path
stringlengths
9
117
type
stringclasses
2 values
project
stringclasses
10 values
commit_hash
stringlengths
40
40
commit_message
stringlengths
1
137
ground_truth
stringlengths
0
2.74k
main_code
stringlengths
102
3.37k
context
stringlengths
0
14.7k
bitsandbytes.diagnostics.cuda/find_cuda_libraries_in_path_list
Modified
bitsandbytes-foundation~bitsandbytes
0c64a0d8c377734377fa591226e3b2c65fa8aaf8
Merge pull request #1148 from stevhliu/fsdp-qlora
<17>:<add> except (OSError, PermissionError): <del> except PermissionError:
# module: bitsandbytes.diagnostics.cuda def find_cuda_libraries_in_path_list(paths_list_candidate: str) -> Iterable[Path]: <0> for dir_string in paths_list_candidate.split(os.pathsep): <1> if not dir_string: <2> continue <3> if os.sep not in dir_string: <4> continue <5> try: <6> dir = Path(dir_string) <7> try: <8> if not dir.exists(): <9> logger.warning(f"The directory listed in your path is found to be non-existent: {dir}") <10> continue <11> except OSError: # Assume an esoteric error trying to poke at the directory <12> pass <13> for lib_pattern in CUDA_RUNTIME_LIB_PATTERNS: <14> for pth in dir.glob(lib_pattern): <15> if pth.is_file(): <16> yield pth <17> except PermissionError: <18> pass <19>
===========unchanged ref 0=========== at: bitsandbytes.diagnostics.cuda CUDA_RUNTIME_LIB_PATTERNS = ( "cudart64*.dll", # Windows "libcudart*.so*", # libcudart.so, libcudart.so.11.0, libcudart.so.12.0, libcudart.so.12.1, libcudart.so.12.2 etc. "nvcuda*.dll", # Windows ) logger = logging.getLogger(__name__) at: logging.Logger warning(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: pathlib Path() at: pathlib.Path __slots__ = () glob(pattern: str) -> Generator[_P, None, None] exists() -> bool is_file() -> bool at: typing Iterable = _alias(collections.abc.Iterable, 1) ===========changed ref 0=========== # module: bitsandbytes.functional def get_4bit_type(typename, device=None, blocksize=64): if device is None: device = "cuda" data = None if typename == "nf4": """ Implements the NF4 data type. Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that is normalized into the range [-1, 1]. For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314) Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236. """ data = [ -1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0, 0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0, ] elif typename == "fp4": # 0b000 = 0 # 0b001 = 0.0625 # 0b010 = 8 # 0b011 = 12 # 0b100 = 4 # 0b101 = 6 # 0b110 = 2 # 0</s> ===========changed ref 1=========== # module: bitsandbytes.functional def get_4bit_type(typename, device=None, blocksize=64): # offset: 1 <s> = 12 # 0b100 = 4 # 0b101 = 6 # 0b110 = 2 # 0b111 = 3 # can also be created with bnb.functional.create_fp8_map(signed=True, exponent_bits=2, precision_bits=1, total_bits=4) data = [0, 0.0625, 8.0, 12.0, 4.0, 6.0, 2.0, 3.0, -0, -0.0625, -8.0, -12.0, -4.0, -6.0, -2.0, -3.0] elif typename == "int4": data = [7, 6, 5, 4, 3, 2, 1, 0, -0, -1, -2, -3, -4, -5, -6, -7] elif typename == "af4": # Taken from: NF4 Isn't Information Theoretically Optimal (and that's Good) # https://arxiv.org/abs/2306.06965 if blocksize == 64: data = [ -1.0, -0.69441008, -0.51243739, -0.3736951, -0.25607552, -0.14982478, -0.04934812, 0.0, 0.04273164, 0.12934483, 0.21961274, 0.31675666, 0.42563882, 0.55496234, 0.72424863, 1.0, ][::-1] else: raise NotImplementedError("4-bit AbnormalFloats currently only</s> ===========changed ref 2=========== # module: bitsandbytes.functional def get_4bit_type(typename, device=None, blocksize=64): # offset: 2 <s> 64.") if data is None: raise NotImplementedError(f"Typename {typename} not supported") + data = torch.tensor(data, device=device) - data = Tensor(data) + data.div_(data.abs().max()) - data /= data.abs().max() + assert data.numel() == 16 + return data - return data.to(device)
bitsandbytes.nn.modules/maybe_rearrange_weight
Modified
bitsandbytes-foundation~bitsandbytes
7449d713eb65caa186ed0f8d6c763b58bb3e61f9
[`Core`] Change 8-bit serialization weight format format (#1164)
<6>:<add> if isinstance(weight_format, torch.Tensor): <add> weight_format = weight_format.item() <add> <add> # For new weights format storage type, we explicitly check <add> # if weights_format is on the mapping <add> if isinstance(weight_format, int) and weight_format not in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: <add> raise ValueError(f"Expected supported weight format - got {weight_format}") <add> elif isinstance(weight_format, int) and weight_format in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: <add> weight_format = INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weight_format] <add>
# module: bitsandbytes.nn.modules def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): <0> weight = state_dict.get(f"{prefix}weight") <1> if weight is None: <2> # if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing <3> return <4> weight_format = state_dict.pop(f"{prefix}weight_format", "row") <5> <6> if weight_format != "row": <7> tile_indices = get_tile_inds(weight_format, weight.device) <8> state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices) <9>
===========unchanged ref 0=========== at: bitsandbytes.nn.modules.Int8Params.to new_param = Int8Params( super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights, ) ===========changed ref 0=========== # module: bitsandbytes.utils + LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING = {"row": 0, "col32": 1, "col_turing": 2, "col_ampere": 3} + INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING = {val: name for (name, val) in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING.items()} -
bitsandbytes.nn.modules/Linear8bitLt._save_to_state_dict
Modified
bitsandbytes-foundation~bitsandbytes
7449d713eb65caa186ed0f8d6c763b58bb3e61f9
[`Core`] Change 8-bit serialization weight format format (#1164)
<18>:<add> destination[format_name] = torch.tensor(0, dtype=torch.uint8) <del> destination[format_name] = "row" <21>:<add> destination[format_name] = torch.tensor(0, dtype=torch.uint8) <del> destination[format_name] = "row" <24>:<add> weights_format = self.state.formatB <del> destination[format_name] = self.state.formatB <25>:<add> # At this point `weights_format` is an str <add> if weights_format not in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: <add> raise ValueError(f"Unrecognized weights format {weights_format}")
# module: bitsandbytes.nn.modules class Linear8bitLt(nn.Linear): def _save_to_state_dict(self, destination, prefix, keep_vars): <0> super()._save_to_state_dict(destination, prefix, keep_vars) <1> <2> # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data <3> scb_name = "SCB" <4> <5> # case 1: .cuda was called, SCB is in self.weight <6> param_from_weight = getattr(self.weight, scb_name) <7> # case 2: self.init_8bit_state was called, SCB is in self.state <8> param_from_state = getattr(self.state, scb_name) <9> # case 3: SCB is in self.state, weight layout reordered after first forward() <10> layout_reordered = self.state.CxB is not None <11> <12> key_name = prefix + f"{scb_name}" <13> format_name = prefix + "weight_format" <14> <15> if not self.state.has_fp16_weights: <16> if param_from_weight is not None: <17> destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach() <18> destination[format_name] = "row" <19> elif param_from_state is not None and not layout_reordered: <20> destination[key_name] = param_from_state if keep_vars else param_from_state.detach() <21> destination[format_name] = "row" <22> elif param_from_state is not None: <23> destination[key_name] = param_from_state if keep_vars else param_from_state.detach() <24> destination[format_name] = self.state.formatB <25>
===========unchanged ref 0=========== at: bitsandbytes.autograd._functions MatmulLtState(_tile_indices: Optional[torch.Tensor]=None, force_no_igemmlt: bool=False) at: bitsandbytes.autograd._functions.MatmulLtState _tile_indices: Optional[torch.Tensor] = None force_no_igemmlt: bool = False CB = None CxB = None SB = None SCB = None CxBt = None SBt = None CBt = None subB = None outlier_pool = None has_accumulated_gradients = False threshold = 0.0 idx = None is_training = True has_fp16_weights = True memory_efficient_backward = False use_pool = False formatB = F.get_special_format_str() at: bitsandbytes.autograd._functions.MatmulLtState.reset_grads self.CxB = None at: bitsandbytes.nn.modules Int8Params(data: Tensor=..., requires_grad: builtins.bool=...) maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) at: bitsandbytes.nn.modules.Int8Params.cuda self.data = CB at: torch.nn.modules.linear.Linear __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor __init__(in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None at: torch.nn.modules.module.Module dump_patches: bool = False _version: int = 1 training: bool _parameters: Dict[str, Optional[Parameter]] ===========unchanged ref 1=========== _buffers: Dict[str, Optional[Tensor]] _non_persistent_buffers_set: Set[str] _backward_pre_hooks: Dict[int, Callable] _backward_hooks: Dict[int, Callable] _is_full_backward_hook: Optional[bool] _forward_hooks: Dict[int, Callable] _forward_hooks_with_kwargs: Dict[int, bool] _forward_hooks_always_called: Dict[int, bool] _forward_pre_hooks: Dict[int, Callable] _forward_pre_hooks_with_kwargs: Dict[int, bool] _state_dict_hooks: Dict[int, Callable] _load_state_dict_pre_hooks: Dict[int, Callable] _state_dict_pre_hooks: Dict[int, Callable] _load_state_dict_post_hooks: Dict[int, Callable] _modules: Dict[str, Optional['Module']] call_super_init: bool = False _compiled_call_impl : Optional[Callable] = None forward: Callable[..., Any] = _forward_unimplemented __call__ : Callable[..., Any] = _wrapped_call_impl _save_to_state_dict(self, destination, prefix, keep_vars) _save_to_state_dict(destination, prefix, keep_vars) T_destination = TypeVar('T_destination', bound=Dict[str, Any]) _register_load_state_dict_pre_hook(hook, with_module=False) ===========changed ref 0=========== # module: bitsandbytes.nn.modules def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): weight = state_dict.get(f"{prefix}weight") if weight is None: # if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing return weight_format = state_dict.pop(f"{prefix}weight_format", "row") + if isinstance(weight_format, torch.Tensor): + weight_format = weight_format.item() + + # For new weights format storage type, we explicitly check + # if weights_format is on the mapping + if isinstance(weight_format, int) and weight_format not in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: + raise ValueError(f"Expected supported weight format - got {weight_format}") + elif isinstance(weight_format, int) and weight_format in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: + weight_format = INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weight_format] + if weight_format != "row": tile_indices = get_tile_inds(weight_format, weight.device) state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices) ===========changed ref 1=========== # module: bitsandbytes.utils + LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING = {"row": 0, "col32": 1, "col_turing": 2, "col_ampere": 3} + INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING = {val: name for (name, val) in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING.items()} -
bitsandbytes.nn.modules/Params4bit.__getstate__
Modified
bitsandbytes-foundation~bitsandbytes
1f2ca43ae5f3b453ff5fed73a17c661dc4fbbcb3
Merge pull request #1222 from EtienneDosSantos/main
<0>:<add> state = self.__dict__.copy() <del> state = self.__dict__
# module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def __getstate__(self): <0> state = self.__dict__ <1> state["data"] = self.data <2> state["requires_grad"] = self.requires_grad <3> return state <4>
===========unchanged ref 0=========== at: bitsandbytes.nn.modules.Params4bit.__setstate__ self.requires_grad = state["requires_grad"] self.data = state["data"] at: bitsandbytes.nn.modules.Params4bit._quantize self.data = w_4bit
bitsandbytes.nn.modules/Int8Params.__new__
Modified
bitsandbytes-foundation~bitsandbytes
1f2ca43ae5f3b453ff5fed73a17c661dc4fbbcb3
Merge pull request #1222 from EtienneDosSantos/main
<0>:<del> cls.has_fp16_weights = has_fp16_weights <1>:<del> cls.CB = None <2>:<del> cls.SCB = None <6>:<add> obj.CB = CB <add> obj.SCB = SCB <add> obj.has_fp16_weights = has_fp16_weights <del> obj.CB, obj.SCB = cls.CB, cls.SCB
# module: bitsandbytes.nn.modules class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): <0> cls.has_fp16_weights = has_fp16_weights <1> cls.CB = None <2> cls.SCB = None <3> if data is None: <4> data = torch.empty(0) <5> obj = torch.Tensor._make_subclass(cls, data, requires_grad) <6> obj.CB, obj.SCB = cls.CB, cls.SCB <7> return obj <8>
===========unchanged ref 0=========== at: torch._C._VariableFunctions empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor ===========changed ref 0=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def __getstate__(self): + state = self.__dict__.copy() - state = self.__dict__ state["data"] = self.data state["requires_grad"] = self.requires_grad return state
tests.test_linear4bit/test_deepcopy_param
Modified
bitsandbytes-foundation~bitsandbytes
1f2ca43ae5f3b453ff5fed73a17c661dc4fbbcb3
Merge pull request #1222 from EtienneDosSantos/main
<2>:<add> dict_keys_before = set(param.__dict__.keys()) <3>:<add> dict_keys_after = set(param.__dict__.keys()) <add> dict_keys_copy = set(copy_param.__dict__.keys()) <add>
# module: tests.test_linear4bit def test_deepcopy_param(): <0> tensor = torch.tensor([1.0, 2.0, 3.0, 4.0]) <1> param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0) <2> copy_param = copy.deepcopy(param) <3> assert param.quant_state is not copy_param.quant_state <4> assert param.data.data_ptr() != copy_param.data.data_ptr() <5>
===========unchanged ref 0=========== at: bitsandbytes.nn.modules Params4bit(data: Tensor=..., requires_grad: builtins.bool=...) at: bitsandbytes.nn.modules.Params4bit cuda(device: Optional[Union[int, device, str]]=None, non_blocking: bool=False) at: copy deepcopy(x: _T, memo: Optional[Dict[int, Any]]=..., _nil: Any=...) -> _T at: torch._C._VariableFunctions tensor(data: Any, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor ===========changed ref 0=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def __getstate__(self): + state = self.__dict__.copy() - state = self.__dict__ state["data"] = self.data state["requires_grad"] = self.requires_grad return state ===========changed ref 1=========== # module: tests.test_linear8bitlt + def test_linear8bit_copy_param(linear8bit): + shallow_copy = copy.copy(linear8bit) + assert linear8bit.weight is shallow_copy.weight + assert linear8bit.bias is shallow_copy.bias + assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr() + ===========changed ref 2=========== # module: bitsandbytes.nn.modules class Int8Params(torch.nn.Parameter): + def __deepcopy__(self, memo): + # adjust this if new arguments are added to the constructor + new_instance = type(self).__new__( + type(self), + data=copy.deepcopy(self.data, memo), + requires_grad=self.requires_grad, + has_fp16_weights=self.has_fp16_weights, + CB=copy.deepcopy(self.CB, memo), + SCB=copy.deepcopy(self.SCB, memo), + ) + return new_instance + ===========changed ref 3=========== # module: bitsandbytes.nn.modules class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): - cls.has_fp16_weights = has_fp16_weights - cls.CB = None - cls.SCB = None if data is None: data = torch.empty(0) obj = torch.Tensor._make_subclass(cls, data, requires_grad) + obj.CB = CB + obj.SCB = SCB + obj.has_fp16_weights = has_fp16_weights - obj.CB, obj.SCB = cls.CB, cls.SCB return obj ===========changed ref 4=========== # module: tests.test_linear8bitlt + @pytest.fixture + def linear8bit(): + linear = torch.nn.Linear(32, 96) + linear_custom = Linear8bitLt( + linear.in_features, + linear.out_features, + linear.bias is not None, + has_fp16_weights=False, + threshold=6.0, + ) + linear_custom.weight = bnb.nn.Int8Params( + linear.weight.data.clone(), + requires_grad=False, + has_fp16_weights=False, + ) + linear_custom.bias = linear.bias + linear_custom = linear_custom.cuda() + return linear_custom + ===========changed ref 5=========== # module: tests.test_linear8bitlt + def test_linear8bit_serialization(linear8bit): + serialized = pickle.dumps(linear8bit) + deserialized = pickle.loads(serialized) + assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr() + assert torch.allclose(linear8bit.weight.data, deserialized.weight.data) + assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr() + assert torch.allclose(linear8bit.bias.data, deserialized.bias.data) + assert linear8bit.state == deserialized.state + + # check for a bug where SCB and CB were not copied + assert (linear8bit.weight.SCB == deserialized.weight.SCB).all() + assert (linear8bit.weight.CB == deserialized.weight.CB).all() + ===========changed ref 6=========== # module: tests.test_linear8bitlt + def test_linear8bit_deepcopy_param(linear8bit): + deep_copy = copy.deepcopy(linear8bit) + assert linear8bit.weight is not deep_copy.weight + assert linear8bit.bias is not deep_copy.bias + assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr() + assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data) + assert linear8bit.state == deep_copy.state + + # check for a bug where SCB and CB were not copied + assert deep_copy.weight.SCB is not None + assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all() + assert deep_copy.weight.CB is not None + assert (linear8bit.weight.CB == deep_copy.weight.CB).all() +
tests.test_linear4bit/test_params4bit_real_serialization
Modified
bitsandbytes-foundation~bitsandbytes
1f2ca43ae5f3b453ff5fed73a17c661dc4fbbcb3
Merge pull request #1222 from EtienneDosSantos/main
<2>:<add> dict_keys_before = set(original_param.__dict__.keys()) <7>:<add> dict_keys_after = set(original_param.__dict__.keys()) <add> dict_keys_deserialized = set(deserialized_param.__dict__.keys())
# module: tests.test_linear4bit def test_params4bit_real_serialization(): <0> original_tensor = torch.tensor([1.0, 2.0, 3.0, 4.0], dtype=torch.float32) <1> original_param = bnb.nn.Params4bit(data=original_tensor, quant_type="fp4") <2> <3> original_param.cuda(0) # move to CUDA to trigger quantization <4> <5> serialized_param = pickle.dumps(original_param) <6> deserialized_param = pickle.loads(serialized_param) <7> <8> assert torch.equal(original_param.data, deserialized_param.data) <9> assert original_param.requires_grad == deserialized_param.requires_grad == False <10> assert original_param.quant_type == deserialized_param.quant_type <11> assert original_param.blocksize == deserialized_param.blocksize <12> assert original_param.compress_statistics == deserialized_param.compress_statistics <13> assert original_param.quant_state == deserialized_param.quant_state <14>
===========unchanged ref 0=========== at: bitsandbytes.nn.modules Params4bit(data: Tensor=..., requires_grad: builtins.bool=...) at: bitsandbytes.nn.modules.Params4bit cuda(device: Optional[Union[int, device, str]]=None, non_blocking: bool=False) at: bitsandbytes.nn.modules.Params4bit.__setstate__ self.quant_state = state["quant_state"] self.data = state["data"] at: bitsandbytes.nn.modules.Params4bit._quantize self.data = w_4bit self.quant_state = quant_state at: tests.test_linear4bit.test_deepcopy_param param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0) dict_keys_before = set(param.__dict__.keys()) copy_param = copy.deepcopy(param) dict_keys_after = set(param.__dict__.keys()) dict_keys_copy = set(copy_param.__dict__.keys()) at: torch._C float32: dtype = ... at: torch._C._VariableFunctions tensor(data: Any, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor ===========changed ref 0=========== # module: tests.test_linear4bit def test_deepcopy_param(): tensor = torch.tensor([1.0, 2.0, 3.0, 4.0]) param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0) + dict_keys_before = set(param.__dict__.keys()) copy_param = copy.deepcopy(param) + dict_keys_after = set(param.__dict__.keys()) + dict_keys_copy = set(copy_param.__dict__.keys()) + assert param.quant_state is not copy_param.quant_state assert param.data.data_ptr() != copy_param.data.data_ptr() ===========changed ref 1=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def __getstate__(self): + state = self.__dict__.copy() - state = self.__dict__ state["data"] = self.data state["requires_grad"] = self.requires_grad return state ===========changed ref 2=========== # module: tests.test_linear8bitlt + def test_linear8bit_copy_param(linear8bit): + shallow_copy = copy.copy(linear8bit) + assert linear8bit.weight is shallow_copy.weight + assert linear8bit.bias is shallow_copy.bias + assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr() + ===========changed ref 3=========== # module: bitsandbytes.nn.modules class Int8Params(torch.nn.Parameter): + def __deepcopy__(self, memo): + # adjust this if new arguments are added to the constructor + new_instance = type(self).__new__( + type(self), + data=copy.deepcopy(self.data, memo), + requires_grad=self.requires_grad, + has_fp16_weights=self.has_fp16_weights, + CB=copy.deepcopy(self.CB, memo), + SCB=copy.deepcopy(self.SCB, memo), + ) + return new_instance + ===========changed ref 4=========== # module: bitsandbytes.nn.modules class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): - cls.has_fp16_weights = has_fp16_weights - cls.CB = None - cls.SCB = None if data is None: data = torch.empty(0) obj = torch.Tensor._make_subclass(cls, data, requires_grad) + obj.CB = CB + obj.SCB = SCB + obj.has_fp16_weights = has_fp16_weights - obj.CB, obj.SCB = cls.CB, cls.SCB return obj ===========changed ref 5=========== # module: tests.test_linear8bitlt + @pytest.fixture + def linear8bit(): + linear = torch.nn.Linear(32, 96) + linear_custom = Linear8bitLt( + linear.in_features, + linear.out_features, + linear.bias is not None, + has_fp16_weights=False, + threshold=6.0, + ) + linear_custom.weight = bnb.nn.Int8Params( + linear.weight.data.clone(), + requires_grad=False, + has_fp16_weights=False, + ) + linear_custom.bias = linear.bias + linear_custom = linear_custom.cuda() + return linear_custom + ===========changed ref 6=========== # module: tests.test_linear8bitlt + def test_linear8bit_serialization(linear8bit): + serialized = pickle.dumps(linear8bit) + deserialized = pickle.loads(serialized) + assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr() + assert torch.allclose(linear8bit.weight.data, deserialized.weight.data) + assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr() + assert torch.allclose(linear8bit.bias.data, deserialized.bias.data) + assert linear8bit.state == deserialized.state + + # check for a bug where SCB and CB were not copied + assert (linear8bit.weight.SCB == deserialized.weight.SCB).all() + assert (linear8bit.weight.CB == deserialized.weight.CB).all() + ===========changed ref 7=========== # module: tests.test_linear8bitlt + def test_linear8bit_deepcopy_param(linear8bit): + deep_copy = copy.deepcopy(linear8bit) + assert linear8bit.weight is not deep_copy.weight + assert linear8bit.bias is not deep_copy.bias + assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr() + assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data) + assert linear8bit.state == deep_copy.state + + # check for a bug where SCB and CB were not copied + assert deep_copy.weight.SCB is not None + assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all() + assert deep_copy.weight.CB is not None + assert (linear8bit.weight.CB == deep_copy.weight.CB).all() +
bitsandbytes.autograd._functions/MatMul4Bit.forward
Modified
bitsandbytes-foundation~bitsandbytes
9e75374104cec965d9a4a630a68ce4e2b77b066f
fix QLoRA mem bug: delete useless buffered activation (#1270)
<22>:<add> ctx.tensors = (None, B) <del> ctx.tensors = (A, B)
# module: bitsandbytes.autograd._functions class MatMul4Bit(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, quant_state: Optional[F.QuantState] = None): <0> # default of pytorch behavior if inputs are empty <1> ctx.is_empty = False <2> if prod(A.shape) == 0: <3> ctx.is_empty = True <4> ctx.A = A <5> ctx.B = B <6> ctx.bias = bias <7> B_shape = quant_state.shape <8> if A.shape[-1] == B_shape[0]: <9> return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) <10> else: <11> return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) <12> <13> # 1. Dequantize <14> # 2. MatmulnN <15> output = torch.nn.functional.linear(A, F.dequantize_4bit(B, quant_state).to(A.dtype).t(), bias) <16> <17> # 3. Save state <18> ctx.state = quant_state <19> ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype <20> <21> if any(ctx.needs_input_grad[:2]): <22> ctx.tensors = (A, B) <23> else: <24> ctx.tensors = (None, None) <25> <26> return output <27>
===========unchanged ref 0=========== at: bitsandbytes.autograd._functions prod(iterable) at: bitsandbytes.functional QuantState(absmax, shape=None, code=None, blocksize=None, quant_type=None, dtype=None, offset=None, state2=None) dequantize_4bit(A: Tensor, quant_state: Optional[QuantState]=None, absmax: Optional[torch.Tensor]=None, out: Optional[torch.Tensor]=None, blocksize: int=64, quant_type="fp4") -> Tensor at: bitsandbytes.functional.QuantState.__init__ self.shape = shape ===========unchanged ref 1=========== at: torch._C._VariableFunctions empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch._C._nn linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None) -> Tensor at: torch.autograd.function._SingleLevelFunction forward(ctx: Any, *args: Any, **kwargs: Any) -> Any vjp = backward
bitsandbytes.autograd._functions/MatMul4Bit.backward
Modified
bitsandbytes-foundation~bitsandbytes
9e75374104cec965d9a4a630a68ce4e2b77b066f
fix QLoRA mem bug: delete useless buffered activation (#1270)
<5>:<add> _, B = ctx.tensors <del> A, B = ctx.tensors
# module: bitsandbytes.autograd._functions class MatMul4Bit(torch.autograd.Function): @staticmethod def backward(ctx, grad_output): <0> if ctx.is_empty: <1> bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias) <2> return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None <3> <4> req_gradA, _, _, req_gradBias, _ = ctx.needs_input_grad <5> A, B = ctx.tensors <6> <7> grad_A, grad_B, grad_bias = None, None, None <8> <9> if req_gradBias: <10> # compute grad_bias first before changing grad_output dtype <11> grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) <12> <13> # not supported by PyTorch. TODO: create work-around <14> # if req_gradB: grad_B = torch.matmul(grad_output.t(), A) <15> if req_gradA: <16> grad_A = torch.matmul(grad_output, F.dequantize_4bit(B, ctx.state).to(grad_output.dtype).t()) <17> <18> return grad_A, grad_B, None, grad_bias, None <19>
===========unchanged ref 0=========== at: bitsandbytes.functional dequantize_4bit(A: Tensor, quant_state: Optional[QuantState]=None, absmax: Optional[torch.Tensor]=None, out: Optional[torch.Tensor]=None, blocksize: int=64, quant_type="fp4") -> Tensor at: torch._C._VariableFunctions matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor zeros_like(input: Tensor, *, memory_format: Optional[memory_format]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.function._SingleLevelFunction backward(ctx: Any, *grad_outputs: Any) -> Any ===========changed ref 0=========== # module: bitsandbytes.autograd._functions class MatMul4Bit(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, quant_state: Optional[F.QuantState] = None): # default of pytorch behavior if inputs are empty ctx.is_empty = False if prod(A.shape) == 0: ctx.is_empty = True ctx.A = A ctx.B = B ctx.bias = bias B_shape = quant_state.shape if A.shape[-1] == B_shape[0]: return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) else: return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) # 1. Dequantize # 2. MatmulnN output = torch.nn.functional.linear(A, F.dequantize_4bit(B, quant_state).to(A.dtype).t(), bias) # 3. Save state ctx.state = quant_state ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype if any(ctx.needs_input_grad[:2]): + ctx.tensors = (None, B) - ctx.tensors = (A, B) else: ctx.tensors = (None, None) return output
bitsandbytes.optim.optimizer/Optimizer2State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
5212a0f2a585abba1cc2a65f82f7c4fc939c453f
Edenzzzz's fix for min_8bit_size functionality in Optimizer base classes (#1286)
<15>:<add> if dtype == torch.float32: <del> if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
# module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') <8> <9> if p.numel() < config["min_8bit_size"]: <10> dtype = torch.float32 <11> <12> state = self.state[p] <13> state["step"] = 0 <14> <15> if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096): <16> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <17> state["state2"] = self.get_state_buffer(p, dtype=torch.float32) <18> elif dtype == torch.uint8: <19> if state["step"] == 0: <20> if "dynamic" not in self.name2qmap: <21> self.fill_qmap() <22> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) <23> self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device) <24> <25> state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) <26> state["qmap1"] = self.name2qmap["dynamic"] <27> <28> state["state2"] = self.get_state_buffer(p, dtype=torch.uint8) <29> state["qmap2"] = self.name2qmap["udynamic"] <30> <31> if config["block_wise"]: <32> n = p.numel() <33> </s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer.Optimizer8bit fill_qmap() get_config(gindex, pindex, group) init_state(self, group, p, gindex, pindex) get_state_buffer(p, dtype=torch.float32) at: bitsandbytes.optim.optimizer.Optimizer8bit.__init__ self.name2qmap = {} at: torch._C float32: dtype = ... uint8: dtype = ... at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() ===========unchanged ref 1=========== at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict)
bitsandbytes.optim.optimizer/Optimizer1State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
5212a0f2a585abba1cc2a65f82f7c4fc939c453f
Edenzzzz's fix for min_8bit_size functionality in Optimizer base classes (#1286)
<15>:<add> if dtype == torch.float32: <del> if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
# module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') <8> <9> if p.numel() < config["min_8bit_size"]: <10> dtype = torch.float32 <11> <12> state = self.state[p] <13> state["step"] = 0 <14> <15> if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096): <16> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <17> elif dtype == torch.uint8: <18> if state["step"] == 0: <19> if "dynamic" not in self.name2qmap: <20> self.fill_qmap() <21> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) <22> <23> state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) <24> state["qmap1"] = self.name2qmap["dynamic"] <25> <26> if config["block_wise"]: <27> n = p.numel() <28> blocks = n // 2048 <29> blocks += 1 if n % 2048 > 0 else 0 <30> <31> state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) <32> else: <33> state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) <34> state["new_max1"] = torch.zeros((1,), dtype=</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer.Optimizer8bit fill_qmap() get_config(gindex, pindex, group) init_state(self, group, p, gindex, pindex) get_state_buffer(p, dtype=torch.float32) at: bitsandbytes.optim.optimizer.Optimizer8bit.__init__ self.name2qmap = {} at: torch._C float32: dtype = ... uint8: dtype = ... at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() ===========unchanged ref 1=========== at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 + if dtype == torch.float32: - if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096): state["state1"] = self.get_state_buffer(p, dtype=torch.float32) state["state2"] = self.get_state_buffer(p, dtype=torch.float32) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device) state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state</s> ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 <s> = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device)
bitsandbytes.optim.optimizer/Optimizer2State.update_step
Modified
bitsandbytes-foundation~bitsandbytes
a3f55cea3ab29218067809770bc8bf2380ec46cd
Fixed optim update error with non-contiguous grads/params (#1187)
<0>:<add> # avoid update error from non-contiguous memory layout <add> p.data = p.data.contiguous() <add> p.grad = p.grad.contiguous() <add>
# module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): <0> state = self.state[p] <1> grad = p.grad <2> <3> config = self.get_config(gindex, pindex, group) <4> <5> state["step"] += 1 <6> step = state["step"] <7> <8> if config["percentile_clipping"] < 100: <9> current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( <10> grad, <11> state["gnorm_vec"], <12> step, <13> config["percentile_clipping"], <14> ) <15> else: <16> gnorm_scale = 1.0 <17> <18> if state["state1"].dtype == torch.float: <19> F.optimizer_update_32bit( <20> self.optimizer_name, <21> grad, <22> p, <23> state["state1"], <24> config["betas"][0], <25> config["eps"], <26> step, <27> config["lr"], <28> state["state2"], <29> config["betas"][1], <30> config["weight_decay"], <31> gnorm_scale, <32> state["unorm_vec"] if config["max_unorm"] > 0.0 else None, <33> max_unorm=config["max_unorm"], <34> skip_zeros=config["skip_zeros"], <35> ) <36> <37> elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: <38> F.optimizer_update_8bit( <39> self.optimizer_name, <40> grad, <41> p, <42> state["state1"], <43> state["state2"], <44> config["betas"][0], <45> config["betas"][1], <46> config["eps"], <47> step, <48> config["lr"], <49> </s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # offset: 1 state["qmap2"], state["max1"], state["max2"], state["new_max1"], state["new_max2"], config["weight_decay"], gnorm_scale=gnorm_scale, unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) # swap maxes state["max1"], state["new_max1"] = state["new_max1"], state["max1"] state["max2"], state["new_max2"] = state["new_max2"], state["max2"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["absmax1"], state["absmax2"], config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) ===========unchanged ref 0=========== at: bitsandbytes.functional optimizer_update_32bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Optional[torch.Tensor]=None, beta2: float=0.0, weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Optional[torch.Tensor]=None, max_unorm: float=0.0, skip_zeros=False) -> None optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Optional[torch.Tensor], beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], max1: Tensor, max2: Optional[torch.Tensor], new_max1: Tensor, new_max2: Optional[torch.Tensor], weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Optional[torch.Tensor]=None, max_unorm: float=0.0) -> None optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Optional[torch.Tensor], beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], absmax1: Tensor, absmax2: Optional[torch.Tensor], weight_decay: float=0.0, gnorm_scale: float=1.0, skip_zeros=False) -> None percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int=5) at: bitsandbytes.optim.optimizer.Optimizer2State.__init__ self.optimizer_name = optimizer_name at: bitsandbytes.optim.optimizer.Optimizer8bit get_config(gindex, pindex, group) ===========unchanged ref 1=========== update_step(self, group, p, gindex, pindex) at: torch._C float: dtype = ... uint8: dtype = ... at: torch.autograd.grad_mode no_grad() at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict)
bitsandbytes.optim.optimizer/Optimizer1State.update_step
Modified
bitsandbytes-foundation~bitsandbytes
a3f55cea3ab29218067809770bc8bf2380ec46cd
Fixed optim update error with non-contiguous grads/params (#1187)
<0>:<add> # avoid update error from non-contiguous memory layout <add> p.data = p.data.contiguous() <add> p.grad = p.grad.contiguous() <add>
# module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): <0> state = self.state[p] <1> grad = p.grad <2> <3> config = self.get_config(gindex, pindex, group) <4> <5> state["step"] += 1 <6> step = state["step"] <7> <8> if config["percentile_clipping"] < 100: <9> current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( <10> grad, <11> state["gnorm_vec"], <12> step, <13> config["percentile_clipping"], <14> ) <15> else: <16> gnorm_scale = 1.0 <17> <18> if state["state1"].dtype == torch.float: <19> F.optimizer_update_32bit( <20> self.optimizer_name, <21> grad, <22> p, <23> state["state1"], <24> config["betas"][0], <25> config["eps"], <26> step, <27> config["lr"], <28> None, <29> config["betas"][1], <30> config["weight_decay"], <31> gnorm_scale, <32> state["unorm_vec"] if config["max_unorm"] > 0.0 else None, <33> max_unorm=config["max_unorm"], <34> skip_zeros=config["skip_zeros"], <35> ) <36> <37> elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: <38> F.optimizer_update_8bit( <39> self.optimizer_name, <40> grad, <41> p, <42> state["state1"], <43> None, <44> config["betas"][0], <45> config["betas"][1], <46> config["eps"], <47> step, <48> config["lr"], <49> state["qmap1"], </s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # offset: 1 state["max1"], None, state["new_max1"], None, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) state["max1"], state["new_max1"] = state["new_max1"], state["max1"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["absmax1"], None, config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) ===========unchanged ref 0=========== at: bitsandbytes.functional optimizer_update_32bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Optional[torch.Tensor]=None, beta2: float=0.0, weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Optional[torch.Tensor]=None, max_unorm: float=0.0, skip_zeros=False) -> None optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Optional[torch.Tensor], beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], max1: Tensor, max2: Optional[torch.Tensor], new_max1: Tensor, new_max2: Optional[torch.Tensor], weight_decay: float=0.0, gnorm_scale: float=1.0, unorm_vec: Optional[torch.Tensor]=None, max_unorm: float=0.0) -> None optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Optional[torch.Tensor], beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], absmax1: Tensor, absmax2: Optional[torch.Tensor], weight_decay: float=0.0, gnorm_scale: float=1.0, skip_zeros=False) -> None percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int=5) at: bitsandbytes.optim.optimizer.Optimizer1State.__init__ self.optimizer_name = optimizer_name ===========unchanged ref 1=========== at: bitsandbytes.optim.optimizer.Optimizer1State.init_state config = self.get_config(gindex, pindex, group) state["gnorm_vec"] = torch.zeros((100,), device=p.device) state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["state1"] = self.get_state_buffer(p, dtype=torch.float32) state["step"] = 0 state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["qmap1"] = self.name2qmap["dynamic"] state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) at: bitsandbytes.optim.optimizer.Optimizer8bit get_config(gindex, pindex, group) update_step(self, group, p, gindex, pindex) at: torch._C float: dtype = ... uint8: dtype = ... ===========unchanged ref 2=========== at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict)
bitsandbytes.nn.modules/Params4bit.from_prequantized
Modified
bitsandbytes-foundation~bitsandbytes
7fed393aa8380f2d7f7c760bbd6a2f68b5caa9ea
Fix restoration of quant_storage for CPU offloading (#1279)
<7>:<add> <add> self.quant_storage = data.dtype <add>
# module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", **kwargs, ) -> "Params4bit": <0> self = torch.Tensor._make_subclass(cls, data.to(device)) <1> self.requires_grad = requires_grad <2> self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) <3> self.blocksize = self.quant_state.blocksize <4> self.compress_statistics = self.quant_state.nested <5> self.quant_type = self.quant_state.quant_type <6> self.bnb_quantized = True <7> return self <8>
===========unchanged ref 0=========== at: bitsandbytes.functional QuantState(absmax, shape=None, code=None, blocksize=None, quant_type=None, dtype=None, offset=None, state2=None) at: bitsandbytes.functional.QuantState valid_quant_types = ("fp4", "nf4") valid_qs_type_keys = [f"bitsandbytes__{x}" for x in valid_quant_types] valid_qs_keys = [ "absmax", "quant_map", "nested_absmax", "nested_quant_map", "quant_state", "quant_type", "blocksize", "dtype", "shape", "nested_blocksize", "nested_dtype", "nested_offset", ] from_dict(qs_dict: Dict[str, Any], device: torch.device) -> "QuantState" at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
bitsandbytes.nn.modules/Params4bit._quantize
Modified
bitsandbytes-foundation~bitsandbytes
7fed393aa8380f2d7f7c760bbd6a2f68b5caa9ea
Fix restoration of quant_storage for CPU offloading (#1279)
<0>:<add> w = self.data.contiguous().to(device) <del> w = self.data.contiguous().cuda(device)
# module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def _quantize(self, device): <0> w = self.data.contiguous().cuda(device) <1> w_4bit, quant_state = bnb.functional.quantize_4bit( <2> w, <3> blocksize=self.blocksize, <4> compress_statistics=self.compress_statistics, <5> quant_type=self.quant_type, <6> quant_storage=self.quant_storage, <7> ) <8> self.data = w_4bit <9> self.quant_state = quant_state <10> if self.module is not None: <11> self.module.quant_state = quant_state <12> self.bnb_quantized = True <13> return self <14>
===========unchanged ref 0=========== at: bitsandbytes.functional quantize_4bit(A: Tensor, absmax: Optional[torch.Tensor]=None, out: Optional[torch.Tensor]=None, blocksize=64, compress_statistics=False, quant_type="fp4", quant_storage=torch.uint8) -> Tuple[Tensor, QuantState] at: bitsandbytes.nn.modules.Params4bit.__setstate__ self.blocksize = state["blocksize"] self.compress_statistics = state["compress_statistics"] self.quant_type = state["quant_type"] self.quant_state = state["quant_state"] self.data = state["data"] self.quant_storage = state["quant_storage"] self.module = state["module"] at: bitsandbytes.nn.modules.Params4bit.from_prequantized self = torch.Tensor._make_subclass(cls, data.to(device)) ===========changed ref 0=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", **kwargs, ) -> "Params4bit": self = torch.Tensor._make_subclass(cls, data.to(device)) self.requires_grad = requires_grad self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) self.blocksize = self.quant_state.blocksize self.compress_statistics = self.quant_state.nested self.quant_type = self.quant_state.quant_type self.bnb_quantized = True + + self.quant_storage = data.dtype + return self
bitsandbytes.nn.modules/Params4bit.to
Modified
bitsandbytes-foundation~bitsandbytes
7fed393aa8380f2d7f7c760bbd6a2f68b5caa9ea
Fix restoration of quant_storage for CPU offloading (#1279)
<15>:<add> quant_storage=self.quant_storage,
# module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def to(self, *args, **kwargs): <0> device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) <1> <2> if device is not None and device.type == "cuda" and not self.bnb_quantized: <3> return self._quantize(device) <4> else: <5> if self.quant_state is not None: <6> self.quant_state.to(device) <7> <8> new_param = Params4bit( <9> super().to(device=device, dtype=dtype, non_blocking=non_blocking), <10> requires_grad=self.requires_grad, <11> quant_state=self.quant_state, <12> blocksize=self.blocksize, <13> compress_statistics=self.compress_statistics, <14> quant_type=self.quant_type, <15> ) <16> <17> return new_param <18>
===========unchanged ref 0=========== at: bitsandbytes.functional.QuantState to(device) at: bitsandbytes.nn.modules T = TypeVar("T", bound="torch.nn.Module") Params4bit(data: Tensor=..., requires_grad: builtins.bool=...) at: bitsandbytes.nn.modules.Params4bit _quantize(device) _quantize(self, device) at: bitsandbytes.nn.modules.Params4bit.__setstate__ self.requires_grad = state["requires_grad"] self.blocksize = state["blocksize"] self.compress_statistics = state["compress_statistics"] self.quant_type = state["quant_type"] self.quant_state = state["quant_state"] self.bnb_quantized = state["bnb_quantized"] at: bitsandbytes.nn.modules.Params4bit._quantize self.quant_state = quant_state w_4bit, quant_state = bnb.functional.quantize_4bit( w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, ) self.bnb_quantized = True ===========changed ref 0=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def _quantize(self, device): + w = self.data.contiguous().to(device) - w = self.data.contiguous().cuda(device) w_4bit, quant_state = bnb.functional.quantize_4bit( w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, ) self.data = w_4bit self.quant_state = quant_state if self.module is not None: self.module.quant_state = quant_state self.bnb_quantized = True return self ===========changed ref 1=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", **kwargs, ) -> "Params4bit": self = torch.Tensor._make_subclass(cls, data.to(device)) self.requires_grad = requires_grad self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) self.blocksize = self.quant_state.blocksize self.compress_statistics = self.quant_state.nested self.quant_type = self.quant_state.quant_type self.bnb_quantized = True + + self.quant_storage = data.dtype + return self
bitsandbytes.nn.modules/Linear4bit.forward
Modified
bitsandbytes-foundation~bitsandbytes
7fed393aa8380f2d7f7c760bbd6a2f68b5caa9ea
Fix restoration of quant_storage for CPU offloading (#1279)
<10>:<add> self.weight = Params4bit(self.weight, quant_storage=self.quant_storage, bnb_quantized=True) <del> self.weight = Params4bit(self.weight, quant_storage=self.quant_storage)
# module: bitsandbytes.nn.modules class Linear4bit(nn.Linear): def forward(self, x: torch.Tensor): <0> # weights are cast automatically as Int8Params, but the bias has to be cast manually <1> if self.bias is not None and self.bias.dtype != x.dtype: <2> self.bias.data = self.bias.data.to(x.dtype) <3> <4> if getattr(self.weight, "quant_state", None) is None: <5> if getattr(self, "quant_state", None) is not None: <6> # the quant state got lost when the parameter got converted. This happens for example for fsdp <7> # since we registered the module, we can recover the state here <8> assert self.weight.shape[1] == 1 <9> if not isinstance(self.weight, Params4bit): <10> self.weight = Params4bit(self.weight, quant_storage=self.quant_storage) <11> self.weight.quant_state = self.quant_state <12> else: <13> print( <14> "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.", <15> ) <16> if not self.compute_type_is_set: <17> self.set_compute_type(x) <18> self.compute_type_is_set = True <19> <20> inp_dtype = x.dtype <21> if self.compute_dtype is not None: <22> x = x.to(self.compute_dtype) <23> <24> bias = None if self.bias is None else self.bias.to(self.compute_dtype) <25> out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state) <26> <27> out = out.to(inp_dtype) <28> <29> return out <30>
===========unchanged ref 0=========== at: bitsandbytes.autograd._functions matmul_4bit(A: torch.Tensor, B: torch.Tensor, quant_state: F.QuantState, out: Optional[torch.Tensor]=None, bias=None) at: bitsandbytes.functional.QuantState as_dict(packed=False) at: bitsandbytes.nn.modules Params4bit(data: Tensor=..., requires_grad: builtins.bool=...) at: bitsandbytes.nn.modules.Linear4bit.__init__ self.weight = Params4bit( self.weight.data, requires_grad=False, compress_statistics=compress_statistics, quant_type=quant_type, quant_storage=quant_storage, module=self, ) at: bitsandbytes.nn.modules.Params4bit.__setstate__ self.quant_state = state["quant_state"] at: bitsandbytes.nn.modules.Params4bit._quantize self.quant_state = quant_state w_4bit, quant_state = bnb.functional.quantize_4bit( w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, ) at: torch._tensor.Tensor.__setstate__ self.data = state[0] at: torch.nn.modules.linear.Linear __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor forward(self, input: Tensor) -> Tensor at: torch.nn.modules.linear.Linear.__init__ self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) ===========changed ref 0=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", **kwargs, ) -> "Params4bit": self = torch.Tensor._make_subclass(cls, data.to(device)) self.requires_grad = requires_grad self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) self.blocksize = self.quant_state.blocksize self.compress_statistics = self.quant_state.nested self.quant_type = self.quant_state.quant_type self.bnb_quantized = True + + self.quant_storage = data.dtype + return self ===========changed ref 1=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def _quantize(self, device): + w = self.data.contiguous().to(device) - w = self.data.contiguous().cuda(device) w_4bit, quant_state = bnb.functional.quantize_4bit( w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, ) self.data = w_4bit self.quant_state = quant_state if self.module is not None: self.module.quant_state = quant_state self.bnb_quantized = True return self ===========changed ref 2=========== # module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) if device is not None and device.type == "cuda" and not self.bnb_quantized: return self._quantize(device) else: if self.quant_state is not None: self.quant_state.to(device) new_param = Params4bit( super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, quant_state=self.quant_state, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, + quant_storage=self.quant_storage, ) return new_param
bitsandbytes.nn.modules/Params4bit.from_prequantized
Modified
bitsandbytes-foundation~bitsandbytes
a96d2f055c147b81565bad6cb4763bc4a19e8cc2
Merge branch 'main' into fsdp-load-prequantized
<9>:<add> self.module = module <add> <add> if self.module is not None: <add> self.module.quant_state = self.quant_state
# module: bitsandbytes.nn.modules class Params4bit(torch.nn.Parameter): @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", + module: Optional["Linear4bit"] = None, **kwargs, ) -> "Params4bit": <0> self = torch.Tensor._make_subclass(cls, data.to(device)) <1> self.requires_grad = requires_grad <2> self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) <3> self.blocksize = self.quant_state.blocksize <4> self.compress_statistics = self.quant_state.nested <5> self.quant_type = self.quant_state.quant_type <6> self.bnb_quantized = True <7> <8> self.quant_storage = data.dtype <9> <10> return self <11>
===========unchanged ref 0=========== at: bitsandbytes.functional QuantState(absmax, shape=None, code=None, blocksize=None, quant_type=None, dtype=None, offset=None, state2=None) at: bitsandbytes.functional.QuantState valid_quant_types = ("fp4", "nf4") valid_qs_type_keys = [f"bitsandbytes__{x}" for x in valid_quant_types] valid_qs_keys = [ "absmax", "quant_map", "nested_absmax", "nested_quant_map", "quant_state", "quant_type", "blocksize", "dtype", "shape", "nested_blocksize", "nested_dtype", "nested_offset", ] from_dict(qs_dict: Dict[str, Any], device: torch.device) -> "QuantState" at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
bitsandbytes.nn.modules/Linear4bit.forward
Modified
bitsandbytes-foundation~bitsandbytes
6d714a5cce3db5bd7f577bc447becc7a92d5ccc7
Embedding4bit and Embedding8bit implementation (#1292)
<0>:<add> fix_4bit_weight_quant_state_from_module(self) <add> <4>:<del> if getattr(self.weight, "quant_state", None) is None: <5>:<del> if getattr(self, "quant_state", None) is not None: <6>:<del> # the quant state got lost when the parameter got converted. This happens for example for fsdp <7>:<del> # since we registered the module, we can recover the state here <8>:<del> assert self.weight.shape[1] == 1 <9>:<del> if not isinstance(self.weight, Params4bit): <10>:<del> self.weight = Params4bit(self.weight, quant_storage=self.quant_storage, bnb_quantized=True) <11>:<del> self.weight.quant_state = self.quant_state <12>:<del> else: <13>:<del> print( <14>:<del> "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.", <15>:<del> )
# module: bitsandbytes.nn.modules class Linear4bit(nn.Linear): def forward(self, x: torch.Tensor): <0> # weights are cast automatically as Int8Params, but the bias has to be cast manually <1> if self.bias is not None and self.bias.dtype != x.dtype: <2> self.bias.data = self.bias.data.to(x.dtype) <3> <4> if getattr(self.weight, "quant_state", None) is None: <5> if getattr(self, "quant_state", None) is not None: <6> # the quant state got lost when the parameter got converted. This happens for example for fsdp <7> # since we registered the module, we can recover the state here <8> assert self.weight.shape[1] == 1 <9> if not isinstance(self.weight, Params4bit): <10> self.weight = Params4bit(self.weight, quant_storage=self.quant_storage, bnb_quantized=True) <11> self.weight.quant_state = self.quant_state <12> else: <13> print( <14> "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.", <15> ) <16> if not self.compute_type_is_set: <17> self.set_compute_type(x) <18> self.compute_type_is_set = True <19> <20> inp_dtype = x.dtype <21> if self.compute_dtype is not None: <22> x = x.to(self.compute_dtype) <23> <24> bias = None if self.bias is None else self.bias.to(self.compute_dtype) <25> out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state) <26> <27> out = out.to(inp_dtype) <28> <29> return out <30>
===========changed ref 0=========== # module: bitsandbytes.nn.modules + def fix_4bit_weight_quant_state_from_module(module: Union["Embedding4bit", "Linear4bit"]): + if getattr(module.weight, "quant_state", None) is not None: + return + + if getattr(module, "quant_state", None) is None: + warnings.warn( + "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.", + ) + + # the quant state got lost when the parameter got converted. This happens for example for fsdp + # since we registered the module, we can recover the state here + assert module.weight.shape[1] == 1 + if not isinstance(module.weight, Params4bit): + module.weight = Params4bit(module.weight, quant_storage=module.quant_storage, bnb_quantized=True) + module.weight.quant_state = module.quant_state +
bitsandbytes.cextension/get_cuda_bnb_library_path
Modified
bitsandbytes-foundation~bitsandbytes
a4875fc0c38a15f704a884af63d3658eb00c417f
Bugfix: Load correct nocublaslt library variant when BNB_CUDA_VERSION override is set (#1318)
<14>:<del> library_name_stem, _, library_name_ext = library_name.rpartition(".") <15>:<del> # `library_name_stem` will now be e.g. `libbitsandbytes_cuda118`; <16>:<del> # let's remove any trailing numbers: <17>:<del> library_name_stem = library_name_stem.rstrip("0123456789") <18>:<del> # `library_name_stem` will now be e.g. `libbitsandbytes_cuda`; <19>:<del> # let's tack the new version number and the original extension back on. <20>:<del> library_name = f"{library_name_stem}{override_value}.{library_name_ext}" <21>:<add> library_name = re.sub("cuda\d+", f"cuda{override_value}", library_name, count=1)
# module: bitsandbytes.cextension def get_cuda_bnb_library_path(cuda_specs: CUDASpecs) -> Path: <0> """ <1> Get the disk path to the CUDA BNB native library specified by the <2> given CUDA specs, taking into account the `BNB_CUDA_VERSION` override environment variable. <3> <4> The library is not guaranteed to exist at the returned path. <5> """ <6> library_name = f"libbitsandbytes_cuda{cuda_specs.cuda_version_string}" <7> if not cuda_specs.has_cublaslt: <8> # if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt <9> library_name += "_nocublaslt" <10> library_name = f"{library_name}{DYNAMIC_LIBRARY_SUFFIX}" <11> <12> override_value = os.environ.get("BNB_CUDA_VERSION") <13> if override_value: <14> library_name_stem, _, library_name_ext = library_name.rpartition(".") <15> # `library_name_stem` will now be e.g. `libbitsandbytes_cuda118`; <16> # let's remove any trailing numbers: <17> library_name_stem = library_name_stem.rstrip("0123456789") <18> # `library_name_stem` will now be e.g. `libbitsandbytes_cuda`; <19> # let's tack the new version number and the original extension back on. <20> library_name = f"{library_name_stem}{override_value}.{library_name_ext}" <21> logger.warning( <22> f"WARNING: BNB_CUDA_VERSION={override_value} environment variable detected; loading {library_name}.\n" <23> "This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.\n" <24> "If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=\n" <25> "If you use the manual override</s>
===========below chunk 0=========== # module: bitsandbytes.cextension def get_cuda_bnb_library_path(cuda_specs: CUDASpecs) -> Path: # offset: 1 "For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64\n", ) return PACKAGE_DIR / library_name
bitsandbytes.functional/dequantize_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
a685654b208115bed25eb9d1a06272f822659b52
Enable certain CUDA kernels to accept specified cuda stream (#1330)
# module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, code: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 4096, nested=False, ) -> Tensor: <0> """ <1> Dequantizes blockwise quantized values. <2> <3> Dequantizes the tensor A with maximum absolute values absmax in <4> blocks of size 4096. <5> <6> Parameters <7> ---------- <8> A : torch.Tensor <9> The input 8-bit tensor. <10> quant_state : QuantState <11> Object with code, absmax and other quantization state components. <12> absmax : torch.Tensor <13> The absmax values. <14> code : torch.Tensor <15> The quantization map. <16> out : torch.Tensor <17> Dequantized output tensor (default: float32) <18> <19> <20> Returns <21> ------- <22> torch.Tensor: <23> Dequantized tensor (default: float32) <24> """ <25> assert quant_state is not None or absmax is not None <26> if code is None and quant_state is None: <27> if "dynamic" not in name2qmap: <28> name2qmap["dynamic"] = create_dynamic_map().to(A.device) <29> code = name2qmap["dynamic"] <30> <31> if quant_state is None: <32> quant_state = QuantState(absmax=absmax, code=code, blocksize=blocksize, dtype=torch.float32) <33> <34> absmax = quant_state.absmax <35> if quant_state.nested: <36> absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2) <37> absmax += quant_state.offset <38> if absmax.dtype != torch.float32: <39> absmax = absmax.float() <40> <41> if out is None: <42> </s>
===========below chunk 0=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, code: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 4096, nested=False, ) -> Tensor: # offset: 1 if A.device.type != "cpu": device = pre_call(A.device) code = quant_state.code.to(A.device) if quant_state.blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError( f"The blockwise of {quant_state.blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]", ) is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32( get_ptr(quant_state.code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(A.numel()), ) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16( get_ptr(quant_state.code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(A.numel()), ) elif out.dtype == torch.bfloat16: lib.cdequantize_blockwise_bf16( get_ptr(quant_state.code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct</s> ===========below chunk 1=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, code: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 4096, nested=False, ) -> Tensor: # offset: 2 <s>(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(A.numel()), ) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = quant_state.code.cpu() lib.cdequantize_blockwise_cpu_fp32( get_ptr(code), get_ptr(A), get_ptr(quant_state.absmax), get_ptr(out), ct.c_longlong(quant_state.blocksize), ct.c_longlong(A.numel()), ) return out ===========changed ref 0=========== # module: bitsandbytes.functional + def get_tensor_stream(tensor: Tensor) -> torch.cuda.Stream: + stream = torch.cuda.current_stream(tensor.device) + return stream +
bitsandbytes.functional/dequantize_4bit
Modified
bitsandbytes-foundation~bitsandbytes
a685654b208115bed25eb9d1a06272f822659b52
Enable certain CUDA kernels to accept specified cuda stream (#1330)
# module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: <0> """ <1> Dequantizes FP4 blockwise quantized values. <2> <3> Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize. <4> <5> Parameters <6> ---------- <7> A : torch.Tensor <8> The input tensor (packed 4-bit values). <9> quant_state : QuantState <10> object with quantisation stats, incl. absmax values, original tensor shape and original dtype. <11> absmax : torch.Tensor <12> The absmax values. <13> out : torch.Tensor <14> Dequantized output tensor. <15> blocksize : int <16> The blocksize used in quantization. <17> quant_type : str <18> The 4-bit quantization data type {fp4, nf4} <19> <20> <21> Returns <22> ------- <23> torch.Tensor: <24> Dequantized tensor. <25> """ <26> if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: <27> raise ValueError( <28> f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]", <29> ) <30> if quant_type not in ["fp4", "nf4"]: <31> raise NotImplementedError(f"4-bit quantization data type {quant_type} is not implemented.") <32> <33> if quant_state is None: <34> assert absmax is not None and out is not None <35> <36> quant_state = QuantState( <37> absmax=absmax, <38> shape=out.shape, <39> dtype=out.dtype, <40> blocksize=blocksize, <41> quant_type=quant_type, <42> ) <43> <44> else:</s>
===========below chunk 0=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: # offset: 1 if quant_state.nested: absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2) absmax += quant_state.offset if absmax.dtype != torch.float32: absmax = absmax.float() if out is None: out = torch.empty(quant_state.shape, dtype=quant_state.dtype, device=A.device) n = out.numel() device = pre_call(A.device) is_on_gpu([A, absmax, out]) if out.dtype == torch.float32: if quant_state.quant_type == "fp4": lib.cdequantize_blockwise_fp32_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) else: lib.cdequantize_blockwise_fp32_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) elif out.dtype == torch.float16: if quant_state.quant_type == "fp4": lib.cdequantize_blockwise_fp16_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_</s> ===========below chunk 1=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: # offset: 2 <s> get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) else: lib.cdequantize_blockwise_fp16_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) elif out.dtype == torch.bfloat16: if quant_state.quant_type == "fp4": lib.cdequantize_blockwise_bf16_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) else: lib.cdequantize_blockwise_bf16_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), ) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) is_transposed = True if A.shape[0 ===========changed ref 0=========== # module: bitsandbytes.functional + def get_tensor_stream(tensor: Tensor) -> torch.cuda.Stream: + stream = torch.cuda.current_stream(tensor.device) + return stream + ===========changed ref 1=========== # module: bitsandbytes.functional def dequantize_blockwise( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, code: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 4096, nested=False, ) -> Tensor: """ Dequantizes blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size 4096. Parameters ---------- A : torch.Tensor The input 8-bit tensor. quant_state : QuantState Object with code, absmax and other quantization state components. absmax : torch.Tensor The absmax values. code : torch.Tensor The quantization map. out : torch.Tensor Dequantized output tensor (default: float32) Returns ------- torch.Tensor: Dequantized tensor (default: float32) """ assert quant_state is not None or absmax is not None if code is None and quant_state is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] if quant_state is None: quant_state = QuantState(absmax=absmax, code=code, blocksize=blocksize, dtype=torch.float32) absmax = quant_state.absmax if quant_state.nested: absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2) absmax += quant_state.offset if absmax.dtype != torch.float32: absmax = absmax.float() if out is None: out = torch.empty(A.shape, dtype=quant_state.dtype, device=A.device) if A.device.type != "cpu": device = pre</s>
bitsandbytes.functional/dequantize_no_absmax
Modified
bitsandbytes-foundation~bitsandbytes
a685654b208115bed25eb9d1a06272f822659b52
Enable certain CUDA kernels to accept specified cuda stream (#1330)
<24>:<add> stream = get_tensor_stream(A) <add> lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()), stream) <del> lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
# module: bitsandbytes.functional def dequantize_no_absmax(A: Tensor, code: Tensor, out: Optional[torch.Tensor] = None) -> Tensor: <0> """ <1> Dequantizes the 8-bit tensor to 32-bit. <2> <3> Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via <4> the quantization map `code`. <5> <6> Parameters <7> ---------- <8> A : torch.Tensor <9> The 8-bit input tensor. <10> code : torch.Tensor <11> The quantization map. <12> out : torch.Tensor <13> The 32-bit output tensor. <14> <15> Returns <16> ------- <17> torch.Tensor: <18> 32-bit output tensor. <19> """ <20> prev_device = pre_call(A.device) <21> if out is None: <22> out = torch.zeros_like(A, dtype=torch.float32) <23> is_on_gpu([code, A, out]) <24> lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) <25> post_call(prev_device) <26> return out <27>
===========changed ref 0=========== # module: bitsandbytes.functional + def get_tensor_stream(tensor: Tensor) -> torch.cuda.Stream: + stream = torch.cuda.current_stream(tensor.device) + return stream + ===========changed ref 1=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: """ Dequantizes FP4 blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize. Parameters ---------- A : torch.Tensor The input tensor (packed 4-bit values). quant_state : QuantState object with quantisation stats, incl. absmax values, original tensor shape and original dtype. absmax : torch.Tensor The absmax values. out : torch.Tensor Dequantized output tensor. blocksize : int The blocksize used in quantization. quant_type : str The 4-bit quantization data type {fp4, nf4} Returns ------- torch.Tensor: Dequantized tensor. """ if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError( f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]", ) if quant_type not in ["fp4", "nf4"]: raise NotImplementedError(f"4-bit quantization data type {quant_type} is not implemented.") if quant_state is None: assert absmax is not None and out is not None quant_state = QuantState( absmax=absmax, shape=out.shape, dtype=out.dtype, blocksize=blocksize, quant_type=quant_type, ) else: absmax = quant_state.absmax if quant_state.nested: absmax = dequantize_blockwise(quant_state.absmax, quant_state.state</s> ===========changed ref 2=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: # offset: 1 <s> quant_state.nested: absmax = dequantize_blockwise(quant_state.absmax, quant_state.state2) absmax += quant_state.offset if absmax.dtype != torch.float32: absmax = absmax.float() if out is None: out = torch.empty(quant_state.shape, dtype=quant_state.dtype, device=A.device) n = out.numel() device = pre_call(A.device) is_on_gpu([A, absmax, out]) + stream = get_tensor_stream(A) if out.dtype == torch.float32: if quant_state.quant_type == "fp4": lib.cdequantize_blockwise_fp32_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) else: lib.cdequantize_blockwise_fp32_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) elif out.dtype == torch.float16: if quant_state.quant_type == "fp4": lib.</s> ===========changed ref 3=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: # offset: 2 <s>quantize_blockwise_fp16_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) else: lib.cdequantize_blockwise_fp16_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) elif out.dtype == torch.bfloat16: if quant_state.quant_type == "fp4": lib.cdequantize_blockwise_bf16_fp4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) else: lib.cdequantize_blockwise_bf16_nf4( get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(quant_state.blocksize), ct.c_int(n), + stream, ) else: raise ValueError(f"Blockwise quantization</s> ===========changed ref 4=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: # offset: 3 <s> 16/32-bit floats, but got {A.dtype}") post_call(A.device) is_transposed = True if A.shape[0] == 1 else False if is_transposed: return out.t() else: return out
bitsandbytes.functional/gemv_4bit
Modified
bitsandbytes-foundation~bitsandbytes
a685654b208115bed25eb9d1a06272f822659b52
Enable certain CUDA kernels to accept specified cuda stream (#1330)
# module: bitsandbytes.functional def gemv_4bit( A: Tensor, B: Tensor, out: Optional[torch.Tensor] = None, transposed_A=False, transposed_B=False, state=None, ): <0> prev_device = pre_call(A.device) <1> # sout = check_matmul(A, B, out, transposed_A, transposed_B, expected_type=A.dtype) <2> if state is None: <3> raise ValueError("state cannot None. gem_4bit( ) requires the state from quantize_4bit( )") <4> <5> if A.numel() != A.shape[-1]: <6> raise ValueError( <7> 'Dimensions of A are invalid. Must be a vector with the leading dimensions of "1", e.g. [1, 1, 2048]', <8> ) <9> <10> Bshape = state.shape <11> bout = Bshape[0] <12> absmax = state.absmax <13> if state.nested: <14> absmax = dequantize_blockwise(state.absmax, state.state2) <15> absmax += state.offset <16> <17> if out is None: <18> if len(A.shape) == 3: <19> out = torch.empty(size=(A.shape[0], A.shape[1], bout), dtype=A.dtype, device=A.device) <20> else: <21> out = torch.empty(size=(A.shape[0], bout), dtype=A.dtype, device=A.device) <22> <23> n = 1 <24> m = Bshape[0] <25> k = Bshape[1] <26> lda = Bshape[0] <27> ldc = Bshape[0] <28> ldb = (A.shape[-1] + 1) // 2 <29> is_on_gpu([B, A, out, absmax, state.code]) <30> m = ct.c_int32(m) <31> n = ct.c_int32(n) <32> k = ct.c</s>
===========below chunk 0=========== # module: bitsandbytes.functional def gemv_4bit( A: Tensor, B: Tensor, out: Optional[torch.Tensor] = None, transposed_A=False, transposed_B=False, state=None, ): # offset: 1 lda = ct.c_int32(lda) ldb = ct.c_int32(ldb) ldc = ct.c_int32(ldc) if B.dtype in [torch.uint8, torch.bfloat16, torch.float16, torch.float32]: if A.dtype == torch.float16: lib.cgemm_4bit_inference_naive_fp16( m, n, k, get_ptr(A), get_ptr(B), get_ptr(absmax), get_ptr(state.code), get_ptr(out), lda, ldb, ldc, ct.c_int32(state.blocksize), ) elif A.dtype == torch.bfloat16: lib.cgemm_4bit_inference_naive_bf16( m, n, k, get_ptr(A), get_ptr(B), get_ptr(absmax), get_ptr(state.code), get_ptr(out), lda, ldb, ldc, ct.c_int32(state.blocksize), ) elif A.dtype == torch.float32: lib.cgemm_4bit_inference_naive_fp32( m, n, k, get_ptr(A), get_ptr(B), get_ptr(absmax), get_ptr(state.code), get_ptr(out), lda, ldb, ldc, ct.c_int32(state.blocksize), ) else</s> ===========below chunk 1=========== # module: bitsandbytes.functional def gemv_4bit( A: Tensor, B: Tensor, out: Optional[torch.Tensor] = None, transposed_A=False, transposed_B=False, state=None, ): # offset: 2 <s> ldb, ldc, ct.c_int32(state.blocksize), ) else: raise NotImplementedError(f"Matmul not implemented for data type {A.dtype}") else: raise NotImplementedError(f"Matmul not implemented for data type {A.dtype}") post_call(prev_device) return out ===========changed ref 0=========== # module: bitsandbytes.functional def dequantize_no_absmax(A: Tensor, code: Tensor, out: Optional[torch.Tensor] = None) -> Tensor: """ Dequantizes the 8-bit tensor to 32-bit. Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via the quantization map `code`. Parameters ---------- A : torch.Tensor The 8-bit input tensor. code : torch.Tensor The quantization map. out : torch.Tensor The 32-bit output tensor. Returns ------- torch.Tensor: 32-bit output tensor. """ prev_device = pre_call(A.device) if out is None: out = torch.zeros_like(A, dtype=torch.float32) is_on_gpu([code, A, out]) + stream = get_tensor_stream(A) + lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()), stream) - lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) post_call(prev_device) return out ===========changed ref 1=========== # module: bitsandbytes.functional + def get_tensor_stream(tensor: Tensor) -> torch.cuda.Stream: + stream = torch.cuda.current_stream(tensor.device) + return stream + ===========changed ref 2=========== # module: bitsandbytes.functional def dequantize_4bit( A: Tensor, quant_state: Optional[QuantState] = None, absmax: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, blocksize: int = 64, quant_type="fp4", ) -> Tensor: """ Dequantizes FP4 blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize. Parameters ---------- A : torch.Tensor The input tensor (packed 4-bit values). quant_state : QuantState object with quantisation stats, incl. absmax values, original tensor shape and original dtype. absmax : torch.Tensor The absmax values. out : torch.Tensor Dequantized output tensor. blocksize : int The blocksize used in quantization. quant_type : str The 4-bit quantization data type {fp4, nf4} Returns ------- torch.Tensor: Dequantized tensor. """ if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError( f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]", ) if quant_type not in ["fp4", "nf4"]: raise NotImplementedError(f"4-bit quantization data type {quant_type} is not implemented.") if quant_state is None: assert absmax is not None and out is not None quant_state = QuantState( absmax=absmax, shape=out.shape, dtype=out.dtype, blocksize=blocksize, quant_type=quant_type, ) else: absmax = quant_state.absmax if quant_state.nested: absmax = dequantize_blockwise(quant_state.absmax, quant_state.state</s>
bitsandbytes.optim.optimizer/Optimizer8bit.load_state_dict
Modified
bitsandbytes-foundation~bitsandbytes
8fc789249f6bbcde5ade57866707235a11369f2d
Add `move_to_device` kwarg to the optimizer's `load_state_dict` (#1344)
<5>:<add> move_to_device (`bool`, defaults to `True`): <add> Whether to move the optimizer's state to the device.
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def load_state_dict(self, state_dict, move_to_device=True): - def load_state_dict(self, state_dict): <0> """Load an optimizer state. <1> <2> Arguments: <3> state_dict (`dict`): <4> An optimizer state (should be returned from a call to `state_dict`) to load. <5> """ <6> # deepcopy, to be consistent with module API <7> state_dict = deepcopy(state_dict) <8> # Validate the state_dict <9> groups = self.param_groups <10> saved_groups = state_dict["param_groups"] <11> <12> if len(groups) != len(saved_groups): <13> raise ValueError("loaded state dict has a different number of parameter groups") <14> param_lens = (len(g["params"]) for g in groups) <15> saved_lens = (len(g["params"]) for g in saved_groups) <16> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): <17> raise ValueError( <18> "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", <19> ) <20> <21> # Update the state <22> id_map = { <23> old_id: p <24> for old_id, p in zip( <25> chain.from_iterable(g["params"] for g in saved_groups), <26> chain.from_iterable(g["params"] for g in groups), <27> ) <28> } <29> <30> def cast(param, value): <31> r"""Make a deep copy of value, casting all tensors to device of param.""" <32> if isinstance(value, torch.Tensor): <33> # Floating-point types are a bit special here. They are the only ones <34> # that are assumed to always match the type of params. <35> if param.is_floating_point() and value.dtype != torch.uint8: <36> value = value.to(param</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): + def load_state_dict(self, state_dict, move_to_device=True): - def load_state_dict(self, state_dict): # offset: 1 return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({"state": state, "param_groups": param_groups})
bitsandbytes.optim.optimizer/Optimizer8bit.load_state_dict
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<18>:<add> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens, strict=True)): <del> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): <29>:<add> strict=True,
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): <0> """Load an optimizer state. <1> <2> Arguments: <3> state_dict (`dict`): <4> An optimizer state (should be returned from a call to `state_dict`) to load. <5> move_to_device (`bool`, defaults to `True`): <6> Whether to move the optimizer's state to the device. <7> """ <8> # deepcopy, to be consistent with module API <9> state_dict = deepcopy(state_dict) <10> # Validate the state_dict <11> groups = self.param_groups <12> saved_groups = state_dict["param_groups"] <13> <14> if len(groups) != len(saved_groups): <15> raise ValueError("loaded state dict has a different number of parameter groups") <16> param_lens = (len(g["params"]) for g in groups) <17> saved_lens = (len(g["params"]) for g in saved_groups) <18> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): <19> raise ValueError( <20> "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", <21> ) <22> <23> # Update the state <24> id_map = { <25> old_id: p <26> for old_id, p in zip( <27> chain.from_iterable(g["params"] for g in saved_groups), <28> chain.from_iterable(g["params"] for g in groups), <29> ) <30> } <31> <32> def cast(param, value): <33> r"""Make a deep copy of value, casting all tensors to device of param.""" <34> if isinstance(value, torch.Tensor): <35> # Floating-point types are a bit special here. They are the only ones <36> # that are assumed to always match the type of params. <37> if param.is_floating_point() and value.dtype != torch</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): # offset: 1 value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: if move_to_device: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({"state": state, "param_groups": param_groups})
bitsandbytes.optim.optimizer/Optimizer8bit.get_config
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<5>:<add> config["alpha"] = group.get("alpha") <add> config["t_alpha"] = group.get("t_alpha") <add> config["t_beta3"] = group.get("t_beta3")
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def get_config(self, gindex, pindex, group): <0> config = {} <1> config["betas"] = group["betas"] <2> config["eps"] = group["eps"] <3> config["weight_decay"] = group["weight_decay"] <4> config["lr"] = group["lr"] <5> config["optim_bits"] = self.args.optim_bits <6> config["min_8bit_size"] = self.args.min_8bit_size <7> config["percentile_clipping"] = self.args.percentile_clipping <8> config["block_wise"] = self.args.block_wise <9> config["max_unorm"] = self.args.max_unorm <10> config["skip_zeros"] = self.args.skip_zeros <11> <12> if (gindex, pindex) in self.mng.index2config: <13> config.update(self.mng.index2config[(gindex, pindex)]) <14> return config <15>
===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): """Load an optimizer state. Arguments: state_dict (`dict`): An optimizer state (should be returned from a call to `state_dict`) to load. move_to_device (`bool`, defaults to `True`): Whether to move the optimizer's state to the device. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict["param_groups"] if len(groups) != len(saved_groups): raise ValueError("loaded state dict has a different number of parameter groups") param_lens = (len(g["params"]) for g in groups) saved_lens = (len(g["params"]) for g in saved_groups) + if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens, strict=True)): - if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError( "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", ) # Update the state id_map = { old_id: p for old_id, p in zip( chain.from_iterable(g["params"] for g in saved_groups), chain.from_iterable(g["params"] for g in groups), + strict=True, ) } def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point</s> ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): # offset: 1 <s> They are the only ones # that are assumed to always match the type of params. if param.is_floating_point() and value.dtype != torch.uint8: value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: if move_to_device: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group + param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups, strict=True)] - param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({"state": state, "param_groups": param_groups})
bitsandbytes.optim.optimizer/Optimizer2State.__init__
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<s>8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False, + alpha=0.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, ): <0> """ <1> Base 2-state update optimizer class. <2> <3> Arguments: <4> optimizer_name (`str`): <5> The name of the optimizer. <6> params (`torch.tensor`): <7> The input parameters to optimize. <8> lr (`float`, defaults to 1e-3): <9> The learning rate. <10> betas (`tuple`, defaults to (0.9, 0.999)): <11> The beta values for the optimizer. <12> eps (`float`, defaults to 1e-8): <13> The epsilon value for the optimizer. <14> weight_decay (`float`, defaults to 0.0): <15> The weight decay value for the optimizer. <16> optim_bits (`int`, defaults to 32): <17> The number of bits of the optimizer state. <18> args (`object`, defaults to `None`): <19> An object with additional arguments. <20> min_8bit_size (`int`, defaults to 4096): <21> The minimum number of elements of the parameter tensors for 8-bit optimization. <22> percentile_clipping (`int`, defaults to 100): <23> Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. <24> block_wise (`bool`, defaults to `True`): <25> Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. <26> max_unorm (`float`, defaults to 0.0): <27> The maximum value to normalize each block with. <28> skip_zeros (`bool`, defaults to `False`): <29> Whether to skip zero values for sparse gradients and models to ensure correct</s>
===========below chunk 0=========== <s>_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False, + alpha=0.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, ): # offset: 1 is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults, optim_bits, is_paged) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros</s> ===========below chunk 1=========== <s>_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False, + alpha=0.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, ): # offset: 2 <s> = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def get_config(self, gindex, pindex, group): config = {} config["betas"] = group["betas"] config["eps"] = group["eps"] config["weight_decay"] = group["weight_decay"] config["lr"] = group["lr"] + config["alpha"] = group.get("alpha") + config["t_alpha"] = group.get("t_alpha") + config["t_beta3"] = group.get("t_beta3") config["optim_bits"] = self.args.optim_bits config["min_8bit_size"] = self.args.min_8bit_size config["percentile_clipping"] = self.args.percentile_clipping config["block_wise"] = self.args.block_wise config["max_unorm"] = self.args.max_unorm config["skip_zeros"] = self.args.skip_zeros if (gindex, pindex) in self.mng.index2config: config.update(self.mng.index2config[(gindex, pindex)]) return config ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): """Load an optimizer state. Arguments: state_dict (`dict`): An optimizer state (should be returned from a call to `state_dict`) to load. move_to_device (`bool`, defaults to `True`): Whether to move the optimizer's state to the device. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict["param_groups"] if len(groups) != len(saved_groups): raise ValueError("loaded state dict has a different number of parameter groups") param_lens = (len(g["params"]) for g in groups) saved_lens = (len(g["params"]) for g in saved_groups) + if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens, strict=True)): - if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError( "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", ) # Update the state id_map = { old_id: p for old_id, p in zip( chain.from_iterable(g["params"] for g in saved_groups), chain.from_iterable(g["params"] for g in groups), + strict=True, ) } def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point</s> ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): # offset: 1 <s> They are the only ones # that are assumed to always match the type of params. if param.is_floating_point() and value.dtype != torch.uint8: value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: if move_to_device: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group + param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups, strict=True)] - param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({"state": state, "param_groups": param_groups})
bitsandbytes.optim.optimizer/Optimizer2State.update_step
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<34>:<add> config["betas"][2] if len(config["betas"]) >= 3 else 0.0, <add> config["alpha"],
# module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): <0> # avoid update error from non-contiguous memory layout <1> p.data = p.data.contiguous() <2> p.grad = p.grad.contiguous() <3> <4> state = self.state[p] <5> grad = p.grad <6> <7> config = self.get_config(gindex, pindex, group) <8> <9> state["step"] += 1 <10> step = state["step"] <11> <12> if config["percentile_clipping"] < 100: <13> current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( <14> grad, <15> state["gnorm_vec"], <16> step, <17> config["percentile_clipping"], <18> ) <19> else: <20> gnorm_scale = 1.0 <21> <22> if state["state1"].dtype == torch.float: <23> F.optimizer_update_32bit( <24> self.optimizer_name, <25> grad, <26> p, <27> state["state1"], <28> config["betas"][0], <29> config["eps"], <30> step, <31> config["lr"], <32> state["state2"], <33> config["betas"][1], <34> config["weight_decay"], <35> gnorm_scale, <36> state["unorm_vec"] if config["max_unorm"] > 0.0 else None, <37> max_unorm=config["max_unorm"], <38> skip_zeros=config["skip_zeros"], <39> ) <40> <41> elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: <42> F.optimizer_update_8bit( <43> self.optimizer_name, <44> grad, <45> p, <46> state["state1"], <47> state["state2"], <48> config["</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # offset: 1 config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["max1"], state["max2"], state["new_max1"], state["new_max2"], config["weight_decay"], gnorm_scale=gnorm_scale, unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) # swap maxes state["max1"], state["new_max1"] = state["new_max1"], state["max1"] state["max2"], state["new_max2"] = state["new_max2"], state["max2"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["absmax1"], state["absmax2"], config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def get_config(self, gindex, pindex, group): config = {} config["betas"] = group["betas"] config["eps"] = group["eps"] config["weight_decay"] = group["weight_decay"] config["lr"] = group["lr"] + config["alpha"] = group.get("alpha") + config["t_alpha"] = group.get("t_alpha") + config["t_beta3"] = group.get("t_beta3") config["optim_bits"] = self.args.optim_bits config["min_8bit_size"] = self.args.min_8bit_size config["percentile_clipping"] = self.args.percentile_clipping config["block_wise"] = self.args.block_wise config["max_unorm"] = self.args.max_unorm config["skip_zeros"] = self.args.skip_zeros if (gindex, pindex) in self.mng.index2config: config.update(self.mng.index2config[(gindex, pindex)]) return config ===========changed ref 1=========== <s>8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False, + alpha=0.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, ): """ Base 2-state update optimizer class. Arguments: optimizer_name (`str`): The name of the optimizer. params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple`, defaults to (0.9, 0.999)): The beta values for the optimizer. eps (`float`, defaults to 1e-8): The epsilon value for the optimizer. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. max_unorm (`float`, defaults to 0.0): The maximum value to normalize each block with. skip_zeros (`bool`, defaults to `False`): Whether to skip zero values for sparse gradients and models to ensure correct updates. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not.</s> ===========changed ref 2=========== <s>_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, is_paged=False, + alpha=0.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, ): # offset: 1 <s> updates. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. + alpha (`float`, defaults to 0.0): + The alpha value for the AdEMAMix optimizer. + t_alpha (`Optional[int]`, defaults to `None`): + Number of iterations for alpha scheduling with AdEMAMix. + t_beta3 (`Optional[int]`, defaults to `None`): + Number of iterations for beta scheduling with AdEMAMix. + """ if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") + + defaults = dict( + lr=lr, betas=betas, eps</s>
bitsandbytes.optim.optimizer/Optimizer1State.update_step
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<34>:<add> 0.0, <add> 0.0,
# module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): <0> # avoid update error from non-contiguous memory layout <1> p.data = p.data.contiguous() <2> p.grad = p.grad.contiguous() <3> <4> state = self.state[p] <5> grad = p.grad <6> <7> config = self.get_config(gindex, pindex, group) <8> <9> state["step"] += 1 <10> step = state["step"] <11> <12> if config["percentile_clipping"] < 100: <13> current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( <14> grad, <15> state["gnorm_vec"], <16> step, <17> config["percentile_clipping"], <18> ) <19> else: <20> gnorm_scale = 1.0 <21> <22> if state["state1"].dtype == torch.float: <23> F.optimizer_update_32bit( <24> self.optimizer_name, <25> grad, <26> p, <27> state["state1"], <28> config["betas"][0], <29> config["eps"], <30> step, <31> config["lr"], <32> None, <33> config["betas"][1], <34> config["weight_decay"], <35> gnorm_scale, <36> state["unorm_vec"] if config["max_unorm"] > 0.0 else None, <37> max_unorm=config["max_unorm"], <38> skip_zeros=config["skip_zeros"], <39> ) <40> <41> elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: <42> F.optimizer_update_8bit( <43> self.optimizer_name, <44> grad, <45> p, <46> state["state1"], <47> None, <48> config["betas"][0], <49> </s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # offset: 1 config["eps"], step, config["lr"], state["qmap1"], None, state["max1"], None, state["new_max1"], None, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) state["max1"], state["new_max1"] = state["new_max1"], state["max1"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["absmax1"], None, config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def get_config(self, gindex, pindex, group): config = {} config["betas"] = group["betas"] config["eps"] = group["eps"] config["weight_decay"] = group["weight_decay"] config["lr"] = group["lr"] + config["alpha"] = group.get("alpha") + config["t_alpha"] = group.get("t_alpha") + config["t_beta3"] = group.get("t_beta3") config["optim_bits"] = self.args.optim_bits config["min_8bit_size"] = self.args.min_8bit_size config["percentile_clipping"] = self.args.percentile_clipping config["block_wise"] = self.args.block_wise config["max_unorm"] = self.args.max_unorm config["skip_zeros"] = self.args.skip_zeros if (gindex, pindex) in self.mng.index2config: config.update(self.mng.index2config[(gindex, pindex)]) return config ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # avoid update error from non-contiguous memory layout p.data = p.data.contiguous() p.grad = p.grad.contiguous() state = self.state[p] grad = p.grad config = self.get_config(gindex, pindex, group) state["step"] += 1 step = state["step"] if config["percentile_clipping"] < 100: current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( grad, state["gnorm_vec"], step, config["percentile_clipping"], ) else: gnorm_scale = 1.0 if state["state1"].dtype == torch.float: F.optimizer_update_32bit( self.optimizer_name, grad, p, state["state1"], config["betas"][0], config["eps"], step, config["lr"], state["state2"], config["betas"][1], + config["betas"][2] if len(config["betas"]) >= 3 else 0.0, + config["alpha"], config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], skip_zeros=config["skip_zeros"], ) elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: F.optimizer_update_8bit( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][</s> ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def update_step(self, group, p, gindex, pindex): # offset: 1 <s>state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["max1"], state["max2"], state["new_max1"], state["new_max2"], config["weight_decay"], gnorm_scale=gnorm_scale, unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) # swap maxes state["max1"], state["new_max1"] = state["new_max1"], state["max1"] state["max2"], state["new_max2"] = state["new_max2"], state["max2"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], + config["betas"][2] if len(config["betas"]) >= 3 else 0.0, + config["alpha"], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["absmax1"], state["absmax2"], config["weight_decay"
bitsandbytes.functional/optimizer_update_32bit
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<29>:<add> beta3 : float <add> Optimizer beta3. <add> alpha : float <add> Optimizer alpha.
<s>: int, lr: float, state2: Optional[torch.Tensor] = None, beta2: float = 0.0, + beta3: float = 0.0, + alpha: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Optional[torch.Tensor] = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: <0> """ <1> Performs an inplace optimizer update with one or two optimizer states. <2> <3> Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. <4> <5> Parameters <6> ---------- <7> optimizer_name : str <8> The name of the optimizer: {adam}. <9> g : torch.Tensor <10> Gradient tensor. <11> p : torch.Tensor <12> Parameter tensor. <13> state1 : torch.Tensor <14> Optimizer state 1. <15> beta1 : float <16> Optimizer beta1. <17> eps : float <18> Optimizer epsilon. <19> weight_decay : float <20> Weight decay. <21> step : int <22> Current optimizer step. <23> lr : float <24> The learning rate. <25> state2 : torch.Tensor <26> Optimizer state 2. <27> beta2 : float <28> Optimizer beta2. <29> gnorm_scale : float <30> The factor to rescale the gradient to the max clip value. <31> unorm_vec : torch.Tensor <32> The tensor for the update norm. <33> max_unorm : float <34> The maximum update norm relative to the weight norm. <35> skip_zeros : bool <36> Whether to skip zero-valued gradients or not (default: False). <37> """ <38> <39> param_norm = 0.0 <40> if max_unorm > 0.0: <41> param_norm = torch.norm(p.data.float()) <42> <43> optim_func = None <44> if g.dtype == torch.float32: <45> optim</s>
===========below chunk 0=========== <s> lr: float, state2: Optional[torch.Tensor] = None, beta2: float = 0.0, + beta3: float = 0.0, + alpha: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Optional[torch.Tensor] = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 elif g.dtype == torch.float16: optim_func = str2optimizer32bit[optimizer_name][1] elif g.dtype == torch.bfloat16 and len(str2optimizer32bit[optimizer_name]) == 3: optim_func = str2optimizer32bit[optimizer_name][2] else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}", ) is_on_gpu([g, p, state1, state2, unorm_vec]) prev_device = pre_call(g.device) optim_func( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) post_call(prev_device) ===========changed ref 0=========== + # module: bitsandbytes.optim.ademamix + + ===========changed ref 1=========== + # module: bitsandbytes.optim.ademamix + class _ReferenceAdEMAMix(torch.optim.Optimizer): + """ + Reference: https://hf.co/papers/2409.03137 + """ + ===========changed ref 2=========== <s>.Parameter], + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + eps: float = 1e-8, + weight_decay: float = 1e-2, # default 0.0 or 1e-2? + t_beta3: Optional[int] = None, + t_alpha: Optional[int] = None, + ): + defaults = dict( + lr=lr, betas=betas, alpha=alpha, eps=eps, weight_decay=weight_decay, t_beta3=t_beta3, t_alpha=t_alpha + ) + + super().__init__(params, defaults) + ===========changed ref 3=========== <s>], + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, + eps: float = 1e-8, + weight_decay: float = 1e-2, + min_8bit_size: int = 4096, + ): + super().__init__( + params, + lr=lr, + betas=betas, + alpha=alpha, + t_alpha=t_alpha, + t_beta3=t_beta3, + eps=eps, + weight_decay=weight_decay, + min_8bit_size=min_8bit_size, + is_paged=True, + ) + ===========changed ref 4=========== <s>], + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, + eps: float = 1e-8, + weight_decay: float = 1e-2, + min_8bit_size: int = 4096, + ): + super().__init__( + params, + lr=lr, + betas=betas, + alpha=alpha, + t_alpha=t_alpha, + t_beta3=t_beta3, + eps=eps, + weight_decay=weight_decay, + min_8bit_size=min_8bit_size, + is_paged=True, + ) + ===========changed ref 5=========== <s> betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, + eps: float = 1e-8, + weight_decay: float = 1e-2, + optim_bits: Literal[8, 32] = 32, + min_8bit_size: int = 4096, + ): + super().__init__( + params, + lr=lr, + betas=betas, + alpha=alpha, + t_alpha=t_alpha, + t_beta3=t_beta3, + eps=eps, + weight_decay=weight_decay, + optim_bits=optim_bits, + min_8bit_size=min_8bit_size, + is_paged=True, + ) + ===========changed ref 6=========== <s>, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, + eps: float = 1e-8, + weight_decay: float = 1e-2, + min_8bit_size: int = 4096, + is_paged: bool = False, + ): + super().__init__( + params, + lr=lr, + betas=betas, + alpha=alpha, + t_alpha=t_alpha, + t_beta3=t_beta3, + eps=eps, + weight_decay=weight_decay, + optim_bits=8, + min_8bit_size=min_8bit_size, + is_paged=is_paged, + ) + ===========changed ref 7=========== + # module: bitsandbytes.optim.ademamix + class AdEMAMix(Optimizer2State): + def _get_state_double_buffer(self, p, dtype=torch.float32): + if not self.is_paged or p.numel() < 1e5: + return torch.zeros((2, *p.size()), dtype=dtype, device=p.device) + else: + buff = F.get_paged(*(2, *p.size()), dtype=dtype, device=p.device) + F.fill(buff, 0) + self.page_mng.paged_tensors.append(buff) + return buff +
bitsandbytes.functional/optimizer_update_8bit_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
d9645465de5212cf65e5a1baeed6f1840ea7913b
Add AdEMAMix optimizer (#1360)
<s> beta1: float, beta2: float, + beta3: float, + alpha: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], absmax1: Tensor, absmax2: Optional[torch.Tensor], weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: <0> optim_func = None <1> prev_device = pre_call(g.device) <2> is_on_gpu([g, p, state1, state2, qmap1, qmap2, absmax1, absmax2]) <3> if g.dtype == torch.float32 and state1.dtype == torch.uint8: <4> optim_func = str2optimizer8bit_blockwise[optimizer_name][0] <5> elif g.dtype == torch.float16 and state1.dtype == torch.uint8: <6> optim_func = str2optimizer8bit_blockwise[optimizer_name][1] <7> elif ( <8> g.dtype == torch.bfloat16 <9> and state1.dtype == torch.uint8 <10> and len(str2optimizer8bit_blockwise[optimizer_name]) == 3 <11> ): <12> optim_func = str2optimizer8bit_blockwise[optimizer_name][2] <13> else: <14> raise ValueError( <15> f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}", <16> ) <17> post_call(prev_device) <18> <19> is_on_gpu([p, g, state1, state2, qmap1, qmap2, absmax1, absmax2]) <20> <21> prev_device = pre_call(g.device) <22> optim_func( <23> get_ptr(p), <24> get_ptr(g), <25> get_ptr(state1), <26> get_ptr(state2), <27> ct</s>
===========below chunk 0=========== <s>, beta2: float, + beta3: float, + alpha: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Optional[torch.Tensor], absmax1: Tensor, absmax2: Optional[torch.Tensor], weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: # offset: 1 ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) post_call(prev_device) ===========changed ref 0=========== <s>: int, lr: float, state2: Optional[torch.Tensor] = None, beta2: float = 0.0, + beta3: float = 0.0, + alpha: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Optional[torch.Tensor] = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: """ Performs an inplace optimizer update with one or two optimizer states. Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. Parameters ---------- optimizer_name : str The name of the optimizer: {adam}. g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Optimizer state 1. beta1 : float Optimizer beta1. eps : float Optimizer epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. state2 : torch.Tensor Optimizer state 2. beta2 : float Optimizer beta2. + beta3 : float + Optimizer beta3. + alpha : float + Optimizer alpha. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. skip_zeros : bool Whether to skip zero-valued gradients or not (default: False). """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) optim_func = None if g.dtype == torch.float32: optim_func = str2optimizer32bit[optimizer_name][0] elif</s> ===========changed ref 1=========== <s> lr: float, state2: Optional[torch.Tensor] = None, beta2: float = 0.0, + beta3: float = 0.0, + alpha: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Optional[torch.Tensor] = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 1 <s> g.dtype == torch.float32: optim_func = str2optimizer32bit[optimizer_name][0] elif g.dtype == torch.float16: optim_func = str2optimizer32bit[optimizer_name][1] elif g.dtype == torch.bfloat16 and len(str2optimizer32bit[optimizer_name]) == 3: optim_func = str2optimizer32bit[optimizer_name][2] else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}", ) is_on_gpu([g, p, state1, state2, unorm_vec]) prev_device = pre_call(g.device) optim_func( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), + ct.c_float(beta3), + ct.c_float(alpha), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c</s> ===========changed ref 2=========== <s> lr: float, state2: Optional[torch.Tensor] = None, beta2: float = 0.0, + beta3: float = 0.0, + alpha: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Optional[torch.Tensor] = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: # offset: 2 <s>(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) post_call(prev_device) ===========changed ref 3=========== + # module: bitsandbytes.optim.ademamix + + ===========changed ref 4=========== + # module: bitsandbytes.optim.ademamix + class _ReferenceAdEMAMix(torch.optim.Optimizer): + """ + Reference: https://hf.co/papers/2409.03137 + """ + ===========changed ref 5=========== <s>.Parameter], + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + eps: float = 1e-8, + weight_decay: float = 1e-2, # default 0.0 or 1e-2? + t_beta3: Optional[int] = None, + t_alpha: Optional[int] = None, + ): + defaults = dict( + lr=lr, betas=betas, alpha=alpha, eps=eps, weight_decay=weight_decay, t_beta3=t_beta3, t_alpha=t_alpha + ) + + super().__init__(params, defaults) + ===========changed ref 6=========== <s>], + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.9, 0.999, 0.9999), + alpha: float = 5.0, + t_alpha: Optional[int] = None, + t_beta3: Optional[int] = None, + eps: float = 1e-8, + weight_decay: float = 1e-2, + min_8bit_size: int = 4096, + ): + super().__init__( + params, + lr=lr, + betas=betas, + alpha=alpha, + t_alpha=t_alpha, + t_beta3=t_beta3, + eps=eps, + weight_decay=weight_decay, + min_8bit_size=min_8bit_size, + is_paged=True, + ) +
bitsandbytes.optim.optimizer/Optimizer2State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
aa57bd891cc856e249316aea22f0e55f4d146de9
Change 8bit optimizer blocksize 2048->256; additional bf16 support (#1365)
<33>:<add> blocks = n // 256 <del> blocks = n // 2048 <34>:<add> blocks += 1 if n % 256 > 0 else 0 <del> blocks += 1 if n % 2048 >
# module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') <8> <9> if p.numel() < config["min_8bit_size"]: <10> dtype = torch.float32 <11> <12> state = self.state[p] <13> state["step"] = 0 <14> <15> if dtype == torch.float32: <16> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <17> state["state2"] = self.get_state_buffer(p, dtype=torch.float32) <18> elif dtype == torch.uint8: <19> if state["step"] == 0: <20> if "dynamic" not in self.name2qmap: <21> self.fill_qmap() <22> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) <23> self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device) <24> <25> state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) <26> state["qmap1"] = self.name2qmap["dynamic"] <27> <28> state["state2"] = self.get_state_buffer(p, dtype=torch.uint8) <29> state["qmap2"] = self.name2qmap["udynamic"] <30> <31> if config["block_wise"]: <32> n = p.numel() <33> blocks = n // 2048 <34> blocks += 1 if n % 2048 ></s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer.Optimizer8bit fill_qmap() get_config(gindex, pindex, group) init_state(self, group, p, gindex, pindex) get_state_buffer(p, dtype=torch.float32) at: bitsandbytes.optim.optimizer.Optimizer8bit.__init__ self.name2qmap = {} at: torch._C float32: dtype = ... uint8: dtype = ... at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() ===========unchanged ref 1=========== at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict)
bitsandbytes.optim.optimizer/Optimizer1State.init_state
Modified
bitsandbytes-foundation~bitsandbytes
aa57bd891cc856e249316aea22f0e55f4d146de9
Change 8bit optimizer blocksize 2048->256; additional bf16 support (#1365)
<28>:<add> blocks = n // 256 <del> blocks = n // 2048 <29>:<add> blocks += 1 if n % 256 > 0 else 0 <del> blocks += 1 if n % 2048 > 0 else 0
# module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> config = self.get_config(gindex, pindex, group) <1> <2> if config["optim_bits"] == 32: <3> dtype = torch.float32 <4> elif config["optim_bits"] == 8: <5> dtype = torch.uint8 <6> else: <7> raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') <8> <9> if p.numel() < config["min_8bit_size"]: <10> dtype = torch.float32 <11> <12> state = self.state[p] <13> state["step"] = 0 <14> <15> if dtype == torch.float32: <16> state["state1"] = self.get_state_buffer(p, dtype=torch.float32) <17> elif dtype == torch.uint8: <18> if state["step"] == 0: <19> if "dynamic" not in self.name2qmap: <20> self.fill_qmap() <21> self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) <22> <23> state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) <24> state["qmap1"] = self.name2qmap["dynamic"] <25> <26> if config["block_wise"]: <27> n = p.numel() <28> blocks = n // 2048 <29> blocks += 1 if n % 2048 > 0 else 0 <30> <31> state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) <32> else: <33> state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) <34> state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) <35> <36> </s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer.Optimizer8bit fill_qmap() get_config(gindex, pindex, group) init_state(self, group, p, gindex, pindex) get_state_buffer(p, dtype=torch.float32) at: bitsandbytes.optim.optimizer.Optimizer8bit.__init__ self.name2qmap = {} at: torch._C float32: dtype = ... uint8: dtype = ... at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() ===========unchanged ref 1=========== at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32: state["state1"] = self.get_state_buffer(p, dtype=torch.float32) state["state2"] = self.get_state_buffer(p, dtype=torch.float32) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device) state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() + blocks = n // 256 - blocks = n // 2048 + blocks += 1 if n % 256 > 0 else 0 - blocks += 1 if n % 2048 > 0 else 0 state["absmax1</s> ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 <s> if n % 256 > 0 else 0 - blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device)
bitsandbytes.optim.ademamix/AdEMAMix.init_state
Modified
bitsandbytes-foundation~bitsandbytes
aa57bd891cc856e249316aea22f0e55f4d146de9
Change 8bit optimizer blocksize 2048->256; additional bf16 support (#1365)
<28>:<add> blocks = (n // 256) + bool(n % 256) <del> blocks = (n // 2048) + bool(n % 2048)
# module: bitsandbytes.optim.ademamix class AdEMAMix(Optimizer2State): @torch.no_grad() def init_state(self, group, p, gindex, pindex): <0> # In our AdEMAMix implementation, we use `state` to hold <1> # both the fast and slow EMAs. Here we override the base <2> # `Optimizer2State` to allocate a buffer twice as large. <3> # Additional consideration: we do not support block_wise=False, <4> # percentile clipping, or max_unorm. <5> <6> config = self.get_config(gindex, pindex, group) <7> <8> if config["optim_bits"] == 32: <9> dtype = torch.float32 <10> elif config["optim_bits"] == 8: <11> dtype = torch.uint8 <12> else: <13> raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') <14> <15> if p.numel() < config["min_8bit_size"]: <16> dtype = torch.float32 <17> <18> state = self.state[p] <19> state["step"] = 0 <20> <21> if dtype == torch.uint8: <22> if "dynamic" not in self.name2qmap: <23> self.fill_qmap() <24> self.name2qmap["dynamic"] = state["qmap1"] = self.name2qmap["dynamic"].to(p.device) <25> self.name2qmap["udynamic"] = state["qmap2"] = self.name2qmap["udynamic"].to(p.device) <26> <27> n = p.numel() <28> blocks = (n // 2048) + bool(n % 2048) <29> <30> state["absmax1"] = torch.zeros((2, blocks), dtype=torch.float32, device=p.device) <31> state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) <32> <33> state["state1"] = self._get_state_double</s>
===========below chunk 0=========== # module: bitsandbytes.optim.ademamix class AdEMAMix(Optimizer2State): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 state["state2"] = self.get_state_buffer(p, dtype=dtype) ===========unchanged ref 0=========== at: bitsandbytes.optim.optimizer.Optimizer2State init_state(self, group, p, gindex, pindex) at: bitsandbytes.optim.optimizer.Optimizer8bit fill_qmap() get_config(gindex, pindex, group) at: bitsandbytes.optim.optimizer.Optimizer8bit.__init__ self.name2qmap = {} at: torch._C float32: dtype = ... uint8: dtype = ... at: torch._C._VariableFunctions zeros(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor at: torch.autograd.grad_mode no_grad() ===========unchanged ref 1=========== at: torch.optim.optimizer.Optimizer.__init__ self.state: DefaultDict[torch.Tensor, Any] = defaultdict(dict) ===========changed ref 0=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32: state["state1"] = self.get_state_buffer(p, dtype=torch.float32) state["state2"] = self.get_state_buffer(p, dtype=torch.float32) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device) state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() + blocks = n // 256 - blocks = n // 2048 + blocks += 1 if n % 256 > 0 else 0 - blocks += 1 if n % 2048 > 0 else 0 state["absmax1</s> ===========changed ref 1=========== # module: bitsandbytes.optim.optimizer class Optimizer2State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 <s> if n % 256 > 0 else 0 - blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) ===========changed ref 2=========== # module: bitsandbytes.optim.optimizer class Optimizer1State(Optimizer8bit): @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32: state["state1"] = self.get_state_buffer(p, dtype=torch.float32) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device) state["state1"] = self.get_state_buffer(p, dtype=torch.uint8) state["qmap1"] = self.name2qmap["dynamic"] if config["block_wise"]: n = p.numel() + blocks = n // 256 - blocks = n // 2048 + blocks += 1 if n % 256 > 0 else 0 - blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) else: state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) state["new_max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device) if config["percentile_clipping"] < 100: </s>
bitsandbytes.functional/create_dynamic_map
Modified
bitsandbytes-foundation~bitsandbytes
aa57bd891cc856e249316aea22f0e55f4d146de9
Change 8bit optimizer blocksize 2048->256; additional bf16 support (#1365)
# module: bitsandbytes.functional def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8): <0> """ <1> Creates the dynamic quantiztion map. <2> <3> The dynamic data type is made up of a dynamic exponent and <4> fraction. As the exponent increase from 0 to -7 the number <5> of bits available for the fraction shrinks. <6> <7> This is a generalization of the dynamic type where a certain <8> number of the bits and be reserved for the linear quantization <9> region (the fraction). n determines the maximum number of <10> exponent bits. <11> <12> For more details see <13> (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561] <14> """ <15> <16> data = [] <17> # these are additional items that come from the case <18> # where all the exponent bits are zero and no <19> # indicator bit is present <20> non_sign_bits = total_bits - (1 if signed else 1) <21> additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1 <22> for i in range(max_exponent_bits): <23> fraction_items = int( <24> 2 ** (i + non_sign_bits - max_exponent_bits) + 1 <25> if signed <26> else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1, <27> ) <28> boundaries = torch.linspace(0.1, 1, fraction_items) <29> means = (boundaries[:-1] + boundaries[1:]) / 2.0 <30> data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() <31> if signed: <32> data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() <33> <34> if additional_items > 0: <35> boundaries = torch.linspace(0.1, 1, additional_items + 1) <36> means = (boundaries[:-1]</s>
===========below chunk 0=========== # module: bitsandbytes.functional def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8): # offset: 1 data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() if signed: data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() data.append(0) data.append(1.0) assert len(data) == 2**total_bits gap = 256 - len(data) for i in range(gap): data.append(0) data.sort() return Tensor(data) ===========unchanged ref 0=========== at: bitsandbytes.functional.create_fp8_map code /= code.max() at: torch._C._VariableFunctions linspace(start: Number, end: Number, steps: Optional[_int]=None, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor linspace(start: Union[Number, _complex], end: Union[Number, _complex], steps: _int, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor ===========changed ref 0=========== # module: bitsandbytes.functional name2qmap = {} if lib and lib.compiled_with_cuda: """C FUNCTIONS FOR OPTIMIZERS""" str2optimizer32bit = { "adam": ( lib.cadam32bit_grad_fp32, lib.cadam32bit_grad_fp16, lib.cadam32bit_grad_bf16, ), "momentum": ( lib.cmomentum32bit_grad_32, lib.cmomentum32bit_grad_16, ), "rmsprop": ( lib.crmsprop32bit_grad_32, lib.crmsprop32bit_grad_16, ), "lion": ( lib.clion32bit_grad_fp32, lib.clion32bit_grad_fp16, lib.clion32bit_grad_bf16, ), "adagrad": ( lib.cadagrad32bit_grad_32, lib.cadagrad32bit_grad_16, ), "lamb": ( lib.cadam32bit_grad_fp32, lib.cadam32bit_grad_fp16, + lib.cadam32bit_grad_bf16, ), "ademamix": ( lib.cademamix32bit_grad_fp32, lib.cademamix32bit_grad_fp16, lib.cademamix32bit_grad_bf16, ), } str2optimizer8bit = { "adam": ( lib.cadam_static_8bit_grad_32, lib.cadam_static_8bit_grad_16, ), "momentum": ( lib.cmomentum_static_8bit_grad_32, lib.cmomentum_static_8bit_grad_16, ), "rmsprop": ( lib</s> ===========changed ref 1=========== # module: bitsandbytes.functional # offset: 1 <s> lib.cmomentum_static_8bit_grad_16, ), "rmsprop": ( lib.crmsprop_static_8bit_grad_32, lib.crmsprop_static_8bit_grad_16, ), "lion": ( lib.clion_static_8bit_grad_32, lib.clion_static_8bit_grad_16, ), "lamb": ( lib.cadam_static_8bit_grad_32, lib.cadam_static_8bit_grad_16, ), "lars": ( lib.cmomentum_static_8bit_grad_32, lib.cmomentum_static_8bit_grad_16, ), } str2optimizer8bit_blockwise = { "adam": ( lib.cadam_8bit_blockwise_grad_fp32, lib.cadam_8bit_blockwise_grad_fp16, lib.cadam_8bit_blockwise_grad_bf16, ), "momentum": ( lib.cmomentum_8bit_blockwise_grad_fp32, lib.cmomentum_8bit_blockwise_grad_fp16, + lib.cmomentum_8bit_blockwise_grad_bf16, ), "rmsprop": ( lib.crmsprop_8bit_blockwise_grad_fp32, lib.crmsprop_8bit_blockwise_grad_fp16, + lib.crmsprop_8bit_blockwise_grad_bf16, ), "lion": ( lib.clion_8bit_blockwise_grad_fp32, lib.clion_8bit_blockwise_grad_fp16,</s> ===========changed ref 2=========== # module: bitsandbytes.functional # offset: 2 <s> lib.clion_8bit_blockwise_grad_bf16, ), "adagrad": ( lib.cadagrad_8bit_blockwise_grad_fp32, lib.cadagrad_8bit_blockwise_grad_fp16, + lib.cadagrad_8bit_blockwise_grad_bf16, ), "ademamix": ( lib.cademamix_8bit_blockwise_grad_fp32, lib.cademamix_8bit_blockwise_grad_fp16, lib.cademamix_8bit_blockwise_grad_bf16, ), }
tests.test_optim/test_benchmark_blockwise
Modified
bitsandbytes-foundation~bitsandbytes
aa57bd891cc856e249316aea22f0e55f4d146de9
Change 8bit optimizer blocksize 2048->256; additional bf16 support (#1365)
<8>:<add> total_steps = 500 <add> for i in range(total_steps): <del> for i in range(k): <9>:<add> if i == total_steps // 5: <del> if i == k // 5: <19>:<add> params = (total_steps - total_steps // 5) * dim1 * dim2 <del> params = (k - k // 5) * dim1 * dim2 <20>:<add> print(optim_name, gtype, s, params, s / params) <del> print(optim_name, gtype, s / params)
<s>etrize("gtype", [torch.float32, torch.bfloat16, torch.float16], ids=describe_dtype) - @pytest.mark.parametrize("gtype", [torch.float32, torch.float16], ids=describe_dtype) @pytest.mark.parametrize("optim_name", optimizer_names_benchmark, ids=id_formatter("opt")) @pytest.mark.benchmark def test_benchmark_blockwise(dim1, dim2, gtype, optim_name): <0> if dim1 == 1 and dim2 == 1: <1> return <2> p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 <3> <4> bnb_optimizer = str2optimizers[optim_name][1]([p1]) <5> <6> g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 <7> p1.grad = g <8> for i in range(k): <9> if i == k // 5: <10> # 100 iterations for burn-in <11> torch.cuda.synchronize() <12> t0 = time.time() <13> <14> bnb_optimizer.step() <15> <16> torch.cuda.synchronize() <17> s = time.time() - t0 <18> print("") <19> params = (k - k // 5) * dim1 * dim2 <20> print(optim_name, gtype, s / params) <21>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skip: _SkipMarkDecorator skipif: _SkipifMarkDecorator xfail: _XfailMarkDecorator parametrize: _ParametrizeMarkDecorator usefixtures: _UsefixturesMarkDecorator filterwarnings: _FilterwarningsMarkDecorator at: tests.helpers id_formatter(label: str) describe_dtype(dtype: torch.dtype) -> str at: tests.test_optim str2optimizers["rmsprop8bit_blockwise"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True), ) optimizer_names_benchmark = [ "adam8bit_blockwise", "paged_adam8bit_blockwise", "ademamix8bit_blockwise", "paged_ademamix8bit_blockwise", "ademamix8bit_blockwise_scheduled", "paged_ademamix8bit_blockwise_scheduled", "lion8bit_blockwise", "paged_lion8bit_blockwise", "paged_ademamix8bit_blockwise", ] at: torch._C float32: dtype = ... float16: dtype = ... bfloat16: dtype = ... ===========unchanged ref 1=========== at: torch._C._VariableFunctions randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional</s> ===========changed ref 0=========== # module: tests.test_optim optimizer_names_benchmark = [ "adam8bit_blockwise", "paged_adam8bit_blockwise", + "ademamix8bit_blockwise", + "paged_ademamix8bit_blockwise", - "paged_adamw8bit_blockwise", + "ademamix8bit_blockwise_scheduled", + "paged_ademamix8bit_blockwise_scheduled", + "lion8bit_blockwise", "paged_lion8bit_blockwise", "paged_ademamix8bit_blockwise", ] ===========changed ref 1=========== # module: bitsandbytes.optim.ademamix class AdEMAMix(Optimizer2State): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # In our AdEMAMix implementation, we use `state` to hold # both the fast and slow EMAs. Here we override the base # `Optimizer2State` to allocate a buffer twice as large. # Additional consideration: we do not support block_wise=False, # percentile clipping, or max_unorm. config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.uint8: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = state["qmap1"] = self.name2qmap["dynamic"].to(p.device) self.name2qmap["udynamic"] = state["qmap2"] = self.name2qmap["udynamic"].to(p.device) n = p.numel() + blocks = (n // 256) + bool(n % 256) - blocks = (n // 2048) + bool(n % 2048) state["absmax1"] = torch.zeros((2, blocks), dtype=torch.float32, device=p.device) state["absmax2"] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) state["state1"] = self._get_state_double_buffer(p, dtype=dtype) state["state2"]</s> ===========changed ref 2=========== # module: bitsandbytes.optim.ademamix class AdEMAMix(Optimizer2State): @torch.no_grad() def init_state(self, group, p, gindex, pindex): # offset: 1 <s> state["state1"] = self._get_state_double_buffer(p, dtype=dtype) state["state2"] = self.get_state_buffer(p, dtype=dtype)
bitsandbytes.optim.optimizer/Optimizer8bit.load_state_dict
Modified
bitsandbytes-foundation~bitsandbytes
51294d909e914f80d2f2c85f9e9229dd4386ef85
Fix optimizer support for Python <= 3.9 (#1379)
<18>:<add> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): <del> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens, strict=True)): <29>:<del> strict=True,
# module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): <0> """Load an optimizer state. <1> <2> Arguments: <3> state_dict (`dict`): <4> An optimizer state (should be returned from a call to `state_dict`) to load. <5> move_to_device (`bool`, defaults to `True`): <6> Whether to move the optimizer's state to the device. <7> """ <8> # deepcopy, to be consistent with module API <9> state_dict = deepcopy(state_dict) <10> # Validate the state_dict <11> groups = self.param_groups <12> saved_groups = state_dict["param_groups"] <13> <14> if len(groups) != len(saved_groups): <15> raise ValueError("loaded state dict has a different number of parameter groups") <16> param_lens = (len(g["params"]) for g in groups) <17> saved_lens = (len(g["params"]) for g in saved_groups) <18> if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens, strict=True)): <19> raise ValueError( <20> "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", <21> ) <22> <23> # Update the state <24> id_map = { <25> old_id: p <26> for old_id, p in zip( <27> chain.from_iterable(g["params"] for g in saved_groups), <28> chain.from_iterable(g["params"] for g in groups), <29> strict=True, <30> ) <31> } <32> <33> def cast(param, value): <34> r"""Make a deep copy of value, casting all tensors to device of param.""" <35> if isinstance(value, torch.Tensor): <36> # Floating-point types are a bit special here. They are the only ones <37> # that are assumed to always match the type of params. <38> if param.is_</s>
===========below chunk 0=========== # module: bitsandbytes.optim.optimizer class Optimizer8bit(torch.optim.Optimizer): def load_state_dict(self, state_dict, move_to_device=True): # offset: 1 value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: if move_to_device: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups, strict=True)] self.__setstate__({"state": state, "param_groups": param_groups})
setup/read
Modified
bitsandbytes-foundation~bitsandbytes
9264f02d6c39245136074f28f100e32304f89d2c
Fix Windows build.
<0>:<add> return open(os.path.join(os.path.dirname(__file__), fname), encoding="utf8").read() <del> return open(os.path.join(os.path.dirname(__file__), fname)).read()
# module: setup def read(fname): <0> return open(os.path.join(os.path.dirname(__file__), fname)).read() <1>
===========unchanged ref 0=========== at: io.BufferedRandom read(self, size: Optional[int]=..., /) -> bytes at: os.path join(a: StrPath, *paths: StrPath) -> str join(a: BytesPath, *paths: BytesPath) -> bytes dirname(p: _PathLike[AnyStr]) -> AnyStr dirname(p: AnyStr) -> AnyStr at: typing.IO __slots__ = () read(n: int=...) -> AnyStr
backend.external.github_api.user/get_user
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<3>:<add> r = s.get(BASE_URL + user_id) <del> r = s.get(BASE_URL + "users/" + user_id) <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user(user_id: str) -> dict: <0> """ <1> Returns raw user data <2> """ <3> r = s.get(BASE_URL + "users/" + user_id) <4> data = r.json() <5> return data <6>
===========unchanged ref 0=========== at: backend.external.github_api.user s = requests.session() BASE_URL = "https://api.github.com/users/" at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/"
backend.external.github_api.user/get_user_followers
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<3>:<add> r = s.get(BASE_URL + user_id + "/followers") <del> r = s.get(BASE_URL + "users/" + user_id + "/followers") <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: <0> """ <1> Returns list of followers <2> """ <3> r = s.get(BASE_URL + "users/" + user_id + "/followers") <4> data = r.json() <5> return data <6>
===========unchanged ref 0=========== at: backend.external.github_api.user s = requests.session() BASE_URL = "https://api.github.com/users/" at: requests.models.Response json(**kwargs) -> Any at: requests.sessions.Session get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: """ Returns raw user data """ + r = s.get(BASE_URL + user_id) - r = s.get(BASE_URL + "users/" + user_id) - data = r.json() - return data + return r.json()
backend.external.github_api.user/get_user_following
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<0>:<del> """ <1>:<add> """Returns list of following""" <del> Returns list of following <2>:<del> """ <3>:<add> r = s.get(BASE_URL + user_id + "/following") <del> r = s.get(BASE_URL + "users/" + user_id + "/following") <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: <0> """ <1> Returns list of following <2> """ <3> r = s.get(BASE_URL + "users/" + user_id + "/following") <4> data = r.json() <5> return data <6>
===========unchanged ref 0=========== at: backend.external.github_api.user s = requests.session() BASE_URL = "https://api.github.com/users/" at: requests.models.Response json(**kwargs) -> Any at: requests.sessions.Session get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: """ Returns list of followers """ + r = s.get(BASE_URL + user_id + "/followers") - r = s.get(BASE_URL + "users/" + user_id + "/followers") - data = r.json() - return data + return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: """ Returns raw user data """ + r = s.get(BASE_URL + user_id) - r = s.get(BASE_URL + "users/" + user_id) - data = r.json() - return data + return r.json()
backend.external.github_api.user/get_user_starred_repos
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<0>:<del> """ <1>:<add> """Returns list of starred repos""" <del> Returns list of starred repos <2>:<del> """ <3>:<add> r = s.get(BASE_URL + user_id + "/starred") <del> r = s.get(BASE_URL + "users/" + user_id + "/starred") <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user_starred_repos(user_id: str) -> dict: <0> """ <1> Returns list of starred repos <2> """ <3> r = s.get(BASE_URL + "users/" + user_id + "/starred") <4> data = r.json() <5> return data <6>
===========unchanged ref 0=========== at: backend.external.github_api.user s = requests.session() BASE_URL = "https://api.github.com/users/" at: requests.models.Response json(**kwargs) -> Any at: requests.sessions.Session get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: """ Returns list of followers """ + r = s.get(BASE_URL + user_id + "/followers") - r = s.get(BASE_URL + "users/" + user_id + "/followers") - data = r.json() - return data + return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: """ Returns raw user data """ + r = s.get(BASE_URL + user_id) - r = s.get(BASE_URL + "users/" + user_id) - data = r.json() - return data + return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: - """ + """Returns list of following""" - Returns list of following - """ + r = s.get(BASE_URL + user_id + "/following") - r = s.get(BASE_URL + "users/" + user_id + "/following") - data = r.json() - return data + return r.json()
backend.external.github_api.user/get_user_orgs
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<0>:<del> """ <1>:<add> """Returns list of user organizations""" <del> Returns list of user organizations <2>:<del> """ <3>:<add> r = s.get(BASE_URL + user_id + "/orgs") <del> r = s.get(BASE_URL + "users/" + user_id + "/orgs") <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user_orgs(user_id: str) -> dict: <0> """ <1> Returns list of user organizations <2> """ <3> r = s.get(BASE_URL + "users/" + user_id + "/orgs") <4> data = r.json() <5> return data <6>
===========unchanged ref 0=========== at: backend.external.github_api.user s = requests.session() BASE_URL = "https://api.github.com/users/" at: requests.models.Response json(**kwargs) -> Any at: requests.sessions.Session get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_starred_repos(user_id: str) -> dict: - """ + """Returns list of starred repos""" - Returns list of starred repos - """ + r = s.get(BASE_URL + user_id + "/starred") - r = s.get(BASE_URL + "users/" + user_id + "/starred") - data = r.json() - return data + return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: """ Returns list of followers """ + r = s.get(BASE_URL + user_id + "/followers") - r = s.get(BASE_URL + "users/" + user_id + "/followers") - data = r.json() - return data + return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: """ Returns raw user data """ + r = s.get(BASE_URL + user_id) - r = s.get(BASE_URL + "users/" + user_id) - data = r.json() - return data + return r.json() ===========changed ref 4=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: - """ + """Returns list of following""" - Returns list of following - """ + r = s.get(BASE_URL + user_id + "/following") - r = s.get(BASE_URL + "users/" + user_id + "/following") - data = r.json() - return data + return r.json()
backend.external.github_api.user/get_user_repos
Modified
avgupta456~github-trends
c4299f28eb7553daebb14f9b51af0b145d2749bf
started repo functions
<0>:<del> """ <1>:<add> """Returns list of user repositories""" <del> Returns list of user repositories <2>:<del> """ <3>:<add> r = s.get(BASE_URL + user_id + "/repos") <del> r = s.get(BASE_URL + "users/" + user_id + "/repos") <4>:<del> data = r.json() <5>:<del> return data <6>:<add> return r.json()
# module: backend.external.github_api.user def get_user_repos(user_id: str) -> dict: <0> """ <1> Returns list of user repositories <2> """ <3> r = s.get(BASE_URL + "users/" + user_id + "/repos") <4> data = r.json() <5> return data <6>
===========changed ref 0=========== # module: backend.external.github_api.user s = requests.session() + BASE_URL = "https://api.github.com/users/" - BASE_URL = "https://api.github.com/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_orgs(user_id: str) -> dict: - """ + """Returns list of user organizations""" - Returns list of user organizations - """ + r = s.get(BASE_URL + user_id + "/orgs") - r = s.get(BASE_URL + "users/" + user_id + "/orgs") - data = r.json() - return data + return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user def get_user_starred_repos(user_id: str) -> dict: - """ + """Returns list of starred repos""" - Returns list of starred repos - """ + r = s.get(BASE_URL + user_id + "/starred") - r = s.get(BASE_URL + "users/" + user_id + "/starred") - data = r.json() - return data + return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: """ Returns list of followers """ + r = s.get(BASE_URL + user_id + "/followers") - r = s.get(BASE_URL + "users/" + user_id + "/followers") - data = r.json() - return data + return r.json() ===========changed ref 4=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: """ Returns raw user data """ + r = s.get(BASE_URL + user_id) - r = s.get(BASE_URL + "users/" + user_id) - data = r.json() - return data + return r.json() ===========changed ref 5=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: - """ + """Returns list of following""" - Returns list of following - """ + r = s.get(BASE_URL + user_id + "/following") - r = s.get(BASE_URL + "users/" + user_id + "/following") - data = r.json() - return data + return r.json()
backend.external.github_api.user/get_user
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<0>:<del> """ <1>:<add> """Returns raw user data""" <del> Returns raw user data <2>:<del> """ <3>:<add> return get_template(BASE_URL + user_id) <del> r = s.get(BASE_URL + user_id) <4>:<del> return r.json()
# module: backend.external.github_api.user def get_user(user_id: str) -> dict: <0> """ <1> Returns raw user data <2> """ <3> r = s.get(BASE_URL + user_id) <4> return r.json() <5>
===========unchanged ref 0=========== at: backend.external.github_api.user BASE_URL = "https://api.github.com/users/" at: external.github_api.template get_template(query: str, plural: Optional[bool]=False, per_page: Optional[str]="100", accept_header: Optional[str]="application/vnd.github.v3+json") -> dict ===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/"
backend.external.github_api.user/get_user_followers
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<0>:<del> """ <1>:<add> """Returns list of followers""" <del> Returns list of followers <2>:<del> """ <3>:<del> r = s.get(BASE_URL + user_id + "/followers") <4>:<del> return r.json() <5>:<add> return get_template(BASE_URL + user_id + "/followers", plural=True)
# module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: <0> """ <1> Returns list of followers <2> """ <3> r = s.get(BASE_URL + user_id + "/followers") <4> return r.json() <5>
===========unchanged ref 0=========== at: backend.external.github_api.user BASE_URL = "https://api.github.com/users/" at: external.github_api.template get_template(query: str, plural: Optional[bool]=False, per_page: Optional[str]="100", accept_header: Optional[str]="application/vnd.github.v3+json") -> dict ===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json()
backend.external.github_api.user/get_user_following
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<del> r = s.get(BASE_URL + user_id + "/following") <2>:<del> return r.json() <3>:<add> return get_template(BASE_URL + user_id + "/following", plural=True)
# module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: <0> """Returns list of following""" <1> r = s.get(BASE_URL + user_id + "/following") <2> return r.json() <3>
===========unchanged ref 0=========== at: backend.external.github_api.user BASE_URL = "https://api.github.com/users/" at: external.github_api.template get_template(query: str, plural: Optional[bool]=False, per_page: Optional[str]="100", accept_header: Optional[str]="application/vnd.github.v3+json") -> dict ===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True)
backend.external.github_api.user/get_user_starred_repos
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<add> return get_template( <add> BASE_URL + user_id + "/starred", <del> r = s.get(BASE_URL + user_id + "/starred") <2>:<add> plural=True, <add> per_page=per_page, <add> accept_header="application/vnd.github.v3.star+json", <add> ) <del> return r.json()
# module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: <0> """Returns list of starred repos""" <1> r = s.get(BASE_URL + user_id + "/starred") <2> return r.json() <3>
===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 2=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True)
backend.external.github_api.user/get_user_orgs
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<del> r = s.get(BASE_URL + user_id + "/orgs") <2>:<del> return r.json() <3>:<add> return get_template(BASE_URL + user_id + "/orgs", plural=True, per_page=per_page)
# module: backend.external.github_api.user + def get_user_orgs(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_orgs(user_id: str) -> dict: <0> """Returns list of user organizations""" <1> r = s.get(BASE_URL + user_id + "/orgs") <2> return r.json() <3>
===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 1=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 2=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True) ===========changed ref 4=========== # module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: """Returns list of starred repos""" + return get_template( + BASE_URL + user_id + "/starred", - r = s.get(BASE_URL + user_id + "/starred") + plural=True, + per_page=per_page, + accept_header="application/vnd.github.v3.star+json", + ) - return r.json()
backend.external.github_api.user/get_user_repos
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<del> r = s.get(BASE_URL + user_id + "/repos") <2>:<del> return r.json() <3>:<add> return get_template(BASE_URL + user_id + "/repos", plural=True, per_page=per_page)
# module: backend.external.github_api.user + def get_user_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_repos(user_id: str) -> dict: <0> """Returns list of user repositories""" <1> r = s.get(BASE_URL + user_id + "/repos") <2> return r.json() <3>
===========changed ref 0=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 1=========== # module: backend.external.github_api.user + def get_user_orgs(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_orgs(user_id: str) -> dict: """Returns list of user organizations""" - r = s.get(BASE_URL + user_id + "/orgs") - return r.json() + return get_template(BASE_URL + user_id + "/orgs", plural=True, per_page=per_page) ===========changed ref 2=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 3=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 4=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True) ===========changed ref 5=========== # module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: """Returns list of starred repos""" + return get_template( + BASE_URL + user_id + "/starred", - r = s.get(BASE_URL + user_id + "/starred") + plural=True, + per_page=per_page, + accept_header="application/vnd.github.v3.star+json", + ) - return r.json()
backend.external.github_api.repo/get_repo
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<add> return get_template(BASE_URL + owner + "/" + repo) <del> r = s.get(BASE_URL + owner + "/" + repo) <2>:<del> return r.json()
# module: backend.external.github_api.repo def get_repo(owner: str, repo: str) -> dict: <0> """Returns raw repository data""" <1> r = s.get(BASE_URL + owner + "/" + repo) <2> return r.json() <3>
===========unchanged ref 0=========== at: backend.external.github_api.repo BASE_URL = "https://api.github.com/repos/" at: external.github_api.template get_template(query: str, plural: Optional[bool]=False, per_page: Optional[str]="100", accept_header: Optional[str]="application/vnd.github.v3+json") -> dict ===========changed ref 0=========== # module: backend.external.github_api.repo - s = requests.session() - BASE_URL = "https://api.github.com/repos/" ===========changed ref 1=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 2=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 3=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 4=========== # module: backend.external.github_api.user + def get_user_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_repos(user_id: str) -> dict: """Returns list of user repositories""" - r = s.get(BASE_URL + user_id + "/repos") - return r.json() + return get_template(BASE_URL + user_id + "/repos", plural=True, per_page=per_page) ===========changed ref 5=========== # module: backend.external.github_api.user + def get_user_orgs(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_orgs(user_id: str) -> dict: """Returns list of user organizations""" - r = s.get(BASE_URL + user_id + "/orgs") - return r.json() + return get_template(BASE_URL + user_id + "/orgs", plural=True, per_page=per_page) ===========changed ref 6=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True) ===========changed ref 7=========== # module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: """Returns list of starred repos""" + return get_template( + BASE_URL + user_id + "/starred", - r = s.get(BASE_URL + user_id + "/starred") + plural=True, + per_page=per_page, + accept_header="application/vnd.github.v3.star+json", + ) - return r.json()
backend.external.github_api.repo/get_repo_languages
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<add> return get_template(BASE_URL + owner + "/" + repo + "/languages", plural=True) <del> r = s.get(BASE_URL + owner + "/" + repo + "/languages") <2>:<del> return r.json()
# module: backend.external.github_api.repo def get_repo_languages(owner: str, repo: str) -> dict: <0> """Returns repository language breakdown""" <1> r = s.get(BASE_URL + owner + "/" + repo + "/languages") <2> return r.json() <3>
===========changed ref 0=========== # module: backend.external.github_api.repo - s = requests.session() - BASE_URL = "https://api.github.com/repos/" ===========changed ref 1=========== # module: backend.external.github_api.repo def get_repo(owner: str, repo: str) -> dict: """Returns raw repository data""" + return get_template(BASE_URL + owner + "/" + repo) - r = s.get(BASE_URL + owner + "/" + repo) - return r.json() ===========changed ref 2=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 3=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 4=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 5=========== # module: backend.external.github_api.user + def get_user_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_repos(user_id: str) -> dict: """Returns list of user repositories""" - r = s.get(BASE_URL + user_id + "/repos") - return r.json() + return get_template(BASE_URL + user_id + "/repos", plural=True, per_page=per_page) ===========changed ref 6=========== # module: backend.external.github_api.user + def get_user_orgs(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_orgs(user_id: str) -> dict: """Returns list of user organizations""" - r = s.get(BASE_URL + user_id + "/orgs") - return r.json() + return get_template(BASE_URL + user_id + "/orgs", plural=True, per_page=per_page) ===========changed ref 7=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True) ===========changed ref 8=========== # module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: """Returns list of starred repos""" + return get_template( + BASE_URL + user_id + "/starred", - r = s.get(BASE_URL + user_id + "/starred") + plural=True, + per_page=per_page, + accept_header="application/vnd.github.v3.star+json", + ) - return r.json()
backend.external.github_api.repo/get_repo_stargazers
Modified
avgupta456~github-trends
32af92e58d1ca52b19aa2de6db4bf6e8aa944211
use get_template
<1>:<del> headers = {"Accept": "application/vnd.github.v3.star+json"} <2>:<del> r = s.get( <3>:<add> return get_template( <add> BASE_URL + owner + "/" + repo + "/stargazers", <del> BASE_URL + owner + "/" + repo + "/stargazers?per_page=" + str(per_page), <4>:<add> plural=True, <add> per_page=per_page, <add> accept_header="applicaiton/vnd.github.v3.star+json", <del> headers=headers, <6>:<del> print(r.headers) <7>:<del> return r.json()
# module: backend.external.github_api.repo def get_repo_stargazers(owner: str, repo: str, per_page: Optional[int] = 100) -> dict: <0> """Returns stargazers with timestamp for repository""" <1> headers = {"Accept": "application/vnd.github.v3.star+json"} <2> r = s.get( <3> BASE_URL + owner + "/" + repo + "/stargazers?per_page=" + str(per_page), <4> headers=headers, <5> ) <6> print(r.headers) <7> return r.json() <8>
===========changed ref 0=========== # module: backend.external.github_api.repo - s = requests.session() - BASE_URL = "https://api.github.com/repos/" ===========changed ref 1=========== # module: backend.external.github_api.repo def get_repo(owner: str, repo: str) -> dict: """Returns raw repository data""" + return get_template(BASE_URL + owner + "/" + repo) - r = s.get(BASE_URL + owner + "/" + repo) - return r.json() ===========changed ref 2=========== # module: backend.external.github_api.repo def get_repo_languages(owner: str, repo: str) -> dict: """Returns repository language breakdown""" + return get_template(BASE_URL + owner + "/" + repo + "/languages", plural=True) - r = s.get(BASE_URL + owner + "/" + repo + "/languages") - return r.json() ===========changed ref 3=========== # module: backend.external.github_api.user - s = requests.session() - BASE_URL = "https://api.github.com/users/" ===========changed ref 4=========== # module: backend.external.github_api.user def get_user_following(user_id: str) -> dict: """Returns list of following""" - r = s.get(BASE_URL + user_id + "/following") - return r.json() + return get_template(BASE_URL + user_id + "/following", plural=True) ===========changed ref 5=========== # module: backend.external.github_api.user def get_user(user_id: str) -> dict: - """ + """Returns raw user data""" - Returns raw user data - """ + return get_template(BASE_URL + user_id) - r = s.get(BASE_URL + user_id) - return r.json() ===========changed ref 6=========== # module: backend.external.github_api.user + def get_user_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_repos(user_id: str) -> dict: """Returns list of user repositories""" - r = s.get(BASE_URL + user_id + "/repos") - return r.json() + return get_template(BASE_URL + user_id + "/repos", plural=True, per_page=per_page) ===========changed ref 7=========== # module: backend.external.github_api.user + def get_user_orgs(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_orgs(user_id: str) -> dict: """Returns list of user organizations""" - r = s.get(BASE_URL + user_id + "/orgs") - return r.json() + return get_template(BASE_URL + user_id + "/orgs", plural=True, per_page=per_page) ===========changed ref 8=========== # module: backend.external.github_api.user def get_user_followers(user_id: str) -> dict: - """ + """Returns list of followers""" - Returns list of followers - """ - r = s.get(BASE_URL + user_id + "/followers") - return r.json() + return get_template(BASE_URL + user_id + "/followers", plural=True) ===========changed ref 9=========== # module: backend.external.github_api.user + def get_user_starred_repos(user_id: str, per_page: Optional[str] = "100") -> dict: - def get_user_starred_repos(user_id: str) -> dict: """Returns list of starred repos""" + return get_template( + BASE_URL + user_id + "/starred", - r = s.get(BASE_URL + user_id + "/starred") + plural=True, + per_page=per_page, + accept_header="application/vnd.github.v3.star+json", + ) - return r.json()
backend.external.github_api.rest.template/get_template
Modified
avgupta456~github-trends
861b4a0e3800b65e370e187dfb12c30d40fbd4e0
updated templates
<7>:<add> raise RESTError( <add> "Invalid status code " <del> raise HTTPError("Invalid status code") <8>:<add> + str(r.status_code) <add> + ": " <add> + str(r.json()["message"]) <add> + " Documentation at " <add> + str(r.json()["documentation_url"]) <add> )
# module: backend.external.github_api.rest.template def get_template( query: str, plural: Optional[bool] = False, per_page: Optional[str] = "100", accept_header: Optional[str] = "application/vnd.github.v3+json", ) -> dict: <0> """Template for interacting with the GitHub API""" <1> headers = {"Accept": accept_header} <2> params = {"per_page": per_page} if plural else {} <3> r = s.get(query, params=params, headers=headers) <4> if r.status_code == 200: <5> return r.json() <6> else: <7> raise HTTPError("Invalid status code") <8>
===========unchanged ref 0=========== at: backend.external.github_api.rest.template s = requests.session() RESTError(*args: object) at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] get(url: Union[Text, bytes], **kwargs) -> Response ===========changed ref 0=========== # module: backend.external.github_api.rest.template - class HTTPError(Exception): - pass - ===========changed ref 1=========== # module: backend.external.github_api.rest.template - class HTTPError(Exception): - pass -
backend.external.github_api.rest.template/get_template
Modified
avgupta456~github-trends
bd20e334225455f341a73a76fbb47c0771d7877c
add typing
<1>:<add> headers: Dict[str, str] = {"Accept": accept_header} <del> headers = {"Accept": accept_header} <2>:<add> params: Dict[str, str] = {"per_page": str(per_page)} if plural else {} <del> params = {"per_page": per_page} if plural else {}
# module: backend.external.github_api.rest.template def get_template( query: str, plural: Optional[bool] = False, + per_page: Optional[int] = 100, - per_page: Optional[str] = "100", accept_header: Optional[str] = "application/vnd.github.v3+json", + ) -> Dict[str, Any]: - ) -> dict: <0> """Template for interacting with the GitHub API""" <1> headers = {"Accept": accept_header} <2> params = {"per_page": per_page} if plural else {} <3> r = s.get(query, params=params, headers=headers) <4> if r.status_code == 200: <5> return r.json() <6> else: <7> raise RESTError( <8> "Invalid status code " <9> + str(r.status_code) <10> + ": " <11> + str(r.json()["message"]) <12> + " Documentation at " <13> + str(r.json()["documentation_url"]) <14> ) <15>
===========unchanged ref 0=========== at: backend.external.github_api.rest.template s = requests.session() RESTError(*args: object) at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] get(url: Union[Text, bytes], **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.graphql.template/get_template
Modified
avgupta456~github-trends
bd20e334225455f341a73a76fbb47c0771d7877c
add typing
<1>:<add> headers: Dict[str, str] = {"Authorization": "bearer " + token} <del> headers = {"Authorization": "bearer " + token}
# module: backend.external.github_api.graphql.template + def get_template(query: Dict[str, Any]) -> Dict[str, Any]: - def get_template(query: dict) -> dict: <0> token = os.getenv("GITHUB_TOKEN", "") <1> headers = {"Authorization": "bearer " + token} <2> r = s.post("https://api.github.com/graphql", json=query, headers=headers) <3> if r.status_code == 200: <4> return r.json() <5> else: <6> raise GraphQlError( <7> "Invalid status code " <8> + str(r.status_code) <9> + ": " <10> + str(r.json()["message"]) <11> + " Documentation at " <12> + str(r.json()["documentation_url"]) <13> ) <14>
===========unchanged ref 0=========== at: backend.external.github_api.graphql.template s = requests.session() GraphQlError(*args: object) at: os getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] post(url: Union[Text, bytes], data: _Data=..., json: Optional[Any]=..., **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: backend.external.github_api.rest.template def get_template( query: str, plural: Optional[bool] = False, + per_page: Optional[int] = 100, - per_page: Optional[str] = "100", accept_header: Optional[str] = "application/vnd.github.v3+json", + ) -> Dict[str, Any]: - ) -> dict: """Template for interacting with the GitHub API""" + headers: Dict[str, str] = {"Accept": accept_header} - headers = {"Accept": accept_header} + params: Dict[str, str] = {"per_page": str(per_page)} if plural else {} - params = {"per_page": per_page} if plural else {} r = s.get(query, params=params, headers=headers) if r.status_code == 200: return r.json() else: raise RESTError( "Invalid status code " + str(r.status_code) + ": " + str(r.json()["message"]) + " Documentation at " + str(r.json()["documentation_url"]) )
backend.external.github_api.graphql.user/get_user
Modified
avgupta456~github-trends
ad942a620e95697275b3511d54a69de21eaa3abd
create get_user_commit_contributions_by_repository
<10>:<add> totalCount:contributions(first: 1){ <add> totalCount <add> } <add> contributions(first: 100){ <del> contributions(first: 10){ <11>:<del> totalCount <12>:<add> nodes{ <del> nodes{ <13>:<add> commitCount, <del> commitCount, <14>:<add> occurredAt, <del> occurredAt, <15>:<add> } <add> pageInfo{ <add> hasNextPage, <add> endCursor <add> }
# module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: <0> query = { <1> "variables": {"login": user_id}, <2> "query": """ <3> query getUser($login: String!) { <4> user(login: $login){ <5> contributionsCollection{ <6> commitContributionsByRepository(maxRepositories: 10){ <7> repository{ <8> name, <9> }, <10> contributions(first: 10){ <11> totalCount <12> nodes{ <13> commitCount, <14> occurredAt, <15> } <16> } <17> }, <18> contributionCalendar{ <19> totalContributions, <20> weeks{ <21> contributionDays{ <22> date, <23> weekday, <24> contributionCount, <25> contributionLevel, <26> } <27> } <28> colors, <29> } <30> contributionYears, <31> issueContributions(first: 10){ <32> totalCount, <33> nodes{ <34> occurredAt, <35> issue{ <36> state <37> } <38> } <39> } <40> issueContributionsByRepository(maxRepositories: 10){ <41> repository{ <42> name <43> }, <44> contributions(first: 10){ <45> totalCount, <46> nodes{ <47> occurredAt, <48> issue{ <49> state <50> } <51> } <52> } <53> } <54> pullRequestContributions(first: 10){ <55> totalCount, <56> nodes{ <57> occurredAt, <58> pullRequest{ <59> state <60> } <61> } <62> } <63> pullRequestContributionsByRepository(maxRepositories:10){ <64> repository{ <65> name <66> }, <67> contributions(first:10){ <68> totalCount, <69> nodes{ <70> occurredAt, <71> pullRequest{ <72> state, <73> } <74> } <75> } <76> } <77> pullRequestReviewContributions(first: 10){ <78> totalCount, <79> nodes{</s>
===========below chunk 0=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } return get_template(query) ===========unchanged ref 0=========== at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.graphql.user/get_user
Modified
avgupta456~github-trends
d90dc77bb03a6b68f5c0a11dcb9a69e334a9c064
docstrings, exception handling
<0>:<add> """gets all user data from graphql"""
# module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: <0> query = { <1> "variables": {"login": user_id}, <2> "query": """ <3> query getUser($login: String!) { <4> user(login: $login){ <5> contributionsCollection{ <6> commitContributionsByRepository(maxRepositories: 10){ <7> repository{ <8> name, <9> }, <10> totalCount:contributions(first: 1){ <11> totalCount <12> } <13> contributions(first: 100){ <14> nodes{ <15> commitCount, <16> occurredAt, <17> } <18> pageInfo{ <19> hasNextPage, <20> endCursor <21> } <22> } <23> } <24> }, <25> contributionCalendar{ <26> totalContributions, <27> weeks{ <28> contributionDays{ <29> date, <30> weekday, <31> contributionCount, <32> contributionLevel, <33> } <34> } <35> colors, <36> } <37> contributionYears, <38> issueContributions(first: 10){ <39> totalCount, <40> nodes{ <41> occurredAt, <42> issue{ <43> state <44> } <45> } <46> } <47> issueContributionsByRepository(maxRepositories: 10){ <48> repository{ <49> name <50> }, <51> contributions(first: 10){ <52> totalCount, <53> nodes{ <54> occurredAt, <55> issue{ <56> state <57> } <58> } <59> } <60> } <61> pullRequestContributions(first: 10){ <62> totalCount, <63> nodes{ <64> occurredAt, <65> pullRequest{ <66> state <67> } <68> } <69> } <70> pullRequestContributionsByRepository(maxRepositories:10){ <71> repository{ <72> name <73> }, <74> contributions(first:10){ <75> totalCount, <76> nodes{ <77> occurredAt, <78> pullRequest{ <79> </s>
===========below chunk 0=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: raise e ===========unchanged ref 0=========== at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
d90dc77bb03a6b68f5c0a11dcb9a69e334a9c064
docstrings, exception handling
<39>:<add> logging.exception(e)
# module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: Optional[int] = 10, first: Optional[int] = 100, after: Optional[str] = "", ): <0> """Runs an individual query, fetching at most 100 days of history""" <1> query = { <2> "variables": { <3> "login": user_id, <4> "maxRepos": max_repos, <5> "first": first, <6> "after": after, <7> }, <8> "query": """ <9> query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { <10> user(login: $login){ <11> contributionsCollection{ <12> commitContributionsByRepository(maxRepositories: $maxRepos){ <13> repository{ <14> name, <15> }, <16> totalCount:contributions(first: 1){ <17> totalCount <18> } <19> contributions(first: $first, after: $after){ <20> nodes{ <21> commitCount, <22> occurredAt, <23> } <24> pageInfo{ <25> hasNextPage, <26> endCursor <27> } <28> } <29> } <30> }, <31> }, <32> } <33> """, <34> } <35> <36> try: <37> return get_template(query) <38> except Exception as e: <39> raise e <40>
===========unchanged ref 0=========== at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None ===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: + """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories</s> ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s> pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: + logging.exception(e) raise e
backend.main/get_user
Modified
avgupta456~github-trends
d90dc77bb03a6b68f5c0a11dcb9a69e334a9c064
docstrings, exception handling
<0>:<add> try: <add> data = list(map(lambda x: x.dict(), _get_user(user_id))) <add> return {"data": data, "message": ""} <add> except Exception as e: <add> logging.exception(e) <add> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <add> return {"data": [], "message": str(e)} <del> return _get_user(user_id)
# module: backend.main + @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) + def get_user(user_id: str, response: Response) -> Dict[str, Any]: - @app.get("/user/{user_id}") - def get_user(user_id: str) -> dict: <0> return _get_user(user_id) <1>
===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: Optional[int] = 10, first: Optional[int] = 100, after: Optional[str] = "", ): """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: return get_template(query) except Exception as e: + logging.exception(e) raise e ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: + """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories</s> ===========changed ref 2=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s> pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: + logging.exception(e) raise e
backend.main/get_repo
Modified
avgupta456~github-trends
d90dc77bb03a6b68f5c0a11dcb9a69e334a9c064
docstrings, exception handling
<0>:<add> try: <add> data = _get_repo(user_id, repo_name) <del> return _get_repo(user_id, repo_name) <1>:<add> return {"data": data, "message": ""} <add> except Exception as e: <add> logging.exception(e) <add> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <add> return {"data": [], "message": str(e)}
# module: backend.main + @app.get("/repo/{user_id}/{repo_name}", status_code=status.HTTP_200_OK) - @app.get("/repo/{user_id}/{repo_name}") + def get_repo(user_id: str, repo_name: str, response: Response) -> Dict[str, Any]: - def get_repo(user_id: str, repo_name: str) -> Dict[str, Any]: <0> return _get_repo(user_id, repo_name) <1>
===========changed ref 0=========== # module: backend.main + @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) + def get_user(user_id: str, response: Response) -> Dict[str, Any]: - @app.get("/user/{user_id}") - def get_user(user_id: str) -> dict: + try: + data = list(map(lambda x: x.dict(), _get_user(user_id))) + return {"data": data, "message": ""} + except Exception as e: + logging.exception(e) + response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR + return {"data": [], "message": str(e)} - return _get_user(user_id) ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: Optional[int] = 10, first: Optional[int] = 100, after: Optional[str] = "", ): """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: return get_template(query) except Exception as e: + logging.exception(e) raise e ===========changed ref 2=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: + """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories</s> ===========changed ref 3=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s> pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: + logging.exception(e) raise e
backend.main/get_user
Modified
avgupta456~github-trends
10f2ba00d49bd4a94d1a6c726d99e1ce4cb6ed30
fix typing issues
<1>:<add> data: List[Dict[str, Any]] = list(map(lambda x: x.dict(), _get_user(user_id))) <del> data = list(map(lambda x: x.dict(), _get_user(user_id)))
# module: backend.main @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) def get_user(user_id: str, response: Response) -> Dict[str, Any]: <0> try: <1> data = list(map(lambda x: x.dict(), _get_user(user_id))) <2> return {"data": data, "message": ""} <3> except Exception as e: <4> logging.exception(e) <5> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <6> return {"data": [], "message": str(e)} <7>
===========unchanged ref 0=========== at: backend.main app = FastAPI() at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: processing.user.commit_contributions_by_repository get_user_commit_contributions_by_repository(user_id: str, max_repos: Optional[int]=10, start_date: Optional[Date]=today - 365, end_date: Optional[Date]=today) -> List[CommitContributionsByRepository] at: typing List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict')
backend.models.misc.date/Date.__init__
Modified
avgupta456~github-trends
10f2ba00d49bd4a94d1a6c726d99e1ce4cb6ed30
fix typing issues
<2>:<add> year: int = date.year <add> month: int = date.month <add> day: int = date.day <add> date = "-".join([str(year), str(month), str(day)]) <del> date = "-".join([str(date.year), str(date.month), str(date.day)])
# module: backend.models.misc.date class Date: def __init__(self, date: Union[str, datetime]) -> None: <0> self.date_obj: datetime <1> if isinstance(date, datetime): <2> date = "-".join([str(date.year), str(date.month), str(date.day)]) <3> date_str: str = date.split("T")[0] if "T" in date else date <4> self.date_obj = datetime.strptime(date_str, "%Y-%m-%d") <5>
===========unchanged ref 0=========== at: datetime datetime() ===========changed ref 0=========== # module: backend.main @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) def get_user(user_id: str, response: Response) -> Dict[str, Any]: try: + data: List[Dict[str, Any]] = list(map(lambda x: x.dict(), _get_user(user_id))) - data = list(map(lambda x: x.dict(), _get_user(user_id))) return {"data": data, "message": ""} except Exception as e: logging.exception(e) response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR return {"data": [], "message": str(e)}
backend.processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
90bb86ddbb755bbb8f2fa8aaa3181cbbc37b6eb4
cleanup
<27>:<del> print(raw_contribs[0]) <28>:<del> print(CommitContribution.parse_obj(raw_contribs[0]))
# module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: Optional[int] = 10, start_date: Optional[Date] = today - 365, end_date: Optional[Date] = today, ) -> List[CommitContributionsByRepository]: <0> """Gets the daily contribution history for a users top x repositories""" <1> output = [] <2> index, cont, after = 0, True, "" <3> while index < 10 and cont: <4> try: <5> data = run_query(user_id, max_repos, after=after) <6> except Exception as e: <7> logging.exception(e) <8> raise e <9> <10> data = data["data"]["user"]["contributionsCollection"][ <11> "commitContributionsByRepository" <12> ] <13> <14> cont = False <15> repo: Dict[str, Any] <16> for i, repo in enumerate(data): <17> if index == 0: <18> output.append( <19> { <20> "name": repo["repository"]["name"], <21> "contributions": repo["totalCount"]["totalCount"], <22> "timeline": [], <23> } <24> ) <25> <26> raw_contribs = repo["contributions"]["nodes"] <27> print(raw_contribs[0]) <28> print(CommitContribution.parse_obj(raw_contribs[0])) <29> contribs = map(lambda x: CommitContribution.parse_obj(x), raw_contribs) <30> output[i]["timeline"].extend(contribs) <31> <32> if repo["contributions"]["pageInfo"]["hasNextPage"]: <33> after = repo["contributions"]["pageInfo"]["endCursor"] <34> cont = True <35> <36> index += 1 <37> <38> output = list(map(lambda x: CommitContributionsByRepository.parse_obj(x), output)) <39> return output <40>
===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: Optional[int]=10, first: Optional[int]=100, after: Optional[str]="") at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: models.misc.date Date(date: Union[str, datetime]) at: typing List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.rest.template/get_template
Modified
avgupta456~github-trends
90bb86ddbb755bbb8f2fa8aaa3181cbbc37b6eb4
cleanup
<1>:<add> headers: Dict[str, str] = {"Accept": str(accept_header)} <del> headers: Dict[str, str] = {"Accept": accept_header} <3>:<add> r = s.get(query, params=params, headers=headers) # type: ignore <del> r = s.get(query, params=params, headers=headers) <5>:<add> return r.json() # type: ignore <del> return r.json() <11>:<add> + str(r.json()["message"]) # type: ignore <del> + str(r.json()["message"]) <13>:<add> + str(r.json()["documentation_url"]) # type: ignore <del> + str(r.json()["documentation_url"])
# module: backend.external.github_api.rest.template def get_template( query: str, plural: Optional[bool] = False, per_page: Optional[int] = 100, accept_header: Optional[str] = "application/vnd.github.v3+json", ) -> Dict[str, Any]: <0> """Template for interacting with the GitHub REST API""" <1> headers: Dict[str, str] = {"Accept": accept_header} <2> params: Dict[str, str] = {"per_page": str(per_page)} if plural else {} <3> r = s.get(query, params=params, headers=headers) <4> if r.status_code == 200: <5> return r.json() <6> else: <7> raise RESTError( <8> "Invalid status code " <9> + str(r.status_code) <10> + ": " <11> + str(r.json()["message"]) <12> + " Documentation at " <13> + str(r.json()["documentation_url"]) <14> ) <15>
===========unchanged ref 0=========== at: backend.external.github_api.rest.template s = requests.session() RESTError(*args: object) at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] get(url: Union[Text, bytes], **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: Optional[int] = 10, start_date: Optional[Date] = today - 365, end_date: Optional[Date] = today, ) -> List[CommitContributionsByRepository]: """Gets the daily contribution history for a users top x repositories""" output = [] index, cont, after = 0, True, "" while index < 10 and cont: try: data = run_query(user_id, max_repos, after=after) except Exception as e: logging.exception(e) raise e data = data["data"]["user"]["contributionsCollection"][ "commitContributionsByRepository" ] cont = False repo: Dict[str, Any] for i, repo in enumerate(data): if index == 0: output.append( { "name": repo["repository"]["name"], "contributions": repo["totalCount"]["totalCount"], "timeline": [], } ) raw_contribs = repo["contributions"]["nodes"] - print(raw_contribs[0]) - print(CommitContribution.parse_obj(raw_contribs[0])) contribs = map(lambda x: CommitContribution.parse_obj(x), raw_contribs) output[i]["timeline"].extend(contribs) if repo["contributions"]["pageInfo"]["hasNextPage"]: after = repo["contributions"]["pageInfo"]["endCursor"] cont = True index += 1 output = list(map(lambda x: CommitContributionsByRepository.parse_obj(x), output)) return output
backend.main/get_user
Modified
avgupta456~github-trends
83e083cea6ae9df13f1a73a7fce5335ddef4767b
fail_gracefully decorator
<0>:<del> try: <1>:<add> return list(map(lambda x: x.dict(), _get_user(user_id))) <del> data: List[Dict[str, Any]] = list(map(lambda x: x.dict(), _get_user(user_id))) <2>:<del> return {"data": data, "message": ""} <3>:<del> except Exception as e: <4>:<del> logging.exception(e) <5>:<del> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <6>:<del> return {"data": [], "message": str(e)}
# module: backend.main @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) + @fail_gracefully + def get_user(response: Response, user_id: str) -> List[Dict[str, Any]]: - def get_user(user_id: str, response: Response) -> Dict[str, Any]: <0> try: <1> data: List[Dict[str, Any]] = list(map(lambda x: x.dict(), _get_user(user_id))) <2> return {"data": data, "message": ""} <3> except Exception as e: <4> logging.exception(e) <5> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <6> return {"data": [], "message": str(e)} <7>
===========unchanged ref 0=========== at: functools wraps(wrapped: _AnyCallable, assigned: Sequence[str]=..., updated: Sequence[str]=...) -> Callable[[_T], _T] at: typing Callable = _CallableType(collections.abc.Callable, 2) List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict')
backend.main/get_repo
Modified
avgupta456~github-trends
83e083cea6ae9df13f1a73a7fce5335ddef4767b
fail_gracefully decorator
<0>:<del> try: <1>:<add> return _get_repo(user_id, repo_name) <del> data = _get_repo(user_id, repo_name) <2>:<del> return {"data": data, "message": ""} <3>:<del> except Exception as e: <4>:<del> logging.exception(e) <5>:<del> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <6>:<del> return {"data": [], "message": str(e)}
# module: backend.main @app.get("/repo/{user_id}/{repo_name}", status_code=status.HTTP_200_OK) + @fail_gracefully + def get_repo(response: Response, user_id: str, repo_name: str) -> Dict[str, Any]: - def get_repo(user_id: str, repo_name: str, response: Response) -> Dict[str, Any]: <0> try: <1> data = _get_repo(user_id, repo_name) <2> return {"data": data, "message": ""} <3> except Exception as e: <4> logging.exception(e) <5> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <6> return {"data": [], "message": str(e)} <7>
===========unchanged ref 0=========== at: backend.main app = FastAPI() fail_gracefully(func: Callable[..., Any]) at: backend.main.fail_gracefully Callable(response: Response, *args: List[Any], **kwargs: Dict[str, Any]) -> Any at: processing.user.commit_contributions_by_repository get_user_commit_contributions_by_repository(user_id: str, max_repos: Optional[int]=10, start_date: Optional[Date]=today - 365, end_date: Optional[Date]=today) -> List[CommitContributionsByRepository] at: typing List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: backend.main + def fail_gracefully(func: Callable[..., Any]): + @wraps(func) # needed to play nice with FastAPI decorator + def wrapper(response: Response, *args: List[Any], **kwargs: Dict[str, Any]) -> Any: + try: + data = func(response, *args, **kwargs) + return {"data": data, "message": "200 OK"} + except Exception as e: + logging.exception(e) + response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR + return {"data": [], "message": "Error " + str(e)} + + return wrapper + ===========changed ref 1=========== # module: backend.main @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) + @fail_gracefully + def get_user(response: Response, user_id: str) -> List[Dict[str, Any]]: - def get_user(user_id: str, response: Response) -> Dict[str, Any]: - try: + return list(map(lambda x: x.dict(), _get_user(user_id))) - data: List[Dict[str, Any]] = list(map(lambda x: x.dict(), _get_user(user_id))) - return {"data": data, "message": ""} - except Exception as e: - logging.exception(e) - response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR - return {"data": [], "message": str(e)}
backend.external.github_api.graphql.template/get_template
Modified
avgupta456~github-trends
48ebb323e20e519e040864f33b252bd125b8a147
log query execution time
<3>:<add> start = datetime.now() <6>:<add> print("GraphQL", datetime.now() - start)
# module: backend.external.github_api.graphql.template def get_template(query: Dict[str, Any]) -> Dict[str, Any]: <0> """Template for interacting with the GitHub GraphQL API""" <1> token = os.getenv("GITHUB_TOKEN", "") <2> headers: Dict[str, str] = {"Authorization": "bearer " + token} <3> r = s.post( # type: ignore <4> "https://api.github.com/graphql", json=query, headers=headers <5> ) <6> if r.status_code == 200: <7> return r.json() # type: ignore <8> else: <9> raise GraphQlError( <10> "Invalid status code " <11> + str(r.status_code) <12> + ": " <13> + str(r.json()["message"]) # type: ignore <14> + " Documentation at " <15> + str(r.json()["documentation_url"]) # type: ignore <16> ) <17>
===========unchanged ref 0=========== at: backend.external.github_api.graphql.template s = requests.session() GraphQlError(*args: object) at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ now(tz: Optional[_tzinfo]=...) -> _S __radd__ = __add__ at: os getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] post(url: Union[Text, bytes], data: _Data=..., json: Optional[Any]=..., **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.rest.template/get_template
Modified
avgupta456~github-trends
48ebb323e20e519e040864f33b252bd125b8a147
log query execution time
<1>:<add> start = datetime.now() <5>:<add> print("REST API", datetime.now() - start)
# module: backend.external.github_api.rest.template def get_template( query: str, plural: Optional[bool] = False, per_page: Optional[int] = 100, accept_header: Optional[str] = "application/vnd.github.v3+json", ) -> Dict[str, Any]: <0> """Template for interacting with the GitHub REST API""" <1> headers: Dict[str, str] = {"Accept": str(accept_header)} <2> params: Dict[str, str] = {"per_page": str(per_page)} if plural else {} <3> r = s.get(query, params=params, headers=headers) # type: ignore <4> if r.status_code == 200: <5> return r.json() # type: ignore <6> else: <7> raise RESTError( <8> "Invalid status code " <9> + str(r.status_code) <10> + ": " <11> + str(r.json()["message"]) # type: ignore <12> + " Documentation at " <13> + str(r.json()["documentation_url"]) # type: ignore <14> ) <15>
===========unchanged ref 0=========== at: backend.external.github_api.rest.template s = requests.session() RESTError(*args: object) at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ now(tz: Optional[_tzinfo]=...) -> _S __radd__ = __add__ at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] get(url: Union[Text, bytes], **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: backend.external.github_api.graphql.template def get_template(query: Dict[str, Any]) -> Dict[str, Any]: """Template for interacting with the GitHub GraphQL API""" token = os.getenv("GITHUB_TOKEN", "") headers: Dict[str, str] = {"Authorization": "bearer " + token} + start = datetime.now() r = s.post( # type: ignore "https://api.github.com/graphql", json=query, headers=headers ) + print("GraphQL", datetime.now() - start) if r.status_code == 200: return r.json() # type: ignore else: raise GraphQlError( "Invalid status code " + str(r.status_code) + ": " + str(r.json()["message"]) # type: ignore + " Documentation at " + str(r.json()["documentation_url"]) # type: ignore )
backend.main/fail_gracefully
Modified
avgupta456~github-trends
84a0021e27d24eda1ee183cf9b7860f02bed00af
log time
<2>:<add> start = datetime.now() <4>:<add> return {"data": data, "message": "200 OK", "time": datetime.now() - start} <del> return {"data": data, "message": "200 OK"} <8>:<add> return { <add> "data": [], <add> "message": "Error " + str(e), <del> return {"data": [], "message": "Error " + str(e)} <9>:<add> "time": datetime.now() - start, <add> }
# module: backend.main def fail_gracefully(func: Callable[..., Any]): <0> @wraps(func) # needed to play nice with FastAPI decorator <1> def wrapper(response: Response, *args: List[Any], **kwargs: Dict[str, Any]) -> Any: <2> try: <3> data = func(response, *args, **kwargs) <4> return {"data": data, "message": "200 OK"} <5> except Exception as e: <6> logging.exception(e) <7> response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR <8> return {"data": [], "message": "Error " + str(e)} <9> <10> return wrapper <11>
===========unchanged ref 0=========== at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ now(tz: Optional[_tzinfo]=...) -> _S __radd__ = __add__ at: functools wraps(wrapped: _AnyCallable, assigned: Sequence[str]=..., updated: Sequence[str]=...) -> Callable[[_T], _T] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: typing Callable = _CallableType(collections.abc.Callable, 2) List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict')
backend.models.misc.date/Date.__sub__
Modified
avgupta456~github-trends
ee3bf11a8bf756858a150711c1af1bfabe7b511b
add, subtract, comparison for date
<0>:<add> if isinstance(other, int): <add> return Date(self.date_obj - timedelta(days=other)) <del> new_date: Date = Date(self.date_obj - timedelta(days=other)) <1>:<add> else: <add> return abs((self.date_obj - other.date_obj).days) <del> return new_date
# module: backend.models.misc.date class Date: + def __sub__(self, other: Union[int, Date]) -> Union[int, Date]: - def __sub__(self, other: int) -> Date: <0> new_date: Date = Date(self.date_obj - timedelta(days=other)) <1> return new_date <2>
===========unchanged ref 0=========== at: backend.models.misc.date Date(date: Union[str, datetime])
backend.external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
2e746a650cb2b83e66b4ee47edd7244a29bc87da
fix optional usage
<0>:<add> max_repos: int = 100, <add> first: int = 100, <add> after: str = "",
# module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, - max_repos: Optional[int] = 10, - first: Optional[int] = 100, - after: Optional[str] = "", ): <0> """Runs an individual query, fetching at most 100 days of history""" <1> query = { <2> "variables": { <3> "login": user_id, <4> "maxRepos": max_repos, <5> "first": first, <6> "after": after, <7> }, <8> "query": """ <9> query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { <10> user(login: $login){ <11> contributionsCollection{ <12> commitContributionsByRepository(maxRepositories: $maxRepos){ <13> repository{ <14> name, <15> }, <16> totalCount:contributions(first: 1){ <17> totalCount <18> } <19> contributions(first: $first, after: $after){ <20> nodes{ <21> commitCount, <22> occurredAt, <23> } <24> pageInfo{ <25> hasNextPage, <26> endCursor <27> } <28> } <29> } <30> }, <31> }, <32> } <33> """, <34> } <35> <36> try: <37> return get_template(query) <38> except Exception as e: <39> logging.exception(e) <40> raise e <41>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
backend.external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
b5be3508d39f2ff7259368419b6edf768bee625a
updated processing logic
<0>:<del> max_repos: int = 100, <1>:<del> first: int = 100, <2>:<del> after: str = "", <40>:<add> output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ <add> "commitContributionsByRepository" <add> ] <add> return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) <del> return get_template(query)
# module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, + max_repos: int = 100, + first: int = 100, + after: str = "", + ) -> UserCommitContributionsByRepositoryAPIResponse: - ): <0> max_repos: int = 100, <1> first: int = 100, <2> after: str = "", <3> """Runs an individual query, fetching at most 100 days of history""" <4> query = { <5> "variables": { <6> "login": user_id, <7> "maxRepos": max_repos, <8> "first": first, <9> "after": after, <10> }, <11> "query": """ <12> query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { <13> user(login: $login){ <14> contributionsCollection{ <15> commitContributionsByRepository(maxRepositories: $maxRepos){ <16> repository{ <17> name, <18> }, <19> totalCount:contributions(first: 1){ <20> totalCount <21> } <22> contributions(first: $first, after: $after){ <23> nodes{ <24> commitCount, <25> occurredAt, <26> } <27> pageInfo{ <28> hasNextPage, <29> endCursor <30> } <31> } <32> } <33> }, <34> }, <35> } <36> """, <37> } <38> <39> try: <40> return get_template(query) <41> except Exception as e: <42> logging.exception(e) <43> raise e <44>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any]
backend.processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
b5be3508d39f2ff7259368419b6edf768bee625a
updated processing logic
<1>:<add> <add> time_range = today - start_date # gets number of days to end date <add> segments = min(math.ceil(time_range / 100), 10) # no more than three years <add> raw_output: List[CommitContributionsByRepository] = [] <del> output = [] <2>:<add> index, cont, after = 0, True, "" # initialize variables <del> index, cont, after = 0, True, "" <3>:<add> while cont and index < segments: <del> while index < 10 and cont: <10>:<del> data = data["data"]["user"]["contributionsCollection"][ <11>:<del> "commitContributionsByRepository" <12>:<del> ] <13>:<del> <15>:<del> repo: Dict[str, Any] <16>:<add> for i, repo in enumerate(data.data): <del> for i, repo in enumerate(data): <18>:<add> raw_output.append( <del> output.append( <19>:<add> CommitContributionsByRepository.parse_obj( <add> { <add> "name": repo.repository.name, <add> "contributions": repo.total_count.total_count, <add> "contributions_in_range": 0, <add> "timeline": [], <add> } <add> ) <del> { <20>:<del> "name": repo["repository"]["name"], <21>:<del> "contributions": repo["totalCount"]["totalCount"], <22>:<del> "timeline": [], <23>:<del> } <26>:<add> raw_contribs = repo.contributions.nodes <del> raw_contribs = repo["contributions"]["nodes"] <27>:<add> contribs =
<s>.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, + max_repos: int = 100, - max_repos: Optional[int] = 10, + start_date: Date = today - 365, - start_date: Optional[Date] = today - 365, + end_date: Date = today, - end_date: Optional[Date] = today, ) -> List[CommitContributionsByRepository]: <0> """Gets the daily contribution history for a users top x repositories""" <1> output = [] <2> index, cont, after = 0, True, "" <3> while index < 10 and cont: <4> try: <5> data = run_query(user_id, max_repos, after=after) <6> except Exception as e: <7> logging.exception(e) <8> raise e <9> <10> data = data["data"]["user"]["contributionsCollection"][ <11> "commitContributionsByRepository" <12> ] <13> <14> cont = False <15> repo: Dict[str, Any] <16> for i, repo in enumerate(data): <17> if index == 0: <18> output.append( <19> { <20> "name": repo["repository"]["name"], <21> "contributions": repo["totalCount"]["totalCount"], <22> "timeline": [], <23> } <24> ) <25> <26> raw_contribs = repo["contributions"]["nodes"] <27> contribs = map(lambda x: CommitContribution.parse_obj(x), raw_contribs) <28> output[i]["timeline"].extend(contribs) <29> <30> if repo["contributions"]["pageInfo"]["hasNextPage"]: <31> after = repo["contributions"]["pageInfo"]["endCursor"] <32> cont = True <33> <34> index += 1 <35> <36> output = list(map(lambda x: CommitContributionsByRepository.parse_obj(x), output)) <37> return output <38>
===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserCommitContributionsByRepositoryAPIResponse at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: math ceil(x: SupportsFloat, /) -> int at: models.misc.date Date(date: Union[str, datetime]) at: models.user.commit_contributions_by_repository.APIResponse data: List[APIResponse_Repo] at: models.user.commit_contributions_by_repository.APIResponse_Repo repository: APIResponse_Repo_Repo total_count: APIResponse_Repo_TotalCount = Field(alias="totalCount") contributions: APIResponse_Repo_Contribs at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs nodes: List[APIResponse_Repo_Contribs_Nodes] page_info: APIResponse_Repo_Contribs_PageInfo = Field(alias="pageInfo") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Repo name: str at: models.user.commit_contributions_by_repository.APIResponse_Repo_TotalCount total_count: int = Field(alias="totalCount") at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, + max_repos: int = 100, + first: int = 100, + after: str = "", + ) -> UserCommitContributionsByRepositoryAPIResponse: - ): - max_repos: int = 100, - first: int = 100, - after: str = "", """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: + output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ + "commitContributionsByRepository" + ] + return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) - return get_template(query) except Exception as e: logging.exception(e) raise e
backend.external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
5b845bda46456eb15c85c56a513e01da5e02f66c
add get_user_contribution_calendar
<9>:<add> query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { <del> query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { <10>:<add> user(login: $login){ <del> user(login: $login){ <11>:<add> contributionsCollection{ <del> contributionsCollection{ <12>:<add> commitContributionsByRepository(maxRepositories: $maxRepos){ <del> commitContributionsByRepository(maxRepositories: $maxRepos){ <13>:<add> repository{ <del> repository{ <14>:<add> name, <del> name, <15>:<add> }, <del> }, <16>:<add> totalCount:contributions(first: 1){ <del> totalCount:contributions(first: 1){ <17>:<add> totalCount <del> totalCount <18>:<add> } <add> contributions(first: $first, after: $after){ <add> nodes{ <add> commitCount, <add> occurredAt, <19>:<del> contributions(first: $first, after: $after){ <20>:<del> nodes{ <21>:<del> commitCount, <22>:<del> occurredAt, <23>:<del> } <24>:<add> pageInfo{ <del> pageInfo{ <25>:<add> hasNextPage, <del> hasNextPage, <26>:<add> endCursor <del> endCursor <27>:<del> } <30>:<add> } <del> }, <32>:<add> }, <del> } <33>:<add> } <add> """, <del> """,
# module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: <0> """Runs an individual query, fetching at most 100 days of history""" <1> query = { <2> "variables": { <3> "login": user_id, <4> "maxRepos": max_repos, <5> "first": first, <6> "after": after, <7> }, <8> "query": """ <9> query getUser($login: String! $maxRepos: Int!, $first: Int!, $after: String!) { <10> user(login: $login){ <11> contributionsCollection{ <12> commitContributionsByRepository(maxRepositories: $maxRepos){ <13> repository{ <14> name, <15> }, <16> totalCount:contributions(first: 1){ <17> totalCount <18> } <19> contributions(first: $first, after: $after){ <20> nodes{ <21> commitCount, <22> occurredAt, <23> } <24> pageInfo{ <25> hasNextPage, <26> endCursor <27> } <28> } <29> } <30> }, <31> }, <32> } <33> """, <34> } <35> <36> try: <37> output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ <38> "commitContributionsByRepository" <39> ] <40> return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) <41> except Exception as e: <42> logging.exception(e) <43> raise e <44>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
backend.main/get_user
Modified
avgupta456~github-trends
6543fac6963ed315a395e54b37fd7ac438c48714
misc
<0>:<add> return _get_user(user_id) <del> return list(map(lambda x: x.dict(), _get_user(user_id)))
# module: backend.main @app.get("/user/{user_id}", status_code=status.HTTP_200_OK) @fail_gracefully def get_user(response: Response, user_id: str) -> List[Dict[str, Any]]: <0> return list(map(lambda x: x.dict(), _get_user(user_id))) <1>
===========unchanged ref 0=========== at: backend.main app = FastAPI() fail_gracefully(func: Callable[..., Any]) at: typing List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict')
backend.processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
045d61ba3d89401b20c45b8ea50b8ed0eff4b120
add external contribution_calendar classes
<1>:<del> <10>:<del> logging.exception(e)
# module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: <0> """Gets the daily contribution history for a users top x repositories""" <1> <2> time_range = today - start_date # gets number of days to end date <3> segments = min(math.ceil(time_range / 100), 10) # no more than three years <4> raw_output: List[CommitContributionsByRepository] = [] <5> index, cont, after = 0, True, "" # initialize variables <6> while cont and index < segments: <7> try: <8> data = run_query(user_id, max_repos, after=after) <9> except Exception as e: <10> logging.exception(e) <11> raise e <12> <13> cont = False <14> for i, repo in enumerate(data.data): <15> if index == 0: <16> raw_output.append( <17> CommitContributionsByRepository.parse_obj( <18> { <19> "name": repo.repository.name, <20> "contributions": repo.total_count.total_count, <21> "contributions_in_range": 0, <22> "timeline": [], <23> } <24> ) <25> ) <26> <27> raw_contribs = repo.contributions.nodes <28> contribs = map( <29> lambda x: CommitContribution.parse_obj( <30> { <31> "commit_count": x.commit_count, <32> "occurred_at": Date(x.occurred_at), <33> } <34> ), <35> raw_contribs, <36> ) <37> contribs = filter( <38> lambda x: start_date <= x.occurred_at <= end_date, contribs <39> ) <40> raw_output[i].timeline.extend(contribs) <41> <42> </s>
===========below chunk 0=========== # module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: # offset: 1 after = repo.contributions.page_info.end_cursor cont = True index += 1 # adds contributionsInRange for repo in raw_output: repo.contributions_in_range = sum([x.commit_count for x in repo.timeline]) # converts to objects output_objects = map( lambda x: CommitContributionsByRepository.parse_obj(x), raw_output ) # filters out empty results output_objects = filter(lambda x: x.contributions_in_range > 0, output_objects) return list(output_objects) ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserCommitContributionsByRepositoryAPIResponse at: math ceil(x: SupportsFloat, /) -> int at: models.misc.date Date(date: Union[str, datetime]) at: models.user.commit_contributions_by_repository.APIResponse data: List[APIResponse_Repo] at: models.user.commit_contributions_by_repository.APIResponse_Repo repository: APIResponse_Repo_Repo total_count: APIResponse_Repo_TotalCount = Field(alias="totalCount") contributions: APIResponse_Repo_Contribs at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs nodes: List[APIResponse_Repo_Contribs_Nodes] page_info: APIResponse_Repo_Contribs_PageInfo = Field(alias="pageInfo") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs_PageInfo has_next_page: bool = Field(alias="hasNextPage") end_cursor: str = Field(alias="endCursor") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Repo name: str at: models.user.commit_contributions_by_repository.APIResponse_Repo_TotalCount total_count: int = Field(alias="totalCount") at: models.user.commit_contributions_by_repository.CommitContribution commit_count: int occurred_at: Date at: models.user.commit_contributions_by_repository.CommitContributionsByRepository name: str contributions: int contributions_in_range: int at: typing List = _alias(list, 1, inst=False, name='List')
backend.processing.user.contribution_calendar/get_user_contribution_calendar
Modified
avgupta456~github-trends
9cb59d2082c523211667331028db4f30fb846404
upgrade contribution_calendar processing (months and weekdays)
<30>:<add> # creates total period (up to 1 year long) <add> total = ContributionPeriod( <add> days=days, <add> num_days=len(days), <add> total_contributions=total_contributions, <add> avg_contributions=total_contributions / len(days), <add> ) <add> <add> # creates months (0 is January, 11 is December) <add> months = [[] for _ in range(12)] <add> for day in days: <add> months[day.date.month() - 1].append(day) <add> <add> months = list( <add> map( <add> lambda x: ContributionPeriod( <add> days=x, <add> num_days=len(x), <add> total_contributions=sum([y.contribution_count for y in x]), <add> avg_contributions=sum([y.contribution_count for y in x]) / len(x),
# module: backend.processing.user.contribution_calendar def get_user_contribution_calendar( user_id: str, start_date: Date = today - 365, end_date: Date = today, ) -> ContributionCalendar: <0> """get user contributions for the past year""" <1> if today - start_date > 365: <2> raise AssertionError("start_date can only be within past 1 year") <3> <4> try: <5> data = run_query(user_id) <6> except Exception as e: <7> raise e <8> <9> contribution_years = data.contribution_years <10> total_contributions = data.contribution_calendar.total_contributions <11> colors = data.contribution_calendar.colors <12> days = list( <13> map( <14> lambda x: ContributionDay.parse_obj( <15> { <16> "date": Date(x.date), <17> "weekday": x.weekday, <18> "contribution_count": x.contribution_count, <19> "contribution_level": x.contribution_level, <20> } <21> ), <22> [ <23> day <24> for week in data.contribution_calendar.weeks <25> for day in week.contribution_days <26> ], <27> ) <28> ) <29> <30> calendar = ContributionCalendar( <31> contribution_years=contribution_years, <32> total_contributions=total_contributions, <33> colors=colors, <34> days=days, <35> ) <36> <37> return calendar <38>
===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_contribution_calendar(user_id: str) -> UserContributionCalendar at: models.misc.date Date(date: Union[str, datetime]) at: models.user.contribution_calendar.APIResponse contribution_calendar: APIResponse_Calendar = Field(alias="contributionCalendar") contribution_years: List[int] = Field(alias="contributionYears") at: models.user.contribution_calendar.APIResponse_Calendar total_contributions: int = Field(alias="totalContributions") weeks: List[APIResponse_Calendar_Week] colors: List[str] ===========changed ref 0=========== # module: backend.models.misc.date class Date: + def day(self) -> int: + return self.date_obj.day + ===========changed ref 1=========== # module: backend.models.misc.date class Date: + def month(self) -> int: + return self.date_obj.month + ===========changed ref 2=========== # module: backend.models.misc.date class Date: + def year(self) -> int: + return self.date_obj.year + ===========changed ref 3=========== # module: backend.models.user.contribution_calendar + class ContributionPeriod(BaseModel): + """ + BaseModel which accepts: + - total_contributions: int + - avg_contributions: float + - days: List[ContributionDay] + """ + + total_contributions: int + avg_contributions: float + days: List[ContributionDay] + num_days: int + ===========changed ref 4=========== # module: backend.models.user.contribution_calendar class ContributionCalendar(BaseModel): """ BaseModel which accepts: - - contribution_years: List[int] - total_contributions: int - colors: List[str] + - total: ContributionPeriod + - months: List[ContributionPeriod] + - weekdays: List[ContributionPeriod] - - days: List[ContributionDay] """ contribution_years: List[int] - total_contributions: int colors: List[str] + total: ContributionPeriod + months: List[ContributionPeriod] + weekdays: List[ContributionPeriod] - days: List[ContributionDay]
backend.processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
ba54905a19d4076422c9a501630262675044ed75
use create_model functions
<27>:<add> lambda x: create_commit_contribution(x), <del> lambda x: CommitContribution.parse_obj( <28>:<del> { <29>:<del> "commit_count": x.commit_count, <30>:<del> "occurred_at": Date(x.occurred_at), <31>:<del> } <32>:<del> ),
# module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: <0> """Gets the daily contribution history for a users top x repositories""" <1> time_range = today - start_date # gets number of days to end date <2> segments = min(math.ceil(time_range / 100), 10) # no more than three years <3> raw_output: List[CommitContributionsByRepository] = [] <4> index, cont, after = 0, True, "" # initialize variables <5> while cont and index < segments: <6> try: <7> data = run_query(user_id, max_repos, after=after) <8> except Exception as e: <9> raise e <10> <11> cont = False <12> for i, repo in enumerate(data.data): <13> if index == 0: <14> raw_output.append( <15> CommitContributionsByRepository.parse_obj( <16> { <17> "name": repo.repository.name, <18> "contributions": repo.total_count.total_count, <19> "contributions_in_range": 0, <20> "timeline": [], <21> } <22> ) <23> ) <24> <25> raw_contribs = repo.contributions.nodes <26> contribs = map( <27> lambda x: CommitContribution.parse_obj( <28> { <29> "commit_count": x.commit_count, <30> "occurred_at": Date(x.occurred_at), <31> } <32> ), <33> raw_contribs, <34> ) <35> contribs = filter( <36> lambda x: start_date <= x.occurred_at <= end_date, contribs <37> ) <38> raw_output[i].timeline.extend(contribs) <39> <40> if repo.contributions.page_info.has</s>
===========below chunk 0=========== # module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: # offset: 1 after = repo.contributions.page_info.end_cursor cont = True index += 1 # adds contributionsInRange for repo in raw_output: repo.contributions_in_range = sum([x.commit_count for x in repo.timeline]) # converts to objects output_objects = map( lambda x: CommitContributionsByRepository.parse_obj(x), raw_output ) # filters out empty results output_objects = filter(lambda x: x.contributions_in_range > 0, output_objects) return list(output_objects) ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserCommitContributionsByRepositoryAPIResponse at: math ceil(x: SupportsFloat, /) -> int at: models.misc.date Date(date: Union[str, datetime]) at: models.user.commit_contributions_by_repository create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution at: models.user.commit_contributions_by_repository.APIResponse data: List[APIResponse_Repo] at: models.user.commit_contributions_by_repository.APIResponse_Repo repository: APIResponse_Repo_Repo total_count: APIResponse_Repo_TotalCount = Field(alias="totalCount") contributions: APIResponse_Repo_Contribs at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs nodes: List[APIResponse_Repo_Contribs_Node] page_info: APIResponse_Repo_Contribs_PageInfo = Field(alias="pageInfo") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs_PageInfo has_next_page: bool = Field(alias="hasNextPage") end_cursor: str = Field(alias="endCursor") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Repo name: str at: models.user.commit_contributions_by_repository.APIResponse_Repo_TotalCount total_count: int = Field(alias="totalCount") at: models.user.commit_contributions_by_repository.CommitContribution commit_count: int occurred_at: Date at: models.user.commit_contributions_by_repository.CommitContributionsByRepository name: str contributions: int ===========unchanged ref 1=========== contributions_in_range: int at: typing List = _alias(list, 1, inst=False, name='List')
backend.processing.user.contribution_calendar/get_user_contribution_calendar
Modified
avgupta456~github-trends
ba54905a19d4076422c9a501630262675044ed75
use create_model functions
<10>:<del> total_contributions = data.contribution_calendar.total_contributions <31>:<add> total = create_contribution_period(days) <del> total = ContributionPeriod( <32>:<del> days=days, <33>:<del> num_days=len(days), <34>:<del> total_contributions=total_contributions, <35>:<del> avg_contributions=total_contributions / len(days), <36>:<del> ) <43>:<del> months = list( <44>:<del> map( <45>:<del> lambda x: ContributionPeriod( <46>:<del> days=x, <47>:<del> num_days=len(x), <48>:<del> total_
# module: backend.processing.user.contribution_calendar def get_user_contribution_calendar( user_id: str, start_date: Date = today - 365, end_date: Date = today, ) -> ContributionCalendar: <0> """get user contributions for the past year""" <1> if today - start_date > 365: <2> raise AssertionError("start_date can only be within past 1 year") <3> <4> try: <5> data = run_query(user_id) <6> except Exception as e: <7> raise e <8> <9> contribution_years = data.contribution_years <10> total_contributions = data.contribution_calendar.total_contributions <11> colors = data.contribution_calendar.colors <12> days = list( <13> map( <14> lambda x: ContributionDay.parse_obj( <15> { <16> "date": Date(x.date), <17> "weekday": x.weekday, <18> "contribution_count": x.contribution_count, <19> "contribution_level": x.contribution_level, <20> } <21> ), <22> [ <23> day <24> for week in data.contribution_calendar.weeks <25> for day in week.contribution_days <26> ], <27> ) <28> ) <29> <30> # creates total period (up to 1 year long) <31> total = ContributionPeriod( <32> days=days, <33> num_days=len(days), <34> total_contributions=total_contributions, <35> avg_contributions=total_contributions / len(days), <36> ) <37> <38> # creates months (0 is January, 11 is December) <39> months = [[] for _ in range(12)] <40> for day in days: <41> months[day.date.month() - 1].append(day) <42> <43> months = list( <44> map( <45> lambda x: ContributionPeriod( <46> days=x, <47> num_days=len(x), <48> total_</s>
===========below chunk 0=========== # module: backend.processing.user.contribution_calendar def get_user_contribution_calendar( user_id: str, start_date: Date = today - 365, end_date: Date = today, ) -> ContributionCalendar: # offset: 1 avg_contributions=sum([y.contribution_count for y in x]) / len(x), ), months, ) ) # create weekdays (0 is Sunday, 6 is Saturday) weekdays = [[] for _ in range(7)] for day in days: weekdays[day.weekday].append(day) weekdays = list( map( lambda x: ContributionPeriod( days=x, num_days=len(x), total_contributions=sum([y.contribution_count for y in x]), avg_contributions=sum([y.contribution_count for y in x]) / len(x), ), weekdays, ) ) # create final output calendar = ContributionCalendar( contribution_years=contribution_years, colors=colors, total=total, months=months, weekdays=weekdays, ) return calendar ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_contribution_calendar(user_id: str) -> UserContributionCalendar at: models.misc.date Date(date: Union[str, datetime]) at: models.user.contribution_calendar create_contribution_period(days: List[ContributionDay]) -> ContributionPeriod at: models.user.contribution_calendar.APIResponse contribution_calendar: APIResponse_Calendar = Field(alias="contributionCalendar") contribution_years: List[int] = Field(alias="contributionYears") at: models.user.contribution_calendar.APIResponse_Calendar total_contributions: int = Field(alias="totalContributions") weeks: List[APIResponse_Calendar_Week] colors: List[str] ===========changed ref 0=========== # module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: """Gets the daily contribution history for a users top x repositories""" time_range = today - start_date # gets number of days to end date segments = min(math.ceil(time_range / 100), 10) # no more than three years raw_output: List[CommitContributionsByRepository] = [] index, cont, after = 0, True, "" # initialize variables while cont and index < segments: try: data = run_query(user_id, max_repos, after=after) except Exception as e: raise e cont = False for i, repo in enumerate(data.data): if index == 0: raw_output.append( CommitContributionsByRepository.parse_obj( { "name": repo.repository.name, "contributions": repo.total_count.total_count, "contributions_in_range": 0, "timeline": [], } ) ) raw_contribs = repo.contributions.nodes contribs = map( + lambda x: create_commit_contribution(x), - lambda x: CommitContribution.parse_obj( - { - "commit_count": x.commit_count, - "occurred_at": Date(x.occurred_at), - } - ), raw_contribs, ) contribs = filter( lambda x: start_date <= x.occurred_at <= end_date, contribs ) raw_output[i].timeline.extend(contribs) if repo.contributions.page_info.has_next_page: after = repo.contributions.page_info.end_</s> ===========changed ref 1=========== # module: backend.processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> List[CommitContributionsByRepository]: # offset: 1 <s> repo.contributions.page_info.has_next_page: after = repo.contributions.page_info.end_cursor cont = True index += 1 # adds contributionsInRange for repo in raw_output: repo.contributions_in_range = sum([x.commit_count for x in repo.timeline]) # converts to objects output_objects = map( lambda x: CommitContributionsByRepository.parse_obj(x), raw_output ) # filters out empty results output_objects = filter(lambda x: x.contributions_in_range > 0, output_objects) return list(output_objects)
backend.external.github_api.graphql.template/get_template
Modified
avgupta456~github-trends
0135f48191612537ba0320938cdf2017315777fa
pass env var to github action
<1>:<add> token = os.getenv("AUTH_TOKEN", "") <del> token = os.getenv("GITHUB_TOKEN", "")
# module: backend.external.github_api.graphql.template def get_template(query: Dict[str, Any]) -> Dict[str, Any]: <0> """Template for interacting with the GitHub GraphQL API""" <1> token = os.getenv("GITHUB_TOKEN", "") <2> headers: Dict[str, str] = {"Authorization": "bearer " + token} <3> start = datetime.now() <4> r = s.post( # type: ignore <5> "https://api.github.com/graphql", json=query, headers=headers <6> ) <7> print("GraphQL", datetime.now() - start) <8> if r.status_code == 200: <9> return r.json() # type: ignore <10> else: <11> raise GraphQlError( <12> "Invalid status code " <13> + str(r.status_code) <14> + ": " <15> + str(r.json()["message"]) # type: ignore <16> + " Documentation at " <17> + str(r.json()["documentation_url"]) # type: ignore <18> ) <19>
===========unchanged ref 0=========== at: backend.external.github_api.graphql.template s = requests.session() GraphQlError(*args: object) at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ now(tz: Optional[_tzinfo]=...) -> _S __radd__ = __add__ at: os getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] post(url: Union[Text, bytes], data: _Data=..., json: Optional[Any]=..., **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
backend.external.github_api.graphql.user/get_user
Modified
avgupta456~github-trends
b74bae35e894bb1ec57b2dc4fad507fa4bd35abe
styling
<4>:<add> query getUser($login: String!) { <del> query getUser($login: String!) { <17>:<add> occurredAt, <del> occurredAt,
# module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: <0> """gets all user data from graphql""" <1> query = { <2> "variables": {"login": user_id}, <3> "query": """ <4> query getUser($login: String!) { <5> user(login: $login){ <6> contributionsCollection{ <7> commitContributionsByRepository(maxRepositories: 10){ <8> repository{ <9> name, <10> }, <11> totalCount:contributions(first: 1){ <12> totalCount <13> } <14> contributions(first: 100){ <15> nodes{ <16> commitCount, <17> occurredAt, <18> } <19> pageInfo{ <20> hasNextPage, <21> endCursor <22> } <23> } <24> } <25> }, <26> contributionCalendar{ <27> totalContributions, <28> weeks{ <29> contributionDays{ <30> date, <31> weekday, <32> contributionCount, <33> contributionLevel, <34> } <35> } <36> colors, <37> } <38> contributionYears, <39> issueContributions(first: 10){ <40> totalCount, <41> nodes{ <42> occurredAt, <43> issue{ <44> state <45> } <46> } <47> } <48> issueContributionsByRepository(maxRepositories: 10){ <49> repository{ <50> name <51> }, <52> contributions(first: 10){ <53> totalCount, <54> nodes{ <55> occurredAt, <56> issue{ <57> state <58> } <59> } <60> } <61> } <62> pullRequestContributions(first: 10){ <63> totalCount, <64> nodes{ <65> occurredAt, <66> pullRequest{ <67> state <68> } <69> } <70> } <71> pullRequestContributionsByRepository(maxRepositories:10){ <72> repository{ <73> name <74> }, <75> contributions(first:10){ <76> totalCount, <77> nodes{ <78> occurred</s>
===========below chunk 0=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: logging.exception(e) raise e ===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
backend.external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
b74bae35e894bb1ec57b2dc4fad507fa4bd35abe
styling
<9>:<add> query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { <del> query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { <22>:<add> occurredAt, <del> occurredAt,
# module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: <0> """Runs an individual query, fetching at most 100 days of history""" <1> query = { <2> "variables": { <3> "login": user_id, <4> "maxRepos": max_repos, <5> "first": first, <6> "after": after, <7> }, <8> "query": """ <9> query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { <10> user(login: $login){ <11> contributionsCollection{ <12> commitContributionsByRepository(maxRepositories: $maxRepos){ <13> repository{ <14> name, <15> }, <16> totalCount:contributions(first: 1){ <17> totalCount <18> } <19> contributions(first: $first, after: $after){ <20> nodes{ <21> commitCount, <22> occurredAt, <23> } <24> pageInfo{ <25> hasNextPage, <26> endCursor <27> } <28> } <29> } <30> }, <31> }, <32> } <33> """, <34> } <35> <36> try: <37> output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ <38> "commitContributionsByRepository" <39> ] <40> return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) <41> except Exception as e: <42> logging.exception(e) <43> raise e <44>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None ===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state }</s> ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s>(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: logging.exception(e) raise e
backend.external.github_api.graphql.user/get_user_contribution_calendar
Modified
avgupta456~github-trends
b74bae35e894bb1ec57b2dc4fad507fa4bd35abe
styling
<4>:<add> query getUser($login: String!) { <del> query getUser($login: String!) {
# module: backend.external.github_api.graphql.user def get_user_contribution_calendar(user_id: str) -> UserContributionCalendar: <0> """Fetches user contribution calendar and contribution years""" <1> query = { <2> "variables": {"login": user_id}, <3> "query": """ <4> query getUser($login: String!) { <5> user(login: $login){ <6> contributionsCollection{ <7> contributionCalendar{ <8> totalContributions, <9> weeks{ <10> contributionDays{ <11> date, <12> weekday, <13> contributionCount, <14> contributionLevel, <15> } <16> } <17> colors, <18> } <19> contributionYears, <20> } <21> }, <22> } <23> """, <24> } <25> <26> try: <27> output_dict = get_template(query)["data"]["user"]["contributionsCollection"] <28> return UserContributionCalendar.parse_obj(output_dict) <29> except Exception as e: <30> logging.exception(e) <31> raise e <32>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: logging exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None ===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ + query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { - query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ "commitContributionsByRepository" ] return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state }</s> ===========changed ref 2=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s>(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: logging.exception(e) raise e
backend.tests.external.github_api.graphql.test_template/TestTemplate.test_get_template
Modified
avgupta456~github-trends
b74bae35e894bb1ec57b2dc4fad507fa4bd35abe
styling
<3>:<add> query getUser($login: String!) { <del> query getUser($login: String!) {
# module: backend.tests.external.github_api.graphql.test_template class TestTemplate(unittest.TestCase): def test_get_template(self): <0> query = { <1> "variables": {"login": "avgupta456"}, <2> "query": """ <3> query getUser($login: String!) { <4> user(login: $login){ <5> contributionsCollection{ <6> contributionCalendar{ <7> totalContributions <8> } <9> } <10> } <11> } <12> """, <13> } <14> response = get_template(query) <15> <16> self.assertIn("data", response) <17> data = response["data"] <18> self.assertIn("user", data) <19> user = data["user"] <20> self.assertIn("contributionsCollection", user) <21> contributionsCollection = user["contributionsCollection"] <22> self.assertIn("contributionCalendar", contributionsCollection) <23> contributionCalendar = contributionsCollection["contributionCalendar"] <24> self.assertIn("totalContributions", contributionCalendar) <25> totalContributions = contributionCalendar["totalContributions"] <26> self.assertGreater(totalContributions, 0) <27>
===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user_contribution_calendar(user_id: str) -> UserContributionCalendar: """Fetches user contribution calendar and contribution years""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, } }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"] return UserContributionCalendar.parse_obj(output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 1=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ + query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { - query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ "commitContributionsByRepository" ] return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 2=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state }</s> ===========changed ref 3=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s>(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: logging.exception(e) raise e
backend.external.github_api.graphql.repo/get_repo
Modified
avgupta456~github-trends
b74bae35e894bb1ec57b2dc4fad507fa4bd35abe
styling
<4>:<add> query getRepo($owner: String!, $repo: String!) { <del> query getRepo($owner: String!, $repo: String!) { <5>:<add> repository(owner: $owner, name: $repo) { <del> repository(owner: $owner, name: $repo) {
# module: backend.external.github_api.graphql.repo def get_repo(owner: str, repo: str) -> Dict[str, Any]: <0> """gets all repository data from graphql""" <1> query = { <2> "variables": {"owner": owner, "repo": repo}, <3> "query": """ <4> query getRepo($owner: String!, $repo: String!) { <5> repository(owner: $owner, name: $repo) { <6> createdAt, <7> updatedAt, <8> forkCount, <9> forks(first: 10){ <10> nodes{ <11> createdAt, <12> }, <13> }, <14> stargazerCount, <15> stargazers(first: 10){ <16> nodes{ <17> createdAt, <18> }, <19> }, <20> primaryLanguage{ <21> name <22> }, <23> languages(first: 5){ <24> totalCount, <25> totalSize, <26> edges{ <27> node { <28> name, <29> }, <30> size, <31> }, <32> }, <33> } <34> } <35> """, <36> } <37> <38> return get_template(query) <39>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] at: typing Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: backend.external.github_api.graphql.user def get_user_contribution_calendar(user_id: str) -> UserContributionCalendar: """Fetches user contribution calendar and contribution years""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, } }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"] return UserContributionCalendar.parse_obj(output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 1=========== # module: backend.tests.external.github_api.graphql.test_template class TestTemplate(unittest.TestCase): def test_get_template(self): query = { "variables": {"login": "avgupta456"}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ contributionCalendar{ totalContributions } } } } """, } response = get_template(query) self.assertIn("data", response) data = response["data"] self.assertIn("user", data) user = data["user"] self.assertIn("contributionsCollection", user) contributionsCollection = user["contributionsCollection"] self.assertIn("contributionCalendar", contributionsCollection) contributionCalendar = contributionsCollection["contributionCalendar"] self.assertIn("totalContributions", contributionCalendar) totalContributions = contributionCalendar["totalContributions"] self.assertGreater(totalContributions, 0) ===========changed ref 2=========== # module: backend.external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ + query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { - query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ "commitContributionsByRepository" ] return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 3=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: """gets all user data from graphql""" query = { "variables": {"login": user_id}, "query": """ + query getUser($login: String!) { - query getUser($login: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: 10){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: 100){ nodes{ commitCount, + occurredAt, - occurredAt, } pageInfo{ hasNextPage, endCursor } } } }, contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, issueContributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } issueContributionsByRepository(maxRepositories: 10){ repository{ name }, contributions(first: 10){ totalCount, nodes{ occurredAt, issue{ state } } } } pullRequestContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequest{ state } } } pullRequestContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequest{ state, } } } } pullRequestReviewContributions(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state }</s> ===========changed ref 4=========== # module: backend.external.github_api.graphql.user def get_user(user_id: str) -> Dict[str, Any]: # offset: 1 <s>(first: 10){ totalCount, nodes{ occurredAt, pullRequestReview{ state } } } pullRequestReviewContributionsByRepository(maxRepositories:10){ repository{ name }, contributions(first:10){ totalCount, nodes{ occurredAt, pullRequestReview{ state, } } } }, repositoryContributions(first:10){ totalCount, nodes{ repository{ name, } occurredAt, } }, restrictedContributionsCount, totalCommitContributions, totalIssueContributions, totalPullRequestContributions, totalPullRequestReviewContributions, totalRepositoryContributions, totalRepositoriesWithContributedCommits, totalRepositoriesWithContributedIssues, totalRepositoriesWithContributedPullRequests, totalRepositoriesWithContributedPullRequestReviews }, followers(first:10){ totalCount, nodes{ name, url, } } following(first:10){ totalCount, nodes{ name, url, } } } } """, } try: return get_template(query) except Exception as e: logging.exception(e) raise e
backend.models.misc.date/Date.__init__
Modified
avgupta456~github-trends
fbea89aea376f89cf5c0ece48ca4688c5130b449
code coverage setup
<2>:<add> year: int = int(date.year) <del> year: int = date.year <3>:<add> month: int = int(date.month) <del> month: int = date.month <4>:<add> day: int = int(date.day) <del> day: int = date.day
# module: backend.models.misc.date class Date: def __init__(self, date: Union[str, datetime]) -> None: <0> self.date_obj: datetime <1> if isinstance(date, datetime): <2> year: int = date.year <3> month: int = date.month <4> day: int = date.day <5> date = "-".join([str(year), str(month), str(day)]) <6> date_str: str = date.split("T")[0] if "T" in date else date <7> self.date_obj = datetime.strptime(date_str, "%Y-%m-%d") <8>
===========unchanged ref 0=========== at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ strptime(date_string: _Text, format: _Text) -> datetime __radd__ = __add__ ===========changed ref 0=========== + # module: backend.models.misc + + ===========changed ref 1=========== + # module: backend.external.github_api.graphql + + ===========changed ref 2=========== + # module: backend.processing.user + + ===========changed ref 3=========== + # module: backend.external + + ===========changed ref 4=========== + # module: backend.processing + +
models.misc.date/Date.__init__
Modified
avgupta456~github-trends
d48ad5226e4a339666dd07111cb117db11e98594
don't resuse var names
<1>:<add> date_str: str = "" <2>:<add> date_obj: datetime = date <add> year: int = int(date_obj.year) <del> year: int = int(date.year) <3>:<add> month: int = int(date_obj.month) <del> month: int = int(date.month) <4>:<add> day: int = int(date_obj.day) <del> day: int = int(date.day) <5>:<add> date_str = "-".join([str(year), str(month), str(day)]) <del> date = "-".join([str(year), str(month), str(day)]) <6>:<add> else: <add> date_str = date <add> date_str = date_str.split("T")[0] if "T" in date_str else date_str <del> date_str: str = date.split("T")[0] if "T" in date else date
# module: models.misc.date class Date: def __init__(self, date: Union[str, datetime]) -> None: <0> self.date_obj: datetime <1> if isinstance(date, datetime): <2> year: int = int(date.year) <3> month: int = int(date.month) <4> day: int = int(date.day) <5> date = "-".join([str(year), str(month), str(day)]) <6> date_str: str = date.split("T")[0] if "T" in date else date <7> self.date_obj = datetime.strptime(date_str, "%Y-%m-%d") <8>
===========unchanged ref 0=========== at: datetime datetime() at: datetime.date __slots__ = '_year', '_month', '_day', '_hashcode' __str__ = isoformat __radd__ = __add__
external.github_api.graphql.template/get_template
Modified
avgupta456~github-trends
7789e3724e9eecadecd114e3d59ebc2051221115
misc changes
<9>:<add> data = r.json() # type: ignore <del> return r.json() # type: ignore <10>:<add> if "errors" in data: <add> raise GraphQlError("GraphQL errors: " + str(data["errors"])) <add> return data
# module: external.github_api.graphql.template def get_template(query: Dict[str, Any]) -> Dict[str, Any]: <0> """Template for interacting with the GitHub GraphQL API""" <1> token = os.getenv("AUTH_TOKEN", "") <2> headers: Dict[str, str] = {"Authorization": "bearer " + token} <3> start = datetime.now() <4> r = s.post( # type: ignore <5> "https://api.github.com/graphql", json=query, headers=headers <6> ) <7> print("GraphQL", datetime.now() - start) <8> if r.status_code == 200: <9> return r.json() # type: ignore <10> else: <11> raise GraphQlError( <12> "Invalid status code " <13> + str(r.status_code) <14> + ": " <15> + str(r.json()["message"]) # type: ignore <16> + " Documentation at " <17> + str(r.json()["documentation_url"]) # type: ignore <18> ) <19>
===========unchanged ref 0=========== at: datetime datetime() at: datetime.datetime __slots__ = date.__slots__ + time.__slots__ now(tz: Optional[_tzinfo]=...) -> _S __radd__ = __add__ at: external.github_api.graphql.template s = requests.session() GraphQlError(*args: object) at: os getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] at: requests.models.Response __attrs__ = [ "_content", "status_code", "headers", "url", "history", "encoding", "reason", "cookies", "elapsed", "request", ] json(**kwargs) -> Any at: requests.models.Response.__init__ self.status_code = None at: requests.sessions.Session __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] post(url: Union[Text, bytes], data: _Data=..., json: Optional[Any]=..., **kwargs) -> Response at: typing Dict = _alias(dict, 2, inst=False, name='Dict')
processing.user.contribution_calendar/get_user_contribution_calendar
Modified
avgupta456~github-trends
7789e3724e9eecadecd114e3d59ebc2051221115
misc changes
<11>:<add> days = map( <del> days = list( <12>:<del> map( <13>:<add> lambda x: ContributionDay.parse_obj( <del> lambda x: ContributionDay.parse_obj( <14>:<add> { <del> { <15>:<add> "date": Date(x.date), <del> "date": Date(x.date), <16>:<add> "weekday": x.weekday, <del> "weekday": x.weekday, <17>:<add> "contribution_count": x.contribution_count, <del> "contribution_count": x.contribution_count, <18>:<add> "contribution_level": x.contribution_level, <del> "contribution_level": x.contribution_level, <19>:<del> } <20>:<del> ), <21>:<add> } <del> [ <22>:<add> ), <add> [ <add> day <del> day <23>:<add> for week in data.contribution_calendar.weeks <del> for week in data.contribution_calendar.weeks <24>:<add> for day in week.contribution_days <del> for day in week.contribution_days <25>:<del> ], <26>:<add> ], <del> ) <28>:<add> <add> days = list(filter(lambda x: start_date <= x.date <= end_date, days))
# module: processing.user.contribution_calendar def get_user_contribution_calendar( user_id: str, start_date: Date = today - 365, end_date: Date = today, ) -> ContributionCalendar: <0> """get user contributions for the past year""" <1> if today - start_date > 365: <2> raise AssertionError("start_date can only be within past 1 year") <3> <4> try: <5> data = run_query(user_id) <6> except Exception as e: <7> raise e <8> <9> contribution_years = data.contribution_years <10> colors = data.contribution_calendar.colors <11> days = list( <12> map( <13> lambda x: ContributionDay.parse_obj( <14> { <15> "date": Date(x.date), <16> "weekday": x.weekday, <17> "contribution_count": x.contribution_count, <18> "contribution_level": x.contribution_level, <19> } <20> ), <21> [ <22> day <23> for week in data.contribution_calendar.weeks <24> for day in week.contribution_days <25> ], <26> ) <27> ) <28> <29> # creates total period (up to 1 year long) <30> total = create_contribution_period(days) <31> <32> # creates months (0 is January, 11 is December) <33> months = [[] for _ in range(12)] <34> for day in days: <35> months[day.date.month() - 1].append(day) <36> <37> months = list(map(lambda x: create_contribution_period(x), months)) <38> <39> # create weekdays (0 is Sunday, 6 is Saturday) <40> weekdays = [[] for _ in range(7)] <41> for day in days: <42> weekdays[day.weekday].append(day) <43> <44> weekdays = list(map(lambda x: create_contribution_period(x), weekdays)) <45> <46> </s>
===========below chunk 0=========== # module: processing.user.contribution_calendar def get_user_contribution_calendar( user_id: str, start_date: Date = today - 365, end_date: Date = today, ) -> ContributionCalendar: # offset: 1 calendar = ContributionCalendar( contribution_years=contribution_years, colors=colors, total=total, months=months, weekdays=weekdays, ) return calendar ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_contribution_calendar(user_id: str) -> UserContributionCalendar at: models.misc.date Date(date: Union[str, datetime]) today = Date(datetime.now()) at: models.user.contribution_calendar create_contribution_period(days: List[ContributionDay]) -> ContributionPeriod at: models.user.contribution_calendar.APIResponse contribution_calendar: APIResponse_Calendar = Field(alias="contributionCalendar") contribution_years: List[int] = Field(alias="contributionYears") at: models.user.contribution_calendar.APIResponse_Calendar total_contributions: int = Field(alias="totalContributions") weeks: List[APIResponse_Calendar_Week] colors: List[str] ===========changed ref 0=========== # module: external.github_api.graphql.template def get_template(query: Dict[str, Any]) -> Dict[str, Any]: """Template for interacting with the GitHub GraphQL API""" token = os.getenv("AUTH_TOKEN", "") headers: Dict[str, str] = {"Authorization": "bearer " + token} start = datetime.now() r = s.post( # type: ignore "https://api.github.com/graphql", json=query, headers=headers ) print("GraphQL", datetime.now() - start) if r.status_code == 200: + data = r.json() # type: ignore - return r.json() # type: ignore + if "errors" in data: + raise GraphQlError("GraphQL errors: " + str(data["errors"])) + return data else: raise GraphQlError( "Invalid status code " + str(r.status_code) + ": " + str(r.json()["message"]) # type: ignore + " Documentation at " + str(r.json()["documentation_url"]) # type: ignore )
models.user.commit_contributions_by_repository/create_commit_contribution
Modified
avgupta456~github-trends
a1257f1c0535edfd92dbe1977855a2bc766edca6
update commits endpoint
<2>:<add> commit_count=x.commit_count, occurred_at=Date(x.occurred_at) <del> commit_count=x.commit_count, occured_at=Date(x.occurred_at)
# module: models.user.commit_contributions_by_repository def create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution: <0> """helper function to create a CommitContribution""" <1> return CommitContribution( <2> commit_count=x.commit_count, occured_at=Date(x.occurred_at) <3> ) <4>
===========unchanged ref 0=========== at: models.misc.date Date(date: Union[str, datetime]) at: models.user.commit_contributions_by_repository.CommitContribution commit_count: int ===========changed ref 0=========== # module: models.user.commit_contributions_by_repository class APIResponse(BaseModel): """ BaseModel which accepts: - data: List[APIResponse_Repo] """ + commits_by_repo: List[APIResponse_Repo] = Field( + alias="commitContributionsByRepository" + ) + commit_contribs_count: int = Field(alias="totalCommitContributions") + repos_with_commit_contrib: int = Field( + alias="totalRepositoriesWithContributedCommits" + ) - data: List[APIResponse_Repo]
external.github_api.graphql.user/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
a1257f1c0535edfd92dbe1977855a2bc766edca6
update commits endpoint
<30>:<add> totalCommitContributions, <add> totalRepositoriesWithContributedCommits, <37>:<add> output_dict = get_template(query)["data"]["user"]["contributionsCollection"] <del> output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ <38>:<del> "commitContributionsByRepository" <39>:<del> ] <40>:<add> return UserCommitContributionsByRepositoryAPIResponse.parse_obj(output_dict) <del> return UserCommitContributionsByRepositoryAPIResponse(data=output_dict)
# module: external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: <0> """Runs an individual query, fetching at most 100 days of history""" <1> query = { <2> "variables": { <3> "login": user_id, <4> "maxRepos": max_repos, <5> "first": first, <6> "after": after, <7> }, <8> "query": """ <9> query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { <10> user(login: $login){ <11> contributionsCollection{ <12> commitContributionsByRepository(maxRepositories: $maxRepos){ <13> repository{ <14> name, <15> }, <16> totalCount:contributions(first: 1){ <17> totalCount <18> } <19> contributions(first: $first, after: $after){ <20> nodes{ <21> commitCount, <22> occurredAt, <23> } <24> pageInfo{ <25> hasNextPage, <26> endCursor <27> } <28> } <29> } <30> }, <31> }, <32> } <33> """, <34> } <35> <36> try: <37> output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ <38> "commitContributionsByRepository" <39> ] <40> return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) <41> except Exception as e: <42> logging.exception(e) <43> raise e <44>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] ===========changed ref 0=========== # module: models.user.commit_contributions_by_repository class APIResponse(BaseModel): """ BaseModel which accepts: - data: List[APIResponse_Repo] """ + commits_by_repo: List[APIResponse_Repo] = Field( + alias="commitContributionsByRepository" + ) + commit_contribs_count: int = Field(alias="totalCommitContributions") + repos_with_commit_contrib: int = Field( + alias="totalRepositoriesWithContributedCommits" + ) - data: List[APIResponse_Repo] ===========changed ref 1=========== # module: models.user.commit_contributions_by_repository def create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution: """helper function to create a CommitContribution""" return CommitContribution( + commit_count=x.commit_count, occurred_at=Date(x.occurred_at) - commit_count=x.commit_count, occured_at=Date(x.occurred_at) ) ===========changed ref 2=========== # module: models.user.commit_contributions_by_repository + class CommitContributions(BaseModel): + """ + BaseModel which accepts: + - commit_contribs_by_repo: List[CommitContributionsByRepository] + - commit_contribs_count: int + - repos_with_commit_contrib: int + """ + + commit_contribs_by_repo: List[CommitContributionsByRepository] + commit_contribs_count: int + repos_with_commit_contrib: int +
external.github_api.graphql.user/get_user_contribution_calendar
Modified
avgupta456~github-trends
a1257f1c0535edfd92dbe1977855a2bc766edca6
update commits endpoint
<28>:<add> return UserContributionCalendarAPIResponse.parse_obj(output_dict) <del> return UserContributionCalendar.parse_obj(output_dict)
# module: external.github_api.graphql.user + def get_user_contribution_calendar(user_id: str) -> UserContributionCalendarAPIResponse: - def get_user_contribution_calendar(user_id: str) -> UserContributionCalendar: <0> """Fetches user contribution calendar and contribution years""" <1> query = { <2> "variables": {"login": user_id}, <3> "query": """ <4> query getUser($login: String!) { <5> user(login: $login){ <6> contributionsCollection{ <7> contributionCalendar{ <8> totalContributions, <9> weeks{ <10> contributionDays{ <11> date, <12> weekday, <13> contributionCount, <14> contributionLevel, <15> } <16> } <17> colors, <18> } <19> contributionYears, <20> } <21> }, <22> } <23> """, <24> } <25> <26> try: <27> output_dict = get_template(query)["data"]["user"]["contributionsCollection"] <28> return UserContributionCalendar.parse_obj(output_dict) <29> except Exception as e: <30> logging.exception(e) <31> raise e <32>
===========unchanged ref 0=========== at: external.github_api.graphql.template get_template(query: Dict[str, Any]) -> Dict[str, Any] ===========changed ref 0=========== # module: external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } + totalCommitContributions, + totalRepositoriesWithContributedCommits, }, }, } """, } try: + output_dict = get_template(query)["data"]["user"]["contributionsCollection"] - output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ - "commitContributionsByRepository" - ] + return UserCommitContributionsByRepositoryAPIResponse.parse_obj(output_dict) - return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 1=========== # module: models.user.commit_contributions_by_repository def create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution: """helper function to create a CommitContribution""" return CommitContribution( + commit_count=x.commit_count, occurred_at=Date(x.occurred_at) - commit_count=x.commit_count, occured_at=Date(x.occurred_at) ) ===========changed ref 2=========== # module: models.user.commit_contributions_by_repository + class CommitContributions(BaseModel): + """ + BaseModel which accepts: + - commit_contribs_by_repo: List[CommitContributionsByRepository] + - commit_contribs_count: int + - repos_with_commit_contrib: int + """ + + commit_contribs_by_repo: List[CommitContributionsByRepository] + commit_contribs_count: int + repos_with_commit_contrib: int + ===========changed ref 3=========== # module: models.user.commit_contributions_by_repository class APIResponse(BaseModel): """ BaseModel which accepts: - data: List[APIResponse_Repo] """ + commits_by_repo: List[APIResponse_Repo] = Field( + alias="commitContributionsByRepository" + ) + commit_contribs_count: int = Field(alias="totalCommitContributions") + repos_with_commit_contrib: int = Field( + alias="totalRepositoriesWithContributedCommits" + ) - data: List[APIResponse_Repo]
processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
a1257f1c0535edfd92dbe1977855a2bc766edca6
update commits endpoint
<3>:<add> raw_repos: List[CommitContributionsByRepository] = [] <del> raw_output: List[CommitContributionsByRepository] = [] <4>:<add> commit_contribs_count, repos_with_commit_contrib = 0, 0 <11>:<add> commit_contribs_count = data.commit_contribs_count <add> repos_with_commit_contrib = data.repos_with_commit_contrib <add> <12>:<add> for i, repo in enumerate(data.commits_by_repo): <del> for i, repo in enumerate(data.data): <14>:<add> raw_repos.append( <del> raw_output.append( <33>:<add> raw_repos[i].timeline.extend(contribs) <del> raw_output[i].timeline.extend(contribs)
# module: processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, + ) -> CommitContributions: - ) -> List[CommitContributionsByRepository]: <0> """Gets the daily contribution history for a users top x repositories""" <1> time_range = today - start_date # gets number of days to end date <2> segments = min(math.ceil(time_range / 100), 10) # no more than three years <3> raw_output: List[CommitContributionsByRepository] = [] <4> index, cont, after = 0, True, "" # initialize variables <5> while cont and index < segments: <6> try: <7> data = run_query(user_id, max_repos, after=after) <8> except Exception as e: <9> raise e <10> <11> cont = False <12> for i, repo in enumerate(data.data): <13> if index == 0: <14> raw_output.append( <15> CommitContributionsByRepository.parse_obj( <16> { <17> "name": repo.repository.name, <18> "contributions": repo.total_count.total_count, <19> "contributions_in_range": 0, <20> "timeline": [], <21> } <22> ) <23> ) <24> <25> raw_contribs = repo.contributions.nodes <26> contribs = map( <27> lambda x: create_commit_contribution(x), <28> raw_contribs, <29> ) <30> contribs = filter( <31> lambda x: start_date <= x.occurred_at <= end_date, contribs <32> ) <33> raw_output[i].timeline.extend(contribs) <34> <35> if repo.contributions.page_info.has_next_page: <36> after = repo.contributions.page_info.end_cursor <37> cont = True <38> <39> index += 1 </s>
===========below chunk 0=========== # module: processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, + ) -> CommitContributions: - ) -> List[CommitContributionsByRepository]: # offset: 1 # adds contributionsInRange for repo in raw_output: repo.contributions_in_range = sum([x.commit_count for x in repo.timeline]) # converts to objects output_objects = map( lambda x: CommitContributionsByRepository.parse_obj(x), raw_output ) # filters out empty results output_objects = filter(lambda x: x.contributions_in_range > 0, output_objects) return list(output_objects) ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserCommitContributionsByRepositoryAPIResponse at: math ceil(x: SupportsFloat, /) -> int at: models.misc.date Date(date: Union[str, datetime]) today = Date(datetime.now()) at: models.user.commit_contributions_by_repository create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution at: models.user.commit_contributions_by_repository.APIResponse commits_by_repo: List[APIResponse_Repo] = Field( alias="commitContributionsByRepository" ) commit_contribs_count: int = Field(alias="totalCommitContributions") repos_with_commit_contrib: int = Field( alias="totalRepositoriesWithContributedCommits" ) at: models.user.commit_contributions_by_repository.APIResponse_Repo repository: APIResponse_Repo_Repo total_count: APIResponse_Repo_TotalCount = Field(alias="totalCount") contributions: APIResponse_Repo_Contribs at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs nodes: List[APIResponse_Repo_Contribs_Node] page_info: APIResponse_Repo_Contribs_PageInfo = Field(alias="pageInfo") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs_PageInfo has_next_page: bool = Field(alias="hasNextPage") end_cursor: str = Field(alias="endCursor") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Repo name: str ===========unchanged ref 1=========== at: models.user.commit_contributions_by_repository.APIResponse_Repo_TotalCount total_count: int = Field(alias="totalCount") at: models.user.commit_contributions_by_repository.CommitContribution commit_count: int occurred_at: Date at: models.user.commit_contributions_by_repository.CommitContributionsByRepository name: str contributions: int contributions_in_range: int timeline: List[CommitContribution] at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: models.user.commit_contributions_by_repository def create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution: """helper function to create a CommitContribution""" return CommitContribution( + commit_count=x.commit_count, occurred_at=Date(x.occurred_at) - commit_count=x.commit_count, occured_at=Date(x.occurred_at) ) ===========changed ref 1=========== # module: models.user.commit_contributions_by_repository + class CommitContributions(BaseModel): + """ + BaseModel which accepts: + - commit_contribs_by_repo: List[CommitContributionsByRepository] + - commit_contribs_count: int + - repos_with_commit_contrib: int + """ + + commit_contribs_by_repo: List[CommitContributionsByRepository] + commit_contribs_count: int + repos_with_commit_contrib: int + ===========changed ref 2=========== # module: external.github_api.graphql.user def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, first: int = 100, after: str = "", ) -> UserCommitContributionsByRepositoryAPIResponse: """Runs an individual query, fetching at most 100 days of history""" query = { "variables": { "login": user_id, "maxRepos": max_repos, "first": first, "after": after, }, "query": """ query getUser($login: String!, $maxRepos: Int!, $first: Int!, $after: String!) { user(login: $login){ contributionsCollection{ commitContributionsByRepository(maxRepositories: $maxRepos){ repository{ name, }, totalCount:contributions(first: 1){ totalCount } contributions(first: $first, after: $after){ nodes{ commitCount, occurredAt, } pageInfo{ hasNextPage, endCursor } } } + totalCommitContributions, + totalRepositoriesWithContributedCommits, }, }, } """, } try: + output_dict = get_template(query)["data"]["user"]["contributionsCollection"] - output_dict = get_template(query)["data"]["user"]["contributionsCollection"][ - "commitContributionsByRepository" - ] + return UserCommitContributionsByRepositoryAPIResponse.parse_obj(output_dict) - return UserCommitContributionsByRepositoryAPIResponse(data=output_dict) except Exception as e: logging.exception(e) raise e ===========changed ref 3=========== # module: models.user.commit_contributions_by_repository class APIResponse(BaseModel): """ BaseModel which accepts: - data: List[APIResponse_Repo] """ + commits_by_repo: List[APIResponse_Repo] = Field( + alias="commitContributionsByRepository" + ) + commit_contribs_count: int = Field(alias="totalCommitContributions") + repos_with_commit_contrib: int = Field( + alias="totalRepositoriesWithContributedCommits" + ) - data: List[APIResponse_Repo] ===========changed ref 4=========== # module: external.github_api.graphql.user + def get_user_contribution_calendar(user_id: str) -> UserContributionCalendarAPIResponse: - def get_user_contribution_calendar(user_id: str) -> UserContributionCalendar: """Fetches user contribution calendar and contribution years""" query = { "variables": {"login": user_id}, "query": """ query getUser($login: String!) { user(login: $login){ contributionsCollection{ contributionCalendar{ totalContributions, weeks{ contributionDays{ date, weekday, contributionCount, contributionLevel, } } colors, } contributionYears, } }, } """, } try: output_dict = get_template(query)["data"]["user"]["contributionsCollection"] + return UserContributionCalendarAPIResponse.parse_obj(output_dict) - return UserContributionCalendar.parse_obj(output_dict) except Exception as e: logging.exception(e) raise e
processing.user.commit_contributions_by_repository/get_user_commit_contributions_by_repository
Modified
avgupta456~github-trends
28f32f4a48d1044d1b3c1ec73877d05e28a6c274
add aggregate commit count
<19>:<add> CommitContributionsByRepository( <del> CommitContributionsByRepository.parse_obj( <20>:<del> { <21>:<add> name=repo.repository.name, <del> "name": repo.repository.name, <22>:<add> contributions=repo.total_count.total_count, <del> "contributions": repo.total_count.total_count, <23>:<add> contributions_in_range=0, <del> "contributions_in_range": 0, <24>:<add> timeline=[], <del> "timeline": [], <25>:<del> }
# module: processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> CommitContributions: <0> """Gets the daily contribution history for a users top x repositories""" <1> time_range = today - start_date # gets number of days to end date <2> segments = min(math.ceil(time_range / 100), 10) # no more than three years <3> raw_repos: List[CommitContributionsByRepository] = [] <4> commit_contribs_count, repos_with_commit_contrib = 0, 0 <5> index, cont, after = 0, True, "" # initialize variables <6> while cont and index < segments: <7> try: <8> data = run_query(user_id, max_repos, after=after) <9> except Exception as e: <10> raise e <11> <12> commit_contribs_count = data.commit_contribs_count <13> repos_with_commit_contrib = data.repos_with_commit_contrib <14> <15> cont = False <16> for i, repo in enumerate(data.commits_by_repo): <17> if index == 0: <18> raw_repos.append( <19> CommitContributionsByRepository.parse_obj( <20> { <21> "name": repo.repository.name, <22> "contributions": repo.total_count.total_count, <23> "contributions_in_range": 0, <24> "timeline": [], <25> } <26> ) <27> ) <28> <29> raw_contribs = repo.contributions.nodes <30> contribs = map( <31> lambda x: create_commit_contribution(x), <32> raw_contribs, <33> ) <34> contribs = filter( <35> lambda x: start_date <= x.occurred_at <= end_date, contribs <36> ) <37> raw_repos[i].timeline.extend(contribs) </s>
===========below chunk 0=========== # module: processing.user.commit_contributions_by_repository def get_user_commit_contributions_by_repository( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> CommitContributions: # offset: 1 if repo.contributions.page_info.has_next_page: after = repo.contributions.page_info.end_cursor cont = True index += 1 # adds contributionsInRange for repo in raw_repos: repo.contributions_in_range = sum([x.commit_count for x in repo.timeline]) # converts to objects repo_objects = map( lambda x: CommitContributionsByRepository.parse_obj(x), raw_repos ) # filters out empty results repo_objects = filter(lambda x: x.contributions_in_range > 0, repo_objects) output = CommitContributions( commit_contribs_by_repo=list(repo_objects), commit_contribs_count=commit_contribs_count, repos_with_commit_contrib=repos_with_commit_contrib, ) return output ===========unchanged ref 0=========== at: external.github_api.graphql.user get_user_commit_contributions_by_repository(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserCommitContributionsByRepositoryAPIResponse at: math ceil(x: SupportsFloat, /) -> int at: models.misc.date Date(date: Union[str, datetime]) today = Date(datetime.now()) at: models.user.commit_contributions_by_repository create_commit_contribution(x: APIResponse_Repo_Contribs_Node) -> CommitContribution at: models.user.commit_contributions_by_repository.APIResponse commits_by_repo: List[APIResponse_Repo] = Field( alias="commitContributionsByRepository" ) commit_contribs_count: int = Field(alias="totalCommitContributions") repos_with_commit_contrib: int = Field( alias="totalRepositoriesWithContributedCommits" ) at: models.user.commit_contributions_by_repository.APIResponse_Repo repository: APIResponse_Repo_Repo total_count: APIResponse_Repo_TotalCount = Field(alias="totalCount") contributions: APIResponse_Repo_Contribs at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs nodes: List[APIResponse_Repo_Contribs_Node] page_info: APIResponse_Repo_Contribs_PageInfo = Field(alias="pageInfo") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Contribs_PageInfo has_next_page: bool = Field(alias="hasNextPage") end_cursor: str = Field(alias="endCursor") at: models.user.commit_contributions_by_repository.APIResponse_Repo_Repo name: str ===========unchanged ref 1=========== at: models.user.commit_contributions_by_repository.APIResponse_Repo_TotalCount total_count: int = Field(alias="totalCount") at: models.user.commit_contributions_by_repository.CommitContribution commit_count: int occurred_at: Date at: models.user.commit_contributions_by_repository.CommitContributionsByRepository name: str contributions: int contributions_in_range: int timeline: List[CommitContribution] at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: models.user.commit_contributions_by_repository class CommitContributions(BaseModel): """ BaseModel which accepts: - commit_contribs_by_repo: List[CommitContributionsByRepository] + - commit_contribs: CommitContributionsByRepository - - commit_contribs_count: int - repos_with_commit_contrib: int """ commit_contribs_by_repo: List[CommitContributionsByRepository] + commit_contribs: CommitContributionsByRepository - commit_contribs_count: int repos_with_commit_contrib: int
processing.user.contribution_stats/get_user_contribution_stats
Modified
avgupta456~github-trends
8f29445a0c52876eb5ab99fb845bec4603a17177
misc
<25>:<del> print("STAGE", index)
# module: processing.user.contribution_stats def get_user_contribution_stats( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> ContribStats: <0> """Gets the daily contribution history for a users top x repositories""" <1> repo_names = set() <2> repo_contribs: DefaultDict[str, Dict[str, List[Contribution]]] = defaultdict( <3> lambda: {"issues": [], "prs": [], "reviews": [], "repo": []} <4> ) <5> total_contribs: Dict[str, List[Contribution]] = { <6> "issues": [], <7> "prs": [], <8> "reviews": [], <9> "repo": [], <10> } <11> <12> # only need them from the first data pull <13> restricted_contrib_count = 0 <14> issue_contribs_count = 0 <15> pr_contribs_count = 0 <16> pr_review_contribs_count = 0 <17> repo_contribs_count = 0 <18> repos_with_issue_contrib = 0 <19> repos_with_pr_contrib = 0 <20> repos_with_pr_review_contrib = 0 <21> <22> after: Optional[str] = "" <23> index, cont = 0, True # initialize variables <24> while cont and index < 10: <25> print("STAGE", index) <26> try: <27> after_str: str = after if isinstance(after, str) else "" <28> data = run_query(user_id, max_repos, after=after_str) <29> except Exception as e: <30> raise e <31> <32> restricted_contrib_count = data.restricted_contrib_count <33> issue_contribs_count = data.issue_contribs_count <34> pr_contribs_count = data.pr_contribs_count <35> pr_review_contribs_count = data.pr_review_contribs_count <36> repo_contribs_count = data.</s>
===========below chunk 0=========== # module: processing.user.contribution_stats def get_user_contribution_stats( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> ContribStats: # offset: 1 repos_with_issue_contrib = data.repos_with_issue_contrib repos_with_pr_contrib = data.repos_with_pr_contrib repos_with_pr_review_contrib = data.repos_with_pr_review_contrib for repo in data.issue_contribs_by_repo: repo_names.add(repo.repository.name) for repo in data.pr_contribs_by_repo: repo_names.add(repo.repository.name) for repo in data.pr_review_contribs_by_repo: repo_names.add(repo.repository.name) for repo in data.repo_contribs.nodes: repo_names.add(repo.repository.name) cont = False repo_lists: List[List[APIResponse_ContribsByRepo]] = [ data.issue_contribs_by_repo, data.pr_contribs_by_repo, data.pr_review_contribs_by_repo, ] for category, repo_list in zip(["issues", "prs", "reviews"], repo_lists): for repo in repo_list: repo_name = repo.repository.name for event in repo.contributions.nodes: contrib = Contribution(occurred_at=Date(event.occurred_at)) repo_contribs[repo_name][category].append(contrib) total_contribs[category].append(contrib) if repo.contributions.page_info.has_next_page: after = repo.contributions.page_info.end_cursor cont = True for repo in data.repo_contribs.nodes: contrib = Contribution(occurred_at=Date(repo.occurred_at</s> ===========below chunk 1=========== # module: processing.user.contribution_stats def get_user_contribution_stats( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> ContribStats: # offset: 2 <s> in data.repo_contribs.nodes: contrib = Contribution(occurred_at=Date(repo.occurred_at)) repo_contribs[repo.repository.name]["repo"].append(contrib) total_contribs["repo"].append(contrib) if data.repo_contribs.page_info.has_next_page: after = data.repo_contribs.page_info.end_cursor cont = True index += 1 date_filter: Callable[[Contribution], bool] = ( lambda x: start_date <= x.occurred_at <= end_date ) repo_contrib_objs: List[RepoContribStats] = [ RepoContribStats( name=k, issues=list(filter(date_filter, v["issues"])), prs=list(filter(date_filter, v["prs"])), reviews=list(filter(date_filter, v["reviews"])), repo=list(filter(date_filter, v["repo"])), ) for k, v in repo_contribs.items() ] total_contrib_obj: RepoContribStats = RepoContribStats( name="total", issues=list(filter(date_filter, total_contribs["issues"])), prs=list(filter(date_filter, total_contribs["prs"])), reviews=list(filter(date_filter, total_contribs["reviews"])), repo=list(filter(date_filter, total_contribs["repo"])), ) output: Contrib</s> ===========below chunk 2=========== # module: processing.user.contribution_stats def get_user_contribution_stats( user_id: str, max_repos: int = 100, start_date: Date = today - 365, end_date: Date = today, ) -> ContribStats: # offset: 3 <s> ContribStats( total=total_contrib_obj, repos=repo_contrib_objs, restricted_contrib_count=restricted_contrib_count, issue_contribs_count=issue_contribs_count, pr_contribs_count=pr_contribs_count, pr_review_contribs_count=pr_review_contribs_count, repo_contribs_count=repo_contribs_count, repos_with_issue_contrib=repos_with_issue_contrib, repos_with_pr_contrib=repos_with_pr_contrib, repos_with_pr_review_contrib=repos_with_pr_review_contrib, ) return output ===========unchanged ref 0=========== at: collections defaultdict(default_factory: Optional[Callable[[], _VT]], map: Mapping[_KT, _VT], **kwargs: _VT) defaultdict(default_factory: Optional[Callable[[], _VT]], **kwargs: _VT) defaultdict(default_factory: Optional[Callable[[], _VT]], iterable: Iterable[Tuple[_KT, _VT]]) defaultdict(default_factory: Optional[Callable[[], _VT]]) defaultdict(**kwargs: _VT) defaultdict(default_factory: Optional[Callable[[], _VT]], iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) defaultdict(default_factory: Optional[Callable[[], _VT]], map: Mapping[_KT, _VT]) at: external.github_api.graphql.user get_user_contribution_stats(user_id: str, max_repos: int=100, first: int=100, after: str="") -> UserContributionStatsAPIResponse at: models.misc.date Date(date: Union[str, datetime]) today = Date(datetime.now()) at: models.user.contribution_stats.APIResponse issue_contribs_by_repo: List[APIResponse_ContribsByRepo] = Field( alias="issueContributionsByRepository" ) pr_contribs_by_repo: List[APIResponse_ContribsByRepo] = Field( alias="pullRequestContributionsByRepository" ) pr_review_contribs_by_repo: List[APIResponse_ContribsByRepo] = Field( alias="pullRequestReviewContributionsByRepository" ) repo_contribs: APIResponse_RepoContribs = Field(alias="repositoryContributions") restricted_contrib_count: int = Field(alias="restrictedContributionsCount") issue_contribs_count: int = Field(alias="totalIssueContributions") pr_contribs_count: int = Field(alias="totalPullRequestContributions")
tests.external.github_api.graphql.test_user/TestTemplate.test_get_user_contribution_commits
Modified
avgupta456~github-trends
571e73f1afc11fc36f8ae008bbddaedb3dac0a46
add more test cases
<1>:<del>
# module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_contribution_commits(self): <0> response = get_user_contribution_commits(user_id="avgupta456") <1> <2> self.assertIsInstance(response, UserContributionCommitsAPIResponse) <3>
tests.external.github_api.graphql.test_user/TestTemplate.test_get_user_contribution_stats
Modified
avgupta456~github-trends
571e73f1afc11fc36f8ae008bbddaedb3dac0a46
add more test cases
<1>:<del>
# module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_contribution_stats(self): <0> response = get_user_contribution_stats(user_id="avgupta456") <1> <2> self.assertIsInstance(response, UserContributionStatsAPIResponse) <3>
===========changed ref 0=========== # module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_contribution_commits(self): response = get_user_contribution_commits(user_id="avgupta456") - self.assertIsInstance(response, UserContributionCommitsAPIResponse)
tests.external.github_api.graphql.test_user/TestTemplate.test_get_user_followers
Modified
avgupta456~github-trends
571e73f1afc11fc36f8ae008bbddaedb3dac0a46
add more test cases
<1>:<del>
# module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_followers(self): <0> response = get_user_followers(user_id="avgupta456") <1> <2> self.assertIsInstance(response, UserFollowAPIResponse) <3>
===========changed ref 0=========== # module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_contribution_stats(self): response = get_user_contribution_stats(user_id="avgupta456") - self.assertIsInstance(response, UserContributionStatsAPIResponse) ===========changed ref 1=========== # module: tests.external.github_api.graphql.test_user class TestTemplate(unittest.TestCase): def test_get_user_contribution_commits(self): response = get_user_contribution_commits(user_id="avgupta456") - self.assertIsInstance(response, UserContributionCommitsAPIResponse)