modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Biasface/DDDC
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ThomasSimonini/testpyramidsrndNewintegration22 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BigDaddyNe1L/Hhaa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-active_passive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-active_passive This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2730 - Rouge1: 84.1071 - Rouge2: 77.0096 - Rougel: 82.7054 - Rougelsum: 82.7697 - Gen Len: 14.4231 - Exact Match: 41.8407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Exact Match | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-----------:| | 0.7544 | 1.0 | 987 | 0.3868 | 81.3788 | 72.3958 | 79.7483 | 79.816 | 14.3716 | 34.8875 | | 0.4635 | 2.0 | 1974 | 0.3415 | 82.2493 | 74.1473 | 80.7565 | 80.8063 | 14.4393 | 38.0904 | | 0.3862 | 3.0 | 2961 | 0.3191 | 82.7131 | 74.9407 | 81.2585 | 81.3133 | 14.4892 | 38.7594 | | 0.3327 | 4.0 | 3948 | 0.3030 | 83.3471 | 75.8149 | 81.9133 | 81.9555 | 14.4454 | 40.0973 | | 0.3012 | 5.0 | 4935 | 0.2893 | 83.2265 | 75.7279 | 81.7938 | 81.8456 | 14.4845 | 39.8135 | | 0.273 | 6.0 | 5922 | 0.2815 | 83.6829 | 76.268 | 82.2193 | 82.2799 | 14.4780 | 40.9487 | | 0.2505 | 7.0 | 6909 | 0.2779 | 83.9148 | 76.6601 | 82.4414 | 82.4998 | 14.4991 | 41.0298 | | 0.2255 | 8.0 | 7896 | 0.2758 | 84.0763 | 77.1348 | 82.7388 | 82.7824 | 14.5394 | 41.9623 | | 0.2127 | 9.0 | 8883 | 0.2730 | 84.1071 | 77.0096 | 82.7054 | 82.7697 | 14.4231 | 41.8407 | | 0.2037 | 10.0 | 9870 | 0.2752 | 84.2529 | 77.4085 | 82.8709 | 82.9228 | 14.5248 | 42.4894 | | 0.1907 | 11.0 | 10857 | 0.2755 | 84.2591 | 77.3004 | 82.88 | 82.9328 | 14.5465 | 42.2461 | | 0.1753 | 12.0 | 11844 | 0.2781 | 84.2911 | 77.3586 | 82.9274 | 82.9764 | 14.5141 | 42.3475 | | 0.1722 | 13.0 | 12831 | 0.2846 | 84.4073 | 77.5832 | 82.9796 | 83.0373 | 14.5307 | 42.4691 | | 0.1639 | 14.0 | 13818 | 0.2816 | 84.3956 | 77.6276 | 83.0006 | 83.0594 | 14.5119 | 42.9353 | | 0.1515 | 15.0 | 14805 | 0.2917 | 84.1964 | 77.3047 | 82.8314 | 82.8792 | 14.5388 | 42.4285 | | 0.1433 | 16.0 | 15792 | 0.2882 | 84.3986 | 77.5965 | 83.0353 | 83.0771 | 14.4989 | 42.6921 | | 0.1424 | 17.0 | 16779 | 0.2941 | 84.3431 | 77.6611 | 82.9705 | 83.0281 | 14.5504 | 42.6921 | | 0.1324 | 18.0 | 17766 | 0.2983 | 84.356 | 77.6532 | 82.9959 | 83.0456 | 14.5190 | 42.7123 | | 0.1262 | 19.0 | 18753 | 0.3009 | 84.3818 | 77.6116 | 82.9655 | 83.0264 | 14.5054 | 42.7326 | | 0.1211 | 20.0 | 19740 | 0.3072 | 84.4742 | 77.6997 | 83.062 | 83.1208 | 14.4908 | 42.8542 | | 0.1159 | 21.0 | 20727 | 0.3069 | 84.5433 | 77.8405 | 83.128 | 83.1851 | 14.4983 | 43.2597 | | 0.1126 | 22.0 | 21714 | 0.3152 | 84.5672 | 77.7583 | 83.1455 | 83.2052 | 14.4652 | 42.9556 | | 0.1082 | 23.0 | 22701 | 0.3190 | 84.5015 | 77.7852 | 83.1247 | 83.1786 | 14.5029 | 42.9556 | | 0.1081 | 24.0 | 23688 | 0.3257 | 84.4416 | 77.6187 | 83.0509 | 83.1187 | 14.5106 | 42.6313 | | 0.1034 | 25.0 | 24675 | 0.3274 | 84.4471 | 77.7561 | 83.0654 | 83.1337 | 14.5368 | 42.9759 | | 0.0981 | 26.0 | 25662 | 0.3279 | 84.4473 | 77.7301 | 83.0247 | 83.0932 | 14.5098 | 42.8745 | | 0.0936 | 27.0 | 26649 | 0.3290 | 84.4726 | 77.7901 | 83.0512 | 83.1146 | 14.4962 | 43.2597 | | 0.0927 | 28.0 | 27636 | 0.3326 | 84.5022 | 77.9226 | 83.1237 | 83.1748 | 14.5171 | 43.0975 | | 0.089 | 29.0 | 28623 | 0.3343 | 84.497 | 77.8127 | 83.083 | 83.1456 | 14.5163 | 43.0164 | | 0.0839 | 30.0 | 29610 | 0.3370 | 84.4418 | 77.7761 | 83.0053 | 83.0856 | 14.5210 | 43.1989 | | 0.0851 | 31.0 | 30597 | 0.3473 | 84.4164 | 77.7161 | 82.9949 | 83.069 | 14.4944 | 43.0367 | | 0.0801 | 32.0 | 31584 | 0.3497 | 84.5605 | 77.9772 | 83.1695 | 83.2247 | 14.4887 | 43.5232 | | 0.0789 | 33.0 | 32571 | 0.3473 | 84.5114 | 77.9301 | 83.1478 | 83.1997 | 14.5188 | 43.1380 | | 0.08 | 34.0 | 33558 | 0.3578 | 84.4933 | 77.8821 | 83.1022 | 83.1698 | 14.5196 | 43.4219 | | 0.0761 | 35.0 | 34545 | 0.3532 | 84.5645 | 77.9352 | 83.1387 | 83.199 | 14.5220 | 43.4421 | | 0.0746 | 36.0 | 35532 | 0.3601 | 84.5428 | 77.9624 | 83.1461 | 83.2028 | 14.5240 | 43.3408 | | 0.077 | 37.0 | 36519 | 0.3619 | 84.4781 | 77.842 | 83.0691 | 83.1291 | 14.5283 | 43.2394 | | 0.0714 | 38.0 | 37506 | 0.3668 | 84.5327 | 77.9145 | 83.1546 | 83.2001 | 14.5173 | 43.0772 | | 0.0684 | 39.0 | 38493 | 0.3708 | 84.438 | 77.7993 | 83.0655 | 83.1139 | 14.5121 | 43.1178 | | 0.068 | 40.0 | 39480 | 0.3725 | 84.3924 | 77.6877 | 82.9994 | 83.0554 | 14.5179 | 42.8745 | | 0.0694 | 41.0 | 40467 | 0.3745 | 84.4536 | 77.7767 | 83.0483 | 83.1094 | 14.5108 | 43.1380 | | 0.0661 | 42.0 | 41454 | 0.3710 | 84.5135 | 77.8459 | 83.1086 | 83.1718 | 14.5169 | 43.1989 | | 0.0655 | 43.0 | 42441 | 0.3740 | 84.4896 | 77.7825 | 83.0729 | 83.1216 | 14.5194 | 43.1989 | | 0.0651 | 44.0 | 43428 | 0.3813 | 84.4069 | 77.7205 | 83.002 | 83.0512 | 14.5226 | 43.0772 | | 0.0639 | 45.0 | 44415 | 0.3840 | 84.3664 | 77.6435 | 82.9622 | 83.0214 | 14.5129 | 43.0975 | | 0.062 | 46.0 | 45402 | 0.3804 | 84.4458 | 77.7123 | 83.0376 | 83.091 | 14.5163 | 43.0570 | | 0.0622 | 47.0 | 46389 | 0.3881 | 84.4579 | 77.7359 | 83.0444 | 83.1101 | 14.5210 | 43.0164 | | 0.0621 | 48.0 | 47376 | 0.3893 | 84.4601 | 77.7726 | 83.0411 | 83.1043 | 14.5244 | 43.1786 | | 0.062 | 49.0 | 48363 | 0.3902 | 84.4532 | 77.7722 | 83.0338 | 83.0885 | 14.5285 | 43.0975 | | 0.0613 | 50.0 | 49350 | 0.3891 | 84.4088 | 77.6934 | 82.9932 | 83.055 | 14.5263 | 43.0570 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/BestMask2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1778.99 +/- 69.99 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/BlankSlots
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-0 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.4297 | 1.0 | 1 | 1.8890 | | 1.8654 | 2.0 | 2 | 0.4549 | | 2.2121 | 3.0 | 3 | 1.4460 | | 1.6658 | 4.0 | 4 | 0.1400 | | 1.0682 | 5.0 | 5 | 0.0036 | | 1.302 | 6.0 | 6 | 2.9349 | | 2.5156 | 7.0 | 7 | 2.3529 | | 1.7641 | 8.0 | 8 | 3.8800 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/FormalBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-04-27T09:18:54Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuned-Sentiment-classfication-ROBERTA-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-Sentiment-classfication-ROBERTA-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5618 - Rmse: 0.6118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7273 | 2.0 | 500 | 0.5618 | 0.6118 | | 0.4294 | 4.0 | 1000 | 0.5821 | 0.5906 | | 0.2278 | 6.0 | 1500 | 0.8019 | 0.6235 | | 0.1246 | 8.0 | 2000 | 0.9412 | 0.5961 | | 0.083 | 10.0 | 2500 | 1.1040 | 0.5978 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/FormalBerta2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: make-your-own-bee-movie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # make-your-own-bee-movie This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 17 | 3.3214 | | No log | 2.0 | 34 | 3.1133 | | No log | 3.0 | 51 | 3.0216 | | No log | 4.0 | 68 | 2.9806 | | No log | 5.0 | 85 | 2.9679 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/FormalRobertaaa
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: other inference: false --- [Model card link](https://huggingface.co/ausboss/llama-13b-supercot)
BigSalmon/GPTNeo350MInformalToFormalLincoln
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-04-27T09:33:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5928030303030303 - name: Recall type: recall value: 0.29008341056533826 - name: F1 type: f1 value: 0.3895457373988799 - name: Accuracy type: accuracy value: 0.9409601983668933 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2739 - Precision: 0.5928 - Recall: 0.2901 - F1: 0.3895 - Accuracy: 0.9410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2789 | 0.5375 | 0.2456 | 0.3372 | 0.9383 | | No log | 2.0 | 426 | 0.2739 | 0.5928 | 0.2901 | 0.3895 | 0.9410 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/InformalToFormalLincoln19
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2023-04-28T11:31:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-1 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.5617 | 1.0 | 1 | 2.6943 | | 2.4508 | 2.0 | 2 | 2.5640 | | 1.1208 | 3.0 | 3 | 2.4290 | | 0.4951 | 4.0 | 4 | 0.0140 | | 1.267 | 5.0 | 5 | 8.7707 | | 0.8079 | 6.0 | 6 | 3.5641 | | 0.531 | 7.0 | 7 | 0.2509 | | 1.1957 | 8.0 | 8 | 0.0601 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/InformalToFormalLincoln21
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m duplicated_from: m4gnett/zeipher-f222 --- DISCLAIMER! This Is A Preservation Repository! Cloned since __m4gnett/zeipher-f222__ This repository is for backuping Zeipher F222. I downloaded the model last month via torrent.
BigSalmon/InformalToFormalLincoln22
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-2 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.3324 | 1.0 | 1 | 0.2228 | | 2.308 | 2.0 | 2 | 0.4529 | | 2.1632 | 3.0 | 3 | 1.1972 | | 0.963 | 4.0 | 4 | 2.0906 | | 1.1071 | 5.0 | 5 | 0.6415 | | 0.9895 | 6.0 | 6 | 0.1302 | | 0.8731 | 7.0 | 7 | 0.9104 | | 0.4161 | 8.0 | 8 | 0.0003 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/Lincoln4
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.96 +/- 0.68 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/MrLincoln
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: slurp-slot_baseline-xlm_r-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # slurp-slot_baseline-xlm_r-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the SLURP dataset. It achieves the following results on the test set: - Loss: 0.3263 - Precision: 0.7954 - Recall: 0.8413 - F1: 0.8177 - Accuracy: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.1437 | 1.0 | 720 | 0.5236 | 0.6852 | 0.6623 | 0.6736 | 0.8860 | | 0.5761 | 2.0 | 1440 | 0.3668 | 0.7348 | 0.7829 | 0.7581 | 0.9119 | | 0.3087 | 3.0 | 2160 | 0.2996 | 0.7925 | 0.8280 | 0.8099 | 0.9270 | | 0.2631 | 4.0 | 2880 | 0.2959 | 0.7872 | 0.8487 | 0.8168 | 0.9275 | | 0.1847 | 5.0 | 3600 | 0.3121 | 0.7929 | 0.8373 | 0.8145 | 0.9290 | | 0.1518 | 6.0 | 4320 | 0.3117 | 0.8080 | 0.8601 | 0.8332 | 0.9329 | | 0.1232 | 7.0 | 5040 | 0.3153 | 0.7961 | 0.8490 | 0.8217 | 0.9267 | | 0.0994 | 8.0 | 5760 | 0.3125 | 0.8105 | 0.8570 | 0.8331 | 0.9332 | | 0.0968 | 9.0 | 6480 | 0.3242 | 0.8147 | 0.8637 | 0.8385 | 0.9329 | | 0.0772 | 10.0 | 7200 | 0.3263 | 0.8145 | 0.8641 | 0.8386 | 0.9341 | ## Test results per slot | slot | f1 | tc_size | |:----:|:--:|:-------:| | alarm_type | 0.4 | 4 | | app_name | 0.42857142857142855 | 10 | | artist_name | 0.8122605363984675 | 123 | | audiobook_author | 0.0 | 9 | | audiobook_name | 0.6021505376344087 | 43 | | business_name | 0.8530259365994236 | 184 | | business_type | 0.6666666666666667 | 41 | | change_amount | 0.6666666666666666 | 9 | | coffee_type | 0.5333333333333333 | 6 | | color_type | 0.8135593220338982 | 28 | | cooking_type | 0.8333333333333333 | 14 | | currency_name | 0.8611111111111112 | 70 | | date | 0.9034267912772587 | 623 | | definition_word | 0.88 | 97 | | device_type | 0.8053691275167785 | 71 | | drink_type | 0.0 | 2 | | email_address | 0.9599999999999999 | 38 | | email_folder | 0.9523809523809523 | 10 | | event_name | 0.7643504531722054 | 321 | | food_type | 0.7482014388489208 | 121 | | game_name | 0.7789473684210527 | 44 | | general_frequency | 0.5862068965517242 | 21 | | house_place | 0.8840579710144928 | 68 | | ingredient | 0.0 | 13 | | joke_type | 0.9411764705882353 | 17 | | list_name | 0.7979274611398963 | 91 | | meal_type | 0.782608695652174 | 18 | | media_type | 0.8596491228070176 | 173 | | movie_name | 0.0 | 3 | | movie_type | 0.5 | 3 | | music_album | 0.0 | 2 | | music_descriptor | 0.25 | 8 | | music_genre | 0.7244094488188977 | 58 | | news_topic | 0.5675675675675675 | 64 | | order_type | 0.7941176470588235 | 29 | | person | 0.9128094725511302 | 438 | | personal_info | 0.6666666666666666 | 16 | | place_name | 0.8725790010193679 | 493 | | player_setting | 0.5405405405405405 | 42 | | playlist_name | 0.5 | 27 | | podcast_descriptor | 0.4888888888888888 | 28 | | podcast_name | 0.5245901639344263 | 31 | | radio_name | 0.6504065040650406 | 53 | | relation | 0.8478260869565218 | 87 | | song_name | 0.7058823529411765 | 54 | | time | 0.7914893617021276 | 236 | | time_zone | 0.7804878048780488 | 23 | | timeofday | 0.8396946564885496 | 60 | | transport_agency | 0.8571428571428571 | 18 | | transport_descriptor | 0.0 | 2 | | transport_name | 0.4 | 7 | | transport_type | 0.9481481481481482 | 68 | | weather_descriptor | 0.789272030651341 | 123 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/MrLincoln11
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: other inference: false --- [Alpacino 13B model card](https://huggingface.co/digitous/Alpacino13b)
BigSalmon/MrLincoln12
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
# Indic Language Bloom Model Training This repository contains the code and resources for fine-tuning the Huggingface Bloom model on the Indic language dataset using Low-Rank Adaptation (LoRA). The goal is to create a high-performance language model specifically tailored to Indic languages. ## Dataset The dataset used for training is provided by AI4Bharat. I have uploaded it to huggingface hub at: - [Processed Indic Language Corpus](https://huggingface.co/datasets/aashay96/indic_language_corpus/tree/main) ## Progress ### Completed - [x] Low-Rank Adaptation fine-tuning of the Bloom model on streaming data - [x] Single checkpoint available (training logs at [Weights & Biases](https://wandb.ai/indic-lm/huggingface/runs/7kq2m62v/)) ### To Do - [ ] Benchmark current multilingual LLMs on IndicGLUE using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) - [ ] Integrate DeepSpeed for better resource utilization - [ ] Convert current instruction dataset to Indic languages and train (dolly v2 dataset, distilled from GPT, etc.) - [ ] Model doesn't stop producing text - how to fix? - [ ] Deploy RLHF community app using [Cheese](https://github.com/CarperAI/cheese) ## Using the Model ```bash import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "aashay96/indic-BloomLM" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) batch = tokenizer("आप कैसे हैं", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=10) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
BigSalmon/MrLincoln125MNeo
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-04-27T10:08:03Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cart results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BigSalmon/MrLincoln3
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
2023-04-27T10:11:39Z
# This is a WORK IN PROGRESS model, at this moment it gets 11.42 WER. This will be improved soon.
BigSalmon/MrLincoln5
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-04-27T10:12:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-speech-project-subsetData results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-speech-project-subsetData This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1157 - Wer: 0.2453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.9506 | 1.67 | 50 | 16.5714 | 1.0 | | 7.9883 | 3.33 | 100 | 4.1299 | 1.0 | | 3.4027 | 5.0 | 150 | 3.2576 | 1.0 | | 3.1425 | 6.67 | 200 | 3.0644 | 1.0 | | 3.0198 | 8.33 | 250 | 2.9955 | 1.0 | | 2.974 | 10.0 | 300 | 2.9685 | 1.0 | | 2.9492 | 11.67 | 350 | 2.9520 | 1.0 | | 2.9225 | 13.33 | 400 | 3.0013 | 1.0 | | 2.8383 | 15.0 | 450 | 2.7433 | 1.0 | | 2.5389 | 16.67 | 500 | 2.1815 | 1.0 | | 1.8402 | 18.33 | 550 | 1.2757 | 0.9653 | | 0.926 | 20.0 | 600 | 0.4806 | 0.4453 | | 0.4593 | 21.67 | 650 | 0.3497 | 0.376 | | 0.3047 | 23.33 | 700 | 0.1765 | 0.2507 | | 0.2407 | 25.0 | 750 | 0.1152 | 0.216 | | 0.1867 | 26.67 | 800 | 0.2214 | 0.2987 | | 0.1637 | 28.33 | 850 | 0.1050 | 0.2453 | | 0.1599 | 30.0 | 900 | 0.1157 | 0.2453 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
BigSalmon/ParaphraseParentheses
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-04-27T10:26:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 467.00 +/- 115.44 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DevozZ -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DevozZ -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga DevozZ ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 50000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 5e-05), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/Points2
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Hariprasath28/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BigSalmon/SimplifyText
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: apache-2.0 datasets: - IlyaGusev/rulm inference: parameters: min_length: 20 max_new_tokens: 250 top_k: 50 top_p: 0.9 early_stopping: true no_repeat_ngram_size: 2 use_cache: true repetition_penalty: 1.5 length_penalty: 0.8 num_beams: 2 language: - ru library_name: transformers pipeline_tag: text-generation tags: - finance - code --- <h1 style="font-size: 42px">WortegaLM 109m<h1/> # Model Summary > Это GPTneo like модель обученная с нуля на сете в 95gb кода, хабра, пикабу, новостей(порядка 12B токенов) Она умеет решать примитивные задачи, не пригодна для ZS FS, но идеальна как модель для студенческих проектов # Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM, tokenizer = AutoTokenizer.from_pretrained('AlexWortega/wortegaLM',padding_side='left') device = 'cuda' model = AutoModelForCausalLM.from_pretrained('AlexWortega/wortegaLM') model.resize_token_embeddings(len(tokenizer)) model.to(device) def generate_seqs(q,model, k=2): gen_kwargs = { "min_length": 20, "max_new_tokens": 100, "top_k": 50, "top_p": 0.7, "do_sample": True, "early_stopping": True, "no_repeat_ngram_size": 2, "eos_token_id": tokenizer.eos_token_id, "pad_token_id": tokenizer.eos_token_id, "use_cache": True, "repetition_penalty": 1.5, "length_penalty": 1.2, "num_beams": 4, "num_return_sequences": k } t = tokenizer.encode(q, add_special_tokens=False, return_tensors='pt').to(device) g = model.generate(t, **gen_kwargs) generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=False) return generated_sequences ```
BigSalmon/T5F
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2023-04-27T10:35:52Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: ntrant7/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BigSalmon/T5Salmon
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2023-04-27T10:42:06Z
--- language: - zh tags: - summarization model-index: - name: facebook/bart-large-cnn results: - task: type: summarization name: Summarization metrics: - name: ROUGE-1 type: rouge value: 42.9486 verified: true ---
BigSalmon/TS3
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-04-27T10:45:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
BigSalmon/prepositions
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-04-27T10:55:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="usix79/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Bilz/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### an Dreambooth model trained by fblues with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Bimal/my_bot_model
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - en - fr - ro - de - multilingual license: apache-2.0 tags: - summarization - translation datasets: - c4 --- # Model Card for T5 Small ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Citation](#citation) 8. [Model Card Authors](#model-card-authors) 9. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html): > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task. T5-Small is the checkpoint with 60 million parameters. - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - **Model type:** Language model - **Language(s) (NLP):** English, French, Romanian, German - **License:** Apache 2.0 - **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5) - **Resources for more information:** - [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer) - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5) # Uses ## Direct Use and Downstream Use The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model: > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself. See the [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details. ## Out-of-Scope Use More information needed. # Bias, Risks, and Limitations More information needed. ## Recommendations More information needed. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. Thereby, the following datasets were being used for (1.) and (2.): 1. **Datasets used for Unsupervised denoising objective**: - [C4](https://huggingface.co/datasets/c4) - [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr) 2. **Datasets used for Supervised text-to-text language modeling objective** - Sentence acceptability judgment - CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471) - Sentiment analysis - SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf) - Paraphrasing/sentence similarity - MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002) - STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055) - QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) - Natural language inference - MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426) - QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250) - RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9) - CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf) - Sentence completion - COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning) - Word sense disambiguation - WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121) - Question answering - MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023) - ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885) - BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044) ## Training Procedure In their [abstract](https://jmlr.org/papers/volume21/20-074/20-074.pdf), the model developers write: > In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details. # Evaluation ## Testing Data, Factors & Metrics The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details. ## Results For full results for T5-small, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Google Cloud TPU Pods - **Hours used:** More information needed - **Cloud Provider:** GCP - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Citation **BibTeX:** ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import T5Tokenizer, T5Model tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5Model.from_pretrained("t5-small") input_ids = tokenizer( "Studies have been shown that owning a dog is good for you", return_tensors="pt" ).input_ids # Batch size 1 decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) last_hidden_states = outputs.last_hidden_state ``` See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples. </details>
BogdanKuloren/continual-learning-paper-embeddings-model
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "MPNetModel" ], "model_type": "mpnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.73 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="iamjoy/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Branex/gpt-neo-2.7B
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: finetuned-Sentiment-classfication-ROBERTA-Base-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-Sentiment-classfication-ROBERTA-Base-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6758 - Rmse: 0.5982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3238 | 2.0 | 500 | 0.6758 | 0.5982 | | 0.2412 | 4.0 | 1000 | 0.7698 | 0.5948 | | 0.1352 | 6.0 | 1500 | 1.1570 | 0.6736 | | 0.0711 | 8.0 | 2000 | 1.3633 | 0.6019 | | 0.0365 | 10.0 | 2500 | 1.4536 | 0.5986 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BrianTin/MTBERT
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2023-04-27T11:42:18Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - manasviiiiiiiiiiiiiiiiiiiiiiiiii/autotrain-data-tais-roberta co2_eq_emissions: emissions: 0.3828638429601619 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 53328125642 - CO2 Emissions (in grams): 0.3829 ## Validation Metrics - Loss: 0.092 - Accuracy: 0.978 - Precision: 0.995 - Recall: 0.960 - AUC: 0.999 - F1: 0.977 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/manasviiiiiiiiiiiiiiiiiiiiiiiiii/autotrain-tais-roberta-53328125642 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("manasviiiiiiiiiiiiiiiiiiiiiiiiii/autotrain-tais-roberta-53328125642", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("manasviiiiiiiiiiiiiiiiiiiiiiiiii/autotrain-tais-roberta-53328125642", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BritishLibraryLabs/bl-books-genre
[ "pytorch", "distilbert", "text-classification", "multilingual", "dataset:blbooksgenre", "transformers", "genre", "books", "library", "historic", "glam ", "lam", "license:mit", "has_space" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76
null
scoring an image for use as token images on white background
Brunomezenga/NN
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-3 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.8247 | 1.0 | 1 | 0.9722 | | 2.0938 | 2.0 | 2 | 3.4748 | | 2.28 | 3.0 | 3 | 2.8687 | | 1.9757 | 4.0 | 4 | 0.7843 | | 0.9945 | 5.0 | 5 | 0.1598 | | 1.5074 | 6.0 | 6 | 0.0104 | | 1.0487 | 7.0 | 7 | 0.1589 | | 1.6598 | 8.0 | 8 | 0.1712 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Brykee/DialoGPT-medium-Morty
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Manasviii19/autotrain-data-tais co2_eq_emissions: emissions: 0.4865951420135347 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 53334125653 - CO2 Emissions (in grams): 0.4866 ## Validation Metrics - Loss: 0.151 - Accuracy: 0.953 - Precision: 0.974 - Recall: 0.930 - AUC: 0.987 - F1: 0.951 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Manasviii19/autotrain-tais-53334125653 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Manasviii19/autotrain-tais-53334125653", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Manasviii19/autotrain-tais-53334125653", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Bubb-les/DisloGPT-medium-HarryPotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-04-27T12:05:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-4 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.8789 | 1.0 | 1 | 1.3134 | | 2.5419 | 2.0 | 2 | 0.6875 | | 1.5128 | 3.0 | 3 | 2.3042 | | 3.027 | 4.0 | 4 | 0.3095 | | 1.7721 | 5.0 | 5 | 0.0035 | | 1.6054 | 6.0 | 6 | 1.7495 | | 1.1556 | 7.0 | 7 | 3.5065 | | 1.5197 | 8.0 | 8 | 2.8614 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BumBelDumBel/ZORK_AI_FANTASY
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr --- This is a 4 bit quantized LoRA merge of [Vigogne-instruct-13b](https://huggingface.co/bofenghuang/vigogne-instruct-13b). <br /> *Il s'agit d'une fusion du LoRA de [Vigogne-instruct-13b](https://huggingface.co/bofenghuang/vigogne-instruct-13b) quantifié à 4 bits.* Vigogne-instruct-13b is a LLaMA-13B model fine-tuned to follow the 🇫🇷 French instructions. <br /> *Vigogne-instruct-13b est un modèle LLaMA-13B affiné pour suivre les instructions 🇫🇷 françaises.* For more information, please visit the Github repo: <br /> *Pour plus d'informations, veuillez visiter ce repo Github :* <br /> https://github.com/bofenghuang/vigogne **Requires GNU/Linux, GPTQ-for-LLaMA's triton branch and a GPU with at least 10GB of vram.** <br /> *Nécessite GNU/Linux la branche triton de GPTQ-for-LLaMA et un GPU avec au moins 10 Go de vram.* ----------------------------------------------------------------------------------------------- This as been merged using [export_hf_checkpoint.py](https://github.com/tloen/alpaca-lora) <br /> *Fusionné en utilisant [export_hf_checkpoint.py](https://github.com/tloen/alpaca-lora)* Quantized with [GPTQ-for-LLaMA](https://github.com/qwopqwop200/GPTQ-for-LLaMa)'s triton branch: <br /> *Quantifiée avec la branche triton de [GPTQ-for-LLaMA](https://github.com/qwopqwop200/GPTQ-for-LLaMa):* <br /> ``` CUDA_VISIBLE_DEVICES=0 python llama.py "./hf_ckpt/" c4 --wbits 4 --true-sequential --act-order --groupsize 32 --save_safetensors vigogne-13b-4bit-32g.safetensor ``` **USAGE:** <br /> **UTILISATION:** <br /> In the folder characters/instruction-following, create a file named Vigogne.yaml that contains: <br /> *Dans le dossier characters/instruction-following, créer un fichier Vigogne.yaml qui contient:* ``` name: "### Réponse:" your_name: "### Instruction:" context: "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n" turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" ``` Start text-generation-webui with --chat and switch to instruct mode. Select Vigogne as Instruction template. <br /> *Démarrez text-generation-webui avec --chat et passez en mode instruct. Sélectionnez Vigogne dans Instruction template.* <br /> Here's my settings.json (a max_new_tokens value set to 200 might be more reasonable): <br /> *Voici mon settings.json (une valeur max_new_tokens de 200 est peut être plus raisonnable):* ``` { "max_new_tokens": 750, "max_new_tokens_min": 1, "max_new_tokens_max": 2000, "seed": -1, "character": "None", "name1": "### Instruction:", "name2": "### Réponse:", "context": "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n", "greeting": "", "turn_template": "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n", "custom_stopping_strings": "", "stop_at_newline": false, "add_bos_token": true, "ban_eos_token": false, "skip_special_tokens": true, "truncation_length": 2048, "truncation_length_min": 0, "truncation_length_max": 8192, "mode": "instruct", "instruction_template": "Vigogne", "chat_prompt_size": 2048, "chat_prompt_size_min": 0, "chat_prompt_size_max": 2048, "chat_generation_attempts": 1, "chat_generation_attempts_min": 1, "chat_generation_attempts_max": 5, "default_extensions": [], "chat_default_extensions": [ "" ], "presets": { "default": "LLaMA-Precise", ".*(alpaca|llama|llava)": "LLaMA-Precise", ".*pygmalion": "NovelAI-Storywriter", ".*RWKV": "Naive" }, "prompts": { "default": "Vigogne", ".*oasst": "Open Assistant", ".*alpaca": "Alpaca" }, "lora_prompts": { "default": "Vigogne", ".*(alpaca-lora-7b|alpaca-lora-13b|alpaca-lora-30b)": "Alpaca" } } ``` Here's my starting script: <br /> *Voici mon script de démarrage:* ``` #!/bin/bash source ~/miniconda3/etc/profile.d/conda.sh conda activate textgen python server.py --model cmh_vigogne-13b-4bit-32g-triton --model_type llama --wbits 4 --groupsize 32 --no-stream --sdp-attention --xformers --quant_attn --warmup_autotune --fused_mlp --load-in-8bit --chat --listen --auto-launch ```
Buntan/BuntanAI
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: unit2-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Flynews/unit2-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Buntan/bert-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: wavlm-basic_n-f-n_8batch_5sec_0.0001lr_unfrozen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-basic_n-f-n_8batch_5sec_0.0001lr_unfrozen This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.7333 - F1: 0.7308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.003 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.3031 | 0.98 | 24 | 2.3002 | 0.1667 | 0.1148 | | 2.2766 | 2.0 | 49 | 2.2805 | 0.15 | 0.0930 | | 2.2298 | 2.98 | 73 | 2.0679 | 0.2333 | 0.1421 | | 1.9839 | 4.0 | 98 | 1.8757 | 0.25 | 0.1380 | | 1.7495 | 4.98 | 122 | 1.5981 | 0.4 | 0.3370 | | 1.5318 | 6.0 | 147 | 1.4640 | 0.45 | 0.3698 | | 1.2765 | 6.98 | 171 | 1.3181 | 0.5167 | 0.4437 | | 1.261 | 8.0 | 196 | 1.0905 | 0.5833 | 0.5429 | | 1.078 | 8.98 | 220 | 1.0944 | 0.55 | 0.5244 | | 0.9116 | 10.0 | 245 | 0.8228 | 0.6167 | 0.5603 | | 0.8973 | 10.98 | 269 | 0.8632 | 0.5833 | 0.5266 | | 0.8033 | 12.0 | 294 | 0.9061 | 0.65 | 0.6398 | | 0.7183 | 12.98 | 318 | 0.8047 | 0.7 | 0.6877 | | 0.7526 | 14.0 | 343 | 0.6695 | 0.7333 | 0.7176 | | 0.6381 | 14.98 | 367 | 0.7510 | 0.7833 | 0.7788 | | 0.5266 | 16.0 | 392 | 0.6154 | 0.8 | 0.7901 | | 0.4485 | 16.98 | 416 | 0.8614 | 0.75 | 0.7359 | | 0.5123 | 18.0 | 441 | 1.0848 | 0.65 | 0.6306 | | 0.4094 | 18.98 | 465 | 0.6748 | 0.7667 | 0.7680 | | 0.3114 | 20.0 | 490 | 0.7406 | 0.75 | 0.7389 | | 0.2668 | 20.98 | 514 | 0.8419 | 0.75 | 0.7424 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Buntan/xlm-roberta-base-finetuned-marc-en
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - gitsagitsat/autotrain-data-bert-wiki co2_eq_emissions: emissions: 0.5874363963158769 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 53340125670 - CO2 Emissions (in grams): 0.5874 ## Validation Metrics - Loss: 0.365 - Accuracy: 0.850 - Precision: 0.969 - Recall: 0.723 - AUC: 0.962 - F1: 0.828 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gitsagitsat/autotrain-bert-wiki-53340125670 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gitsagitsat/autotrain-bert-wiki-53340125670", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("gitsagitsat/autotrain-bert-wiki-53340125670", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CALM/CALM
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-27T12:23:36Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Nimishaaaa/autotrain-data-taisproject co2_eq_emissions: emissions: 1.518897340394228 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 53343125677 - CO2 Emissions (in grams): 1.5189 ## Validation Metrics - Loss: 0.198 - Accuracy: 0.957 - Precision: 0.972 - Recall: 0.940 - AUC: 0.973 - F1: 0.956 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Nimishaaaa/autotrain-taisproject-53343125677 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Nimishaaaa/autotrain-taisproject-53343125677", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Nimishaaaa/autotrain-taisproject-53343125677", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CALM/backup
[ "lean_albert", "transformers" ]
null
{ "architectures": [ "LeanAlbertForPretraining", "LeanAlbertForTokenClassification", "LeanAlbertForSequenceClassification" ], "model_type": "lean_albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Nimishaaaa/autotrain-data-taisproject co2_eq_emissions: emissions: 0.6377772207656673 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 53343125680 - CO2 Emissions (in grams): 0.6378 ## Validation Metrics - Loss: 0.506 - Accuracy: 0.857 - Precision: 0.969 - Recall: 0.737 - AUC: 0.881 - F1: 0.837 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Nimishaaaa/autotrain-taisproject-53343125680 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Nimishaaaa/autotrain-taisproject-53343125680", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Nimishaaaa/autotrain-taisproject-53343125680", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
73
null
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Hi - Satish Lokkoju results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: hi split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 31.835686777920415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Satish Lokkoju This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4093 - Wer: 31.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0824 | 2.36 | 1000 | 0.2878 | 34.6474 | | 0.0214 | 4.73 | 2000 | 0.3354 | 33.0407 | | 0.0013 | 7.09 | 3000 | 0.3846 | 32.0883 | | 0.0006 | 9.46 | 4000 | 0.4093 | 31.8357 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- license: other --- Just an easy to download copy of https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
2023-04-27T12:46:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Cerebras-GPT-256M-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Cerebras-GPT-256M-finetuned-wikitext2 This model is a fine-tuned version of [cerebras/Cerebras-GPT-256M](https://huggingface.co/cerebras/Cerebras-GPT-256M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4051 | 1.0 | 2334 | 3.5344 | | 3.029 | 2.0 | 4668 | 3.5483 | | 2.7614 | 3.0 | 7002 | 3.5926 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
54
2023-04-27T12:47:47Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.7095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7716 | 0.05 | 20 | 1.1077 | 0.2355 | | 0.7058 | 0.09 | 40 | 0.8183 | 0.5443 | | 0.6877 | 0.14 | 60 | 0.8182 | 0.5443 | | 0.6154 | 0.18 | 80 | 0.7467 | 0.6070 | | 0.6188 | 0.23 | 100 | 0.7712 | 0.5810 | | 0.549 | 0.28 | 120 | 0.9027 | 0.4847 | | 0.5617 | 0.32 | 140 | 0.7137 | 0.6300 | | 0.5573 | 0.37 | 160 | 0.7936 | 0.5642 | | 0.5382 | 0.41 | 180 | 0.7245 | 0.6346 | | 0.5121 | 0.46 | 200 | 0.7282 | 0.6422 | | 0.5577 | 0.51 | 220 | 0.7301 | 0.6376 | | 0.4909 | 0.55 | 240 | 0.6293 | 0.6957 | | 0.5057 | 0.6 | 260 | 0.6421 | 0.6896 | | 0.4774 | 0.64 | 280 | 0.6944 | 0.6697 | | 0.4786 | 0.69 | 300 | 0.7043 | 0.6682 | | 0.4403 | 0.74 | 320 | 0.6020 | 0.7217 | | 0.5914 | 0.78 | 340 | 0.5944 | 0.7217 | | 0.459 | 0.83 | 360 | 0.6188 | 0.7171 | | 0.4654 | 0.87 | 380 | 0.6424 | 0.7110 | | 0.3851 | 0.92 | 400 | 0.6387 | 0.7095 | | 0.4811 | 0.97 | 420 | 0.6286 | 0.7095 | ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus26
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
45
2023-04-27T13:04:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="egarciamartin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,860
2023-04-27T13:07:46Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.89 +/- 5.16 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Waterboy96/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
62
null
--- language: - he metrics: - accuracy library_name: transformers pipeline_tag: text-classification tags: - legal ---
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
132
2023-04-27T13:10:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxiv3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="egarciamartin/q-Taxiv3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,862
2023-04-27T13:12:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: tcc_conventions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tcc_conventions This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9144 - Bleu: 5.7527 - Gen Len: 14.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 10 | 0.9218 | 5.7476 | 14.0 | | No log | 2.0 | 20 | 0.9144 | 5.7527 | 14.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
Access to model Quizzer/Context2Question is restricted and you are not in the authorized list. Visit https://huggingface.co/Quizzer/Context2Question to ask for access.
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
2023-04-27T13:28:51Z
## Fresh Alpasta, done Al Dente! It's da *logical* choice! Want pasta with exceptional personality emulation specifically? See [GPT4-X-Alpasta-30b!](https://huggingface.co/MetaIX/GPT4-X-Alpasta-30b) # Model Info: ChanSung's [Alpaca-LoRA-30B-elina](https://huggingface.co/LLMs/Alpaca-LoRA-30B-elina) merged with [Open Assistant's Finetune](https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor) ## Benchmarks **Wikitext2:** 4.705453395843506 **ptb-new:** 9.476339340209961 **c4-new:** 7.166751384735107
CLAck/vi-en
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ar-Noise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ar-Noise This model is a fine-tuned version of [MohammedNasri/whisper-small-AR](https://huggingface.co/MohammedNasri/whisper-small-AR) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2514 - Wer: 20.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0985 | 0.21 | 1000 | 0.2883 | 24.6143 | | 0.0915 | 0.42 | 2000 | 0.2640 | 22.0391 | | 0.0694 | 0.62 | 3000 | 0.2514 | 20.8116 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.11.0 - Tokenizers 0.13.2
CLTL/icf-domains
[ "pytorch", "roberta", "nl", "transformers", "license:mit", "text-classification" ]
text-classification
{ "architectures": [ "RobertaForMultiLabelSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: ultmcntry --- ### country-ultmcntry-v2 Dreambooth model trained by wimvanhenden with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: ultmcntry (use that on your prompt) ![ultmcntry 0](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%281%29.jpg)![ultmcntry 1](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%282%29.jpg)![ultmcntry 2](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%283%29.jpg)![ultmcntry 3](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%284%29.jpg)![ultmcntry 4](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%285%29.jpg)![ultmcntry 5](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%286%29.jpg)![ultmcntry 6](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%287%29.jpg)![ultmcntry 7](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%288%29.jpg)![ultmcntry 8](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%289%29.jpg)![ultmcntry 9](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2810%29.jpg)![ultmcntry 10](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2811%29.jpg)![ultmcntry 11](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2812%29.jpg)![ultmcntry 12](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2813%29.jpg)![ultmcntry 13](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2814%29.jpg)![ultmcntry 14](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2815%29.jpg)![ultmcntry 15](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2816%29.jpg)![ultmcntry 16](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2817%29.jpg)![ultmcntry 17](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2818%29.jpg)![ultmcntry 18](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2819%29.jpg)![ultmcntry 19](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2820%29.jpg)![ultmcntry 20](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2821%29.jpg)![ultmcntry 21](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2822%29.jpg)![ultmcntry 22](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2823%29.jpg)![ultmcntry 23](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2824%29.jpg)![ultmcntry 24](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2825%29.jpg)![ultmcntry 25](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2826%29.jpg)![ultmcntry 26](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2827%29.jpg)![ultmcntry 27](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2828%29.jpg)![ultmcntry 28](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2829%29.jpg)![ultmcntry 29](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2830%29.jpg)![ultmcntry 30](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2831%29.jpg)![ultmcntry 31](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2832%29.jpg)![ultmcntry 32](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2833%29.jpg)![ultmcntry 33](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2834%29.jpg)![ultmcntry 34](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2835%29.jpg)![ultmcntry 35](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2836%29.jpg)![ultmcntry 36](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2837%29.jpg)![ultmcntry 37](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2838%29.jpg)![ultmcntry 38](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2839%29.jpg)![ultmcntry 39](https://huggingface.co/wimvanhenden/country-ultmcntry-v2/resolve/main/concept_images/ultmcntry_%2840%29.jpg)
CLTL/icf-levels-att
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
2023-04-27T13:59:01Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: ultmcntry --- ### country-ultmcntry-v4 Dreambooth model trained by wimvanhenden with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: ultmcntry (use that on your prompt) ![ultmcntry 0](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%281%29.jpg)![ultmcntry 1](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%282%29.jpg)![ultmcntry 2](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%283%29.jpg)![ultmcntry 3](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%284%29.jpg)![ultmcntry 4](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%285%29.jpg)![ultmcntry 5](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%286%29.jpg)![ultmcntry 6](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%287%29.jpg)![ultmcntry 7](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%288%29.jpg)![ultmcntry 8](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%289%29.jpg)![ultmcntry 9](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2810%29.jpg)![ultmcntry 10](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2811%29.jpg)![ultmcntry 11](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2812%29.jpg)![ultmcntry 12](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2813%29.jpg)![ultmcntry 13](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2814%29.jpg)![ultmcntry 14](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2815%29.jpg)![ultmcntry 15](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2816%29.jpg)![ultmcntry 16](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2817%29.jpg)![ultmcntry 17](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2818%29.jpg)![ultmcntry 18](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2819%29.jpg)![ultmcntry 19](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2820%29.jpg)![ultmcntry 20](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2821%29.jpg)![ultmcntry 21](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2822%29.jpg)![ultmcntry 22](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2823%29.jpg)![ultmcntry 23](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2824%29.jpg)![ultmcntry 24](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2825%29.jpg)![ultmcntry 25](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2826%29.jpg)![ultmcntry 26](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2827%29.jpg)![ultmcntry 27](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2828%29.jpg)![ultmcntry 28](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2829%29.jpg)![ultmcntry 29](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2830%29.jpg)![ultmcntry 30](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2831%29.jpg)![ultmcntry 31](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2832%29.jpg)![ultmcntry 32](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2833%29.jpg)![ultmcntry 33](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2834%29.jpg)![ultmcntry 34](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2835%29.jpg)![ultmcntry 35](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2836%29.jpg)![ultmcntry 36](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2837%29.jpg)![ultmcntry 37](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2838%29.jpg)![ultmcntry 38](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2839%29.jpg)![ultmcntry 39](https://huggingface.co/wimvanhenden/country-ultmcntry-v4/resolve/main/concept_images/ultmcntry_%2840%29.jpg)
CLTL/icf-levels-ber
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
2023-04-27T14:01:26Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # scroobiustrip/sov-model-v1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("scroobiustrip/sov-model-v1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
CLTL/icf-levels-fac
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
2023-04-27T14:04:49Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: ultmhxphxp --- ### hiphop-ultmhxphxp-v4 Dreambooth model trained by wimvanhenden with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: ultmhxphxp (use that on your prompt) ![ultmhxphxp 0](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%281%29.jpg)![ultmhxphxp 1](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%282%29.jpg)![ultmhxphxp 2](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%283%29.jpg)![ultmhxphxp 3](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%284%29.jpg)![ultmhxphxp 4](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%285%29.jpg)![ultmhxphxp 5](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%286%29.jpg)![ultmhxphxp 6](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%287%29.jpg)![ultmhxphxp 7](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%288%29.jpg)![ultmhxphxp 8](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%289%29.jpg)![ultmhxphxp 9](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2810%29.jpg)![ultmhxphxp 10](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2811%29.jpg)![ultmhxphxp 11](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2812%29.jpg)![ultmhxphxp 12](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2813%29.jpg)![ultmhxphxp 13](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2814%29.jpg)![ultmhxphxp 14](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2815%29.jpg)![ultmhxphxp 15](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2816%29.jpg)![ultmhxphxp 16](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2817%29.jpg)![ultmhxphxp 17](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2818%29.jpg)![ultmhxphxp 18](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2819%29.jpg)![ultmhxphxp 19](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2820%29.jpg)![ultmhxphxp 20](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2821%29.jpg)![ultmhxphxp 21](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2822%29.jpg)![ultmhxphxp 22](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2823%29.jpg)![ultmhxphxp 23](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2824%29.jpg)![ultmhxphxp 24](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2825%29.jpg)![ultmhxphxp 25](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2826%29.jpg)![ultmhxphxp 26](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2827%29.jpg)![ultmhxphxp 27](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2828%29.jpg)![ultmhxphxp 28](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2829%29.jpg)![ultmhxphxp 29](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2830%29.jpg)![ultmhxphxp 30](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2831%29.jpg)![ultmhxphxp 31](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2832%29.jpg)![ultmhxphxp 32](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2833%29.jpg)![ultmhxphxp 33](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2834%29.jpg)![ultmhxphxp 34](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2835%29.jpg)![ultmhxphxp 35](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2836%29.jpg)![ultmhxphxp 36](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2837%29.jpg)![ultmhxphxp 37](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2838%29.jpg)![ultmhxphxp 38](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2839%29.jpg)![ultmhxphxp 39](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v4/resolve/main/concept_images/ultmhxphxp_%2840%29.jpg)
CLTL/icf-levels-stm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: ultmhxphxp --- ### hiphop-ultmhxphxp-v2 Dreambooth model trained by wimvanhenden with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: ultmhxphxp (use that on your prompt) ![ultmhxphxp 0](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%281%29.jpg)![ultmhxphxp 1](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%282%29.jpg)![ultmhxphxp 2](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%283%29.jpg)![ultmhxphxp 3](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%284%29.jpg)![ultmhxphxp 4](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%285%29.jpg)![ultmhxphxp 5](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%286%29.jpg)![ultmhxphxp 6](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%287%29.jpg)![ultmhxphxp 7](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%288%29.jpg)![ultmhxphxp 8](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%289%29.jpg)![ultmhxphxp 9](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2810%29.jpg)![ultmhxphxp 10](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2811%29.jpg)![ultmhxphxp 11](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2812%29.jpg)![ultmhxphxp 12](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2813%29.jpg)![ultmhxphxp 13](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2814%29.jpg)![ultmhxphxp 14](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2815%29.jpg)![ultmhxphxp 15](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2816%29.jpg)![ultmhxphxp 16](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2817%29.jpg)![ultmhxphxp 17](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2818%29.jpg)![ultmhxphxp 18](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2819%29.jpg)![ultmhxphxp 19](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2820%29.jpg)![ultmhxphxp 20](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2821%29.jpg)![ultmhxphxp 21](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2822%29.jpg)![ultmhxphxp 22](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2823%29.jpg)![ultmhxphxp 23](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2824%29.jpg)![ultmhxphxp 24](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2825%29.jpg)![ultmhxphxp 25](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2826%29.jpg)![ultmhxphxp 26](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2827%29.jpg)![ultmhxphxp 27](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2828%29.jpg)![ultmhxphxp 28](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2829%29.jpg)![ultmhxphxp 29](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2830%29.jpg)![ultmhxphxp 30](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2831%29.jpg)![ultmhxphxp 31](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2832%29.jpg)![ultmhxphxp 32](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2833%29.jpg)![ultmhxphxp 33](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2834%29.jpg)![ultmhxphxp 34](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2835%29.jpg)![ultmhxphxp 35](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2836%29.jpg)![ultmhxphxp 36](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2837%29.jpg)![ultmhxphxp 37](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2838%29.jpg)![ultmhxphxp 38](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2839%29.jpg)![ultmhxphxp 39](https://huggingface.co/wimvanhenden/hiphop-ultmhxphxp-v2/resolve/main/concept_images/ultmhxphxp_%2840%29.jpg)
CM-CA/Cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2023-04-27T14:08:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="peiji/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CSResearcher/TestModel
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 643.50 +/- 155.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mraabs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mraabs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mraabs ``` ## Hyperparameters ```python OrderedDict([('batch_size', 40), ('buffer_size', 101000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('replay_buffer_kwargs', {'handle_timeout_termination': False}), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CTBC/ATS
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Ganu3010/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Caddy/UD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CalvinHuang/mt5-small-finetuned-amazon-en-es
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
summarization
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-synthesized-turkish-deneme-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-synthesized-turkish-deneme-2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6205 - Wer: 85.8473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9831 | 1.04 | 50 | 1.9347 | 46.2053 | | 1.7562 | 2.08 | 100 | 1.5724 | 43.7232 | | 1.4051 | 3.12 | 150 | 1.2677 | 35.7160 | | 1.0484 | 4.17 | 200 | 0.8637 | 90.9905 | | 0.7046 | 5.21 | 250 | 0.6794 | 100.5967 | | 0.5857 | 6.25 | 300 | 0.6205 | 85.8473 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Cameron/BERT-eec-emotion
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- license: openrail datasets: - OpenAssistant/oasst1 language: - en - zh library_name: asteroid pipeline_tag: robotics ---
Cameron/BERT-jigsaw-severetoxic
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # API Inference ![generated from stablediffusionapi.com](https://d1okzptojspljx.cloudfront.net/generations/8589140601669473451.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "dressy" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/dressy) Credits: [View credits](https://civitai.com/?query=model_search) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "dressy", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
Cameron/BERT-mdgender-convai-ternary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### rubyhoshino Dreambooth model trained by Elaina617 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Cameron/BERT-mdgender-wizard
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mart-forge-v1200 Dreambooth model trained by JoelApablaza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Canadiancaleb/DialoGPT-small-jesse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- widget: - text: " # Given an array of integers, return indices of the two numbers such that they add up to a specific target\n\ndef twoSum(array: List[int], target: int) -> List[int]: \n\t hashmap = {} \n\t for i, num in enumerate(array): \n\t\t complement = target - num \n\t\t if complement in hashmap: \n\t\t\t return [hashmap[complement], i] \n\t\t hashmap[num] = i \n\t return [] " example_title: Twosum problem license: mit datasets: - mhhmm/leetcode-solutions-python language: - en tags: - codeT5 - summarization - python --- I'm tuning with Peft, LoRA and a dataset downstream is explanation from around ~2k Leetcode problems on CodeT5-base-multi-sum base model Given a solution of two sum problem This is what I expected: This code defines a function called twoSum that takes an array of integers array and a target integer target as arguments, and returns a list of two integers which are the indices of two numbers in the array that add up to the target. The function uses a hashmap to store each number in the array as a key and its index as a value. It then loops through the array using the enumerate function, which returns a tuple of the index and value of each element in the array. For each element num in the array, the function calculates the complement by subtracting it from the target. It then checks if the complement is already in the hashmap. If it is, the function returns a list containing the index of the complement and the current index of num. If the complement is not in the hashmap, the function adds num to the hashmap with its index as the value. If no two numbers in the array add up to the target, the function returns an empty list. --- And this is what I get: This function is a function that calculates the two - sum of the two - sums of the two - sums and returns the two - sums. :disappointed: --- Anyone has any clue about how can i tune any LLM to the first one, please, please contact me via Community Thank you guys in advance !!
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit tags: - generated_from_trainer model-index: - name: my_finetuned_GPT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_finetuned_GPT This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 17 | 2.8296 | | No log | 2.0 | 34 | 2.6582 | | No log | 3.0 | 51 | 2.5844 | | No log | 4.0 | 68 | 2.5321 | | No log | 5.0 | 85 | 2.5066 | | No log | 6.0 | 102 | 2.4886 | | No log | 7.0 | 119 | 2.4846 | | No log | 8.0 | 136 | 2.4754 | | No log | 9.0 | 153 | 2.4724 | | No log | 10.0 | 170 | 2.4703 | | No log | 11.0 | 187 | 2.4751 | | No log | 12.0 | 204 | 2.4703 | | No log | 13.0 | 221 | 2.4746 | | No log | 14.0 | 238 | 2.4774 | | No log | 15.0 | 255 | 2.4779 | | No log | 16.0 | 272 | 2.4810 | | No log | 17.0 | 289 | 2.4828 | | No log | 18.0 | 306 | 2.4833 | | No log | 19.0 | 323 | 2.4835 | | No log | 20.0 | 340 | 2.4836 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Canyonevo/DialoGPT-medium-KingHenry
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model GiladtheFixer/stam is restricted and you are not in the authorized list. Visit https://huggingface.co/GiladtheFixer/stam to ask for access.
CapitainData/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="HurricaneSYG/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Capreolus/bert-base-msmarco
[ "pytorch", "tf", "jax", "bert", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
238
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HurricaneSYG/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Capreolus/birch-bert-large-car_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: Apv/Flaubert2704_v1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apv/Flaubert2704_v1 This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6198 - Validation Loss: 0.6599 - Train Accuracy: 0.7333 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 804, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.9034 | 0.7880 | 0.5956 | 0 | | 0.7819 | 0.7210 | 0.6933 | 1 | | 0.6369 | 0.6599 | 0.7333 | 2 | | 0.6341 | 0.6599 | 0.7333 | 3 | | 0.6243 | 0.6599 | 0.7333 | 4 | | 0.6198 | 0.6599 | 0.7333 | 5 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3
Captain-1337/CrudeBERT
[ "pytorch", "bert", "text-classification", "arxiv:1908.10063", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="elimak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Captain272/lstm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: A picture of person coding tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - mortal99/everything_can_coding 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 A picture of person coding 文本进行了训练。 <h2> <center>万物皆可coding</center> <br> <center>让模型认识到coding,从而实现生成任何物体进行coding的图像</center> </h2> | <h2>Prompts</h2> | <h2>Image</h2> | |:----------|:-------------:| | <h3>a picture of person coding</h3> |<img src="https://ai-studio-static-online.cdn.bcebos.com/26306f158f904e18bda5730759a6b63801f57afeb3bb4b9c9f71ee8d57b95e7c" width = "150" height = "150" alt="图片名称" align=center />| | <h3>a picture of dog coding</h3> |<img src="https://ai-studio-static-online.cdn.bcebos.com/f0ba61ba6052409dbcc58e3cfb40417eaa451fc741954b66afcef9bf563cfff6" width = "150" height = "150" alt="图片名称" align=center /> | | <h3> picture of cat coding</h3> | <img src="https://ai-studio-static-online.cdn.bcebos.com/5735de756b2743e98f4ccf3570c12c93a7b8b5c9c4414e40ab1a6763a3f232f5" width = "150" height = "150" alt="图片名称" align=center /> | | <h3>a picture of panda coding</h3> | <img src="https://ai-studio-static-online.cdn.bcebos.com/3b21f175a8c8466b8a1a158e45238213323b354b741c4f488cad9dcc29508c79" width = "150" height = "150" alt="图片名称" align=center /> | | <h3>a picture of frog coding</h3> | <img src="https://ai-studio-static-online.cdn.bcebos.com/06fa39c031a54eda91eb2c071b0395bac588bc50f8d04fd084b8b069d22dc23a" width = "150" height = "150" alt="图片名称" align=center /> | > 模型效果不稳定,可多尝试几次输出选择最优结果
Carlork314/Carlos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiMeme results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="elimak/taxiMeme", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Carlork314/Xd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mart-forge-v1300 Dreambooth model trained by JoelApablaza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Carolhuehuehuehue/Sla
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv_1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="iamjoy/taxiv_1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Cedille/fr-boris
[ "pytorch", "gptj", "text-generation", "fr", "dataset:c4", "arxiv:2202.03371", "transformers", "causal-lm", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPTJForCausalLM" ], "model_type": "gptj", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -161.33 +/- 114.07 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
dccuchile/albert-base-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 475.80 +/- 65.29 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Chandanbhat/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other --- Base: SD2.1 With offset noise and embeddings
Chun/DialoGPT-large-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-04-27T18:51:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Harm/poca-SoccerTwos-10M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Chun/w-zh2en-hsk
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-04-27T19:04:20Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.28 +/- 5.14 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Galeros/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Clint/clinton
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-27T19:52:31Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: expanded-multilingual-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tr split: test args: tr metrics: - name: Precision type: precision value: 0.9140162316297433 - name: Recall type: recall value: 0.9200706557739016 - name: F1 type: f1 value: 0.9170334507042254 - name: Accuracy type: accuracy value: 0.969589732078013 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # expanded-multilingual-ner This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1088 - Precision: 0.9140 - Recall: 0.9201 - F1: 0.9170 - Accuracy: 0.9696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
CodeNinja1126/test-model
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
CogComp/bart-faithful-summary-detector
[ "pytorch", "jax", "bart", "text-classification", "en", "dataset:xsum", "transformers", "xsum", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BartForSequenceClassification" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": 1, "max_length": 128, "min_length": 12, "no_repeat_ngram_size": null, "num_beams": 4, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
234
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-jou-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.9335 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-jou-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2289 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1988 | 1.0 | 1250 | 0.1670 | 0.9335 | | 0.0989 | 2.0 | 2500 | 0.2289 | 0.9335 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
cometrain/neurotitle-rugpt3-small
[ "pytorch", "gpt2", "text-generation", "ru", "en", "dataset:All-NeurIPS-Papers-Scraper", "transformers", "Cometrain AutoCode", "Cometrain AlphaML", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b2.in1k A EfficientNet image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 9.1 - GMACs: 1.0 - Activations (M): 13.8 - Image size: 260 x 260 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b2.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b2.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 16, 130, 130]) # torch.Size([1, 24, 65, 65]) # torch.Size([1, 48, 33, 33]) # torch.Size([1, 120, 17, 17]) # torch.Size([1, 352, 9, 9]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b2.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1408, 9, 9) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Connor/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b3.in1k A EfficientNet image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 12.2 - GMACs: 1.9 - Activations (M): 23.8 - Image size: 300 x 300 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b3.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b3.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 24, 150, 150]) # torch.Size([1, 32, 75, 75]) # torch.Size([1, 48, 38, 38]) # torch.Size([1, 136, 19, 19]) # torch.Size([1, 384, 10, 10]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b3.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1536, 10, 10) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Connorvr/BrightBot-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b4.in1k A EfficientNet image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 19.3 - GMACs: 4.5 - Activations (M): 49.5 - Image size: 380 x 380 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b4.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b4.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 24, 190, 190]) # torch.Size([1, 32, 95, 95]) # torch.Size([1, 56, 48, 48]) # torch.Size([1, 160, 24, 24]) # torch.Size([1, 448, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b4.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1792, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b5.aa_in1k A EfficientNet image classification model. Trained on ImageNet-1k with auto-augment in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 30.4 - GMACs: 10.5 - Activations (M): 98.9 - Image size: 456 x 456 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - AutoAugment: Learning Augmentation Policies from Data: https://arxiv.org/abs/1805.09501 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b5.aa_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.aa_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 24, 228, 228]) # torch.Size([1, 40, 114, 114]) # torch.Size([1, 64, 57, 57]) # torch.Size([1, 176, 29, 29]) # torch.Size([1, 512, 15, 15]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.aa_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 15, 15) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @inproceedings{47890, title = {AutoAugment: Learning Augmentation Policies from Data}, author = {Ekin Dogus Cubuk and Barret Zoph and Dandelion Mane and Vijay Vasudevan and Quoc V. Le}, year = {2019}, URL = {https://arxiv.org/pdf/1805.09501.pdf} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Contrastive-Tension/BERT-Base-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-04-27T21:20:47Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b5.in1k A EfficientNet image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 30.4 - GMACs: 10.5 - Activations (M): 98.9 - Image size: 456 x 456 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b5.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 24, 228, 228]) # torch.Size([1, 40, 114, 114]) # torch.Size([1, 64, 57, 57]) # torch.Size([1, 176, 29, 29]) # torch.Size([1, 512, 15, 15]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 15, 15) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Cooker/cicero-similis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-27T21:46:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 274.50 +/- 31.50 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sergendel -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sergendel -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Sergendel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Cool/Demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # /var/folders/lm/k69sycyx5538ldsk5n0ln5000000gn/T/tmpe0wvoh09/killshot977/banking-intent-classification This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("/var/folders/lm/k69sycyx5538ldsk5n0ln5000000gn/T/tmpe0wvoh09/killshot977/banking-intent-classification") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Craig/mGqFiPhu
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.67 +/- 4.89 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Sergendel/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Craig/paraphrase-MiniLM-L6-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,026
2023-04-27T22:33:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 291.74 +/- 19.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CrayonShinchan/fine_tune_try_1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-27T22:36:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.13 +/- 23.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CrisLeaf/generador-de-historias-de-tolkien
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-04-27T22:42:15Z
--- license: mit language: - la tags: - cltk - latin - floret - LatinCy library_name: spacy --- # Model Card for la_vectors_floret_lg Floret vectors for Latin # Table of Contents - [Model Details](#model-details) - [Model Description](#model-description) - [Citation](#citation) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> lg floret vectors for Latin on Wikipedia, Oscar, UD and CC100-Latin data. - **Developed by:** Patrick J. Burns - **Model type:** spaCy model - **Language(s) (NLP):** la - **License:** mit - **Resources for more information:** - [GitHub Repo](https://github.com/diyclassics/la_core_cltk_md) # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @misc{burns_la_vectors_floret_lg_2023, title = {la\_vectors\_floret\_lg}, version = 3.5.2, url = {https://huggingface.co/diyclassics/la_vectors_floret_lg}, abstract = {lg floret vectors model for Latin}, urldate = {2023-04-27}, author = {Burns, Patrick J.}, year = {2023}, } ``` # How to Get Started with the Model - Install with... - `pip install https://huggingface.co/latincy/la_vectors_floret_lg/resolve/main/la_vectors_floret_lg-3.5.2-py3-none-any.whl` - Tested on python 3.10.8, spacy==3.5.1
Crives/distilbert-base-uncased-finetuned-emotion
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- datasets: - IlyaGusev/ru_turbo_alpaca - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned language: - ru inference: false pipeline_tag: text2text-generation --- Llama.cpp compatible version of an original [30B model](https://huggingface.co/IlyaGusev/saiga_30b_lora). * Download `ggml-model-q4_1.bin`. * Download [interact_llamacpp.py](https://raw.githubusercontent.com/IlyaGusev/rulm/master/self_instruct/src/interact_llamacpp.py) How to run: ``` sudo apt-get install git-lfs pip install llama-cpp-python fire python3 interact_llamacpp.py ggml-model-q4_1.bin ``` System requirements: * 32GB RAM * CPU with 4 cores
D4RL1NG/yes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-27T23:57:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: flan-t5-base-codesearchnet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-codesearchnet This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.3
DSI/TweetBasedSA
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-04-28T00:31:35Z
--- datasets: - OpenAssistant/oasst1 --- <p><strong><font size="5">Information</font></strong></p> OpenAssistant-Alpaca-13B-4-bit working with GPTQ versions used in Oobabooga's Text Generation Webui and KoboldAI. <br>This was made using https://huggingface.co/chavinlo/alpaca-13b and <a href="https://huggingface.co/serpdotai/llama-oasst-lora-13B">Serpdotai's Open Assistant 13b LoRa trained for 4 epochs</a> using Open Assistant's dataset.</p> python llama.py /Models/alpaca13b-oaast4ep-lora c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors oasst-alpaca13b-4ep-lora-4bit-128g.safetensors <p><strong><font size="5">Benchmarks</font></strong></p> <p><strong><font size="4">--true-sequential --groupsize 128</font></strong></p> <strong>Wikitext2</strong>: 6.854333400726318 <strong>Ptb-New</strong>: 12.411578178405762 <strong>C4-New</strong>: 9.355494499206543 <strong>Note</strong>: This version uses <i>--groupsize 128</i>, resulting in better evaluations.