No thalassemia), 1 (Mild thalassemia), 2 (Moderate thalassemia), 3 (Severe thalassemia). Since the data shown in the thal feature in the heart disease dataset is already in numerical values in one column, this is the result of label encoding. data["target"].value_counts() # **Interpretation:** # The feature target is a categorical feature with categories 0 (No heart disease) and 1 (Has heart disease). Since the data shown in the target feature in the heart disease dataset is already numerical in one column, this is the result of label encoding. app = [data, new_slope, new_cp] df = pd.concat(app, axis=1) df.head() df.columns df.drop(["cp", "slope"], axis=1, inplace=True) df df.shape # Feature Scalling from sklearn.preprocessing import MinMaxScaler, StandardScaler sc = StandardScaler() x_numerik = df[{"age", "trestbps", "oldpeak", "chol", "thalach", "heart_age"}] encoder = df[ { "sex", "exang", "ca", "thal", "target", "slope_0", "slope_1", "slope_2", "chestPain_0", "chestPain_1", "chestPain_2", "chestPain_3", } ] x_numerik encoder Data = sc.fit_transform(x_numerik) X_numerik = pd.DataFrame(Data, columns=x_numerik.columns) X_numerik app1 = [X_numerik, encoder] df1 = pd.concat(app1, axis=1) df1 X = df1.drop("target", axis=1) X y = df1["target"] y # # **Automate EDA through Dataprep, Autovis, Dtale, etc.** # Dataprep from dataprep.eda import create_report create_report(df).show() # # **Model Selection** # * Random Forest Classifier: This model is chosen because it can handle complex datasets with many features such as the heart disease dataset. Additionally, random forest also addresses the problem of overfitting by building many decision trees and combining the prediction results of each tree. # * Gradient Boosting Classifier: This model is a powerful classification model and is highly suitable for the heart disease dataset. The Gradient Boosting Classifier can handle imbalanced data and overfitting problems. Additionally, this model can optimize performance by adding experience from previous iterations and identifying important features in the dataset. # * K-Nearest Neighbors Classifier: This model is a distance-based classification model. It classifies a data point based on its distance to its nearest neighbors. The advantage of this model is that it is easy to use and has the ability to handle complex data. It is suitable for use on the heart disease dataset because each data point in this dataset requires its nearest neighbors to be analyzed. However, this model does not have built-in features to extract important features, as the algorithm inherently does not calculate feature weights. Therefore, it is not possible to create feature importance with the KNN model. # # **Cross Validation and Bootstrapping.** from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, classification_report, ) from sklearn.model_selection import cross_val_score from sklearn.utils import resample from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier df1 # Split the data into training and test sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # # **Random Forest Classifier Model** # Cross Validation # Create a Random Forest Classifier model model_1 = RandomForestClassifier(n_estimators=100, random_state=42) scores_1 = cross_val_score(model_1, X_train, y_train, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_1.mean(), scores_1.std()) ) # **Interpretation:** # The output obtained using the training data with the Random Forest Classifier model is the mean score accuracy of cross-validation, which is 0.98, and the standard deviation score is 0.02. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_1.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_1.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_1 = np.mean(accuracies) std_accuracy_1 = np.std(accuracies) lower_ci = mean_accuracy_1 - 1.96 * std_accuracy_1 upper_ci = mean_accuracy_1 + 1.96 * std_accuracy_1 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_1) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # **Interpretation:** # The output obtained using the training data with the Random Forest Classifier model is the mean score accuracy from bootstrapping of 0.99, with a 95% confidence interval, the accuracy score obtained is [0.98, 1.00]. # Prediction model_1.fit(X_train, y_train) y_pred1 = model_1.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred1) precision = precision_score(y_test, y_pred1) recall = recall_score(y_test, y_pred1) f1 = f1_score(y_test, y_pred1) roc_auc1 = roc_auc_score(y_test, model_1.predict_proba(X_test)[:, 1]) # Evaluation print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred1) print("Confusion Matrix:\n", conf_matrix) # # **Gradient Boosting Classifier Model** # Cross Validation model_2 = GradientBoostingClassifier(random_state=42) scores_2 = cross_val_score(model_2, X, y, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_2.mean(), scores_2.std()) ) # **Interpretation:** # The output obtained using the training data with the Gradient Boosting Classifier model is the mean accuracy score of cross-validation, which is 0.97, and its standard deviation score is 0.01. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_2.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_2.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_2 = np.mean(accuracies) std_accuracy_2 = np.std(accuracies) lower_ci = mean_accuracy_2 - 1.96 * std_accuracy_2 upper_ci = mean_accuracy_2 + 1.96 * std_accuracy_2 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_2) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # **Interpretation:** # The output obtained using the training data with the Gradient Boosting Classifier model shows a mean score accuracy of 0.97 and a standard deviation score of 0.01 for cross-validation. Furthermore, the mean score accuracy from bootstrapping is 0.97 with a 95% confidence interval for the score accuracy of [0.96, 0.99]. # Prediction model_2.fit(X_train, y_train) y_pred2 = model_2.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred2) precision = precision_score(y_test, y_pred2) recall = recall_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) roc_auc1 = roc_auc_score(y_test, model_2.predict_proba(X_test)[:, 1]) # menampilkan hasil evaluasi print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred2) print("Confusion Matrix:\n", conf_matrix) # # **KNN Classifier Model** # Cross Validation model_3 = KNeighborsClassifier(n_neighbors=3) scores_3 = cross_val_score(model_3, X, y, cv=5) print( "Accuracy with cross-validation: %.2f with standard deviation %.2f" % (scores_3.mean(), scores_3.std()) ) # **Interpretation:** # The output obtained using the train data with the K-Nearest Neighbors (KNN) model is a mean accuracy score of 0.93 from cross-validation and a standard deviation score of 0.01. # Boostrapping # Use bootstrapping to estimate the accuracy of the model n_bootstraps = 100 accuracies = [] for i in range(n_bootstraps): # Sample the data with replacement X_boot, y_boot = resample(X_train, y_train) # Train the model on the bootstrap sample model_3.fit(X_boot, y_boot) # Evaluate the model on the entire dataset accuracy = model_3.score(X_train, y_train) accuracies.append(accuracy) # Calculate the mean and confidence interval of the accuracies mean_accuracy_3 = np.mean(accuracies) std_accuracy_3 = np.std(accuracies) lower_ci = mean_accuracy_3 - 1.96 * std_accuracy_3 upper_ci = mean_accuracy_3 + 1.96 * std_accuracy_3 # Print the results print("Mean accuracy: %.2f" % mean_accuracy_3) print("95%% confidence interval: [%.2f, %.2f]" % (lower_ci, upper_ci)) # Prediction model_3.fit(X_train, y_train) y_pred3 = model_3.predict(X_test) # Compute the accuracy of the predictions acc = accuracy_score(y_test, y_pred3) precision = precision_score(y_test, y_pred3) recall = recall_score(y_test, y_pred3) f1 = f1_score(y_test, y_pred3) roc_auc1 = roc_auc_score(y_test, model_3.predict_proba(X_test)[:, 1]) # menampilkan hasil evaluasi print("Accuracy:", acc) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("ROC:", roc_auc1) from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred3) print("Confusion Matrix:\n", conf_matrix) # **Interpretation:** # The output obtained using the training data with the KNN model is a mean score accuracy of 0.93 from cross-validation and a standard deviation score of 0.01. Additionally, from bootstrapping, the mean score accuracy is 0.95 and the 95% confidence interval score accuracy is [0.93, 0.97]. # # **List The Model Evaluation** import pandas as pd acc = accuracy_score(y_test, y_pred2) precision = precision_score(y_test, y_pred2) recall = recall_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) roc_auc1 = roc_auc_score(y_test, model_2.predict_proba(X_test)[:, 1]) # List of evaluation models eval_list = [ { "model": "Random Forest Classifier", " Mean Cross Validation": scores_1.mean(), "Std Cross Validation": scores_1.std(), "Mean Score Bootstrapping": mean_accuracy_1, "95% confidence interval": [ mean_accuracy_1 - 1.96 * std_accuracy_1, mean_accuracy_1 + 1.96 * std_accuracy_1, ], "accuracy": accuracy_score(y_test, y_pred1), "precision": precision_score(y_test, y_pred1), "recall": recall_score(y_test, y_pred1), "f1_score": f1_score(y_test, y_pred1), "confusion metrics": confusion_matrix(y_test, y_pred1), }, { "model": "Random Gradient Boosting", " Mean Cross Validation": scores_2.mean(), "Std Cross Validation": scores_2.std(), "Mean Score Bootstrapping": mean_accuracy_2, "95% confidence interval": [ mean_accuracy_2 - 1.96 * std_accuracy_2, mean_accuracy_2 + 1.96 * std_accuracy_2, ], "accuracy": accuracy_score(y_test, y_pred2), "precision": precision_score(y_test, y_pred2), "recall": recall_score(y_test, y_pred2), "f1_score": f1_score(y_test, y_pred2), "confusion metrics": confusion_matrix(y_test, y_pred2), }, { "model": "KNN Classfier", " Mean Cross Validation": scores_3.mean(), "Std Cross Validation": scores_3.std(), "Mean Score Bootstrapping": mean_accuracy_3, "95% confidence interval": [ mean_accuracy_3 - 1.96 * std_accuracy_3, mean_accuracy_3 + 1.96 * std_accuracy_3, ], "accuracy": accuracy_score(y_test, y_pred3), "precision": precision_score(y_test, y_pred3), "recall": recall_score(y_test, y_pred3), "f1_score": f1_score(y_test, y_pred3), "confusion metrics": confusion_matrix(y_test, y_pred3), }, ] # Dataframe of list evaluation models eval_df = pd.DataFrame(eval_list) # Print eval_df # # **List Feature Importance dari setiap Model** # Model Random Forest importances = pd.Series(model_1.feature_importances_, index=X_train.columns) importances.nlargest(10).plot(kind="barh") plt.show() # Model Gradient Boosting importances = pd.Series(model_2.feature_importances_, index=X_train.columns) importances.nlargest(10).plot(kind="barh") plt.show() # **Selected Model:** # Based on the generated output, the model with the best accuracy, precision, recall, and f1_score, as well as not overfitting by producing mean score accuracy and score std on cross-validation, and producing the best mean score accuracy with a 95% confidence interval, which means that the prediction value is within that confidence interval, is the Random Forest Classifier model. This model is chosen for the purpose of this study, which is to be used for accurate and effective classification to diagnose heart disease in patients. # Meanwhile, the Gradient Boosting and KNN models experienced overfitting, where the performance of the model with test data was smaller/worse than the performance of the model using train data. # **Feature Importance:** # * From the Random Forest Classifier model, there are 10 features that have the most influence in the model, these features are chestpain_0, thal, oldpeak, ca, thalach, heart_age, chol, trestbps, age, and exang. # * From the Gradient Boosting Classifier model, there are 10 features that have the most influence in the model, these features are chestpain_0, ca, thal, oldpeak, heart_age, thalach, chol, age, trestbps, and slope_0. # * From the feature importance information from each model, it can help us to understand the factors that are most influential in predicting the target variable in each model. Thus, we can focus our efforts on these features in improving or enhancing the model that has been created. # # **Hyperparameter Tuning** # # **Random Forest** # Fit the model on train data model1 = RandomForestClassifier(random_state=42) model1.fit(X_train, y_train) # Evaluate the model on the test data y_pred_1 = model1.predict(X_test) print(f1_score(y_test, y_pred_1)) # **Grid Search** from sklearn.model_selection import GridSearchCV # Definisikan parameter grid yang akan di-tune hyperparameter_space1 = { "n_estimators": [25, 50, 100], "criterion": ["gini", "entropy"], "class_weight": ["balanced", "balanced_subsample"], "min_samples_split": [0.1, 0.5, 1.0], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf1 = GridSearchCV( model1, hyperparameter_space1, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2 ) # Run the Grid Search CV clf1.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf1.best_params_) clf1.best_params_, clf1.best_score_ # get the best hyperparameters best_params1 = clf1.best_params_ # use the best hyperparameters to create a model best_model1 = RandomForestClassifier(**best_params1, random_state=42) # fit the model to the training data best_model1.fit(X_train, y_train) # predict the test data y_pred1 = best_model1.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred1) roc_auc = roc_auc_score(y_test, y_pred1) f1 = f1_score(y_test, y_pred1) print("Accuracy:", accuracy_score(y_test, y_pred1)) print("Best Hyperparameters:", best_params1) print("f1-score:", f1_score(y_test, y_pred1)) print("ROC AUC Score:", roc_auc) # **Random Search** from scipy.stats import randint, truncnorm from sklearn.model_selection import RandomizedSearchCV model_1 = RandomForestClassifier(random_state=42) hyperparameter_space01 = { "n_estimators": [25, 50, 100], "criterion": ["gini", "entropy"], "class_weight": ["balanced", "balanced_subsample"], "min_samples_split": [0.1, 0.5, 1.0], } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search01 = RandomizedSearchCV( model_1, hyperparameter_space01, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2, ) random_search01.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search01.best_params_) # Run the Grid Search CV random_search01.fit(X_train, y_train) random_search01.best_params_, random_search01.best_score_ # get the best hyperparameters best_params01 = random_search01.best_params_ # use the best hyperparameters to create a model best_model01 = RandomForestClassifier(**best_params01, random_state=42) # fit the model to the training data best_model01.fit(X_train, y_train) # predict the test data y_pred01 = best_model01.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred01) roc_auc = roc_auc_score(y_test, y_pred01) f1 = f1_score(y_test, y_pred01) print("Accuracy:", accuracy_score(y_test, y_pred01)) print("Best Hyperparameters:", best_params01) print("f1-score:", f1_score(y_test, y_pred01)) print("ROC AUC Score:", roc_auc) # **Learning Curve** from sklearn.model_selection import learning_curve # plot learning curve train_sizes, train_scores, test_scores = learning_curve( best_model01, X_train, y_train, cv=5, scoring="accuracy", n_jobs=-1, train_sizes=np.linspace(0.1, 1.0, 10), shuffle=True, random_state=42, ) # plot the mean training and test scores plt.plot(train_sizes, np.mean(train_scores, axis=1), label="Train") plt.plot(train_sizes, np.mean(test_scores, axis=1), label="Test") # plot the standard deviation of training and test scores plt.fill_between( train_sizes, np.mean(train_scores, axis=1) - np.std(train_scores, axis=1), np.mean(train_scores, axis=1) + np.std(train_scores, axis=1), alpha=0.1, ) plt.fill_between( train_sizes, np.mean(test_scores, axis=1) - np.std(test_scores, axis=1), np.mean(test_scores, axis=1) + np.std(test_scores, axis=1), alpha=0.1, ) # plot details plt.title("Random Forest Classifier - Learning Curve") plt.xlabel("Training Size") plt.ylabel("Accuracy Score") plt.legend(loc="best") plt.show() # *** # **Insight** # *** # Terdapat penurunan pada data latih, namun terdapat kenaikan sedikit pada data validasi. Penurunan pada data latih menunjukkan bahwa model terlalu spesifik dan telah mempelajari pola yang sangat khusus pada data latih, sehingga tidak dapat memprediksi data baru dengan akurat. Namun, karena terdapat kenaikan sedikit pada data validasi, model tersebut masih memiliki kemampuan untuk melakukan generalisasi pada data baru. # Gap yang kecil antara learning curve menunjukkan bahwa perbedaan antara akurasi pada data latih dan data validasi tidak terlalu signifikan, namun akurasi yang dihasilkan masih rendah. Hal ini menunjukkan bahwa model masih memiliki kekurangan dan perlu diperbaiki untuk menghasilkan prediksi yang lebih akurat pada data baru. Solusi untuk mengatasi hal ini dapat dilakukan dengan melakukan regularisasi pada model atau memilih model yang lebih sederhana, serta memilih fitur yang lebih relevan pada dataset. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred01) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred01 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas, namun pada curve diatas belum sangat dekat dengan titik (0,1). # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.82, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **Gradient Boosting** # Fit the model on train data model2 = GradientBoostingClassifier(random_state=42) model2.fit(X_train, y_train) # Evaluate the model on the test data y_pred_2 = model2.predict(X_test) print(f1_score(y_test, y_pred_2)) # **Grid Search** # Create the parameter grid hyperparameter_space2 = { "n_estimators": [100, 500], "learning_rate": [0.01, 0.1], "max_depth": [3, 5], "criterion": ["squared_error", "friedman_mse"], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf2 = GridSearchCV(model2, param_grid=hyperparameter_space2, cv=5) # Run the Grid Search CV clf2.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf2.best_params_) clf2.best_params_, clf2.best_score_ # get the best hyperparameters best_params2 = clf2.best_params_ # use the best hyperparameters to create a model best_model2 = GradientBoostingClassifier(**best_params2, random_state=42) # fit the model to the training data best_model2.fit(X_train, y_train) # predict the test data y_pred2 = best_model2.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred2) roc_auc = roc_auc_score(y_test, y_pred2) f1 = f1_score(y_test, y_pred2) print("Accuracy:", accuracy_score(y_test, y_pred2)) print("Best Hyperparameters:", best_params2) print("f1-score:", f1_score(y_test, y_pred2)) print("ROC AUC Score:", roc_auc) # **Random Search** model_2 = GradientBoostingClassifier(random_state=42) hyperparameter_space02 = { "n_estimators": [100, 500], "learning_rate": [0.01, 0.1], "max_depth": [3, 5], "criterion": ["squared_error", "friedman_mse"], } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search02 = RandomizedSearchCV( model_2, hyperparameter_space02, scoring="f1", cv=5, n_jobs=-1, refit=True, verbose=2, ) random_search02.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search02.best_params_) # Run the Grid Search CV random_search02.fit(X_train, y_train) random_search02.best_params_, random_search02.best_score_ # get the best hyperparameters best_params02 = random_search02.best_params_ # use the best hyperparameters to create a model best_model02 = GradientBoostingClassifier(**best_params02, random_state=42) # fit the model to the training data best_model02.fit(X_train, y_train) # predict the test data y_pred02 = best_model02.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred02) roc_auc = roc_auc_score(y_test, y_pred02) f1 = f1_score(y_test, y_pred02) print("Accuracy:", accuracy_score(y_test, y_pred02)) print("Best Hyperparameters:", best_params02) print("f1-score:", f1_score(y_test, y_pred02)) print("ROC AUC Score:", roc_auc) # predict the test data y_pred02 = best_model02.predict(X_test) y_pred02 # **Learning Curve** from sklearn.model_selection import learning_curve # Create the learning curve train_sizes, train_scores, test_scores = learning_curve( best_model02, X, y, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), scoring="accuracy" ) # Calculate the mean and standard deviation of the training scores train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) # Calculate the mean and standard deviation of the test scores test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the learning curve plt.plot(train_sizes, train_mean, label="Training score") plt.plot(train_sizes, test_mean, label="Cross-validation score") # Add the standard deviation bands plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1) plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1) # Add labels and legend plt.xlabel("Number of training samples") plt.ylabel("Accuracy score") plt.title("Learning Curve (Gradient Boosting Classifier)") plt.legend(loc="best") # Show the plot plt.show() # *** # **Insight** # *** # Terdapat kenaikan pada learning curve data validasi dan learning curve data latih stabil dengan akurasi yang tinggi, maka model tersebut menunjukkan bahwa model tersebut cukup baik dan mampu melakukan generalisasi pada data baru dengan akurat. # Kenaikan pada learning curve data validasi menunjukkan bahwa model dapat mempelajari pola-pola umum pada dataset dan mampu melakukan prediksi dengan akurat pada data yang belum pernah dilihat sebelumnya. Sedangkan learning curve data latih yang stabil menunjukkan bahwa model tidak terlalu overfitting pada data latih dan mampu melakukan prediksi dengan akurat pada data yang sudah dikenal sebelumnya. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred02) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred02 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas. # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.99, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **KNN Classifier** # **Grid Search** # Fit the model on train data model3 = KNeighborsClassifier() model3.fit(X_train, y_train) # Evaluate the model on the test data y_pred_3 = model3.predict(X_test) print(f1_score(y_test, y_pred_3)) # Create the parameter grid hyperparameter_space3 = { "n_neighbors": [3, 5, 7, 9, 11], "weights": ["uniform", "distance"], "algorithm": ["ball_tree", "kd_tree", "brute"], } # melakukan Grid Search untuk mencari kombinasi terbaik dari hyperparameter clf3 = GridSearchCV(model3, param_grid=hyperparameter_space3, cv=5) # Run the Grid Search CV clf3.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", clf3.best_params_) clf3.best_params_, clf3.best_score_ # get the best hyperparameters best_params3 = clf3.best_params_ # use the best hyperparameters to create a model best_model3 = KNeighborsClassifier(**best_params3) # fit the model to the training data best_model3.fit(X_train, y_train) # predict the test data y_pred3 = best_model3.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred3) roc_auc = roc_auc_score(y_test, y_pred3) f1 = f1_score(y_test, y_pred3) print("Accuracy:", accuracy_score(y_test, y_pred3)) print("Best Hyperparameters:", best_params3) print("f1-score:", f1_score(y_test, y_pred3)) print("ROC AUC Score:", roc_auc) # **Random Search** model_3 = KNeighborsClassifier() hyperparameter_space03 = { "n_neighbors": randint(1, 50), # jumlah tetangga terdekat "weights": ["uniform", "distance"], # bobot jarak tetangga terdekat "algorithm": [ "ball_tree", "kd_tree", "brute", ], # algoritma pencarian tetangga terdekat "leaf_size": randint(1, 100), # ukuran daun untuk algoritma ball_tree atau kd_tree } # melakukan Randomized Search untuk mencari kombinasi terbaik dari hyperparameter random_search03 = RandomizedSearchCV( model_3, hyperparameter_space03, scoring="f1", cv=5, random_state=42, n_jobs=-1, refit=True, verbose=2, ) random_search03.fit(X_train, y_train) # menampilkan hyperparameter terbaik print("Best Hyperparameters:", random_search03.best_params_) # Run the Grid Search CV random_search03.fit(X_train, y_train) random_search03.best_params_, random_search03.best_score_ # get the best hyperparameters best_params03 = random_search03.best_params_ # use the best hyperparameters to create a model best_model03 = KNeighborsClassifier(**best_params03) # fit the model to the training data best_model03.fit(X_train, y_train) # predict the test data y_pred03 = best_model03.predict(X_test) # evaluate the model accuracy = accuracy_score(y_test, y_pred03) roc_auc = roc_auc_score(y_test, y_pred03) f1 = f1_score(y_test, y_pred03) print("Accuracy:", accuracy_score(y_test, y_pred03)) print("Best Hyperparameters:", best_params03) print("f1-score:", f1_score(y_test, y_pred03)) print("ROC AUC Score:", roc_auc_score(y_test, y_pred03)) # **Learning Curve** from sklearn.model_selection import learning_curve # Create the learning curve train_sizes, train_scores, test_scores = learning_curve( best_model03, X, y, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), scoring="accuracy" ) # Calculate the mean and standard deviation of the training scores train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) # Calculate the mean and standard deviation of the test scores test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the learning curve plt.plot(train_sizes, train_mean, label="Training score") plt.plot(train_sizes, test_mean, label="Cross-validation score") # Add the standard deviation bands plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1) plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1) # Add labels and legend plt.xlabel("Number of training samples") plt.ylabel("Accuracy score") plt.title("Learning Curve (KNN Classifier)") plt.legend(loc="best") # Show the plot plt.show() # *** # **Insight** # *** # Terdapat kenaikan pada learning curve data validasi dan learning curve data latih stabil dengan akurasi yang tinggi, maka model tersebut menunjukkan bahwa model tersebut cukup baik dan mampu melakukan generalisasi pada data baru dengan akurat. # Kenaikan pada learning curve data validasi menunjukkan bahwa model dapat mempelajari pola-pola umum pada dataset dan mampu melakukan prediksi dengan akurat pada data yang belum pernah dilihat sebelumnya. Sedangkan learning curve data latih yang stabil menunjukkan bahwa model tidak terlalu overfitting pada data latih dan mampu melakukan prediksi dengan akurat pada data yang sudah dikenal sebelumnya. # **ROC Curve** from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, y_pred03) # calculate AUC roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label="ROC Curve (area = %0.2f)" % roc_auc) plt.plot([0, 1], [0, 1], "k--", label="Random Guess") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver Operating Characteristic (ROC) Curve") plt.legend() plt.show() from sklearn.metrics import f1_score # calculate F1-score for each threshold f1_scores = [f1_score(y_test, (y_pred03 >= t).astype(int)) for t in thresholds] # find optimal threshold optimal_idx = np.argmax(f1_scores) optimal_threshold = thresholds[optimal_idx] print("Optimal threshold: ", optimal_threshold) # *** # **Insight** # *** # - Grafik ROC curve menunjukkan trade-off antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai threshold yang berbeda. # - Semakin dekat dengan titik (0,1) atau sudut kiri atas, maka semakin baik performa model, seperti yang ditunjukkan pada ROC curve diatas. # - Area Under Curve (AUC) adalah ukuran dari luas area di bawah kurva ROC. Semakin besar nilai AUC, semakin baik performa model. # - Nilai AUC = 0.99, maka memiliki performa model yang baik dalam membedakan kelas positif dan negatif. # - Threshold optimal yang diperoleh yaitu 1, yang mana nilai ini yang memberikan keseimbangan antara TPR dan FPR atau dengan kata lain, threshold yang memberikan nilai TPR dan FPR yang seimbang pada performa model. # # **Interpretasi Pemilihan Model** # Membuat list hasil evaluasi model berdasarkan model yang diperoleh melalui hyperparameter tuning eval_list = [ { "model": "Random Forest Classifier", " F1-Score_train": random_search01.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred01), "Best Hyperparameters": best_params01, "F1-Score_Test": f1_score(y_test, y_pred01), "ROC AUC Score": roc_auc_score(y_test, y_pred01), }, { "model": "Gradient Boosting Classifier", " F1-Score_train": random_search02.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred02), "Best Hyperparameters": best_params02, "F1-Score_Test": f1_score(y_test, y_pred02), "ROC AUC Score": roc_auc_score(y_test, y_pred02), }, { "model": "KNN Classifier", " F1-Score_train": random_search03.best_score_, "Accuracy_Test": accuracy_score(y_test, y_pred03), "Best Hyperparameters": best_params03, "F1-Score_Test": f1_score(y_test, y_pred03), "ROC AUC Score": roc_auc_score(y_test, y_pred03), }, ] # Membuat dataframe dari list evaluasi model eval_df = pd.DataFrame(eval_list) # Menampilkan dataframe hasil evaluasi model eval_df
[{"heart-disease-dataset/heart.csv": {"column_names": "[\"age\", \"sex\", \"cp\", \"trestbps\", \"chol\", \"fbs\", \"restecg\", \"thalach\", \"exang\", \"oldpeak\", \"slope\", \"ca\", \"thal\", \"target\"]", "column_data_types": "{\"age\": \"int64\", \"sex\": \"int64\", \"cp\": \"int64\", \"trestbps\": \"int64\", \"chol\": \"int64\", \"fbs\": \"int64\", \"restecg\": \"int64\", \"thalach\": \"int64\", \"exang\": \"int64\", \"oldpeak\": \"float64\", \"slope\": \"int64\", \"ca\": \"int64\", \"thal\": \"int64\", \"target\": \"int64\"}", "info": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1025 entries, 0 to 1024\nData columns (total 14 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 age 1025 non-null int64 \n 1 sex 1025 non-null int64 \n 2 cp 1025 non-null int64 \n 3 trestbps 1025 non-null int64 \n 4 chol 1025 non-null int64 \n 5 fbs 1025 non-null int64 \n 6 restecg 1025 non-null int64 \n 7 thalach 1025 non-null int64 \n 8 exang 1025 non-null int64 \n 9 oldpeak 1025 non-null float64\n 10 slope 1025 non-null int64 \n 11 ca 1025 non-null int64 \n 12 thal 1025 non-null int64 \n 13 target 1025 non-null int64 \ndtypes: float64(1), int64(13)\nmemory usage: 112.2 KB\n", "summary": "{\"age\": {\"count\": 1025.0, \"mean\": 54.43414634146342, \"std\": 9.072290233244278, \"min\": 29.0, \"25%\": 48.0, \"50%\": 56.0, \"75%\": 61.0, \"max\": 77.0}, \"sex\": {\"count\": 1025.0, \"mean\": 0.6956097560975609, \"std\": 0.4603733241196493, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 1.0}, \"cp\": {\"count\": 1025.0, \"mean\": 0.9424390243902439, \"std\": 1.029640743645865, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 2.0, \"max\": 3.0}, \"trestbps\": {\"count\": 1025.0, \"mean\": 131.61170731707318, \"std\": 17.516718005376408, \"min\": 94.0, \"25%\": 120.0, \"50%\": 130.0, \"75%\": 140.0, \"max\": 200.0}, \"chol\": {\"count\": 1025.0, \"mean\": 246.0, \"std\": 51.59251020618206, \"min\": 126.0, \"25%\": 211.0, \"50%\": 240.0, \"75%\": 275.0, \"max\": 564.0}, \"fbs\": {\"count\": 1025.0, \"mean\": 0.14926829268292682, \"std\": 0.3565266897271575, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 0.0, \"max\": 1.0}, \"restecg\": {\"count\": 1025.0, \"mean\": 0.5297560975609756, \"std\": 0.5278775668748921, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 2.0}, \"thalach\": {\"count\": 1025.0, \"mean\": 149.11414634146342, \"std\": 23.005723745977207, \"min\": 71.0, \"25%\": 132.0, \"50%\": 152.0, \"75%\": 166.0, \"max\": 202.0}, \"exang\": {\"count\": 1025.0, \"mean\": 0.33658536585365856, \"std\": 0.47277237600371186, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 1.0, \"max\": 1.0}, \"oldpeak\": {\"count\": 1025.0, \"mean\": 1.0715121951219515, \"std\": 1.175053255150176, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.8, \"75%\": 1.8, \"max\": 6.2}, \"slope\": {\"count\": 1025.0, \"mean\": 1.3853658536585365, \"std\": 0.6177552671745918, \"min\": 0.0, \"25%\": 1.0, \"50%\": 1.0, \"75%\": 2.0, \"max\": 2.0}, \"ca\": {\"count\": 1025.0, \"mean\": 0.7541463414634146, \"std\": 1.0307976650242823, \"min\": 0.0, \"25%\": 0.0, \"50%\": 0.0, \"75%\": 1.0, \"max\": 4.0}, \"thal\": {\"count\": 1025.0, \"mean\": 2.32390243902439, \"std\": 0.6206602380510298, \"min\": 0.0, \"25%\": 2.0, \"50%\": 2.0, \"75%\": 3.0, \"max\": 3.0}, \"target\": {\"count\": 1025.0, \"mean\": 0.5131707317073171, \"std\": 0.5000704980788014, \"min\": 0.0, \"25%\": 0.0, \"50%\": 1.0, \"75%\": 1.0, \"max\": 1.0}}", "examples": "{\"age\":{\"0\":52,\"1\":53,\"2\":70,\"3\":61},\"sex\":{\"0\":1,\"1\":1,\"2\":1,\"3\":1},\"cp\":{\"0\":0,\"1\":0,\"2\":0,\"3\":0},\"trestbps\":{\"0\":125,\"1\":140,\"2\":145,\"3\":148},\"chol\":{\"0\":212,\"1\":203,\"2\":174,\"3\":203},\"fbs\":{\"0\":0,\"1\":1,\"2\":0,\"3\":0},\"restecg\":{\"0\":1,\"1\":0,\"2\":1,\"3\":1},\"thalach\":{\"0\":168,\"1\":155,\"2\":125,\"3\":161},\"exang\":{\"0\":0,\"1\":1,\"2\":1,\"3\":0},\"oldpeak\":{\"0\":1.0,\"1\":3.1,\"2\":2.6,\"3\":0.0},\"slope\":{\"0\":2,\"1\":0,\"2\":0,\"3\":2},\"ca\":{\"0\":2,\"1\":0,\"2\":0,\"3\":1},\"thal\":{\"0\":3,\"1\":3,\"2\":3,\"3\":3},\"target\":{\"0\":0,\"1\":0,\"2\":0,\"3\":0}}"}}]
true
1
<start_data_description><data_path>heart-disease-dataset/heart.csv: <column_names> ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'] <column_types> {'age': 'int64', 'sex': 'int64', 'cp': 'int64', 'trestbps': 'int64', 'chol': 'int64', 'fbs': 'int64', 'restecg': 'int64', 'thalach': 'int64', 'exang': 'int64', 'oldpeak': 'float64', 'slope': 'int64', 'ca': 'int64', 'thal': 'int64', 'target': 'int64'} <dataframe_Summary> {'age': {'count': 1025.0, 'mean': 54.43414634146342, 'std': 9.072290233244278, 'min': 29.0, '25%': 48.0, '50%': 56.0, '75%': 61.0, 'max': 77.0}, 'sex': {'count': 1025.0, 'mean': 0.6956097560975609, 'std': 0.4603733241196493, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 1.0, 'max': 1.0}, 'cp': {'count': 1025.0, 'mean': 0.9424390243902439, 'std': 1.029640743645865, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 2.0, 'max': 3.0}, 'trestbps': {'count': 1025.0, 'mean': 131.61170731707318, 'std': 17.516718005376408, 'min': 94.0, '25%': 120.0, '50%': 130.0, '75%': 140.0, 'max': 200.0}, 'chol': {'count': 1025.0, 'mean': 246.0, 'std': 51.59251020618206, 'min': 126.0, '25%': 211.0, '50%': 240.0, '75%': 275.0, 'max': 564.0}, 'fbs': {'count': 1025.0, 'mean': 0.14926829268292682, 'std': 0.3565266897271575, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 0.0, 'max': 1.0}, 'restecg': {'count': 1025.0, 'mean': 0.5297560975609756, 'std': 0.5278775668748921, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 1.0, 'max': 2.0}, 'thalach': {'count': 1025.0, 'mean': 149.11414634146342, 'std': 23.005723745977207, 'min': 71.0, '25%': 132.0, '50%': 152.0, '75%': 166.0, 'max': 202.0}, 'exang': {'count': 1025.0, 'mean': 0.33658536585365856, 'std': 0.47277237600371186, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 1.0, 'max': 1.0}, 'oldpeak': {'count': 1025.0, 'mean': 1.0715121951219515, 'std': 1.175053255150176, 'min': 0.0, '25%': 0.0, '50%': 0.8, '75%': 1.8, 'max': 6.2}, 'slope': {'count': 1025.0, 'mean': 1.3853658536585365, 'std': 0.6177552671745918, 'min': 0.0, '25%': 1.0, '50%': 1.0, '75%': 2.0, 'max': 2.0}, 'ca': {'count': 1025.0, 'mean': 0.7541463414634146, 'std': 1.0307976650242823, 'min': 0.0, '25%': 0.0, '50%': 0.0, '75%': 1.0, 'max': 4.0}, 'thal': {'count': 1025.0, 'mean': 2.32390243902439, 'std': 0.6206602380510298, 'min': 0.0, '25%': 2.0, '50%': 2.0, '75%': 3.0, 'max': 3.0}, 'target': {'count': 1025.0, 'mean': 0.5131707317073171, 'std': 0.5000704980788014, 'min': 0.0, '25%': 0.0, '50%': 1.0, '75%': 1.0, 'max': 1.0}} <dataframe_info> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 age 1025 non-null int64 1 sex 1025 non-null int64 2 cp 1025 non-null int64 3 trestbps 1025 non-null int64 4 chol 1025 non-null int64 5 fbs 1025 non-null int64 6 restecg 1025 non-null int64 7 thalach 1025 non-null int64 8 exang 1025 non-null int64 9 oldpeak 1025 non-null float64 10 slope 1025 non-null int64 11 ca 1025 non-null int64 12 thal 1025 non-null int64 13 target 1025 non-null int64 dtypes: float64(1), int64(13) memory usage: 112.2 KB <some_examples> {'age': {'0': 52, '1': 53, '2': 70, '3': 61}, 'sex': {'0': 1, '1': 1, '2': 1, '3': 1}, 'cp': {'0': 0, '1': 0, '2': 0, '3': 0}, 'trestbps': {'0': 125, '1': 140, '2': 145, '3': 148}, 'chol': {'0': 212, '1': 203, '2': 174, '3': 203}, 'fbs': {'0': 0, '1': 1, '2': 0, '3': 0}, 'restecg': {'0': 1, '1': 0, '2': 1, '3': 1}, 'thalach': {'0': 168, '1': 155, '2': 125, '3': 161}, 'exang': {'0': 0, '1': 1, '2': 1, '3': 0}, 'oldpeak': {'0': 1.0, '1': 3.1, '2': 2.6, '3': 0.0}, 'slope': {'0': 2, '1': 0, '2': 0, '3': 2}, 'ca': {'0': 2, '1': 0, '2': 0, '3': 1}, 'thal': {'0': 3, '1': 3, '2': 3, '3': 3}, 'target': {'0': 0, '1': 0, '2': 0, '3': 0}} <end_description>
16,065
0
17,402
16,065
129219616
# # Exploring Hacker News Posts # In this project, we'll compare two different types of posts from Hacker News, a popular site where technology related stories (or 'posts') are voted and commented upon. The two types of posts we'll explore begin with either `Ask HN` or `Show HN`. # Users submit `Ask HN` posts to ask the Hacker News community a specific question, such as "What is the best online course you've ever taken?" Likewise, users submit Show HN posts to show the Hacker News community a project, product, or just generally something interesting. # We'll specifically compare these two types of posts to determine the following: # - Do `Ask HN` or `Show HN` receive more comments on average? # - Do posts created at a certain time receive more comments on average? # # It should be noted that the data set we're working with was reduced from almost 300,000 rows to approximately 20,000 rows by removing all submissions that did not receive any comments, and then randomly sampling from the remaining submissions. # ## Introduction # First, we'll read in the data and remove the headers. from csv import reader opened_file = open("Hacker_news.csv") read_file = reader(opened_file) hn = list(read_file) print(hn[:5]) # Notice that the first list in the inner lists contains the column headers, and the lists after contain the data for one row. In order to analyze our data, we need to first remove the row containing the column headers. Let's remove that first row next. headers = hn[0] hn = hn[1:] print(headers) print("\n") print(hn[:5]) # ## Extracting Ask HN and Show HN Posts # Now that we've removed the headers from `hn`, we're ready to filter our data. Since we're only concerned with post titles beginning with `Ask HN` or `Show HN`, we'll create new lists of lists containing just the data for those titles. ask_posts = [] show_posts = [] other_posts = [] for post in hn: title = post[1] if title.lower().startswith("ask hn"): ask_posts.append(post) elif title.lower().startswith("show hn"): show_posts.append(post) else: other_posts.append(post) print("number of ask posts:", len(ask_posts)) print("number of show posts:", len(show_posts)) print("number of other posts:", len(other_posts)) print(ask_posts[:5]) print(show_posts[:5]) print(other_posts[:5]) # average number of comments in ask posts total_ask_comments = 0 for row in ask_posts: n_comments = float(row[4]) total_ask_comments += n_comments avg_ask_comments = total_ask_comments / len(ask_posts) total_show_comments = 0 # average number of comments in show posts for row in show_posts: n_comments = float(row[4]) n_show_comments += 1 total_show_comments += n_comments avg_show_comments = total_show_comments / len(show_posts) print(avg_ask_comments) print(avg_show_comments) # On average, ask posts in our sample receive approximately 10 comments, whereas show posts receive approximately 4. Since ask posts are more likely to receive comments, we'll focus our remaining analysis just on these posts. # ## Finding the Number of Ask Posts and Cooments by Hour Created # we'll determine if ask posts created at a certain time are more likely to attract comments. We'll use the following steps to perform this analysis: # 1. Calculate the number of ask posts created in each hour of the day, along with the number of comments received. # 2. Calculate the average number of comments ask posts receive by hour created. import datetime as dt result_list = [] for row in ask_posts: result_list.append([row[6], int(row[4])]) counts_by_hour = {} comments_by_hour = {} date_format = "%m/%d/%Y %H:%M" for row in result_list: date_dt = dt.datetime.strptime(row[0], date_format) hour = date_dt.strftime("%H") if hour not in counts_by_hour: counts_by_hour[hour] = 1 comments_by_hour[hour] = row[1] else: counts_by_hour[hour] += 1 comments_by_hour[hour] += row[1] comments_by_hour # ## Calculating the Average Number of Comments for Ask HN Posts by Hour # Calculate the average amount of comments `Ask HN` posts created at each hour of the day receive. avg_by_hour = [] for hr in comments_by_hour: avg_by_hour.append([hr, comments_by_hour[hr] / counts_by_hour[hr]]) avg_by_hour swap_avg_by_hour = [] for row in avg_by_hour: swap_avg_by_hour.append([row[1], row[0]]) print(swap_avg_by_hour) sorted_swap = sorted(swap_avg_by_hour, reverse=True) sorted_swap # Sort the values and print the the 5 hours with the highest average comments. print("Top 5 Hours for 'Ask HN' Comments") for [avg, hr] in sorted_swap[:5]: # alternative syntax print( "{}: {:.2f} average comments per post".format( dt.datetime.strptime(hr, "%H").strftime("%H:%M"), avg ) ) # dt.datetime.strptime(hr, "%H").strftime("%H:%M"), -> datetime.strptime() constructor to return a datetime object, and then use the strftime() method to specify the format of the time.
/fsx/loubna/kaggle_data/kaggle-code-data/data/0129/219/129219616.ipynb
null
null
[{"Id": 129219616, "ScriptId": 38417294, "ParentScriptVersionId": NaN, "ScriptLanguageId": 9, "AuthorUserId": 8032771, "CreationDate": "05/12/2023 00:26:04", "VersionNumber": 1.0, "Title": "notebooka804fb3072", "EvaluationDate": "05/12/2023", "IsChange": true, "TotalLines": 144.0, "LinesInsertedFromPrevious": 144.0, "LinesChangedFromPrevious": 0.0, "LinesUnchangedFromPrevious": 0.0, "LinesInsertedFromFork": NaN, "LinesDeletedFromFork": NaN, "LinesChangedFromFork": NaN, "LinesUnchangedFromFork": NaN, "TotalVotes": 0}]
null
null
null
null
# # Exploring Hacker News Posts # In this project, we'll compare two different types of posts from Hacker News, a popular site where technology related stories (or 'posts') are voted and commented upon. The two types of posts we'll explore begin with either `Ask HN` or `Show HN`. # Users submit `Ask HN` posts to ask the Hacker News community a specific question, such as "What is the best online course you've ever taken?" Likewise, users submit Show HN posts to show the Hacker News community a project, product, or just generally something interesting. # We'll specifically compare these two types of posts to determine the following: # - Do `Ask HN` or `Show HN` receive more comments on average? # - Do posts created at a certain time receive more comments on average? # # It should be noted that the data set we're working with was reduced from almost 300,000 rows to approximately 20,000 rows by removing all submissions that did not receive any comments, and then randomly sampling from the remaining submissions. # ## Introduction # First, we'll read in the data and remove the headers. from csv import reader opened_file = open("Hacker_news.csv") read_file = reader(opened_file) hn = list(read_file) print(hn[:5]) # Notice that the first list in the inner lists contains the column headers, and the lists after contain the data for one row. In order to analyze our data, we need to first remove the row containing the column headers. Let's remove that first row next. headers = hn[0] hn = hn[1:] print(headers) print("\n") print(hn[:5]) # ## Extracting Ask HN and Show HN Posts # Now that we've removed the headers from `hn`, we're ready to filter our data. Since we're only concerned with post titles beginning with `Ask HN` or `Show HN`, we'll create new lists of lists containing just the data for those titles. ask_posts = [] show_posts = [] other_posts = [] for post in hn: title = post[1] if title.lower().startswith("ask hn"): ask_posts.append(post) elif title.lower().startswith("show hn"): show_posts.append(post) else: other_posts.append(post) print("number of ask posts:", len(ask_posts)) print("number of show posts:", len(show_posts)) print("number of other posts:", len(other_posts)) print(ask_posts[:5]) print(show_posts[:5]) print(other_posts[:5]) # average number of comments in ask posts total_ask_comments = 0 for row in ask_posts: n_comments = float(row[4]) total_ask_comments += n_comments avg_ask_comments = total_ask_comments / len(ask_posts) total_show_comments = 0 # average number of comments in show posts for row in show_posts: n_comments = float(row[4]) n_show_comments += 1 total_show_comments += n_comments avg_show_comments = total_show_comments / len(show_posts) print(avg_ask_comments) print(avg_show_comments) # On average, ask posts in our sample receive approximately 10 comments, whereas show posts receive approximately 4. Since ask posts are more likely to receive comments, we'll focus our remaining analysis just on these posts. # ## Finding the Number of Ask Posts and Cooments by Hour Created # we'll determine if ask posts created at a certain time are more likely to attract comments. We'll use the following steps to perform this analysis: # 1. Calculate the number of ask posts created in each hour of the day, along with the number of comments received. # 2. Calculate the average number of comments ask posts receive by hour created. import datetime as dt result_list = [] for row in ask_posts: result_list.append([row[6], int(row[4])]) counts_by_hour = {} comments_by_hour = {} date_format = "%m/%d/%Y %H:%M" for row in result_list: date_dt = dt.datetime.strptime(row[0], date_format) hour = date_dt.strftime("%H") if hour not in counts_by_hour: counts_by_hour[hour] = 1 comments_by_hour[hour] = row[1] else: counts_by_hour[hour] += 1 comments_by_hour[hour] += row[1] comments_by_hour # ## Calculating the Average Number of Comments for Ask HN Posts by Hour # Calculate the average amount of comments `Ask HN` posts created at each hour of the day receive. avg_by_hour = [] for hr in comments_by_hour: avg_by_hour.append([hr, comments_by_hour[hr] / counts_by_hour[hr]]) avg_by_hour swap_avg_by_hour = [] for row in avg_by_hour: swap_avg_by_hour.append([row[1], row[0]]) print(swap_avg_by_hour) sorted_swap = sorted(swap_avg_by_hour, reverse=True) sorted_swap # Sort the values and print the the 5 hours with the highest average comments. print("Top 5 Hours for 'Ask HN' Comments") for [avg, hr] in sorted_swap[:5]: # alternative syntax print( "{}: {:.2f} average comments per post".format( dt.datetime.strptime(hr, "%H").strftime("%H:%M"), avg ) ) # dt.datetime.strptime(hr, "%H").strftime("%H:%M"), -> datetime.strptime() constructor to return a datetime object, and then use the strftime() method to specify the format of the time.
false
0
1,411
0
1,411
1,411