File size: 4,608 Bytes
84d02c4
 
 
 
 
26f8116
412792d
 
 
806ae69
84d02c4
 
 
 
412792d
84d02c4
 
 
 
 
412792d
a555323
84d02c4
 
 
806ae69
412792d
 
 
f477d6e
28d6f06
412792d
806ae69
 
412792d
 
f65a8a4
412792d
84d02c4
28d6f06
 
 
 
 
 
 
 
84d02c4
 
 
412792d
26f8116
84d02c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412792d
28d6f06
 
 
412792d
28d6f06
 
 
 
 
84d02c4
 
 
 
 
412792d
 
 
84d02c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import datasets
import pyarrow as pa
import pyarrow.parquet as pq


DESCRIPTION = "The dataset contains Airbnb data from 80 capitals and major cities all around the world."
# DATA_URL="https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/all_airbnb.parquet"

DATA_DIRS = ["benchmark", "all"]
RESOLUTIONS=["8","9","10"]

class AirbnbDatasetConfig(datasets.BuilderConfig):
    """BuilderConfig """

    def __init__(self, data_url, **kwargs):
        """BuilderConfig.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(AirbnbDatasetConfig, self).__init__(**kwargs)
        self.data_url = data_url
        

class AirbnbDataset(datasets.ArrowBasedBuilder):
    BUILDER_CONFIG_CLASS = AirbnbDatasetConfig
    DEFAULT_CONFIG_NAME = "8"

    BUILDER_CONFIGS = [
        AirbnbDatasetConfig(
            name = res,
            description = f"This is the official train test split for Airbnb Datatset in h3 resolution = {res}. Benchmark cities are: Paris, London, Rome, Melbourne, New York City, Amsterdam.",
            data_url={
                "train": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_train.parquet",
                "test": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_test.parquet"
            }
        )
        for res in RESOLUTIONS
    ]

    BUILDER_CONFIGS = BUILDER_CONFIGS + [
        AirbnbDatasetConfig(
            name="all",
            description=f"This is a raw, full version of Airbnb Dataset."+DESCRIPTION,
            data_url={"train":f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/all_airbnb.parquet"}

        )]
    
    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=self.config.description,
            homepage="https://insideairbnb.com/",
            citation="",
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {   "id": datasets.Value(dtype="int64"),
                    "name": datasets.Value(dtype="string"),
                    "host_id": datasets.Value(dtype="int64"),
                    "host_name": datasets.Value(dtype="string"),
                    "latitude": datasets.Value(dtype="float64"),
                    "longitude": datasets.Value(dtype="float64"),
                    "neighbourhood": datasets.Value(dtype="string"),
                    "room_type":datasets.Value(dtype="string"),
                    "price":datasets.Value(dtype="float64"),
                    "minimum_nights":datasets.Value(dtype="int64"),
                    "number_of_reviews":datasets.Value(dtype="int64"),
                    "last_review": datasets.Value(dtype="string"),
                    "reviews_per_month":datasets.Value(dtype="float64"),
                    "calculated_host_listings_count":datasets.Value(dtype="int64"),
                    "availability_365":datasets.Value(dtype="int64"),
                    "number_of_reviews_ltm":datasets.Value(dtype="int64"),
                    "city":datasets.Value(dtype="string"),
                    "date":datasets.Value(dtype="string"),
                    # These are the features of your dataset like images, labels ...
                }
            ),
        )


    def _split_generators(self, dl_manager: datasets.download.DownloadManager):
        downloaded_files = dl_manager.download(self.config.data_url)
        if self.config.name == "all":
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]})
            ]
        else:
            return [
                    datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]}),
                    datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files["test"]})
                ]
    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_tables(self, filepath):
        with open(filepath, mode="rb") as f:
            parquet_file = pq.ParquetFile(source=filepath)
            for batch_idx, record_batch in enumerate(parquet_file.iter_batches()):
                df = record_batch.to_pandas()
                df.reset_index(drop=True, inplace=True)
                pa_table = pa.Table.from_pandas(df)
                yield f"{batch_idx}", pa_table