modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Cheatham/xlm-roberta-large-finetuned-d1r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
Access to model rajeeva703/autotrain-news_trans_03-52110122903 is restricted and you are not in the authorized list. Visit https://huggingface.co/rajeeva703/autotrain-news_trans_03-52110122903 to ask for access.
Cheatham/xlm-roberta-large-finetuned-r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.05 +/- 0.33 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cheatham/xlm-roberta-large-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
2023-04-24T16:08:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-2 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1662 - Accuracy: 0.6522 - F1: 0.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 16 | 0.9695 | 0.6324 | 0.3686 | | No log | 2.0 | 32 | 0.9059 | 0.6502 | 0.5381 | | No log | 3.0 | 48 | 1.0031 | 0.6680 | 0.5617 | | No log | 4.0 | 64 | 1.1282 | 0.6482 | 0.5558 | | No log | 5.0 | 80 | 1.1662 | 0.6522 | 0.5492 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
CheonggyeMountain-Sherpa/kogpt-trinity-poem
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: torgo_run2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # torgo_run2 This model is a fine-tuned version of [pnparam/torgo_healthy_2_40](https://huggingface.co/pnparam/torgo_healthy_2_40) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Chinmay/mlindia
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ds-summer-school-seinfeld results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ds-summer-school-seinfeld This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1999 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 244 | 3.0530 | | No log | 2.0 | 488 | 3.0287 | | 3.0984 | 3.0 | 732 | 3.0206 | | 3.0984 | 4.0 | 976 | 3.0172 | | 2.9535 | 5.0 | 1220 | 3.0171 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Chiuchiyin/Donald
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # dvArch API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/14944786811682353749.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "dvarch" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/dvarch) Credits: [View credits](https://civitai.com/?query=dvArch) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "dvarch", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
ChrisP/xlm-roberta-base-finetuned-marc-en
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Dsfajardob/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ChrisVCB/DialoGPT-medium-cmjs
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Dsfajardob/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ChrisVCB/DialoGPT-medium-ej
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit datasets: - OpenAssistant/oasst1 - erfanzar/CC-H2OAI-OASST-1-TRAIN - erfanzar/CC-OASST-1-TRAIN language: - en pipeline_tag: text-generation --- # TODO
ChristopherA08/IndoELECTRA
[ "pytorch", "electra", "pretraining", "id", "dataset:oscar", "transformers" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-bangla-para-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-bangla-para-v1 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2349 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 18.3042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.8155 | 1.0 | 5250 | 1.2976 | 0.0 | 0.0 | 0.0 | 0.0 | 18.2241 | | 1.6611 | 2.0 | 10500 | 1.2349 | 0.0 | 0.0 | 0.0 | 0.0 | 18.3042 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
ChukSamuels/DialoGPT-small-Dr.FauciBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.56 +/- 22.39 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chun/DialoGPT-large-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: jrreda/rl_05_SnowballTarget_ppo 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Chun/DialoGPT-medium-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2023-04-24T16:44:10Z
--- tags: - vision - image-classification datasets: - nicolasvillamilsanchez/autotrain-data-igeous widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.008659526025900772 --- # Model Trained - Problem type: Multi-class Classification - Model ID: 52117122942 - CO2 Emissions (in grams): 0.0087 ## Validation Metrics - Loss: 0.310 - Accuracy: 0.889 - Macro F1: 0.883 - Micro F1: 0.889 - Weighted F1: 0.887 - Macro Precision: 0.899 - Micro Precision: 0.889 - Weighted Precision: 0.903 - Macro Recall: 0.885 - Micro Recall: 0.889 - Weighted Recall: 0.889
Chun/w-en2zh-hsk
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: HilbertS/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Chun/w-en2zh-otm
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-04-24T16:49:18Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1781 - Accuracy: 0.6225 - F1: 0.5292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 16 | 1.1234 | 0.5474 | 0.3031 | | No log | 2.0 | 32 | 0.9975 | 0.6008 | 0.3433 | | No log | 3.0 | 48 | 0.9438 | 0.6383 | 0.4604 | | No log | 4.0 | 64 | 0.9385 | 0.6462 | 0.4692 | | No log | 5.0 | 80 | 0.9864 | 0.6364 | 0.5066 | | No log | 6.0 | 96 | 1.0309 | 0.6146 | 0.4968 | | No log | 7.0 | 112 | 1.0853 | 0.6186 | 0.5246 | | No log | 8.0 | 128 | 1.1456 | 0.6166 | 0.5208 | | No log | 9.0 | 144 | 1.1860 | 0.6087 | 0.5206 | | No log | 10.0 | 160 | 1.1781 | 0.6225 | 0.5292 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Chun/w-zh2en-hsk
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer model-index: - name: rubert-tiny2-russe-toxicity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2-russe-toxicity This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2087 - Precision Macro: 0.9395 - Recall Macro: 0.9394 - F1 Macro: 0.9394 - F1 Neutral: 0.9398 - F1 Toxic: 0.9390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | F1 Neutral | F1 Toxic | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:----------:|:--------:| | 0.6127 | 0.23 | 100 | 0.4477 | 0.8252 | 0.825 | 0.8250 | 0.8274 | 0.8226 | | 0.3728 | 0.46 | 200 | 0.2852 | 0.8877 | 0.8875 | 0.8875 | 0.8886 | 0.8864 | | 0.2888 | 0.69 | 300 | 0.2405 | 0.9039 | 0.9038 | 0.9037 | 0.9047 | 0.9028 | | 0.2724 | 0.92 | 400 | 0.2288 | 0.9110 | 0.9094 | 0.9093 | 0.9122 | 0.9064 | | 0.2387 | 1.15 | 500 | 0.2161 | 0.9132 | 0.9125 | 0.9125 | 0.9143 | 0.9106 | | 0.2189 | 1.38 | 600 | 0.2098 | 0.9206 | 0.9206 | 0.9206 | 0.9208 | 0.9205 | | 0.1783 | 1.61 | 700 | 0.2045 | 0.9233 | 0.9231 | 0.9231 | 0.9238 | 0.9224 | | 0.1911 | 1.84 | 800 | 0.2098 | 0.9184 | 0.9175 | 0.9175 | 0.9155 | 0.9194 | | 0.1749 | 2.07 | 900 | 0.1947 | 0.9271 | 0.9269 | 0.9269 | 0.9277 | 0.9260 | | 0.1728 | 2.3 | 1000 | 0.1893 | 0.9263 | 0.9263 | 0.9262 | 0.9265 | 0.9260 | | 0.1628 | 2.53 | 1100 | 0.1926 | 0.9276 | 0.9275 | 0.9275 | 0.9270 | 0.9280 | | 0.1545 | 2.76 | 1200 | 0.1889 | 0.9299 | 0.9294 | 0.9294 | 0.9306 | 0.9281 | | 0.1659 | 2.99 | 1300 | 0.1893 | 0.9263 | 0.9263 | 0.9263 | 0.9263 | 0.9263 | | 0.1433 | 3.22 | 1400 | 0.1952 | 0.9264 | 0.9263 | 0.9262 | 0.9256 | 0.9269 | | 0.1243 | 3.45 | 1500 | 0.1838 | 0.9300 | 0.93 | 0.9300 | 0.9303 | 0.9296 | | 0.1357 | 3.68 | 1600 | 0.1846 | 0.9370 | 0.9356 | 0.9356 | 0.9374 | 0.9338 | | 0.1419 | 3.91 | 1700 | 0.1793 | 0.9339 | 0.9331 | 0.9331 | 0.9345 | 0.9317 | | 0.1205 | 4.14 | 1800 | 0.1896 | 0.9306 | 0.9306 | 0.9306 | 0.9306 | 0.9307 | | 0.1159 | 4.37 | 1900 | 0.1905 | 0.9354 | 0.935 | 0.9350 | 0.9360 | 0.9340 | | 0.1185 | 4.6 | 2000 | 0.1893 | 0.9400 | 0.9387 | 0.9387 | 0.9403 | 0.9371 | | 0.102 | 4.83 | 2100 | 0.1944 | 0.9415 | 0.9406 | 0.9406 | 0.9419 | 0.9393 | | 0.1222 | 5.06 | 2200 | 0.1880 | 0.9390 | 0.9387 | 0.9387 | 0.9394 | 0.9381 | | 0.1006 | 5.29 | 2300 | 0.1964 | 0.9331 | 0.9331 | 0.9331 | 0.9330 | 0.9333 | | 0.108 | 5.52 | 2400 | 0.1901 | 0.9382 | 0.9381 | 0.9381 | 0.9384 | 0.9379 | | 0.1059 | 5.75 | 2500 | 0.1907 | 0.9401 | 0.94 | 0.9400 | 0.9404 | 0.9396 | | 0.1033 | 5.98 | 2600 | 0.1905 | 0.9409 | 0.94 | 0.9400 | 0.9413 | 0.9386 | | 0.0969 | 6.21 | 2700 | 0.1969 | 0.9345 | 0.9344 | 0.9344 | 0.9338 | 0.9349 | | 0.0826 | 6.44 | 2800 | 0.1952 | 0.9407 | 0.9406 | 0.9406 | 0.9410 | 0.9402 | | 0.1055 | 6.67 | 2900 | 0.1967 | 0.9375 | 0.9375 | 0.9375 | 0.9373 | 0.9377 | | 0.0982 | 6.9 | 3000 | 0.2063 | 0.9394 | 0.9381 | 0.9381 | 0.9397 | 0.9364 | | 0.0862 | 7.13 | 3100 | 0.2056 | 0.9414 | 0.9412 | 0.9412 | 0.9418 | 0.9407 | | 0.0811 | 7.36 | 3200 | 0.2054 | 0.9414 | 0.9412 | 0.9412 | 0.9418 | 0.9407 | | 0.0908 | 7.59 | 3300 | 0.2078 | 0.9394 | 0.9394 | 0.9394 | 0.9396 | 0.9392 | | 0.092 | 7.82 | 3400 | 0.2003 | 0.9400 | 0.94 | 0.9400 | 0.9401 | 0.9399 | | 0.0834 | 8.05 | 3500 | 0.2039 | 0.9394 | 0.9394 | 0.9394 | 0.9392 | 0.9396 | | 0.0747 | 8.28 | 3600 | 0.2018 | 0.9413 | 0.9413 | 0.9412 | 0.9415 | 0.9410 | | 0.0898 | 8.51 | 3700 | 0.2009 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | 0.077 | 8.74 | 3800 | 0.2022 | 0.9410 | 0.9406 | 0.9406 | 0.9415 | 0.9398 | | 0.087 | 8.97 | 3900 | 0.2055 | 0.9382 | 0.9381 | 0.9381 | 0.9385 | 0.9377 | | 0.0647 | 9.2 | 4000 | 0.2062 | 0.9401 | 0.94 | 0.9400 | 0.9405 | 0.9395 | | 0.0736 | 9.43 | 4100 | 0.2081 | 0.9389 | 0.9387 | 0.9387 | 0.9393 | 0.9382 | | 0.08 | 9.66 | 4200 | 0.2087 | 0.9395 | 0.9394 | 0.9394 | 0.9399 | 0.9388 | | 0.083 | 9.89 | 4300 | 0.2087 | 0.9395 | 0.9394 | 0.9394 | 0.9398 | 0.9390 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
D3vil/DialoGPT-smaall-harrypottery
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - timm library_name: timm license: bsd-3-clause datasets: - imagenet-1k --- # Model card for dla169 A DLA (Deep Layer Aggregation) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 53.4 - GMACs: 11.6 - Activations (M): 20.2 - Image size: 224 x 224 - **Papers:** - Deep Layer Aggregation: https://arxiv.org/abs/1707.06484 - **Original:** https://github.com/ucbdrive/dla - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('dla169', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'dla169', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 112, 112]) # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'dla169', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{yu2018deep, title={Deep layer aggregation}, author={Yu, Fisher and Wang, Dequan and Shelhamer, Evan and Darrell, Trevor}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, year={2018} } ```
alexandrainst/da-hatespeech-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
866
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: he-ru-lid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # he-ru-lid This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3460 - Precision: 0.9258 - Recall: 0.8674 - F1: 0.8956 - Accuracy: 0.9705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0904 | 1.0 | 563 | 0.0069 | 0.9902 | 0.9959 | 0.9931 | 0.9984 | | 0.0101 | 2.0 | 1126 | 0.0030 | 0.9959 | 0.9973 | 0.9966 | 0.9994 | | 0.0047 | 3.0 | 1689 | 0.0019 | 0.9981 | 0.9983 | 0.9982 | 0.9996 | | 0.0025 | 4.0 | 2252 | 0.0017 | 0.9983 | 0.9981 | 0.9982 | 0.9997 | | 0.002 | 5.0 | 2815 | 0.0016 | 0.9979 | 0.9983 | 0.9981 | 0.9997 | | 0.0012 | 6.0 | 3378 | 0.0020 | 0.9981 | 0.9990 | 0.9986 | 0.9997 | | 0.001 | 7.0 | 3941 | 0.0023 | 0.9986 | 0.9992 | 0.9989 | 0.9998 | | 0.0007 | 8.0 | 4504 | 0.0013 | 0.9990 | 0.9994 | 0.9992 | 0.9998 | | 0.0004 | 9.0 | 5067 | 0.0012 | 0.9994 | 0.9994 | 0.9994 | 0.9999 | | 0.0005 | 10.0 | 5630 | 0.0012 | 0.9994 | 0.9994 | 0.9994 | 0.9999 | | 0.0003 | 11.0 | 6193 | 0.0012 | 0.9994 | 0.9994 | 0.9994 | 0.9999 | | 0.0003 | 12.0 | 6756 | 0.0012 | 0.9994 | 0.9994 | 0.9994 | 0.9999 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
DannyMichael/ECU911
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1616655816727183361/UbQCaB_4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">@[email protected]</div> <div style="text-align: center; font-size: 14px;">@swooshycueb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from @[email protected]. | Data | @[email protected] | | --- | --- | | Tweets downloaded | 3190 | | Retweets | 2756 | | Short tweets | 87 | | Tweets kept | 347 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/afot3kg2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @swooshycueb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oq9tc030) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oq9tc030/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/swooshycueb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- tags: - image-classification - timm library_name: timm license: mit datasets: - imagenet-1k --- # Model card for hrnet_w30.ms_in1k A HRNet image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 37.7 - GMACs: 8.2 - Activations (M): 21.2 - Image size: 224 x 224 - **Papers:** - Deep High-Resolution Representation Learning for Visual Recognition: https://arxiv.org/abs/1908.07919 - **Original:** https://github.com/HRNet/HRNet-Image-Classification - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('hrnet_w30.ms_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hrnet_w30.ms_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hrnet_w30.ms_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{WangSCJDZLMTWLX19, title={Deep High-Resolution Representation Learning for Visual Recognition}, author={Jingdong Wang and Ke Sun and Tianheng Cheng and Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao}, journal = {TPAMI} year={2019} } ```
Davlan/m2m100_418M-yor-eng-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-04-24T21:28:17Z
--- tags: - image-classification - timm library_name: timm license: mit datasets: - imagenet-1k --- # Model card for hrnet_w32.ms_in1k A HRNet image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 41.2 - GMACs: 9.0 - Activations (M): 22.0 - Image size: 224 x 224 - **Papers:** - Deep High-Resolution Representation Learning for Visual Recognition: https://arxiv.org/abs/1908.07919 - **Original:** https://github.com/HRNet/HRNet-Image-Classification - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('hrnet_w32.ms_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hrnet_w32.ms_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hrnet_w32.ms_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{WangSCJDZLMTWLX19, title={Deep High-Resolution Representation Learning for Visual Recognition}, author={Jingdong Wang and Ke Sun and Tianheng Cheng and Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao}, journal = {TPAMI} year={2019} } ```
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: roberta-base-bne-finetuned-tripAdvisor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-tripAdvisor This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7918 | 1.0 | 313 | 1.6232 | | 1.6262 | 2.0 | 626 | 1.5854 | | 1.5706 | 3.0 | 939 | 1.5920 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Davlan/xlm-roberta-base-finetuned-shona
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Davlan/xlm-roberta-base-finetuned-wolof
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Flooow/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/xlm-roberta-base-finetuned-yoruba
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.4627 | | 2.7434 | 2.0 | 500 | 1.7799 | | 2.7434 | 3.0 | 750 | 1.6929 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Davlan/xlm-roberta-base-masakhaner
[ "pytorch", "xlm-roberta", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - Pong-v4 benchmark_name: OpenAI/Gym/Atari task_name: Pong-v4 pipeline_tag: reinforcement-learning model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: OpenAI/Gym/Atari-Pong-v4 type: OpenAI/Gym/Atari-Pong-v4 metrics: - type: mean_reward value: 19.0 +/- 1.87 name: mean_reward --- # Play **Pong-v4** with **DQN** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This is a simple **DQN** implementation to OpenAI/Gym/Atari **Pong-v4** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo). **DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework. ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed pip3 install DI-engine[common_env] ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import DQNAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py")) # Instantiate the agent agent = DQNAgent( env="Pong", exp_name="Pong-v4-DQN", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python # [More Information Needed] ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from ding.bonus import DQNAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = DQNAgent(env="Pong", exp_name="Pong-v4-DQN") # Train the agent return_ = agent.train(step=int(40000000000), collector_env_num=8, evaluator_env_num=8, debug=False) print("-----wandb url is----:", return_.wandb_url) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/Atari", task_name="Pong-v4", algo_name="DQN", wandb_url=return_.wandb_url, github_repo_url="https://github.com/opendilab/DI-engine", github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/dqn.html", github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html", installation_guide="pip3 install DI-engine[common_env]", usage_file_by_git_clone="./dqn/pong_dqn_deploy.py", usage_file_by_huggingface_ding="./dqn/pong_dqn_download.py", train_file="./dqn/pong_dqn.py", repo_id="OpenDILabCommunity/Pong-v4-DQN" ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'env': { 'manager': { 'episode_num': float("inf"), 'max_retry': 1, 'retry_type': 'reset', 'auto_reset': True, 'step_timeout': None, 'reset_timeout': None, 'retry_waiting_time': 0.1, 'cfg_type': 'BaseEnvManagerDict' }, 'stop_value': 20, 'env_id': 'Pong-v4', 'collector_env_num': 8, 'evaluator_env_num': 8, 'n_evaluator_episode': 8, 'fram_stack': 4 }, 'policy': { 'model': { 'encoder_hidden_size_list': [128, 128, 512], 'obs_shape': [4, 84, 84], 'action_shape': 6 }, 'learn': { 'learner': { 'train_iterations': 1000000000, 'dataloader': { 'num_workers': 0 }, 'log_policy': True, 'hook': { 'load_ckpt_before_run': '', 'log_show_after_iter': 100, 'save_ckpt_after_iter': 10000, 'save_ckpt_after_run': True }, 'cfg_type': 'BaseLearnerDict' }, 'update_per_collect': 10, 'batch_size': 32, 'learning_rate': 0.0001, 'target_update_freq': 500, 'target_theta': 0.005, 'ignore_done': False }, 'collect': { 'collector': {}, 'n_sample': 96, 'unroll_len': 1 }, 'eval': { 'evaluator': { 'eval_freq': 1000, 'render': { 'render_freq': -1, 'mode': 'train_iter' }, 'cfg_type': 'InteractionSerialEvaluatorDict', 'n_episode': 8, 'stop_value': 20 } }, 'other': { 'replay_buffer': { 'replay_buffer_size': 100000 }, 'eps': { 'type': 'exp', 'start': 1.0, 'end': 0.05, 'decay': 250000 } }, 'on_policy': False, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'type': 'dqn', 'priority': False, 'priority_IS_weight': False, 'discount_factor': 0.99, 'nstep': 3, 'cfg_type': 'DQNPolicyDict' }, 'exp_name': 'Pong-v4-DQN', 'seed': 0, 'wandb_logger': { 'gradient_logger': True, 'video_logger': True, 'plot_logger': True, 'action_logger': True, 'return_logger': False } } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](https://wandb.ai/ruoyugao/Pong-v4-DQN) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/DI-engine) - **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/dqn.html) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Pong-v4-DQN/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Pong-v4-DQN/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 55703.03 KB - **Last Update Date:** 2023-04-24 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/Atari - **Task:** Pong-v4 - **Gym version:** 0.25.1 - **DI-engine version:** v0.4.7 - **PyTorch version:** 1.7.1 - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html)
Davlan/xlm-roberta-base-ner-hrl
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
760
null
--- license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T - OpenAssistant/oasst1 - fka/awesome-chatgpt-prompts - anon8231489123/ShareGPT_Vicuna_unfiltered - QingyiSi/Alpaca-CoT - RyokoAI/ShareGPT52K language: - en metrics: - cer library_name: diffusers tags: - finance ---
Davlan/xlm-roberta-base-sadilar-ner
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="radius27/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/xlm-roberta-large-masakhaner
[ "pytorch", "tf", "xlm-roberta", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,449
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Yousr/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Dawn576/Dawn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-24T22:14:52Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: eruykhaver15/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Dazai/Ko
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-24T22:18:43Z
--- license: mit tags: - generated_from_trainer model-index: - name: git-base-sgh2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-sgh2 This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 50 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Dbluciferm3737/Idk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevit_s.cvnets_in1k A MobileViT image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 5.6 - GMACs: 2.0 - Activations (M): 19.9 - Image size: 256 x 256 - **Papers:** - MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer: https://arxiv.org/abs/2110.02178 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevit_s.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_s.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 128, 128]) # torch.Size([1, 64, 64, 64]) # torch.Size([1, 96, 32, 32]) # torch.Size([1, 128, 16, 16]) # torch.Size([1, 640, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_s.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 640, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{mehta2022mobilevit, title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author={Sachin Mehta and Mohammad Rastegari}, booktitle={International Conference on Learning Representations}, year={2022} } ```
Dbluciferm3737/U
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-24T22:23:14Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevit_xs.cvnets_in1k A MobileViT image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 2.3 - GMACs: 1.1 - Activations (M): 16.3 - Image size: 256 x 256 - **Papers:** - MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer: https://arxiv.org/abs/2110.02178 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevit_xs.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xs.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 128, 128]) # torch.Size([1, 48, 64, 64]) # torch.Size([1, 64, 32, 32]) # torch.Size([1, 80, 16, 16]) # torch.Size([1, 384, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xs.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 384, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{mehta2022mobilevit, title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author={Sachin Mehta and Mohammad Rastegari}, booktitle={International Conference on Learning Representations}, year={2022} } ```
Ddarkros/Test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-24T22:23:25Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevit_xxs.cvnets_in1k A MobileViT image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 1.3 - GMACs: 0.4 - Activations (M): 8.3 - Image size: 256 x 256 - **Papers:** - MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer: https://arxiv.org/abs/2110.02178 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevit_xxs.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xxs.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 16, 128, 128]) # torch.Size([1, 24, 64, 64]) # torch.Size([1, 48, 32, 32]) # torch.Size([1, 64, 16, 16]) # torch.Size([1, 320, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xxs.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 320, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{mehta2022mobilevit, title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author={Sachin Mehta and Mohammad Rastegari}, booktitle={International Conference on Learning Representations}, year={2022} } ```
DeadBeast/emoBERTTamil
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:tamilmixsentiment", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
2023-04-24T22:23:48Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_075.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 2.9 - GMACs: 1.1 - Activations (M): 12.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_075.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_075.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 48, 128, 128]) # torch.Size([1, 96, 64, 64]) # torch.Size([1, 192, 32, 32]) # torch.Size([1, 288, 16, 16]) # torch.Size([1, 384, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_075.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 384, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DeadBeast/korscm-mBERT
[ "pytorch", "bert", "text-classification", "korean", "dataset:Korean-Sarcasm", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43
2023-04-24T22:23:59Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_100.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 4.9 - GMACs: 1.8 - Activations (M): 16.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_100.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_100.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 128, 128]) # torch.Size([1, 128, 64, 64]) # torch.Size([1, 256, 32, 32]) # torch.Size([1, 384, 16, 16]) # torch.Size([1, 512, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_100.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DeadBeast/marathi-roberta-base
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-24T22:24:12Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_125.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 7.5 - GMACs: 2.9 - Activations (M): 20.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_125.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_125.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 80, 128, 128]) # torch.Size([1, 160, 64, 64]) # torch.Size([1, 320, 32, 32]) # torch.Size([1, 480, 16, 16]) # torch.Size([1, 640, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_125.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 640, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DeadBeast/mbert-base-cased-finetuned-bengali-fakenews
[ "pytorch", "bert", "text-classification", "bengali", "dataset:BanFakeNews", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
2023-04-24T22:24:29Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_150.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 10.6 - GMACs: 4.1 - Activations (M): 24.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_150.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 128, 128]) # torch.Size([1, 192, 64, 64]) # torch.Size([1, 384, 32, 32]) # torch.Size([1, 576, 16, 16]) # torch.Size([1, 768, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 768, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DeadBeast/roberta-base-pretrained-mr-2
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-04-24T22:24:46Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_150.cvnets_in22k_ft_in1k A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 10.6 - GMACs: 4.1 - Activations (M): 24.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_150.cvnets_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in22k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 128, 128]) # torch.Size([1, 192, 64, 64]) # torch.Size([1, 384, 32, 32]) # torch.Size([1, 576, 16, 16]) # torch.Size([1, 768, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 768, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DeadBeast/roberta-base-pretrained-mr
[ "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_150.cvnets_in22k_ft_in1k_384 A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 10.6 - GMACs: 9.2 - Activations (M): 54.3 - Image size: 384 x 384 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_150.cvnets_in22k_ft_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in22k_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 192, 192]) # torch.Size([1, 192, 96, 96]) # torch.Size([1, 384, 48, 48]) # torch.Size([1, 576, 24, 24]) # torch.Size([1, 768, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_150.cvnets_in22k_ft_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 768, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
Dean/summarsiation
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_175.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 14.3 - GMACs: 5.5 - Activations (M): 28.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_175.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 112, 128, 128]) # torch.Size([1, 224, 64, 64]) # torch.Size([1, 448, 32, 32]) # torch.Size([1, 672, 16, 16]) # torch.Size([1, 896, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 896, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DecafNosebleed/ScaraBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_175.cvnets_in22k_ft_in1k A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 14.3 - GMACs: 5.5 - Activations (M): 28.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_175.cvnets_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in22k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 112, 128, 128]) # torch.Size([1, 224, 64, 64]) # torch.Size([1, 448, 32, 32]) # torch.Size([1, 672, 16, 16]) # torch.Size([1, 896, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 896, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
DecafNosebleed/scarabot-model
[ "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_175.cvnets_in22k_ft_in1k_384 A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 14.3 - GMACs: 12.5 - Activations (M): 63.3 - Image size: 384 x 384 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_175.cvnets_in22k_ft_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in22k_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 112, 192, 192]) # torch.Size([1, 224, 96, 96]) # torch.Size([1, 448, 48, 48]) # torch.Size([1, 672, 24, 24]) # torch.Size([1, 896, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_175.cvnets_in22k_ft_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 896, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
Declan/Breitbart_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-04-24T22:26:39Z
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_200.cvnets_in1k A MobileViT-v2 image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 18.4 - GMACs: 7.2 - Activations (M): 32.1 - Image size: 256 x 256 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_200.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_200.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 128, 128]) # torch.Size([1, 256, 64, 64]) # torch.Size([1, 512, 32, 32]) # torch.Size([1, 768, 16, 16]) # torch.Size([1, 1024, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_200.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
Declan/Breitbart_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevitv2_200.cvnets_in22k_ft_in1k_384 A MobileViT-v2 image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 18.4 - GMACs: 16.2 - Activations (M): 72.3 - Image size: 384 x 384 - **Papers:** - Separable Self-attention for Mobile Vision Transformers: https://arxiv.org/abs/2206.02680 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevitv2_200.cvnets_in22k_ft_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_200.cvnets_in22k_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 192, 192]) # torch.Size([1, 256, 96, 96]) # torch.Size([1, 512, 48, 48]) # torch.Size([1, 768, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevitv2_200.cvnets_in22k_ft_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Mehta2022SeparableSF, title={Separable Self-attention for Mobile Vision Transformers}, author={Sachin Mehta and Mohammad Rastegari}, journal={ArXiv}, year={2022}, volume={abs/2206.02680} } ```
Declan/Breitbart_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wiki_auto model-index: - name: bart-base-finetuned-text-simplification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-text-simplification This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the wiki_auto dataset. It achieves the following results on the evaluation set: - Loss: 7.4564 - Sari: 58.8687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sari | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1758 | 1.0 | 23363 | 6.7617 | 58.9526 | | 0.1474 | 2.0 | 46726 | 7.1742 | 58.8800 | | 0.1349 | 3.0 | 70089 | 7.4564 | 58.8687 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
Declan/Breitbart_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: soumya13/GPT2_CleanDesc_MAKE_v1.4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # soumya13/GPT2_CleanDesc_MAKE_v1.4 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0064 - Validation Loss: 0.0004 - Train Accuracy: 1.0 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4560, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.1210 | 0.7138 | 0.8974 | 0 | | 0.5720 | 0.3016 | 0.8974 | 1 | | 0.2713 | 0.0579 | 1.0 | 2 | | 0.1361 | 0.0190 | 1.0 | 3 | | 0.0969 | 0.0049 | 1.0 | 4 | | 0.0698 | 0.0024 | 1.0 | 5 | | 0.0635 | 0.0017 | 1.0 | 6 | | 0.0509 | 0.0012 | 1.0 | 7 | | 0.0292 | 0.0010 | 1.0 | 8 | | 0.0409 | 0.0008 | 1.0 | 9 | | 0.0404 | 0.0007 | 1.0 | 10 | | 0.0174 | 0.0006 | 1.0 | 11 | | 0.0226 | 0.0005 | 1.0 | 12 | | 0.0213 | 0.0004 | 1.0 | 13 | | 0.0064 | 0.0004 | 1.0 | 14 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Declan/Breitbart_modelv7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: fine-tuned-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-roberta This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Declan/CNN_model_v7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2404 - Accuracy: 0.87 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6792 | 1.0 | 50 | 0.6665 | 0.0 | 0.1593 | 0.1117 | 0.4717 | | 0.4419 | 2.0 | 100 | 0.4092 | 0.87 | 0.0 | 0.0 | 0.0 | | 0.2437 | 3.0 | 150 | 0.2404 | 0.87 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Declan/ChicagoTribune_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: harslan/ppo-Huggy2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Declan/ChicagoTribune_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Fillemon/ppo-Huggy2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Declan/FoxNews_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.50 +/- 28.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 model-index: - name: Whisper Tiny En - Abhishek Singh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny En - Abhishek Singh This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5896 - eval_wil: 42.8626 - eval_runtime: 1949.885 - eval_samples_per_second: 5.129 - eval_steps_per_second: 0.641 - epoch: 0.05 - step: 24000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
DeepChem/ChemBERTa-10M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
90
null
--- tags: - generated_from_trainer model-index: - name: flan-t5-large-da-multiwoz2.0_400-ep8-nonstop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz2.0_400-ep8-nonstop This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
DeepChem/ChemBERTa-10M-MTR
[ "pytorch", "roberta", "arxiv:1910.09700", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
708
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1751.77 +/- 169.47 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeepChem/ChemBERTa-77M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,416
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: '04' results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8692810457516339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 04 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3139 - Accuracy: 0.8667 - F1: 0.8693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
DeepESP/gpt2-spanish-medium
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
340
null
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: summarizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarizer This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4858 - Rouge1: 50.2321 - Rouge2: 24.0325 - Rougel: 45.4209 - Rougelsum: 45.4669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.324 | 1.0 | 460 | 1.8943 | 49.6772 | 24.3924 | 45.0788 | 45.1276 | | 1.5791 | 2.0 | 920 | 1.8899 | 49.6626 | 24.2944 | 45.2762 | 45.4145 | | 1.0975 | 3.0 | 1380 | 1.9199 | 49.725 | 24.1088 | 44.9682 | 45.0787 | | 0.7581 | 4.0 | 1840 | 2.1324 | 48.8128 | 22.5742 | 44.3464 | 44.3182 | | 0.5103 | 5.0 | 2300 | 2.3014 | 49.5098 | 23.3978 | 44.8389 | 44.9802 | | 0.3448 | 6.0 | 2760 | 2.3828 | 49.8076 | 23.3584 | 44.7778 | 44.8633 | | 0.2394 | 7.0 | 3220 | 2.4564 | 49.3934 | 23.7093 | 44.486 | 44.6473 | | 0.1763 | 8.0 | 3680 | 2.4858 | 50.2321 | 24.0325 | 45.4209 | 45.4669 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
DeepESP/gpt2-spanish
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,463
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 750.64 +/- 117.88 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeepPavlov/distilrubert-tiny-cased-conversational-v1
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,141
2023-04-25T01:07:57Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Nake/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeepPavlov/rubert-base-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1508.05326", "arxiv:1809.05053", "arxiv:1908.10084", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
46,991
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418292161976668167/Sw9AooPD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gerjon | חריון | غريون | ኼርዮን</div> <div style="text-align: center; font-size: 14px;">@gerjon_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gerjon | חריון | غريون | ኼርዮን. | Data | Gerjon | חריון | غريون | ኼርዮን | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 577 | | Short tweets | 213 | | Tweets kept | 2446 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1irop3rl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gerjon_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dnguf6jz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dnguf6jz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gerjon_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DeepPavlov/rubert-base-cased
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
148,127
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.00 +/- 0.36 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Deniskin/essays_small_2000i
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 --- # CodeGen2 (CodeGen2-1B) ## Model description [CodeGen2](https://github.com/salesforce/CodeGen2) is a family of autoregressive language models for **program synthesis**, introduced in the paper: [CodeGen2: Lessons for Training LLMs on Programming and Natural Languages](https://arxiv.org/abs/2305.02309) by Erik Nijkamp\*, Hiroaki Hayashi\*, Caiming Xiong, Silvio Savarese, Yingbo Zhou. Unlike the original CodeGen model family (i.e., CodeGen1), CodeGen2 is capable of infilling, and supports more programming languages. Four model sizes are released: `1B`, `3.7B`, `7B`, `16B`. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality. ### Causal sampling For regular causal sampling, simply generate completions given the context: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-1B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-1B", trust_remote_code=True, revision="main") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ### Infill sampling For **infill** sampling, we introduce three new special token types: * `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill. * `<sep>`: Seperator token between the suffix and the infilled sample. See below. * `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output. For example, if we want to generate infill for the following cursor position of a function: ```python def hello_world(): | return name ``` we construct an input to the model by 1. Inserting `<mask_1>` token in place of cursor position 2. Append `<sep>` token to indicate the boundary 3. Insert another `<mask_1>` to indicate which mask we want to infill. The final snippet looks as follows: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-1B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-1B", trust_remote_code=True, revision="main") def format(prefix, suffix): return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>" prefix = "def hello_world():\n " suffix = " return name" text = format(prefix, suffix) input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):]) ``` You might want to truncate the model output with `<eom>`. ## Training data This checkpoint is trained on the stricter permissive subset of [the deduplicated version of the Stack dataset (v1.1)](https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (and frameworks) are as follows: `c`, `c++`, `c-sharp`, `dart`, `go`, `java`, `javascript`, `kotlin`, `lua`, `php`, `python`, `ruby`, `rust`, `scala`, `shell`, `sql`, `swift`, `typescript`, `vue`. ## Training procedure CodeGen2 was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The input sequences are formatted in two ways: (1) causal language modeling and (2) file-level span corruption. Please refer to the paper for more details. ## Evaluation results We evaluate our models on HumanEval and HumanEval-Infill. Please refer to the [paper](https://arxiv.org/abs/2305.02309) for more details. ## Intended use and limitations As an autoregressive language model, CodeGen2 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## BibTeX entry and citation info ```bibtex @article{Nijkamp2023codegen2, title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages}, author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo}, journal={arXiv preprint}, year={2023} } ```
DeskDown/MarianMixFT_en-vi
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.12 +/- 15.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeskDown/MarianMix_en-ja-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-04-25T02:08:59Z
--- license: apache-2.0 --- # CodeGen2 (CodeGen2-3.7B) ## Model description [CodeGen2](https://github.com/salesforce/CodeGen2) is a family of autoregressive language models for **program synthesis**, introduced in the paper: [CodeGen2: Lessons for Training LLMs on Programming and Natural Languages](https://arxiv.org/abs/2305.02309) by Erik Nijkamp\*, Hiroaki Hayashi\*, Caiming Xiong, Silvio Savarese, Yingbo Zhou. Unlike the original CodeGen model family (i.e., CodeGen1), CodeGen2 is capable of infilling, and supports more programming languages. Four model sizes are released: `1B`, `3.7B`, `7B`, `16B`. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality. ### Causal sampling For regular causal sampling, simply generate completions given the context: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3_7B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3_7B", trust_remote_code=True, revision="main") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ### Infill sampling For **infill** sampling, we introduce three new special token types: * `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill. * `<sep>`: Seperator token between the suffix and the infilled sample. See below. * `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output. For example, if we want to generate infill for the following cursor position of a function: ```python def hello_world(): | return name ``` we construct an input to the model by 1. Inserting `<mask_1>` token in place of cursor position 2. Append `<sep>` token to indicate the boundary 3. Insert another `<mask_1>` to indicate which mask we want to infill. The final snippet looks as follows: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3_7B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3_7B", trust_remote_code=True, revision="main") def format(prefix, suffix): return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>" prefix = "def hello_world():\n " suffix = " return name" text = format(prefix, suffix) input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):]) ``` You might want to truncate the model output with `<eom>`. ## Training data This checkpoint is trained on the stricter permissive subset of [the deduplicated version of the Stack dataset (v1.1)](https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (and frameworks) are as follows: `c`, `c++`, `c-sharp`, `dart`, `go`, `java`, `javascript`, `kotlin`, `lua`, `php`, `python`, `ruby`, `rust`, `scala`, `shell`, `sql`, `swift`, `typescript`, `vue`. ## Training procedure CodeGen2 was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The input sequences are formatted in two ways: (1) causal language modeling and (2) file-level span corruption. Please refer to the paper for more details. ## Evaluation results We evaluate our models on HumanEval and HumanEval-Infill. Please refer to the [paper](https://arxiv.org/abs/2305.02309) for more details. ## Intended use and limitations As an autoregressive language model, CodeGen2 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## BibTeX entry and citation info ```bibtex @article{Nijkamp2023codegen2, title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages}, author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo}, journal={arXiv preprint}, year={2023} } ```
Devid/DialoGPT-small-Miku
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - HoverLunarLander-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HoverLunarLander-v0 type: HoverLunarLander-v0 metrics: - type: mean_reward value: 907.15 +/- 22.54 name: mean_reward verified: false --- # **PPO** Agent playing **HoverLunarLander-v0** This is a trained model of a **PPO** agent playing **HoverLunarLander-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dkwkk/Da
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ratish/DBERT_ZS_Desc_MAKE_v1.2.2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ratish/DBERT_ZS_Desc_MAKE_v1.2.2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4161 - Validation Loss: 2.2079 - Train Accuracy: 0.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.4161 | 2.2079 | 0.75 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3
Dmitry12/sber
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pokemon-classification model-index: - name: Pokemons_Clasiffication-Santiago-Garcia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pokemons_Clasiffication-Santiago-Garcia This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the pokemon-classification dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-04-25T03:19:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: prueba_random_25-04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prueba_random_25-04 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5796 - Accuracy: 0.8267 - F1: 0.6262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Donghyun/L2_BERT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - alpindale/light-novels --- I am training on this dataset as a test. ~~Well a 6 day test RIP my A6000.~~ Training has stopped do to big problems in the dataset. Needs more cleaning.
Waynehillsdev/Waynehills-STT-doogie-server
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ratish/DBERT_ZS_Desc_MAKE_v1.2.4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ratish/DBERT_ZS_Desc_MAKE_v1.2.4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Train Accuracy: 0.5 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | nan | nan | 0.5 | 0 | | nan | nan | 0.5 | 1 | | nan | nan | 0.5 | 2 | | nan | nan | 0.5 | 3 | | nan | nan | 0.5 | 4 | | nan | nan | 0.5 | 5 | | nan | nan | 0.5 | 6 | | nan | nan | 0.5 | 7 | | nan | nan | 0.5 | 8 | | nan | nan | 0.5 | 9 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3
Doohae/p_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: bigscience-openrail-m datasets: - OpenAssistant/oasst1 language: - aa metrics: - accuracy library_name: adapter-transformers tags: - chemistry ---
Doquey/DialoGPT-small-Luisbot1
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-04-25T03:49:44Z
--- license: openrail datasets: - Ali-fb/martin_valen_dataset language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art ---
DoyyingFace/bert-asian-hate-tweets-asian-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-04-25T03:53:56Z
--- library_name: keras --- ## Model description Autoencoder model trained to compress information from sentinel-2 satellite images using Resnet50 V2 as encoder backbone to extract features. The latent space of the model is given by 1024 neurons which can be used to generate embeddings from the sentinel-2 satellite images. The model was trained using bands 1-12 of the Sentinel-2 satellites and using the top 10 municipalities of Colombia with most dengue cases. The input shape of the model is 224, 224, 12. To extract features you should remove the last layer. ## Intended uses & limitations The model was trained with images of 10 different cities in Colombia, however it may require fine tuning or retraining to learn from other contexts such as countries and other continents. ## Training and evaluation data The model was trained with satellite images of 10 different cities in Colombia extracted from sentinel-2 using 12 bands using an asymmetric autoencoder. Images with information that could result in noise such as black images were filtered prior to training to avoid noise in the data.. The dataset was split into train and test using 80% for train and 20% to test. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-12
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-04-25T03:54:47Z
--- library_name: keras --- ## Model description Autoencoder model trained to compress information from sentinel-2 satellite images using Vision Transformer (ViT) as encoder backbone to extract features. The latent space of the model is given by 1024 neurons which can be used to generate embeddings from the sentinel-2 satellite images. The model was trained using bands 1-12 of the Sentinel-2 satellites and using the top 10 municipalities of Colombia with most dengue cases. The input shape of the model is 224, 224, 12. To extract features you should remove the last layer. The model can be read as (example in jupyer): ``` !git lfs install !git clone https://huggingface.co/MITCriticalData/Sentinel-2_ViT_Autoencoder_12Bands import tensorflow as tf from transformers import TFViTModel model = tf.keras.models.load_model('Sentinel-2_ViT_Autoencoder_12Bands', custom_objects={"TFViTModel": TFViTModel}) ``` You can extract the embeddings removing the last layer using: ``` import tensorflow as tf backbone = tf.keras.Sequential() for layer in model.layers[:-1]: # just exclude last layer from copying backbone.add(layer) ``` ## Intended uses & limitations The model was trained with images of 10 different cities in Colombia, however it may require fine tuning or retraining to learn from other contexts such as countries and other continents. ## Training and evaluation data The model was trained with satellite images of 10 different cities in Colombia extracted from sentinel-2 using 12 bands using an asymmetric autoencoder. Images with information that could result in noise such as black images were filtered prior to training to avoid noise in the data.. The dataset was split into train and test using 80% for train and 20% to test. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
44
2023-04-25T03:55:17Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML). - Provide the model to an app such as **Mochi Diffusion** [Github](https://github.com/godly-devotion/MochiDiffusion) / [Discord](https://discord.gg/x2kartzxGv) to generate images. - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with `CPU & GPU` option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` VAE is embedded into the model. - This model was converted with a `vae-encoder` for use with `image2image`. - This model is `fp16`. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in `CoreML` format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a `safety checker` (for NSFW content).<br> # 2023.4.16 GhostMix-V1.1: Source(s): [CivitAI](https://civitai.com/models/36520/ghostmix)<br> ## UPDATE DETAIL (更新说明) Improve the stability while using GhostMix on charactor, and make the face more like real man. Improve the quality of the model.If you like my model, feel free to upload the generated pictures to share with us. It will help me for the next version of GhostMix, thanks again. 提升了GhostMix在生成人物时的稳定性,使得人脸更逼真。模型质量进一步提升。如果觉得我的模型不错,欢迎上传生成的图片分享,会对我调下一个版本GhostMix有很大的帮助。关于图片复现问题可以看3.11的下文,谢谢。如果生成图片颜色灰暗的,一定要检查VAE,一定要检查VAE,一定要检查VAE,不能自动,推荐动漫用这个kl-f8-anime2-vae 很多用户反映生成的图片颜色不对,大部分原因是没有设置VAE。所以上传了GhostMix-V1.1 BakedVAE(VAE:kl-f8-anime2-vae),如果你不喜欢自己设置VAE,可以试试这个。 Many users said that color of the pics is not right, mainly is because of the VAE .So I upload the GhostMix-V1.1 BakedVAE(VAE:kl-f8-anime2-vae), if you don't like setting the VAE,you can try this model. ## Introduction (中文简介在下面) First of all , I want to thank all the people who use this Checkpoint. And this is my first Checkpoint.All the sample image can be reproduced. This Checkpoint works well on both SFW and NSFW.THE NSFW PART IS VERY GOOD!!! I uploaded this Checkpoint yesterday and from yesterday to today , I am still trying all the possibility of this Checkpoint. So if you try the model and find some good promts , I hope you can upload it and share with me, it will help me for the next version of GhostMix, Thank you agian! Recommend Some Promts: Fractal Art(highly recommend,awsome) (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.2), (1girl:1.3), (fractal art:1.3), Realistic Art-Girl & Flower field ((masterpiece, best quality)), 1girl, flower, solo, dress, holding, sky, cloud, hat, outdoors, bangs, bouquet, rose, expressionless, blush, pink hair, flower field, red flower, pink eyes, white dress, looking at viewer, midium hair, holding flower, small breasts, red rose, holding bouquet, sun hat, white headwear, depth of field, Color Art (flat color:1.3),(colorful:1.3),(masterpiece:1.2), best quality, masterpiece, original, extremely detailed wallpaper, looking at viewer,1girl,solo,floating colorful water Realistic Art-Nude Girl (NSFW-recommend) (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.3), illustration, beautiful detailed eyes, (1girl), (nude),detailed nipples,huge breasts,puffy nipples, oniomania, erotic,beautiful detailed pussy,soft breasts,upper body VAE & Textual Inversion: VAE: kl-f8-anime2 or vae-ft-mse-840000-ema-pruned (anime suggest: kl-f8-anime2) Textual Inversion: ng_deepnegative_v1_75t, easynegative About Image Reproduction: Some user said that they can not reproduce my result.Maybe the setting goes wrong.I just reproduce my cover image. If you want to reproduce my result, Checkpoint Model,Postive Promt,Negative Promt,Textual Inversion,Sampler Steps,Sampler,CFG,Resolution,Seed , ALL the things should be the SAME! Then be careful if you open controlnet or lora ,don't make them influnence your result. ## 中文简介 首先感谢每一个使用这个Checkpoint的人,这是我融的第一个Checkpoint。所有样图自测都可以复现。SFW和NSFW的图都挺漂亮的,NSFW的图非常棒。这个模型昨天上传到今天,我一直在尝试这个模型的可能性。希望使用这个Checkpoint的朋友们,如果你试了,觉得有不错Promts,欢迎上传图分享,让我也了解一下这个Checkpoint的可能性,也可以帮助我调下一个版本GhostMix,再次感谢。 推荐 Prompts: 分型艺术(超级推荐,必出好图) (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.2), (1girl:1.3), (fractal art:1.3), 真实风格-少女与花海 ((masterpiece, best quality)), 1girl, flower, solo, dress, holding, sky, cloud, hat, outdoors, bangs, bouquet, rose, expressionless, blush, pink hair, flower field, red flower, pink eyes, white dress, looking at viewer, midium hair, holding flower, small breasts, red rose, holding bouquet, sun hat, white headwear, depth of field, 色彩艺术 (flat color:1.3),(colorful:1.3),(masterpiece:1.2), best quality, masterpiece, original, extremely detailed wallpaper, looking at viewer,1girl,solo,floating colorful water 裸女 (色图-推荐) (masterpiece, top quality, best quality, official art, beautiful and aesthetic:1.3), illustration, beautiful detailed eyes, (1girl), (nude),detailed nipples,huge breasts,puffy nipples, oniomania, erotic,beautiful detailed pussy,soft breasts,upper body VAE & Textual Inversion: VAE:kl-f8-anime2或者vae-ft-mse-840000-ema-pruned(动画风建议kl-f8-anime2) Textual Inversion:ng_deepnegative_v1_75t,easynegative 关于图片复现: 有同学好像没法复现我的图,可能是设置有点问题,刚刚我才把头图给复现了。注意几个点:Checkpoint 模型,正向Promt,反向Promt,Textual Inversion,迭代步数,迭代方法,CFG,分辨率,随机种子都必须一模一样!然后复现的话,要把controlnet和lora关掉,怕影响复现。<br><br> ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0f04ccf7-711e-4ab2-29ea-11b9b7bdd300/width=450/13607-1015468391-(masterpiece,%20top%20quality,%20best%20quality,%20official%20art,%20beautiful%20and%20aesthetic_1.2),%20(1girl),%20extreme%20detailed,(fractal%20art_1.3).jpeg) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/c0ec8f7d-bb0c-4d17-6658-9443348c6f00/width=450/13538-422090700-(masterpiece,%20top%20quality,%20best%20quality,%20official%20art,%20beautiful%20and%20aesthetic_1.2),%20(1girl),%20extreme%20detailed,(fractal%20art_1.3).jpeg) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6be3bc2c-9fd1-405c-4539-9fe8e4aba600/width=450/14337-3356442641-(masterpiece,%20top%20quality,%20best%20quality,%20official%20art,%20beautiful%20and%20aesthetic_1.2),%20(1girl),%20extreme%20detailed,(fractal%20art_1.3).jpeg)
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 44.30 +/- 25.70 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-75
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b0 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 3.7 - GMACs: 0.6 - Activations (M): 8.0 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b0', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b0', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 56, 56]) # torch.Size([1, 64, 28, 28]) # torch.Size([1, 160, 14, 14]) # torch.Size([1, 256, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b0', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 256, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
DoyyingFace/bert-asian-hate-tweets-asian-unclean-with-clean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b1 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 14.0 - GMACs: 2.1 - Activations (M): 15.4 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b1', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b1', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b1', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
DoyyingFace/bert-asian-hate-tweets-asonam-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b2 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 25.4 - GMACs: 4.0 - Activations (M): 27.5 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b2', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b2', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b2', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b2_li A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 22.6 - GMACs: 3.9 - Activations (M): 27.6 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b2_li', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b2_li', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b2_li', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
DoyyingFace/bert-asian-hate-tweets-concat-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b3 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 45.2 - GMACs: 6.9 - Activations (M): 37.7 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b3', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b3', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b3', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2023-04-25T04:05:04Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b4 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 62.6 - GMACs: 10.1 - Activations (M): 53.7 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b4', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b4', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b4', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
2023-04-25T04:27:07Z
--- datasets: - bigcode/the-stack-smol - EleutherAI/the_pile --- # Cerebras GPT 111M pretraining continuation on source code 15_000 step checkpoint model Source: https://github.com/claysauruswrecks/pretrain-cerebras-gpt-111m ```txt Epoch 0.25/2 Step Training Loss ===================== 500 1.644200 1000 1.552200 1500 1.546600 2000 1.497400 2500 1.523500 3000 1.506100 3500 1.476600 4000 1.427400 4500 1.466000 5000 1.461100 5500 1.436800 6000 1.447200 6500 1.433600 7000 1.416400 7500 1.428600 8000 1.401900 8500 1.373500 9000 1.391300 9500 1.415700 10000 1.393300 10500 1.411500 11000 1.401900 11500 1.378400 12000 1.381700 12500 1.347900 13000 1.357900 13500 1.328000 14000 1.337400 14500 1.346600 15000 1.336100 ```
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2023-04-25T04:05:52Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pvt_v2_b5 A PVT-v2 (Pyramid Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 82.0 - GMACs: 11.8 - Activations (M): 50.9 - Image size: 224 x 224 - **Papers:** - PVT v2: Improved Baselines with Pyramid Vision Transformer: https://arxiv.org/abs/2106.13797 - **Dataset:** ImageNet-1k - **Original:** https://github.com/whai362/PVT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pvt_v2_b5', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b5', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pvt_v2_b5', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{wang2021pvtv2, title={Pvtv2: Improved baselines with pyramid vision transformer}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, journal={Computational Visual Media}, volume={8}, number={3}, pages={1--10}, year={2022}, publisher={Springer} } ```
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2023-04-25T04:09:14Z
--- license: mit tags: - text2text - generated_from_trainer model-index: - name: myQMSum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # myQMSum This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2023-04-25T04:09:14Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: test-bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-bert-finetuned-squad This model was trained from scratch on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
2023-04-25T04:40:11Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.3787 - Mean Iou: 0.1227 - Mean Accuracy: 0.2497 - Overall Accuracy: 0.4933 - Per Category Iou: [0.4048324529178845, 0.64337316188254, 0.6322657802634587, 0.2511476396787684, 0.48378120527905866, 0.18253706975900458, 0.0, 0.30899018119339194, 0.29291542416636274, 0.005528376064905977, nan, 0.0, 0.2744609002708355, nan, 0.0, 0.21667464517214163, 0.6553057150709501, 0.0, nan, 0.4334350513331092, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] - Per Category Accuracy: [0.8073322950297342, 0.9582720693540071, 0.9807933649806296, 0.6554667826404136, 0.6854503724355454, 0.1885361368446619, nan, 0.3185962742673184, 0.4455672794517568, 0.005559525024667415, nan, nan, 0.9543151746334486, nan, 0.0, 0.44257399577167017, 0.9515690310655548, 0.0, nan, 0.597288051031681, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.1174 | 1.0 | 20 | 4.0702 | 0.0310 | 0.1166 | 0.2841 | [0.3224388354104561, 0.3294621176388379, 0.09561590673453345, 0.2462967473155007, 0.00017582726729261175, 0.09533633241941065, nan, 0.0017298833676369695, 0.01224564070176941, 0.0, 0.0, nan, 0.1956190146714261, nan, 0.0, 0.0, 0.0010057326762546515, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8753033027412552, 0.4501565811835246, 0.9988541496153217, 0.872517729252741, 0.0001760092369647559, 0.14912043301759134, nan, 0.0017323282884792808, 0.012444251060589578, 0.0, nan, nan, 0.37072356657527716, nan, 0.0, 0.0, 0.001207754836270453, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.5184 | 2.0 | 40 | 3.8933 | 0.0407 | 0.1336 | 0.3206 | [0.37383568344008566, 0.37167442211269497, 0.10810412254985814, 0.2508101959281853, 0.00105562436662538, 0.12103773073006936, 0.0, 0.002644155437167032, 0.10798062788034019, 0.0, nan, nan, 0.1851476903482847, nan, 0.0, 0.0, 0.18688184044895048, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.856600469241927, 0.5410691439592125, 1.0, 0.890846725261467, 0.0010560554217885355, 0.26314839873703205, nan, 0.002650020611271421, 0.13024040030457956, 0.0, nan, nan, 0.3379127428775778, nan, 0.0, 0.0, 0.25320842697809237, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.3025 | 3.0 | 60 | 3.7870 | 0.0376 | 0.1274 | 0.3158 | [0.38622537202287044, 0.47671470793594384, 0.0760486409215301, 0.24516908212560387, 0.0007007070133764969, 0.06631190928400445, 0.0, 0.0033066421440345927, 0.110758912608599, 0.0, nan, 0.0, 0.14897924391595277, nan, 0.0, 0.0, 0.029027593353638595, 0.0, nan, 1.7812611328820805e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8181720954793688, 0.9093595447688518, 1.0, 0.8928178113228723, 0.0007040369478590236, 0.08189167620832032, nan, 0.0033174332096657048, 0.12467094528445556, 0.0, nan, nan, 0.20833830015496482, nan, 0.0, 0.0, 0.03868491251654099, 0.0, nan, 1.7818324364776735e-05, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.9259 | 4.0 | 80 | 3.5197 | 0.0616 | 0.1581 | 0.3921 | [0.39301797570676356, 0.5080875095953503, 0.1300349796720567, 0.24180945501479523, 0.0027552436821216076, 0.14521274063258796, 0.0, 9.809307070548537e-05, 0.11001124444690225, 0.0, nan, nan, 0.1372328458942632, nan, 0.0, 0.0, 0.6115350914869857, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8157367610720819, 0.8847314250797227, 1.0, 0.9251758896191805, 0.0027809459440431435, 0.1904861038825856, nan, 9.814891152857115e-05, 0.12983792015664092, 0.0, nan, nan, 0.17451424484443914, nan, 0.0, 0.0, 0.934550190090109, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.0015 | 5.0 | 100 | 3.5472 | 0.0622 | 0.1660 | 0.3948 | [0.3788079925284789, 0.4460326905513888, 0.18662837765591825, 0.24146823625926003, 0.0002560677679887607, 0.1122813838278521, 0.0, 0.0071852531004198235, 0.05603109059995142, 0.0, nan, nan, 0.277421227464766, nan, 0.0, 0.0, 0.6513367222417704, 0.0, nan, 0.004423768980953217, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8106455084456863, 0.9768851801638374, 1.0, 0.8919339791387546, 0.00026049367070783876, 0.132271607508414, nan, 0.007307186463302122, 0.06273251386924834, 0.0, nan, nan, 0.512695196090118, nan, 0.0, 0.0, 0.9137032913944843, 0.0, nan, 0.004490217739923737, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.7353 | 6.0 | 120 | 3.4254 | 0.0726 | 0.1719 | 0.4087 | [0.396881822762134, 0.49143073297058226, 0.2888006429348083, 0.20839678016541457, 0.11245626489528929, 0.14135150068774174, nan, 0.0, 0.07425999490465092, 0.0, nan, nan, 0.2926042833384245, nan, 0.0, 0.0, 0.680898424760908, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8529976003155016, 0.8868748687200443, 1.0, 0.9254354276415009, 0.12491023528914798, 0.16687137850872627, nan, 0.0, 0.08560861525073425, 0.0, nan, nan, 0.5138276314221004, nan, 0.0, 0.0, 0.9428731962444076, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.2218 | 7.0 | 140 | 3.3246 | 0.0715 | 0.1819 | 0.4089 | [0.37438857222270183, 0.4546745798724681, 0.31376124795589005, 0.2394415542850217, 0.08730531175485769, 0.1070772655597811, 0.0, 0.04122687795803091, 0.21748561554440338, 0.0, nan, nan, 0.301617681120552, nan, 0.0, 0.0, 0.5781075972327412, 0.0, nan, 0.0009426880575388859, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7923281395872186, 0.9336916878305868, 0.999809024935887, 0.8868764949740813, 0.09692476661175178, 0.12016238159675237, nan, 0.04197828946076988, 0.2573914935276841, 0.0, nan, nan, 0.737334604839671, nan, 0.0, 0.0, 0.9539582851981768, 0.0, nan, 0.0009621895156979438, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 3.1024 | 8.0 | 160 | 3.2958 | 0.0759 | 0.1880 | 0.4149 | [0.38790874392983143, 0.48624641092630433, 0.17343042484634275, 0.2537991442704168, 0.18858899080374547, 0.20130332178124055, 0.0, 0.03761463952040977, 0.25971539786867465, 0.0, nan, nan, 0.2810669133518347, nan, 0.0, 0.0, 0.6130374431025493, 0.0, nan, 1.6886187098953058e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7484163641994701, 0.897372491359392, 1.0, 0.9170530509746705, 0.22205325335473605, 0.2728843551576975, nan, 0.038705023261292035, 0.3541825301860111, 0.0, nan, nan, 0.65192514006437, nan, 0.0, 0.0, 0.9137295469344031, 0.0, nan, 1.7818324364776735e-05, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.4045 | 9.0 | 180 | 3.1764 | 0.0845 | 0.1951 | 0.4355 | [0.3920136560513852, 0.5386990787351282, 0.1854527792113172, 0.2830594479044445, 0.3045856071840984, 0.1232054293918037, 0.0, 0.03517473980825183, 0.20253869579668873, 0.0, nan, nan, 0.31182314610866374, nan, 0.0, 0.000766384778012685, 0.6636472762889483, 0.0, nan, 0.00045300113250283127, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8284214443115, 0.9502043193492333, 1.0, 0.9121077994682978, 0.36583167884650586, 0.1473925262829187, nan, 0.035775278252164186, 0.24525182203850757, 0.0, nan, nan, 0.810019072595065, nan, 0.0, 0.000766384778012685, 0.9464176941334621, 0.0, nan, 0.00046327643348419514, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.7414 | 10.0 | 200 | 3.1859 | 0.0864 | 0.2015 | 0.4335 | [0.39155206747100857, 0.4758578080728026, 0.27848707673355794, 0.2672555367364878, 0.3533632185341139, 0.16176950110503244, 0.0, 0.09402771536267505, 0.25421097368466705, 0.0, nan, nan, 0.3413746180290298, nan, 0.0, 0.011174217408532559, 0.5660811978116902, 0.0, nan, 0.0025317333703266977, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7447889859606203, 0.897148121980561, 0.9991542532874993, 0.8744046408204207, 0.4389811177290584, 0.2478748135040422, nan, 0.10062717154466758, 0.3188186663765909, 0.0, nan, nan, 0.8522767910358803, nan, 0.0, 0.011178646934460888, 0.9601020815392047, 0.0, nan, 0.0026014753572574036, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.7687 | 11.0 | 220 | 3.0832 | 0.0867 | 0.2064 | 0.4448 | [0.39603255431476153, 0.5103800846995771, 0.29924223866215927, 0.26025996235952936, 0.3934474379856346, 0.16387973963257121, 0.0, 0.08204261755245826, 0.25052100471646377, 0.001939369194651424, nan, nan, 0.267440472129358, nan, 0.0, 0.017823763262512178, 0.6516069033354198, 0.0, nan, 0.0011939796518960733, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7919203937532447, 0.9164820790925929, 0.999809024935887, 0.8710797483182637, 0.5186992213351357, 0.18886228791506193, nan, 0.08411852462556191, 0.3229848797998477, 0.001939369194651424, nan, nan, 0.9345273572535463, nan, 0.0, 0.017891120507399577, 0.956610094729988, 0.0, nan, 0.0012651010298991483, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.5657 | 12.0 | 240 | 2.8957 | 0.0941 | 0.2017 | 0.4551 | [0.4237591452181694, 0.5572600006235775, 0.3882691920636434, 0.2261656108425872, 0.358684646539028, 0.1433425854764642, 0.0, 0.05809750422505541, 0.21315143047603394, 0.0, nan, nan, 0.33347994477635645, nan, 0.0, 0.03559725158562368, 0.7428171831488606, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8969294287770522, 0.9385466592831637, 0.9999727178479838, 0.9213249065312392, 0.43895295625114406, 0.15660802886783942, nan, 0.05955185206996055, 0.2539105841401066, 0.0, nan, nan, 0.813416378591012, nan, 0.0, 0.03559725158562368, 0.9398800646936504, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.0154 | 13.0 | 260 | 3.0732 | 0.0907 | 0.2013 | 0.4255 | [0.3843372780795658, 0.4486921236749014, 0.3538079228183014, 0.2864894460499844, 0.33834864440958995, 0.1646883709146187, 0.0, 0.20997390318697443, 0.2526518549791546, 0.012166989894865775, nan, nan, 0.27737450158470506, nan, 0.0, 0.042250338906461814, 0.4677691178703376, 0.0, nan, 0.008104321243193326, 0.0, 0.0, 0.01704869617746753, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7522754668466987, 0.7369054211460979, 0.9905058110983794, 0.7781160345396005, 0.42525239724580743, 0.18043093577599667, nan, 0.23454154643425004, 0.31246600674426195, 0.012166989894865775, nan, nan, 0.9701990702109906, nan, 0.0, 0.04447674418604651, 0.9706830641265307, 0.0, nan, 0.00906952710167136, nan, nan, 0.023648805921512035, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.9364 | 14.0 | 280 | 2.8983 | 0.1055 | 0.2220 | 0.4698 | [0.3993735964473183, 0.5208547508601836, 0.6294287970518557, 0.24886645702433102, 0.5354892722744999, 0.14273000128895244, 0.0, 0.15202734648334815, 0.29472364465793566, 0.001708005852131605, nan, nan, 0.29511079197621215, nan, 0.0, 0.03621458960257341, 0.7360810914541275, 0.0, nan, 0.01697669301467477, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7750646711630115, 0.8924793293742481, 0.9785562285153053, 0.8643387742790806, 0.882615919683465, 0.1613684466187849, nan, 0.15779891251006026, 0.4244751441314043, 0.001708005852131605, nan, nan, 0.9553284062462749, nan, 0.0, 0.036892177589852006, 0.9567361213215989, 0.0, nan, 0.017871779337871065, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.8832 | 15.0 | 300 | 2.8508 | 0.0958 | 0.2001 | 0.4328 | [0.3810518394520422, 0.5128890937242697, 0.5252948276112783, 0.21089140739832277, 0.27637850414511284, 0.15313022130806397, 0.0, 0.1379827787797454, 0.23821267309517685, 0.0, nan, nan, 0.3374834016184131, nan, 0.0, 0.059942467670458965, 0.5767140335504845, 0.0, nan, 0.03884296209320407, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.773977348939081, 0.9456310030743379, 0.98554045943144, 0.7960872889499934, 0.3445556822822062, 0.17617015370736616, nan, 0.143047131107316, 0.2921026868269335, 0.0, nan, nan, 0.886160448205984, nan, 0.0, 0.06112579281183932, 0.953905774118339, 0.0, nan, 0.04361925804497345, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.2669 | 16.0 | 320 | 2.7520 | 0.1136 | 0.2256 | 0.4780 | [0.39524346539243305, 0.5211126014089826, 0.5643199181763239, 0.256258246185724, 0.4881657540034297, 0.16848355551170907, 0.0, 0.19301899048565205, 0.2969788494569231, 0.023081895818447825, nan, nan, 0.3069215175209962, nan, 0.0, 0.09204624738363401, 0.7389955511535486, 0.0, nan, 0.04517719460810882, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7902738135821697, 0.9551881838492238, 0.9934795656681399, 0.8119892537229677, 0.8297216237908165, 0.189618680823011, nan, 0.19831969063463087, 0.3893288371587077, 0.023081895818447825, nan, nan, 0.9474907617117654, nan, 0.0, 0.0976215644820296, 0.9481453086601273, 0.0, nan, 0.046042550158583086, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.5417 | 17.0 | 340 | 2.8571 | 0.1113 | 0.2190 | 0.4604 | [0.3911088876462134, 0.5233546378323423, 0.45777205993643105, 0.20952134963336327, 0.5475121701255444, 0.1685259831507003, 0.0, 0.1850071574593174, 0.30498205333570644, 0.006720768398783731, nan, nan, 0.27526319900709095, nan, 0.0, 0.07301602672735195, 0.7308518818712721, 0.0, nan, 0.022592757589257304, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7542428961986056, 0.9436403215642842, 0.9901784252741856, 0.7738582080653194, 0.752242357678931, 0.17726657645466848, nan, 0.18963841940992873, 0.44735124551289024, 0.00672314654145827, nan, nan, 0.9451364882584337, nan, 0.0, 0.07970401691331924, 0.92331281900481, 0.0, nan, 0.025302020597982967, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.3305 | 18.0 | 360 | 2.7133 | 0.0986 | 0.2178 | 0.4594 | [0.39054152187741353, 0.49710928273071886, 0.360700416296459, 0.22690167609207695, 0.5102102633884467, 0.17306926437028655, 0.0, 0.22993115586641855, 0.22670463675480726, 0.012212609502320872, nan, 0.0, 0.31650966976739625, nan, 0.0, 0.09880838894184939, 0.656811977478246, 0.0, nan, 0.1473427161878991, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7920585371505473, 0.9584487005671294, 0.985731434495553, 0.6993778102005457, 0.770814852363452, 0.18998646820027063, nan, 0.24618200734153858, 0.27624279342978353, 0.01222823313259161, nan, nan, 0.9622720228871141, nan, 0.0, 0.10956659619450317, 0.8085813606671007, 0.0, nan, 0.15911763657745626, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.1114 | 19.0 | 380 | 2.7029 | 0.1186 | 0.2320 | 0.4916 | [0.41882361593126893, 0.6007237088719332, 0.49733565293626114, 0.2644158267845376, 0.49375083645971396, 0.1675545180662796, 0.0, 0.22578725586480825, 0.2772683642493152, 0.005934496213614672, nan, nan, 0.28296695934901256, nan, 0.0, 0.12153405333921093, 0.7389778755112574, 0.0, nan, 0.1730598790291232, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8628703969840177, 0.9486385075139873, 0.9905058110983794, 0.838805844515681, 0.8051929765274082, 0.17483085250338296, nan, 0.22903048505192078, 0.38648972043946483, 0.005940594059405941, nan, nan, 0.9440636547860293, nan, 0.0, 0.14571881606765327, 0.8946732760612489, 0.0, nan, 0.19831795017996506, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.4392 | 20.0 | 400 | 2.6372 | 0.1140 | 0.2175 | 0.4679 | [0.4019144932390702, 0.5393865230869637, 0.6594542702064026, 0.20444056847061642, 0.5573889020784322, 0.16613090047763449, 0.0, 0.20892230576441104, 0.25151381410539325, 0.0, nan, nan, 0.2959051538085235, nan, 0.0, 0.09520808590057445, 0.6692461161559112, 0.0, nan, 0.054843922769413966, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8047253954354748, 0.9469056120987607, 0.9745184700169149, 0.766282503630025, 0.7272842478773286, 0.17716248568751952, nan, 0.2147694482068194, 0.30995322528010444, 0.0, nan, nan, 0.9193288830611515, nan, 0.0, 0.10380549682875265, 0.9582326870969775, 0.0, nan, 0.0574462777520402, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.9001 | 21.0 | 420 | 2.7105 | 0.1137 | 0.2299 | 0.4694 | [0.38898637803639696, 0.5159992216594869, 0.6183041490554645, 0.2040044403254881, 0.613841219078077, 0.18361276012786223, 0.0, 0.1746616611049314, 0.3466117716910673, 0.00876978133376876, nan, nan, 0.29968469148855825, nan, 0.0, 0.08752029063925176, 0.6893339330502466, 0.0, nan, 0.1896838602329451, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.740858583495429, 0.9114600240600356, 0.9777923282588531, 0.7025553973386831, 0.9080950168264831, 0.19531591547829708, nan, 0.18493708654771018, 0.48261720874578484, 0.008771392603177844, nan, nan, 0.946030516152104, nan, 0.0, 0.11968816067653278, 0.9496313722195383, 0.0, nan, 0.22750436548946937, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.1394 | 22.0 | 440 | 2.6370 | 0.1110 | 0.2248 | 0.4634 | [0.3832358128284185, 0.501213991564379, 0.5225299650709451, 0.21098080847302197, 0.5689562522190555, 0.17526723304278974, 0.0, 0.12633116464674912, 0.3281693561218252, 0.017132160442750368, nan, 0.0, 0.2636894454959127, nan, 0.0, 0.0915298147009748, 0.7626024271341147, 0.0, nan, 0.15417253720708027, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7557936672392933, 0.9598474288223949, 0.9836034266382933, 0.7165423923794025, 0.834868133879666, 0.1873980777905, nan, 0.1298804546257582, 0.42629174371804635, 0.0171889353883842, nan, nan, 0.9757122422219573, nan, 0.0, 0.11017441860465116, 0.926579008170724, 0.0, nan, 0.16963044795267454, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.3812 | 23.0 | 460 | 2.5993 | 0.1230 | 0.2329 | 0.4930 | [0.41978619801632694, 0.6603789628349767, 0.5695247118269383, 0.2501789638409802, 0.5765425427392415, 0.15217261331402418, 0.0, 0.16041404525058758, 0.2730738329862762, 0.000617971423914815, nan, nan, 0.2924963951302316, nan, 0.0, 0.19256837227431195, 0.7447586373480609, 0.0, nan, 0.13602317143435538, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8847527567406179, 0.9268842254005232, 0.9840126589185355, 0.843302165388851, 0.8262648023768288, 0.1589604802054058, nan, 0.1657931413540624, 0.3623300337213097, 0.0006192371814501038, nan, nan, 0.9551197997377519, nan, 0.0, 0.23501585623678647, 0.9552500577621879, 0.0, nan, 0.1556430633263248, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.1106 | 24.0 | 480 | 2.6143 | 0.1212 | 0.2299 | 0.4832 | [0.41617448213289965, 0.694932589493259, 0.6030308599689228, 0.25486114157855483, 0.40215491819393173, 0.16049015918289197, 0.0, 0.20352692857629195, 0.23104804955633684, 0.0, nan, nan, 0.33011956887841026, nan, 0.0, 0.2158825782637462, 0.6068395380055557, 0.0, nan, 0.24349133833690392, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8963233803243696, 0.9276671313181463, 0.9846674305669231, 0.8149564046267913, 0.5184598487728636, 0.16868255785711808, nan, 0.22004004475590366, 0.30023931252039593, 0.0, nan, nan, 0.9346763619024914, nan, 0.0, 0.327669133192389, 0.9590203532945452, 0.0, nan, 0.30579808274829834, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.6055 | 25.0 | 500 | 2.5837 | 0.1116 | 0.2337 | 0.4811 | [0.4071272442604167, 0.573446725180143, 0.5465281989084293, 0.21015306061959318, 0.5622922000993618, 0.16260311401043231, 0.0, 0.18511110084538274, 0.3377031060019896, 0.0, nan, 0.0, 0.3563688312291664, nan, 0.0, 0.14258436328287738, 0.7909127023971153, 0.0, nan, 0.19065563551878506, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7972322301914623, 0.9338205808780004, 0.9834942980302286, 0.7460174942656126, 0.8287078105858996, 0.17262412823982512, nan, 0.19664625169306874, 0.49850973566844337, 0.0, nan, nan, 0.914381928716176, nan, 0.0, 0.21707188160676533, 0.9513537356382197, 0.0, nan, 0.23979900930116532, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.8138 | 26.0 | 520 | 2.5150 | 0.1111 | 0.2292 | 0.4668 | [0.3856467298971279, 0.5272076573585065, 0.6509069121411841, 0.2229050035942231, 0.4678055050939648, 0.1536767654192768, 0.0, 0.21663030771638178, 0.31597831093584594, 0.000712811600499647, nan, 0.0, 0.33923459394304656, nan, 0.0, 0.17441672793787996, 0.6289984711854697, 0.0, nan, 0.24998957739824065, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7707933664431863, 0.9550020050029597, 0.9780651497790146, 0.7177909807029973, 0.6200453399794421, 0.16223586967835954, nan, 0.23098855583691577, 0.4253453714782987, 0.0007145044401347351, nan, nan, 0.9393551078793658, nan, 0.0, 0.25702959830866806, 0.9570826944485287, 0.0, nan, 0.3205338369979687, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.5642 | 27.0 | 540 | 2.5477 | 0.1143 | 0.2346 | 0.4776 | [0.3970569893743012, 0.6124790255422286, 0.6096978119756623, 0.2271212392098616, 0.5226016597283981, 0.1647109952194698, 0.0, 0.2517821192084059, 0.2658761508310291, 0.004141959943064916, nan, 0.0, 0.30096132223971217, nan, 0.0, 0.19332495840831154, 0.6325986411475982, 0.0, nan, 0.27383521979468284, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8015391848202688, 0.9409574366514541, 0.9814481366290173, 0.6950568528559704, 0.6743547501372872, 0.1735817632975955, nan, 0.263294270066545, 0.38073534210812576, 0.004178149773740261, nan, nan, 0.9572356657527715, nan, 0.0, 0.30095137420718815, 0.9617036694742591, 0.0, nan, 0.37072805673354475, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.6764 | 28.0 | 560 | 2.5267 | 0.1231 | 0.2413 | 0.4904 | [0.4087355754145139, 0.5789202437460286, 0.6439396666546672, 0.22508415680312738, 0.6139480665262713, 0.1858485788851812, 0.0, 0.19018463189994633, 0.33390874494880146, 0.012603875302228874, nan, 0.0, 0.2899637985356914, nan, 0.0, 0.18274649151143174, 0.744183841323895, 0.0, nan, 0.26605824565482766, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8039589223923763, 0.943797857511123, 0.9760462705298194, 0.7269870441425074, 0.9010476069784142, 0.1986537594115402, nan, 0.196489213434623, 0.46290655933862723, 0.01266374060086421, nan, nan, 0.9571760638931934, nan, 0.0, 0.26910676532769556, 0.9478617488290029, 0.0, nan, 0.3262178824703325, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.6269 | 29.0 | 580 | 2.5166 | 0.1236 | 0.2358 | 0.4964 | [0.4283571035793636, 0.7833780396289377, 0.5731788604983336, 0.2384205814446591, 0.5884487074815219, 0.12893558271879316, 0.0, 0.18282341638804736, 0.29647944766510326, 0.0010969218477039123, nan, 0.0, 0.29561436319431456, nan, 0.0, 0.17349814497716895, 0.7011152098119786, 0.0, nan, 0.18286073813507214, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.900817496975328, 0.9368853711165002, 0.9853222022153107, 0.8163522983144058, 0.7662245314634112, 0.13285451580444815, nan, 0.18864711540349016, 0.4428260633090395, 0.00110237827906502, nan, nan, 0.9420967934199547, nan, 0.0, 0.25705602536997885, 0.9461498876262892, 0.0, nan, 0.2278607319767649, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.3571 | 30.0 | 600 | 2.5011 | 0.1117 | 0.2285 | 0.4803 | [0.42825001780476907, 0.7144554070543855, 0.594070846125912, 0.2195979323718704, 0.40710029629790423, 0.1722614258392139, 0.0, 0.21447968008927742, 0.267834424005567, 0.0, nan, 0.0, 0.3111153209563882, nan, 0.0, 0.20058454566352502, 0.6272501219086222, 0.0, nan, 0.197788735413923, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8842670267307474, 0.947530982069545, 0.9818846510612758, 0.7125160457628664, 0.5281544375448823, 0.1812567225287117, nan, 0.22636083465834364, 0.4144892853257914, 0.0, nan, nan, 0.9298784122064608, nan, 0.0, 0.32283298097251584, 0.952393455019009, 0.0, nan, 0.23014147749545633, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 0.8898 | 31.0 | 620 | 2.4925 | 0.1229 | 0.2479 | 0.4859 | [0.38453219059279664, 0.5401845520700483, 0.583526512879537, 0.25303812960764427, 0.5691787056269983, 0.17931367162899142, 0.0, 0.20931339872393107, 0.32431709491772714, 0.0360631815049521, nan, 0.0, 0.2420696712194688, nan, 0.0, 0.16452991452991453, 0.7516699787912694, 0.0, nan, 0.4325661650891928, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7557602454496234, 0.962458706486662, 0.9820483439733726, 0.6772609619741724, 0.8584885734803362, 0.18572568613164012, nan, 0.21573130753979938, 0.43523332970738604, 0.03632404477561158, nan, nan, 0.9728811538920015, nan, 0.0, 0.2991279069767442, 0.9454252347245269, 0.0, nan, 0.6074979508926981, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.8554 | 32.0 | 640 | 2.4124 | 0.1152 | 0.2347 | 0.4895 | [0.41784698975096635, 0.6236270116775618, 0.5765649001536098, 0.2408113756891067, 0.47049247668456845, 0.17782817851447097, 0.0, 0.24037037896544522, 0.3048080332556262, 0.0, nan, 0.0, 0.3258026032679321, nan, 0.0, 0.2300090889752664, 0.6910879234320494, 0.0, nan, 0.192597424786046, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8485279929769679, 0.9613798239416449, 0.9830577835979702, 0.7896128674742742, 0.6531702783762092, 0.18879983345477255, nan, 0.25415169895765855, 0.4394865658653323, 0.0, nan, nan, 0.911521039456431, nan, 0.0, 0.31432346723044396, 0.9456352790438782, 0.0, nan, 0.22094722212323153, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.531 | 33.0 | 660 | 2.4651 | 0.1191 | 0.2390 | 0.4760 | [0.39153701385133494, 0.5782077909215635, 0.6243705941591138, 0.24196418709115233, 0.4512149121428347, 0.17043708020222234, 0.0, 0.2651381326145945, 0.32550328056071837, 0.0, nan, nan, 0.2871203376538695, nan, 0.0, 0.2216507469997551, 0.6370900254554495, 0.0, nan, 0.33279408040964464, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7727318302440459, 0.9475882678683955, 0.9810661865007911, 0.6914583932492055, 0.6063659020825413, 0.1808403594601159, nan, 0.2857900005888935, 0.47436092679212444, 0.0, nan, nan, 0.9710632971748718, nan, 0.0, 0.3587473572938689, 0.9554443487575879, 0.0, nan, 0.42152809949752323, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.6397 | 34.0 | 680 | 2.4368 | 0.1201 | 0.2431 | 0.4923 | [0.4051782827465234, 0.6269990063555747, 0.6171307973439029, 0.24379354068039732, 0.5517613854141259, 0.1695138404583287, 0.0, 0.2677137774336569, 0.30689398451459204, 0.004865668198074091, nan, 0.0, 0.3115866540749467, nan, 0.0, 0.22601814321559544, 0.6930173093559328, 0.0, nan, 0.2588314729417173, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8142060431051962, 0.9579188069277627, 0.9812571615649043, 0.6986202397570163, 0.7803897548543347, 0.18047951146733285, nan, 0.28506369864358205, 0.4484063961709997, 0.004879044605491477, nan, nan, 0.9537489569674574, nan, 0.0, 0.40229915433403807, 0.9507025982482303, 0.0, nan, 0.32103275008018245, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.1792 | 35.0 | 700 | 2.4285 | 0.1205 | 0.2413 | 0.4780 | [0.38948744342231567, 0.5566054344297919, 0.5765649001536098, 0.2514393678962085, 0.46550480514245707, 0.162687794499628, 0.0, 0.28373013128224994, 0.31100609923622174, 0.004688229364687418, nan, nan, 0.3074931711541939, nan, 0.0, 0.21434575964305344, 0.6346048652063284, 0.0, nan, 0.4221369230562751, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7747928406070288, 0.9659579140331112, 0.9830577835979702, 0.6515807268467533, 0.617933229135865, 0.17298497623260817, nan, 0.30195512631764915, 0.4309800935494398, 0.004715729304889252, nan, nan, 0.9628084396233162, nan, 0.0, 0.35039640591966176, 0.9442594887521267, 0.0, nan, 0.5604397562453227, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.4787 | 36.0 | 720 | 2.4515 | 0.1194 | 0.2425 | 0.4890 | [0.4113750978612166, 0.6364087728473358, 0.5983861575576075, 0.23397175802022466, 0.5050367917957829, 0.20595745243828223, 0.0, 0.25999395362898536, 0.30034761200616256, 0.01487465105929632, nan, 0.0, 0.29284127013277994, nan, 0.0, 0.19729537366548042, 0.6436475461187902, 0.0, nan, 0.358294422220141, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.821888598490672, 0.9178521644484332, 0.9812298794128881, 0.7058311880528335, 0.7045227333530464, 0.2160577356788453, nan, 0.2743262077223564, 0.42200587403459155, 0.015011398047021196, nan, nan, 0.9503814519012993, nan, 0.0, 0.32965116279069767, 0.944107206620597, 0.0, nan, 0.477174726488721, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.8147 | 37.0 | 740 | 2.4441 | 0.1158 | 0.2383 | 0.4828 | [0.41085468275813397, 0.6420068685929713, 0.5483424994682629, 0.23743513852724651, 0.39359206626802523, 0.1783280826434171, 0.0, 0.2577069117840561, 0.28501654563490564, 0.0, nan, 0.0, 0.30141785786674646, nan, 0.0, 0.23114063623600314, 0.6358520443668073, 0.0, nan, 0.39490141460483913, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.843100294334561, 0.9495312112127403, 0.9846947127189393, 0.7112744719804154, 0.5292175333361495, 0.1857950799764061, nan, 0.26911940796576567, 0.4094310888719678, 0.0, nan, nan, 0.9306532363809751, nan, 0.0, 0.35676532769556024, 0.9404156777079964, 0.0, nan, 0.515323758953708, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.6782 | 38.0 | 760 | 2.4618 | 0.1164 | 0.2376 | 0.4780 | [0.40247302581191297, 0.6567331194493559, 0.5834982320692899, 0.21461836209923446, 0.5011055033585244, 0.1852032531191318, 0.0, 0.214209038621097, 0.29984730835751555, 0.0, nan, 0.0, 0.30452149683855695, nan, 0.0, 0.1742091185784118, 0.6577335739570026, 0.0, nan, 0.3464553283387101, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8008729771461802, 0.9273663808741813, 0.9814754187810334, 0.716023316334762, 0.671763894169166, 0.1923181013844072, nan, 0.22425554050605578, 0.450723376482106, 0.0, nan, nan, 0.9314876624150673, nan, 0.0, 0.2994978858350951, 0.9435138314184293, 0.0, nan, 0.4630804319161826, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 2.0493 | 39.0 | 780 | 2.4273 | 0.1193 | 0.2406 | 0.4804 | [0.39113011966025313, 0.5532649258858251, 0.5735195637615995, 0.22719661839711638, 0.5474897444868694, 0.163304944468176, 0.0, 0.2562937332536577, 0.2985886361776369, 0.004619751129535925, nan, 0.0, 0.27936976514668505, nan, 0.0, 0.21796692993920108, 0.7224740512487836, 0.0, nan, 0.29641332895600786, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7820475970847287, 0.9611220378468178, 0.9813390080209526, 0.6605453104285183, 0.7601557329728664, 0.16978591998889697, nan, 0.26099267809119997, 0.43656042641139997, 0.004640876458779899, nan, nan, 0.9532423411610442, nan, 0.0, 0.4054968287526427, 0.9357001827385578, 0.0, nan, 0.3861052706603471, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.528 | 40.0 | 800 | 2.4223 | 0.1190 | 0.2467 | 0.4864 | [0.4000275121316198, 0.6424285709689769, 0.5447625677188948, 0.24184554502938002, 0.5226419704818688, 0.17759600812669168, 0.0, 0.22874094555089933, 0.29546125540969675, 0.005839880360272573, nan, 0.0, 0.2662072380637973, nan, 0.0, 0.18863479964004023, 0.7109472326482217, 0.0, nan, 0.4145272307073955, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7969648558741024, 0.9532738834043041, 0.9821301904294211, 0.6790356408835516, 0.7529182331488756, 0.1862253218139551, nan, 0.2338495966079736, 0.44632872838028936, 0.005872546017488347, nan, nan, 0.9612289903444987, nan, 0.0, 0.37669133192389004, 0.9319823982860383, 0.0, nan, 0.5880581590107267, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.1147 | 41.0 | 820 | 2.4523 | 0.1216 | 0.2464 | 0.4918 | [0.41719996318396596, 0.6943406300053391, 0.6019885507683037, 0.2303088521286264, 0.5133586518163371, 0.19306606421944764, 0.0, 0.23680361276396325, 0.27619909366914436, 0.0054797840399606855, nan, 0.0, 0.2816042771312871, nan, 0.0, 0.1954059531852323, 0.676299564075003, 0.0, nan, 0.4191748881172356, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8382697316675913, 0.9312522675628712, 0.9811753151088558, 0.6861624146856433, 0.7070924682127318, 0.2004441206065022, nan, 0.24549496496083859, 0.4017730882192973, 0.005539110612092137, nan, nan, 0.9512158779353915, nan, 0.0, 0.38982558139534884, 0.9515270222016845, 0.0, nan, 0.5958091301094045, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.389 | 42.0 | 840 | 2.4408 | 0.1214 | 0.2451 | 0.4983 | [0.42000411387824443, 0.7048323978462373, 0.5784504527688868, 0.2374350553867268, 0.525076128304163, 0.1825727246687672, 0.0, 0.277461319559031, 0.28026720222284607, 0.005946441573851838, nan, 0.0, 0.27169019587856547, nan, 0.0, 0.22647413831642005, 0.691480163356056, 0.0, nan, 0.33323460551183326, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8598691202716523, 0.9423561649067196, 0.9811753151088558, 0.6795897896339111, 0.7599515622579873, 0.19019464973456854, nan, 0.2846956402253499, 0.4235287718916567, 0.006001837297131775, nan, nan, 0.9531827393014662, nan, 0.0, 0.4016384778012685, 0.9406782331071856, 0.0, nan, 0.42099354976657993, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.8854 | 43.0 | 860 | 2.4117 | 0.1196 | 0.2406 | 0.4923 | [0.42279232377799075, 0.7628455123652972, 0.6136701083710214, 0.23820060393218542, 0.48205419916271225, 0.1932692371846623, 0.0, 0.23402249341947834, 0.28464851997222734, 0.0033182850346020762, nan, 0.0, 0.2675518172621088, nan, 0.0, 0.19868508703333623, 0.6559283484357911, 0.0, nan, 0.3054876916263055, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8649358635856232, 0.9384511829517462, 0.9810116221967589, 0.706048638828291, 0.6801560145876455, 0.20101315013358315, nan, 0.23996918124178002, 0.4370390514521919, 0.0033411588581538565, nan, nan, 0.9536297532483013, nan, 0.0, 0.36257928118393234, 0.9510334180512088, 0.0, nan, 0.3809914115676562, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.3611 | 44.0 | 880 | 2.4153 | 0.1193 | 0.2450 | 0.4826 | [0.3990232210941397, 0.6397865505244178, 0.6388528580820555, 0.239990731435534, 0.4673849814219907, 0.17024218186232523, 0.0, 0.2607145445322125, 0.2935941542748287, 0.0038997364316066914, nan, 0.0, 0.2559930964595605, nan, 0.0, 0.2013445420075833, 0.6509705671366931, 0.0, nan, 0.4297495817649519, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.7967955188064411, 0.9621293131432718, 0.9809024935886943, 0.6465933880935179, 0.6278953519480702, 0.1751708823427362, nan, 0.2648253930863907, 0.4492983792015664, 0.003946786431220442, nan, nan, 0.9636130647276195, nan, 0.0, 0.4266120507399577, 0.9578020962423072, 0.0, nan, 0.5858843234382238, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.3372 | 45.0 | 900 | 2.4419 | 0.1181 | 0.2410 | 0.4812 | [0.40708381847078773, 0.6721122312644237, 0.6299670614619104, 0.2347693408382429, 0.4112416177266858, 0.1783427168663447, 0.0, 0.2514718451423142, 0.2866822480005146, 0.0033411338212019966, nan, 0.0, 0.2936535290775121, nan, 0.0, 0.19898604069727063, 0.6177287295690683, 0.0, nan, 0.4190206542019493, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8195245639013478, 0.9509729038171437, 0.9809570578927266, 0.6767208423061005, 0.5561047043748856, 0.1855244439818188, nan, 0.2584555287281864, 0.43631023604916785, 0.003361573270729135, nan, nan, 0.9394445106687329, nan, 0.0, 0.37859408033826636, 0.9543888760528472, 0.0, nan, 0.5722354869748049, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.753 | 46.0 | 920 | 2.4205 | 0.1177 | 0.2429 | 0.4824 | [0.40473882534355704, 0.6482018956056415, 0.6140998053079209, 0.23933755959501504, 0.4130986664526034, 0.17498580636542765, 0.0, 0.25812589562791227, 0.2887697143098758, 0.006489651636579509, nan, 0.0, 0.2875773130430051, nan, 0.0, 0.1982000319865075, 0.6327710961695621, 0.0, nan, 0.42543050242596825, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8093910772734059, 0.9552836601806413, 0.9810116221967589, 0.6750443669727345, 0.5796899421281629, 0.18179799451788625, nan, 0.2669601319121371, 0.44574132492113566, 0.006546221632472525, nan, nan, 0.9449874836094886, nan, 0.0, 0.3602536997885835, 0.9473523913545758, 0.0, nan, 0.6202558711378782, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.4707 | 47.0 | 940 | 2.3945 | 0.1201 | 0.2468 | 0.4871 | [0.40138340736872524, 0.6421942523249221, 0.6252086811352254, 0.24799248404817517, 0.45431663221313007, 0.17231617373165461, 0.0, 0.28901877638339735, 0.2949586533418589, 0.005955837666284016, nan, 0.0, 0.27220810565050013, nan, 0.0, 0.2052951388888889, 0.644840174516962, 0.0, nan, 0.426699113076562, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8014923943147307, 0.9569974603295843, 0.980847929284662, 0.6665708012710349, 0.6328376913220406, 0.17655875923805558, nan, 0.297018236067762, 0.44658979658435766, 0.006001837297131775, nan, nan, 0.9545535820717607, nan, 0.0, 0.4125, 0.9507393560041169, 0.0, nan, 0.6154983785324828, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.2562 | 48.0 | 960 | 2.4127 | 0.1231 | 0.2482 | 0.4944 | [0.4087388875880666, 0.656516779692775, 0.6355710395076575, 0.24033432793443238, 0.5054483604447517, 0.17120845108329968, 0.0, 0.2903942730962385, 0.2788900803501917, 0.004057234048308133, nan, 0.0, 0.277376649392501, nan, 0.0, 0.21692594543047866, 0.6834425275630417, 0.0, nan, 0.430534217659035, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8284637785784154, 0.9534123240848593, 0.980493261308452, 0.6649995440548256, 0.7050648418028979, 0.1765726380070088, nan, 0.2988094537031584, 0.4130534102034156, 0.00408288251505563, nan, nan, 0.9490702109905829, nan, 0.0, 0.40277484143763215, 0.9498414165388898, 0.0, nan, 0.6141798225294893, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 1.5191 | 49.0 | 980 | 2.3879 | 0.1220 | 0.2482 | 0.4937 | [0.4092874290582027, 0.6568137981709157, 0.609171452287781, 0.24019953844844588, 0.5005609006751021, 0.1745134838792135, 0.0, 0.28385910393294467, 0.28342461224431126, 0.004584863872082973, nan, 0.0, 0.2781822636820274, nan, 0.0, 0.21456250702010557, 0.6780342836480333, 0.0, nan, 0.4267185311186712, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8243127923014022, 0.9558660658022876, 0.9810661865007911, 0.6731504408639108, 0.6974119601796702, 0.18002845147635405, nan, 0.2931658912902656, 0.4289568149679104, 0.0046204620462046205, nan, nan, 0.9473417570628203, nan, 0.0, 0.40385835095137423, 0.9452624503770296, 0.0, nan, 0.6079077723530879, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | | 0.9441 | 50.0 | 1000 | 2.3787 | 0.1227 | 0.2497 | 0.4933 | [0.4048324529178845, 0.64337316188254, 0.6322657802634587, 0.2511476396787684, 0.48378120527905866, 0.18253706975900458, 0.0, 0.30899018119339194, 0.29291542416636274, 0.005528376064905977, nan, 0.0, 0.2744609002708355, nan, 0.0, 0.21667464517214163, 0.6553057150709501, 0.0, nan, 0.4334350513331092, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | [0.8073322950297342, 0.9582720693540071, 0.9807933649806296, 0.6554667826404136, 0.6854503724355454, 0.1885361368446619, nan, 0.3185962742673184, 0.4455672794517568, 0.005559525024667415, nan, nan, 0.9543151746334486, nan, 0.0, 0.44257399577167017, 0.9515690310655548, 0.0, nan, 0.597288051031681, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan] | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.81 +/- 0.38 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bert-large-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388,769
2023-04-25T04:27:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KigenCHESS/fine_tuned_eng-sw_translation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KigenCHESS/fine_tuned_eng-sw_translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-swc](https://huggingface.co/Helsinki-NLP/opus-mt-en-swc) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6978 - Validation Loss: 0.9321 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 714, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3815 | 1.0589 | 0 | | 0.8703 | 0.9577 | 1 | | 0.6978 | 0.9321 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2023-04-25T04:27:23Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camembert-base
[ "pytorch", "tf", "safetensors", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,440,898
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 679.50 +/- 232.90 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga LiamZ0302 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga LiamZ0302 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga LiamZ0302 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
distilbert-base-german-cased
[ "pytorch", "safetensors", "distilbert", "fill-mask", "de", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43,667
2023-04-25T04:37:10Z
--- license: cc datasets: - laion/OIG - Hello-SimpleAI/HC3 - databricks/databricks-dolly-15k language: - en - th - ja - vi pipeline_tag: text-generation --- # Model Card for WangChanGLM 🐘 - The Multilingual Instruction-Following Model <!-- Provide a longer summary of what this model is. --> WangChanGLM is a multilingual, instruction-finetuned Facebook XGLM-7.5B using open-source, commercially permissible datasets (LAION OIG chip2 and infill_dbpedia, DataBricks Dolly v2, OpenAI TL;DR, and Hello-SimpleAI HC3; about 400k examples), released under CC-BY SA 4.0. The models are trained to perform a subset of instruction-following tasks we found most relevant namely: reading comprehension, brainstorming, and creative writing. We provide the weights for a model finetuned on an English-only dataset ([wangchanglm-7.5B-sft-en](https://huggingface.co/pythainlp/wangchanglm-7.5B-sft-en)) and another checkpoint further finetuned on Google-Translated Thai dataset ([wangchanglm-7.5B-sft-enth](https://huggingface.co/pythainlp/wangchanglm-7.5B-sft-enth)). We perform Vicuna-style evaluation using both humans and ChatGPT (in our case, `gpt-3.5-turbo` since we are still on the waitlist for `gpt-4`) and observe some discrepancies between the two types of annoators. All training and evaluation codes are shared under the [Apache-2.0 license](https://github.com/pythainlp/wangchanglm/blob/main/LICENSE) in our Github, as well as datasets and model weights on [HuggingFace](https://huggingface.co/pythainlp). In a similar manner to [Dolly v2](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm), we use only use open-source, commercially permissive pretrained models and datasets, our models are neither restricted by non-commercial clause like models that use LLaMA as base nor non-compete clause like models that use self-instruct datasets from ChatGPT. See our live demo [here](). - **Developed by:** [PyThaiNLP](https://www.github.com/pythainlp) and [VISTEC-depa AI Research Institute of Thailand](https://huggingface.co/airesearch) - **Model type:** Finetuned [XGLM-7.5B](https://huggingface.co/facebook/xglm-7.5B) - **Language(s) (NLP)**: `en`, `th`, `ja`, `vi` capacibilities evaluated, theoretically all 30 languages of [XGLM-7.5B](https://huggingface.co/facebook/xglm-7.5B) - **License:** [CC-BY SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm) - **Blog:** [Medium](https://link.medium.com/s2MWr3ZXnzb) - **Demo:** [Colab notebook](https://colab.research.google.com/github/pythainlp/WangChanGLM/blob/main/demo/WangChanGLM_v0_1_demo.ipynb) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> Intended to be use as an instruction-following model for reading comprehension, brainstorming and creative writing. ### Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> The model can be finetuned for any typical instruction-following use cases. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> We do not expect the models to perform well in math problems, reasoning, and factfulness. We intentionally filter out training examples from these use cases. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> We noticed similar limitations to other finetuned instruction followers such as math problems, reasoning, and factfulness. Even though the models do not perform on the level that we expect them to be abused, they do contain undesirable biases and toxicity and should be further optimized for your particular use cases. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ``` model_name = "pythainlp/wangchanglm-7.5B-sft-en" model = AutoModelForCausalLM.from_pretrained( model_name, return_dict=True, load_in_8bit=True , device_map="auto", torch_dtype=torch.float16, offload_folder="./", low_cpu_mem_usage=True, ) text = "เล่นหุ้นยังไงให้รวย" tokenizer = AutoTokenizer.from_pretrained(model_name) batch = tokenizer(text, return_tensors="pt") with torch.cuda.amp.autocast(): output_tokens = model.generate( input_ids=batch["input_ids"], max_new_tokens=max_gen_len, # 512 begin_suppress_tokens = exclude_ids, no_repeat_ngram_size=2, #oasst k50 top_k=50, top_p=top_p, # 0.95 typical_p=1., temperature=temperature, # 0.9 # #oasst typical3 # typical_p = 0.3, # temperature = 0.8, # repetition_penalty = 1.2, ) tokenizer.decode(output_tokens[0], skip_special_tokens=True) ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Finetuning datasets are sourced from [LAION OIG chip2 and infill_dbpedia](https://huggingface.co/datasets/laion/OIG) ([Apache-2.0](https://github.com/pythainlp/wangchanglm/blob/main/LICENSE)), [DataBricks Dolly v2](https://github.com/databrickslabs/dolly) ([Apache-2.0](https://github.com/pythainlp/wangchanglm/blob/main/LICENSE)), [OpenAI TL;DR](https://github.com/openai/summarize-from-feedback) ([MIT](https://opensource.org/license/mit/)), and [Hello-SimpleAI HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3) ([CC-BY SA](https://creativecommons.org/licenses/by-sa/4.0/)). ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing See [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm). #### Training Hyperparameters - **Training regime:** LoRA with 4 GPUs. See more details at [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm). ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> We performed automatic evaluation in the style of [Vicuna](https://vicuna.lmsys.org/) and human evaluation. See more details from our [blog](). ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.432 kgCO2eq/kWh. A cumulative of 500 hours of computation was performed on hardware of type Tesla V100-SXM2-32GB (TDP of 300W). Total emissions are estimated to be 64.8 CO2eq of which 0 percents were directly offset. Estimations were conducted using the [MachineLearning Impact calculator](https://mlco2.github.io/impact#compute). ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @software{charin_polpanumas_2023_7878101, author = {Charin Polpanumas and Wannaphong Phatthiyaphaibun and Patomporn Payoungkhamdee and Peerat Limkonchotiwat and Lalita Lowphansirikul and Can Udomcharoenchaikit and Titipat Achakulwisut and Ekapol Chuangsuwanich and Sarana Nutanong}, title = {{WangChanGLM🐘 — The Multilingual Instruction- Following Model}}, month = apr, year = 2023, publisher = {Zenodo}, version = {v0.1}, doi = {10.5281/zenodo.7878101}, url = {https://doi.org/10.5281/zenodo.7878101} } ``` ## Model Card Contact [PyThaiNLP](https://github.com/pythainlp)
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2023-04-25T04:37:20Z
--- license: cc-by-sa-4.0 language: - ja --- # Model card for model ID This is a T5 v1.1 model, pre-trained on a Japanese corpus. ## Model details T5 is a Transformer-based Encoder-Decoder model, now in v1.1, with the following improvements over the original T5. - GEGLU activation in feed-forward hidden layer, rather than ReLU - see https://arxiv.org/abs/2002.05202 . - Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning. - no parameter sharing between embedding and classifier layer - "xl" and "xxl" replace "3B" and "11B". The model shapes are a bit different - larger d_model and smaller num_heads and d_ff. This model is based on T5 v1.1. It was pre-trained on a Japanese corpus. For the Japanese corpus, Japanese Wikipedia and mC4/ja were used. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Retrieva, Inc. - **Model type:** T5 v1.1 - **Language(s) (NLP):** Japanese - **License:** CC-BY-SA 4.0 Although commercial use is permitted, we kindly request that you contact us beforehand. ## Training Details We use T5X (https://github.com/google-research/t5x) for the training of this model, and it has been converted to the Huggingface transformer format. ## Training Data The training data used is - The Japanese part of the multilingual C4(mC4/ja). - Japanese Wikipedia(20220920). #### Preprocessing The following filtering is done - Remove documents that do not use a single hiragana character. This removes English-only documents and documents in Chinese. - Whitelist-style filtering using the top level domain of URL to remove affiliate sites. #### Training Hyperparameters - dropout rate: 0.0 - batch size: 256 - fp32 - input length: 512 - output length: 114 - Otherwise, the default value of T5X (https://github.com/google-research/t5x/blob/main/t5x/examples/t5/t5_1_1/small.gin) is followed, including the following. - optimizer: Adafactor - base_learning_rate: 1.0 - warmup steps: 10000 #### Speeds, Sizes, Times We trained 589824 steps. ## Technical Specifications ### Model Architecture and Objective Model architecture. - T5 v1.1(https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) - Size: Small(~77 million parameters) ### Compute Infrastructure Google Cloud TPU v4-8. #### Software - T5X(https://github.com/google-research/t5x). ## More Information https://note.com/retrieva/n/n7b4186dc5ada (in Japanese) ## Model Card Authors Jiro Nishitoba ## Model Card Contact [email protected]
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: YmYYm/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
xlnet-base-cased
[ "pytorch", "tf", "rust", "xlnet", "text-generation", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1906.08237", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "XLNetLMHeadModel" ], "model_type": "xlnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 250 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
163,098
2023-04-25T05:39:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.63 +/- 5.13 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dotunadegbite/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
3zooze/Dd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-25T06:52:21Z
--- language: en thumbnail: http://www.huggingtweets.com/adrianachechik-andre_yaniv-bunnydelphine/1682405609899/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1595885483220869121/89IGAzok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1625903860547026944/ISdXW5SB_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1346502546668486658/S73iVQ5l_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Andre Yaniv & Belle Delphine & adriana chechik</div> <div style="text-align: center; font-size: 14px;">@adrianachechik-andre_yaniv-bunnydelphine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Andre Yaniv & Belle Delphine & adriana chechik. | Data | Andre Yaniv | Belle Delphine | adriana chechik | | --- | --- | --- | --- | | Tweets downloaded | 293 | 161 | 2292 | | Retweets | 13 | 0 | 269 | | Short tweets | 60 | 14 | 243 | | Tweets kept | 220 | 147 | 1780 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5x27uk2y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adrianachechik-andre_yaniv-bunnydelphine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ku50ngyb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ku50ngyb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adrianachechik-andre_yaniv-bunnydelphine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Akshay-Vs/AI
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-25T06:53:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="numcat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AkaiSnow/Rick_bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - kul-speech-lab/CGN metrics: - wer model-index: - name: Whisper Large CGN results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kul-speech-lab/CGN type: kul-speech-lab/CGN config: cgn-dev.py split: test metrics: - name: Wer type: wer value: 9.6159 --- # Whisper Large CGN This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the kul-speech-lab/CGN dataset. It achieves the following results on the evaluation set: - Loss: 0.23932012915611267 - Wer: 9.615871912312803 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - gradient_accumulation_steps: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2 Whisper large model finetuned on Flemish part of Corpus Gesproken Nederlands (CGN).
Akari/albert-base-v2-finetuned-squad
[ "pytorch", "tensorboard", "albert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased-facebook-election-ads results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-facebook-election-ads This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5924 - Accuracy: 0.6776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Akashpb13/Hausa_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ratish/DBERT_ZS_Desc_MAKE_v1.3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ratish/DBERT_ZS_Desc_MAKE_v1.3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7766 - Validation Loss: 1.6836 - Train Accuracy: 0.7 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1150, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.7766 | 1.6836 | 0.7 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3