modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
dccuchile/albert-xxlarge-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="thuyentruong/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dccuchile/bert-base-spanish-wwm-uncased-finetuned-mldoc
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20230430-001-baseline-mbert-qa-squadv2-ft-clickbait-spoiling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230430-001-baseline-mbert-qa-squadv2-ft-clickbait-spoiling This model is a fine-tuned version of [intanm/mbert-squadv2](https://huggingface.co/intanm/mbert-squadv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 200 | 2.8065 | | No log | 2.0 | 400 | 2.8088 | | 2.5698 | 3.0 | 600 | 3.1652 | | 2.5698 | 4.0 | 800 | 3.5464 | | 1.1384 | 5.0 | 1000 | 3.8477 | | 1.1384 | 6.0 | 1200 | 4.1725 | | 1.1384 | 7.0 | 1400 | 4.5057 | | 0.4763 | 8.0 | 1600 | 4.7721 | | 0.4763 | 9.0 | 1800 | 4.8970 | | 0.2594 | 10.0 | 2000 | 4.8747 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - af - am - ar - as - az - be - bg - bn - bo - bs - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - haw - he - hi - hmn - hr - ht - hu - hy - id - ig - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - or - pa - pl - pt - ro - ru - rw - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - ug - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu tags: - bert - sentence_embedding - multilingual - google - sentence-similarity license: apache-2.0 datasets: - CommonCrawl - Wikipedia --- Copy of setu4993/LaBSE that returns the sentence embeddings (pooler_output) and implements caching Original Model Card: # LaBSE ## Model description Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval. - Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE). - Paper: [arXiv](https://arxiv.org/abs/2007.01852). - Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2). - Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). - Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt). This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/ec3a019159a54ed6493181a64486c2808c01f216/tests/test_conversion.py#L31). ## Usage Using the model: ```python import torch from transformers import BertModel, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE") model = BertModel.from_pretrained("setu4993/LaBSE") model = model.eval() english_sentences = [ "dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.", ] english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) with torch.no_grad(): english_outputs = model(**english_inputs) ``` To get the sentence embeddings, use the pooler output: ```python english_embeddings = english_outputs.pooler_output ``` Output for other languages: ```python italian_sentences = [ "cane", "I cuccioli sono carini.", "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.", ] japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"] italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True) japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True) with torch.no_grad(): italian_outputs = model(**italian_inputs) japanese_outputs = model(**japanese_inputs) italian_embeddings = italian_outputs.pooler_output japanese_embeddings = japanese_outputs.pooler_output ``` For similarity between sentences, an L2-norm is recommended before calculating the similarity: ```python import torch.nn.functional as F def similarity(embeddings_1, embeddings_2): normalized_embeddings_1 = F.normalize(embeddings_1, p=2) normalized_embeddings_2 = F.normalize(embeddings_2, p=2) return torch.matmul( normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) ) print(similarity(english_embeddings, italian_embeddings)) print(similarity(english_embeddings, japanese_embeddings)) print(similarity(italian_embeddings, japanese_embeddings)) ``` ## Details Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852). ### BibTeX entry and citation info ```bibtex @misc{feng2020languageagnostic, title={Language-agnostic BERT Sentence Embedding}, author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang}, year={2020}, eprint={2007.01852}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - uta_rldd metrics: - accuracy model-index: - name: vit-driver-drowsiness-detection results: - task: name: Image Classification type: image-classification dataset: name: chbh7051/driver-drowsiness-detection type: uta_rldd config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9930477264186396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-driver-drowsiness-detection This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the chbh7051/driver-drowsiness-detection dataset. It achieves the following results on the evaluation set: - Loss: 0.0159 - Accuracy: 0.9930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1504 | 0.17 | 500 | 0.1178 | 0.9540 | | 0.0581 | 0.33 | 1000 | 0.1022 | 0.9579 | | 0.0415 | 0.5 | 1500 | 0.0877 | 0.9746 | | 0.0487 | 0.67 | 2000 | 0.0650 | 0.9775 | | 0.0555 | 0.84 | 2500 | 0.0537 | 0.9786 | | 0.0279 | 1.0 | 3000 | 0.0472 | 0.9827 | | 0.0139 | 1.17 | 3500 | 0.0452 | 0.9855 | | 0.0282 | 1.34 | 4000 | 0.0358 | 0.9878 | | 0.0077 | 1.5 | 4500 | 0.0397 | 0.9876 | | 0.0143 | 1.67 | 5000 | 0.0159 | 0.9930 | | 0.0439 | 1.84 | 5500 | 0.0162 | 0.9930 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
dccuchile/distilbert-base-spanish-uncased-finetuned-pawsx
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-cv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-cv This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
dccuchile/distilbert-base-spanish-uncased-finetuned-xnli
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235647957765342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Accuracy: 0.9235 - F1: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3117 | 0.9065 | 0.9034 | | No log | 2.0 | 500 | 0.2155 | 0.9235 | 0.9236 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dccuchile/distilbert-base-spanish-uncased
[ "pytorch", "distilbert", "fill-mask", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
670
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Three Delicacy Wonton API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/7234997281682860773.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "three-delicacy-wonto" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/three-delicacy-wonto) Credits: [View credits](https://civitai.com/?query=Three%20Delicacy%20Wonton) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "three-delicacy-wonto", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
CennetOguz/distilbert-base-uncased-finetuned-recipe
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 100.09 +/- 120.34 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'repo_id': 'ntrant7/ppo-LunarLander-v2' 'env_id': 'LunarLander-v2' 'total_timesteps': 300000 'learning_rate': 0.003 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gamma': 0.99 'gae_lambda': 0.97 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'batch_size': 512 'minibatch_size': 128} ```
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-rate-prof results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-rate-prof This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0922 - Rouge1: 0.3041 - Rouge2: 0.1196 - Rougel: 0.2229 - Rougelsum: 0.2241 - Gen Len: 66.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 68 | 1.1530 | 0.2844 | 0.0943 | 0.204 | 0.2027 | 67.8 | | No log | 2.0 | 136 | 1.0948 | 0.2614 | 0.0498 | 0.1672 | 0.168 | 67.8 | | No log | 3.0 | 204 | 1.0797 | 0.3042 | 0.0983 | 0.2068 | 0.2082 | 66.6667 | | No log | 4.0 | 272 | 1.0808 | 0.2932 | 0.0914 | 0.2012 | 0.2024 | 67.1333 | | No log | 5.0 | 340 | 1.0922 | 0.3041 | 0.1196 | 0.2229 | 0.2241 | 66.9333 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Chaewon/mnmt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: french_52 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # french_52 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 7 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 5 ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.13.2
Chakita/KROBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-paper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-paper This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Chakita/Kalbert
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.43 +/- 0.80 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chan/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="achgls/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Charlotte77/model_test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### jakobseeder11 Dreambooth model trained by jakobsitter with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Cheatham/xlm-roberta-large-finetuned-d12
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
NEWS: Health experts said it is too early to predict whether demand would match up with the 171 million doses of the new boosters the U.S. ordered for the fall.\n\n HEADLINE: ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("utkan/gpt2-news-headlines-v1") model = AutoModelForCausalLM.from_pretrained("utkan/gpt2-news-headlines-v1") device = "cuda" # or "cpu" input_text = "NEWS: Health experts said it is too early to predict whether demand would match up with the 171 million doses of the new boosters the U.S. ordered for the fall.\n\n HEADLINE:" x = tokenizer([input_text], return_tensors='pt').input_ids.to(device) y = model.generate(x, max_new_tokens=1) tokenizer.batch_decode(y, skip_special_tokens=True)[0].split("HEADLINE: ")[-1] ```
Cheatham/xlm-roberta-large-finetuned-r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Udit191/autotrain-data-summarization_bart_longformer co2_eq_emissions: emissions: 33.494252747225424 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 54164127153 - CO2 Emissions (in grams): 33.4943 ## Validation Metrics - Loss: 2.334 - Rouge1: 50.856 - Rouge2: 21.784 - RougeL: 28.707 - RougeLsum: 45.379 - Gen Len: 214.938 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Udit191/autotrain-summarization_bart_longformer-54164127153 ```
Check/vaw2tmp
[ "tensorboard" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # three-delicacy API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/9912191961682864589.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "three-delicacy" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/three-delicacy) Credits: [View credits](https://civitai.com/?query=three-delicacy) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "three-delicacy", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper
[ "ko", "gpt2", "license:cc-by-nc-sa-4.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.70 +/- 4.48 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r ckauth/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Chertilasus/main
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - pt - en - es - ca --- I recommend you to run this LORA with KoboldCPP if you need CPU, like me, to perform inference. Below, my command to run this LORA with KoboldCPP: python koboldcpp.py --launch --lora /ai/text/LORAs/ggml-alpaca-lora-ptbr-7b.bin Recomendo que você execute este arquivo LORA com o KoboldCPP se precisa usar o CPU, como eu, para fazer inferências. Abaixo, meu comando para executar este LORA com o KoboldCPP: python koboldcpp.py --launch --lora /ai/text/LORAs/ggml-alpaca-lora-ptbr-7b.bin ## LORAs X Models: ggml-alpaca-lora-ptbr-7b.bin x MedAlpaca-7B-ggml-q4_0.bin -> Works OK, with a few errors of interpretation ggml-alpaca-lora-ptbr-7b.bin x ggml-alpaca-7b-q4.bin -> Works very good! No relevant errors found ## Example prompts in (Brazilian Portuguese) using LORA ggml-alpaca-lora-ptbr-7b.bin X model ggml-alpaca-7b-q4.bin: *qual remédio usar para dor de cabeça?* Para a dor de cabeça, o qual remédio utilizar depende do tipo de dor que se está experimentando. Seu médico pode recomendar algumas medicações como ibuprofeno, acetaminofen ou naproxen, dependendo da severidade da dor.
Chikita1/www_stash_stock
[ "license:bsd-3-clause-clear" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54299/tomori-nao-charlotte
Chinat/test-classifier
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54113/columbia-azur-lane
Chinmay/mlindia
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54260/the-quintessential-quintuplets-all-nakano-sisters-ichika-nino-miku-yotsuba-itsuki
Chiuchiyin/DialoGPT-small-Donald
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m --- https://civitai.com/models/13926/wa2000-5-costume-lorasor-girls-frontline
Chiuchiyin/Donald
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/53799/asta-honkai-star-rail
ChoboAvenger/DialoGPT-small-DocBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-30T14:32:55Z
--- license: creativeml-openrail-m --- https://civitai.com/models/54003/sena-kashiwazaki-or-boku-wa-tomodachi-ga-sukunai
ChoboAvenger/DialoGPT-small-joshua
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/53161/kaga-kancolle
ChrisP/xlm-roberta-base-finetuned-marc-en
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/52995/arknights-schwarz-skyline
ChrisVCB/DialoGPT-medium-cmjs
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m --- https://civitai.com/models/20058/asuka-langley-souryuushikinami-evangelion
ChrisVCB/DialoGPT-medium-ej
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- language: - ms --- # pythia-1b ## how-to ```python from transformers import GenerationConfig, AutoTokenizer, AutoConfig, AutoModelForCausalLM base_model='mesolitica/pythia-1b-finetune' temperature=0.7 top_p=0.75 top_k=40 num_beams=4 max_new_tokens=256 device = 'cuda' template = { "description": "Template used by Alpaca-LoRA.", "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n", "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n", "response_split": "### Response:" } model = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.float16, device_map="auto", ) model.config.pad_token_id = tokenizer.pad_token_id = 1 model.config.eos_token_id = tokenizer.eos_token_id = 0 model.half() _ = model.eval() q = """ paragraph `"Isu ini sudah lama dan sudah reda namun seperti mereka ini (kerajaan) masih dengan mentaliti 'pembangkang' kerana menghangatkan sesuatu isu supaya rakyat pandang serong kepada PN," katanya ketika dihubungi Sinar Harian pada Isnin. Beliau berkata demikian ketika diminta mengulas isu dua pemimpin PN iaitu Presiden Pas yang juga Ahli Parlimen Marang, Tan Sri Abdul Hadi Awang serta Ahli Parlimen Permatang Pauh yang Ketua Pemuda Pas Pulau Pinang, Muhammad Fawwaz Mohamad Jan disiasat berhubung kenyataan berunsur perkauman. Jelas Mohd Harun, Abdul Hadi yang didakwa berunsur perkauman itu mempunyai asas.` isu fawwaz """ prompt = template["prompt_no_input"].format(instruction=q) prompt inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, ) s = generation_output.sequences[0] output = tokenizer.decode(s) ``` output, ```text Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: paragraph `"Isu ini sudah lama dan sudah reda namun seperti mereka ini (kerajaan) masih dengan mentaliti 'pembangkang' kerana menghangatkan sesuatu isu supaya rakyat pandang serong kepada PN," katanya ketika dihubungi Sinar Harian pada Isnin. Beliau berkata demikian ketika diminta mengulas isu dua pemimpin PN iaitu Presiden Pas yang juga Ahli Parlimen Marang, Tan Sri Abdul Hadi Awang serta Ahli Parlimen Permatang Pauh yang Ketua Pemuda Pas Pulau Pinang, Muhammad Fawwaz Mohamad Jan disiasat berhubung kenyataan berunsur perkauman. Jelas Mohd Harun, Abdul Hadi yang didakwa berunsur perkauman itu mempunyai asas.` isu fawwaz ### Response: Isu ini sudah lama dan sudah reda namun seperti mereka ini (kerajaan) masih dengan mentaliti 'pembangkang' kerana menghangatkan sesuatu isu supaya rakyat pandang serong kepada PN. Beliau berkata demikian ketika diminta mengulas isu dua pemimpin PN iaitu Presiden Pas yang juga Ahli Parlimen Marang, Tan Sri Abdul Hadi Awang serta Ahli Parlimen Permatang Pauh yang Ketua Pemuda Pas Pulau Pinang, Muhammad Fawwaz Mohamad Jan disiasat berhubung kenyataan berunsur perkauman. Jelas Mohd Harun, Abdul Hadi yang didakwa berunsur perkauman itu mempunyai asas.<|endoftext|> ```
ChristianOrr/madnet_keras
[ "tensorboard", "dataset:flyingthings-3d", "dataset:kitti", "arxiv:1810.05424", "vision", "deep-stereo", "depth-estimation", "Tensorflow2", "Keras", "license:apache-2.0" ]
depth-estimation
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m --- https://civitai.com/models/6358/tsumasaky-cc-code-geass
ChristopherA08/IndoELECTRA
[ "pytorch", "electra", "pretraining", "id", "dataset:oscar", "transformers" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54347/prinz-eugen-azur-lane-kindred-evening-spirits
Chuah/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Dark Sushi 2.5D API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/21348992681682865275.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "dark-sushi-25d" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/dark-sushi-25d) Credits: [View credits](https://civitai.com/?query=Dark%20Sushi%202.5D) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "dark-sushi-25d", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
ChukSamuels/DialoGPT-small-Dr.FauciBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54525/nakano-nino-5-toubun-no-hanayome
Chun/DialoGPT-large-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m --- https://civitai.com/models/54319/loha-kai-schulen-valkyria-chronicles-44
Chun/w-en2zh-mtm
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 226.40 +/- 119.52 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'unit8-part-sol' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'mojemai/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
Chun/w-zh2en-hsk
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m --- https://civitai.com/models/37986/chameleonai-rpg-mix
Chun/w-zh2en-mtm
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # TMND-Mix API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/16117819981682865749.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "tmnd-mix" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/tmnd-mix) Credits: [View credits](https://civitai.com/?query=TMND-Mix) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "tmnd-mix", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Chungu424/DATA
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 24.37 +/- 97.04 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 650000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.25 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kinkpunk/PPO-LunarLander' 'batch_size': 512 'minibatch_size': 128} ```
Chungu424/repo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.45 +/- 3.21 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r kinkpunk/rl-doom-health-gathering-supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl-doom-health-gathering-supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl-doom-health-gathering-supreme --restart_behavior=resume --train_for_env_steps=5000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Cinnamon/electra-small-japanese-discriminator
[ "pytorch", "electra", "pretraining", "ja", "transformers", "license:apache-2.0" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
419
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8645886561062851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1316 - F1: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2585 | 1.0 | 525 | 0.1560 | 0.8222 | | 0.128 | 2.0 | 1050 | 0.1428 | 0.8419 | | 0.0808 | 3.0 | 1575 | 0.1316 | 0.8646 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.6.0 - Datasets 2.9.0 - Tokenizers 0.13.2
Cinnamon/electra-small-japanese-generator
[ "pytorch", "electra", "fill-mask", "ja", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9255688957679862 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2237 - Accuracy: 0.9255 - F1: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8556 | 1.0 | 250 | 0.3192 | 0.908 | 0.9055 | | 0.2538 | 2.0 | 500 | 0.2237 | 0.9255 | 0.9256 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ClaudeCOULOMBE/RickBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 44.10330687777927 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Bleu: 44.1033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
ClaudeYang/awesome_fb_model
[ "pytorch", "bart", "text-classification", "dataset:multi_nli", "transformers", "zero-shot-classification" ]
zero-shot-classification
{ "architectures": [ "BartForSequenceClassification" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.55 +/- 4.52 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r MerlinTK/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Cloudy/DialoGPT-CJ-large
[ "pytorch", "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ClydeWasTaken/DialoGPT-small-joshua
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yyassin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CoShin/XLM-roberta-large_ko_en_nil_sts
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-q-learning results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="yyassin/taxi-v3-q-learning", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CodeDanCode/SP-KyleBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9265254169154161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8025 | 1.0 | 250 | 0.3076 | 0.9055 | 0.9032 | | 0.2454 | 2.0 | 500 | 0.2167 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cpu - Datasets 2.12.0 - Tokenizers 0.13.3
CodeNinja1126/koelectra-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.18 +/- 3.22 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r myklicious/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
CodeNinja1126/xlm-roberta-large-kor-mrc
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - audio_dataset model-index: - name: ast_bird_model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast_bird_model2 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the audio_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
CoderEFE/DialoGPT-medium-marx
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of fantuan portrait tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - wujia/fantuan_result These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of fantuan portrait using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Venkatakrishnan-Ramesh/Text_gen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
just for resolve link for colab.. source https://civitai.com/models/22922/lyriel
CoffeeAddict93/gpt1-modest-proposal
[ "pytorch", "openai-gpt", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "OpenAIGPTLMHeadModel" ], "model_type": "openai-gpt", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1776.61 +/- 253.02 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CoffeeAddict93/gpt2-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false duplicated_from: PygmalionAI/pygmalion-7b --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Applying the XORs The model weights in this repository cannot be used as-is. The files here are XORs due to licensing concerns. To obtain proper, usable model weights you need to: - Request access to the original LLaMA weights from Meta [through this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) - Convert them to the HuggingFace Transformers format by using the [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/849367ccf741d8c58aa88ccfe1d52d8636eaf2b7/src/transformers/models/llama/convert_llama_weights_to_hf.py) script **for your version of the `transformers` library** - With the LLaMA-7B weights in hand, you can use the [xor_codec.py](./xor_codec.py) script provided in this repository: ```bash python3 xor_codec.py \ ./pygmalion-7b \ ./xor_encoded_files \ /path/to/hf-converted/llama-7b \ --decode ``` **Note for Windows users:** If you're on Windows, you might run into issues where following the steps above will result in corrupted files. This seems to be because `git` messes with the encoding of text files (so the `.json`s and other relevant files). To avoid this, use WSL. For reference, these are the MD5 hashes you should get after following the steps above: ```bash $ rhash -M * 4608facb4910118f8dfa80f090cbc4dc config.json 2917a1cafb895cf57e746cfd7696bfe5 generation_config.json 98764eb949eea16f8e2e1c2d3dea0066 pytorch_model-00001-of-00002.bin be9ba2f37228a0a9ea0eaf6530aba4de pytorch_model-00002-of-00002.bin 81648ef3915ed2e83d49fed93122d53e pytorch_model.bin.index.json 6b2e0a735969660e720c27061ef3f3d3 special_tokens_map.json fdb311c39b8659a5d5c1991339bafc09 tokenizer.json eeec4125e9c7560836b4873b6f8e3025 tokenizer.model f0b65b44265ba51881b1e1881102504f tokenizer_config.json ``` ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
CoffeeAddict93/gpt2-medium-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2301 with parameters: ``` {'batch_size': None, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'nkwdataset.BatchNegSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 100, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CogComp/bart-faithful-summary-detector
[ "pytorch", "jax", "bart", "text-classification", "en", "dataset:xsum", "transformers", "xsum", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BartForSequenceClassification" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": 1, "max_length": 128, "min_length": 12, "no_repeat_ngram_size": null, "num_beams": 4, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
234
null
--- tags: - autotrain - text-classification language: - es widget: - text: "I love AutoTrain 🤗" datasets: - alexisbaladon/autotrain-data-huhu-humor co2_eq_emissions: emissions: 0.3100765073399468 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 54189127188 - CO2 Emissions (in grams): 0.3101 ## Validation Metrics - Loss: 0.426 - Accuracy: 0.835 - Precision: 0.795 - Recall: 0.710 - AUC: 0.869 - F1: 0.750 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexisbaladon/autotrain-huhu-humor-54189127188 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alexisbaladon/autotrain-huhu-humor-54189127188", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alexisbaladon/autotrain-huhu-humor-54189127188", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CogComp/roberta-temporal-predictor
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.00436", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - autotrain - text-classification language: - es widget: - text: "I love AutoTrain 🤗" datasets: - alexisbaladon/autotrain-data-huhu-humor co2_eq_emissions: emissions: 0.2929350890489067 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 54189127189 - CO2 Emissions (in grams): 0.2929 ## Validation Metrics - Loss: 0.397 - Accuracy: 0.839 - Precision: 0.812 - Recall: 0.699 - AUC: 0.892 - F1: 0.751 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexisbaladon/autotrain-huhu-humor-54189127189 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alexisbaladon/autotrain-huhu-humor-54189127189", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alexisbaladon/autotrain-huhu-humor-54189127189", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CohleM/mbert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m language: - cs tags: - legal - art --- # Dohazovačka – CELÝ FILM ONLINE ZDARMA CZ/SK DABING Sleduj Dohazovačka (2023) – Celý Film CZ Dabing HD Kvalite | Sleduj Filmy Online, Dohazovačka (2023) – Online Titulky Filmu Dabing CZ, Dohazovačka (2023) – Sleduj Filmy Online CZ Dabing HD Kvalite, [Bombuj-HD] Dohazovačka (2023) Film CZ Dabing [Online], [Sledovat-HD] Dohazovačka (2023) Film Online [CZ Dabing] [![Dohazovačka](https://s3-ap-northeast-1.amazonaws.com/peatix-files/event/1617321/cover-9YGwFX3Uj0wUWbldxRrgaua9kTuKPN1Y.gif)](https://fliktv.net/cs/movie/1102935) poslední aktualizace: 30. dubna 2023 ➤ ► 🌍📺📱👉 Dohazovačka Online CZ : [https://fliktv.net/cs/movie/1102935](https://fliktv.net/cs/movie/1102935) ➤ ► 🌍📺📱👉 Dohazovačka Cz Dabing : [https://fliktv.net/cs/movie/1102935](https://fliktv.net/cs/movie/1102935) | 𝟜𝕂 𝕌ℍ𝔻 | 𝟙𝟘𝟠𝟘ℙ 𝔽𝕌𝕃𝕃 ℍ𝔻 | 𝟟𝟚𝟘ℙ ℍ𝔻 | 𝕄𝕂𝕍 | 𝕄ℙ𝟜 | 𝔻𝕍𝔻 | 𝔹𝕝𝕦-ℝ𝕒𝕪 | Klíčová slova : Online Dohazovačka (film, 2023) Celý Film Online Cz A Zdarma Dohazovačka (2023) Filmy ONLINE CZ-SK Dabing HD Sledujte!!! Dohazovačka (2023) [Filmy] Celý Film Online CZ a Zdarma ©[Sledujte] Dohazovačka (2023) (Filmy) Celý Film Online CZ a Zdarma Sledujte]▷ Dohazovačka (2023) Celý Film Online " Sleduj!~ Dohazovačka Online Cz !Celý Film a Zdarma" Dohazovačka (2023) Filmy ONLINE CZ-SK Dabing HD Sledujte!!! Dohazovačka (2023) [Filmy] Celý Film Online CZ a Zdarma ©Sledujte Dohazovačka (2023) (Filmy) Celý Film Online CZ a Zdarma Sledujte]▷ Dohazovačka (2023) Celý Film Online "Sleduj! ~ Dohazovačka (2023) ~ !Celý Film" Online ™FILMY]~ Dohazovačka (2023) Celý film Slovenské Titulky Audio Sledujte Dohazovačka (2023) Celý Film Online a Zdarma {CZ-SK} Dabing i Titulky [[Sleduj~HD]» ” Dohazovačka (2023) Celý Film Online a Zdarma {CZ — SK} Dabing i Titulky] CZ-SK Filmy Dohazovačka (2023) (Český!) ke shlédnutí CZ Filmy Online Videa Dohazovačka (2023) Celý Film Online Cz A Zdarma Sledujte]] Dohazovačka (2023) Celý Film Online Cz A Zdarma Sledujte]▷ Dohazovačka (2023) Celý film online zdarma Sledujte↑↑〙» Dohazovačka (2023) Film Online (CZ-SK) Zdarma Dabing HD Dohazovačka (2023) Celý Film 2021, Dohazovačka (2023) Celý Film 2021, Dohazovačka (2023) Filmové Novinky, Dohazovačka (2023) celý film Český Dokumentární, Dohazovačka (2023) Filmové premiéry, Dohazovačka (2023) celý film Česka cz dabing, Dohazovačka (2023) zkouknito, Dohazovačka (2023) sleduj filmy, Dohazovačka (2023) online cz titulky, Dohazovačka (2023) Program filmy, Dohazovačka (2023) CZ HD Film o filmu, Dohazovačka (2023) CZ dabing, Dohazovačka (2023) premiéra, Dohazovačka (2023) online cz, Dohazovačka (2023) online cz dabing, Dohazovačka (2023) Zadarmo, Dohazovačka (2023) Celý Film, Dohazovačka (2023) Titulky, Dohazovačka (2023) nový film, Dohazovačka (2023) DVD filmy, Dohazovačka (2023) Blu-ray filmy, Dohazovačka (2023) 3D filmy, Dohazovačka (2023) online bombuj, Dohazovačka (2023) online cely film CZ, Dohazovačka (2023) online ke shlednuti, Dohazovačka (2023) cz dabing online ke shlednuti, Dohazovačka (2023) online, Dohazovačka (2023) online film cz, Dohazovačka (2023) Bombuj, Dohazovačka (2023) bombuj cz, Dohazovačka (2023) online ke shlédnutí, Dohazovačka (2023) celý film Cesky, Dohazovačka (2023) celý film zdarma ke shlédnutí, Dohazovačka (2023) celý film cz dabing, Dohazovačka (2023) zkouknito, Dohazovačka (2023) sleduj filmy, Dohazovačka (2023) online cz titulky, Dohazovačka (2023) celý film, ❏ STREAMOVAT MÉDIA ❏ Streamovaná média jsou multimédia, která jsou nepřetržitě přijímána a prezentována koncovému uživateli, zatímco jsou dodávána poskytovatelem. Sloveso streamovat odkazuje na proces doručování nebo získávání médií tímto způsobem. [Potřebné upřesnění] Streamování se týká způsobu doručení média, nikoli média samotného. Rozdíl mezi způsobem doručování a vysílacím médiem se týká zejména telekomunikačních sítí, protože většina doručovacích systémů má streamingový charakter (např. rádio, televize, streamingové aplikace) nebo nestreamingový charakter (např. knihy, videokazety, audio CD). Streamování obsahu přes internet přináší problémy. Uživatelé, jejichž připojení k internetu nemá dostatečnou šířku pásma, mohou například zaznamenat zamrzání, zpoždění nebo pomalé ukládání obsahu do vyrovnávací paměti. A uživatelé, kteří nemají kompatibilní hardwarové nebo softwarové systémy, nemusí být schopni streamovat nějaký obsah. Živé vysílání je poskytování internetového obsahu v reálném čase, podobně jako živé televizní vysílání obsahu prostřednictvím rádiových vln prostřednictvím televizního signálu. Online živé vysílání vyžaduje určitou formu zdrojového média (např. videokameru, audio rozhraní, software pro snímání obrazovky), kodér pro digitalizaci obsahu, vydavatele médií a síť pro doručování obsahu pro distribuci a doručování obsahu. Přímé přenosy není nutné nahrávat na začátku, i když často ano. Streamování je alternativou ke stahování souborů, což je proces, při kterém koncový uživatel získá celý soubor obsahu před jeho zobrazením nebo poslechem. Streamování umožňuje koncovému uživateli používat svůj přehrávač médií ke spuštění přehrávání digitálního videa nebo digitálního zvukového obsahu před přenesením celého souboru. Termín „streamingová média“ může odkazovat na média jiná než video a zvuk, jako jsou živé titulky, kazety se zprávami a text v reálném čase, které jsou považovány za „streamovaný text“. ❏ OBSAH AUTORSKÝCH PRÁV ❏ Autorské právo je druh duševního vlastnictví, který dává vlastníkovi výhradní právo pořídit si rozmnoženinu tvůrčího díla, obvykle na omezenou dobu. Tvůrčí práce může být literární, výtvarná, vzdělávací nebo hudební. Ochrana autorských práv je určena k ochraně původního vyjádření myšlenky jako tvůrčího díla, nikoli však myšlenky samotné. Autorská práva jsou omezena ohledy veřejného zájmu, jako je americká doktrína fair use. Některé jurisdikce vyžadují, abyste „opravili“ díla chráněná autorským právem v hmotné podobě. Často jej sdílí více autorů, každý hWatch Dunes je soubor práv k použití nebo licencování díla, kteří jsou běžně označováni jako práva hWatch Duneers. [pochvalná zmínka potřebovaný] Tato práva často zahrnují reprodukci, odvozenou kontrolu, distribuci, veřejné předvádění a osobní práva, jako je uvádění zdroje. Autorská práva mohou být udělena podle veřejného práva a v tomto případě jsou považována za „územní práva“. To znamená, že autorská práva udělená právem dané země nepřesahují území této konkrétní jurisdikce. Tyto typy autorských práv se v jednotlivých zemích liší; mnoho zemí, a někdy i velká skupina zemí, má dohody s jinými zeměmi o postupech, které je třeba dodržet, když práce „překročí“ státní hranice nebo když jsou vnitrostátní zákony nekonzistentní . Veřejná autorská práva obvykle vyprší 50 až 100 let po smrti tvůrce, v závislosti na jurisdikci. Některé země vyžadují určité formality týkající se autorských práv pro stanovení autorských práv, jiné uznávají autorská práva v jakémkoli dokončeném díle bez formální registrace. Obecně se má za to, že autorská práva jsou zásadní pro podporu kulturní rozmanitosti a kreativity. Na rozdíl od všeobecného přesvědčení však Parc tvrdí, že napodobování a kopírování neomezuje kreativitu ani kulturní rozmanitost, ale ve skutečnosti je navíc podporuje. Tento argument byl podpořen mnoha příklady jako Millet a Van Gogh, Picasso, Manet a Monet atd. ❏ SERVIS ZBOŽÍ ❏ Kredit (z latinského credit, „(ona/ona) věří“) je trust, který umožňuje jedné straně poskytnout peníze nebo zdroje druhé straně, přičemž druhá strana okamžitě nevrátí první straně (která vytváří dluh), ale slíbí splatit nebo splatit tyto zdroje (nebo jiné materiály stejné hodnoty) později Jinými slovy, úvěr je způsob, jak učinit formality reciproční, právně vymahatelné a rozšířitelné na velkou skupinu nepříbuzných jednotlivců . Převáděné prostředky mohou mít finanční povahu (např. poskytnutí půjčky) nebo představovat zboží či služby (např. spotřebitelský úvěr). Kredit zahrnuje jakoukoli formu odložené platby. Půjčku poskytuje věřitel, také známý jako věřitel, dlužník, také známý jako dlužník .
Coldestadam/Breakout_Mentors_SpongeBob_Model
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - ssamper/autotrain-data-deepentregable2 co2_eq_emissions: emissions: 0.8730303110593549 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 54196127214 - CO2 Emissions (in grams): 0.8730 ## Validation Metrics - Loss: 0.079 - Accuracy: 0.986 - Macro F1: 0.986 - Micro F1: 0.986 - Weighted F1: 0.985 - Macro Precision: 0.991 - Micro Precision: 0.986 - Weighted Precision: 0.987 - Macro Recall: 0.983 - Micro Recall: 0.986 - Weighted Recall: 0.986 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ssamper/autotrain-deepentregable2-54196127214 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ssamper/autotrain-deepentregable2-54196127214", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ssamper/autotrain-deepentregable2-54196127214", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ComCom/gpt2
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.37 +/- 5.70 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r mojemai/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m unit8-part2 --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m unit8-part2 --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Cometasonmi451/Mine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mBERT-naamapdam-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBERT-naamapdam-fine-tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4625 - Precision: 0.8060 - Recall: 0.8246 - F1: 0.8152 - Accuracy: 0.9173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3625 | 0.26 | 1000 | 0.3300 | 0.7651 | 0.7809 | 0.7729 | 0.8964 | | 0.3099 | 0.51 | 2000 | 0.3070 | 0.7708 | 0.8041 | 0.7871 | 0.9002 | | 0.2954 | 0.77 | 3000 | 0.2962 | 0.7793 | 0.8036 | 0.7913 | 0.9041 | | 0.283 | 1.03 | 4000 | 0.2958 | 0.7843 | 0.8153 | 0.7995 | 0.9066 | | 0.265 | 1.29 | 5000 | 0.2873 | 0.7930 | 0.8065 | 0.7997 | 0.9069 | | 0.2613 | 1.54 | 6000 | 0.2838 | 0.7789 | 0.8289 | 0.8031 | 0.9092 | | 0.2635 | 1.8 | 7000 | 0.2790 | 0.7902 | 0.8252 | 0.8073 | 0.9088 | | 0.2574 | 2.06 | 8000 | 0.2946 | 0.7887 | 0.8345 | 0.8110 | 0.9098 | | 0.2355 | 2.31 | 9000 | 0.2859 | 0.7975 | 0.8152 | 0.8063 | 0.9105 | | 0.2361 | 2.57 | 10000 | 0.2806 | 0.7883 | 0.8313 | 0.8092 | 0.9104 | | 0.2361 | 2.83 | 11000 | 0.2805 | 0.7931 | 0.8279 | 0.8101 | 0.9123 | | 0.2268 | 3.08 | 12000 | 0.2934 | 0.7959 | 0.8323 | 0.8137 | 0.9130 | | 0.2106 | 3.34 | 13000 | 0.2862 | 0.7934 | 0.8311 | 0.8118 | 0.9121 | | 0.2106 | 3.6 | 14000 | 0.2876 | 0.8009 | 0.8332 | 0.8167 | 0.9143 | | 0.2131 | 3.86 | 15000 | 0.2777 | 0.8015 | 0.8242 | 0.8127 | 0.9123 | | 0.1993 | 4.11 | 16000 | 0.2999 | 0.7920 | 0.8311 | 0.8111 | 0.9113 | | 0.1872 | 4.37 | 17000 | 0.2984 | 0.8003 | 0.8365 | 0.8180 | 0.9143 | | 0.1861 | 4.63 | 18000 | 0.2894 | 0.7976 | 0.8321 | 0.8145 | 0.9151 | | 0.1916 | 4.88 | 19000 | 0.2909 | 0.7958 | 0.8300 | 0.8125 | 0.9143 | | 0.1745 | 5.14 | 20000 | 0.3075 | 0.7906 | 0.8386 | 0.8139 | 0.9136 | | 0.1649 | 5.4 | 21000 | 0.2986 | 0.8055 | 0.8199 | 0.8127 | 0.9147 | | 0.1678 | 5.66 | 22000 | 0.3043 | 0.7988 | 0.8303 | 0.8142 | 0.9147 | | 0.1688 | 5.91 | 23000 | 0.2950 | 0.8026 | 0.8269 | 0.8146 | 0.9155 | | 0.153 | 6.17 | 24000 | 0.3231 | 0.7995 | 0.8305 | 0.8147 | 0.9150 | | 0.1468 | 6.43 | 25000 | 0.3145 | 0.7954 | 0.8326 | 0.8136 | 0.9156 | | 0.1478 | 6.68 | 26000 | 0.3222 | 0.8034 | 0.8307 | 0.8168 | 0.9160 | | 0.1489 | 6.94 | 27000 | 0.3184 | 0.8019 | 0.8318 | 0.8166 | 0.9161 | | 0.1311 | 7.2 | 28000 | 0.3336 | 0.8022 | 0.8278 | 0.8148 | 0.9168 | | 0.1298 | 7.46 | 29000 | 0.3430 | 0.8050 | 0.8281 | 0.8164 | 0.9164 | | 0.1319 | 7.71 | 30000 | 0.3374 | 0.8005 | 0.8257 | 0.8129 | 0.9152 | | 0.1312 | 7.97 | 31000 | 0.3320 | 0.8019 | 0.8353 | 0.8183 | 0.9173 | | 0.1144 | 8.23 | 32000 | 0.3539 | 0.8007 | 0.8309 | 0.8155 | 0.9160 | | 0.1132 | 8.48 | 33000 | 0.3581 | 0.7940 | 0.8376 | 0.8152 | 0.9158 | | 0.1159 | 8.74 | 34000 | 0.3566 | 0.8032 | 0.8355 | 0.8191 | 0.9182 | | 0.117 | 9.0 | 35000 | 0.3384 | 0.8113 | 0.8205 | 0.8159 | 0.9166 | | 0.0996 | 9.25 | 36000 | 0.3637 | 0.8060 | 0.8256 | 0.8156 | 0.9166 | | 0.1004 | 9.51 | 37000 | 0.3687 | 0.8043 | 0.8147 | 0.8095 | 0.9152 | | 0.1015 | 9.77 | 38000 | 0.3715 | 0.8017 | 0.8359 | 0.8185 | 0.9173 | | 0.1001 | 10.03 | 39000 | 0.3826 | 0.8047 | 0.8288 | 0.8166 | 0.9174 | | 0.0874 | 10.28 | 40000 | 0.3857 | 0.8087 | 0.8231 | 0.8158 | 0.9168 | | 0.0892 | 10.54 | 41000 | 0.3817 | 0.8069 | 0.8221 | 0.8145 | 0.9165 | | 0.0895 | 10.8 | 42000 | 0.3800 | 0.8107 | 0.8291 | 0.8198 | 0.9183 | | 0.0868 | 11.05 | 43000 | 0.4099 | 0.8032 | 0.8297 | 0.8162 | 0.9177 | | 0.0777 | 11.31 | 44000 | 0.4099 | 0.8059 | 0.8255 | 0.8156 | 0.9170 | | 0.0781 | 11.57 | 45000 | 0.4077 | 0.8044 | 0.8335 | 0.8187 | 0.9186 | | 0.0779 | 11.83 | 46000 | 0.4172 | 0.8050 | 0.8243 | 0.8145 | 0.9161 | | 0.0759 | 12.08 | 47000 | 0.4230 | 0.8034 | 0.8244 | 0.8138 | 0.9158 | | 0.0691 | 12.34 | 48000 | 0.4286 | 0.8048 | 0.8221 | 0.8134 | 0.9162 | | 0.0676 | 12.6 | 49000 | 0.4251 | 0.8091 | 0.8287 | 0.8188 | 0.9185 | | 0.0695 | 12.85 | 50000 | 0.4289 | 0.8043 | 0.8284 | 0.8161 | 0.9168 | | 0.0663 | 13.11 | 51000 | 0.4431 | 0.8060 | 0.8246 | 0.8152 | 0.9168 | | 0.0618 | 13.37 | 52000 | 0.4484 | 0.8054 | 0.8214 | 0.8133 | 0.9162 | | 0.0614 | 13.62 | 53000 | 0.4421 | 0.8044 | 0.8230 | 0.8136 | 0.9166 | | 0.0611 | 13.88 | 54000 | 0.4468 | 0.8066 | 0.8231 | 0.8148 | 0.9166 | | 0.0582 | 14.14 | 55000 | 0.4606 | 0.8055 | 0.8244 | 0.8148 | 0.9173 | | 0.0552 | 14.4 | 56000 | 0.4642 | 0.8055 | 0.8274 | 0.8163 | 0.9175 | | 0.0553 | 14.65 | 57000 | 0.4633 | 0.8083 | 0.8248 | 0.8165 | 0.9175 | | 0.0556 | 14.91 | 58000 | 0.4625 | 0.8060 | 0.8246 | 0.8152 | 0.9173 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Connor-tech/bert_cn_finetuning
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-NER-naamapdam-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-NER-naamapdam-fine-tuned This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3852 - Precision: 0.7940 - Recall: 0.8182 - F1: 0.8059 - Accuracy: 0.9124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3757 | 0.51 | 1000 | 0.3173 | 0.7666 | 0.7858 | 0.7761 | 0.8984 | | 0.3062 | 1.03 | 2000 | 0.3020 | 0.7791 | 0.7981 | 0.7885 | 0.9026 | | 0.2793 | 1.54 | 3000 | 0.2962 | 0.7827 | 0.8021 | 0.7923 | 0.9059 | | 0.2755 | 2.06 | 4000 | 0.2973 | 0.7768 | 0.8122 | 0.7941 | 0.9048 | | 0.2529 | 2.57 | 5000 | 0.2879 | 0.7747 | 0.8201 | 0.7968 | 0.9057 | | 0.2483 | 3.08 | 6000 | 0.3025 | 0.7714 | 0.8298 | 0.7996 | 0.9079 | | 0.2294 | 3.6 | 7000 | 0.2899 | 0.7877 | 0.8211 | 0.8041 | 0.9105 | | 0.2252 | 4.11 | 8000 | 0.2952 | 0.7850 | 0.8185 | 0.8014 | 0.9090 | | 0.2088 | 4.63 | 9000 | 0.2932 | 0.7851 | 0.8234 | 0.8038 | 0.9090 | | 0.2046 | 5.14 | 10000 | 0.2998 | 0.7931 | 0.8215 | 0.8071 | 0.9117 | | 0.1909 | 5.66 | 11000 | 0.3029 | 0.7925 | 0.8240 | 0.8080 | 0.9112 | | 0.1857 | 6.17 | 12000 | 0.3160 | 0.7903 | 0.8228 | 0.8062 | 0.9108 | | 0.1744 | 6.68 | 13000 | 0.3099 | 0.7858 | 0.8259 | 0.8054 | 0.9115 | | 0.1686 | 7.2 | 14000 | 0.3199 | 0.7859 | 0.8246 | 0.8048 | 0.9097 | | 0.1613 | 7.71 | 15000 | 0.3161 | 0.7941 | 0.8179 | 0.8058 | 0.9121 | | 0.1538 | 8.23 | 16000 | 0.3294 | 0.7903 | 0.8221 | 0.8059 | 0.9110 | | 0.1475 | 8.74 | 17000 | 0.3260 | 0.7935 | 0.8248 | 0.8089 | 0.9129 | | 0.1429 | 9.25 | 18000 | 0.3378 | 0.7958 | 0.8210 | 0.8082 | 0.9130 | | 0.1369 | 9.77 | 19000 | 0.3402 | 0.7905 | 0.8240 | 0.8069 | 0.9118 | | 0.1302 | 10.28 | 20000 | 0.3573 | 0.7865 | 0.8269 | 0.8062 | 0.9114 | | 0.1276 | 10.8 | 21000 | 0.3564 | 0.7924 | 0.8208 | 0.8063 | 0.9117 | | 0.122 | 11.31 | 22000 | 0.3590 | 0.7939 | 0.8274 | 0.8103 | 0.9130 | | 0.1181 | 11.83 | 23000 | 0.3660 | 0.7974 | 0.8234 | 0.8102 | 0.9132 | | 0.1141 | 12.34 | 24000 | 0.3695 | 0.7921 | 0.8208 | 0.8062 | 0.9112 | | 0.1118 | 12.85 | 25000 | 0.3649 | 0.7942 | 0.8188 | 0.8063 | 0.9114 | | 0.1081 | 13.37 | 26000 | 0.3781 | 0.7980 | 0.8149 | 0.8064 | 0.9124 | | 0.1054 | 13.88 | 27000 | 0.3800 | 0.7913 | 0.8179 | 0.8044 | 0.9120 | | 0.1023 | 14.4 | 28000 | 0.3857 | 0.7942 | 0.8207 | 0.8072 | 0.9128 | | 0.101 | 14.91 | 29000 | 0.3852 | 0.7940 | 0.8182 | 0.8059 | 0.9124 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Connorvr/BrightBot-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m language: - cs tags: - art - legal --- # Hodiny – CELÝ FILM ONLINE ZDARMA CZ/SK DABING Sleduj Hodiny (2023) – Celý Film CZ Dabing HD Kvalite | Sleduj Filmy Online, Hodiny (2023) – Online Titulky Filmu Dabing CZ, Hodiny (2023) – Sleduj Filmy Online CZ Dabing HD Kvalite, [Bombuj-HD] Hodiny (2023) Film CZ Dabing [Online], [Sledovat-HD] Hodiny (2023) Film Online [CZ Dabing] [![Hodiny](https://s3-ap-northeast-1.amazonaws.com/peatix-files/event/1617321/cover-9YGwFX3Uj0wUWbldxRrgaua9kTuKPN1Y.gif)](https://fliktv.net/cs/movie/1085103) poslední aktualizace: 30. dubna 2023 ➤ ► 🌍📺📱👉 Hodiny Online CZ : [https://fliktv.net/cs/movie/1085103](https://fliktv.net/cs/movie/1085103) ➤ ► 🌍📺📱👉 Hodiny Cz Dabing : [https://fliktv.net/cs/movie/1085103](https://fliktv.net/cs/movie/1085103) | 𝟜𝕂 𝕌ℍ𝔻 | 𝟙𝟘𝟠𝟘ℙ 𝔽𝕌𝕃𝕃 ℍ𝔻 | 𝟟𝟚𝟘ℙ ℍ𝔻 | 𝕄𝕂𝕍 | 𝕄ℙ𝟜 | 𝔻𝕍𝔻 | 𝔹𝕝𝕦-ℝ𝕒𝕪 | Klíčová slova : Online Hodiny (film, 2023) Celý Film Online Cz A Zdarma Hodiny (2023) Filmy ONLINE CZ-SK Dabing HD Sledujte!!! Hodiny (2023) [Filmy] Celý Film Online CZ a Zdarma ©[Sledujte] Hodiny (2023) (Filmy) Celý Film Online CZ a Zdarma Sledujte]▷ Hodiny (2023) Celý Film Online " Sleduj!~ Hodiny Online Cz !Celý Film a Zdarma" Hodiny (2023) Filmy ONLINE CZ-SK Dabing HD Sledujte!!! Hodiny (2023) [Filmy] Celý Film Online CZ a Zdarma ©Sledujte Hodiny (2023) (Filmy) Celý Film Online CZ a Zdarma Sledujte]▷ Hodiny (2023) Celý Film Online "Sleduj! ~ Hodiny (2023) ~ !Celý Film" Online ™FILMY]~ Hodiny (2023) Celý film Slovenské Titulky Audio Sledujte Hodiny (2023) Celý Film Online a Zdarma {CZ-SK} Dabing i Titulky [[Sleduj~HD]» ” Hodiny (2023) Celý Film Online a Zdarma {CZ — SK} Dabing i Titulky] CZ-SK Filmy Hodiny (2023) (Český!) ke shlédnutí CZ Filmy Online Videa Hodiny (2023) Celý Film Online Cz A Zdarma Sledujte]] Hodiny (2023) Celý Film Online Cz A Zdarma Sledujte]▷ Hodiny (2023) Celý film online zdarma Sledujte↑↑〙» Hodiny (2023) Film Online (CZ-SK) Zdarma Dabing HD Hodiny (2023) Celý Film 2021, Hodiny (2023) Celý Film 2021, Hodiny (2023) Filmové Novinky, Hodiny (2023) celý film Český Dokumentární, Hodiny (2023) Filmové premiéry, Hodiny (2023) celý film Česka cz dabing, Hodiny (2023) zkouknito, Hodiny (2023) sleduj filmy, Hodiny (2023) online cz titulky, Hodiny (2023) Program filmy, Hodiny (2023) CZ HD Film o filmu, Hodiny (2023) CZ dabing, Hodiny (2023) premiéra, Hodiny (2023) online cz, Hodiny (2023) online cz dabing, Hodiny (2023) Zadarmo, Hodiny (2023) Celý Film, Hodiny (2023) Titulky, Hodiny (2023) nový film, Hodiny (2023) DVD filmy, Hodiny (2023) Blu-ray filmy, Hodiny (2023) 3D filmy, Hodiny (2023) online bombuj, Hodiny (2023) online cely film CZ, Hodiny (2023) online ke shlednuti, Hodiny (2023) cz dabing online ke shlednuti, Hodiny (2023) online, Hodiny (2023) online film cz, Hodiny (2023) Bombuj, Hodiny (2023) bombuj cz, Hodiny (2023) online ke shlédnutí, Hodiny (2023) celý film Cesky, Hodiny (2023) celý film zdarma ke shlédnutí, Hodiny (2023) celý film cz dabing, Hodiny (2023) zkouknito, Hodiny (2023) sleduj filmy, Hodiny (2023) online cz titulky, Hodiny (2023) celý film, ❏ STREAMOVAT MÉDIA ❏ Streamovaná média jsou multimédia, která jsou nepřetržitě přijímána a prezentována koncovému uživateli, zatímco jsou dodávána poskytovatelem. Sloveso streamovat odkazuje na proces doručování nebo získávání médií tímto způsobem. [Potřebné upřesnění] Streamování se týká způsobu doručení média, nikoli média samotného. Rozdíl mezi způsobem doručování a vysílacím médiem se týká zejména telekomunikačních sítí, protože většina doručovacích systémů má streamingový charakter (např. rádio, televize, streamingové aplikace) nebo nestreamingový charakter (např. knihy, videokazety, audio CD). Streamování obsahu přes internet přináší problémy. Uživatelé, jejichž připojení k internetu nemá dostatečnou šířku pásma, mohou například zaznamenat zamrzání, zpoždění nebo pomalé ukládání obsahu do vyrovnávací paměti. A uživatelé, kteří nemají kompatibilní hardwarové nebo softwarové systémy, nemusí být schopni streamovat nějaký obsah. Živé vysílání je poskytování internetového obsahu v reálném čase, podobně jako živé televizní vysílání obsahu prostřednictvím rádiových vln prostřednictvím televizního signálu. Online živé vysílání vyžaduje určitou formu zdrojového média (např. videokameru, audio rozhraní, software pro snímání obrazovky), kodér pro digitalizaci obsahu, vydavatele médií a síť pro doručování obsahu pro distribuci a doručování obsahu. Přímé přenosy není nutné nahrávat na začátku, i když často ano. Streamování je alternativou ke stahování souborů, což je proces, při kterém koncový uživatel získá celý soubor obsahu před jeho zobrazením nebo poslechem. Streamování umožňuje koncovému uživateli používat svůj přehrávač médií ke spuštění přehrávání digitálního videa nebo digitálního zvukového obsahu před přenesením celého souboru. Termín „streamingová média“ může odkazovat na média jiná než video a zvuk, jako jsou živé titulky, kazety se zprávami a text v reálném čase, které jsou považovány za „streamovaný text“. ❏ OBSAH AUTORSKÝCH PRÁV ❏ Autorské právo je druh duševního vlastnictví, který dává vlastníkovi výhradní právo pořídit si rozmnoženinu tvůrčího díla, obvykle na omezenou dobu. Tvůrčí práce může být literární, výtvarná, vzdělávací nebo hudební. Ochrana autorských práv je určena k ochraně původního vyjádření myšlenky jako tvůrčího díla, nikoli však myšlenky samotné. Autorská práva jsou omezena ohledy veřejného zájmu, jako je americká doktrína fair use. Některé jurisdikce vyžadují, abyste „opravili“ díla chráněná autorským právem v hmotné podobě. Často jej sdílí více autorů, každý hWatch Dunes je soubor práv k použití nebo licencování díla, kteří jsou běžně označováni jako práva hWatch Duneers. [pochvalná zmínka potřebovaný] Tato práva často zahrnují reprodukci, odvozenou kontrolu, distribuci, veřejné předvádění a osobní práva, jako je uvádění zdroje. Autorská práva mohou být udělena podle veřejného práva a v tomto případě jsou považována za „územní práva“. To znamená, že autorská práva udělená právem dané země nepřesahují území této konkrétní jurisdikce. Tyto typy autorských práv se v jednotlivých zemích liší; mnoho zemí, a někdy i velká skupina zemí, má dohody s jinými zeměmi o postupech, které je třeba dodržet, když práce „překročí“ státní hranice nebo když jsou vnitrostátní zákony nekonzistentní . Veřejná autorská práva obvykle vyprší 50 až 100 let po smrti tvůrce, v závislosti na jurisdikci. Některé země vyžadují určité formality týkající se autorských práv pro stanovení autorských práv, jiné uznávají autorská práva v jakémkoli dokončeném díle bez formální registrace. Obecně se má za to, že autorská práva jsou zásadní pro podporu kulturní rozmanitosti a kreativity. Na rozdíl od všeobecného přesvědčení však Parc tvrdí, že napodobování a kopírování neomezuje kreativitu ani kulturní rozmanitost, ale ve skutečnosti je navíc podporuje. Tento argument byl podpořen mnoha příklady jako Millet a Van Gogh, Picasso, Manet a Monet atd. ❏ SERVIS ZBOŽÍ ❏ Kredit (z latinského credit, „(ona/ona) věří“) je trust, který umožňuje jedné straně poskytnout peníze nebo zdroje druhé straně, přičemž druhá strana okamžitě nevrátí první straně (která vytváří dluh), ale slíbí splatit nebo splatit tyto zdroje (nebo jiné materiály stejné hodnoty) později Jinými slovy, úvěr je způsob, jak učinit formality reciproční, právně vymahatelné a rozšířitelné na velkou skupinu nepříbuzných jednotlivců . Převáděné prostředky mohou mít finanční povahu (např. poskytnutí půjčky) nebo představovat zboží či služby (např. spotřebitelský úvěr). Kredit zahrnuje jakoukoli formu odložené platby. Půjčku poskytuje věřitel, také známý jako věřitel, dlužník, také známý jako dlužník .
ConstellationBoi/Oop
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: taNER-500-naamapdam-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # taNER-500-naamapdam-fine-tuned This model is a fine-tuned version of [livinNector/tabert-500](https://huggingface.co/livinNector/tabert-500) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3466 - Precision: 0.7858 - Recall: 0.8156 - F1: 0.8004 - Accuracy: 0.9134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.37 | 0.51 | 1000 | 0.3241 | 0.7491 | 0.7745 | 0.7616 | 0.8951 | | 0.3118 | 1.03 | 2000 | 0.3120 | 0.7631 | 0.7862 | 0.7745 | 0.8998 | | 0.2877 | 1.54 | 3000 | 0.2994 | 0.7679 | 0.7918 | 0.7797 | 0.9027 | | 0.284 | 2.06 | 4000 | 0.2977 | 0.7643 | 0.7960 | 0.7798 | 0.9026 | | 0.2631 | 2.57 | 5000 | 0.2900 | 0.7716 | 0.8001 | 0.7856 | 0.9040 | | 0.259 | 3.08 | 6000 | 0.2958 | 0.7739 | 0.8058 | 0.7895 | 0.9050 | | 0.2426 | 3.6 | 7000 | 0.2850 | 0.7795 | 0.8042 | 0.7917 | 0.9072 | | 0.2378 | 4.11 | 8000 | 0.2910 | 0.7740 | 0.8069 | 0.7901 | 0.9059 | | 0.2231 | 4.63 | 9000 | 0.2878 | 0.7788 | 0.8106 | 0.7944 | 0.9077 | | 0.2188 | 5.14 | 10000 | 0.2941 | 0.7752 | 0.8101 | 0.7923 | 0.9087 | | 0.2066 | 5.66 | 11000 | 0.2928 | 0.7721 | 0.8147 | 0.7928 | 0.9079 | | 0.2008 | 6.17 | 12000 | 0.3048 | 0.7798 | 0.8141 | 0.7966 | 0.9088 | | 0.1902 | 6.68 | 13000 | 0.2987 | 0.7834 | 0.8108 | 0.7969 | 0.9099 | | 0.1843 | 7.2 | 14000 | 0.3055 | 0.7784 | 0.8137 | 0.7957 | 0.9101 | | 0.1775 | 7.71 | 15000 | 0.2991 | 0.7762 | 0.8155 | 0.7953 | 0.9096 | | 0.1694 | 8.23 | 16000 | 0.3117 | 0.7876 | 0.8137 | 0.8004 | 0.9120 | | 0.1631 | 8.74 | 17000 | 0.3085 | 0.7761 | 0.8210 | 0.7979 | 0.9121 | | 0.1585 | 9.25 | 18000 | 0.3144 | 0.7851 | 0.8063 | 0.7955 | 0.9108 | | 0.1528 | 9.77 | 19000 | 0.3086 | 0.7834 | 0.8169 | 0.7998 | 0.9124 | | 0.1458 | 10.28 | 20000 | 0.3167 | 0.7773 | 0.8208 | 0.7985 | 0.9114 | | 0.143 | 10.8 | 21000 | 0.3202 | 0.7822 | 0.8134 | 0.7975 | 0.9123 | | 0.1368 | 11.31 | 22000 | 0.3299 | 0.7798 | 0.8176 | 0.7983 | 0.9112 | | 0.1337 | 11.83 | 23000 | 0.3369 | 0.7857 | 0.8151 | 0.8002 | 0.9131 | | 0.1289 | 12.34 | 24000 | 0.3366 | 0.7855 | 0.8148 | 0.7999 | 0.9128 | | 0.1257 | 12.85 | 25000 | 0.3316 | 0.7837 | 0.8172 | 0.8001 | 0.9129 | | 0.122 | 13.37 | 26000 | 0.3415 | 0.7880 | 0.8120 | 0.7998 | 0.9136 | | 0.1191 | 13.88 | 27000 | 0.3414 | 0.7867 | 0.8182 | 0.8021 | 0.9139 | | 0.1157 | 14.4 | 28000 | 0.3481 | 0.7863 | 0.8174 | 0.8016 | 0.9136 | | 0.1153 | 14.91 | 29000 | 0.3466 | 0.7858 | 0.8156 | 0.8004 | 0.9134 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Contrastive-Tension/BERT-Base-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-vk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-vk This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3219 | 1.0 | 12032 | 0.2150 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
Contrastive-Tension/BERT-Base-NLI-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: diffusers pipeline_tag: text-to-image --- FlaxControNetModel trained with battlemaps images.
Contrastive-Tension/BERT-Base-Swe-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
126
null
--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-scene-parse-150-MASKED5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-MASKED5 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4715 - Mean Iou: 0.0161 - Mean Accuracy: 0.0620 - Overall Accuracy: 0.2198 - Per Category Iou: [0.26811535900844996, 0.13361073012813385, 0.08961412470909454, 0.1128982647416514, 0.0583985070987828, 0.07100614244377887, 0.19794722756159697, 0.012499372941156798, 0.13135492375006866, 0.07853702343048412, 0.0, 0.0, 0.000257651881995438, nan, 0.00015613885949237522, 0.00816753033501802, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0] - Per Category Accuracy: [0.5251087767953342, 0.3576830362495917, 0.09867066511502999, 0.24665550110621756, 0.14805877178383775, 0.08033983486897212, 0.8465623033354311, 0.014047451256753583, 0.38394991259676786, 0.20428242788886922, 0.0, 0.0, 0.0002825539553398542, nan, 0.00015841165909810963, 0.0103471565581521, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.8994 | 1.0 | 20 | 4.9538 | 0.0033 | 0.0158 | 0.0601 | [0.09446474142430365, 0.09207604302632935, 0.0, 0.0027654472166947293, 0.00022686472943915094, 0.024674639716049208, 0.05004409798287291, 0.0, 0.0659773981315997, 0.000611224966742171, 0.0033934631184140023, 0.0, 0.00017743332055813424, 0.0, 0.0, 0.0035134839707053516, nan, 0.0016311966356569389, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.014299143136049748, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0] | [0.11622029935531653, 0.15137832797879686, 0.0, 0.0028017285941732317, 0.00027341242481158316, 0.024855809501017113, 0.069186595342983, 0.0, 0.3015857443544647, 0.0018049902672093434, 0.0074461136512083605, 0.0, 0.0002077602612793046, nan, 0.0, 0.006078616776982304, nan, 0.003389291955727374, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.057269041413263826, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.8245 | 2.0 | 40 | 4.7740 | 0.0083 | 0.0441 | 0.1807 | [0.2585690813978081, 0.14108215993332457, 0.03419684396156098, 0.023996082272282077, 0.027117104130902927, 0.062083130688529144, 0.14413986579778207, 0.003936397464167586, 0.08274324585033332, 0.024486949334228778, 5.267038870746866e-05, 0.0, 0.0028745859227420813, 0.0, 8.715812226541392e-05, 0.004454446326241793, 0.0, 0.011132801332995728, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0] | [0.48883868337236625, 0.37235736052362817, 0.03638140423119386, 0.02735562310030395, 0.07379757970566558, 0.06843125523513223, 0.6446664568911264, 0.00429410382898755, 0.20655702614962007, 0.06710316758095912, 8.708904855214457e-05, 0.0, 0.003490372389492317, nan, 8.800647727672756e-05, 0.0051870863163582335, nan, 0.07218132711963142, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.5392 | 3.0 | 60 | 4.5845 | 0.0136 | 0.0563 | 0.2071 | [0.2557528891910265, 0.13708037604006187, 0.08692430869243087, 0.09462758833831256, 0.03757492466907787, 0.07904498578899012, 0.1908769498813005, 0.0028976120267943887, 0.1151440589593073, 0.045923559494518804, 0.0, 0.0, 0.00032954989615346296, nan, 0.0, 0.010276481299315599, nan, 0.0010769035854554668, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.47425697914676446, 0.38188388718673894, 0.09495941873302897, 0.18992825093563262, 0.09620551104348446, 0.08812253200909417, 0.7368628067967276, 0.0031947380784590087, 0.43822910349256183, 0.12617235887453548, 0.0, 0.0, 0.0003573476494004039, nan, 0.0, 0.013264892611103607, nan, 0.0018005613514801672, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.5062 | 4.0 | 80 | 4.4950 | 0.0154 | 0.0587 | 0.2151 | [0.26153152576800204, 0.13111120499063553, 0.0587806904353667, 0.1163810590985491, 0.05045636959256171, 0.07593274224946232, 0.20581123895280973, 0.011514468896205164, 0.12641034098405404, 0.060098757566103854, 0.0, 0.0, 0.0001400405380504883, nan, 3.468970062788358e-05, 0.009957528094454266, nan, 0.00014301548142586434, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0] | [0.5153390546612014, 0.38497256575329436, 0.062016978485960675, 0.2491160597977793, 0.1301799767005064, 0.08550915400263252, 0.7767463813719321, 0.012487667371388301, 0.39649851949627196, 0.1335338878074677, 0.0, 0.0, 0.00015789779857227148, nan, 3.5202590910691024e-05, 0.013237876536539241, nan, 0.00021183074723296087, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.2543 | 5.0 | 100 | 4.4715 | 0.0161 | 0.0620 | 0.2198 | [0.26811535900844996, 0.13361073012813385, 0.08961412470909454, 0.1128982647416514, 0.0583985070987828, 0.07100614244377887, 0.19794722756159697, 0.012499372941156798, 0.13135492375006866, 0.07853702343048412, 0.0, 0.0, 0.000257651881995438, nan, 0.00015613885949237522, 0.00816753033501802, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0] | [0.5251087767953342, 0.3576830362495917, 0.09867066511502999, 0.24665550110621756, 0.14805877178383775, 0.08033983486897212, 0.8465623033354311, 0.014047451256753583, 0.38394991259676786, 0.20428242788886922, 0.0, 0.0, 0.0002825539553398542, nan, 0.00015841165909810963, 0.0103471565581521, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Contrastive-Tension/BERT-Distil-CT-STSb
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-04-30T16:22:30Z
Not official! This are diffusers weights for https://civitai.com/models/7240/meinamix Based on Stable Diffusion v1.5
Contrastive-Tension/BERT-Distil-CT
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-04-30T16:25:31Z
Not official! This are diffusers weights for https://civitai.com/models/50294/dreamscapes-and-dragonfire Based on Stable Diffusion v1.5
Contrastive-Tension/BERT-Large-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-04-30T16:27:27Z
--- license: openrail datasets: - humarin/chatgpt-paraphrases language: - en library_name: transformers inference: parameters: num_beams: 5 num_beam_groups: 5 num_return_sequences: 5 repetition_penalty: 10.01 diversity_penalty: 3.01 no_repeat_ngram_size: 2 temperature: 0.7 max_length: 128 widget: - text: What are the best places to see in New York? example_title: New York tourist attractions - text: When should I go to the doctor? example_title: Doctor's time - text: >- Rammstein's album Mutter was recorded in the south of France in May and June 2000, and mixed in Stockholm in October of that year. example_title: Rammstein's album Mutter pipeline_tag: text2text-generation1 duplicated_from: humarin/chatgpt_paraphraser_on_T5_base --- This model was trained on our [ChatGPT paraphrase dataset](https://huggingface.co/datasets/humarin/chatgpt-paraphrases). This dataset is based on the [Quora paraphrase question](https://www.kaggle.com/competitions/quora-question-pairs), texts from the [SQUAD 2.0](https://huggingface.co/datasets/squad_v2) and the [CNN news dataset](https://huggingface.co/datasets/cnn_dailymail). This model is based on the T5-base model. We used "transfer learning" to get our model to generate paraphrases as well as ChatGPT. Now we can say that this is one of the best paraphrases of the Hugging Face. [Kaggle](https://www.kaggle.com/datasets/vladimirvorobevv/chatgpt-paraphrases) link ## Deploying example ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM device = "cuda" tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base").to(device) def paraphrase( question, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=128 ): input_ids = tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids outputs = model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = tokenizer.batch_decode(outputs, skip_special_tokens=True) return res ``` ## Usage examples **Input:** ```python text = 'What are the best places to see in New York?' paraphrase(text) ``` **Output:** ```python ['What are some must-see places in New York?', 'Can you suggest some must-see spots in New York?', 'Where should one go to experience the best NYC has to offer?', 'Which places should I visit in New York?', 'What are the top destinations to explore in New York?'] ``` **Input:** ```python text = "Rammstein's album Mutter was recorded in the south of France in May and June 2000, and mixed in Stockholm in October of that year." paraphrase(text) ``` **Output:** ```python ['In May and June 2000, Rammstein travelled to the south of France to record his album Mutter, which was mixed in Stockholm in October of that year.', 'The album Mutter by Rammstein was recorded in the south of France during May and June 2000, with mixing taking place in Stockholm in October of that year.', 'The album Mutter by Rammstein was recorded in the south of France during May and June 2000, with mixing taking place in Stockholm in October of that year. It', 'Mutter, the album released by Rammstein, was recorded in southern France during May and June 2000, with mixing taking place between October and September.', 'In May and June 2000, Rammstein recorded his album Mutter in the south of France, with the mix being made at Stockholm during October.'] ``` ## Train parameters ```python epochs = 5 batch_size = 64 max_length = 128 lr = 5e-5 batches_qty = 196465 betas = (0.9, 0.999) eps = 1e-08 ``` ### BibTeX entry and citation info ```bibtex @inproceedings{chatgpt_paraphraser, author={Vladimir Vorobev, Maxim Kuznetsov}, title={A paraphrasing model based on ChatGPT paraphrases}, year={2023} } ```
Crumped/imdb-simpleRNN
[ "keras" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.61 +/- 0.22 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DSI/ar_emotion_6
[ "pytorch", "bert", "transformers" ]
null
{ "architectures": [ "BertForMultiLabelSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - autotrain - text-regression language: - es widget: - text: "I love AutoTrain 🤗" datasets: - alexisbaladon/autotrain-data-huhu-prejudice co2_eq_emissions: emissions: 0.0016647063749410328 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 54234127237 - CO2 Emissions (in grams): 0.0017 ## Validation Metrics - Loss: 0.514 - MSE: 0.514 - MAE: 0.552 - R2: 0.268 - RMSE: 0.717 - Explained Variance: 0.270 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexisbaladon/autotrain-huhu-prejudice-54234127237 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alexisbaladon/autotrain-huhu-prejudice-54234127237", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alexisbaladon/autotrain-huhu-prejudice-54234127237", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
DTAI-KULeuven/robbertje-1-gb-shuffled
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Access to model sirius93/finetuning-sentiment-model-3000-samples is restricted and you are not in the authorized list. Visit https://huggingface.co/sirius93/finetuning-sentiment-model-3000-samples to ask for access.
Davlan/bert-base-multilingual-cased-finetuned-yoruba
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Davlan/xlm-roberta-base-finetuned-igbo
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ravkumar/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dawit/DialogGPT-small-ironman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-04-30T21:33:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: expert-uspto results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # expert-uspto This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2220 - Accuracy: 0.5362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2735 | 0.01 | 200 | 2.2464 | 0.5325 | | 2.2557 | 0.01 | 400 | 2.2417 | 0.5331 | | 2.2342 | 0.02 | 600 | 2.2342 | 0.5344 | | 2.2241 | 0.03 | 800 | 2.2267 | 0.5355 | | 2.229 | 0.03 | 1000 | 2.2220 | 0.5362 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Declan/Breitbart_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en metrics: - bleu pipeline_tag: text2text-generation datasets: - fka/awesome-chatgpt-prompts library_name: adapter-transformers ---
Declan/ChicagoTribune_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1443730494055665669/xM8jhl6q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">JAX</div> <div style="text-align: center; font-size: 14px;">@jax</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from JAX. | Data | JAX | | --- | --- | | Tweets downloaded | 2691 | | Retweets | 618 | | Short tweets | 401 | | Tweets kept | 1672 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cjhi2ndz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jax's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tcl10aar) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tcl10aar/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jax') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Declan/ChicagoTribune_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Declan/HuffPost_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.70 +/- 23.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/NPR_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-flappyBird results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 43.10 +/- 31.67 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Declan/NPR_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: expert-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # expert-arxiv This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8797 - Accuracy: 0.5852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8752 | 0.01 | 200 | 1.9087 | 0.5805 | | 1.8809 | 0.01 | 400 | 1.9018 | 0.5815 | | 1.9102 | 0.02 | 600 | 1.8933 | 0.5829 | | 1.8764 | 0.02 | 800 | 1.8851 | 0.5843 | | 1.8694 | 0.03 | 1000 | 1.8797 | 0.5852 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Declan/NPR_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.28 +/- 17.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/NewYorkPost_model_v1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
StableDiffusion 2.1 converted to fp16 ONNX model to run GPU accelerated NodeJS code https://github.com/dakenf/stable-diffusion-nodejs ```javascript import * as tf from "@tensorflow/tfjs-node" import { StableDiffusionPipeline } from 'stable-diffusion-nodejs' const pipe = await StableDiffusionPipeline.fromPretrained( 'directml', // can be 'cuda' on linux or 'cpu' on mac os 'aislamov/stable-diffusion-2-1-onnx', // relative path or huggingface repo with onnx model ) const image = await pipe.run("A photo of a cat", undefined, 1, 9, 30) const png = await tf.node.encodePng(image[0]) fs.writeFileSync("output.png", png); ```
Declan/NewYorkTimes_model_v4
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr --- This is a 4 bit quantized LoRA merge of [Vigogne-instruct-13b](https://huggingface.co/bofenghuang/vigogne-instruct-13b). <br /> *Il s'agit d'une fusion du LoRA de [Vigogne-instruct-13b](https://huggingface.co/bofenghuang/vigogne-instruct-13b) quantifié à 4 bits.* Vigogne-instruct-13b is a LLaMA-13B model fine-tuned to follow the 🇫🇷 French instructions. <br /> *Vigogne-instruct-13b est un modèle LLaMA-13B affiné pour suivre les instructions 🇫🇷 françaises.* For more information, please visit the Github repo: <br /> *Pour plus d'informations, veuillez visiter ce repo Github :* <br /> https://github.com/bofenghuang/vigogne **Requires at least 10GB of vram.** <br /> *Nécessite au moins 10 Go de vram.* ----------------------------------------------------------------------------------------------- This as been merged using [export_hf_checkpoint.py](https://github.com/tloen/alpaca-lora) <br /> *Fusionné en utilisant [export_hf_checkpoint.py](https://github.com/tloen/alpaca-lora)* Quantized with [GPTQ-for-LLaMA](https://github.com/oobabooga/GPTQ-for-LLaMa)'s cuda branch: <br /> *Quantifiée avec la branche cuda de [GPTQ-for-LLaMA](https://github.com/oobabooga/GPTQ-for-LLaMa):* <br /> ``` CUDA_VISIBLE_DEVICES=0 python llama.py "./hf_ckpt/" c4 --wbits 4 --groupsize 128 --save_safetensors vigogne-13b-4bit-128g.safetensor ``` **USAGE:** <br /> **UTILISATION:** <br /> In the folder characters/instruction-following, create a file named Vigogne.yaml that contains: <br /> *Dans le dossier characters/instruction-following, créer un fichier Vigogne.yaml qui contient:* ``` name: "### Réponse:" your_name: "### Instruction:" context: "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n" turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" ``` Start text-generation-webui with --chat and switch to instruct mode. Select Vigogne as Instruction template. <br /> *Démarrez text-generation-webui avec --chat et passez en mode instruct. Sélectionnez Vigogne dans Instruction template.* <br /> Here's my settings.json (a max_new_tokens value set to 200 might be more reasonable): <br /> *Voici mon settings.json (une valeur max_new_tokens de 200 est peut être plus raisonnable):* ``` { "max_new_tokens": 750, "max_new_tokens_min": 1, "max_new_tokens_max": 2000, "seed": -1, "character": "None", "name1": "### Instruction:", "name2": "### Réponse:", "context": "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n", "greeting": "", "turn_template": "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n", "custom_stopping_strings": "", "stop_at_newline": false, "add_bos_token": true, "ban_eos_token": false, "skip_special_tokens": true, "truncation_length": 2048, "truncation_length_min": 0, "truncation_length_max": 8192, "mode": "instruct", "instruction_template": "Vigogne", "chat_prompt_size": 2048, "chat_prompt_size_min": 0, "chat_prompt_size_max": 2048, "chat_generation_attempts": 1, "chat_generation_attempts_min": 1, "chat_generation_attempts_max": 5, "default_extensions": [], "chat_default_extensions": [ "" ], "presets": { "default": "LLaMA-Precise", ".*(alpaca|llama|llava)": "LLaMA-Precise", ".*pygmalion": "NovelAI-Storywriter", ".*RWKV": "Naive" }, "prompts": { "default": "Vigogne", ".*oasst": "Open Assistant", ".*alpaca": "Alpaca" }, "lora_prompts": { "default": "Vigogne", ".*(alpaca-lora-7b|alpaca-lora-13b|alpaca-lora-30b)": "Alpaca" } } ``` Here's my starting script: <br /> *Voici mon script de démarrage:* ``` #!/bin/bash source ~/miniconda3/etc/profile.d/conda.sh conda activate textgen python server.py --model cmh_vigogne-13b-4bit-128g --model_type llama --wbits 4 --groupsize 128 --no-stream --sdp-attention --xformers --quant_attn --warmup_autotune --fused_mlp --load-in-8bit --chat --listen --auto-launch ```
Declan/NewYorkTimes_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - jax-diffusers-event inference: true datasets: - ChristophSchuhmann/improved_aesthetics_6plus --- # Stable Diffusion Nano 2.1 Stable Diffusion Nano was built during the [JAX/Diffusers community sprint 🧨](https://github.com/huggingface/community-events/tree/main/jax-controlnet-sprint#jaxdiffusers-community-sprint-). Based on stable diffusion and fine-tuned on 128x128 images, Stable Diffusion Nano allows for fast prototyping of diffusion models, enabling quick experimentation with easily available hardware. It performs reasonably well on several tasks, but it struggles with small details such as faces. prompt: A watercolor painting of an otter ![images_0)](./images_0.png) prompt: Marvel MCU deadpool, red mask, red shirt, red gloves, black shoulders, black elbow pads, black legs, gold buckle, black belt, black mask, white eyes, black boots, fuji low light color 35mm film, downtown Osaka alley at night out of focus in background, neon lights ![images_1)](./images_1.png) ## Training details All parameters were initialized from the [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) model. The unet was fine tuned as follows: U-net fine-tuning: - 200,000 steps, learning rate = 1e-5, batch size = 992 (248 per TPU). - 100,000 steps, SNR gamma = 5.0, learning rate = 1e-5, batch size = 992 (248 per TPU). - Trained on [LAION Improved Aesthetics 6plus](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus). ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: - You can't use the model to deliberately produce nor share illegal or harmful outputs or content. - The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license. - You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here.
Declan/NewYorkTimes_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: other language: - en thumbnail: tags: - text generation - conversational inference: false --- # Pygmalion 7B (bfloat16 version) Converted from the XORed weights from [PygmalionAI](https://huggingface.co/PygmalionAI/pygmalion-7b) (i.e. ready for use).
Declan/Politico_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: afl-3.0 pipeline_tag: text-classification tags: - code ---
Declan/Politico_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - mikephillips/slant-axial-lora-2-1 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Declan/Reuters_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 30270 with parameters: ``` {'batch_size': 4} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3027, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Declan/Reuters_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 30270 with parameters: ``` {'batch_size': 4} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3027, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
DeepChem/ChemBERTa-5M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
<div align="center"> <h1>Retrieval-based-Voice-Conversion-WebUI</h1> 一个基于VITS的简单易用的语音转换(变声器)框架<br><br> [![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI) <img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br> [![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb) [![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt) [![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/) [![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk) </div> ------ [**更新日志**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md) [**English**](./docs/README.en.md) | [**中文简体**](./README.md) | [**日本語**](./docs/README.ja.md) | [**한국어**](./docs/README.ko.md) > 点此查看我们的[演示视频](https://www.bilibili.com/video/BV1pm4y1z7Gm/) ! > 使用了RVC的实时语音转换: [w-okada/voice-changer](https://github.com/w-okada/voice-changer) > 底模使用接近50小时的开源高质量VCTK训练集训练,无版权方面的顾虑,请大家放心使用 > 后续会陆续加入高质量有授权歌声训练集训练底模 ## 简介 本仓库具有以下特点 + 使用top1检索替换输入源特征为训练集特征来杜绝音色泄漏 + 即便在相对较差的显卡上也能快速训练 + 使用少量数据进行训练也能得到较好结果(推荐至少收集10分钟低底噪语音数据) + 可以通过模型融合来改变音色(借助ckpt处理选项卡中的ckpt-merge) + 简单易用的网页界面 + 可调用UVR5模型来快速分离人声和伴奏 ## 环境配置 推荐使用poetry配置环境。 以下指令需在Python版本大于3.8的环境中执行: ```bash # 安装Pytorch及其核心依赖,若已安装则跳过 # 参考自: https://pytorch.org/get-started/locally/ pip install torch torchvision torchaudio #如果是win系统+Nvidia Ampere架构(RTX30xx),根据 #21 的经验,需要指定pytorch对应的cuda版本 #pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 # 安装 Poetry 依赖管理工具, 若已安装则跳过 # 参考自: https://python-poetry.org/docs/#installation curl -sSL https://install.python-poetry.org | python3 - # 通过poetry安装依赖 poetry install ``` 你也可以通过pip来安装依赖: **注意**: `MacOS`下`faiss 1.7.2`版本会导致抛出段错误,在手动安装时请使用命令`pip install faiss-cpu==1.7.0`指定使用`1.7.0`版本 ```bash pip install -r requirements.txt ``` ## 其他预模型准备 RVC需要其他一些预模型来推理和训练。 你可以从我们的[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)下载到这些模型。 以下是一份清单,包括了所有RVC所需的预模型和其他文件的名称: ```bash hubert_base.pt ./pretrained ./uvr5_weights #如果你正在使用Windows,则你可能需要这个文件,若ffmpeg和ffprobe已安装则跳过; ubuntu/debian 用户可以通过apt install ffmpeg来安装这2个库 ./ffmpeg ./ffprobe ``` 之后使用以下指令来启动WebUI: ```bash python infer-web.py ``` 如果你正在使用Windows,你可以直接下载并解压`RVC-beta.7z`,运行`go-web.bat`以启动WebUI。 仓库内还有一份`小白简易教程.doc`以供参考。 ## 参考项目 + [ContentVec](https://github.com/auspicious3000/contentvec/) + [VITS](https://github.com/jaywalnut310/vits) + [HIFIGAN](https://github.com/jik876/hifi-gan) + [Gradio](https://github.com/gradio-app/gradio) + [FFmpeg](https://github.com/FFmpeg/FFmpeg) + [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui) + [audio-slicer](https://github.com/openvpi/audio-slicer) ## 感谢所有贡献者作出的努力 <a href="https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank"> <img src="https://contrib.rocks/image?repo=liujing04/Retrieval-based-Voice-Conversion-WebUI" /> </a>
DeepESP/gpt2-spanish
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,463
2023-05-01T02:42:28Z
--- title: chinese-alpaca-plus-7b emoji: 📚 colorFrom: gray colorTo: red language: - zh tags: - chatglm - pytorch - zh - Text2Text-Generation license: "other" widget: - text: "为什么天空是蓝色的?" --- # Chinese Alpaca Plus 7B Model **发布中文LLaMA, Alpaca Plus版(7B)模型** 推出中文LLaMA, Alpaca Plus版(7B),相比基础版本的改进点如下: - 进一步扩充了训练数据,其中LLaMA扩充至120G文本(通用领域),Alpaca扩充至4M指令数据(重点增加了STEM相关数据) - Alpaca训练时采用了更大的rank,相比原版具有更低的验证集损失 - 评测结果显示,Alpaca-Plus-7B相比基础版Alpaca-7B效果更优,部分任务接近或超过13B版本 - 这一轮比拼:7B获得65.3分,13B获得70.9分,Plus-7B效果75.3分,具体评测结果请参考[效果评测](https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/examples/README.md) 本模型是`原生LLaMA-7B`合并`中文LLaMA LoRA`和`中文Alpaca LoRA`后的模型权重`chinese-alpaca-plus-7b-hf`,并转化为HuggingFace版本权重(.bin文件),可以直接使用或者继续训练。 13b-hf权重链接:https://huggingface.co/shibing624/chinese-alpaca-plus-13b-hf test case: |input_text|predict| |:-- |:--- | |为什么天空是蓝色的?|天空是蓝色的,是因为大气层中的气体分子会散射太阳光中的蓝色光,使得我们看到的天空是蓝色的。| ## release model weight - chinese-llama-plus-7b 模型权重链接:https://huggingface.co/minlik/chinese-llama-plus-7b-merged - chinese-alpaca-plus-7b 模型权重链接:https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf - chinese-llama-plus-13b 模型权重链接:https://huggingface.co/shibing624/chinese-llama-plus-13b-hf - chinese-aplaca-plus-13b 模型权重链接:https://huggingface.co/shibing624/chinese-alpaca-plus-13b-hf ## Usage 本项目开源在textgen项目:[textgen](https://github.com/shibing624/textgen),可支持llama模型,通过如下命令调用: Install package: ```shell pip install -U textgen ``` ```python from textgen import LlamaModel model = LlamaModel("llama", "shibing624/chinese-alpaca-plus-7b-hf") r = model.predict(["用一句话描述地球为什么是独一无二的。"]) print(r) # ['地球是独一无二的,因为它拥有独特的大气层、水循环、生物多样性以及其他自然资源,这些都使它成为一个独特的生命支持系统。'] ``` ## Usage (HuggingFace Transformers) Without [textgen](https://github.com/shibing624/textgen), you can use the model like this: First, you pass your input through the transformer model, then you get the generated sentence. Install package: ``` pip install sentencepiece pip install transformers>=4.28.0 ``` ```python import torch import transformers from transformers import LlamaTokenizer, LlamaForCausalLM def generate_prompt(text): return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {text} ### Response:""" tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf') model = LlamaForCausalLM.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf').half().cuda() model.eval() text = '为什么天空是蓝色的?' prompt = generate_prompt(text) input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda') with torch.no_grad(): output_ids = model.generate( input_ids=input_ids, max_new_tokens=128, temperature=1, top_k=40, top_p=0.9, repetition_penalty=1.15 ).cuda() output = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(output.replace(text, '').strip()) ``` output: ```shell 为什么天空是蓝色的? 天空是蓝色的,是因为大气层中的气体分子会散射太阳光中的蓝色光,使得我们看到的天空是蓝色的。 ``` ## 模型来源 release合并后的模型权重,一步到位直接使用,省电、减少碳排放。 基于 [多LoRA权重合并(适用于Chinese-Alpaca-Plus )](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E6%89%8B%E5%8A%A8%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6%E4%B8%8E%E8%BD%AC%E6%8D%A2#%E5%A4%9Alora%E6%9D%83%E9%87%8D%E5%90%88%E5%B9%B6%E9%80%82%E7%94%A8%E4%BA%8Echinese-alpaca-plus-)方法手动合并而成,具体是使用 [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) 底座模型 合并 Chinese-LLaMA-Plus-LoRA和Chinese-Alpaca-Plus-LoRA 两个LoRA权重 得到,并转化为HuggingFace版本权重(.bin文件)。 HuggingFace版本权重(.bin文件)可用于: - 使用Transformers进行训练和推理 - 使用text-generation-webui搭建界面 PyTorch版本权重(.pth文件)可用于: - 使用llama.cpp工具进行量化和部署 PyTorch版本权重(.pth文件)链接,8-bit量化版的Alpaca-Plus-7B:[Billsfriend/chinese-Alpaca-7b-plus-ggml-q8_0](https://huggingface.co/Billsfriend/chinese-Alpaca-7b-plus-ggml-q8_0/tree/main) 模型文件组成: ``` chinese-alpaca-plus-7b-hf config.json generation_config.json pytorch_model-00001-of-00002.bin pytorch_model-00002-of-00002.bin pytorch_model.bin.index.json special_tokens_map.json tokenizer.json tokenizer.model tokenizer_config.json ``` 硬件要求:14G显存 ### 微调数据集 我整理部分公开微调数据集: 1. 50万条中文ChatGPT指令Belle数据集:[BelleGroup/train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN) 2. 100万条中文ChatGPT指令Belle数据集:[BelleGroup/train_1M_CN](https://huggingface.co/datasets/BelleGroup/train_1M_CN) 3. 5万条英文ChatGPT指令Alpaca数据集:[50k English Stanford Alpaca dataset](https://github.com/tatsu-lab/stanford_alpaca#data-release) 4. 5万条中文GPT4指令Alpaca数据集:[shibing624/alpaca-zh](https://huggingface.co/datasets/shibing624/alpaca-zh) 5. 69万条中文指令Guanaco数据集(Belle50万条+Guanaco19万条):[Chinese-Vicuna/guanaco_belle_merge_v1.0](https://huggingface.co/datasets/Chinese-Vicuna/guanaco_belle_merge_v1.0) 如果需要训练LLaMA模型,请参考[https://github.com/shibing624/textgen](https://github.com/shibing624/textgen) ## Citation ```latex @software{textgen, author = {Xu Ming}, title = {textgen: Implementation of language model finetune}, year = {2023}, url = {https://github.com/shibing624/textgen}, } ``` ## Reference - https://github.com/ymcui/Chinese-LLaMA-Alpaca
DeepPavlov/bert-base-multilingual-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "multilingual", "arxiv:1704.05426", "arxiv:1809.05053", "arxiv:1908.10084", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
140
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - jax-diffusers-event inference: true --- # controlnet- tsungtao/controlnet-mlsd-202305011046 These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images in the following. prompt: a living room with a dining table and chairs ![images_0)](./images_0.png) prompt: a living room with couches and a tv ![images_1)](./images_1.png) training datasets: https://huggingface.co/datasets/tsungtao/diffusers-testing SD model base on: runwayml/stable-diffusion-v1-5 ---------------------------------------------------------------------------------- for the training data, you can find it has 2 colums, raw training data, conditioning training data and its prompts. raw training data is crawling from the internet for the living room with special training purpose. and they were resized with the local tool, it is the standerlization process before training. conditioning data was creating base on raw training data, we deployed the local Stable diffustion and Controllnet plugin on our local Dev Env for this purpose, to setup the target conditioning data. after this, the conditioning data also be resized with the standardliaztion procedure. for the prompts, we add this by the manual way, since the small testing data sets. anyway it also can be done by some favour tool on the internet. above all, we have a upload scripte to combine all the raw data/conditioning data/prompts into a dataset and then auto upload they to Huggingface. from the conditioning data, you can see which is the framework of the raw data. so training base on this, it will get a mode to extract the line frame work of the input. and at the same time, raw data are all with some special style. so base on this model, you will get your raw input living room data line framework and then change the input living room to a special style living room. from the functional point of view, it seems like "MLSD" model, but it works better on special style living room data.
DeepPavlov/rubert-base-cased
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
148,127
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Felix555/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DeepPavlov/xlm-roberta-large-en-ru-mnli
[ "pytorch", "xlm-roberta", "text-classification", "en", "ru", "dataset:glue", "dataset:mnli", "transformers", "xlm-roberta-large", "xlm-roberta-large-en-ru", "xlm-roberta-large-en-ru-mnli", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Felix555/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DeepPavlov/xlm-roberta-large-en-ru
[ "pytorch", "xlm-roberta", "feature-extraction", "en", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "XLMRobertaModel" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
190
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Yet another Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('jjholt/sd-class-butterflies-32') image = pipeline().images[0] image ```
Deniskin/essays_small_2000i
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: toki-pona-gpt2-alpaca-best results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toki-pona-gpt2-alpaca-best This model is a fine-tuned version of [vicgalle/gpt2-alpaca-gpt4](https://huggingface.co/vicgalle/gpt2-alpaca-gpt4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.0386 | 1.0 | 22442 | 0.9873 | | 0.9368 | 2.0 | 44884 | 0.8761 | | 0.8786 | 3.0 | 67326 | 0.8070 | | 0.8313 | 4.0 | 89768 | 0.7617 | | 0.7885 | 5.0 | 112210 | 0.7323 | | 0.7734 | 6.0 | 134652 | 0.7150 | | 0.7586 | 7.0 | 157094 | 0.7089 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
DeskDown/MarianMixFT_en-fil
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Xmm/autotrain-data-entities co2_eq_emissions: emissions: 0.019401340864734905 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 54336127310 - CO2 Emissions (in grams): 0.0194 ## Validation Metrics - Loss: 0.854 - Rouge1: 48.567 - Rouge2: 34.256 - RougeL: 39.748 - RougeLsum: 41.884 - Gen Len: 61.949 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Xmm/autotrain-entities-54336127310 ```
DeskDown/MarianMixFT_en-ja
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-05-01T04:02:42Z
--- tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xlarge-v2-SST2-incremental_pre_training results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xlarge-v2-SST2-incremental_pre_training This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1059 - Train Accuracy: 0.9630 - Validation Loss: 0.1832 - Validation Accuracy: 0.9381 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2528 | 0.8917 | 0.2056 | 0.9323 | 0 | | 0.1384 | 0.9503 | 0.1707 | 0.9461 | 1 | | 0.1059 | 0.9630 | 0.1832 | 0.9381 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1