| 记得把.gitigore补回来 | |
| **playground/data/** | |
| **/checkpoints/** | |
| **__pycache__** | |
| **/hf_models/** | |
| **/hf_datas/** | |
| 1. 下载仓库 | |
| 2. Install Package | |
| ```Shell | |
| cd /mnt/zhaorunsong/repo_test/VoCo-LLaMA | |
| conda create -n voco python=3.10 -y | |
| conda activate voco | |
| pip install --upgrade pip # enable PEP 660 support | |
| pip install -e . | |
| ``` | |
| 3. Install additional packages for training cases | |
| ``` | |
| pip install -e ".[train]" | |
| ``` | |
| 4. 找到conda环境里的hf代码:`miniconda3/envs/voco/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py` | |
| 把`VoCo-LLaMA/llava/model/language_model/cache_py/modeling_attn_mask_utils.py`文件复制过去(直接覆盖) | |
| ``` | |
| cp VoCo-LLaMA/llava/model/language_model/cache_py/modeling_attn_mask_utils.py /data/miniconda3/envs/voco/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py | |
| ``` | |
| 5. 重新安装deepspeed | |
| ``` | |
| pip install deepspeed==0.15.4 | |
| ``` | |
| 6. 训练 | |
| ``` | |
| bash scripts/finetune_voco_llama.sh | |
| ``` | |
| 7. 评估 | |
| ``` | |
| pip install openpyxl | |
| CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/vqav2.sh | |
| CUDA_VISIBLE_DEVICES=1 bash scripts/eval/mmbench.sh | |
| CUDA_VISIBLE_DEVICES=2 bash scripts/eval/sqa.sh | |
| ``` | |
| 8. 提交结果(只有sqa可以直接出结果,其他两个应该是闭源评测) | |
| ``` | |
| 把VoCo-LLaMA/playground/data/eval/vqav2/answers_upload/llava_vqav2_mscoco_test-dev2015/voco_llava.json提交到https://eval.ai/web/challenges/challenge-page/830/my-submission | |
| 把VoCo-LLaMA/playground/data/eval/mmbench/answers_upload/mmbench_dev_20230712/voco_llama.xlsx提交到https://mmbench.opencompass.org.cn/mmbench-submission | |
| ``` |