|
import datasets |
|
import pyarrow as pa |
|
import pyarrow.parquet as pq |
|
|
|
|
|
DESCRIPTION = "The dataset contains Airbnb data from 80 capitals and major cities all around the world." |
|
|
|
|
|
DATA_DIRS = ["benchmark", "all"] |
|
RESOLUTIONS=["8","9","10"] |
|
|
|
class AirbnbDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig """ |
|
|
|
def __init__(self, data_url, **kwargs): |
|
"""BuilderConfig. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AirbnbDatasetConfig, self).__init__(**kwargs) |
|
self.data_url = data_url |
|
|
|
|
|
class AirbnbDataset(datasets.ArrowBasedBuilder): |
|
BUILDER_CONFIG_CLASS = AirbnbDatasetConfig |
|
DEFAULT_CONFIG_NAME = "8" |
|
|
|
BUILDER_CONFIGS = [ |
|
AirbnbDatasetConfig( |
|
name = res, |
|
description = f"This is the official train test split for Airbnb Datatset in h3 resolution = {res}. Benchmark cities are: Paris, London, Rome, Melbourne, New York City, Amsterdam.", |
|
data_url={ |
|
"train": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_train.parquet", |
|
"test": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_test.parquet" |
|
} |
|
) |
|
for res in RESOLUTIONS |
|
] |
|
|
|
BUILDER_CONFIGS = BUILDER_CONFIGS + [ |
|
AirbnbDatasetConfig( |
|
name="all", |
|
description=f"This is a raw, full version of Airbnb Dataset."+DESCRIPTION, |
|
data_url={"train":f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/all_airbnb.parquet"} |
|
|
|
)] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=self.config.description, |
|
homepage="https://insideairbnb.com/", |
|
citation="", |
|
|
|
features=datasets.Features( |
|
{ "id": datasets.Value(dtype="int64"), |
|
"name": datasets.Value(dtype="string"), |
|
"host_id": datasets.Value(dtype="int64"), |
|
"host_name": datasets.Value(dtype="string"), |
|
"latitude": datasets.Value(dtype="float64"), |
|
"longitude": datasets.Value(dtype="float64"), |
|
"neighbourhood": datasets.Value(dtype="string"), |
|
"room_type":datasets.Value(dtype="string"), |
|
"price":datasets.Value(dtype="float64"), |
|
"minimum_nights":datasets.Value(dtype="int64"), |
|
"number_of_reviews":datasets.Value(dtype="int64"), |
|
"last_review": datasets.Value(dtype="string"), |
|
"reviews_per_month":datasets.Value(dtype="float64"), |
|
"calculated_host_listings_count":datasets.Value(dtype="int64"), |
|
"availability_365":datasets.Value(dtype="int64"), |
|
"number_of_reviews_ltm":datasets.Value(dtype="int64"), |
|
"city":datasets.Value(dtype="string"), |
|
"date":datasets.Value(dtype="string"), |
|
|
|
} |
|
), |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.download.DownloadManager): |
|
downloaded_files = dl_manager.download(self.config.data_url) |
|
if self.config.name == "all": |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]}) |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files["test"]}) |
|
] |
|
|
|
def _generate_tables(self, filepath): |
|
with open(filepath, mode="rb") as f: |
|
parquet_file = pq.ParquetFile(source=filepath) |
|
for batch_idx, record_batch in enumerate(parquet_file.iter_batches()): |
|
df = record_batch.to_pandas() |
|
df.reset_index(drop=True, inplace=True) |
|
pa_table = pa.Table.from_pandas(df) |
|
yield f"{batch_idx}", pa_table |