path
stringlengths
9
117
type
stringclasses
2 values
project
stringclasses
10 values
commit_hash
stringlengths
40
40
commit_message
stringlengths
1
137
ground_truth
stringlengths
0
2.74k
main_code
stringlengths
102
3.37k
context
stringlengths
0
14.7k
tests.test_blob_manager/test_create_container_upon_upload
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<17>:<add> return azure.storage.blob.aio.BlobClient.from_blob_url( <add> "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() <add> ) <del> return True <22>:<add> assert f.url == "https://test.blob.core.windows.net/test/test.pdf"
# module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): <0> with NamedTemporaryFile(suffix=".pdf") as temp_file: <1> f = File(temp_file.file) <2> filename = os.path.basename(f.content.name) <3> <4> # Set up mocks used by upload_blob <5> async def mock_exists(*args, **kwargs): <6> return False <7> <8> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) <9> <10> async def mock_create_container(*args, **kwargs): <11> return <12> <13> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) <14> <15> async def mock_upload_blob(self, name, *args, **kwargs): <16> assert name == filename <17> return True <18> <19> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) <20> <21> await blob_manager.upload_blob(f) <22>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skipif: _SkipifMarkDecorator at: os.path basename(p: _PathLike[AnyStr]) -> AnyStr basename(p: AnyStr) -> AnyStr at: sys version_info: _version_info at: sys._version_info minor: int at: tempfile NamedTemporaryFile(mode: str=..., buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[Any] NamedTemporaryFile(mode: Literal["r", "w", "a", "x", "r+", "w+", "a+", "x+", "rt", "wt", "at", "xt", "r+t", "w+t", "a+t", "x+t"], buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[str] NamedTemporaryFile(mode: Literal["rb", "wb", "ab", "xb", "r+b", "w+b", "a+b", "x+b"]=..., buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[bytes] ===========unchanged ref 1=========== at: tests.test_blob_manager.test_upload_and_remove_all mock_delete_blob(self, name, *args, **kwargs) ===========changed ref 0=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" # Set up mocks used by remove_blob def mock_list_blob_names(*args, **kwargs): assert kwargs.get("name_starts_with") is None class AsyncBlobItemsIterator: def __init__(self, file): self.files = [file] def __aiter__(self): return self async def __anext__(self): if self.files: return self.files.pop() raise StopAsyncIteration return AsyncBlobItemsIterator(filename) monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_</s> ===========changed ref 1=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): # offset: 1 <s>.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_blob(self, name, *args, **kwargs): assert name == filename return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.delete_blob", mock_delete_blob) await blob_manager.remove_blob() ===========changed ref 2=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" # Set up mocks used by remove_blob def mock_list_blob_names(*args, **kwargs): assert kwargs.get("name_starts_with") == filename.split(".pdf")[0] class AsyncBlobItemsIterator: def __init__(self, file): self.files = [file, "dontdelete.pdf"] def __aiter__(self): return self async def __anext__(self): if self.files: return self.files.pop() raise StopAsyncIteration return AsyncBlobItemsIterator(filename) monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.list_blob_names", mock_list</s> ===========changed ref 3=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove(monkeypatch, mock_env, blob_manager): # offset: 1 <s> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_blob(self, name, *args, **kwargs): assert name == filename return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.delete_blob", mock_delete_blob) await blob_manager.remove_blob(f.content.name)
tests.test_blob_manager/test_upload_blob_no_image
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<22>:<add> return azure.storage.blob.aio.BlobClient.from_blob_url( <add> "https://test.blob.core.windows.net/test/test.xlsx", credential=MockAzureCredential() <add> ) <del> return True <28>:<add> assert f.url == "https://test.blob.core.windows.net/test/test.xlsx"
# module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_blob_no_image(monkeypatch, mock_env, caplog): <0> blob_manager = BlobManager( <1> endpoint=f"https://{os.environ['AZURE_STORAGE_ACCOUNT']}.blob.core.windows.net", <2> credential=MockAzureCredential(), <3> container=os.environ["AZURE_STORAGE_CONTAINER"], <4> account=os.environ["AZURE_STORAGE_ACCOUNT"], <5> resourceGroup=os.environ["AZURE_STORAGE_RESOURCE_GROUP"], <6> subscriptionId=os.environ["AZURE_SUBSCRIPTION_ID"], <7> store_page_images=True, <8> ) <9> <10> with NamedTemporaryFile(suffix=".xlsx") as temp_file: <11> f = File(temp_file.file) <12> filename = os.path.basename(f.content.name) <13> <14> # Set up mocks used by upload_blob <15> async def mock_exists(*args, **kwargs): <16> return True <17> <18> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) <19> <20> async def mock_upload_blob(self, name, *args, **kwargs): <21> assert name == filename <22> return True <23> <24> monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) <25> <26> with caplog.at_level("INFO"): <27> await blob_manager.upload_blob(f) <28> assert "skipping image upload" in caplog.text <29>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skipif: _SkipifMarkDecorator at: os environ = _createenviron() at: os.path basename(p: _PathLike[AnyStr]) -> AnyStr basename(p: AnyStr) -> AnyStr at: sys version_info: _version_info at: sys._version_info minor: int at: tempfile NamedTemporaryFile(mode: str=..., buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[Any] NamedTemporaryFile(mode: Literal["r", "w", "a", "x", "r+", "w+", "a+", "x+", "rt", "wt", "at", "xt", "r+t", "w+t", "a+t", "x+t"], buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[str] NamedTemporaryFile(mode: Literal["rb", "wb", "ab", "xb", "r+b", "w+b", "a+b", "x+b"]=..., buffering: int=..., encoding: Optional[str]=..., newline: Optional[str]=..., suffix: Optional[AnyStr]=..., prefix: Optional[AnyStr]=..., dir: Optional[_DirT[AnyStr]]=..., delete: bool=..., *, errors: Optional[str]=...) -> IO[bytes] ===========unchanged ref 1=========== at: tests.test_blob_manager.test_create_container_upon_upload f = File(temp_file.file) mock_upload_blob(self, name, *args, **kwargs) ===========changed ref 0=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 1=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" # Set up mocks used by remove_blob def mock_list_blob_names(*args, **kwargs): assert kwargs.get("name_starts_with") is None class AsyncBlobItemsIterator: def __init__(self, file): self.files = [file] def __aiter__(self): return self async def __anext__(self): if self.files: return self.files.pop() raise StopAsyncIteration return AsyncBlobItemsIterator(filename) monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_</s> ===========changed ref 2=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): # offset: 1 <s>.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_blob(self, name, *args, **kwargs): assert name == filename return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.delete_blob", mock_delete_blob) await blob_manager.remove_blob()
app.backend.prepdocslib.blobmanager/BlobManager.upload_blob
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<7>:<add> if file.url is None: <add> with open(file.content.name, "rb") as reopened_file: <del> with open(file.content.name, "rb") as reopened_file: <8>:<add> blob_name = BlobManager.blob_name_from_file_name(file.content.name) <del> blob_name = BlobManager.blob_name_from_file_name(file.content.name) <9>:<add> logger.info("Uploading blob for whole file -> %s", blob_name) <del> logger.info("Uploading blob for whole file -> %s", blob_name) <10>:<add> blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) <del> await container_client.upload_blob(blob_name, reopened_file, overwrite=True) <11>:<add> file.url = blob_client.url
# module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: <0> async with BlobServiceClient( <1> account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 <2> ) as service_client, service_client.get_container_client(self.container) as container_client: <3> if not await container_client.exists(): <4> await container_client.create_container() <5> <6> # Re-open and upload the original file <7> with open(file.content.name, "rb") as reopened_file: <8> blob_name = BlobManager.blob_name_from_file_name(file.content.name) <9> logger.info("Uploading blob for whole file -> %s", blob_name) <10> await container_client.upload_blob(blob_name, reopened_file, overwrite=True) <11> <12> if self.store_page_images: <13> if os.path.splitext(file.content.name)[1].lower() == ".pdf": <14> return await self.upload_pdf_blob_images(service_client, container_client, file) <15> else: <16> logger.info("File %s is not a PDF, skipping image upload", file.content.name) <17> <18> return None <19>
===========unchanged ref 0=========== at: app.backend.prepdocslib.blobmanager logger = logging.getLogger("ingester") BlobManager(endpoint: str, container: str, account: str, credential: Union[AsyncTokenCredential, str], resourceGroup: str, subscriptionId: str, store_page_images: bool=False) at: app.backend.prepdocslib.blobmanager.BlobManager blob_name_from_file_name(filename) -> str at: app.backend.prepdocslib.blobmanager.BlobManager.__init__ self.endpoint = endpoint self.credential = credential self.container = container at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: os.path splitext(p: AnyStr) -> Tuple[AnyStr, AnyStr] splitext(p: _PathLike[AnyStr]) -> Tuple[AnyStr, AnyStr] at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 1=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_blob_no_image(monkeypatch, mock_env, caplog): blob_manager = BlobManager( endpoint=f"https://{os.environ['AZURE_STORAGE_ACCOUNT']}.blob.core.windows.net", credential=MockAzureCredential(), container=os.environ["AZURE_STORAGE_CONTAINER"], account=os.environ["AZURE_STORAGE_ACCOUNT"], resourceGroup=os.environ["AZURE_STORAGE_RESOURCE_GROUP"], subscriptionId=os.environ["AZURE_SUBSCRIPTION_ID"], store_page_images=True, ) with NamedTemporaryFile(suffix=".xlsx") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.xlsx", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) with caplog.at_level("INFO"): await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.xlsx" assert "skipping image upload" in caplog.text ===========changed ref 2=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" # Set up mocks used by remove_blob def mock_list_blob_names(*args, **kwargs): assert kwargs.get("name_starts_with") is None class AsyncBlobItemsIterator: def __init__(self, file): self.files = [file] def __aiter__(self): return self async def __anext__(self): if self.files: return self.files.pop() raise StopAsyncIteration return AsyncBlobItemsIterator(filename) monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_</s> ===========changed ref 3=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_and_remove_all(monkeypatch, mock_env, blob_manager): # offset: 1 <s>.aio.ContainerClient.list_blob_names", mock_list_blob_names) async def mock_delete_blob(self, name, *args, **kwargs): assert name == filename return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.delete_blob", mock_delete_blob) await blob_manager.remove_blob()
app.backend.prepdocslib.searchmanager/SearchManager.create_index
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<45>:<add> ), <add> SimpleField( <add> name="storageUrl", <add> type="Edm.String", <add> filterable=True, <add> facetable=False,
# module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): <0> logger.info("Ensuring search index %s exists", self.search_info.index_name) <1> <2> async with self.search_info.create_search_index_client() as search_index_client: <3> fields = [ <4> ( <5> SimpleField(name="id", type="Edm.String", key=True) <6> if not self.use_int_vectorization <7> else SearchField( <8> name="id", <9> type="Edm.String", <10> key=True, <11> sortable=True, <12> filterable=True, <13> facetable=True, <14> analyzer_name="keyword", <15> ) <16> ), <17> SearchableField( <18> name="content", <19> type="Edm.String", <20> analyzer_name=self.search_analyzer_name, <21> ), <22> SearchField( <23> name="embedding", <24> type=SearchFieldDataType.Collection(SearchFieldDataType.Single), <25> hidden=False, <26> searchable=True, <27> filterable=False, <28> sortable=False, <29> facetable=False, <30> vector_search_dimensions=self.embedding_dimensions, <31> vector_search_profile_name="embedding_config", <32> ), <33> SimpleField(name="category", type="Edm.String", filterable=True, facetable=True), <34> SimpleField( <35> name="sourcepage", <36> type="Edm.String", <37> filterable=True, <38> facetable=True, <39> ), <40> SimpleField( <41> name="sourcefile", <42> type="Edm.String", <43> filterable=True, <44> facetable=True, <45> ), <46> ] <47> if self.use_acls: <48> fields.append( <49> SimpleField( <50> name="oids", <51> </s>
===========below chunk 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 1 filterable=True, ) ) fields.append( SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) if self.use_int_vectorization: fields.append(SearchableField(name="parent_id", type="Edm.String", filterable=True)) if self.search_images: fields.append( SearchField( name="imageEmbedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=1024, vector_search_profile_name="embedding_config", ), ) index = SearchIndex( name=self.search_info.index_name, fields=fields, semantic_search=SemanticSearch( configurations=[ SemanticConfiguration( name="default", prioritized_fields=SemanticPrioritizedFields( title_field=None, content_fields=[SemanticField(field_name="content")] ), ) ] ), vector_search=VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="hnsw_config", parameters=HnswParameters(metric="cosine"), ) ], profiles=[ VectorSearchProfile( name="embedding_config", algorithm_configuration_name="hnsw_config", vectorizer=( f"{self.search_info.index_name}-vectorizer" if self.use_int_vectorization else None ), ), ], vectorizers=vectorizers, ), ) if self.search_info.</s> ===========below chunk 1=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 2 <s> ), ], vectorizers=vectorizers, ), ) if self.search_info.index_name not in [name async for name in search_index_client.list_index_names()]: logger.info("Creating %s search index", self.search_info.index_name) await search_index_client.create_index(index) else: logger.info("Search index %s already exists", self.search_info.index_name) ===========unchanged ref 0=========== at: app.backend.prepdocslib.searchmanager logger = logging.getLogger("ingester") at: app.backend.prepdocslib.searchmanager.SearchManager.__init__ self.search_info = search_info self.search_analyzer_name = search_analyzer_name self.use_acls = use_acls self.use_int_vectorization = use_int_vectorization self.embedding_dimensions = self.embeddings.open_ai_dimensions if self.embeddings else 1536 self.search_images = search_images at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: prepdocslib.strategy.SearchInfo create_search_index_client() -> SearchIndexClient at: prepdocslib.strategy.SearchInfo.__init__ self.index_name = index_name at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 1=========== # module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: async with BlobServiceClient( account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 ) as service_client, service_client.get_container_client(self.container) as container_client: if not await container_client.exists(): await container_client.create_container() # Re-open and upload the original file + if file.url is None: + with open(file.content.name, "rb") as reopened_file: - with open(file.content.name, "rb") as reopened_file: + blob_name = BlobManager.blob_name_from_file_name(file.content.name) - blob_name = BlobManager.blob_name_from_file_name(file.content.name) + logger.info("Uploading blob for whole file -> %s", blob_name) - logger.info("Uploading blob for whole file -> %s", blob_name) + blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) - await container_client.upload_blob(blob_name, reopened_file, overwrite=True) + file.url = blob_client.url if self.store_page_images: if os.path.splitext(file.content.name)[1].lower() == ".pdf": return await self.upload_pdf_blob_images(service_client, container_client, file) else: logger.info("File %s is not a PDF, skipping image upload", file.content.name) return None
app.backend.prepdocslib.searchmanager/SearchManager.update_content
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<26>:<add> if url: <add> for document in documents: <add> document["storageUrl"] = url
# module: app.backend.prepdocslib.searchmanager class SearchManager: + def update_content( + self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None, url: Optional[str] = None - def update_content(self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None): + ): <0> MAX_BATCH_SIZE = 1000 <1> section_batches = [sections[i : i + MAX_BATCH_SIZE] for i in range(0, len(sections), MAX_BATCH_SIZE)] <2> <3> async with self.search_info.create_search_client() as search_client: <4> for batch_index, batch in enumerate(section_batches): <5> documents = [ <6> { <7> "id": f"{section.content.filename_to_id()}-page-{section_index + batch_index * MAX_BATCH_SIZE}", <8> "content": section.split_page.text, <9> "category": section.category, <10> "sourcepage": ( <11> BlobManager.blob_image_name_from_file_page( <12> filename=section.content.filename(), <13> page=section.split_page.page_num, <14> ) <15> if image_embeddings <16> else BlobManager.sourcepage_from_file_page( <17> filename=section.content.filename(), <18> page=section.split_page.page_num, <19> ) <20> ), <21> "sourcefile": section.content.filename(), <22> **section.content.acls, <23> } <24> for section_index, section in enumerate(batch) <25> ] <26> if self.embeddings: <27> embeddings = await self.embeddings.create_embeddings( <28> texts=[section.split_page.text for section in batch] <29> ) <30> for i, document in enumerate(documents): <31> document["embedding"] = embeddings[i] <32> if image_embeddings: <33> for i, (document, section) in enumerate(</s>
===========below chunk 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: + def update_content( + self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None, url: Optional[str] = None - def update_content(self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None): + ): # offset: 1 document["imageEmbedding"] = image_embeddings[section.split_page.page_num] await search_client.upload_documents(documents) ===========unchanged ref 0=========== at: app.backend.prepdocslib.searchmanager logger = logging.getLogger("ingester") Section(split_page: SplitPage, content: File, category: Optional[str]=None) at: app.backend.prepdocslib.searchmanager.SearchManager.__init__ self.search_info = search_info at: app.backend.prepdocslib.searchmanager.SearchManager.create_index index = SearchIndex( name=self.search_info.index_name, fields=fields, semantic_search=SemanticSearch( configurations=[ SemanticConfiguration( name="default", prioritized_fields=SemanticPrioritizedFields( title_field=None, content_fields=[SemanticField(field_name="content")] ), ) ] ), vector_search=VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="hnsw_config", parameters=HnswParameters(metric="cosine"), ) ], profiles=[ VectorSearchProfile( name="embedding_config", algorithm_configuration_name="hnsw_config", vectorizer=( f"{self.search_info.index_name}-vectorizer" if self.use_int_vectorization else None ), ), ], vectorizers=vectorizers, ), ) at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: prepdocslib.strategy.SearchInfo.__init__ self.index_name = index_name at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): logger.info("Ensuring search index %s exists", self.search_info.index_name) async with self.search_info.create_search_index_client() as search_index_client: fields = [ ( SimpleField(name="id", type="Edm.String", key=True) if not self.use_int_vectorization else SearchField( name="id", type="Edm.String", key=True, sortable=True, filterable=True, facetable=True, analyzer_name="keyword", ) ), SearchableField( name="content", type="Edm.String", analyzer_name=self.search_analyzer_name, ), SearchField( name="embedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=self.embedding_dimensions, vector_search_profile_name="embedding_config", ), SimpleField(name="category", type="Edm.String", filterable=True, facetable=True), SimpleField( name="sourcepage", type="Edm.String", filterable=True, facetable=True, ), SimpleField( name="sourcefile", type="Edm.String", filterable=True, facetable=True, + ), + SimpleField( + name="storageUrl", + type="Edm.String", + filterable=True, + facetable=False, ), ] if self.use_acls: fields.append( SimpleField( name="oids", type=SearchFieldDataType.</s> ===========changed ref 1=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 1 <s>use_acls: fields.append( SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) fields.append( SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) if self.use_int_vectorization: fields.append(SearchableField(name="parent_id", type="Edm.String", filterable=True)) if self.search_images: fields.append( SearchField( name="imageEmbedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=1024, vector_search_profile_name="embedding_config", ), ) index = SearchIndex( name=self.search_info.index_name, fields=fields, semantic_search=SemanticSearch( configurations=[ SemanticConfiguration( name="default", prioritized_fields=SemanticPrioritizedFields( title_field=None, content_fields=[SemanticField(field_name="content")] ), ) ] ), vector_search=VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="hnsw_config", parameters=HnswParameters(metric="cosine"), ) ], profiles=[ VectorSearchProfile( name="embedding_config", algorithm_configuration_name="hnsw</s> ===========changed ref 2=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 2 <s>", vectorizer=( f"{self.search_info.index_name}-vectorizer" if self.use_int_vectorization else None ), ), ], vectorizers=vectorizers, ), ) if self.search_info.index_name not in [name async for name in search_index_client.list_index_names()]: logger.info("Creating %s search index", self.search_info.index_name) await search_index_client.create_index(index) else: logger.info("Search index %s already exists", self.search_info.index_name)
scripts.manageacl/ManageAcl.__init__
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<9>:<add> url <del> document <10>:<add> Full Blob storage URL of the document to manage acls for <del> File path of the document to manage acls for <23>:<add> self.url = url <del> self.document = document
# module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): <0> """ <1> Initializes the command <2> <3> Parameters <4> ---------- <5> service_name <6> Name of the Azure Search service <7> index_name <8> Name of the Azure Search index <9> document <10> File path of the document to manage acls for <11> acl_action <12> Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) <13> acl_type <14> Type of acls to manage. Valid values include groups or oids. <15> acl <16> The actual value of the acl, if the acl action is add or remove <17> credentials <18> Credentials for the azure search service <19> """ <20> self.service_name = service_name <21> self.index_name = index_name <22> self.credentials = credentials <23> self.document = document <24> self.acl_action = acl_action <25> self.acl_type = acl_type <26> self.acl = acl <27>
===========changed ref 0=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 1=========== # module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: async with BlobServiceClient( account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 ) as service_client, service_client.get_container_client(self.container) as container_client: if not await container_client.exists(): await container_client.create_container() # Re-open and upload the original file + if file.url is None: + with open(file.content.name, "rb") as reopened_file: - with open(file.content.name, "rb") as reopened_file: + blob_name = BlobManager.blob_name_from_file_name(file.content.name) - blob_name = BlobManager.blob_name_from_file_name(file.content.name) + logger.info("Uploading blob for whole file -> %s", blob_name) - logger.info("Uploading blob for whole file -> %s", blob_name) + blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) - await container_client.upload_blob(blob_name, reopened_file, overwrite=True) + file.url = blob_client.url if self.store_page_images: if os.path.splitext(file.content.name)[1].lower() == ".pdf": return await self.upload_pdf_blob_images(service_client, container_client, file) else: logger.info("File %s is not a PDF, skipping image upload", file.content.name) return None ===========changed ref 2=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_blob_no_image(monkeypatch, mock_env, caplog): blob_manager = BlobManager( endpoint=f"https://{os.environ['AZURE_STORAGE_ACCOUNT']}.blob.core.windows.net", credential=MockAzureCredential(), container=os.environ["AZURE_STORAGE_CONTAINER"], account=os.environ["AZURE_STORAGE_ACCOUNT"], resourceGroup=os.environ["AZURE_STORAGE_RESOURCE_GROUP"], subscriptionId=os.environ["AZURE_SUBSCRIPTION_ID"], store_page_images=True, ) with NamedTemporaryFile(suffix=".xlsx") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.xlsx", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) with caplog.at_level("INFO"): await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.xlsx" assert "skipping image upload" in caplog.text ===========changed ref 3=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: + def update_content( + self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None, url: Optional[str] = None - def update_content(self, sections: List[Section], image_embeddings: Optional[List[List[float]]] = None): + ): MAX_BATCH_SIZE = 1000 section_batches = [sections[i : i + MAX_BATCH_SIZE] for i in range(0, len(sections), MAX_BATCH_SIZE)] async with self.search_info.create_search_client() as search_client: for batch_index, batch in enumerate(section_batches): documents = [ { "id": f"{section.content.filename_to_id()}-page-{section_index + batch_index * MAX_BATCH_SIZE}", "content": section.split_page.text, "category": section.category, "sourcepage": ( BlobManager.blob_image_name_from_file_page( filename=section.content.filename(), page=section.split_page.page_num, ) if image_embeddings else BlobManager.sourcepage_from_file_page( filename=section.content.filename(), page=section.split_page.page_num, ) ), "sourcefile": section.content.filename(), **section.content.acls, } for section_index, section in enumerate(batch) ] + if url: + for document in documents: + document["storageUrl"] = url if self.embeddings: embeddings = await self.embeddings.create_embeddings( texts=[section.split_page.text for section in batch] ) for i, document in enumerate(documents): document["embedding"] = embeddings[i] if image_embeddings: for i, (document, section) in enumerate(zip(documents, batch)): document</s>
scripts.manageacl/ManageAcl.run
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<16>:<add> elif self.acl_action == "update_storage_urls": <add> await self.update_storage_urls(search_client) <19>:<del> logging.info("ACLs updated") <20>:<del>
# module: scripts.manageacl class ManageAcl: def run(self): <0> endpoint = f"https://{self.service_name}.search.windows.net" <1> if self.acl_action == "enable_acls": <2> await self.enable_acls(endpoint) <3> return <4> <5> async with SearchClient( <6> endpoint=endpoint, index_name=self.index_name, credential=self.credentials <7> ) as search_client: <8> if self.acl_action == "view": <9> await self.view_acl(search_client) <10> elif self.acl_action == "remove": <11> await self.remove_acl(search_client) <12> elif self.acl_action == "remove_all": <13> await self.remove_all_acls(search_client) <14> elif self.acl_action == "add": <15> await self.add_acl(search_client) <16> else: <17> raise Exception(f"Unknown action {self.acl_action}") <18> <19> logging.info("ACLs updated") <20>
===========unchanged ref 0=========== at: scripts.manageacl.ManageAcl view_acl(self, search_client: SearchClient) view_acl(search_client: SearchClient) remove_acl(self, search_client: SearchClient) remove_acl(search_client: SearchClient) remove_all_acls(self, search_client: SearchClient) remove_all_acls(search_client: SearchClient) add_acl(self, search_client: SearchClient) add_acl(search_client: SearchClient) enable_acls(endpoint: str) enable_acls(self, endpoint: str) at: scripts.manageacl.ManageAcl.__init__ self.service_name = service_name self.index_name = index_name self.credentials = credentials self.acl_action = acl_action ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 1=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 2=========== # module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: async with BlobServiceClient( account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 ) as service_client, service_client.get_container_client(self.container) as container_client: if not await container_client.exists(): await container_client.create_container() # Re-open and upload the original file + if file.url is None: + with open(file.content.name, "rb") as reopened_file: - with open(file.content.name, "rb") as reopened_file: + blob_name = BlobManager.blob_name_from_file_name(file.content.name) - blob_name = BlobManager.blob_name_from_file_name(file.content.name) + logger.info("Uploading blob for whole file -> %s", blob_name) - logger.info("Uploading blob for whole file -> %s", blob_name) + blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) - await container_client.upload_blob(blob_name, reopened_file, overwrite=True) + file.url = blob_client.url if self.store_page_images: if os.path.splitext(file.content.name)[1].lower() == ".pdf": return await self.upload_pdf_blob_images(service_client, container_client, file) else: logger.info("File %s is not a PDF, skipping image upload", file.content.name) return None ===========changed ref 3=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_upload_blob_no_image(monkeypatch, mock_env, caplog): blob_manager = BlobManager( endpoint=f"https://{os.environ['AZURE_STORAGE_ACCOUNT']}.blob.core.windows.net", credential=MockAzureCredential(), container=os.environ["AZURE_STORAGE_CONTAINER"], account=os.environ["AZURE_STORAGE_ACCOUNT"], resourceGroup=os.environ["AZURE_STORAGE_RESOURCE_GROUP"], subscriptionId=os.environ["AZURE_SUBSCRIPTION_ID"], store_page_images=True, ) with NamedTemporaryFile(suffix=".xlsx") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.xlsx", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) with caplog.at_level("INFO"): await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.xlsx" assert "skipping image upload" in caplog.text
scripts.manageacl/ManageAcl.view_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<0>:<add> for document in await self.get_documents(search_client): <del> async for document in await self.get_documents(search_client):
# module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): <0> async for document in await self.get_documents(search_client): <1> # Assumes the acls are consistent across all sections of the document <2> print(json.dumps(document[self.acl_type])) <3> return <4>
===========unchanged ref 0=========== at: scripts.manageacl.ManageAcl get_documents(search_client: SearchClient) get_documents(self, search_client: SearchClient) at: scripts.manageacl.ManageAcl.__init__ self.acl_action = acl_action ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 2=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 3=========== # module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: async with BlobServiceClient( account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 ) as service_client, service_client.get_container_client(self.container) as container_client: if not await container_client.exists(): await container_client.create_container() # Re-open and upload the original file + if file.url is None: + with open(file.content.name, "rb") as reopened_file: - with open(file.content.name, "rb") as reopened_file: + blob_name = BlobManager.blob_name_from_file_name(file.content.name) - blob_name = BlobManager.blob_name_from_file_name(file.content.name) + logger.info("Uploading blob for whole file -> %s", blob_name) - logger.info("Uploading blob for whole file -> %s", blob_name) + blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) - await container_client.upload_blob(blob_name, reopened_file, overwrite=True) + file.url = blob_client.url if self.store_page_images: if os.path.splitext(file.content.name)[1].lower() == ".pdf": return await self.upload_pdf_blob_images(service_client, container_client, file) else: logger.info("File %s is not a PDF, skipping image upload", file.content.name) return None
scripts.manageacl/ManageAcl.remove_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> for document in await self.get_documents(search_client): <del> async for document in await self.get_documents(search_client): <2>:<add> new_acls = document[self.acl_type] <add> if any(acl_value == self.acl for acl_value in new_acls): <add> new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] <del> new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] <3>:<add> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <del> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <4>:<add> else: <add> logger.info("Search document %s does not have %s acl %s", document["id"], self.acl_type, self.acl) <6>:<add> logger.info("Removing acl %s from %d search documents", self.acl, len(documents_to_merge)) <7>:<add> else: <add> logger.info("Not updating any search documents")
# module: scripts.manageacl class ManageAcl: def remove_acl(self, search_client: SearchClient): <0> documents_to_merge = [] <1> async for document in await self.get_documents(search_client): <2> new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] <3> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <4> <5> if len(documents_to_merge) > 0: <6> await search_client.merge_documents(documents=documents_to_merge) <7>
===========unchanged ref 0=========== at: json dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str at: scripts.manageacl.ManageAcl get_documents(search_client: SearchClient) get_documents(self, search_client: SearchClient) at: scripts.manageacl.ManageAcl.__init__ self.acl_type = acl_type self.acl = acl ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 3=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf" ===========changed ref 4=========== # module: app.backend.prepdocslib.blobmanager class BlobManager: def upload_blob(self, file: File) -> Optional[List[str]]: async with BlobServiceClient( account_url=self.endpoint, credential=self.credential, max_single_put_size=4 * 1024 * 1024 ) as service_client, service_client.get_container_client(self.container) as container_client: if not await container_client.exists(): await container_client.create_container() # Re-open and upload the original file + if file.url is None: + with open(file.content.name, "rb") as reopened_file: - with open(file.content.name, "rb") as reopened_file: + blob_name = BlobManager.blob_name_from_file_name(file.content.name) - blob_name = BlobManager.blob_name_from_file_name(file.content.name) + logger.info("Uploading blob for whole file -> %s", blob_name) - logger.info("Uploading blob for whole file -> %s", blob_name) + blob_client = await container_client.upload_blob(blob_name, reopened_file, overwrite=True) - await container_client.upload_blob(blob_name, reopened_file, overwrite=True) + file.url = blob_client.url if self.store_page_images: if os.path.splitext(file.content.name)[1].lower() == ".pdf": return await self.upload_pdf_blob_images(service_client, container_client, file) else: logger.info("File %s is not a PDF, skipping image upload", file.content.name) return None
scripts.manageacl/ManageAcl.remove_all_acls
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> for document in await self.get_documents(search_client): <del> async for document in await self.get_documents(search_client): <2>:<add> if len(document[self.acl_type]) > 0: <add> documents_to_merge.append({"id": document["id"], self.acl_type: []}) <del> documents_to_merge.append({"id": document["id"], self.acl_type: []}) <3>:<add> else: <add> logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) <5>:<add> logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) <6>:<add> else: <add> logger.info("Not updating any search documents")
# module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): <0> documents_to_merge = [] <1> async for document in await self.get_documents(search_client): <2> documents_to_merge.append({"id": document["id"], self.acl_type: []}) <3> <4> if len(documents_to_merge) > 0: <5> await search_client.merge_documents(documents=documents_to_merge) <6>
===========unchanged ref 0=========== at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: scripts.manageacl logger = logging.getLogger("manageacl") at: scripts.manageacl.ManageAcl.__init__ self.acl_type = acl_type self.acl = acl at: scripts.manageacl.ManageAcl.remove_acl documents_to_merge = [] new_acls = document[self.acl_type] new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def remove_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + new_acls = document[self.acl_type] + if any(acl_value == self.acl for acl_value in new_acls): + new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] - new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s does not have %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Removing acl %s from %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 4=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf"
scripts.manageacl/ManageAcl.add_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> for document in await self.get_documents(search_client): <del> async for document in await self.get_documents(search_client): <5>:<add> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <del> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <6>:<add> else: <add> logger.info("Search document %s already has %s acl %s", document["id"], self.acl_type, self.acl) <8>:<add> logger.info("Adding acl %s to %d search documents", self.acl, len(documents_to_merge)) <9>:<add> else: <add> logger.info("Not updating any search documents")
# module: scripts.manageacl class ManageAcl: def add_acl(self, search_client: SearchClient): <0> documents_to_merge = [] <1> async for document in await self.get_documents(search_client): <2> new_acls = document[self.acl_type] <3> if not any(acl_value == self.acl for acl_value in new_acls): <4> new_acls.append(self.acl) <5> documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) <6> <7> if len(documents_to_merge) > 0: <8> await search_client.merge_documents(documents=documents_to_merge) <9>
===========unchanged ref 0=========== at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: scripts.manageacl logger = logging.getLogger("manageacl") at: scripts.manageacl.ManageAcl get_documents(search_client: SearchClient) get_documents(self, search_client: SearchClient) at: scripts.manageacl.ManageAcl.__init__ self.acl_type = acl_type ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def remove_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + new_acls = document[self.acl_type] + if any(acl_value == self.acl for acl_value in new_acls): + new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] - new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s does not have %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Removing acl %s from %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 5=========== # module: tests.test_blob_manager @pytest.mark.asyncio @pytest.mark.skipif(sys.version_info.minor < 10, reason="requires Python 3.10 or higher") async def test_create_container_upon_upload(monkeypatch, mock_env, blob_manager): with NamedTemporaryFile(suffix=".pdf") as temp_file: f = File(temp_file.file) filename = os.path.basename(f.content.name) # Set up mocks used by upload_blob async def mock_exists(*args, **kwargs): return False monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.exists", mock_exists) async def mock_create_container(*args, **kwargs): return monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.create_container", mock_create_container) async def mock_upload_blob(self, name, *args, **kwargs): assert name == filename + return azure.storage.blob.aio.BlobClient.from_blob_url( + "https://test.blob.core.windows.net/test/test.pdf", credential=MockAzureCredential() + ) - return True monkeypatch.setattr("azure.storage.blob.aio.ContainerClient.upload_blob", mock_upload_blob) await blob_manager.upload_blob(f) + assert f.url == "https://test.blob.core.windows.net/test/test.pdf"
scripts.manageacl/ManageAcl.get_documents
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<0>:<add> filter = f"storageUrl eq '{self.url}'" <del> filter = f"sourcefile eq '{self.document}'" <1>:<add> documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) <del> result = await search_client.search("", filter=filter, select=["id", self.acl_type]) <2>:<add> found_documents = [] <add> async for document in documents: <add> found_documents.append(document) <add> logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) <add> return found_documents <del> return result
# module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): <0> filter = f"sourcefile eq '{self.document}'" <1> result = await search_client.search("", filter=filter, select=["id", self.acl_type]) <2> return result <3>
===========unchanged ref 0=========== at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: scripts.manageacl logger = logging.getLogger("manageacl") at: scripts.manageacl.ManageAcl.__init__ self.acl_type = acl_type at: scripts.manageacl.ManageAcl.remove_all_acls documents_to_merge = [] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def add_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): new_acls = document[self.acl_type] if not any(acl_value == self.acl for acl_value in new_acls): new_acls.append(self.acl) + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s already has %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Adding acl %s to %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def remove_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + new_acls = document[self.acl_type] + if any(acl_value == self.acl for acl_value in new_acls): + new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] - new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s does not have %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Removing acl %s from %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
scripts.manageacl/ManageAcl.enable_acls
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> logger.info(f"Enabling acls for index {self.index_name}") <del> logging.info(f"Enabling acls for index {self.index_name}") <19>:<add> if not any(field.name == "storageUrl" for field in index_definition.fields): <add> index_definition.fields.append( <add> SimpleField( <add> name="storageUrl", <add> type="Edm.String", <add> filterable=True, <add> facetable=False, <add> ), <add> ) <del>
# module: scripts.manageacl class ManageAcl: def enable_acls(self, endpoint: str): <0> async with SearchIndexClient(endpoint=endpoint, credential=self.credentials) as search_index_client: <1> logging.info(f"Enabling acls for index {self.index_name}") <2> index_definition = await search_index_client.get_index(self.index_name) <3> if not any(field.name == "oids" for field in index_definition.fields): <4> index_definition.fields.append( <5> SimpleField( <6> name="oids", <7> type=SearchFieldDataType.Collection(SearchFieldDataType.String), <8> filterable=True, <9> ) <10> ) <11> if not any(field.name == "groups" for field in index_definition.fields): <12> index_definition.fields.append( <13> SimpleField( <14> name="groups", <15> type=SearchFieldDataType.Collection(SearchFieldDataType.String), <16> filterable=True, <17> ) <18> ) <19> <20> await search_index_client.create_or_update_index(index_definition) <21>
===========unchanged ref 0=========== at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: scripts.manageacl logger = logging.getLogger("manageacl") at: scripts.manageacl.ManageAcl.__init__ self.url = url self.acl_type = acl_type self.acl = acl ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def add_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): new_acls = document[self.acl_type] if not any(acl_value == self.acl for acl_value in new_acls): new_acls.append(self.acl) + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s already has %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Adding acl %s to %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 6=========== # module: scripts.manageacl class ManageAcl: def remove_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + new_acls = document[self.acl_type] + if any(acl_value == self.acl for acl_value in new_acls): + new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] - new_acls = [acl_value for acl_value in document[self.acl_type] if acl_value != self.acl] + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s does not have %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Removing acl %s from %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
scripts.manageacl/main
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<13>:<add> url=args.url, <del> document=args.document,
# module: scripts.manageacl def main(args: Any): <0> # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them <1> azd_credential = ( <2> AzureDeveloperCliCredential() <3> if args.tenant_id is None <4> else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) <5> ) <6> search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential <7> if args.search_key is not None: <8> search_credential = AzureKeyCredential(args.search_key) <9> <10> command = ManageAcl( <11> service_name=args.search_service, <12> index_name=args.index, <13> document=args.document, <14> acl_action=args.acl_action, <15> acl_type=args.acl_type, <16> acl=args.acl, <17> credentials=search_credential, <18> ) <19> await command.run() <20>
===========unchanged ref 0=========== at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: scripts.manageacl logger = logging.getLogger("manageacl") at: scripts.manageacl.ManageAcl.__init__ self.index_name = index_name self.credentials = credentials ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def add_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): new_acls = document[self.acl_type] if not any(acl_value == self.acl for acl_value in new_acls): new_acls.append(self.acl) + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s already has %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Adding acl %s to %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def enable_acls(self, endpoint: str): async with SearchIndexClient(endpoint=endpoint, credential=self.credentials) as search_index_client: + logger.info(f"Enabling acls for index {self.index_name}") - logging.info(f"Enabling acls for index {self.index_name}") index_definition = await search_index_client.get_index(self.index_name) if not any(field.name == "oids" for field in index_definition.fields): index_definition.fields.append( SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) if not any(field.name == "groups" for field in index_definition.fields): index_definition.fields.append( SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) + if not any(field.name == "storageUrl" for field in index_definition.fields): + index_definition.fields.append( + SimpleField( + name="storageUrl", + type="Edm.String", + filterable=True, + facetable=False, + ), + ) - await search_index_client.create_or_update_index(index_definition) ===========changed ref 6=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl
app.backend.prepdocslib.listfilestrategy/File.__init__
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<2>:<add> self.url = url
# module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): <0> self.content = content <1> self.acls = acls or {} <2>
===========unchanged ref 0=========== at: typing IO() ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 2=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl ===========changed ref 6=========== # module: scripts.manageacl class ManageAcl: def add_acl(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): new_acls = document[self.acl_type] if not any(acl_value == self.acl for acl_value in new_acls): new_acls.append(self.acl) + documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) - documents_to_merge.append({"id": document["id"], self.acl_type: new_acls}) + else: + logger.info("Search document %s already has %s acl %s", document["id"], self.acl_type, self.acl) if len(documents_to_merge) > 0: + logger.info("Adding acl %s to %d search documents", self.acl, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
app.backend.prepdocslib.listfilestrategy/ADLSGen2ListFileStrategy.list
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
# module: app.backend.prepdocslib.listfilestrategy class ADLSGen2ListFileStrategy(ListFileStrategy): def list(self) -> AsyncGenerator[File, None]: <0> async with DataLakeServiceClient( <1> account_url=f"https://{self.data_lake_storage_account}.dfs.core.windows.net", credential=self.credential <2> ) as service_client, service_client.get_file_system_client(self.data_lake_filesystem) as filesystem_client: <3> async for path in self.list_paths(): <4> temp_file_path = os.path.join(tempfile.gettempdir(), os.path.basename(path)) <5> try: <6> async with filesystem_client.get_file_client(path) as file_client: <7> with open(temp_file_path, "wb") as temp_file: <8> downloader = await file_client.download_file() <9> await downloader.readinto(temp_file) <10> # Parse out user ids and group ids <11> acls: Dict[str, List[str]] = {"oids": [], "groups": []} <12> # https://learn.microsoft.com/python/api/azure-storage-file-datalake/azure.storage.filedatalake.datalakefileclient?view=azure-python#azure-storage-filedatalake-datalakefileclient-get-access-control <13> # Request ACLs as GUIDs <14> access_control = await file_client.get_access_control(upn=False) <15> acl_list = access_control["acl"] <16> # https://learn.microsoft.com/azure/storage/blobs/data-lake-storage-access-control <17> # ACL Format: user::rwx,group::r-x,other::r--,user:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx:r-- <18> acl_list = acl_list.split(",") <19> for acl in acl_list: <20> acl_parts: list = acl.split(":") <21> if len(acl_parts) != 3:</s>
===========below chunk 0=========== # module: app.backend.prepdocslib.listfilestrategy class ADLSGen2ListFileStrategy(ListFileStrategy): def list(self) -> AsyncGenerator[File, None]: # offset: 1 if len(acl_parts[1]) == 0: continue if acl_parts[0] == "user" and "r" in acl_parts[2]: acls["oids"].append(acl_parts[1]) if acl_parts[0] == "group" and "r" in acl_parts[2]: acls["groups"].append(acl_parts[1]) yield File(content=open(temp_file_path, "rb"), acls=acls) except Exception as data_lake_exception: logger.error(f"\tGot an error while reading {path} -> {data_lake_exception} --> skipping file") try: os.remove(temp_file_path) except Exception as file_delete_exception: logger.error(f"\tGot an error while deleting {temp_file_path} -> {file_delete_exception}") ===========unchanged ref 0=========== at: app.backend.prepdocslib.listfilestrategy logger = logging.getLogger("ingester") File(content: IO, acls: Optional[dict[str, list]]=None, url: Optional[str]=None) at: app.backend.prepdocslib.listfilestrategy.ADLSGen2ListFileStrategy list_paths() -> AsyncGenerator[str, None] at: app.backend.prepdocslib.listfilestrategy.ADLSGen2ListFileStrategy.__init__ self.data_lake_storage_account = data_lake_storage_account self.data_lake_filesystem = data_lake_filesystem self.credential = credential at: app.backend.prepdocslib.listfilestrategy.ListFileStrategy list(self) -> AsyncGenerator[File, None] at: logging.Logger error(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: os remove(path: AnyPath, *, dir_fd: Optional[int]=...) -> None at: os.path join(a: StrPath, *paths: StrPath) -> str join(a: BytesPath, *paths: BytesPath) -> bytes basename(p: _PathLike[AnyStr]) -> AnyStr basename(p: AnyStr) -> AnyStr at: tempfile gettempdir() -> str at: typing List = _alias(list, 1, inst=False, name='List') Dict = _alias(dict, 2, inst=False, name='Dict') AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2) ===========changed ref 0=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 3=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") -
tests.test_searchmanager/test_create_index_doesnt_exist_yet
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<16>:<add> assert len(indexes[0].fields) == 7 <del> assert len(indexes[0].fields) == 6
# module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): <0> indexes = [] <1> <2> async def mock_create_index(self, index): <3> indexes.append(index) <4> <5> async def mock_list_index_names(self): <6> for index in []: <7> yield index <8> <9> monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) <10> monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) <11> <12> manager = SearchManager(search_info) <13> await manager.create_index() <14> assert len(indexes) == 1, "It should have created one index" <15> assert indexes[0].name == "test" <16> assert len(indexes[0].fields) == 6 <17>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] ===========changed ref 0=========== # module: tests.test_searchmanager - @pytest.fixture - def embeddings_service(monkeypatch): - async def mock_create_client(*args, **kwargs): - # From https://platform.openai.com/docs/api-reference/embeddings/create - return MockClient( - embeddings_client=MockEmbeddingsClient( - create_embedding_response=openai.types.CreateEmbeddingResponse( - object="list", - data=[ - openai.types.Embedding( - embedding=[ - 0.0023064255, - -0.009327292, - -0.0028842222, - ], - index=0, - object="embedding", - ) - ], - model="text-embedding-ada-002", - usage=Usage(prompt_tokens=8, total_tokens=8), - ) - ) - ) - - embeddings = AzureOpenAIEmbeddingService( - open_ai_service="x", - open_ai_deployment="x", - open_ai_model_name=MOCK_EMBEDDING_MODEL_NAME, - open_ai_dimensions=MOCK_EMBEDDING_DIMENSIONS, - credential=AzureKeyCredential("test"), - disable_batch=True, - ) - monkeypatch.setattr(embeddings, "create_client", mock_create_client) - return embeddings - ===========changed ref 1=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 4=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 6=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 7=========== # module: scripts.manageacl class ManageAcl: def __init__( self, service_name: str, index_name: str, + url: str, - document: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential], ): """ Initializes the command Parameters ---------- service_name Name of the Azure Search service index_name Name of the Azure Search index + url - document + Full Blob storage URL of the document to manage acls for - File path of the document to manage acls for acl_action Action to take regarding the index or document. Valid values include enable_acls (turn acls on for the entire index), view (print acls for the document), remove_all (remove all acls), remove (remove a specific acl), or add (add a specific acl) acl_type Type of acls to manage. Valid values include groups or oids. acl The actual value of the acl, if the acl action is add or remove credentials Credentials for the azure search service """ self.service_name = service_name self.index_name = index_name self.credentials = credentials + self.url = url - self.document = document self.acl_action = acl_action self.acl_type = acl_type self.acl = acl
tests.test_searchmanager/test_create_index_using_int_vectorization
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<16>:<add> assert len(indexes[0].fields) == 8 <del> assert len(indexes[0].fields) == 7
# module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): <0> indexes = [] <1> <2> async def mock_create_index(self, index): <3> indexes.append(index) <4> <5> async def mock_list_index_names(self): <6> for index in []: <7> yield index <8> <9> monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) <10> monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) <11> <12> manager = SearchManager(search_info, use_int_vectorization=True) <13> await manager.create_index() <14> assert len(indexes) == 1, "It should have created one index" <15> assert indexes[0].name == "test" <16> assert len(indexes[0].fields) == 7 <17>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) ===========changed ref 0=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 1=========== # module: tests.test_searchmanager - @pytest.fixture - def embeddings_service(monkeypatch): - async def mock_create_client(*args, **kwargs): - # From https://platform.openai.com/docs/api-reference/embeddings/create - return MockClient( - embeddings_client=MockEmbeddingsClient( - create_embedding_response=openai.types.CreateEmbeddingResponse( - object="list", - data=[ - openai.types.Embedding( - embedding=[ - 0.0023064255, - -0.009327292, - -0.0028842222, - ], - index=0, - object="embedding", - ) - ], - model="text-embedding-ada-002", - usage=Usage(prompt_tokens=8, total_tokens=8), - ) - ) - ) - - embeddings = AzureOpenAIEmbeddingService( - open_ai_service="x", - open_ai_deployment="x", - open_ai_model_name=MOCK_EMBEDDING_MODEL_NAME, - open_ai_dimensions=MOCK_EMBEDDING_DIMENSIONS, - credential=AzureKeyCredential("test"), - disable_batch=True, - ) - monkeypatch.setattr(embeddings, "create_client", mock_create_client) - return embeddings - ===========changed ref 2=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 5=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 6=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents") ===========changed ref 7=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") -
tests.test_searchmanager/test_create_index_acls
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<19>:<add> assert len(indexes[0].fields) == 9 <del> assert len(indexes[0].fields) == 8
# module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): <0> indexes = [] <1> <2> async def mock_create_index(self, index): <3> indexes.append(index) <4> <5> async def mock_list_index_names(self): <6> for index in []: <7> yield index <8> <9> monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) <10> monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) <11> <12> manager = SearchManager( <13> search_info, <14> use_acls=True, <15> ) <16> await manager.create_index() <17> assert len(indexes) == 1, "It should have created one index" <18> assert indexes[0].name == "test" <19> assert len(indexes[0].fields) == 8 <20>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) ===========changed ref 0=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 1=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 2=========== # module: tests.test_searchmanager - @pytest.fixture - def embeddings_service(monkeypatch): - async def mock_create_client(*args, **kwargs): - # From https://platform.openai.com/docs/api-reference/embeddings/create - return MockClient( - embeddings_client=MockEmbeddingsClient( - create_embedding_response=openai.types.CreateEmbeddingResponse( - object="list", - data=[ - openai.types.Embedding( - embedding=[ - 0.0023064255, - -0.009327292, - -0.0028842222, - ], - index=0, - object="embedding", - ) - ], - model="text-embedding-ada-002", - usage=Usage(prompt_tokens=8, total_tokens=8), - ) - ) - ) - - embeddings = AzureOpenAIEmbeddingService( - open_ai_service="x", - open_ai_deployment="x", - open_ai_model_name=MOCK_EMBEDDING_MODEL_NAME, - open_ai_dimensions=MOCK_EMBEDDING_DIMENSIONS, - credential=AzureKeyCredential("test"), - disable_batch=True, - ) - monkeypatch.setattr(embeddings, "create_client", mock_create_client) - return embeddings - ===========changed ref 3=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 6=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 7=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
tests.test_manageacl/test_view_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" <del> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <10>:<add> url="https://test.blob.core.windows.net/content/a.txt", <del> document="a.txt",
# module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): <0> async def mock_search(self, *args, **kwargs): <1> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <2> assert kwargs.get("select") == ["id", "oids"] <3> return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) <4> <5> monkeypatch.setattr(SearchClient, "search", mock_search) <6> <7> command = ManageAcl( <8> service_name="SERVICE", <9> index_name="INDEX", <10> document="a.txt", <11> acl_action="view", <12> acl_type="oids", <13> acl="", <14> credentials=MockAzureCredential(), <15> ) <16> await command.run() <17> captured = capsys.readouterr() <18> assert captured.out.strip() == '["OID_ACL"]' <19>
===========unchanged ref 0=========== at: _pytest.capture capsys(request: SubRequest) -> Generator[CaptureFixture[str], None, None] at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl AsyncSearchResultsIterator(results) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 4=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 5=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 6=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager( search_info, use_acls=True, ) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 9 - assert len(indexes[0].fields) == 8 ===========changed ref 7=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run()
tests.test_manageacl/test_remove_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" <del> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <22>:<add> url="https://test.blob.core.windows.net/content/a.txt", <del> document="a.txt",
# module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_acl(monkeypatch, capsys): <0> async def mock_search(self, *args, **kwargs): <1> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <2> assert kwargs.get("select") == ["id", "oids"] <3> return AsyncSearchResultsIterator( <4> [ <5> {"id": 1, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, <6> {"id": 2, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, <7> ] <8> ) <9> <10> merged_documents = [] <11> <12> async def mock_merge_documents(self, *args, **kwargs): <13> for document in kwargs.get("documents"): <14> merged_documents.append(document) <15> <16> monkeypatch.setattr(SearchClient, "search", mock_search) <17> monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) <18> <19> command = ManageAcl( <20> service_name="SERVICE", <21> index_name="INDEX", <22> document="a.txt", <23> acl_action="remove", <24> acl_type="oids", <25> acl="OID_ACL_TO_REMOVE", <26> credentials=MockAzureCredential(), <27> ) <28> await command.run() <29> assert merged_documents == [{"id": 2, "oids": ["OID_ACL_TO_KEEP"]}, {"id": 1, "oids": ["OID_ACL_TO_KEEP"]}] <30>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl AsyncSearchResultsIterator(results) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 2=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 5=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 6=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 7=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager( search_info, use_acls=True, ) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 9 - assert len(indexes[0].fields) == 8
tests.test_manageacl/test_remove_all_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" <del> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <22>:<add> url="https://test.blob.core.windows.net/content/a.txt", <del> document="a.txt",
# module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_all_acl(monkeypatch, capsys): <0> async def mock_search(self, *args, **kwargs): <1> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <2> assert kwargs.get("select") == ["id", "oids"] <3> return AsyncSearchResultsIterator( <4> [ <5> {"id": 1, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, <6> {"id": 2, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, <7> ] <8> ) <9> <10> merged_documents = [] <11> <12> async def mock_merge_documents(self, *args, **kwargs): <13> for document in kwargs.get("documents"): <14> merged_documents.append(document) <15> <16> monkeypatch.setattr(SearchClient, "search", mock_search) <17> monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) <18> <19> command = ManageAcl( <20> service_name="SERVICE", <21> index_name="INDEX", <22> document="a.txt", <23> acl_action="remove_all", <24> acl_type="oids", <25> acl="", <26> credentials=MockAzureCredential(), <27> ) <28> await command.run() <29> assert merged_documents == [{"id": 2, "oids": []}, {"id": 1, "oids": []}] <30>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl AsyncSearchResultsIterator(results) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 2=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove", acl_type="oids", acl="OID_ACL_TO_REMOVE", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": ["OID_ACL_TO_KEEP"]}, {"id": 1, "oids": ["OID_ACL_TO_KEEP"]}] ===========changed ref 3=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 4=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 6=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6
tests.test_manageacl/test_add_acl
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<1>:<add> assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" <del> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <17>:<add> url="https://test.blob.core.windows.net/content/a.txt", <del> document="a.txt", <23>:<add> with caplog.at_level(logging.INFO): <add> await command.run() <del> await command.run() <24>:<add> assert merged_documents == [] <add> assert "Search document 1 already has oids acl OID_EXISTS" in caplog.text <add> assert "Search document 2 already has oids acl OID_EXISTS" in caplog.text <add> assert "Not updating any search documents" in caplog.text <del> assert merged_documents == [{"id": 2, "oids": ["OID_EXISTS"]}, {"id": 1, "oids": ["OID_EXISTS"]}] <30>:<add> url="https://test.blob.core.windows.net/content/a.txt", <del> document="a.txt", <36>:<add> with caplog.at_level(logging.INFO): <add> await command.run() <del> await command.run() <37>:<add> assert merged_documents == [ <del> assert merged_documents == [ <38>:<add> {"id": 2, "
# module: tests.test_manageacl @pytest.mark.asyncio + async def test_add_acl(monkeypatch, caplog): - async def test_add_acl(monkeypatch, capsys): <0> async def mock_search(self, *args, **kwargs): <1> assert kwargs.get("filter") == "sourcefile eq 'a.txt'" <2> assert kwargs.get("select") == ["id", "oids"] <3> return AsyncSearchResultsIterator([{"id": 1, "oids": ["OID_EXISTS"]}, {"id": 2, "oids": ["OID_EXISTS"]}]) <4> <5> merged_documents = [] <6> <7> async def mock_merge_documents(self, *args, **kwargs): <8> for document in kwargs.get("documents"): <9> merged_documents.append(document) <10> <11> monkeypatch.setattr(SearchClient, "search", mock_search) <12> monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) <13> <14> command = ManageAcl( <15> service_name="SERVICE", <16> index_name="INDEX", <17> document="a.txt", <18> acl_action="add", <19> acl_type="oids", <20> acl="OID_EXISTS", <21> credentials=MockAzureCredential(), <22> ) <23> await command.run() <24> assert merged_documents == [{"id": 2, "oids": ["OID_EXISTS"]}, {"id": 1, "oids": ["OID_EXISTS"]}] <25> <26> merged_documents.clear() <27> command = ManageAcl( <28> service_name="SERVICE", <29> index_name="INDEX", <30> document="a.txt", <31> acl_action="add", <32> acl_type="oids", <33> acl="OID_ADD", <34> credentials=MockAzureCredential(), <35> ) <36> await command.run() <37> assert merged_documents == [ <38> {"id": 2, "oids": ["OID_EXISTS", "OID_ADD"]}, <39> {"id": 1, "oids": ["OID_EXISTS", "</s>
===========below chunk 0=========== # module: tests.test_manageacl @pytest.mark.asyncio + async def test_add_acl(monkeypatch, caplog): - async def test_add_acl(monkeypatch, capsys): # offset: 1 ] ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl AsyncSearchResultsIterator(results) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 2=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_all_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove_all", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": []}, {"id": 1, "oids": []}] ===========changed ref 3=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_KEEP", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove", acl_type="oids", acl="OID_ACL_TO_REMOVE", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": ["OID_ACL_TO_KEEP"]}, {"id": 1, "oids": ["OID_ACL_TO_KEEP"]}] ===========changed ref 4=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 5=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return
tests.test_manageacl/test_enable_acls_with_missing_fields
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<14>:<add> url="", <del> document="",
# module: tests.test_manageacl @pytest.mark.asyncio async def test_enable_acls_with_missing_fields(monkeypatch, capsys): <0> async def mock_get_index(self, *args, **kwargs): <1> return SearchIndex(name="INDEX", fields=[]) <2> <3> updated_index = [] <4> <5> async def mock_create_or_update_index(self, index, *args, **kwargs): <6> updated_index.append(index) <7> <8> monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) <9> monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) <10> <11> command = ManageAcl( <12> service_name="SERVICE", <13> index_name="INDEX", <14> document="", <15> acl_action="enable_acls", <16> acl_type="", <17> acl="", <18> credentials=MockAzureCredential(), <19> ) <20> await command.run() <21> assert len(updated_index) == 1 <22> index = updated_index[0] <23> validate_index(index) <24>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl validate_index(index) ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 2=========== # module: tests.test_manageacl + @pytest.mark.asyncio + async def test_update_storage_urls(monkeypatch, caplog): + async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq ''" + assert kwargs.get("select") == ["id", "storageUrl", "oids", "sourcefile"] + return AsyncSearchResultsIterator( + [ + {"id": 1, "oids": ["OID_EXISTS"], "storageUrl": "", "sourcefile": "a.txt"}, + {"id": 2, "oids": [], "storageUrl": "", "sourcefile": "ab.txt"}, + ] + ) + + merged_documents = [] + + async def mock_merge_documents(self, *args, **kwargs): + for document in kwargs.get("documents"): + merged_documents.append(document) + + monkeypatch.setattr(SearchClient, "search", mock_search) + monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) + + command = ManageAcl( + service_name="SERVICE", + index_name="INDEX", + url="https://test.blob.core.windows.net/content/", + acl_action="update_storage_urls", + acl_type="", + acl="", + credentials=MockAzureCredential(), + ) + with caplog.at_level(logging.INFO): + await command.run() + assert merged_documents == [{"id": 2, "storageUrl": "https://test.blob.core.windows.net/content/ab.txt"}] + assert "Not updating storage URL of document 1 as it has only one oid and may be user uploaded" in caplog.text + assert "Adding storage URL https://test.blob.core.windows.net/content/ab.txt for document 2" in caplog.text + assert "Updating storage URL for 1 search documents" in caplog.text + ===========changed ref 3=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_all_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove_all", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": []}, {"id": 1, "oids": []}]
tests.test_manageacl/test_enable_acls_without_missing_fields
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<28>:<add> url="", <del> document="",
# module: tests.test_manageacl @pytest.mark.asyncio async def test_enable_acls_without_missing_fields(monkeypatch, capsys): <0> async def mock_get_index(self, *args, **kwargs): <1> return SearchIndex( <2> name="INDEX", <3> fields=[ <4> SimpleField( <5> name="oids", <6> type=SearchFieldDataType.Collection(SearchFieldDataType.String), <7> filterable=True, <8> ), <9> SimpleField( <10> name="groups", <11> type=SearchFieldDataType.Collection(SearchFieldDataType.String), <12> filterable=True, <13> ), <14> ], <15> ) <16> <17> updated_index = [] <18> <19> async def mock_create_or_update_index(self, index, *args, **kwargs): <20> updated_index.append(index) <21> <22> monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) <23> monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) <24> <25> command = ManageAcl( <26> service_name="SERVICE", <27> index_name="INDEX", <28> document="", <29> acl_action="enable_acls", <30> acl_type="", <31> acl="", <32> credentials=MockAzureCredential(), <33> ) <34> await command.run() <35> assert len(updated_index) == 1 <36> index = updated_index[0] <37> validate_index(index) <38>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: scripts.manageacl ManageAcl(service_name: str, index_name: str, url: str, acl_action: str, acl_type: str, acl: str, credentials: Union[AsyncTokenCredential, AzureKeyCredential]) at: scripts.manageacl.ManageAcl run() at: tests.test_manageacl validate_index(index) ===========changed ref 0=========== # module: scripts.manageacl class ManageAcl: def run(self): endpoint = f"https://{self.service_name}.search.windows.net" if self.acl_action == "enable_acls": await self.enable_acls(endpoint) return async with SearchClient( endpoint=endpoint, index_name=self.index_name, credential=self.credentials ) as search_client: if self.acl_action == "view": await self.view_acl(search_client) elif self.acl_action == "remove": await self.remove_acl(search_client) elif self.acl_action == "remove_all": await self.remove_all_acls(search_client) elif self.acl_action == "add": await self.add_acl(search_client) + elif self.acl_action == "update_storage_urls": + await self.update_storage_urls(search_client) else: raise Exception(f"Unknown action {self.acl_action}") - logging.info("ACLs updated") - ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_enable_acls_with_missing_fields(monkeypatch, capsys): async def mock_get_index(self, *args, **kwargs): return SearchIndex(name="INDEX", fields=[]) updated_index = [] async def mock_create_or_update_index(self, index, *args, **kwargs): updated_index.append(index) monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="", - document="", acl_action="enable_acls", acl_type="", acl="", credentials=MockAzureCredential(), ) await command.run() assert len(updated_index) == 1 index = updated_index[0] validate_index(index) ===========changed ref 2=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 3=========== # module: tests.test_manageacl + @pytest.mark.asyncio + async def test_update_storage_urls(monkeypatch, caplog): + async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq ''" + assert kwargs.get("select") == ["id", "storageUrl", "oids", "sourcefile"] + return AsyncSearchResultsIterator( + [ + {"id": 1, "oids": ["OID_EXISTS"], "storageUrl": "", "sourcefile": "a.txt"}, + {"id": 2, "oids": [], "storageUrl": "", "sourcefile": "ab.txt"}, + ] + ) + + merged_documents = [] + + async def mock_merge_documents(self, *args, **kwargs): + for document in kwargs.get("documents"): + merged_documents.append(document) + + monkeypatch.setattr(SearchClient, "search", mock_search) + monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) + + command = ManageAcl( + service_name="SERVICE", + index_name="INDEX", + url="https://test.blob.core.windows.net/content/", + acl_action="update_storage_urls", + acl_type="", + acl="", + credentials=MockAzureCredential(), + ) + with caplog.at_level(logging.INFO): + await command.run() + assert merged_documents == [{"id": 2, "storageUrl": "https://test.blob.core.windows.net/content/ab.txt"}] + assert "Not updating storage URL of document 1 as it has only one oid and may be user uploaded" in caplog.text + assert "Adding storage URL https://test.blob.core.windows.net/content/ab.txt for document 2" in caplog.text + assert "Updating storage URL for 1 search documents" in caplog.text + ===========changed ref 4=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_all_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove_all", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": []}, {"id": 1, "oids": []}]
tests.test_manageacl/validate_index
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<0>:<add> assert len(index.fields) == 3 <del> assert len(index.fields) == 2 <3>:<add> storageurl_field = None <10>:<add> elif field.name == "storageUrl": <add> storageurl_field = field <add> <add> assert oids_field and groups_field and storageurl_field <del> assert oids_field and groups_field <14>:<add> assert storageurl_field.type == SearchFieldDataType.String <add> assert oids_field.filterable and groups_field.filterable and storageurl_field.filterable <del> assert oids_field.filterable and groups_field.filterable
# module: tests.test_manageacl def validate_index(index): <0> assert len(index.fields) == 2 <1> oids_field = None <2> groups_field = None <3> for field in index.fields: <4> if field.name == "oids": <5> assert not oids_field <6> oids_field = field <7> elif field.name == "groups": <8> assert not groups_field <9> groups_field = field <10> assert oids_field and groups_field <11> assert oids_field.type == SearchFieldDataType.Collection( <12> SearchFieldDataType.String <13> ) and groups_field.type == SearchFieldDataType.Collection(SearchFieldDataType.String) <14> assert oids_field.filterable and groups_field.filterable <15>
===========changed ref 0=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_enable_acls_with_missing_fields(monkeypatch, capsys): async def mock_get_index(self, *args, **kwargs): return SearchIndex(name="INDEX", fields=[]) updated_index = [] async def mock_create_or_update_index(self, index, *args, **kwargs): updated_index.append(index) monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="", - document="", acl_action="enable_acls", acl_type="", acl="", credentials=MockAzureCredential(), ) await command.run() assert len(updated_index) == 1 index = updated_index[0] validate_index(index) ===========changed ref 1=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_enable_acls_without_missing_fields(monkeypatch, capsys): async def mock_get_index(self, *args, **kwargs): return SearchIndex( name="INDEX", fields=[ SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ), SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ), ], ) updated_index = [] async def mock_create_or_update_index(self, index, *args, **kwargs): updated_index.append(index) monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="", - document="", acl_action="enable_acls", acl_type="", acl="", credentials=MockAzureCredential(), ) await command.run() assert len(updated_index) == 1 index = updated_index[0] validate_index(index) ===========changed ref 2=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_view_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator([{"oids": ["OID_ACL"]}]) monkeypatch.setattr(SearchClient, "search", mock_search) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="view", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() captured = capsys.readouterr() assert captured.out.strip() == '["OID_ACL"]' ===========changed ref 3=========== # module: tests.test_manageacl + @pytest.mark.asyncio + async def test_update_storage_urls(monkeypatch, caplog): + async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq ''" + assert kwargs.get("select") == ["id", "storageUrl", "oids", "sourcefile"] + return AsyncSearchResultsIterator( + [ + {"id": 1, "oids": ["OID_EXISTS"], "storageUrl": "", "sourcefile": "a.txt"}, + {"id": 2, "oids": [], "storageUrl": "", "sourcefile": "ab.txt"}, + ] + ) + + merged_documents = [] + + async def mock_merge_documents(self, *args, **kwargs): + for document in kwargs.get("documents"): + merged_documents.append(document) + + monkeypatch.setattr(SearchClient, "search", mock_search) + monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) + + command = ManageAcl( + service_name="SERVICE", + index_name="INDEX", + url="https://test.blob.core.windows.net/content/", + acl_action="update_storage_urls", + acl_type="", + acl="", + credentials=MockAzureCredential(), + ) + with caplog.at_level(logging.INFO): + await command.run() + assert merged_documents == [{"id": 2, "storageUrl": "https://test.blob.core.windows.net/content/ab.txt"}] + assert "Not updating storage URL of document 1 as it has only one oid and may be user uploaded" in caplog.text + assert "Adding storage URL https://test.blob.core.windows.net/content/ab.txt for document 2" in caplog.text + assert "Updating storage URL for 1 search documents" in caplog.text + ===========changed ref 4=========== # module: tests.test_manageacl @pytest.mark.asyncio async def test_remove_all_acl(monkeypatch, capsys): async def mock_search(self, *args, **kwargs): + assert kwargs.get("filter") == "storageUrl eq 'https://test.blob.core.windows.net/content/a.txt'" - assert kwargs.get("filter") == "sourcefile eq 'a.txt'" assert kwargs.get("select") == ["id", "oids"] return AsyncSearchResultsIterator( [ {"id": 1, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, {"id": 2, "oids": ["OID_ACL_TO_REMOVE", "OID_ACL_TO_REMOVE"]}, ] ) merged_documents = [] async def mock_merge_documents(self, *args, **kwargs): for document in kwargs.get("documents"): merged_documents.append(document) monkeypatch.setattr(SearchClient, "search", mock_search) monkeypatch.setattr(SearchClient, "merge_documents", mock_merge_documents) command = ManageAcl( service_name="SERVICE", index_name="INDEX", + url="https://test.blob.core.windows.net/content/a.txt", - document="a.txt", acl_action="remove_all", acl_type="oids", acl="", credentials=MockAzureCredential(), ) await command.run() assert merged_documents == [{"id": 2, "oids": []}, {"id": 1, "oids": []}]
app.backend.prepdocslib.filestrategy/FileStrategy.run
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<13>:<add> await search_manager.update_content(sections, blob_image_embeddings, url=file.url) <del> await search_manager.update_content(sections, blob_image_embeddings)
# module: app.backend.prepdocslib.filestrategy class FileStrategy(Strategy): def run(self): <0> search_manager = SearchManager( <1> self.search_info, self.search_analyzer_name, self.use_acls, False, self.embeddings <2> ) <3> if self.document_action == DocumentAction.Add: <4> files = self.list_file_strategy.list() <5> async for file in files: <6> try: <7> sections = await parse_file(file, self.file_processors, self.category, self.image_embeddings) <8> if sections: <9> blob_sas_uris = await self.blob_manager.upload_blob(file) <10> blob_image_embeddings: Optional[List[List[float]]] = None <11> if self.image_embeddings and blob_sas_uris: <12> blob_image_embeddings = await self.image_embeddings.create_embeddings(blob_sas_uris) <13> await search_manager.update_content(sections, blob_image_embeddings) <14> finally: <15> if file: <16> file.close() <17> elif self.document_action == DocumentAction.Remove: <18> paths = self.list_file_strategy.list_paths() <19> async for path in paths: <20> await self.blob_manager.remove_blob(path) <21> await search_manager.remove_content(path) <22> elif self.document_action == DocumentAction.RemoveAll: <23> await self.blob_manager.remove_blob() <24> await search_manager.remove_content() <25>
===========unchanged ref 0=========== at: app.backend.prepdocslib.filestrategy parse_file(file: File, file_processors: dict[str, FileProcessor], category: Optional[str]=None, image_embeddings: Optional[ImageEmbeddings]=None) -> List[Section] at: app.backend.prepdocslib.filestrategy.FileStrategy.__init__ self.list_file_strategy = list_file_strategy self.blob_manager = blob_manager self.file_processors = file_processors self.document_action = document_action self.embeddings = embeddings self.image_embeddings = image_embeddings self.search_analyzer_name = search_analyzer_name self.search_info = search_info self.use_acls = use_acls self.category = category at: prepdocslib.blobmanager.BlobManager upload_blob(file: File) -> Optional[List[str]] remove_blob(path: Optional[str]=None) at: prepdocslib.embeddings.ImageEmbeddings create_embeddings(blob_urls: List[str]) -> List[List[float]] at: prepdocslib.listfilestrategy.ListFileStrategy list() -> AsyncGenerator[File, None] list_paths() -> AsyncGenerator[str, None] at: typing List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 3=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 4=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 5=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager( search_info, use_acls=True, ) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 9 - assert len(indexes[0].fields) == 8 ===========changed ref 6=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 7=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
app.backend.prepdocslib.filestrategy/UploadUserFileStrategy.add_file
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<4>:<add> await self.search_manager.update_content(sections, url=file.url) <del> await self.search_manager.update_content(sections)
# module: app.backend.prepdocslib.filestrategy class UploadUserFileStrategy: def add_file(self, file: File): <0> if self.image_embeddings: <1> logging.warning("Image embeddings are not currently supported for the user upload feature") <2> sections = await parse_file(file, self.file_processors) <3> if sections: <4> await self.search_manager.update_content(sections) <5>
===========unchanged ref 0=========== at: app.backend.prepdocslib.filestrategy parse_file(file: File, file_processors: dict[str, FileProcessor], category: Optional[str]=None, image_embeddings: Optional[ImageEmbeddings]=None) -> List[Section] at: app.backend.prepdocslib.filestrategy.UploadUserFileStrategy.__init__ self.file_processors = file_processors self.image_embeddings = image_embeddings self.search_manager = SearchManager(self.search_info, None, True, False, self.embeddings) at: logging warning(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None ===========changed ref 0=========== # module: app.backend.prepdocslib.filestrategy class FileStrategy(Strategy): def run(self): search_manager = SearchManager( self.search_info, self.search_analyzer_name, self.use_acls, False, self.embeddings ) if self.document_action == DocumentAction.Add: files = self.list_file_strategy.list() async for file in files: try: sections = await parse_file(file, self.file_processors, self.category, self.image_embeddings) if sections: blob_sas_uris = await self.blob_manager.upload_blob(file) blob_image_embeddings: Optional[List[List[float]]] = None if self.image_embeddings and blob_sas_uris: blob_image_embeddings = await self.image_embeddings.create_embeddings(blob_sas_uris) + await search_manager.update_content(sections, blob_image_embeddings, url=file.url) - await search_manager.update_content(sections, blob_image_embeddings) finally: if file: file.close() elif self.document_action == DocumentAction.Remove: paths = self.list_file_strategy.list_paths() async for path in paths: await self.blob_manager.remove_blob(path) await search_manager.remove_content(path) elif self.document_action == DocumentAction.RemoveAll: await self.blob_manager.remove_blob() await search_manager.remove_content() ===========changed ref 1=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 2=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 4=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 5=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 6=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager( search_info, use_acls=True, ) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 9 - assert len(indexes[0].fields) == 8 ===========changed ref 7=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run()
app.backend.app/upload
Modified
Azure-Samples~azure-search-openai-demo
0124725ad85726aa3f62450e16fb136a63154f69
Adds storageURL field to track file location (#1535)
<21>:<add> ingester: UploadUserFileStrategy = current_app.config[CONFIG_INGESTER] <del> ingester = current_app.config[CONFIG_INGESTER] <22>:<add> await ingester.add_file(File(content=file_io, acls={"oids": [user_oid]}, url=file_client.url)) <del> await ingester.add_file(File(content=file_io, acls={"oids": [user_oid]}))
# module: app.backend.app @bp.post("/upload") @authenticated async def upload(auth_claims: dict[str, Any]): <0> request_files = await request.files <1> if "file" not in request_files: <2> # If no files were included in the request, return an error response <3> return jsonify({"message": "No file part in the request", "status": "failed"}), 400 <4> <5> user_oid = auth_claims["oid"] <6> file = request_files.getlist("file")[0] <7> user_blob_container_client: FileSystemClient = current_app.config[CONFIG_USER_BLOB_CONTAINER_CLIENT] <8> user_directory_client = user_blob_container_client.get_directory_client(user_oid) <9> try: <10> await user_directory_client.get_directory_properties() <11> except ResourceNotFoundError: <12> current_app.logger.info("Creating directory for user %s", user_oid) <13> await user_directory_client.create_directory() <14> await user_directory_client.set_access_control(owner=user_oid) <15> file_client = user_directory_client.get_file_client(file.filename) <16> file_io = file <17> file_io.name = file.filename <18> file_io = io.BufferedReader(file_io) <19> await file_client.upload_data(file_io, overwrite=True, metadata={"UploadedBy": user_oid}) <20> file_io.seek(0) <21> ingester = current_app.config[CONFIG_INGESTER] <22> await ingester.add_file(File(content=file_io, acls={"oids": [user_oid]})) <23> return jsonify({"message": "File uploaded successfully"}), 200 <24>
===========unchanged ref 0=========== at: app.backend.app bp = Blueprint("routes", __name__, static_folder="static") at: config CONFIG_USER_BLOB_CONTAINER_CLIENT = "user_blob_container_client" CONFIG_INGESTER = "ingester" at: decorators authenticated(route_fn: Callable[[Dict[str, Any]], Any]) at: io BufferedReader(raw: RawIOBase, buffer_size: int=...) at: io.BufferedReader seek(self, offset: int, whence: int=..., /) -> int at: prepdocslib.filestrategy UploadUserFileStrategy(search_info: SearchInfo, file_processors: dict[str, FileProcessor], embeddings: Optional[OpenAIEmbeddings]=None, image_embeddings: Optional[ImageEmbeddings]=None) at: prepdocslib.filestrategy.UploadUserFileStrategy add_file(file: File) at: prepdocslib.listfilestrategy File(content: IO, acls: Optional[dict[str, list]]=None) ===========changed ref 0=========== # module: app.backend.prepdocslib.listfilestrategy class File: + def __init__(self, content: IO, acls: Optional[dict[str, list]] = None, url: Optional[str] = None): - def __init__(self, content: IO, acls: Optional[dict[str, list]] = None): self.content = content self.acls = acls or {} + self.url = url ===========changed ref 1=========== # module: scripts.manageacl class ManageAcl: def view_acl(self, search_client: SearchClient): + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): # Assumes the acls are consistent across all sections of the document print(json.dumps(document[self.acl_type])) return ===========changed ref 2=========== # module: app.backend.prepdocslib.filestrategy class UploadUserFileStrategy: def add_file(self, file: File): if self.image_embeddings: logging.warning("Image embeddings are not currently supported for the user upload feature") sections = await parse_file(file, self.file_processors) if sections: + await self.search_manager.update_content(sections, url=file.url) - await self.search_manager.update_content(sections) ===========changed ref 3=========== # module: scripts.manageacl class ManageAcl: def get_documents(self, search_client: SearchClient): + filter = f"storageUrl eq '{self.url}'" - filter = f"sourcefile eq '{self.document}'" + documents = await search_client.search("", filter=filter, select=["id", self.acl_type]) - result = await search_client.search("", filter=filter, select=["id", self.acl_type]) + found_documents = [] + async for document in documents: + found_documents.append(document) + logger.info("Found %d search documents with storageUrl %s", len(found_documents), self.url) + return found_documents - return result ===========changed ref 4=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_doesnt_exist_yet(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 7 - assert len(indexes[0].fields) == 6 ===========changed ref 5=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_using_int_vectorization(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager(search_info, use_int_vectorization=True) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 8 - assert len(indexes[0].fields) == 7 ===========changed ref 6=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_acls(monkeypatch, search_info): indexes = [] async def mock_create_index(self, index): indexes.append(index) async def mock_list_index_names(self): for index in []: yield index monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) manager = SearchManager( search_info, use_acls=True, ) await manager.create_index() assert len(indexes) == 1, "It should have created one index" assert indexes[0].name == "test" + assert len(indexes[0].fields) == 9 - assert len(indexes[0].fields) == 8 ===========changed ref 7=========== # module: scripts.manageacl def main(args: Any): # Use the current user identity to connect to Azure services unless a key is explicitly set for any of them azd_credential = ( AzureDeveloperCliCredential() if args.tenant_id is None else AzureDeveloperCliCredential(tenant_id=args.tenant_id, process_timeout=60) ) search_credential: Union[AsyncTokenCredential, AzureKeyCredential] = azd_credential if args.search_key is not None: search_credential = AzureKeyCredential(args.search_key) command = ManageAcl( service_name=args.search_service, index_name=args.index, + url=args.url, - document=args.document, acl_action=args.acl_action, acl_type=args.acl_type, acl=args.acl, credentials=search_credential, ) await command.run() ===========changed ref 8=========== # module: scripts.manageacl class ManageAcl: def remove_all_acls(self, search_client: SearchClient): documents_to_merge = [] + for document in await self.get_documents(search_client): - async for document in await self.get_documents(search_client): + if len(document[self.acl_type]) > 0: + documents_to_merge.append({"id": document["id"], self.acl_type: []}) - documents_to_merge.append({"id": document["id"], self.acl_type: []}) + else: + logger.info("Search document %s already has no %s acls", document["id"], self.acl_type) if len(documents_to_merge) > 0: + logger.info("Removing all %s acls from %d search documents", self.acl_type, len(documents_to_merge)) await search_client.merge_documents(documents=documents_to_merge) + else: + logger.info("Not updating any search documents")
app.backend.prepdocslib.searchmanager/SearchManager.create_index
Modified
Azure-Samples~azure-search-openai-demo
96ec028281da79f40b3b87e776e7447f70d79660
Add storageurl field if missing in index (#1556)
# module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): <0> logger.info("Ensuring search index %s exists", self.search_info.index_name) <1> <2> async with self.search_info.create_search_index_client() as search_index_client: <3> fields = [ <4> ( <5> SimpleField(name="id", type="Edm.String", key=True) <6> if not self.use_int_vectorization <7> else SearchField( <8> name="id", <9> type="Edm.String", <10> key=True, <11> sortable=True, <12> filterable=True, <13> facetable=True, <14> analyzer_name="keyword", <15> ) <16> ), <17> SearchableField( <18> name="content", <19> type="Edm.String", <20> analyzer_name=self.search_analyzer_name, <21> ), <22> SearchField( <23> name="embedding", <24> type=SearchFieldDataType.Collection(SearchFieldDataType.Single), <25> hidden=False, <26> searchable=True, <27> filterable=False, <28> sortable=False, <29> facetable=False, <30> vector_search_dimensions=self.embedding_dimensions, <31> vector_search_profile_name="embedding_config", <32> ), <33> SimpleField(name="category", type="Edm.String", filterable=True, facetable=True), <34> SimpleField( <35> name="sourcepage", <36> type="Edm.String", <37> filterable=True, <38> facetable=True, <39> ), <40> SimpleField( <41> name="sourcefile", <42> type="Edm.String", <43> filterable=True, <44> facetable=True, <45> ), <46> SimpleField( <47> name="storageUrl", <48> type="Edm.String", <49> filterable=True, <50> facetable</s>
===========below chunk 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 1 ), ] if self.use_acls: fields.append( SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) fields.append( SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) if self.use_int_vectorization: fields.append(SearchableField(name="parent_id", type="Edm.String", filterable=True)) if self.search_images: fields.append( SearchField( name="imageEmbedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=1024, vector_search_profile_name="embedding_config", ), ) index = SearchIndex( name=self.search_info.index_name, fields=fields, semantic_search=SemanticSearch( configurations=[ SemanticConfiguration( name="default", prioritized_fields=SemanticPrioritizedFields( title_field=None, content_fields=[SemanticField(field_name="content")] ), ) ] ), vector_search=VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="hnsw_config", parameters=HnswParameters(metric="cosine"), ) ], profiles=[ VectorSearchProfile( name="embedding_config", algorithm_configuration_name="hnsw_config", vectorizer=( f"{self.search_info.index_name}-</s> ===========below chunk 1=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 2 <s>_configuration_name="hnsw_config", vectorizer=( f"{self.search_info.index_name}-vectorizer" if self.use_int_vectorization else None ), ), ], vectorizers=vectorizers, ), ) if self.search_info.index_name not in [name async for name in search_index_client.list_index_names()]: logger.info("Creating %s search index", self.search_info.index_name) await search_index_client.create_index(index) else: logger.info("Search index %s already exists", self.search_info.index_name) ===========unchanged ref 0=========== at: app.backend.prepdocslib.searchmanager logger = logging.getLogger("ingester") at: app.backend.prepdocslib.searchmanager.SearchManager.__init__ self.search_info = search_info self.search_analyzer_name = search_analyzer_name self.use_acls = use_acls self.use_int_vectorization = use_int_vectorization self.embedding_dimensions = self.embeddings.open_ai_dimensions if self.embeddings else 1536 self.search_images = search_images at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: prepdocslib.strategy.SearchInfo create_search_index_client() -> SearchIndexClient at: prepdocslib.strategy.SearchInfo.__init__ self.index_name = index_name at: typing List = _alias(list, 1, inst=False, name='List')
tests.test_searchmanager/test_create_index_does_exist
Modified
Azure-Samples~azure-search-openai-demo
96ec028281da79f40b3b87e776e7447f70d79660
Add storageurl field if missing in index (#1556)
<0>:<add> created_indexes = [] <del> indexes = [] <1>:<add> updated_indexes = [] <3>:<add> created_indexes.append(index) <del> indexes.append(index) <8>:<add> async def mock_get_index(self, *args, **kwargs): <add> return SearchIndex( <add> name="test", <add> fields=[ <add> SimpleField( <add> name="storageUrl", <add> type=SearchFieldDataType.String, <add> filterable=True, <add> ) <add> ], <add> ) <add> <add> async def mock_create_or_update_index(self, index, *args, **kwargs): <add> updated_indexes.append(index) <add> <10>:<add> monkeypatch.setattr(SearchIndexClient, "get_index", mock_get_index) <add> monkeypatch.setattr(SearchIndexClient, "create_or_update_index", mock_create_or_update_index) <13>:<add> assert len(created_indexes) == 0, "It should not have created a new index" <del> assert len(indexes) == 0, "It should not have created a new index" <14>:<add> assert len(updated
# module: tests.test_searchmanager @pytest.mark.asyncio async def test_create_index_does_exist(monkeypatch, search_info): <0> indexes = [] <1> <2> async def mock_create_index(self, index): <3> indexes.append(index) <4> <5> async def mock_list_index_names(self): <6> yield "test" <7> <8> monkeypatch.setattr(SearchIndexClient, "create_index", mock_create_index) <9> monkeypatch.setattr(SearchIndexClient, "list_index_names", mock_list_index_names) <10> <11> manager = SearchManager(search_info) <12> await manager.create_index() <13> assert len(indexes) == 0, "It should not have created a new index" <14>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] at: tests.test_searchmanager.test_create_index_using_int_vectorization indexes = [] ===========changed ref 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): logger.info("Ensuring search index %s exists", self.search_info.index_name) async with self.search_info.create_search_index_client() as search_index_client: fields = [ ( SimpleField(name="id", type="Edm.String", key=True) if not self.use_int_vectorization else SearchField( name="id", type="Edm.String", key=True, sortable=True, filterable=True, facetable=True, analyzer_name="keyword", ) ), SearchableField( name="content", type="Edm.String", analyzer_name=self.search_analyzer_name, ), SearchField( name="embedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=self.embedding_dimensions, vector_search_profile_name="embedding_config", ), SimpleField(name="category", type="Edm.String", filterable=True, facetable=True), SimpleField( name="sourcepage", type="Edm.String", filterable=True, facetable=True, ), SimpleField( name="sourcefile", type="Edm.String", filterable=True, facetable=True, ), SimpleField( name="storageUrl", type="Edm.String", filterable=True, facetable=False, ), ] if self.use_acls: fields.append( SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.</s> ===========changed ref 1=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 1 <s> fields.append( SimpleField( name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) fields.append( SimpleField( name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True, ) ) if self.use_int_vectorization: fields.append(SearchableField(name="parent_id", type="Edm.String", filterable=True)) if self.search_images: fields.append( SearchField( name="imageEmbedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), hidden=False, searchable=True, filterable=False, sortable=False, facetable=False, vector_search_dimensions=1024, vector_search_profile_name="embedding_config", ), ) index = SearchIndex( name=self.search_info.index_name, fields=fields, semantic_search=SemanticSearch( configurations=[ SemanticConfiguration( name="default", prioritized_fields=SemanticPrioritizedFields( title_field=None, content_fields=[SemanticField(field_name="content")] ), ) ] ), vector_search=VectorSearch( algorithms=[ HnswAlgorithmConfiguration( name="hnsw_config", parameters=HnswParameters(metric="cosine"), ) ], profiles=[ VectorSearchProfile( name="embedding_config", algorithm_configuration_name="hnsw_config", vector</s> ===========changed ref 2=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def create_index(self, vectorizers: Optional[List[VectorSearchVectorizer]] = None): # offset: 2 <s> f"{self.search_info.index_name}-vectorizer" if self.use_int_vectorization else None ), ), ], vectorizers=vectorizers, ), ) if self.search_info.index_name not in [name async for name in search_index_client.list_index_names()]: logger.info("Creating %s search index", self.search_info.index_name) await search_index_client.create_index(index) else: logger.info("Search index %s already exists", self.search_info.index_name) + index_definition = await search_index_client.get_index(self.search_info.index_name) + if not any(field.name == "storageUrl" for field in index_definition.fields): + logger.info("Adding storageUrl field to index %s", self.search_info.index_name) + index_definition.fields.append( + SimpleField( + name="storageUrl", + type="Edm.String", + filterable=True, + facetable=False, + ), + ) + await search_index_client.create_or_update_index(index_definition)
tests.test_upload/test_delete_uploaded
Modified
Azure-Samples~azure-search-openai-demo
0c4c55c8a2ef344518f3c55cd1f947a626eef205
Escape single quote marks for search filters (#1599)
<16>:<add> "sourcepage": "a's doc.txt", <del> "sourcepage": "a.txt", <17>:<add> "sourcefile": "a's doc.txt", <del> "sourcefile": "a.txt", <27>:<add> "sourcepage": "a's doc.txt", <del> "sourcepage": "a.txt", <28>:<add> "sourcefile": "a's doc.txt", <del> "sourcefile": "a.txt",
# module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): <0> async def mock_delete_file(self): <1> return None <2> <3> monkeypatch.setattr(DataLakeFileClient, "delete_file", mock_delete_file) <4> <5> def mock_directory_get_file_client(self, *args, **kwargs): <6> return azure.storage.filedatalake.aio.DataLakeFileClient( <7> account_url="https://test.blob.core.windows.net/", file_system_name="user-content", file_path=args[0] <8> ) <9> <10> monkeypatch.setattr(DataLakeDirectoryClient, "get_file_client", mock_directory_get_file_client) <11> <12> class AsyncSearchResultsIterator: <13> def __init__(self): <14> self.results = [ <15> { <16> "sourcepage": "a.txt", <17> "sourcefile": "a.txt", <18> "content": "This is a test document.", <19> "embedding": [], <20> "category": None, <21> "id": "file-a_txt-7465737420646F63756D656E742E706466", <22> "oids": ["OID_X"], <23> "@search.score": 0.03279569745063782, <24> "@search.reranker_score": 3.4577205181121826, <25> }, <26> { <27> "sourcepage": "a.txt", <28> "sourcefile": "a.txt", <29> "content": "This is a test document.", <30> "embedding": [], <31> "category": None, <32> "id": "file-a_txt-7465737420646F63756D656E742E706422", <33> "oids": [], <34> "@search.score": 0.0327956974</s>
===========below chunk 0=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 1 "@search.reranker_score": 3.4577205181121826, }, { "sourcepage": "a.txt", "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706433", "oids": ["OID_X", "OID_Y"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, ] def __aiter__(self): return self async def __anext__(self): if len(self.results) == 0: raise StopAsyncIteration return self.results.pop() async def get_count(self): return len(self.results) search_results = AsyncSearchResultsIterator() searched_filters = [] async def mock_search(self, *args, **kwargs): self.filter = kwargs.get("filter") searched_filters.append(self.filter) return search_results monkeypatch.setattr(SearchClient, "search", mock_search) deleted_documents = [] async def mock_delete_documents(self, documents): deleted_documents.extend(documents) return documents monkeypatch.setattr(SearchClient, "delete_documents", mock_delete_documents) response = await auth_client.post( "/delete_uploaded", headers={"Authorization": "Bearer test"}, json={"filename": "a.txt"} ) assert response.status_code == 200 assert len(searched_filters) ==</s> ===========below chunk 1=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 2 <s> "a.txt"} ) assert response.status_code == 200 assert len(searched_filters) == 2, "It should have searched twice (with no results on second try)" assert searched_filters[0] == "sourcefile eq 'a.txt'" assert len(deleted_documents) == 1, "It should have only deleted the document solely owned by OID_X" assert deleted_documents[0]["id"] == "file-a_txt-7465737420646F63756D656E742E706466" ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co]
app.backend.prepdocslib.searchmanager/SearchManager.remove_content
Modified
Azure-Samples~azure-search-openai-demo
0c4c55c8a2ef344518f3c55cd1f947a626eef205
Escape single quote marks for search filters (#1599)
<5>:<add> filter = None <add> if path is not None: <add> # Replace ' with '' to escape the single quote for the filter <add> # https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax#escaping-special-characters-in-string-constants <add> path_for_filter = os.path.basename(path).replace("'", "''") <add> filter = f"sourcefile eq '{path_for_filter}'" <del> filter = None if path is None else f"sourcefile eq '{os.path.basename(path)}'"
# module: app.backend.prepdocslib.searchmanager class SearchManager: def remove_content(self, path: Optional[str] = None, only_oid: Optional[str] = None): <0> logger.info( <1> "Removing sections from '{%s or '<all>'}' from search index '%s'", path, self.search_info.index_name <2> ) <3> async with self.search_info.create_search_client() as search_client: <4> while True: <5> filter = None if path is None else f"sourcefile eq '{os.path.basename(path)}'" <6> max_results = 1000 <7> result = await search_client.search( <8> search_text="", filter=filter, top=max_results, include_total_count=True <9> ) <10> result_count = await result.get_count() <11> if result_count == 0: <12> break <13> documents_to_remove = [] <14> async for document in result: <15> # If only_oid is set, only remove documents that have only this oid <16> if not only_oid or document.get("oids") == [only_oid]: <17> documents_to_remove.append({"id": document["id"]}) <18> if len(documents_to_remove) == 0: <19> if result_count < max_results: <20> break <21> else: <22> continue <23> removed_docs = await search_client.delete_documents(documents_to_remove) <24> logger.info("Removed %d sections from index", len(removed_docs)) <25> # It can take a few seconds for search results to reflect changes, so wait a bit <26> await asyncio.sleep(2) <27>
===========unchanged ref 0=========== at: app.backend.prepdocslib.searchmanager logger = logging.getLogger("ingester") at: app.backend.prepdocslib.searchmanager.SearchManager.__init__ self.search_info = search_info at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: os.path basename(p: _PathLike[AnyStr]) -> AnyStr basename(p: AnyStr) -> AnyStr at: prepdocslib.strategy.SearchInfo create_search_client() -> SearchClient at: prepdocslib.strategy.SearchInfo.__init__ self.index_name = index_name ===========changed ref 0=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): async def mock_delete_file(self): return None monkeypatch.setattr(DataLakeFileClient, "delete_file", mock_delete_file) def mock_directory_get_file_client(self, *args, **kwargs): return azure.storage.filedatalake.aio.DataLakeFileClient( account_url="https://test.blob.core.windows.net/", file_system_name="user-content", file_path=args[0] ) monkeypatch.setattr(DataLakeDirectoryClient, "get_file_client", mock_directory_get_file_client) class AsyncSearchResultsIterator: def __init__(self): self.results = [ { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706466", "oids": ["OID_X"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E70</s> ===========changed ref 1=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 1 <s> "id": "file-a_txt-7465737420646F63756D656E742E706422", "oids": [], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706433", "oids": ["OID_X", "OID_Y"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, ] def __aiter__(self): return self async def __anext__(self): if len(self.results) == 0: raise StopAsyncIteration return self.results.pop() async def get_count(self): return len(self.results) search_results = AsyncSearchResultsIterator() searched_filters = [] async def mock_search(self, *args, **kwargs): self.filter = kwargs.get("filter") searched_filters.append(self.filter) return search_results monkeypatch.setattr(SearchClient, "search", mock_search) </s> ===========changed ref 2=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 2 <s> deleted_documents = [] async def mock_delete_documents(self, documents): deleted_documents.extend(documents) return documents monkeypatch.setattr(SearchClient, "delete_documents", mock_delete_documents) response = await auth_client.post( + "/delete_uploaded", headers={"Authorization": "Bearer test"}, json={"filename": "a's doc.txt"} - "/delete_uploaded", headers={"Authorization": "Bearer test"}, json={"filename": "a.txt"} ) assert response.status_code == 200 assert len(searched_filters) == 2, "It should have searched twice (with no results on second try)" + assert searched_filters[0] == "sourcefile eq 'a''s doc.txt'" - assert searched_filters[0] == "sourcefile eq 'a.txt'" assert len(deleted_documents) == 1, "It should have only deleted the document solely owned by OID_X" assert deleted_documents[0]["id"] == "file-a_txt-7465737420646F63756D656E742E706466"
tests.test_authenticationhelper/test_check_path_auth_allowed_sourcepage
Modified
Azure-Samples~azure-search-openai-demo
0c4c55c8a2ef344518f3c55cd1f947a626eef205
Escape single quote marks for search filters (#1599)
<12>:<add> path="Benefit_Options-2's complement.pdf", <del> path="Benefit_Options-2.pdf", <20>:<add> == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2''s complement.pdf') or (sourcepage eq 'Benefit_Options-2''s complement.pdf'))" <del> == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2.pdf') or (sourcepage eq 'Benefit_Options-2.pdf'))"
# module: tests.test_authenticationhelper @pytest.mark.asyncio async def test_check_path_auth_allowed_sourcepage( monkeypatch, mock_confidential_client_success, mock_validate_token_success ): <0> auth_helper_require_access_control = create_authentication_helper(require_access_control=True) <1> filter = None <2> <3> async def mock_search(self, *args, **kwargs): <4> nonlocal filter <5> filter = kwargs.get("filter") <6> return MockAsyncPageIterator(data=[{"sourcepage": "Benefit_Options-2.pdf"}]) <7> <8> monkeypatch.setattr(SearchClient, "search", mock_search) <9> <10> assert ( <11> await auth_helper_require_access_control.check_path_auth( <12> path="Benefit_Options-2.pdf", <13> auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, <14> search_client=create_search_client(), <15> ) <16> is True <17> ) <18> assert ( <19> filter <20> == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2.pdf') or (sourcepage eq 'Benefit_Options-2.pdf'))" <21> ) <22>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] at: tests.mocks MockAsyncPageIterator(data) at: tests.test_authenticationhelper create_authentication_helper(require_access_control: bool=False) create_search_client() at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def remove_content(self, path: Optional[str] = None, only_oid: Optional[str] = None): logger.info( "Removing sections from '{%s or '<all>'}' from search index '%s'", path, self.search_info.index_name ) async with self.search_info.create_search_client() as search_client: while True: + filter = None + if path is not None: + # Replace ' with '' to escape the single quote for the filter + # https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax#escaping-special-characters-in-string-constants + path_for_filter = os.path.basename(path).replace("'", "''") + filter = f"sourcefile eq '{path_for_filter}'" - filter = None if path is None else f"sourcefile eq '{os.path.basename(path)}'" max_results = 1000 result = await search_client.search( search_text="", filter=filter, top=max_results, include_total_count=True ) result_count = await result.get_count() if result_count == 0: break documents_to_remove = [] async for document in result: # If only_oid is set, only remove documents that have only this oid if not only_oid or document.get("oids") == [only_oid]: documents_to_remove.append({"id": document["id"]}) if len(documents_to_remove) == 0: if result_count < max_results: break else: continue removed_docs = await search_client.delete_documents(documents_to_remove) logger.info("Removed %d sections from index", len(removed_docs)) # It can take a few seconds for search results to reflect changes, so wait a bit await asyncio.sleep(2) ===========changed ref 1=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): async def mock_delete_file(self): return None monkeypatch.setattr(DataLakeFileClient, "delete_file", mock_delete_file) def mock_directory_get_file_client(self, *args, **kwargs): return azure.storage.filedatalake.aio.DataLakeFileClient( account_url="https://test.blob.core.windows.net/", file_system_name="user-content", file_path=args[0] ) monkeypatch.setattr(DataLakeDirectoryClient, "get_file_client", mock_directory_get_file_client) class AsyncSearchResultsIterator: def __init__(self): self.results = [ { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706466", "oids": ["OID_X"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E70</s> ===========changed ref 2=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 1 <s> "id": "file-a_txt-7465737420646F63756D656E742E706422", "oids": [], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706433", "oids": ["OID_X", "OID_Y"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, ] def __aiter__(self): return self async def __anext__(self): if len(self.results) == 0: raise StopAsyncIteration return self.results.pop() async def get_count(self): return len(self.results) search_results = AsyncSearchResultsIterator() searched_filters = [] async def mock_search(self, *args, **kwargs): self.filter = kwargs.get("filter") searched_filters.append(self.filter) return search_results monkeypatch.setattr(SearchClient, "search", mock_search) </s> ===========changed ref 3=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): # offset: 2 <s> deleted_documents = [] async def mock_delete_documents(self, documents): deleted_documents.extend(documents) return documents monkeypatch.setattr(SearchClient, "delete_documents", mock_delete_documents) response = await auth_client.post( + "/delete_uploaded", headers={"Authorization": "Bearer test"}, json={"filename": "a's doc.txt"} - "/delete_uploaded", headers={"Authorization": "Bearer test"}, json={"filename": "a.txt"} ) assert response.status_code == 200 assert len(searched_filters) == 2, "It should have searched twice (with no results on second try)" + assert searched_filters[0] == "sourcefile eq 'a''s doc.txt'" - assert searched_filters[0] == "sourcefile eq 'a.txt'" assert len(deleted_documents) == 1, "It should have only deleted the document solely owned by OID_X" assert deleted_documents[0]["id"] == "file-a_txt-7465737420646F63756D656E742E706466"
tests.test_searchmanager/test_remove_content
Modified
Azure-Samples~azure-search-openai-demo
0c4c55c8a2ef344518f3c55cd1f947a626eef205
Escape single quote marks for search filters (#1599)
<7>:<add> "sourcepage": "foo's bar.pdf#page=1", <del> "sourcepage": "foo.pdf#page=1", <8>:<add> "sourcefile": "foo's bar.pdf", <del> "sourcefile": "foo.pdf", <32>:<add> await manager.remove_content("foo's bar.pdf") <del> await manager.remove_content("foo.pdf") <35>:<add> assert searched_filters[0] == "sourcefile eq 'foo''s bar.pdf'" <del> assert searched_filters[0] == "sourcefile eq 'foo.pdf'"
# module: tests.test_searchmanager @pytest.mark.asyncio async def test_remove_content(monkeypatch, search_info): <0> search_results = AsyncSearchResultsIterator( <1> [ <2> { <3> "@search.score": 1, <4> "id": "file-foo_pdf-666F6F2E706466-page-0", <5> "content": "test content", <6> "category": "test", <7> "sourcepage": "foo.pdf#page=1", <8> "sourcefile": "foo.pdf", <9> } <10> ] <11> ) <12> <13> searched_filters = [] <14> <15> async def mock_search(self, *args, **kwargs): <16> self.filter = kwargs.get("filter") <17> searched_filters.append(self.filter) <18> return search_results <19> <20> monkeypatch.setattr(SearchClient, "search", mock_search) <21> <22> deleted_documents = [] <23> <24> async def mock_delete_documents(self, documents): <25> deleted_documents.extend(documents) <26> return documents <27> <28> monkeypatch.setattr(SearchClient, "delete_documents", mock_delete_documents) <29> <30> manager = SearchManager(search_info) <31> <32> await manager.remove_content("foo.pdf") <33> <34> assert len(searched_filters) == 2, "It should have searched twice (with no results on second try)" <35> assert searched_filters[0] == "sourcefile eq 'foo.pdf'" <36> assert len(deleted_documents) == 1, "It should have deleted one document" <37> assert deleted_documents[0]["id"] == "file-foo_pdf-666F6F2E706466-page-0" <38>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] at: tests.test_searchmanager AsyncSearchResultsIterator(results) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: tests.test_authenticationhelper @pytest.mark.asyncio async def test_check_path_auth_allowed_sourcepage( monkeypatch, mock_confidential_client_success, mock_validate_token_success ): auth_helper_require_access_control = create_authentication_helper(require_access_control=True) filter = None async def mock_search(self, *args, **kwargs): nonlocal filter filter = kwargs.get("filter") return MockAsyncPageIterator(data=[{"sourcepage": "Benefit_Options-2.pdf"}]) monkeypatch.setattr(SearchClient, "search", mock_search) assert ( await auth_helper_require_access_control.check_path_auth( + path="Benefit_Options-2's complement.pdf", - path="Benefit_Options-2.pdf", auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, search_client=create_search_client(), ) is True ) assert ( filter + == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2''s complement.pdf') or (sourcepage eq 'Benefit_Options-2''s complement.pdf'))" - == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2.pdf') or (sourcepage eq 'Benefit_Options-2.pdf'))" ) ===========changed ref 1=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def remove_content(self, path: Optional[str] = None, only_oid: Optional[str] = None): logger.info( "Removing sections from '{%s or '<all>'}' from search index '%s'", path, self.search_info.index_name ) async with self.search_info.create_search_client() as search_client: while True: + filter = None + if path is not None: + # Replace ' with '' to escape the single quote for the filter + # https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax#escaping-special-characters-in-string-constants + path_for_filter = os.path.basename(path).replace("'", "''") + filter = f"sourcefile eq '{path_for_filter}'" - filter = None if path is None else f"sourcefile eq '{os.path.basename(path)}'" max_results = 1000 result = await search_client.search( search_text="", filter=filter, top=max_results, include_total_count=True ) result_count = await result.get_count() if result_count == 0: break documents_to_remove = [] async for document in result: # If only_oid is set, only remove documents that have only this oid if not only_oid or document.get("oids") == [only_oid]: documents_to_remove.append({"id": document["id"]}) if len(documents_to_remove) == 0: if result_count < max_results: break else: continue removed_docs = await search_client.delete_documents(documents_to_remove) logger.info("Removed %d sections from index", len(removed_docs)) # It can take a few seconds for search results to reflect changes, so wait a bit await asyncio.sleep(2) ===========changed ref 2=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): async def mock_delete_file(self): return None monkeypatch.setattr(DataLakeFileClient, "delete_file", mock_delete_file) def mock_directory_get_file_client(self, *args, **kwargs): return azure.storage.filedatalake.aio.DataLakeFileClient( account_url="https://test.blob.core.windows.net/", file_system_name="user-content", file_path=args[0] ) monkeypatch.setattr(DataLakeDirectoryClient, "get_file_client", mock_directory_get_file_client) class AsyncSearchResultsIterator: def __init__(self): self.results = [ { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706466", "oids": ["OID_X"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E70</s>
app.backend.core.authentication/AuthenticationHelper.check_path_auth
Modified
Azure-Samples~azure-search-openai-demo
0c4c55c8a2ef344518f3c55cd1f947a626eef205
Escape single quote marks for search filters (#1599)
<13>:<add> # Replace ' with '' to escape the single quote for the filter <add> # https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax#escaping-special-characters-in-string-constants <add> path_for_filter = path.replace("'", "''") <add> filter = f"{security_filter} and ((sourcefile eq '{path_for_filter}') or (sourcepage eq '{path_for_filter}'))" <del> filter = f"{security_filter} and ((sourcefile eq '{path}') or (sourcepage eq '{path}'))"
# module: app.backend.core.authentication class AuthenticationHelper: def check_path_auth(self, path: str, auth_claims: dict[str, Any], search_client: SearchClient) -> bool: <0> # Start with the standard security filter for all queries <1> security_filter = self.build_security_filters(overrides={}, auth_claims=auth_claims) <2> # If there was no security filter or no path, then the path is allowed <3> if not security_filter or len(path) == 0: <4> return True <5> <6> # Remove any fragment string from the path before checking <7> fragment_index = path.find("#") <8> if fragment_index != -1: <9> path = path[:fragment_index] <10> <11> # Filter down to only chunks that are from the specific source file <12> # Sourcepage is used for GPT-4V <13> filter = f"{security_filter} and ((sourcefile eq '{path}') or (sourcepage eq '{path}'))" <14> <15> # If the filter returns any results, the user is allowed to access the document <16> # Otherwise, access is denied <17> results = await search_client.search(search_text="*", top=1, filter=filter) <18> allowed = False <19> async for _ in results: <20> allowed = True <21> break <22> <23> return allowed <24>
===========unchanged ref 0=========== at: app.backend.core.authentication.AuthenticationHelper scope: str = "https://graph.microsoft.com/.default" build_security_filters(overrides: dict[str, Any], auth_claims: dict[str, Any]) ===========changed ref 0=========== # module: tests.test_authenticationhelper @pytest.mark.asyncio async def test_check_path_auth_allowed_sourcepage( monkeypatch, mock_confidential_client_success, mock_validate_token_success ): auth_helper_require_access_control = create_authentication_helper(require_access_control=True) filter = None async def mock_search(self, *args, **kwargs): nonlocal filter filter = kwargs.get("filter") return MockAsyncPageIterator(data=[{"sourcepage": "Benefit_Options-2.pdf"}]) monkeypatch.setattr(SearchClient, "search", mock_search) assert ( await auth_helper_require_access_control.check_path_auth( + path="Benefit_Options-2's complement.pdf", - path="Benefit_Options-2.pdf", auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, search_client=create_search_client(), ) is True ) assert ( filter + == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2''s complement.pdf') or (sourcepage eq 'Benefit_Options-2''s complement.pdf'))" - == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) and ((sourcefile eq 'Benefit_Options-2.pdf') or (sourcepage eq 'Benefit_Options-2.pdf'))" ) ===========changed ref 1=========== # module: tests.test_searchmanager @pytest.mark.asyncio async def test_remove_content(monkeypatch, search_info): search_results = AsyncSearchResultsIterator( [ { "@search.score": 1, "id": "file-foo_pdf-666F6F2E706466-page-0", "content": "test content", "category": "test", + "sourcepage": "foo's bar.pdf#page=1", - "sourcepage": "foo.pdf#page=1", + "sourcefile": "foo's bar.pdf", - "sourcefile": "foo.pdf", } ] ) searched_filters = [] async def mock_search(self, *args, **kwargs): self.filter = kwargs.get("filter") searched_filters.append(self.filter) return search_results monkeypatch.setattr(SearchClient, "search", mock_search) deleted_documents = [] async def mock_delete_documents(self, documents): deleted_documents.extend(documents) return documents monkeypatch.setattr(SearchClient, "delete_documents", mock_delete_documents) manager = SearchManager(search_info) + await manager.remove_content("foo's bar.pdf") - await manager.remove_content("foo.pdf") assert len(searched_filters) == 2, "It should have searched twice (with no results on second try)" + assert searched_filters[0] == "sourcefile eq 'foo''s bar.pdf'" - assert searched_filters[0] == "sourcefile eq 'foo.pdf'" assert len(deleted_documents) == 1, "It should have deleted one document" assert deleted_documents[0]["id"] == "file-foo_pdf-666F6F2E706466-page-0" ===========changed ref 2=========== # module: app.backend.prepdocslib.searchmanager class SearchManager: def remove_content(self, path: Optional[str] = None, only_oid: Optional[str] = None): logger.info( "Removing sections from '{%s or '<all>'}' from search index '%s'", path, self.search_info.index_name ) async with self.search_info.create_search_client() as search_client: while True: + filter = None + if path is not None: + # Replace ' with '' to escape the single quote for the filter + # https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax#escaping-special-characters-in-string-constants + path_for_filter = os.path.basename(path).replace("'", "''") + filter = f"sourcefile eq '{path_for_filter}'" - filter = None if path is None else f"sourcefile eq '{os.path.basename(path)}'" max_results = 1000 result = await search_client.search( search_text="", filter=filter, top=max_results, include_total_count=True ) result_count = await result.get_count() if result_count == 0: break documents_to_remove = [] async for document in result: # If only_oid is set, only remove documents that have only this oid if not only_oid or document.get("oids") == [only_oid]: documents_to_remove.append({"id": document["id"]}) if len(documents_to_remove) == 0: if result_count < max_results: break else: continue removed_docs = await search_client.delete_documents(documents_to_remove) logger.info("Removed %d sections from index", len(removed_docs)) # It can take a few seconds for search results to reflect changes, so wait a bit await asyncio.sleep(2) ===========changed ref 3=========== # module: tests.test_upload @pytest.mark.asyncio async def test_delete_uploaded(auth_client, monkeypatch, mock_data_lake_service_client): async def mock_delete_file(self): return None monkeypatch.setattr(DataLakeFileClient, "delete_file", mock_delete_file) def mock_directory_get_file_client(self, *args, **kwargs): return azure.storage.filedatalake.aio.DataLakeFileClient( account_url="https://test.blob.core.windows.net/", file_system_name="user-content", file_path=args[0] ) monkeypatch.setattr(DataLakeDirectoryClient, "get_file_client", mock_directory_get_file_client) class AsyncSearchResultsIterator: def __init__(self): self.results = [ { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E706466", "oids": ["OID_X"], "@search.score": 0.03279569745063782, "@search.reranker_score": 3.4577205181121826, }, { + "sourcepage": "a's doc.txt", - "sourcepage": "a.txt", + "sourcefile": "a's doc.txt", - "sourcefile": "a.txt", "content": "This is a test document.", "embedding": [], "category": None, "id": "file-a_txt-7465737420646F63756D656E742E70</s>
tests.test_authenticationhelper/create_authentication_helper
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
<8>:<add> enable_global_documents=enable_global_documents, <add> enable_unauthenticated_access=enable_unauthenticated_access,
# module: tests.test_authenticationhelper + def create_authentication_helper( + require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, + ): - def create_authentication_helper(require_access_control: bool = False): <0> return AuthenticationHelper( <1> search_index=MockSearchIndex, <2> use_authentication=True, <3> server_app_id="SERVER_APP", <4> server_app_secret="SERVER_SECRET", <5> client_app_id="CLIENT_APP", <6> tenant_id="TENANT_ID", <7> require_access_control=require_access_control, <8> ) <9>
tests.test_authenticationhelper/test_build_security_filters
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
<2>:<add> auth_helper_enable_global_documents = create_authentication_helper(enable_global_documents=True) <add> auth_helper_require_access_control_and_enable_global_documents = create_authentication_helper( <add> require_access_control=True, enable_global_documents=True <add> ) <add> auth_helper_all_options = create_authentication_helper( <add> require_access_control=True, enable_global_documents=True, enable_unauthenticated_access=True <add> )
# module: tests.test_authenticationhelper def test_build_security_filters(mock_confidential_client_success, mock_validate_token_success): <0> auth_helper = create_authentication_helper() <1> auth_helper_require_access_control = create_authentication_helper(require_access_control=True) <2> assert auth_helper.build_security_filters(overrides={}, auth_claims={}) is None <3> assert ( <4> auth_helper_require_access_control.build_security_filters(overrides={}, auth_claims={}) <5> == "(oids/any(g:search.in(g, '')) or groups/any(g:search.in(g, '')))" <6> ) <7> assert ( <8> auth_helper.build_security_filters(overrides={"use_oid_security_filter": True}, auth_claims={"oid": "OID_X"}) <9> == "oids/any(g:search.in(g, 'OID_X'))" <10> ) <11> assert ( <12> auth_helper_require_access_control.build_security_filters(overrides={}, auth_claims={"oid": "OID_X"}) <13> == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, '')))" <14> ) <15> assert ( <16> auth_helper.build_security_filters( <17> overrides={"use_groups_security_filter": True}, auth_claims={"groups": ["GROUP_Y", "GROUP_Z"]} <18> ) <19> == "groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))" <20> ) <21> assert ( <22> auth_helper_require_access_control.build_security_filters( <23> overrides={}, auth_claims={"groups": ["GROUP_Y", "GROUP_Z"]} <24> ) <25> == "(oids/any(g:search.in(g, '')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" <26> ) <27> assert (</s>
===========below chunk 0=========== # module: tests.test_authenticationhelper def test_build_security_filters(mock_confidential_client_success, mock_validate_token_success): # offset: 1 overrides={"use_oid_security_filter": True, "use_groups_security_filter": True}, auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, ) == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) assert ( auth_helper_require_access_control.build_security_filters( overrides={}, auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, ) == "(oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) assert ( auth_helper.build_security_filters(overrides={"use_groups_security_filter": True}, auth_claims={"oid": "OID_X"}) == "groups/any(g:search.in(g, ''))" ) assert ( auth_helper.build_security_filters( overrides={"use_oid_security_filter": True}, auth_claims={"groups": ["GROUP_Y", "GROUP_Z"]} ) == "oids/any(g:search.in(g, ''))" ) ===========changed ref 0=========== # module: tests.test_authenticationhelper + def test_auth_setup_required_access_control_and_unauthenticated_access( + mock_confidential_client_success, mock_validate_token_success, snapshot + ): + helper = create_authentication_helper(require_access_control=True, enable_unauthenticated_access=True) + result = helper.get_auth_setup_for_client() + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 1=========== # module: tests.test_authenticationhelper + def create_authentication_helper( + require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, + ): - def create_authentication_helper(require_access_control: bool = False): return AuthenticationHelper( search_index=MockSearchIndex, use_authentication=True, server_app_id="SERVER_APP", server_app_secret="SERVER_SECRET", client_app_id="CLIENT_APP", tenant_id="TENANT_ID", require_access_control=require_access_control, + enable_global_documents=enable_global_documents, + enable_unauthenticated_access=enable_unauthenticated_access, )
app.backend.core.authentication/AuthenticationHelper.__init__
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
<20>:<add> self.enable_global_documents = enable_global_documents <add> self.enable_unauthenticated_access = enable_unauthenticated_access
<s>.authentication class AuthenticationHelper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): <0> self.use_authentication = use_authentication <1> self.server_app_id = server_app_id <2> self.server_app_secret = server_app_secret <3> self.client_app_id = client_app_id <4> self.tenant_id = tenant_id <5> self.authority = f"https://login.microsoftonline.com/{tenant_id}" <6> # Depending on if requestedAccessTokenVersion is 1 or 2, the issuer and audience of the token may be different <7> # See https://learn.microsoft.com/graph/api/resources/apiapplication <8> self.valid_issuers = [ <9> f"https://sts.windows.net/{tenant_id}/", <10> f"https://login.microsoftonline.com/{tenant_id}/v2.0", <11> ] <12> self.valid_audiences = [f"api://{server_app_id}", str(server_app_id)] <13> # See https://learn.microsoft.com/entra/identity-platform/access-tokens#validate-the-issuer for more information on token validation <14> self.key_url = f"{self.authority}/discovery/v2.0/keys" <15> <16> if self.use_authentication: <17> field_names = [field.name for field in search_index.fields] if search_index else [] <18> self.has_auth_fields = "oids" in field_names and "groups" in field_names <19> self.require_access_control = require_access_control <20> self.confidential_client</s>
===========below chunk 0=========== <s>Helper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): # offset: 1 server_app_id, authority=self.authority, client_credential=server_app_secret, token_cache=TokenCache() ) else: self.has_auth_fields = False self.require_access_control = False ===========changed ref 0=========== # module: tests.test_authenticationhelper + def test_auth_setup_required_access_control_and_unauthenticated_access( + mock_confidential_client_success, mock_validate_token_success, snapshot + ): + helper = create_authentication_helper(require_access_control=True, enable_unauthenticated_access=True) + result = helper.get_auth_setup_for_client() + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 1=========== # module: tests.test_authenticationhelper + def create_authentication_helper( + require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, + ): - def create_authentication_helper(require_access_control: bool = False): return AuthenticationHelper( search_index=MockSearchIndex, use_authentication=True, server_app_id="SERVER_APP", server_app_secret="SERVER_SECRET", client_app_id="CLIENT_APP", tenant_id="TENANT_ID", require_access_control=require_access_control, + enable_global_documents=enable_global_documents, + enable_unauthenticated_access=enable_unauthenticated_access, ) ===========changed ref 2=========== # module: tests.test_authenticationhelper + @pytest.mark.asyncio + async def test_check_path_auth_allowed_public_empty( + monkeypatch, mock_confidential_client_success, mock_validate_token_success + ): + auth_helper_require_access_control_and_enable_global_documents = create_authentication_helper( + require_access_control=True, enable_global_documents=True + ) + filter = None + + async def mock_search(self, *args, **kwargs): + nonlocal filter + filter = kwargs.get("filter") + return MockAsyncPageIterator(data=[{"sourcefile": "Benefit_Options.pdf"}]) + + monkeypatch.setattr(SearchClient, "search", mock_search) + + assert ( + await auth_helper_require_access_control_and_enable_global_documents.check_path_auth( + path="", + auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, + search_client=create_search_client(), + ) + is True + ) + assert filter is None + ===========changed ref 3=========== # module: tests.test_authenticationhelper + @pytest.mark.asyncio + async def test_check_path_auth_allowed_public_without_access_control( + monkeypatch, mock_confidential_client_success, mock_validate_token_success + ): + auth_helper_require_access_control_and_enable_global_documents = create_authentication_helper( + require_access_control=False, enable_global_documents=True + ) + filter = None + called_search = False + + async def mock_search(self, *args, **kwargs): + nonlocal filter + nonlocal called_search + filter = kwargs.get("filter") + called_search = True + return MockAsyncPageIterator(data=[]) + + monkeypatch.setattr(SearchClient, "search", mock_search) + + assert ( + await auth_helper_require_access_control_and_enable_global_documents.check_path_auth( + path="Benefit_Options-2.pdf", + auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, + search_client=create_search_client(), + ) + is True + ) + assert filter is None + assert called_search is False + ===========changed ref 4=========== # module: tests.conftest + auth_public_envs = [ + { + "OPENAI_HOST": "azure", + "AZURE_OPENAI_SERVICE": "test-openai-service", + "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt", + "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada", + "AZURE_USE_AUTHENTICATION": "true", + "AZURE_ENABLE_GLOBAL_DOCUMENT_ACCESS": "true", + "AZURE_ENABLE_UNAUTHENTICATED_ACCESS": "true", + "AZURE_USER_STORAGE_ACCOUNT": "test-user-storage-account", + "AZURE_USER_STORAGE_CONTAINER": "test-user-storage-container", + "AZURE_SERVER_APP_ID": "SERVER_APP", + "AZURE_SERVER_APP_SECRET": "SECRET", + "AZURE_CLIENT_APP_ID": "CLIENT_APP", + "AZURE_TENANT_ID": "TENANT_ID", + }, + ] ===========changed ref 5=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_text_filter_public_documents(auth_public_documents_client, snapshot): + response = await auth_public_documents_client.post( + "/chat", + headers={"Authorization": "Bearer MockToken"}, + json={ + "messages": [{"content": "What is the capital of France?", "role": "user"}], + "context": { + "overrides": { + "retrieval_mode": "text", + "use_oid_security_filter": True, + "use_groups_security_filter": True, + "exclude_category": "excluded", + }, + }, + }, + ) + assert response.status_code == 200 + assert ( + auth_public_documents_client.config[app.CONFIG_SEARCH_CLIENT].filter + == "category ne 'excluded' and ((oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z'))) or (not oids/any() and not groups/any()))" + ) + result = await response.get_json() + snapshot.assert_match(json.dumps(result, indent=4), "result.json") +
app.backend.core.authentication/AuthenticationHelper.get_auth_setup_for_client
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
<3>:<add> "requireAccessControl": self.require_access_control, # Whether or not access control is required to access documents with access control lists <del> "requireAccessControl": self.require_access_control, # Whether or not access control is required to use the application <4>:<add> "enableUnauthenticatedAccess": self.enable_unauthenticated_access, # Whether or not the user can access the app without login
# module: app.backend.core.authentication class AuthenticationHelper: def get_auth_setup_for_client(self) -> dict[str, Any]: <0> # returns MSAL.js settings used by the client app <1> return { <2> "useLogin": self.use_authentication, # Whether or not login elements are enabled on the UI <3> "requireAccessControl": self.require_access_control, # Whether or not access control is required to use the application <4> "msalConfig": { <5> "auth": { <6> "clientId": self.client_app_id, # Client app id used for login <7> "authority": self.authority, # Directory to use for login https://learn.microsoft.com/azure/active-directory/develop/msal-client-application-configuration#authority <8> "redirectUri": "/redirect", # Points to window.location.origin. You must register this URI on Azure Portal/App Registration. <9> "postLogoutRedirectUri": "/", # Indicates the page to navigate after logout. <10> "navigateToLoginRequestUrl": False, # If "true", will navigate back to the original request location before processing the auth code response. <11> }, <12> "cache": { <13> # Configures cache location. "sessionStorage" is more secure, but "localStorage" gives you SSO between tabs. <14> "cacheLocation": "localStorage", <15> # Set this to "true" if you are having issues on IE11 or Edge <16> "storeAuthStateInCookie": False, <17> }, <18> }, <19> "loginRequest": { <20> # Scopes you add here will be prompted for user consent during sign-in. <21> # By default, MSAL.js will add OIDC scopes (openid, profile, email) to any login request. <22> # For more information about OIDC scopes, visit: <23> # https://docs.microsoft.com/azure/active-directory/develop/v2-permissions-and-consent#openid-connect-scopes <24> "scopes": [".default"], <25> # Uncomment the following line to cause a consent dialog to appear on every login <26> # For</s>
===========below chunk 0=========== # module: app.backend.core.authentication class AuthenticationHelper: def get_auth_setup_for_client(self) -> dict[str, Any]: # offset: 1 # "prompt": "consent" }, "tokenRequest": { "scopes": [f"api://{self.server_app_id}/access_as_user"], }, } ===========unchanged ref 0=========== at: app.backend.core.authentication.AuthenticationHelper scope: str = "https://graph.microsoft.com/.default" ===========changed ref 0=========== <s>.authentication class AuthenticationHelper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): self.use_authentication = use_authentication self.server_app_id = server_app_id self.server_app_secret = server_app_secret self.client_app_id = client_app_id self.tenant_id = tenant_id self.authority = f"https://login.microsoftonline.com/{tenant_id}" # Depending on if requestedAccessTokenVersion is 1 or 2, the issuer and audience of the token may be different # See https://learn.microsoft.com/graph/api/resources/apiapplication self.valid_issuers = [ f"https://sts.windows.net/{tenant_id}/", f"https://login.microsoftonline.com/{tenant_id}/v2.0", ] self.valid_audiences = [f"api://{server_app_id}", str(server_app_id)] # See https://learn.microsoft.com/entra/identity-platform/access-tokens#validate-the-issuer for more information on token validation self.key_url = f"{self.authority}/discovery/v2.0/keys" if self.use_authentication: field_names = [field.name for field in search_index.fields] if search_index else [] self.has_auth_fields = "oids" in field_names and "groups" in field_names self.require_access_control = require_access_control + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_</s> ===========changed ref 1=========== <s>Helper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): # offset: 1 <s> + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_unauthenticated_access self.confidential_client = ConfidentialClientApplication( server_app_id, authority=self.authority, client_credential=server_app_secret, token_cache=TokenCache() ) else: self.has_auth_fields = False self.require_access_control = False + self.enable_global_documents = True + self.enable_unauthenticated_access = True ===========changed ref 2=========== # module: tests.test_authenticationhelper + def test_auth_setup_required_access_control_and_unauthenticated_access( + mock_confidential_client_success, mock_validate_token_success, snapshot + ): + helper = create_authentication_helper(require_access_control=True, enable_unauthenticated_access=True) + result = helper.get_auth_setup_for_client() + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 3=========== # module: tests.test_authenticationhelper + def create_authentication_helper( + require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, + ): - def create_authentication_helper(require_access_control: bool = False): return AuthenticationHelper( search_index=MockSearchIndex, use_authentication=True, server_app_id="SERVER_APP", server_app_secret="SERVER_SECRET", client_app_id="CLIENT_APP", tenant_id="TENANT_ID", require_access_control=require_access_control, + enable_global_documents=enable_global_documents, + enable_unauthenticated_access=enable_unauthenticated_access, ) ===========changed ref 4=========== # module: tests.test_authenticationhelper + @pytest.mark.asyncio + async def test_check_path_auth_allowed_public_empty( + monkeypatch, mock_confidential_client_success, mock_validate_token_success + ): + auth_helper_require_access_control_and_enable_global_documents = create_authentication_helper( + require_access_control=True, enable_global_documents=True + ) + filter = None + + async def mock_search(self, *args, **kwargs): + nonlocal filter + filter = kwargs.get("filter") + return MockAsyncPageIterator(data=[{"sourcefile": "Benefit_Options.pdf"}]) + + monkeypatch.setattr(SearchClient, "search", mock_search) + + assert ( + await auth_helper_require_access_control_and_enable_global_documents.check_path_auth( + path="", + auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, + search_client=create_search_client(), + ) + is True + ) + assert filter is None + ===========changed ref 5=========== # module: tests.test_authenticationhelper + @pytest.mark.asyncio + async def test_check_path_auth_allowed_public_without_access_control( + monkeypatch, mock_confidential_client_success, mock_validate_token_success + ): + auth_helper_require_access_control_and_enable_global_documents = create_authentication_helper( + require_access_control=False, enable_global_documents=True + ) + filter = None + called_search = False + + async def mock_search(self, *args, **kwargs): + nonlocal filter + nonlocal called_search + filter = kwargs.get("filter") + called_search = True + return MockAsyncPageIterator(data=[]) + + monkeypatch.setattr(SearchClient, "search", mock_search) + + assert ( + await auth_helper_require_access_control_and_enable_global_documents.check_path_auth( + path="Benefit_Options-2.pdf", + auth_claims={"oid": "OID_X", "groups": ["GROUP_Y", "GROUP_Z"]}, + search_client=create_search_client(), + ) + is True + ) + assert filter is None + assert called_search is False +
app.backend.core.authentication/AuthenticationHelper.build_security_filters
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
<20>:<add> # If only one security filter is specified, use that filter <del> # If only one security filter is specified, return that filter <23>:<add> security_filter = None <24>:<add> security_filter = f"{oid_security_filter}" <del> return oid_security_filter <26>:<add> security_filter = f"{groups_security_filter}" <del> return groups_security_filter <28>:<add> security_filter = f"({oid_security_filter} or {groups_security_filter})" <del> return f"({oid_security_filter} or {groups_security_filter
# module: app.backend.core.authentication class AuthenticationHelper: def build_security_filters(self, overrides: dict[str, Any], auth_claims: dict[str, Any]): <0> # Build different permutations of the oid or groups security filter using OData filters <1> # https://learn.microsoft.com/azure/search/search-security-trimming-for-azure-search <2> # https://learn.microsoft.com/azure/search/search-query-odata-filter <3> use_oid_security_filter = self.require_access_control or overrides.get("use_oid_security_filter") <4> use_groups_security_filter = self.require_access_control or overrides.get("use_groups_security_filter") <5> <6> if (use_oid_security_filter or use_groups_security_filter) and not self.has_auth_fields: <7> raise AuthError( <8> error="oids and groups must be defined in the search index to use authentication", status_code=400 <9> ) <10> <11> oid_security_filter = ( <12> "oids/any(g:search.in(g, '{}'))".format(auth_claims.get("oid", "")) if use_oid_security_filter else None <13> ) <14> groups_security_filter = ( <15> "groups/any(g:search.in(g, '{}'))".format(", ".join(auth_claims.get("groups", []))) <16> if use_groups_security_filter <17> else None <18> ) <19> <20> # If only one security filter is specified, return that filter <21> # If both security filters are specified, combine them with "or" so only 1 security filter needs to pass <22> # If no security filters are specified, don't return any filter <23> if oid_security_filter and not groups_security_filter: <24> return oid_security_filter <25> elif groups_security_filter and not oid_security_filter: <26> return groups_security_filter <27> elif oid_security_filter and groups_security_filter: <28> return f"({oid_security_filter} or {groups_security_filter</s>
===========below chunk 0=========== # module: app.backend.core.authentication class AuthenticationHelper: def build_security_filters(self, overrides: dict[str, Any], auth_claims: dict[str, Any]): # offset: 1 else: return None ===========unchanged ref 0=========== at: app.backend.core.authentication AuthError(error, status_code) at: app.backend.core.authentication.AuthenticationHelper.__init__ self.has_auth_fields = "oids" in field_names and "groups" in field_names self.has_auth_fields = False self.require_access_control = False self.require_access_control = require_access_control at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== <s>.authentication class AuthenticationHelper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): self.use_authentication = use_authentication self.server_app_id = server_app_id self.server_app_secret = server_app_secret self.client_app_id = client_app_id self.tenant_id = tenant_id self.authority = f"https://login.microsoftonline.com/{tenant_id}" # Depending on if requestedAccessTokenVersion is 1 or 2, the issuer and audience of the token may be different # See https://learn.microsoft.com/graph/api/resources/apiapplication self.valid_issuers = [ f"https://sts.windows.net/{tenant_id}/", f"https://login.microsoftonline.com/{tenant_id}/v2.0", ] self.valid_audiences = [f"api://{server_app_id}", str(server_app_id)] # See https://learn.microsoft.com/entra/identity-platform/access-tokens#validate-the-issuer for more information on token validation self.key_url = f"{self.authority}/discovery/v2.0/keys" if self.use_authentication: field_names = [field.name for field in search_index.fields] if search_index else [] self.has_auth_fields = "oids" in field_names and "groups" in field_names self.require_access_control = require_access_control + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_</s> ===========changed ref 1=========== <s>Helper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): # offset: 1 <s> + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_unauthenticated_access self.confidential_client = ConfidentialClientApplication( server_app_id, authority=self.authority, client_credential=server_app_secret, token_cache=TokenCache() ) else: self.has_auth_fields = False self.require_access_control = False + self.enable_global_documents = True + self.enable_unauthenticated_access = True ===========changed ref 2=========== # module: app.backend.core.authentication class AuthenticationHelper: def get_auth_setup_for_client(self) -> dict[str, Any]: # returns MSAL.js settings used by the client app return { "useLogin": self.use_authentication, # Whether or not login elements are enabled on the UI + "requireAccessControl": self.require_access_control, # Whether or not access control is required to access documents with access control lists - "requireAccessControl": self.require_access_control, # Whether or not access control is required to use the application + "enableUnauthenticatedAccess": self.enable_unauthenticated_access, # Whether or not the user can access the app without login "msalConfig": { "auth": { "clientId": self.client_app_id, # Client app id used for login "authority": self.authority, # Directory to use for login https://learn.microsoft.com/azure/active-directory/develop/msal-client-application-configuration#authority "redirectUri": "/redirect", # Points to window.location.origin. You must register this URI on Azure Portal/App Registration. "postLogoutRedirectUri": "/", # Indicates the page to navigate after logout. "navigateToLoginRequestUrl": False, # If "true", will navigate back to the original request location before processing the auth code response. }, "cache": { # Configures cache location. "sessionStorage" is more secure, but "localStorage" gives you SSO between tabs. "cacheLocation": "localStorage", # Set this to "true" if you are having issues on IE11 or Edge "storeAuthStateInCookie": False, }, }, "loginRequest": { # Scopes you add here will be prompted for user consent during sign-in. # By default, MSAL.js will add OIDC scopes (openid, profile, email) to any login request. # For more information about OIDC scopes, visit: # https://docs.microsoft.com/azure/active-directory/develop/v2-permissions-and-consent#openid</s> ===========changed ref 3=========== # module: app.backend.core.authentication class AuthenticationHelper: def get_auth_setup_for_client(self) -> dict[str, Any]: # offset: 1 <s> # https://docs.microsoft.com/azure/active-directory/develop/v2-permissions-and-consent#openid-connect-scopes "scopes": [".default"], # Uncomment the following line to cause a consent dialog to appear on every login # For more information, please visit https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-auth-code-flow#request-an-authorization-code # "prompt": "consent" }, "tokenRequest": { "scopes": [f"api://{self.server_app_id}/access_as_user"], }, } ===========changed ref 4=========== # module: tests.test_authenticationhelper + def test_auth_setup_required_access_control_and_unauthenticated_access( + mock_confidential_client_success, mock_validate_token_success, snapshot + ): + helper = create_authentication_helper(require_access_control=True, enable_unauthenticated_access=True) + result = helper.get_auth_setup_for_client() + snapshot.assert_match(json.dumps(result, indent=4), "result.json") +
app.backend.core.authentication/AuthenticationHelper.get_auth_claims_if_enabled
Modified
Azure-Samples~azure-search-openai-demo
a4d93867e8db929e20aed2004edc82494ce36e3f
Allow public documents when authentication is enabled (#1576)
# module: app.backend.core.authentication class AuthenticationHelper: def get_auth_claims_if_enabled(self, headers: dict) -> dict[str, Any]: <0> if not self.use_authentication: <1> return {} <2> try: <3> # Read the authentication token from the authorization header and exchange it using the On Behalf Of Flow <4> # The scope is set to the Microsoft Graph API, which may need to be called for more authorization information <5> # https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow <6> auth_token = AuthenticationHelper.get_token_auth_header(headers) <7> # Validate the token before use <8> await self.validate_access_token(auth_token) <9> <10> # Use the on-behalf-of-flow to acquire another token for use with Microsoft Graph <11> # See https://learn.microsoft.com/entra/identity-platform/v2-oauth2-on-behalf-of-flow for more information <12> graph_resource_access_token = self.confidential_client.acquire_token_on_behalf_of( <13> user_assertion=auth_token, scopes=["https://graph.microsoft.com/.default"] <14> ) <15> if "error" in graph_resource_access_token: <16> raise AuthError(error=str(graph_resource_access_token), status_code=401) <17> <18> # Read the claims from the response. The oid and groups claims are used for security filtering <19> # https://learn.microsoft.com/azure/active-directory/develop/id-token-claims-reference <20> id_token_claims = graph_resource_access_token["id_token_claims"] <21> auth_claims = {"oid": id_token_claims["oid"], "groups": id_token_claims.get("groups", [])} <22> <23> # A groups claim may have been omitted either because it was not added in the application manifest for the API application, <24> # or a groups overage claim may have been emitted. <25> # https://learn</s>
===========below chunk 0=========== # module: app.backend.core.authentication class AuthenticationHelper: def get_auth_claims_if_enabled(self, headers: dict) -> dict[str, Any]: # offset: 1 missing_groups_claim = "groups" not in id_token_claims has_group_overage_claim = ( missing_groups_claim and "_claim_names" in id_token_claims and "groups" in id_token_claims["_claim_names"] ) if missing_groups_claim or has_group_overage_claim: # Read the user's groups from Microsoft Graph auth_claims["groups"] = await AuthenticationHelper.list_groups(graph_resource_access_token) return auth_claims except AuthError as e: logging.exception("Exception getting authorization information - " + json.dumps(e.error)) if self.require_access_control: raise return {} except Exception: logging.exception("Exception getting authorization information") if self.require_access_control: raise return {} ===========unchanged ref 0=========== at: app.backend.core.authentication AuthError(error, status_code) AuthenticationHelper(search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool=False) at: app.backend.core.authentication.AuthenticationHelper get_token_auth_header(headers: dict) -> str at: json dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str ===========changed ref 0=========== # module: app.backend.core.authentication class AuthenticationHelper: def build_security_filters(self, overrides: dict[str, Any], auth_claims: dict[str, Any]): # Build different permutations of the oid or groups security filter using OData filters # https://learn.microsoft.com/azure/search/search-security-trimming-for-azure-search # https://learn.microsoft.com/azure/search/search-query-odata-filter use_oid_security_filter = self.require_access_control or overrides.get("use_oid_security_filter") use_groups_security_filter = self.require_access_control or overrides.get("use_groups_security_filter") if (use_oid_security_filter or use_groups_security_filter) and not self.has_auth_fields: raise AuthError( error="oids and groups must be defined in the search index to use authentication", status_code=400 ) oid_security_filter = ( "oids/any(g:search.in(g, '{}'))".format(auth_claims.get("oid", "")) if use_oid_security_filter else None ) groups_security_filter = ( "groups/any(g:search.in(g, '{}'))".format(", ".join(auth_claims.get("groups", []))) if use_groups_security_filter else None ) + # If only one security filter is specified, use that filter - # If only one security filter is specified, return that filter # If both security filters are specified, combine them with "or" so only 1 security filter needs to pass # If no security filters are specified, don't return any filter + security_filter = None if oid_security_filter and not groups_security_filter: + security_filter = f"{oid_security_filter}" - return oid_security_filter elif groups_security_filter and not oid_security_filter: + security_filter = f"{groups_security_filter}" - return groups_security_filter elif oid_security_</s> ===========changed ref 1=========== # module: app.backend.core.authentication class AuthenticationHelper: def build_security_filters(self, overrides: dict[str, Any], auth_claims: dict[str, Any]): # offset: 1 <s> <add> security_filter = f"{groups_security_filter}" - return groups_security_filter elif oid_security_filter and groups_security_filter: + security_filter = f"({oid_security_filter} or {groups_security_filter})" - return f"({oid_security_filter} or {groups_security_filter})" - else: - return None ===========changed ref 2=========== <s>.authentication class AuthenticationHelper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): self.use_authentication = use_authentication self.server_app_id = server_app_id self.server_app_secret = server_app_secret self.client_app_id = client_app_id self.tenant_id = tenant_id self.authority = f"https://login.microsoftonline.com/{tenant_id}" # Depending on if requestedAccessTokenVersion is 1 or 2, the issuer and audience of the token may be different # See https://learn.microsoft.com/graph/api/resources/apiapplication self.valid_issuers = [ f"https://sts.windows.net/{tenant_id}/", f"https://login.microsoftonline.com/{tenant_id}/v2.0", ] self.valid_audiences = [f"api://{server_app_id}", str(server_app_id)] # See https://learn.microsoft.com/entra/identity-platform/access-tokens#validate-the-issuer for more information on token validation self.key_url = f"{self.authority}/discovery/v2.0/keys" if self.use_authentication: field_names = [field.name for field in search_index.fields] if search_index else [] self.has_auth_fields = "oids" in field_names and "groups" in field_names self.require_access_control = require_access_control + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_</s> ===========changed ref 3=========== <s>Helper: def __init__( self, search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool = False, + enable_global_documents: bool = False, + enable_unauthenticated_access: bool = False, ): # offset: 1 <s> + self.enable_global_documents = enable_global_documents + self.enable_unauthenticated_access = enable_unauthenticated_access self.confidential_client = ConfidentialClientApplication( server_app_id, authority=self.authority, client_credential=server_app_secret, token_cache=TokenCache() ) else: self.has_auth_fields = False self.require_access_control = False + self.enable_global_documents = True + self.enable_unauthenticated_access = True
app.backend.prepdocs/setup_search_info
Modified
Azure-Samples~azure-search-openai-demo
a74df4ee406a01e7ae67fd71fd9a13f416b73103
Removing unneeded key for free search service (#1620)
<0>:<del> if key_vault_name and search_secret_name: <1>:<del> async with SecretClient( <2>:<del> vault_url=f"https://{key_vault_name}.vault.azure.net", credential=azure_credential <3>:<del> ) as key_vault_client: <4>:<del> search_key = (await key_vault_client.get_secret(search_secret_name)).value # type: ignore[attr-defined] <5>:<del>
<s>search_info( - search_service: str, - index_name: str, - azure_credential: AsyncTokenCredential, - search_key: Union[str, None] = None, - key_vault_name: Union[str, None] = None, - search_secret_name: Union[str, None] = None, + search_service: str, index_name: str, azure_credential: AsyncTokenCredential, search_key: Union[str, None] = None ) -> SearchInfo: <0> if key_vault_name and search_secret_name: <1> async with SecretClient( <2> vault_url=f"https://{key_vault_name}.vault.azure.net", credential=azure_credential <3> ) as key_vault_client: <4> search_key = (await key_vault_client.get_secret(search_secret_name)).value # type: ignore[attr-defined] <5> <6> search_creds: Union[AsyncTokenCredential, AzureKeyCredential] = ( <7> azure_credential if search_key is None else AzureKeyCredential(search_key) <8> ) <9> <10> return SearchInfo( <11> endpoint=f"https://{search_service}.search.windows.net/", <12> credential=search_creds, <13> index_name=index_name, <14> ) <15>
===========unchanged ref 0=========== at: prepdocslib.strategy SearchInfo(endpoint: str, credential: Union[AsyncTokenCredential, AzureKeyCredential], index_name: str) ===========changed ref 0=========== # module: tests.mocks - class MockKeyVaultSecret: - def __init__(self, value): - self.value = value - ===========changed ref 1=========== # module: tests.mocks - class MockKeyVaultSecretClient: - def get_secret(self, secret_name): - return MockKeyVaultSecret("mysecret") - ===========changed ref 2=========== # module: tests.test_app_config - @pytest.mark.asyncio - async def test_app_searchkey_notfound(monkeypatch, minimal_env): - monkeypatch.setenv("AZURE_KEY_VAULT_NAME", "my_key_vault") - monkeypatch.setenv("VISION_SECRET_NAME", "vision-secret-name") - monkeypatch.setenv("AZURE_SEARCH_SECRET_NAME", "") - - async def get_secret(*args, **kwargs): - if args[1] == "search-secret-name": - raise Exception("Key not found") - return MockKeyVaultSecret("mysecret") - - monkeypatch.setattr(SecretClient, "get_secret", get_secret) - - quart_app = app.create_app() - async with quart_app.test_app() as test_app: - test_app.test_client() - ===========changed ref 3=========== # module: tests.test_app_config - @pytest.mark.asyncio - async def test_app_visionkey_notfound(monkeypatch, minimal_env): - monkeypatch.setenv("AZURE_KEY_VAULT_NAME", "my_key_vault") - monkeypatch.setenv("VISION_SECRET_NAME", "") - monkeypatch.setenv("AZURE_SEARCH_SECRET_NAME", "search-secret-name") - - async def get_secret(*args, **kwargs): - if args[1] == "vision-secret-name": - raise Exception("Key not found") - return MockKeyVaultSecret("mysecret") - - monkeypatch.setattr(SecretClient, "get_secret", get_secret) - - quart_app = app.create_app() - async with quart_app.test_app() as test_app: - test_app.test_client() -
app.backend.approaches.retrievethenreadvision/RetrieveThenReadVisionApproach.__init__
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<15>:<add> self.gpt4v_token_limit = get_token_limit(gpt4v_model)
<s> Optional[str], gpt4v_model: str, embedding_deployment: Optional[str], # Not needed for non-Azure OpenAI or for retrieval_mode="text" embedding_model: str, embedding_dimensions: int, sourcepage_field: str, content_field: str, query_language: str, query_speller: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]] ): <0> self.search_client = search_client <1> self.blob_container_client = blob_container_client <2> self.openai_client = openai_client <3> self.auth_helper = auth_helper <4> self.embedding_model = embedding_model <5> self.embedding_deployment = embedding_deployment <6> self.embedding_dimensions = embedding_dimensions <7> self.sourcepage_field = sourcepage_field <8> self.content_field = content_field <9> self.gpt4v_deployment = gpt4v_deployment <10> self.gpt4v_model = gpt4v_model <11> self.query_language = query_language <12> self.query_speller = query_speller <13> self.vision_endpoint = vision_endpoint <14> self.vision_token_provider = vision_token_provider <15>
===========unchanged ref 0=========== at: approaches.approach.Approach __init__(self, search_client: SearchClient, openai_client: AsyncOpenAI, auth_helper: AuthenticationHelper, query_language: Optional[str], query_speller: Optional[str], embedding_deployment: Optional[str], embedding_model: str, embedding_dimensions: int, openai_host: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]]) at: core.authentication AuthenticationHelper(search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool=False, enable_global_documents: bool=False, enable_unauthenticated_access: bool=False) at: typing Awaitable = _alias(collections.abc.Awaitable, 1) Callable = _CallableType(collections.abc.Callable, 2)
app.backend.approaches.retrievethenreadvision/RetrieveThenReadVisionApproach.run
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<1>:<add> if not isinstance(q, str): <add> raise ValueError("The most recent message content must be a string.") <add>
# module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: <0> q = messages[-1]["content"] <1> overrides = context.get("overrides", {}) <2> auth_claims = context.get("auth_claims", {}) <3> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <4> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <5> vector_fields = overrides.get("vector_fields", ["embedding"]) <6> <7> include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] <8> include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] <9> <10> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <11> top = overrides.get("top", 3) <12> minimum_search_score = overrides.get("minimum_search_score", 0.0) <13> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <14> filter = self.build_filter(overrides, auth_claims) <15> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <16> <17> # If retrieval mode includes vectors, compute an embedding for the query <18> <19> vectors = [] <20> if has_vector: <21> for field in vector_fields: <22> vector = ( <23> await self.compute_text_embedding(q) <24> if field ==</s>
===========below chunk 0=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 else await self.compute_image_embedding(q) ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] template = overrides.get("prompt_template", self.system_chat_template_gpt4v) model = self.gpt4v_model message_builder = MessageBuilder(template, model) # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url": url, "type": "image_url"}) user_content.extend(image</s> ===========below chunk 1=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 2 <s>_list.append({"image_url": url, "type": "image_url"}) user_content.extend(image_list) # Append user message message_builder.insert_message("user", user_content) updated_messages = message_builder.messages chat_completion = ( await self.openai_client.chat.completions.create( model=self.gpt4v_deployment if self.gpt4v_deployment else self.gpt4v_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=1024, n=1, ) ).model_dump() data_points = { "text": sources_content, "images": [d["image_url"] for d in image_list], } extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "filter": filter, "vector_fields": vector_fields, }, ), ThoughtStep( "Search results", [result.serialize</s> ===========below chunk 2=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 3 <s>_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.gpt4v_model, "deployment": self.gpt4v_deployment} if self.gpt4v_deployment else {"model": self.gpt4v_model} ), ), ], } chat_completion["choices"][0]["context"] = extra_info chat_completion["choices"][0]["session_state"] = session_state return chat_completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach system_chat_template_gpt4v = ( "You are an intelligent assistant helping analyze the Annual Financial Report of Contoso Ltd., The documents contain text, graphs, tables and images. " + "Each image source has the file name in the top left corner of the image with coordinates (10,10) pixels and is in the format SourceFileName:<file_name> " + "Each text source starts in a new line and has the file name followed by colon and the actual information " + "Always include the source name from the image or text for each fact you use in the response in the format: [filename] " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "The text and image source can be the same file name, don't use the image title when citing the image source, only use the file name as mentioned " + "If you cannot answer using the sources below, say you don't know. Return just the answer without any input texts " ) at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach.__init__ self.blob_container_client = blob_container_client self.openai_client = openai_client self.gpt4v_model = gpt4v_model at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str]
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.__init__
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<13>:<add> self.chatgpt_token_limit = get_token_limit(chatgpt_model)
<s> openai_client: AsyncOpenAI, chatgpt_model: str, chatgpt_deployment: Optional[str], # Not needed for non-Azure OpenAI embedding_model: str, embedding_deployment: Optional[str], # Not needed for non-Azure OpenAI or for retrieval_mode="text" embedding_dimensions: int, sourcepage_field: str, content_field: str, query_language: str, query_speller: str, ): <0> self.search_client = search_client <1> self.chatgpt_deployment = chatgpt_deployment <2> self.openai_client = openai_client <3> self.auth_helper = auth_helper <4> self.chatgpt_model = chatgpt_model <5> self.embedding_model = embedding_model <6> self.embedding_dimensions = embedding_dimensions <7> self.chatgpt_deployment = chatgpt_deployment <8> self.embedding_deployment = embedding_deployment <9> self.sourcepage_field = sourcepage_field <10> self.content_field = content_field <11> self.query_language = query_language <12> self.query_speller = query_speller <13>
===========unchanged ref 0=========== at: approaches.approach.Approach __init__(self, search_client: SearchClient, openai_client: AsyncOpenAI, auth_helper: AuthenticationHelper, query_language: Optional[str], query_speller: Optional[str], embedding_deployment: Optional[str], embedding_model: str, embedding_dimensions: int, openai_host: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]]) at: core.authentication AuthenticationHelper(search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool=False, enable_global_documents: bool=False, enable_unauthenticated_access: bool=False) ===========changed ref 0=========== # module: app.backend.core.imageshelper - def get_image_dims(image_uri: str) -> tuple[int, int]: - # From https://github.com/openai/openai-cookbook/pull/881/files - if re.match(r"data:image\/\w+;base64", image_uri): - image_uri = re.sub(r"data:image\/\w+;base64,", "", image_uri) - image = Image.open(BytesIO(base64.b64decode(image_uri))) - return image.size - else: - raise ValueError("Image must be a base64 string.") - ===========changed ref 1=========== <s> Optional[str], gpt4v_model: str, embedding_deployment: Optional[str], # Not needed for non-Azure OpenAI or for retrieval_mode="text" embedding_model: str, embedding_dimensions: int, sourcepage_field: str, content_field: str, query_language: str, query_speller: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]] ): self.search_client = search_client self.blob_container_client = blob_container_client self.openai_client = openai_client self.auth_helper = auth_helper self.embedding_model = embedding_model self.embedding_deployment = embedding_deployment self.embedding_dimensions = embedding_dimensions self.sourcepage_field = sourcepage_field self.content_field = content_field self.gpt4v_deployment = gpt4v_deployment self.gpt4v_model = gpt4v_model self.query_language = query_language self.query_speller = query_speller self.vision_endpoint = vision_endpoint self.vision_token_provider = vision_token_provider + self.gpt4v_token_limit = get_token_limit(gpt4v_model) ===========changed ref 2=========== # module: tests.test_chatapproach - def test_get_messages_from_history_few_shots(chat_approach): - user_query_request = "What does a Product manager do?" - messages = chat_approach.get_messages_from_history( - system_prompt=chat_approach.query_prompt_template, - model_id=chat_approach.chatgpt_model, - user_content=user_query_request, - history=[], - max_tokens=chat_approach.chatgpt_token_limit - len(user_query_request), - few_shots=chat_approach.query_prompt_few_shots, - ) - # Make sure messages are in the right order - assert messages[0]["role"] == "system" - assert messages[1]["role"] == "user" - assert messages[2]["role"] == "assistant" - assert messages[3]["role"] == "user" - assert messages[4]["role"] == "assistant" - assert messages[5]["role"] == "user" - assert messages[5]["content"] == user_query_request - ===========changed ref 3=========== # module: tests.test_chatapproach - def test_get_messages_from_history_truncated(chat_approach): - messages = chat_approach.get_messages_from_history( - system_prompt="You are a bot.", - model_id="gpt-35-turbo", - history=[ - {"role": "user", "content": "What happens in a performance review?"}, - { - "role": "assistant", - "content": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", - }, - {"role": "user", "content": "What does a Product Manager do?"}, - ], - user_content="What does a Product Manager do?", - max_tokens=10, - ) - assert messages == [ - {"role": "system", "content": "You are a bot."}, - {"role": "user", "content": "What does a Product Manager do?"}, - ] - ===========changed ref 4=========== # module: app.backend.core.imageshelper - def calculate_image_token_cost(image_uri: str, detail: str = "auto") -> int: - # From https://github.com/openai/openai-cookbook/pull/881/files - # Based on https://platform.openai.com/docs/guides/vision - LOW_DETAIL_COST = 85 - HIGH_DETAIL_COST_PER_TILE = 170 - ADDITIONAL_COST = 85 - - if detail == "auto": - # assume high detail for now - detail = "high" - - if detail == "low": - # Low detail images have a fixed cost - return LOW_DETAIL_COST - elif detail == "high": - # Calculate token cost for high detail images - width, height = get_image_dims(image_uri) - # Check if resizing is needed to fit within a 2048 x 2048 square - if max(width, height) > 2048: - # Resize dimensions to fit within a 2048 x 2048 square - ratio = 2048 / max(width, height) - width = int(width * ratio) - height = int(height * ratio) - # Further scale down to 768px on the shortest side - if min(width, height) > 768: - ratio = 768 / min(width, height) - width = int(width * ratio) - height = int(height * ratio) - # Calculate the number of 512px squares - num_squares = math.ceil(width / 512) * math.ceil(height / 512) - # Calculate the total token cost - total_cost = num_squares * HIGH_DETAIL_COST_PER_TILE + ADDITIONAL_COST - return total_cost - else: - # Invalid detail_option - raise ValueError("Invalid value for detail parameter. Use 'low' or 'high'.") -
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<1>:<add> if not isinstance(q, str): <add> raise ValueError("The most recent message content must be a string.")
# module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: <0> q = messages[-1]["content"] <1> overrides = context.get("overrides", {}) <2> auth_claims = context.get("auth_claims", {}) <3> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <4> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <5> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <6> <7> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <8> top = overrides.get("top", 3) <9> minimum_search_score = overrides.get("minimum_search_score", 0.0) <10> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <11> filter = self.build_filter(overrides, auth_claims) <12> # If retrieval mode includes vectors, compute an embedding for the query <13> vectors: list[VectorQuery] = [] <14> if has_vector: <15> vectors.append(await self.compute_text_embedding(q)) <16> <17> # Only keep the text query if the retrieval mode uses text, otherwise drop it <18> query_text = q if has_text else None <19> <20> results = await self.search( <21> top, <22> query_text, <23> filter, <24> vectors, <25> use_semantic_ranker, <26> use_semantic_captions, <27> minimum_search_score, <28> minimum_r</s>
===========below chunk 0=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 ) user_content = [q] template = overrides.get("prompt_template", self.system_chat_template) model = self.chatgpt_model message_builder = MessageBuilder(template, model) # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=False) # Append user message content = "\n".join(sources_content) user_content = q + "\n" + f"Sources:\n {content}" message_builder.insert_message("user", user_content) message_builder.insert_message("assistant", self.answer) message_builder.insert_message("user", self.question) updated_messages = message_builder.messages chat_completion = ( await self.openai_client.chat.completions.create( # Azure OpenAI takes the deployment name as the model name model=self.chatgpt_deployment if self.chatgpt_deployment else self.chatgpt_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=1024, n=1, ) ).model_dump() data_points = {"text": sources_content} extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions":</s> ===========below chunk 1=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, + messages: list[ChatCompletionMessageParam], - messages: list[dict], stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 2 <s>Step( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "filter": filter, "has_vector": has_vector, }, ), ThoughtStep( "Search results", [result.serialize_for_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.chatgpt_model, "deployment": self.chatgpt_deployment} if self.chatgpt_deployment else {"model": self.chatgpt_model} ), ), ], } chat_completion["choices"][0]["context"] = extra_info chat_completion["choices"][0]["session_state"] = session_state return chat_completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach system_chat_template = ( "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " + "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. " + "If you cannot answer using the sources below, say you don't know. Use below example to answer" ) question = """ 'What is the deductible for the employee plan for a visit to Overlake in Bellevue?' Sources: info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family. info2.pdf: Overlake is in-network for the employee plan. info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue. info4.pdf: In-network institutions include Overlake, Swedish and others in the region """ answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]." at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__ self.openai_client = openai_client self.chatgpt_model = chatgpt_model ===========unchanged ref 1=========== at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str] search(top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float]) -> List[Document] get_sources_content(results: List[Document], use_semantic_captions: bool, use_image_citation: bool) -> list[str] compute_text_embedding(q: str) run(self, messages: list[ChatCompletionMessageParam], stream: bool=False, session_state: Any=None, context: dict[str, Any]={}) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]] at: typing AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co]
app.backend.approaches.chatapproach/ChatApproach.run_without_streaming
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<1>:<add> messages, overrides, auth_claims, should_stream=False <del> history, overrides, auth_claims, should_stream=False
# module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_without_streaming( self, + messages: list[ChatCompletionMessageParam], - history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> dict[str, Any]: <0> extra_info, chat_coroutine = await self.run_until_final_call( <1> history, overrides, auth_claims, should_stream=False <2> ) <3> chat_completion_response: ChatCompletion = await chat_coroutine <4> chat_resp = chat_completion_response.model_dump() # Convert to dict to make it JSON serializable <5> chat_resp["choices"][0]["context"] = extra_info <6> if overrides.get("suggest_followup_questions"): <7> content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) <8> chat_resp["choices"][0]["message"]["content"] = content <9> chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions <10> chat_resp["choices"][0]["session_state"] = session_state <11> return chat_resp <12>
===========unchanged ref 0=========== at: app.backend.approaches.chatapproach.ChatApproach.run_with_streaming extra_info, chat_coroutine = await self.run_until_final_call( messages, overrides, auth_claims, should_stream=True ) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): - def get_messages_from_history( - self, - system_prompt: str, - model_id: str, - history: list[dict[str, str]], - user_content: Union[str, list[ChatCompletionContentPartParam]], - max_tokens: int, - few_shots=[], - ) -> list[ChatCompletionMessageParam]: - message_builder = MessageBuilder(system_prompt, model_id) - - # Add examples to show the chat what responses we want. It will try to mimic any responses and make sure they match the rules laid out in the system message. - for shot in reversed(few_shots): - message_builder.insert_message(shot.get("role"), shot.get("content")) - - append_index = len(few_shots) + 1 - - message_builder.insert_message(self.USER, user_content, index=append_index) - - total_token_count = 0 - for existing_message in message_builder.messages: - total_token_count += message_builder.count_tokens_for_message(existing_message) - - newest_to_oldest = list(reversed(history[:-1])) - for message in newest_to_oldest: - potential_message_count = message_builder.count_tokens_for_message(message) - if (total_token_count + potential_message_count) > max_tokens: - logging.info("Reached max tokens of %d, history will be truncated", max_tokens) - break - message_builder.insert_message(message["role"], message["content"], index=append_index) - total_token_count += potential_message_count - return message_builder.messages - ===========changed ref 1=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): - # Chat roles - SYSTEM = "system" - USER = "user" - ASSISTANT = "assistant" - - query_prompt_few_shots = [ + query_prompt_few_shots: list[ChatCompletionMessageParam] = [ + {"role": "user", "content": "How did crypto do last year?"}, - {"role": USER, "content": "How did crypto do last year?"}, + {"role": "assistant", "content": "Summarize Cryptocurrency Market Dynamics from last year"}, - {"role": ASSISTANT, "content": "Summarize Cryptocurrency Market Dynamics from last year"}, + {"role": "user", "content": "What are my health plans?"}, - {"role": USER, "content": "What are my health plans?"}, + {"role": "assistant", "content": "Show available health plans"}, - {"role": ASSISTANT, "content": "Show available health plans"}, ] NO_RESPONSE = "0" follow_up_questions_prompt_content = """Generate 3 very brief follow-up questions that the user would likely ask next. Enclose the follow-up questions in double angle brackets. Example: <<Are there exclusions for prescriptions?>> <<Which pharmacies can be ordered from?>> <<What is the limit for over-the-counter medication?>> Do no repeat questions that have already been asked. Make sure the last question ends with ">>". """ query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base. You have access to Azure AI Search index with 100's of documents. Generate a search query based on the conversation and the new question. Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms.</s> ===========changed ref 2=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): # offset: 1 <s> question. Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms. Do not include any text inside [] or <<>> in the search query terms. Do not include any special characters like '+'. If the question is not in English, translate the question to English before generating the search query. If you cannot generate a search query, return just the number 0. """ ===========changed ref 3=========== # module: app.backend.core.imageshelper - def get_image_dims(image_uri: str) -> tuple[int, int]: - # From https://github.com/openai/openai-cookbook/pull/881/files - if re.match(r"data:image\/\w+;base64", image_uri): - image_uri = re.sub(r"data:image\/\w+;base64,", "", image_uri) - image = Image.open(BytesIO(base64.b64decode(image_uri))) - return image.size - else: - raise ValueError("Image must be a base64 string.") - ===========changed ref 4=========== <s> openai_client: AsyncOpenAI, chatgpt_model: str, chatgpt_deployment: Optional[str], # Not needed for non-Azure OpenAI embedding_model: str, embedding_deployment: Optional[str], # Not needed for non-Azure OpenAI or for retrieval_mode="text" embedding_dimensions: int, sourcepage_field: str, content_field: str, query_language: str, query_speller: str, ): self.search_client = search_client self.chatgpt_deployment = chatgpt_deployment self.openai_client = openai_client self.auth_helper = auth_helper self.chatgpt_model = chatgpt_model self.embedding_model = embedding_model self.embedding_dimensions = embedding_dimensions self.chatgpt_deployment = chatgpt_deployment self.embedding_deployment = embedding_deployment self.sourcepage_field = sourcepage_field self.content_field = content_field self.query_language = query_language self.query_speller = query_speller + self.chatgpt_token_limit = get_token_limit(chatgpt_model)
app.backend.approaches.chatapproach/ChatApproach.run_with_streaming
Modified
Azure-Samples~azure-search-openai-demo
77303da5516341bbdc78572c0ad83628b0ee5889
Improve token counting for messages with package (#1577)
<1>:<add> messages, overrides, auth_claims, should_stream=True <del> history, overrides, auth_claims, should_stream=True <6>:<add> "delta": {"role": "assistant"}, <del> "delta": {"role": self.ASSISTANT},
# module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, + messages: list[ChatCompletionMessageParam], - history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: <0> extra_info, chat_coroutine = await self.run_until_final_call( <1> history, overrides, auth_claims, should_stream=True <2> ) <3> yield { <4> "choices": [ <5> { <6> "delta": {"role": self.ASSISTANT}, <7> "context": extra_info, <8> "session_state": session_state, <9> "finish_reason": None, <10> "index": 0, <11> } <12> ], <13> "object": "chat.completion.chunk", <14> } <15> <16> followup_questions_started = False <17> followup_content = "" <18> async for event_chunk in await chat_coroutine: <19> # "2023-07-01-preview" API version has a bug where first response has empty choices <20> event = event_chunk.model_dump() # Convert pydantic model to dict <21> if event["choices"]: <22> # if event contains << and not >>, it is start of follow-up question, truncate <23> content = event["choices"][0]["delta"].get("content") <24> content = content or "" # content may either not exist in delta, or explicitly be None <25> if overrides.get("suggest_followup_questions") and "<<" in content: <26> followup_questions_started = True <27> earlier_content = content[: content.index("<<")] <28> if earlier_content: <29> event["choices"][0]["delta"]["content"] = earlier_content <30> yield event <31> followup_content += content[content.index("<<") :] <32> </s>
===========below chunk 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, + messages: list[ChatCompletionMessageParam], - history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: # offset: 1 followup_content += content else: yield event if followup_content: _, followup_questions = self.extract_followup_questions(followup_content) yield { "choices": [ { "delta": {"role": self.ASSISTANT}, "context": {"followup_questions": followup_questions}, "finish_reason": None, "index": 0, } ], "object": "chat.completion.chunk", } ===========unchanged ref 0=========== at: app.backend.approaches.chatapproach.ChatApproach query_prompt_few_shots: list[ChatCompletionMessageParam] = [ {"role": "user", "content": "How did crypto do last year?"}, {"role": "assistant", "content": "Summarize Cryptocurrency Market Dynamics from last year"}, {"role": "user", "content": "What are my health plans?"}, {"role": "assistant", "content": "Show available health plans"}, ] NO_RESPONSE = "0" follow_up_questions_prompt_content = """Generate 3 very brief follow-up questions that the user would likely ask next. Enclose the follow-up questions in double angle brackets. Example: <<Are there exclusions for prescriptions?>> <<Which pharmacies can be ordered from?>> <<What is the limit for over-the-counter medication?>> Do no repeat questions that have already been asked. Make sure the last question ends with ">>". """ query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base. You have access to Azure AI Search index with 100's of documents. Generate a search query based on the conversation and the new question. Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms. Do not include any text inside [] or <<>> in the search query terms. Do not include any special characters like '+'. If the question is not in English, translate the question to English before generating the search query. If you cannot generate a search query, return just the number 0. """ extract_followup_questions(content: str) run_without_streaming(messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any=None) -> dict[str, Any] ===========unchanged ref 1=========== run_with_streaming(messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any=None) -> AsyncGenerator[dict, None] at: app.backend.approaches.chatapproach.ChatApproach.run_with_streaming followup_content += content[content.index("<<") :] followup_content = "" followup_content += content at: approaches.approach.Approach run(self, messages: list[ChatCompletionMessageParam], stream: bool=False, session_state: Any=None, context: dict[str, Any]={}) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]] at: typing AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_without_streaming( self, + messages: list[ChatCompletionMessageParam], - history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> dict[str, Any]: extra_info, chat_coroutine = await self.run_until_final_call( + messages, overrides, auth_claims, should_stream=False - history, overrides, auth_claims, should_stream=False ) chat_completion_response: ChatCompletion = await chat_coroutine chat_resp = chat_completion_response.model_dump() # Convert to dict to make it JSON serializable chat_resp["choices"][0]["context"] = extra_info if overrides.get("suggest_followup_questions"): content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) chat_resp["choices"][0]["message"]["content"] = content chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions chat_resp["choices"][0]["session_state"] = session_state return chat_resp ===========changed ref 1=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): - def get_messages_from_history( - self, - system_prompt: str, - model_id: str, - history: list[dict[str, str]], - user_content: Union[str, list[ChatCompletionContentPartParam]], - max_tokens: int, - few_shots=[], - ) -> list[ChatCompletionMessageParam]: - message_builder = MessageBuilder(system_prompt, model_id) - - # Add examples to show the chat what responses we want. It will try to mimic any responses and make sure they match the rules laid out in the system message. - for shot in reversed(few_shots): - message_builder.insert_message(shot.get("role"), shot.get("content")) - - append_index = len(few_shots) + 1 - - message_builder.insert_message(self.USER, user_content, index=append_index) - - total_token_count = 0 - for existing_message in message_builder.messages: - total_token_count += message_builder.count_tokens_for_message(existing_message) - - newest_to_oldest = list(reversed(history[:-1])) - for message in newest_to_oldest: - potential_message_count = message_builder.count_tokens_for_message(message) - if (total_token_count + potential_message_count) > max_tokens: - logging.info("Reached max tokens of %d, history will be truncated", max_tokens) - break - message_builder.insert_message(message["role"], message["content"], index=append_index) - total_token_count += potential_message_count - return message_builder.messages -
scripts.auth_update/main
Modified
Azure-Samples~azure-search-openai-demo
c6b8c6e23e6738c55daca84aabf047af7ceef988
Updates to login docs (login step, Entra branding) (#1574)
<4>:<add> auth_tenant = os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"]) <del> credential = AzureDeveloperCliCredential(tenant_id=os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"])) <5>:<add> credential = AzureDeveloperCliCredential(tenant_id=auth_tenant)
# module: scripts.auth_update def main(): <0> if not test_authentication_enabled(): <1> print("Not updating authentication.") <2> exit(0) <3> <4> credential = AzureDeveloperCliCredential(tenant_id=os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"])) <5> <6> scopes = ["https://graph.microsoft.com/.default"] <7> graph_client = GraphServiceClient(credentials=credential, scopes=scopes) <8> <9> uri = os.getenv("BACKEND_URI") <10> client_app_id = os.getenv("AZURE_CLIENT_APP_ID", None) <11> if client_app_id: <12> client_object_id = await get_application(graph_client, client_app_id) <13> if client_object_id: <14> print(f"Updating redirect URIs for client app ID {client_app_id}...") <15> # Redirect URIs need to be relative to the deployed application <16> app = Application( <17> public_client=PublicClientApplication(redirect_uris=[]), <18> spa=SpaApplication( <19> redirect_uris=[ <20> "http://localhost:50505/redirect", <21> "http://localhost:5173/redirect", <22> f"{uri}/redirect", <23> ] <24> ), <25> web=WebApplication( <26> redirect_uris=[ <27> f"{uri}/.auth/login/aad/callback", <28> ] <29> ), <30> ) <31> await graph_client.applications.by_application_id(client_object_id).patch(app) <32> print(f"Application update for client app id {client_app_id} complete.") <33>
===========unchanged ref 0=========== at: auth_common get_application(graph_client: GraphServiceClient, client_id: str) -> Optional[str] test_authentication_enabled() at: os environ = _createenviron() getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] ===========changed ref 0=========== # module: scripts.adlsgen2setup if __name__ == "__main__": parser = argparse.ArgumentParser( description="Upload sample data to a Data Lake Storage Gen2 account and associate sample access control lists with it using sample groups", epilog="Example: ./scripts/adlsgen2setup.py ./data --data-access-control ./scripts/sampleacls.json --storage-account <name of storage account> --create-security-enabled-groups <true|false>", ) parser.add_argument("data_directory", help="Data directory that contains sample PDFs") parser.add_argument( "--storage-account", required=True, help="Name of the Data Lake Storage Gen2 account to upload the sample data to", ) parser.add_argument( "--create-security-enabled-groups", required=False, action="store_true", + help="Whether or not the sample groups created are security enabled in Microsoft Entra", - help="Whether or not the sample groups created are security enabled in Azure AD", ) parser.add_argument( "--data-access-control", required=True, help="JSON file describing access control for the sample data" ) parser.add_argument("--verbose", "-v", required=False, action="store_true", help="Verbose output") args = parser.parse_args() if args.verbose: logging.basicConfig() logging.getLogger().setLevel(logging.INFO) asyncio.run(main(args))
scripts.auth_init/main
Modified
Azure-Samples~azure-search-openai-demo
c6b8c6e23e6738c55daca84aabf047af7ceef988
Updates to login docs (login step, Entra branding) (#1574)
<4>:<del> print("Setting up authentication...") <5>:<add> auth_tenant = os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"]) <del> credential = AzureDeveloperCliCredential(tenant_id=os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"])) <6>:<add> print("Setting up authentication for tenant", auth_tenant) <add> credential = AzureDeveloperCliCredential(tenant_id=auth_tenant)
# module: scripts.auth_init def main(): <0> if not test_authentication_enabled(): <1> print("Not setting up authentication.") <2> exit(0) <3> <4> print("Setting up authentication...") <5> credential = AzureDeveloperCliCredential(tenant_id=os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"])) <6> <7> scopes = ["https://graph.microsoft.com/.default"] <8> graph_client = GraphServiceClient(credentials=credential, scopes=scopes) <9> <10> app_identifier = random_app_identifier() <11> server_object_id, server_app_id, _ = await create_or_update_application_with_secret( <12> graph_client, <13> app_id_env_var="AZURE_SERVER_APP_ID", <14> app_secret_env_var="AZURE_SERVER_APP_SECRET", <15> request_app=server_app_initial(app_identifier), <16> ) <17> print("Setting up server application permissions...") <18> server_app_permission = server_app_permission_setup(server_app_id) <19> await graph_client.applications.by_application_id(server_object_id).patch(server_app_permission) <20> <21> _, client_app_id, _ = await create_or_update_application_with_secret( <22> graph_client, <23> app_id_env_var="AZURE_CLIENT_APP_ID", <24> app_secret_env_var="AZURE_CLIENT_APP_SECRET", <25> request_app=client_app(server_app_id, server_app_permission, app_identifier), <26> ) <27> <28> print("Setting up server known client applications...") <29> await graph_client.applications.by_application_id(server_object_id).patch( <30> server_app_known_client_application(client_app_id) <31> ) <32> print("Authentication setup complete.") <33>
===========unchanged ref 0=========== at: auth_common test_authentication_enabled() at: os environ = _createenviron() getenv(key: str, default: _T) -> Union[str, _T] getenv(key: str) -> Optional[str] at: scripts.auth_init create_or_update_application_with_secret(graph_client: GraphServiceClient, app_id_env_var: str, app_secret_env_var: str, request_app: Application) -> Tuple[str, str, bool] random_app_identifier() server_app_initial(identifier: int) -> Application server_app_permission_setup(server_app_id: str) -> Application client_app(server_app_id: str, server_app: Application, identifier: int) -> Application server_app_known_client_application(client_app_id: str) -> Application ===========changed ref 0=========== # module: scripts.adlsgen2setup if __name__ == "__main__": parser = argparse.ArgumentParser( description="Upload sample data to a Data Lake Storage Gen2 account and associate sample access control lists with it using sample groups", epilog="Example: ./scripts/adlsgen2setup.py ./data --data-access-control ./scripts/sampleacls.json --storage-account <name of storage account> --create-security-enabled-groups <true|false>", ) parser.add_argument("data_directory", help="Data directory that contains sample PDFs") parser.add_argument( "--storage-account", required=True, help="Name of the Data Lake Storage Gen2 account to upload the sample data to", ) parser.add_argument( "--create-security-enabled-groups", required=False, action="store_true", + help="Whether or not the sample groups created are security enabled in Microsoft Entra", - help="Whether or not the sample groups created are security enabled in Azure AD", ) parser.add_argument( "--data-access-control", required=True, help="JSON file describing access control for the sample data" ) parser.add_argument("--verbose", "-v", required=False, action="store_true", help="Verbose output") args = parser.parse_args() if args.verbose: logging.basicConfig() logging.getLogger().setLevel(logging.INFO) asyncio.run(main(args)) ===========changed ref 1=========== # module: scripts.auth_update def main(): if not test_authentication_enabled(): print("Not updating authentication.") exit(0) + auth_tenant = os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"]) - credential = AzureDeveloperCliCredential(tenant_id=os.getenv("AZURE_AUTH_TENANT_ID", os.environ["AZURE_TENANT_ID"])) + credential = AzureDeveloperCliCredential(tenant_id=auth_tenant) scopes = ["https://graph.microsoft.com/.default"] graph_client = GraphServiceClient(credentials=credential, scopes=scopes) uri = os.getenv("BACKEND_URI") client_app_id = os.getenv("AZURE_CLIENT_APP_ID", None) if client_app_id: client_object_id = await get_application(graph_client, client_app_id) if client_object_id: print(f"Updating redirect URIs for client app ID {client_app_id}...") # Redirect URIs need to be relative to the deployed application app = Application( public_client=PublicClientApplication(redirect_uris=[]), spa=SpaApplication( redirect_uris=[ "http://localhost:50505/redirect", "http://localhost:5173/redirect", f"{uri}/redirect", ] ), web=WebApplication( redirect_uris=[ f"{uri}/.auth/login/aad/callback", ] ), ) await graph_client.applications.by_application_id(client_object_id).patch(app) print(f"Application update for client app id {client_app_id} complete.")
tests.test_chatvisionapproach/chat_approach
Modified
Azure-Samples~azure-search-openai-demo
69b6e8a387d10a0242bbb88dbebce8a4ca74b153
Use chat model for query rewriting (#1659)
<15>:<add> chatgpt_model="gpt-35-turbo", <add> chatgpt_deployment="chat",
# module: tests.test_chatvisionapproach @pytest.fixture def chat_approach(openai_client, mock_confidential_client_success): <0> return ChatReadRetrieveReadVisionApproach( <1> search_client=None, <2> openai_client=openai_client, <3> auth_helper=AuthenticationHelper( <4> search_index=MockSearchIndex, <5> use_authentication=True, <6> server_app_id="SERVER_APP", <7> server_app_secret="SERVER_SECRET", <8> client_app_id="CLIENT_APP", <9> tenant_id="TENANT_ID", <10> require_access_control=None, <11> ), <12> blob_container_client=None, <13> vision_endpoint="endpoint", <14> vision_token_provider=lambda: "token", <15> gpt4v_deployment="gpt-4v", <16> gpt4v_model="gpt-4v", <17> embedding_deployment="embeddings", <18> embedding_model=MOCK_EMBEDDING_MODEL_NAME, <19> embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, <20> sourcepage_field="", <21> content_field="", <22> query_language="en-us", <23> query_speller="lexicon", <24> ) <25>
===========unchanged ref 0=========== at: _pytest.fixtures fixture(fixture_function: FixtureFunction, *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[ Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]] ]=..., name: Optional[str]=...) -> FixtureFunction fixture(fixture_function: None=..., *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[ Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]] ]=..., name: Optional[str]=None) -> FixtureFunctionMarker at: tests.conftest mock_confidential_client_success(monkeypatch) at: tests.mocks MOCK_EMBEDDING_DIMENSIONS = 1536 MOCK_EMBEDDING_MODEL_NAME = "text-embedding-ada-002" at: tests.test_chatvisionapproach MockSearchIndex = SearchIndex( name="test", fields=[ SearchField(name="oids", type="Collection(Edm.String)"), SearchField(name="groups", type="Collection(Edm.String)"), ], ) openai_client()
app.backend.approaches.chatreadretrievereadvision/ChatReadRetrieveReadVisionApproach.__init__
Modified
Azure-Samples~azure-search-openai-demo
69b6e8a387d10a0242bbb88dbebce8a4ca74b153
Use chat model for query rewriting (#1659)
<4>:<add> self.chatgpt_model = chatgpt_model <add> self.chatgpt_deployment = chatgpt_deployment
<s>Azure OpenAI gpt4v_model: str, embedding_deployment: Optional[str], # Not needed for non-Azure OpenAI or for retrieval_mode="text" embedding_model: str, embedding_dimensions: int, sourcepage_field: str, content_field: str, query_language: str, query_speller: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]] ): <0> self.search_client = search_client <1> self.blob_container_client = blob_container_client <2> self.openai_client = openai_client <3> self.auth_helper = auth_helper <4> self.gpt4v_deployment = gpt4v_deployment <5> self.gpt4v_model = gpt4v_model <6> self.embedding_deployment = embedding_deployment <7> self.embedding_model = embedding_model <8> self.embedding_dimensions = embedding_dimensions <9> self.sourcepage_field = sourcepage_field <10> self.content_field = content_field <11> self.query_language = query_language <12> self.query_speller = query_speller <13> self.vision_endpoint = vision_endpoint <14> self.vision_token_provider = vision_token_provider <15> self.chatgpt_token_limit = get_token_limit(gpt4v_model) <16>
===========unchanged ref 0=========== at: approaches.approach.Approach __init__(self, search_client: SearchClient, openai_client: AsyncOpenAI, auth_helper: AuthenticationHelper, query_language: Optional[str], query_speller: Optional[str], embedding_deployment: Optional[str], embedding_model: str, embedding_dimensions: int, openai_host: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]]) at: core.authentication AuthenticationHelper(search_index: Optional[SearchIndex], use_authentication: bool, server_app_id: Optional[str], server_app_secret: Optional[str], client_app_id: Optional[str], tenant_id: Optional[str], require_access_control: bool=False, enable_global_documents: bool=False, enable_unauthenticated_access: bool=False) at: typing Awaitable = _alias(collections.abc.Awaitable, 1) Callable = _CallableType(collections.abc.Callable, 2) ===========changed ref 0=========== # module: tests.test_chatvisionapproach @pytest.fixture def chat_approach(openai_client, mock_confidential_client_success): return ChatReadRetrieveReadVisionApproach( search_client=None, openai_client=openai_client, auth_helper=AuthenticationHelper( search_index=MockSearchIndex, use_authentication=True, server_app_id="SERVER_APP", server_app_secret="SERVER_SECRET", client_app_id="CLIENT_APP", tenant_id="TENANT_ID", require_access_control=None, ), blob_container_client=None, vision_endpoint="endpoint", vision_token_provider=lambda: "token", + chatgpt_model="gpt-35-turbo", + chatgpt_deployment="chat", gpt4v_deployment="gpt-4v", gpt4v_model="gpt-4v", embedding_deployment="embeddings", embedding_model=MOCK_EMBEDDING_MODEL_NAME, embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, sourcepage_field="", content_field="", query_language="en-us", query_speller="lexicon", )
tests.conftest/mock_env
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<5>:<add> monkeypatch.setenv("USE_SPEECH_INPUT_BROWSER", "true") <add> monkeypatch.setenv("USE_SPEECH_OUTPUT_AZURE", "true") <7>:<add> monkeypatch.setenv("AZURE_SPEECH_SERVICE_ID", "test-id") <add> monkeypatch.setenv("AZURE_SPEECH_SERVICE_LOCATION", "eastus")
# module: tests.conftest @pytest.fixture(params=envs, ids=["client0", "client1"]) def mock_env(monkeypatch, request): <0> with mock.patch.dict(os.environ, clear=True): <1> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") <2> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") <3> monkeypatch.setenv("AZURE_STORAGE_RESOURCE_GROUP", "test-storage-rg") <4> monkeypatch.setenv("AZURE_SUBSCRIPTION_ID", "test-storage-subid") <5> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") <6> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") <7> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") <8> monkeypatch.setenv("ALLOWED_ORIGIN", "https://frontend.com") <9> for key, value in request.param.items(): <10> monkeypatch.setenv(key, value) <11> if os.getenv("AZURE_USE_AUTHENTICATION") is not None: <12> monkeypatch.delenv("AZURE_USE_AUTHENTICATION") <13> <14> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential: <15> mock_default_azure_credential.return_value = MockAzureCredential() <16> yield <17>
===========changed ref 0=========== # module: tests.conftest + @pytest.fixture + def mock_speech_failed(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_failed) + ===========changed ref 1=========== # module: tests.conftest + @pytest.fixture + def mock_speech_cancelled(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_cancelled) + ===========changed ref 2=========== # module: tests.conftest + @pytest.fixture + def mock_speech_success(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_success) + ===========changed ref 3=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 4=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 5=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 6=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 7=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 8=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 9=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) + ===========changed ref 10=========== # module: tests.mocks + def mock_speak_text_failed(self, text): + return MockSynthesisResult(MockAudioFailure("mock_audio_data")) + ===========changed ref 11=========== # module: tests.mocks + def mock_speak_text_cancelled(self, text): + return MockSynthesisResult(MockAudioCancelled("mock_audio_data")) + ===========changed ref 12=========== # module: tests.mocks + class MockAudioFailure: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.NoMatch + ===========changed ref 13=========== # module: tests.mocks + class MockSpeechSynthesisCancellationDetails: + def __init__(self): + self.reason = "Canceled" + self.error_details = "The synthesis was canceled." + ===========changed ref 14=========== # module: tests.mocks + class MockAudio: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.SynthesizingAudioCompleted + ===========changed ref 15=========== # module: tests.mocks + class MockAudioCancelled: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.Canceled + self.cancellation_details = MockSpeechSynthesisCancellationDetails() + ===========changed ref 16=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def get_token(self, uri): + self.access_number += 1 + if self.access_number == 1: + return MockToken("", 0, "") + else: + return MockToken("", 9999999999, "") + ===========changed ref 17=========== # module: app.backend.config CONFIG_OPENAI_TOKEN = "openai_token" CONFIG_CREDENTIAL = "azure_credential" CONFIG_ASK_APPROACH = "ask_approach" CONFIG_ASK_VISION_APPROACH = "ask_vision_approach" CONFIG_CHAT_VISION_APPROACH = "chat_vision_approach" CONFIG_CHAT_APPROACH = "chat_approach" CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client" CONFIG_USER_UPLOAD_ENABLED = "user_upload_enabled" CONFIG_USER_BLOB_CONTAINER_CLIENT = "user_blob_container_client" CONFIG_AUTH_CLIENT = "auth_client" CONFIG_GPT4V_DEPLOYED = "gpt4v_deployed" CONFIG_SEMANTIC_RANKER_DEPLOYED = "semantic_ranker_deployed" CONFIG_VECTOR_SEARCH_ENABLED = "vector_search_enabled" CONFIG_SEARCH_CLIENT = "search_client" CONFIG_OPENAI_CLIENT = "openai_client" CONFIG_INGESTER = "ingester" + CONFIG_SPEECH_INPUT_ENABLED = "speech_input_enabled" + CONFIG_SPEECH_OUTPUT_ENABLED = "speech_output_enabled" + CONFIG_SPEECH_SERVICE_ID = "speech_service_id" + CONFIG_SPEECH_SERVICE_LOCATION = "speech_service_location" + CONFIG_SPEECH_SERVICE_TOKEN = "speech_service_token" + CONFIG_SPEECH_SERVICE_VOICE = "speech_service_voice"
tests.test_app/test_favicon
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<2>:<add> assert response.content_type.startswith("image") <add> assert response.content_type.endswith("icon") <del> assert response.content_type == "image/vnd.microsoft.icon"
# module: tests.test_app @pytest.mark.asyncio async def test_favicon(client): <0> response = await client.get("/favicon.ico") <1> assert response.status_code == 200 <2> assert response.content_type == "image/vnd.microsoft.icon" <3>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) ===========changed ref 0=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 1=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 2=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 3=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 4=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 5=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 6=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) + ===========changed ref 7=========== # module: tests.mocks + def mock_speak_text_failed(self, text): + return MockSynthesisResult(MockAudioFailure("mock_audio_data")) + ===========changed ref 8=========== # module: tests.mocks + def mock_speak_text_cancelled(self, text): + return MockSynthesisResult(MockAudioCancelled("mock_audio_data")) + ===========changed ref 9=========== # module: tests.mocks + class MockAudioFailure: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.NoMatch + ===========changed ref 10=========== # module: tests.mocks + class MockSpeechSynthesisCancellationDetails: + def __init__(self): + self.reason = "Canceled" + self.error_details = "The synthesis was canceled." + ===========changed ref 11=========== # module: tests.mocks + class MockAudio: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.SynthesizingAudioCompleted + ===========changed ref 12=========== # module: tests.mocks + class MockAudioCancelled: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.Canceled + self.cancellation_details = MockSpeechSynthesisCancellationDetails() + ===========changed ref 13=========== # module: tests.conftest + @pytest.fixture + def mock_speech_failed(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_failed) + ===========changed ref 14=========== # module: tests.conftest + @pytest.fixture + def mock_speech_success(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_success) + ===========changed ref 15=========== # module: tests.conftest + @pytest.fixture + def mock_speech_cancelled(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_cancelled) + ===========changed ref 16=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def get_token(self, uri): + self.access_number += 1 + if self.access_number == 1: + return MockToken("", 0, "") + else: + return MockToken("", 9999999999, "") + ===========changed ref 17=========== # module: tests.conftest + @pytest_asyncio.fixture() + async def client_with_expiring_token( + monkeypatch, + mock_env, + mock_openai_chatcompletion, + mock_openai_embedding, + mock_acs_search, + mock_blob_container_client, + mock_compute_embeddings_call, + ): + quart_app = app.create_app() + + async with quart_app.test_app() as test_app: + test_app.app.config.update({"TESTING": True}) + test_app.app.config.update({"azure_credential": MockAzureCredentialExpired()}) + mock_openai_chatcompletion(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + mock_openai_embedding(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + yield test_app.test_client() + ===========changed ref 18=========== # module: app.backend.config CONFIG_OPENAI_TOKEN = "openai_token" CONFIG_CREDENTIAL = "azure_credential" CONFIG_ASK_APPROACH = "ask_approach" CONFIG_ASK_VISION_APPROACH = "ask_vision_approach" CONFIG_CHAT_VISION_APPROACH = "chat_vision_approach" CONFIG_CHAT_APPROACH = "chat_approach" CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client" CONFIG_USER_UPLOAD_ENABLED = "user_upload_enabled" CONFIG_USER_BLOB_CONTAINER_CLIENT = "user_blob_container_client" CONFIG_AUTH_CLIENT = "auth_client" CONFIG_GPT4V_DEPLOYED = "gpt4v_deployed" CONFIG_SEMANTIC_RANKER_DEPLOYED = "semantic_ranker_deployed" CONFIG_VECTOR_SEARCH_ENABLED = "vector_search_enabled" CONFIG_SEARCH_CLIENT = "search_client" CONFIG_OPENAI_CLIENT = "openai_client" CONFIG_INGESTER = "ingester" + CONFIG_SPEECH_INPUT_ENABLED = "speech_input_enabled" + CONFIG_SPEECH_OUTPUT_ENABLED = "speech_output_enabled" + CONFIG_SPEECH_SERVICE_ID = "speech_service_id" + CONFIG_SPEECH_SERVICE_LOCATION = "speech_service_location" + CONFIG_SPEECH_SERVICE_TOKEN = "speech_service_token" + CONFIG_SPEECH_SERVICE_VOICE = "speech_service_voice"
app.backend.app/config
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<6>:<add> "showSpeechInput": current_app.config[CONFIG_SPEECH_INPUT_ENABLED], <add> "showSpeechOutput": current_app.config[CONFIG_SPEECH_OUTPUT_ENABLED],
# module: app.backend.app @bp.route("/config", methods=["GET"]) def config(): <0> return jsonify( <1> { <2> "showGPT4VOptions": current_app.config[CONFIG_GPT4V_DEPLOYED], <3> "showSemanticRankerOption": current_app.config[CONFIG_SEMANTIC_RANKER_DEPLOYED], <4> "showVectorOption": current_app.config[CONFIG_VECTOR_SEARCH_ENABLED], <5> "showUserUpload": current_app.config[CONFIG_USER_UPLOAD_ENABLED], <6> } <7> ) <8>
===========unchanged ref 0=========== at: app.backend.app bp = Blueprint("routes", __name__, static_folder="static") format_as_ndjson(r: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None] at: app.backend.app.chat result = await approach.run( request_json["messages"], stream=request_json.get("stream", False), context=context, session_state=request_json.get("session_state"), ) at: error error_response(error: Exception, route: str, status_code: int=500) ===========changed ref 0=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 1=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 2=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 3=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 4=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 5=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 6=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) + ===========changed ref 7=========== # module: tests.mocks + def mock_speak_text_failed(self, text): + return MockSynthesisResult(MockAudioFailure("mock_audio_data")) + ===========changed ref 8=========== # module: tests.mocks + def mock_speak_text_cancelled(self, text): + return MockSynthesisResult(MockAudioCancelled("mock_audio_data")) + ===========changed ref 9=========== # module: tests.mocks + class MockAudioFailure: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.NoMatch + ===========changed ref 10=========== # module: tests.mocks + class MockSpeechSynthesisCancellationDetails: + def __init__(self): + self.reason = "Canceled" + self.error_details = "The synthesis was canceled." + ===========changed ref 11=========== # module: tests.mocks + class MockAudio: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.SynthesizingAudioCompleted + ===========changed ref 12=========== # module: tests.mocks + class MockAudioCancelled: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.Canceled + self.cancellation_details = MockSpeechSynthesisCancellationDetails() + ===========changed ref 13=========== # module: tests.conftest + @pytest.fixture + def mock_speech_failed(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_failed) + ===========changed ref 14=========== # module: tests.conftest + @pytest.fixture + def mock_speech_success(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_success) + ===========changed ref 15=========== # module: tests.conftest + @pytest.fixture + def mock_speech_cancelled(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_cancelled) + ===========changed ref 16=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def get_token(self, uri): + self.access_number += 1 + if self.access_number == 1: + return MockToken("", 0, "") + else: + return MockToken("", 9999999999, "") + ===========changed ref 17=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_must_be_json(client, mock_speech_success): + response = await client.post("/speech") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 18=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech(client, mock_speech_success): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 200 + assert await response.get_data() == b"mock_audio_data" + ===========changed ref 19=========== # module: tests.test_app @pytest.mark.asyncio async def test_favicon(client): response = await client.get("/favicon.ico") assert response.status_code == 200 + assert response.content_type.startswith("image") + assert response.content_type.endswith("icon") - assert response.content_type == "image/vnd.microsoft.icon" ===========changed ref 20=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_failed(client, mock_speech_failed): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 500 + result = await response.get_json() + assert result["error"] == "Speech synthesis failed. Check logs for details." + ===========changed ref 21=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_cancelled(client, mock_speech_cancelled): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 500 + result = await response.get_json() + assert result["error"] == "Speech synthesis canceled. Check logs for details." + ===========changed ref 22=========== # module: tests.conftest + @pytest_asyncio.fixture() + async def client_with_expiring_token( + monkeypatch, + mock_env, + mock_openai_chatcompletion, + mock_openai_embedding, + mock_acs_search, + mock_blob_container_client, + mock_compute_embeddings_call, + ): + quart_app = app.create_app() + + async with quart_app.test_app() as test_app: + test_app.app.config.update({"TESTING": True}) + test_app.app.config.update({"azure_credential": MockAzureCredentialExpired()}) + mock_openai_chatcompletion(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + mock_openai_embedding(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + yield test_app.test_client() +
tests.e2e/live_server_url
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<0>:<add> proc = Process(target=run_server, args=(free_port,), daemon=True) <del> proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True)
# module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: <0> proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) <1> proc.start() <2> url = f"http://localhost:{free_port}/" <3> wait_for_server_ready(url, timeout=10.0, check_interval=0.5) <4> yield url <5> proc.kill() <6>
===========changed ref 0=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 1=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 2=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 3=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 4=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 5=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 6=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) + ===========changed ref 7=========== # module: tests.mocks + def mock_speak_text_failed(self, text): + return MockSynthesisResult(MockAudioFailure("mock_audio_data")) + ===========changed ref 8=========== # module: tests.mocks + def mock_speak_text_cancelled(self, text): + return MockSynthesisResult(MockAudioCancelled("mock_audio_data")) + ===========changed ref 9=========== # module: tests.mocks + class MockAudioFailure: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.NoMatch + ===========changed ref 10=========== # module: tests.mocks + class MockSpeechSynthesisCancellationDetails: + def __init__(self): + self.reason = "Canceled" + self.error_details = "The synthesis was canceled." + ===========changed ref 11=========== # module: tests.mocks + class MockAudio: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.SynthesizingAudioCompleted + ===========changed ref 12=========== # module: tests.mocks + class MockAudioCancelled: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.Canceled + self.cancellation_details = MockSpeechSynthesisCancellationDetails() + ===========changed ref 13=========== # module: tests.conftest + @pytest.fixture + def mock_speech_failed(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_failed) + ===========changed ref 14=========== # module: tests.conftest + @pytest.fixture + def mock_speech_success(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_success) + ===========changed ref 15=========== # module: tests.conftest + @pytest.fixture + def mock_speech_cancelled(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_cancelled) + ===========changed ref 16=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def get_token(self, uri): + self.access_number += 1 + if self.access_number == 1: + return MockToken("", 0, "") + else: + return MockToken("", 9999999999, "") + ===========changed ref 17=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_must_be_json(client, mock_speech_success): + response = await client.post("/speech") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 18=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech(client, mock_speech_success): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 200 + assert await response.get_data() == b"mock_audio_data" + ===========changed ref 19=========== # module: tests.test_app @pytest.mark.asyncio async def test_favicon(client): response = await client.get("/favicon.ico") assert response.status_code == 200 + assert response.content_type.startswith("image") + assert response.content_type.endswith("icon") - assert response.content_type == "image/vnd.microsoft.icon" ===========changed ref 20=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_failed(client, mock_speech_failed): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 500 + result = await response.get_json() + assert result["error"] == "Speech synthesis failed. Check logs for details." + ===========changed ref 21=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_cancelled(client, mock_speech_cancelled): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 500 + result = await response.get_json() + assert result["error"] == "Speech synthesis canceled. Check logs for details." + ===========changed ref 22=========== # module: tests.conftest + @pytest_asyncio.fixture() + async def client_with_expiring_token( + monkeypatch, + mock_env, + mock_openai_chatcompletion, + mock_openai_embedding, + mock_acs_search, + mock_blob_container_client, + mock_compute_embeddings_call, + ): + quart_app = app.create_app() + + async with quart_app.test_app() as test_app: + test_app.app.config.update({"TESTING": True}) + test_app.app.config.update({"azure_credential": MockAzureCredentialExpired()}) + mock_openai_chatcompletion(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + mock_openai_embedding(test_app.app.config[app.CONFIG_OPENAI_CLIENT]) + yield test_app.test_client() + ===========changed ref 23=========== # module: app.backend.app @bp.route("/config", methods=["GET"]) def config(): return jsonify( { "showGPT4VOptions": current_app.config[CONFIG_GPT4V_DEPLOYED], "showSemanticRankerOption": current_app.config[CONFIG_SEMANTIC_RANKER_DEPLOYED], "showVectorOption": current_app.config[CONFIG_VECTOR_SEARCH_ENABLED], "showUserUpload": current_app.config[CONFIG_USER_UPLOAD_ENABLED], + "showSpeechInput": current_app.config[CONFIG_SPEECH_INPUT_ENABLED], + "showSpeechOutput": current_app.config[CONFIG_SPEECH_OUTPUT_ENABLED], } )
tests.e2e/test_chat
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<25>:<add> page.get_by_role("button", name="Submit question").click() <del> page.get_by_role("button", name="Ask question button").click()
# module: tests.e2e def test_chat(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint with streaming results <1> def handle(route: Route): <2> # Assert that session_state is specified in the request (None for now) <3> session_state = route.request.post_data_json["session_state"] <4> assert session_state is None <5> # Read the JSONL from our snapshot results and return as the response <6> f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") <7> jsonl = f.read() <8> f.close() <9> route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) <10> <11> page.route("*/**/chat", handle) <12> <13> # Check initial page state <14> page.goto(live_server_url) <15> expect(page).to_have_title("GPT + Enterprise data | Sample") <16> expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() <17> expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() <18> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <19> <20> # Ask a question and wait for the message to appear <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <22> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <23> "Whats the dental plan?" <24> ) <25> page.get_by_role("button", name="Ask question button").click() <26> <27> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <28> expect(page.get_by_text("The capital of France is</s>
===========below chunk 0=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # offset: 1 expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() ===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 3=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 4=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 5=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 6=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 7=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 8=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) + ===========changed ref 9=========== # module: tests.mocks + def mock_speak_text_failed(self, text): + return MockSynthesisResult(MockAudioFailure("mock_audio_data")) + ===========changed ref 10=========== # module: tests.mocks + def mock_speak_text_cancelled(self, text): + return MockSynthesisResult(MockAudioCancelled("mock_audio_data")) + ===========changed ref 11=========== # module: tests.mocks + class MockAudioFailure: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.NoMatch + ===========changed ref 12=========== # module: tests.mocks + class MockSpeechSynthesisCancellationDetails: + def __init__(self): + self.reason = "Canceled" + self.error_details = "The synthesis was canceled." + ===========changed ref 13=========== # module: tests.mocks + class MockAudio: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.SynthesizingAudioCompleted + ===========changed ref 14=========== # module: tests.mocks + class MockAudioCancelled: + def __init__(self, audio_data): + self.audio_data = audio_data + self.reason = ResultReason.Canceled + self.cancellation_details = MockSpeechSynthesisCancellationDetails() + ===========changed ref 15=========== # module: tests.conftest + @pytest.fixture + def mock_speech_failed(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_failed) + ===========changed ref 16=========== # module: tests.conftest + @pytest.fixture + def mock_speech_success(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_success) + ===========changed ref 17=========== # module: tests.conftest + @pytest.fixture + def mock_speech_cancelled(monkeypatch): + monkeypatch.setattr(azure.cognitiveservices.speech.SpeechSynthesizer, "speak_text_async", mock_speak_text_cancelled) + ===========changed ref 18=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def get_token(self, uri): + self.access_number += 1 + if self.access_number == 1: + return MockToken("", 0, "") + else: + return MockToken("", 9999999999, "") + ===========changed ref 19=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech_request_must_be_json(client, mock_speech_success): + response = await client.post("/speech") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 20=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_speech(client, mock_speech_success): + response = await client.post( + "/speech", + json={ + "text": "test", + }, + ) + assert response.status_code == 200 + assert await response.get_data() == b"mock_audio_data" +
tests.e2e/test_chat_customization
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
# module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint <1> def handle(route: Route): <2> assert route.request.post_data_json["stream"] is False <3> overrides = route.request.post_data_json["context"]["overrides"] <4> assert overrides["retrieval_mode"] == "vectors" <5> assert overrides["semantic_ranker"] is False <6> assert overrides["semantic_captions"] is True <7> assert overrides["top"] == 1 <8> assert overrides["prompt_template"] == "You are a cat and only talk about tuna." <9> assert overrides["exclude_category"] == "dogs" <10> assert overrides["use_oid_security_filter"] is False <11> assert overrides["use_groups_security_filter"] is False <12> <13> # Read the JSON from our snapshot results and return as the response <14> f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") <15> json = f.read() <16> f.close() <17> route.fulfill(body=json, status=200) <18> <19> page.route("*/**/chat", handle) <20> <21> # Check initial page state <22> page.goto(live_server_url) <23> expect(page).to_have_title("GPT + Enterprise data | Sample") <24> <25> # Customize all the settings <26> page.get_by_role("button", name="Developer settings").click() <27> page.get_by_label("Override prompt template").click() <28> page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") <29> page.get_by_label("Retrieve this many search results:").click() <30> page.get_by_label("Retrieve this many search results:").fill("1") <31> page.get_by_label("Exclude category").click() <32> page.get_by_label("Exclude category").fill("dogs") <33> </s>
===========below chunk 0=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint with streaming results def handle(route: Route): # Assert that session_state is specified in the request (None for now) session_state = route.request.post_data_json["session_state"] assert session_state is None # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_role("button", name="Submit question").click() - page.get_by_role("button", name="Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be</s> ===========changed ref 3=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # offset: 1 <s>be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() ===========changed ref 4=========== # module: tests.mocks + class MockSynthesisResult: + def get(self): + return self.__result + ===========changed ref 5=========== # module: tests.mocks + class MockSynthesisResult: + def __init__(self, result): + self.__result = result + ===========changed ref 6=========== # module: tests.mocks + class MockAudioFailure: + def read(self): + return self.audio_data + ===========changed ref 7=========== # module: tests.mocks + class MockAudioCancelled: + def read(self): + return self.audio_data + ===========changed ref 8=========== # module: tests.mocks + class MockAudio: + def read(self): + return self.audio_data + ===========changed ref 9=========== # module: tests.mocks + class MockAzureCredentialExpired(AsyncTokenCredential): + def __init__(self): + self.access_number = 0 + ===========changed ref 10=========== # module: tests.mocks + def mock_speak_text_success(self, text): + return MockSynthesisResult(MockAudio("mock_audio_data")) +
tests.e2e/test_chat_nonstreaming
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<23>:<add> page.get_by_label("Submit question").click() <del> page.get_by_label("Ask question button").click()
# module: tests.e2e def test_chat_nonstreaming(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat_stream endpoint <1> def handle(route: Route): <2> # Read the JSON from our snapshot results and return as the response <3> f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") <4> json = f.read() <5> f.close() <6> route.fulfill(body=json, status=200) <7> <8> page.route("*/**/chat", handle) <9> <10> # Check initial page state <11> page.goto(live_server_url) <12> expect(page).to_have_title("GPT + Enterprise data | Sample") <13> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <14> page.get_by_role("button", name="Developer settings").click() <15> page.get_by_text("Stream chat completion responses").click() <16> page.locator("button").filter(has_text="Close").click() <17> <18> # Ask a question and wait for the message to appear <19> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <20> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <21> "Whats the dental plan?" <22> ) <23> page.get_by_label("Ask question button").click() <24> <25> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <26> expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() <27> expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() <28>
===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint def handle(route: Route): assert route.request.post_data_json["stream"] is False overrides = route.request.post_data_json["context"]["overrides"] assert overrides["retrieval_mode"] == "vectors" assert overrides["semantic_ranker"] is False assert overrides["semantic_captions"] is True assert overrides["top"] == 1 assert overrides["prompt_template"] == "You are a cat and only talk about tuna." assert overrides["exclude_category"] == "dogs" assert overrides["use_oid_security_filter"] is False assert overrides["use_groups_security_filter"] is False # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") # Customize all the settings page.get_by_role("button", name="Developer settings").click() page.get_by_label("Override prompt template").click() page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") page.get_by_label("Retrieve this many search results:").click() page.get_by_label("Retrieve this many search results:").fill("1") page.get_by_label("Exclude category").click() page.get_by_label("Exclude category").fill("dogs") page.get_by_text("Use query-contextual summaries instead of whole documents").click() page.get_by_text("Use semantic rank</s> ===========changed ref 3=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 <s>by_text("Use query-contextual summaries instead of whole documents").click() page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_role("button", name="Submit question").click() - page.get_by_role("button", name="Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 4=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint with streaming results def handle(route: Route): # Assert that session_state is specified in the request (None for now) session_state = route.request.post_data_json["session_state"] assert session_state is None # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_role("button", name="Submit question").click() - page.get_by_role("button", name="Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be</s>
tests.e2e/test_chat_followup_streaming
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<25>:<add> page.get_by_label("Submit question").click() <del> page.get_by_label("Ask question button").click()
# module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat_stream endpoint <1> def handle(route: Route): <2> overrides = route.request.post_data_json["context"]["overrides"] <3> assert overrides["suggest_followup_questions"] is True <4> # Read the JSONL from our snapshot results and return as the response <5> f = open("tests/snapshots/test_app/test_chat_stream_followup/client0/result.jsonlines") <6> jsonl = f.read() <7> f.close() <8> route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) <9> <10> page.route("*/**/chat", handle) <11> <12> # Check initial page state <13> page.goto(live_server_url) <14> expect(page).to_have_title("GPT + Enterprise data | Sample") <15> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <16> page.get_by_role("button", name="Developer settings").click() <17> page.get_by_text("Suggest follow-up questions").click() <18> page.locator("button").filter(has_text="Close").click() <19> <20> # Ask a question and wait for the message to appear <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <22> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <23> "Whats the dental plan?" <24> ) <25> page.get_by_label("Ask question button").click() <26> <27> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <28> expect(page.get_by_text("The capital of France is Paris.")).to_</s>
===========below chunk 0=========== # module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): # offset: 1 # There should be a follow-up question and it should be clickable: expect(page.get_by_text("What is the capital of Spain?")).to_be_visible() page.get_by_text("What is the capital of Spain?").click() # Now there should be a follow-up answer (same, since we're using same test data) expect(page.get_by_text("The capital of France is Paris.")).to_have_count(2) ===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.e2e def test_chat_nonstreaming(page: Page, live_server_url: str): # Set up a mock route to the /chat_stream endpoint def handle(route: Route): # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() page.get_by_role("button", name="Developer settings").click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_label("Submit question").click() - page.get_by_label("Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 3=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint def handle(route: Route): assert route.request.post_data_json["stream"] is False overrides = route.request.post_data_json["context"]["overrides"] assert overrides["retrieval_mode"] == "vectors" assert overrides["semantic_ranker"] is False assert overrides["semantic_captions"] is True assert overrides["top"] == 1 assert overrides["prompt_template"] == "You are a cat and only talk about tuna." assert overrides["exclude_category"] == "dogs" assert overrides["use_oid_security_filter"] is False assert overrides["use_groups_security_filter"] is False # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") # Customize all the settings page.get_by_role("button", name="Developer settings").click() page.get_by_label("Override prompt template").click() page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") page.get_by_label("Retrieve this many search results:").click() page.get_by_label("Retrieve this many search results:").fill("1") page.get_by_label("Exclude category").click() page.get_by_label("Exclude category").fill("dogs") page.get_by_text("Use query-contextual summaries instead of whole documents").click() page.get_by_text("Use semantic rank</s> ===========changed ref 4=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 <s>by_text("Use query-contextual summaries instead of whole documents").click() page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_role("button", name="Submit question").click() - page.get_by_role("button", name="Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled()
tests.e2e/test_chat_followup_nonstreaming
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<24>:<add> page.get_by_label("Submit question").click() <del> page.get_by_label("Ask question button").click()
# module: tests.e2e def test_chat_followup_nonstreaming(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat_stream endpoint <1> def handle(route: Route): <2> # Read the JSON from our snapshot results and return as the response <3> f = open("tests/snapshots/test_app/test_chat_followup/client0/result.json") <4> json = f.read() <5> f.close() <6> route.fulfill(body=json, status=200) <7> <8> page.route("*/**/chat", handle) <9> <10> # Check initial page state <11> page.goto(live_server_url) <12> expect(page).to_have_title("GPT + Enterprise data | Sample") <13> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <14> page.get_by_role("button", name="Developer settings").click() <15> page.get_by_text("Stream chat completion responses").click() <16> page.get_by_text("Suggest follow-up questions").click() <17> page.locator("button").filter(has_text="Close").click() <18> <19> # Ask a question and wait for the message to appear <20> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <22> "Whats the dental plan?" <23> ) <24> page.get_by_label("Ask question button").click() <25> <26> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <27> expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() <28> <29> # There should be a follow-up question and it should be clickable: <30> expect(page.get_by_</s>
===========below chunk 0=========== # module: tests.e2e def test_chat_followup_nonstreaming(page: Page, live_server_url: str): # offset: 1 page.get_by_text("What is the capital of Spain?").click() # Now there should be a follow-up answer (same, since we're using same test data) expect(page.get_by_text("The capital of France is Paris.")).to_have_count(2) ===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.e2e def test_chat_nonstreaming(page: Page, live_server_url: str): # Set up a mock route to the /chat_stream endpoint def handle(route: Route): # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() page.get_by_role("button", name="Developer settings").click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_label("Submit question").click() - page.get_by_label("Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 3=========== # module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): # Set up a mock route to the /chat_stream endpoint def handle(route: Route): overrides = route.request.post_data_json["context"]["overrides"] assert overrides["suggest_followup_questions"] is True # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_followup/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() page.get_by_role("button", name="Developer settings").click() page.get_by_text("Suggest follow-up questions").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_label("Submit question").click() - page.get_by_label("Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() # There should be a</s> ===========changed ref 4=========== # module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): # offset: 1 <s>_by_text("The capital of France is Paris.")).to_be_visible() # There should be a follow-up question and it should be clickable: expect(page.get_by_text("What is the capital of Spain?")).to_be_visible() page.get_by_text("What is the capital of Spain?").click() # Now there should be a follow-up answer (same, since we're using same test data) expect(page.get_by_text("The capital of France is Paris.")).to_have_count(2)
tests.e2e/test_ask
Modified
Azure-Samples~azure-search-openai-demo
7ffcb3b95500dd741de2e6d1b70fa8073c9c3ce3
Add speech recognizer and synthesis on browser interface (#113)
<19>:<add> page.get_by_label("Submit question").click() <del> page.get_by_label("Ask question button").click()
# module: tests.e2e def test_ask(page: Page, live_server_url: str): <0> # Set up a mock route to the /ask endpoint <1> def handle(route: Route): <2> # Assert that session_state is specified in the request (None for now) <3> session_state = route.request.post_data_json["session_state"] <4> assert session_state is None <5> # Read the JSON from our snapshot results and return as the response <6> f = open("tests/snapshots/test_app/test_ask_rtr_hybrid/client0/result.json") <7> json = f.read() <8> f.close() <9> route.fulfill(body=json, status=200) <10> <11> page.route("*/**/ask", handle) <12> page.goto(live_server_url) <13> expect(page).to_have_title("GPT + Enterprise data | Sample") <14> <15> page.get_by_role("link", name="Ask a question").click() <16> page.get_by_placeholder("Example: Does my plan cover annual eye exams?").click() <17> page.get_by_placeholder("Example: Does my plan cover annual eye exams?").fill("Whats the dental plan?") <18> page.get_by_placeholder("Example: Does my plan cover annual eye exams?").click() <19> page.get_by_label("Ask question button").click() <20> <21> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <22> expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() <23>
===========changed ref 0=========== # module: tests.e2e @pytest.fixture() def live_server_url(mock_env, mock_acs_search, free_port: int) -> Generator[str, None, None]: + proc = Process(target=run_server, args=(free_port,), daemon=True) - proc = Process(target=lambda: uvicorn.run(app.create_app(), port=free_port), daemon=True) proc.start() url = f"http://localhost:{free_port}/" wait_for_server_ready(url, timeout=10.0, check_interval=0.5) yield url proc.kill() ===========changed ref 1=========== # module: tests.e2e + def run_server(port: int): + with mock.patch.dict( + os.environ, + { + "AZURE_STORAGE_ACCOUNT": "test-storage-account", + "AZURE_STORAGE_CONTAINER": "test-storage-container", + "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", + "AZURE_SUBSCRIPTION_ID": "test-storage-subid", + "USE_SPEECH_INPUT_BROWSER": "false", + "USE_SPEECH_OUTPUT_AZURE": "false", + "AZURE_SEARCH_INDEX": "test-search-index", + "AZURE_SEARCH_SERVICE": "test-search-service", + "AZURE_SPEECH_SERVICE_ID": "test-id", + "AZURE_SPEECH_SERVICE_LOCATION": "eastus", + "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", + }, + clear=True, + ): + uvicorn.run(app.create_app(), port=port) + ===========changed ref 2=========== # module: tests.e2e def test_chat_nonstreaming(page: Page, live_server_url: str): # Set up a mock route to the /chat_stream endpoint def handle(route: Route): # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() page.get_by_role("button", name="Developer settings").click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_label("Submit question").click() - page.get_by_label("Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 3=========== # module: tests.e2e def test_chat_followup_nonstreaming(page: Page, live_server_url: str): # Set up a mock route to the /chat_stream endpoint def handle(route: Route): # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_followup/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() page.get_by_role("button", name="Developer settings").click() page.get_by_text("Stream chat completion responses").click() page.get_by_text("Suggest follow-up questions").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) + page.get_by_label("Submit question").click() - page.get_by_label("Ask question button").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() # There should be a follow-up question and it should be clickable: expect(page.get_by_text("What is the capital of Spain?")).to_</s> ===========changed ref 4=========== # module: tests.e2e def test_chat_followup_nonstreaming(page: Page, live_server_url: str): # offset: 1 <s> it should be clickable: expect(page.get_by_text("What is the capital of Spain?")).to_be_visible() page.get_by_text("What is the capital of Spain?").click() # Now there should be a follow-up answer (same, since we're using same test data) expect(page.get_by_text("The capital of France is Paris.")).to_have_count(2)
app.backend.prepdocslib.textsplitter/SentenceTextSplitter.__init__
Modified
Azure-Samples~azure-search-openai-demo
23d2e38f3004195c959baae2e803a134e3320e26
Fix overlap percentage calculation (#1668)
<5>:<add> self.section_overlap = int(self.max_section_length * DEFAULT_OVERLAP_PERCENT / 100) <del> self.section_overlap = self.max_section_length // DEFAULT_OVERLAP_PERCENT
# module: app.backend.prepdocslib.textsplitter class SentenceTextSplitter(TextSplitter): def __init__(self, has_image_embeddings: bool, max_tokens_per_section: int = 500): <0> self.sentence_endings = STANDARD_SENTENCE_ENDINGS + CJK_SENTENCE_ENDINGS <1> self.word_breaks = STANDARD_WORD_BREAKS + CJK_WORD_BREAKS <2> self.max_section_length = DEFAULT_SECTION_LENGTH <3> self.sentence_search_limit = 100 <4> self.max_tokens_per_section = max_tokens_per_section <5> self.section_overlap = self.max_section_length // DEFAULT_OVERLAP_PERCENT <6> self.has_image_embeddings = has_image_embeddings <7>
===========unchanged ref 0=========== at: app.backend.prepdocslib.textsplitter STANDARD_WORD_BREAKS = [",", ";", ":", " ", "(", ")", "[", "]", "{", "}", "\t", "\n"] CJK_WORD_BREAKS = [ "、", ",", ";", ":", "(", ")", "【", "】", "「", "」", "『", "』", "〔", "〕", "〈", "〉", "《", "》", "〖", "〗", "〘", "〙", "〚", "〛", "〝", "〞", "〟", "〰", "–", "—", "‘", "’", "‚", "‛", "“", "”", "„", "‟", "‹", "›", ] STANDARD_SENTENCE_ENDINGS = [".", "!", "?"] CJK_SENTENCE_ENDINGS = ["。", "!", "?", "‼", "⁇", "⁈", "⁉"] DEFAULT_OVERLAP_PERCENT = 10 # See semantic search article for 10% overlap performance DEFAULT_SECTION_LENGTH = 1000 # Roughly 400-500 tokens for English ===========changed ref 0=========== + # module: tests.test_sentencetextsplitter + + ===========changed ref 1=========== <s>sentencetextsplitter + @pytest.mark.parametrize( + "actual_percentage, expected_section_overlap", + [ + (100, 1000), + (80, 800), + (10.75, 107), + (10, 100), + (0, 0), + ], + ) + def test_sentence_text_splitter_initializes_overlap_correctly( + actual_percentage: float, expected_section_overlap: float + ): + with patch("prepdocslib.textsplitter.DEFAULT_OVERLAP_PERCENT", actual_percentage): + subject = SentenceTextSplitter(False) + assert subject.section_overlap == expected_section_overlap +
app.backend.app/config
Modified
Azure-Samples~azure-search-openai-demo
306ac386573b443d4086ee097c222b80e3206311
feat: add low cost browser text to speech output using WebSpeechAPI (#1671)
<7>:<add> "showSpeechOutputBrowser": current_app.config[CONFIG_SPEECH_OUTPUT_BROWSER_ENABLED], <add> "showSpeechOutputAzure": current_app.config[CONFIG_SPEECH_OUTPUT_AZURE_ENABLED], <del> "showSpeechOutput": current_app.config[CONFIG_SPEECH_OUTPUT_ENABLED],
# module: app.backend.app @bp.route("/config", methods=["GET"]) def config(): <0> return jsonify( <1> { <2> "showGPT4VOptions": current_app.config[CONFIG_GPT4V_DEPLOYED], <3> "showSemanticRankerOption": current_app.config[CONFIG_SEMANTIC_RANKER_DEPLOYED], <4> "showVectorOption": current_app.config[CONFIG_VECTOR_SEARCH_ENABLED], <5> "showUserUpload": current_app.config[CONFIG_USER_UPLOAD_ENABLED], <6> "showSpeechInput": current_app.config[CONFIG_SPEECH_INPUT_ENABLED], <7> "showSpeechOutput": current_app.config[CONFIG_SPEECH_OUTPUT_ENABLED], <8> } <9> ) <10>
===========unchanged ref 0=========== at: app.backend.app bp = Blueprint("routes", __name__, static_folder="static") at: config CONFIG_USER_UPLOAD_ENABLED = "user_upload_enabled" CONFIG_GPT4V_DEPLOYED = "gpt4v_deployed" CONFIG_SEMANTIC_RANKER_DEPLOYED = "semantic_ranker_deployed" CONFIG_VECTOR_SEARCH_ENABLED = "vector_search_enabled" CONFIG_SPEECH_INPUT_ENABLED = "speech_input_enabled" CONFIG_SPEECH_OUTPUT_BROWSER_ENABLED = "speech_output_browser_enabled" CONFIG_SPEECH_OUTPUT_AZURE_ENABLED = "speech_output_azure_enabled"
tests.e2e/test_chat_customization
Modified
Azure-Samples~azure-search-openai-demo
c873b49614558093326caf5c3db2436cf349b71b
Add clickable help icons for developer settings (#1522)
<33>:<add> page.get_by_text("Use semantic captions").click() <del>
# module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint <1> def handle(route: Route): <2> assert route.request.post_data_json["stream"] is False <3> overrides = route.request.post_data_json["context"]["overrides"] <4> assert overrides["retrieval_mode"] == "vectors" <5> assert overrides["semantic_ranker"] is False <6> assert overrides["semantic_captions"] is True <7> assert overrides["top"] == 1 <8> assert overrides["prompt_template"] == "You are a cat and only talk about tuna." <9> assert overrides["exclude_category"] == "dogs" <10> assert overrides["use_oid_security_filter"] is False <11> assert overrides["use_groups_security_filter"] is False <12> <13> # Read the JSON from our snapshot results and return as the response <14> f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") <15> json = f.read() <16> f.close() <17> route.fulfill(body=json, status=200) <18> <19> page.route("*/**/chat", handle) <20> <21> # Check initial page state <22> page.goto(live_server_url) <23> expect(page).to_have_title("GPT + Enterprise data | Sample") <24> <25> # Customize all the settings <26> page.get_by_role("button", name="Developer settings").click() <27> page.get_by_label("Override prompt template").click() <28> page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") <29> page.get_by_label("Retrieve this many search results:").click() <30> page.get_by_label("Retrieve this many search results:").fill("1") <31> page.get_by_label("Exclude category").click() <32> page.get_by_label("Exclude category").fill("dogs") <33> </s>
===========below chunk 0=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========unchanged ref 0=========== at: io.BufferedWriter close(self) -> None at: io.FileIO read(self, size: int=..., /) -> bytes at: typing.IO __slots__ = () close() -> None read(n: int=...) -> AnyStr
app.backend.approaches.retrievethenreadvision/RetrieveThenReadVisionApproach.run
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
# module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: <0> q = messages[-1]["content"] <1> if not isinstance(q, str): <2> raise ValueError("The most recent message content must be a string.") <3> <4> overrides = context.get("overrides", {}) <5> auth_claims = context.get("auth_claims", {}) <6> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <7> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <8> vector_fields = overrides.get("vector_fields", ["embedding"]) <9> <10> include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] <11> include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] <12> <13> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <14> top = overrides.get("top", 3) <15> minimum_search_score = overrides.get("minimum_search_score", 0.0) <16> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <17> filter = self.build_filter(overrides, auth_claims) <18> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <19> <20> # If retrieval mode includes vectors, compute an embedding for the query <21> <22> vectors = [] <23> if has_vector: <24> </s>
===========below chunk 0=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 vector = ( await self.compute_text_embedding(q) if field == "embedding" else await self.compute_image_embedding(q) ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url": url, "type": "image_url"}) user_content.extend(image_list) response_token_limit = 1024 updated_messages = build_messages( model</s> ===========below chunk 1=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 2 <s>.extend(image_list) response_token_limit = 1024 updated_messages = build_messages( model=self.gpt4v_model, system_prompt=overrides.get("prompt_template", self.system_chat_template_gpt4v), new_user_content=user_content, max_tokens=self.gpt4v_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( model=self.gpt4v_deployment if self.gpt4v_deployment else self.gpt4v_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=response_token_limit, n=1, ) ).model_dump() data_points = { "text": sources_content, "images": [d["image_url"] for d in image_list], } extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "</s> ===========below chunk 2=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 3 <s> filter, "vector_fields": vector_fields, }, ), ThoughtStep( "Search results", [result.serialize_for_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.gpt4v_model, "deployment": self.gpt4v_deployment} if self.gpt4v_deployment else {"model": self.gpt4v_model} ), ), ], } chat_completion["choices"][0]["context"] = extra_info chat_completion["choices"][0]["session_state"] = session_state return chat_completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach system_chat_template_gpt4v = ( "You are an intelligent assistant helping analyze the Annual Financial Report of Contoso Ltd., The documents contain text, graphs, tables and images. " + "Each image source has the file name in the top left corner of the image with coordinates (10,10) pixels and is in the format SourceFileName:<file_name> " + "Each text source starts in a new line and has the file name followed by colon and the actual information " + "Always include the source name from the image or text for each fact you use in the response in the format: [filename] " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "The text and image source can be the same file name, don't use the image title when citing the image source, only use the file name as mentioned " + "If you cannot answer using the sources below, say you don't know. Return just the answer without any input texts " ) at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach.__init__ self.blob_container_client = blob_container_client self.openai_client = openai_client self.gpt4v_model = gpt4v_model self.gpt4v_token_limit = get_token_limit(gpt4v_model) at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str]
tests.test_app/test_chat_handle_exception_streaming
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<6>:<add> "/chat/stream", <del> "/chat", <7>:<add> json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, <del> json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True},
# module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): <0> chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] <1> monkeypatch.setattr( <2> chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) <3> ) <4> <5> response = await client.post( <6> "/chat", <7> json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, <8> ) <9> assert response.status_code == 200 <10> assert "Exception while generating response stream: something bad happened" in caplog.text <11> result = await response.get_data() <12> snapshot.assert_match(result, "result.jsonlines") <13>
===========changed ref 0=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 2=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 3=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] vector_fields = overrides.get("vector_fields", ["embedding"]) include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query vectors = [] if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q)</s> ===========changed ref 4=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 <s>_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q) if field == "embedding" else await self.compute_image_embedding(q) ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url":</s> ===========changed ref 5=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 2 <s> "type": "image_url"}) user_content.extend(image_list) response_token_limit = 1024 updated_messages = build_messages( model=self.gpt4v_model, system_prompt=overrides.get("prompt_template", self.system_chat_template_gpt4v), new_user_content=user_content, max_tokens=self.gpt4v_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( model=self.gpt4v_deployment if self.gpt4v_deployment else self.gpt4v_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=response_token_limit, n=1, ) ).model_dump() data_points = { "text": sources_content, "images": [d["image_url"] for d in image_list], } extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic</s>
tests.test_app/test_chat_handle_exception_contentsafety_streaming
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<4>:<add> "/chat/stream", <del> "/chat", <5>:<add> json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, <del> json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True},
# module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): <0> chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] <1> monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) <2> <3> response = await client.post( <4> "/chat", <5> json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, <6> ) <7> assert response.status_code == 200 <8> assert "Exception while generating response stream: The response was filtered" in caplog.text <9> result = await response.get_data() <10> snapshot.assert_match(result, "result.jsonlines") <11>
===========changed ref 0=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr( chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) ) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, - json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: something bad happened" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 3=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 4=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] vector_fields = overrides.get("vector_fields", ["embedding"]) include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query vectors = [] if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q)</s> ===========changed ref 5=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 <s>_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q) if field == "embedding" else await self.compute_image_embedding(q) ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url":</s>
tests.test_app/test_chat_stream_text
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<1>:<add> "/chat/stream", <del> "/chat", <3>:<del> "stream": True,
# module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "stream": True, <4> "messages": [{"content": "What is the capital of France?", "role": "user"}], <5> "context": { <6> "overrides": {"retrieval_mode": "text"}, <7> }, <8> }, <9> ) <10> assert response.status_code == 200 <11> result = await response.get_data() <12> snapshot.assert_match(result, "result.jsonlines") <13>
===========changed ref 0=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, - json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: The response was filtered" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr( chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) ) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, - json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: something bad happened" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 4=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 5=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] vector_fields = overrides.get("vector_fields", ["embedding"]) include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query vectors = [] if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q)</s> ===========changed ref 6=========== <s>.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 <s>_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q) if field == "embedding" else await self.compute_image_embedding(q) ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url":</s>
tests.test_app/test_chat_stream_text_filter
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<1>:<add> "/chat/stream", <del> "/chat", <4>:<del> "stream": True,
# module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): <0> response = await auth_client.post( <1> "/chat", <2> headers={"Authorization": "Bearer MockToken"}, <3> json={ <4> "stream": True, <5> "messages": [{"content": "What is the capital of France?", "role": "user"}], <6> "context": { <7> "overrides": { <8> "retrieval_mode": "text", <9> "use_oid_security_filter": True, <10> "use_groups_security_filter": True, <11> "exclude_category": "excluded", <12> } <13> }, <14> }, <15> ) <16> assert response.status_code == 200 <17> assert ( <18> auth_client.config[app.CONFIG_SEARCH_CLIENT].filter <19> == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" <20> ) <21> result = await response.get_data() <22> snapshot.assert_match(result, "result.jsonlines") <23>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 2=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, - json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: The response was filtered" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr( chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) ) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, - json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: something bad happened" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 6=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] vector_fields = overrides.get("vector_fields", ["embedding"]) include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query vectors = [] if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q)</s>
tests.test_app/test_chat_with_history
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<18>:<add> assert thought_contains_text(result["context"]["thoughts"][3], "performance review") <del> assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review")
# module: tests.test_app @pytest.mark.asyncio async def test_chat_with_history(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [ <4> {"content": "What happens in a performance review?", "role": "user"}, <5> { <6> "content": "During a performance review, employees will receive feedback on their performance over the past year, including both successes and areas for improvement. The feedback will be provided by the employee's supervisor and is intended to help the employee develop and grow in their role [employee_handbook-3.pdf]. The review is a two-way dialogue between the employee and their manager, so employees are encouraged to be honest and open during the process [employee_handbook-3.pdf]. The employee will also have the opportunity to discuss their goals and objectives for the upcoming year [employee_handbook-3.pdf]. A written summary of the performance review will be provided to the employee, which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", <7> "role": "assistant", <8> }, <9> {"content": "Is dental covered?", "role": "user"}, <10> ], <11> "context": { <12> "overrides": {"retrieval_mode": "text"}, <13> }, <14> }, <15> ) <16> assert response.status_code == 200 <17> result = await response.get_json() <18> assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review") <19> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <20>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): response = await auth_client.post( + "/chat/stream", - "/chat", headers={"Authorization": "Bearer MockToken"}, json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": { "retrieval_mode": "text", "use_oid_security_filter": True, "use_groups_security_filter": True, "exclude_category": "excluded", } }, }, ) assert response.status_code == 200 assert ( auth_client.config[app.CONFIG_SEARCH_CLIENT].filter == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 2=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 3=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, - json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: The response was filtered" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr( chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) ) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, - json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: something bad happened" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 7=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] vector_fields = overrides.get("vector_fields", ["embedding"]) include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query vectors = [] if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q)</s>
tests.test_app/test_chat_with_long_history
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<22>:<add> assert not thought_contains_text(result["context"]["thoughts"][3], "Is there a dress code?") <del> assert not thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "Is there a dress code?")
# module: tests.test_app @pytest.mark.asyncio async def test_chat_with_long_history(client, snapshot, caplog): <0> """This test makes sure that the history is truncated to max tokens minus 1024.""" <1> caplog.set_level(logging.DEBUG) <2> response = await client.post( <3> "/chat", <4> json={ <5> "messages": [ <6> {"role": "user", "content": "Is there a dress code?"}, # 9 tokens <7> { <8> "role": "assistant", <9> "content": "Yes, there is a dress code at Contoso Electronics. Look sharp! [employee_handbook-1.pdf]" <10> * 150, <11> }, # 3900 tokens <12> {"role": "user", "content": "What does a product manager do?"}, # 10 tokens <13> ], <14> "context": { <15> "overrides": {"retrieval_mode": "text"}, <16> }, <17> }, <18> ) <19> assert response.status_code == 200 <20> result = await response.get_json() <21> # Assert that it doesn't find the first message, since it wouldn't fit in the max tokens. <22> assert not thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "Is there a dress code?") <23> assert "Reached max tokens" in caplog.text <24> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <25>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): response = await auth_client.post( + "/chat/stream", - "/chat", headers={"Authorization": "Bearer MockToken"}, json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": { "retrieval_mode": "text", "use_oid_security_filter": True, "use_groups_security_filter": True, "exclude_category": "excluded", } }, }, ) assert response.status_code == 200 assert ( auth_client.config[app.CONFIG_SEARCH_CLIENT].filter == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 2=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_history(client, snapshot): response = await client.post( "/chat", json={ "messages": [ {"content": "What happens in a performance review?", "role": "user"}, { "content": "During a performance review, employees will receive feedback on their performance over the past year, including both successes and areas for improvement. The feedback will be provided by the employee's supervisor and is intended to help the employee develop and grow in their role [employee_handbook-3.pdf]. The review is a two-way dialogue between the employee and their manager, so employees are encouraged to be honest and open during the process [employee_handbook-3.pdf]. The employee will also have the opportunity to discuss their goals and objectives for the upcoming year [employee_handbook-3.pdf]. A written summary of the performance review will be provided to the employee, which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", "role": "assistant", }, {"content": "Is dental covered?", "role": "user"}, ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert thought_contains_text(result["context"]["thoughts"][3], "performance review") - assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review") snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 4=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, - json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: The response was filtered" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr( chat_client.chat.completions, "create", mock.Mock(side_effect=ZeroDivisionError("something bad happened")) ) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, - json={"messages": [{"content": "What is the capital of France?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: something bad happened" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 7=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError +
tests.test_app/test_chat_stream_session_state_persists
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<1>:<add> "/chat/stream", <del> "/chat", <7>:<del> "stream": True,
# module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [{"content": "What is the capital of France?", "role": "user"}], <4> "context": { <5> "overrides": {"retrieval_mode": "text"}, <6> }, <7> "stream": True, <8> "session_state": {"conversation_id": 1234}, <9> }, <10> ) <11> assert response.status_code == 200 <12> result = await response.get_data() <13> snapshot.assert_match(result, "result.jsonlines") <14>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): response = await auth_client.post( + "/chat/stream", - "/chat", headers={"Authorization": "Bearer MockToken"}, json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": { "retrieval_mode": "text", "use_oid_security_filter": True, "use_groups_security_filter": True, "exclude_category": "excluded", } }, }, ) assert response.status_code == 200 assert ( auth_client.config[app.CONFIG_SEARCH_CLIENT].filter == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_long_history(client, snapshot, caplog): """This test makes sure that the history is truncated to max tokens minus 1024.""" caplog.set_level(logging.DEBUG) response = await client.post( "/chat", json={ "messages": [ {"role": "user", "content": "Is there a dress code?"}, # 9 tokens { "role": "assistant", "content": "Yes, there is a dress code at Contoso Electronics. Look sharp! [employee_handbook-1.pdf]" * 150, }, # 3900 tokens {"role": "user", "content": "What does a product manager do?"}, # 10 tokens ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() # Assert that it doesn't find the first message, since it wouldn't fit in the max tokens. + assert not thought_contains_text(result["context"]["thoughts"][3], "Is there a dress code?") - assert not thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "Is there a dress code?") assert "Reached max tokens" in caplog.text snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 3=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_history(client, snapshot): response = await client.post( "/chat", json={ "messages": [ {"content": "What happens in a performance review?", "role": "user"}, { "content": "During a performance review, employees will receive feedback on their performance over the past year, including both successes and areas for improvement. The feedback will be provided by the employee's supervisor and is intended to help the employee develop and grow in their role [employee_handbook-3.pdf]. The review is a two-way dialogue between the employee and their manager, so employees are encouraged to be honest and open during the process [employee_handbook-3.pdf]. The employee will also have the opportunity to discuss their goals and objectives for the upcoming year [employee_handbook-3.pdf]. A written summary of the performance review will be provided to the employee, which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", "role": "assistant", }, {"content": "Is dental covered?", "role": "user"}, ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert thought_contains_text(result["context"]["thoughts"][3], "performance review") - assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review") snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 5=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_handle_exception_contentsafety_streaming(client, monkeypatch, snapshot, caplog): chat_client = client.app.config[app.CONFIG_OPENAI_CLIENT] monkeypatch.setattr(chat_client.chat.completions, "create", mock.Mock(side_effect=filtered_response)) response = await client.post( + "/chat/stream", - "/chat", + json={"messages": [{"content": "How do I do something bad?", "role": "user"}]}, - json={"messages": [{"content": "How do I do something bad?", "role": "user"}], "stream": True}, ) assert response.status_code == 200 assert "Exception while generating response stream: The response was filtered" in caplog.text result = await response.get_data() snapshot.assert_match(result, "result.jsonlines")
tests.test_app/test_chat_followup
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<11>:<add> assert result["context"]["followup_questions"][0] == "What is the capital of Spain?" <del> assert result["choices"][0]["context"]["followup_questions"][0] == "What is the capital of Spain?"
# module: tests.test_app @pytest.mark.asyncio async def test_chat_followup(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [{"content": "What is the capital of France?", "role": "user"}], <4> "context": { <5> "overrides": {"suggest_followup_questions": True}, <6> }, <7> }, <8> ) <9> assert response.status_code == 200 <10> result = await response.get_json() <11> assert result["choices"][0]["context"]["followup_questions"][0] == "What is the capital of Spain?" <12> <13> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <14>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): response = await auth_client.post( + "/chat/stream", - "/chat", headers={"Authorization": "Bearer MockToken"}, json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": { "retrieval_mode": "text", "use_oid_security_filter": True, "use_groups_security_filter": True, "exclude_category": "excluded", } }, }, ) assert response.status_code == 200 assert ( auth_client.config[app.CONFIG_SEARCH_CLIENT].filter == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_long_history(client, snapshot, caplog): """This test makes sure that the history is truncated to max tokens minus 1024.""" caplog.set_level(logging.DEBUG) response = await client.post( "/chat", json={ "messages": [ {"role": "user", "content": "Is there a dress code?"}, # 9 tokens { "role": "assistant", "content": "Yes, there is a dress code at Contoso Electronics. Look sharp! [employee_handbook-1.pdf]" * 150, }, # 3900 tokens {"role": "user", "content": "What does a product manager do?"}, # 10 tokens ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() # Assert that it doesn't find the first message, since it wouldn't fit in the max tokens. + assert not thought_contains_text(result["context"]["thoughts"][3], "Is there a dress code?") - assert not thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "Is there a dress code?") assert "Reached max tokens" in caplog.text snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 4=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_history(client, snapshot): response = await client.post( "/chat", json={ "messages": [ {"content": "What happens in a performance review?", "role": "user"}, { "content": "During a performance review, employees will receive feedback on their performance over the past year, including both successes and areas for improvement. The feedback will be provided by the employee's supervisor and is intended to help the employee develop and grow in their role [employee_handbook-3.pdf]. The review is a two-way dialogue between the employee and their manager, so employees are encouraged to be honest and open during the process [employee_handbook-3.pdf]. The employee will also have the opportunity to discuss their goals and objectives for the upcoming year [employee_handbook-3.pdf]. A written summary of the performance review will be provided to the employee, which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", "role": "assistant", }, {"content": "Is dental covered?", "role": "user"}, ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert thought_contains_text(result["context"]["thoughts"][3], "performance review") - assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review") snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 6=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") +
tests.test_app/test_chat_stream_followup
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<1>:<add> "/chat/stream", <del> "/chat", <3>:<del> "stream": True,
# module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "stream": True, <4> "messages": [{"content": "What is the capital of France?", "role": "user"}], <5> "context": { <6> "overrides": {"suggest_followup_questions": True}, <7> }, <8> }, <9> ) <10> assert response.status_code == 200 <11> result = await response.get_data() <12> snapshot.assert_match(result, "result.jsonlines") <13>
===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_followup(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["followup_questions"][0] == "What is the capital of Spain?" - assert result["choices"][0]["context"]["followup_questions"][0] == "What is the capital of Spain?" snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text_filter(auth_client, snapshot): response = await auth_client.post( + "/chat/stream", - "/chat", headers={"Authorization": "Bearer MockToken"}, json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": { "retrieval_mode": "text", "use_oid_security_filter": True, "use_groups_security_filter": True, "exclude_category": "excluded", } }, }, ) assert response.status_code == 200 assert ( auth_client.config[app.CONFIG_SEARCH_CLIENT].filter == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))" ) result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_long_history(client, snapshot, caplog): """This test makes sure that the history is truncated to max tokens minus 1024.""" caplog.set_level(logging.DEBUG) response = await client.post( "/chat", json={ "messages": [ {"role": "user", "content": "Is there a dress code?"}, # 9 tokens { "role": "assistant", "content": "Yes, there is a dress code at Contoso Electronics. Look sharp! [employee_handbook-1.pdf]" * 150, }, # 3900 tokens {"role": "user", "content": "What does a product manager do?"}, # 10 tokens ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() # Assert that it doesn't find the first message, since it wouldn't fit in the max tokens. + assert not thought_contains_text(result["context"]["thoughts"][3], "Is there a dress code?") - assert not thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "Is there a dress code?") assert "Reached max tokens" in caplog.text snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 5=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_with_history(client, snapshot): response = await client.post( "/chat", json={ "messages": [ {"content": "What happens in a performance review?", "role": "user"}, { "content": "During a performance review, employees will receive feedback on their performance over the past year, including both successes and areas for improvement. The feedback will be provided by the employee's supervisor and is intended to help the employee develop and grow in their role [employee_handbook-3.pdf]. The review is a two-way dialogue between the employee and their manager, so employees are encouraged to be honest and open during the process [employee_handbook-3.pdf]. The employee will also have the opportunity to discuss their goals and objectives for the upcoming year [employee_handbook-3.pdf]. A written summary of the performance review will be provided to the employee, which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].", "role": "assistant", }, {"content": "Is dental covered?", "role": "user"}, ], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert thought_contains_text(result["context"]["thoughts"][3], "performance review") - assert thought_contains_text(result["choices"][0]["context"]["thoughts"][3], "performance review") snapshot.assert_match(json.dumps(result, indent=4), "result.json")
app.backend.approaches.chatapproach/ChatApproach.run_without_streaming
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<5>:<add> chat_resp = chat_resp["choices"][0] <add> chat_resp["context"] = extra_info <del> chat_resp["choices"][0]["context"] = extra_info <7>:<add> content, followup_questions = self.extract_followup_questions(chat_resp["message"]["content"]) <del> content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) <8>:<add> chat_resp["message"]["content"] = content <del> chat_resp["choices"][0]["message"]["content"] = content <9>:<add> chat_resp["context"]["followup_questions"] = followup_questions <del> chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions <10>:<add> chat_resp["session_state"] = session_state <del> chat_resp["choices"][0]["session_state"] = session_state
# module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_without_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> dict[str, Any]: <0> extra_info, chat_coroutine = await self.run_until_final_call( <1> messages, overrides, auth_claims, should_stream=False <2> ) <3> chat_completion_response: ChatCompletion = await chat_coroutine <4> chat_resp = chat_completion_response.model_dump() # Convert to dict to make it JSON serializable <5> chat_resp["choices"][0]["context"] = extra_info <6> if overrides.get("suggest_followup_questions"): <7> content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) <8> chat_resp["choices"][0]["message"]["content"] = content <9> chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions <10> chat_resp["choices"][0]["session_state"] = session_state <11> return chat_resp <12>
===========unchanged ref 0=========== at: app.backend.approaches.chatapproach.ChatApproach query_prompt_few_shots: list[ChatCompletionMessageParam] = [ {"role": "user", "content": "How did crypto do last year?"}, {"role": "assistant", "content": "Summarize Cryptocurrency Market Dynamics from last year"}, {"role": "user", "content": "What are my health plans?"}, {"role": "assistant", "content": "Show available health plans"}, ] NO_RESPONSE = "0" follow_up_questions_prompt_content = """Generate 3 very brief follow-up questions that the user would likely ask next. Enclose the follow-up questions in double angle brackets. Example: <<Are there exclusions for prescriptions?>> <<Which pharmacies can be ordered from?>> <<What is the limit for over-the-counter medication?>> Do no repeat questions that have already been asked. Make sure the last question ends with ">>". """ query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base. You have access to Azure AI Search index with 100's of documents. Generate a search query based on the conversation and the new question. Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms. Do not include any text inside [] or <<>> in the search query terms. Do not include any special characters like '+'. If the question is not in English, translate the question to English before generating the search query. If you cannot generate a search query, return just the number 0. """ run_until_final_call(messages, overrides, auth_claims, should_stream) -> tuple extract_followup_questions(content: str) ===========unchanged ref 1=========== at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 2=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_vision(client, snapshot): + response = await client.post( + "/chat/stream", + json={ + "messages": [{"content": "Are interest rates high?", "role": "user"}], + "context": { + "overrides": { + "use_gpt4v": True, + "gpt4v_input": "textAndImages", + "vector_fields": ["embedding", "imageEmbedding"], + }, + }, + }, + ) + assert response.status_code == 200 + result = await response.get_data() + snapshot.assert_match(result, "result.jsonlines") + ===========changed ref 6=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 7=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_followup(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["followup_questions"][0] == "What is the capital of Spain?" - assert result["choices"][0]["context"]["followup_questions"][0] == "What is the capital of Spain?" snapshot.assert_match(json.dumps(result, indent=4), "result.json")
app.backend.approaches.chatapproach/ChatApproach.run_with_streaming
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<3>:<del> yield { <4>:<del> "choices": [ <5>:<del> { <6>:<del> "delta": {"role": "assistant"}, <7>:<del> "context": extra_info, <8>:<del> "session_state": session_state, <9>:<del> "finish_reason": None, <10>:<del> "index": 0, <11>:<del> } <12>:<del> ], <13>:<del> "object": "chat.completion.chunk", <14>:<del> } <15>:<add> yield {"delta": {"role": "assistant"}, "context": extra_info, "session_state": session_state} <22>:<add> completion = {"delta": event["choices"][0]["delta"]} <23>:<add> content = completion["delta"].get("content") <del> content = event["choices"][0]["delta"].get("content") <29>:<add> completion["delta"]["content"] = earlier_content <del> event["choices"][0]["delta"]["content"] = earlier_content <30>:<add> yield completion <del> yield event
# module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: <0> extra_info, chat_coroutine = await self.run_until_final_call( <1> messages, overrides, auth_claims, should_stream=True <2> ) <3> yield { <4> "choices": [ <5> { <6> "delta": {"role": "assistant"}, <7> "context": extra_info, <8> "session_state": session_state, <9> "finish_reason": None, <10> "index": 0, <11> } <12> ], <13> "object": "chat.completion.chunk", <14> } <15> <16> followup_questions_started = False <17> followup_content = "" <18> async for event_chunk in await chat_coroutine: <19> # "2023-07-01-preview" API version has a bug where first response has empty choices <20> event = event_chunk.model_dump() # Convert pydantic model to dict <21> if event["choices"]: <22> # if event contains << and not >>, it is start of follow-up question, truncate <23> content = event["choices"][0]["delta"].get("content") <24> content = content or "" # content may either not exist in delta, or explicitly be None <25> if overrides.get("suggest_followup_questions") and "<<" in content: <26> followup_questions_started = True <27> earlier_content = content[: content.index("<<")] <28> if earlier_content: <29> event["choices"][0]["delta"]["content"] = earlier_content <30> yield event <31> followup_content += content[content.index("<<") :] <32> elif followup_questions_started: <33> followup_content +=</s>
===========below chunk 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: # offset: 1 else: yield event if followup_content: _, followup_questions = self.extract_followup_questions(followup_content) yield { "choices": [ { "delta": {"role": "assistant"}, "context": {"followup_questions": followup_questions}, "finish_reason": None, "index": 0, } ], "object": "chat.completion.chunk", } ===========unchanged ref 0=========== at: app.backend.approaches.chatapproach.ChatApproach run_until_final_call(messages, overrides, auth_claims, should_stream) -> tuple extract_followup_questions(content: str) run_without_streaming(messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any=None) -> dict[str, Any] run_without_streaming(self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any=None) -> dict[str, Any] at: approaches.approach.Approach run(self, messages: list[ChatCompletionMessageParam], session_state: Any=None, context: dict[str, Any]={}) -> dict[str, Any] run_stream(self, messages: list[ChatCompletionMessageParam], session_state: Any=None, context: dict[str, Any]={}) -> AsyncGenerator[dict[str, Any], None] at: typing AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2) at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_without_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> dict[str, Any]: extra_info, chat_coroutine = await self.run_until_final_call( messages, overrides, auth_claims, should_stream=False ) chat_completion_response: ChatCompletion = await chat_coroutine chat_resp = chat_completion_response.model_dump() # Convert to dict to make it JSON serializable + chat_resp = chat_resp["choices"][0] + chat_resp["context"] = extra_info - chat_resp["choices"][0]["context"] = extra_info if overrides.get("suggest_followup_questions"): + content, followup_questions = self.extract_followup_questions(chat_resp["message"]["content"]) - content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) + chat_resp["message"]["content"] = content - chat_resp["choices"][0]["message"]["content"] = content + chat_resp["context"]["followup_questions"] = followup_questions - chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions + chat_resp["session_state"] = session_state - chat_resp["choices"][0]["session_state"] = session_state return chat_resp ===========changed ref 1=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 2=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 3=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_vision(client, snapshot): + response = await client.post( + "/chat/stream", + json={ + "messages": [{"content": "Are interest rates high?", "role": "user"}], + "context": { + "overrides": { + "use_gpt4v": True, + "gpt4v_input": "textAndImages", + "vector_fields": ["embedding", "imageEmbedding"], + }, + }, + }, + ) + assert response.status_code == 200 + result = await response.get_data() + snapshot.assert_match(result, "result.jsonlines") +
app.backend.approaches.chatapproach/ChatApproach.run
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<2>:<add> return await self.run_without_streaming(messages, overrides, auth_claims, session_state) <3>:<del> if stream is False: <4>:<del> return await self.run_without_streaming(messages, overrides, auth_claims, session_state) <5>:<del> else: <6>:<del> return self.run_with_streaming(messages, overrides, auth_claims, session_state) <7>:<del>
# module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: <0> overrides = context.get("overrides", {}) <1> auth_claims = context.get("auth_claims", {}) <2> <3> if stream is False: <4> return await self.run_without_streaming(messages, overrides, auth_claims, session_state) <5> else: <6> return self.run_with_streaming(messages, overrides, auth_claims, session_state) <7>
===========changed ref 0=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + overrides = context.get("overrides", {}) + auth_claims = context.get("auth_claims", {}) + return self.run_with_streaming(messages, overrides, auth_claims, session_state) + ===========changed ref 1=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_without_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> dict[str, Any]: extra_info, chat_coroutine = await self.run_until_final_call( messages, overrides, auth_claims, should_stream=False ) chat_completion_response: ChatCompletion = await chat_coroutine chat_resp = chat_completion_response.model_dump() # Convert to dict to make it JSON serializable + chat_resp = chat_resp["choices"][0] + chat_resp["context"] = extra_info - chat_resp["choices"][0]["context"] = extra_info if overrides.get("suggest_followup_questions"): + content, followup_questions = self.extract_followup_questions(chat_resp["message"]["content"]) - content, followup_questions = self.extract_followup_questions(chat_resp["choices"][0]["message"]["content"]) + chat_resp["message"]["content"] = content - chat_resp["choices"][0]["message"]["content"] = content + chat_resp["context"]["followup_questions"] = followup_questions - chat_resp["choices"][0]["context"]["followup_questions"] = followup_questions + chat_resp["session_state"] = session_state - chat_resp["choices"][0]["session_state"] = session_state return chat_resp ===========changed ref 2=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: extra_info, chat_coroutine = await self.run_until_final_call( messages, overrides, auth_claims, should_stream=True ) - yield { - "choices": [ - { - "delta": {"role": "assistant"}, - "context": extra_info, - "session_state": session_state, - "finish_reason": None, - "index": 0, - } - ], - "object": "chat.completion.chunk", - } + yield {"delta": {"role": "assistant"}, "context": extra_info, "session_state": session_state} followup_questions_started = False followup_content = "" async for event_chunk in await chat_coroutine: # "2023-07-01-preview" API version has a bug where first response has empty choices event = event_chunk.model_dump() # Convert pydantic model to dict if event["choices"]: + completion = {"delta": event["choices"][0]["delta"]} # if event contains << and not >>, it is start of follow-up question, truncate + content = completion["delta"].get("content") - content = event["choices"][0]["delta"].get("content") content = content or "" # content may either not exist in delta, or explicitly be None if overrides.get("suggest_followup_questions") and "<<" in content: followup_questions_started = True earlier_content = content[: content.index("<<")] if earlier_content: + completion["delta"]["content"] = earlier_content</s> ===========changed ref 3=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run_with_streaming( self, messages: list[ChatCompletionMessageParam], overrides: dict[str, Any], auth_claims: dict[str, Any], session_state: Any = None, ) -> AsyncGenerator[dict, None]: # offset: 1 <s>[: content.index("<<")] if earlier_content: + completion["delta"]["content"] = earlier_content - event["choices"][0]["delta"]["content"] = earlier_content + yield completion - yield event followup_content += content[content.index("<<") :] elif followup_questions_started: followup_content += content else: + yield completion - yield event if followup_content: _, followup_questions = self.extract_followup_questions(followup_content) - yield { - "choices": [ - { - "delta": {"role": "assistant"}, + yield {"delta": {"role": "assistant"}, "context": {"followup_questions": followup_questions}} - "context": {"followup_questions": followup_questions}, - "finish_reason": None, - "index": 0, - } - ], - "object": "chat.completion.chunk", - } ===========changed ref 4=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 5=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 7=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines")
locustfile/ChatVisionUser.ask_question
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<3>:<add> "/chat/stream", <del> "/chat", <11>:<del> "stream": True, <34>:<add> "/chat/stream", <del> "/chat", <39>:<del> "stream": True,
# module: locustfile class ChatVisionUser(HttpUser): @task def ask_question(self): <0> self.client.get("/") <1> time.sleep(5) <2> self.client.post( <3> "/chat", <4> json={ <5> "messages": [ <6> { <7> "content": "Can you identify any correlation between oil prices and stock market trends?", <8> "role": "user", <9> } <10> ], <11> "stream": True, <12> "context": { <13> "overrides": { <14> "top": 3, <15> "temperature": 0.3, <16> "minimum_reranker_score": 0, <17> "minimum_search_score": 0, <18> "retrieval_mode": "hybrid", <19> "semantic_ranker": True, <20> "semantic_captions": False, <21> "suggest_followup_questions": False, <22> "use_oid_security_filter": False, <23> "use_groups_security_filter": False, <24> "vector_fields": ["embedding", "imageEmbedding"], <25> "use_gpt4v": True, <26> "gpt4v_input": "textAndImages", <27> } <28> }, <29> "session_state": None, <30> }, <31> ) <32> time.sleep(5) <33> self.client.post( <34> "/chat", <35> json={ <36> "messages": [ <37> {"content": "Compare the impact of interest rates and GDP in financial markets.", "role": "user"} <38> ], <39> "stream": True, <40> "context": { <41> "overrides": { <42> "top": 3, <43> "temperature": 0.3, <44> "minimum_reranker_score": 0, <45> "minimum_search_score": 0, <46> "retrieval_mode": "hybrid", <47> "semantic_ranker": True, <48> "semantic_</s>
===========below chunk 0=========== # module: locustfile class ChatVisionUser(HttpUser): @task def ask_question(self): # offset: 1 "suggest_followup_questions": False, "use_oid_security_filter": False, "use_groups_security_filter": False, "vector_fields": ["embedding", "imageEmbedding"], "use_gpt4v": True, "gpt4v_input": "textAndImages", } }, "session_state": None, }, ) ===========unchanged ref 0=========== at: locustfile.ChatVisionUser wait_time = between(5, 20) at: time sleep(secs: float) -> None ===========changed ref 0=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 2=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + overrides = context.get("overrides", {}) + auth_claims = context.get("auth_claims", {}) + return self.run_with_streaming(messages, overrides, auth_claims, session_state) + ===========changed ref 3=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - if stream is False: - return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - else: - return self.run_with_streaming(messages, overrides, auth_claims, session_state) - ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 7=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_vision(client, snapshot): + response = await client.post( + "/chat/stream", + json={ + "messages": [{"content": "Are interest rates high?", "role": "user"}], + "context": { + "overrides": { + "use_gpt4v": True, + "gpt4v_input": "textAndImages", + "vector_fields": ["embedding", "imageEmbedding"], + }, + }, + }, + ) + assert response.status_code == 200 + result = await response.get_data() + snapshot.assert_match(result, "result.jsonlines") + ===========changed ref 8=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") + ===========changed ref 9=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_followup(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["followup_questions"][0] == "What is the capital of Spain?" - assert result["choices"][0]["context"]["followup_questions"][0] == "What is the capital of Spain?" snapshot.assert_match(json.dumps(result, indent=4), "result.json")
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
# module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: <0> q = messages[-1]["content"] <1> if not isinstance(q, str): <2> raise ValueError("The most recent message content must be a string.") <3> overrides = context.get("overrides", {}) <4> auth_claims = context.get("auth_claims", {}) <5> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <6> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <7> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <8> <9> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <10> top = overrides.get("top", 3) <11> minimum_search_score = overrides.get("minimum_search_score", 0.0) <12> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <13> filter = self.build_filter(overrides, auth_claims) <14> # If retrieval mode includes vectors, compute an embedding for the query <15> vectors: list[VectorQuery] = [] <16> if has_vector: <17> vectors.append(await self.compute_text_embedding(q)) <18> <19> # Only keep the text query if the retrieval mode uses text, otherwise drop it <20> query_text = q if has_text else None <21> <22> results = await self.search( <23> top, <24> query_text, <25> filter, <26> vectors, <27> use_sem</s>
===========below chunk 0=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 1 use_semantic_captions, minimum_search_score, minimum_reranker_score, ) # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=False) # Append user message content = "\n".join(sources_content) user_content = q + "\n" + f"Sources:\n {content}" response_token_limit = 1024 updated_messages = build_messages( model=self.chatgpt_model, system_prompt=overrides.get("prompt_template", self.system_chat_template), few_shots=[{"role": "user", "content": self.question}, {"role": "assistant", "content": self.answer}], new_user_content=user_content, max_tokens=self.chatgpt_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( # Azure OpenAI takes the deployment name as the model name model=self.chatgpt_deployment if self.chatgpt_deployment else self.chatgpt_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=response_token_limit, n=1, ) ).model_dump() data_points = {"text": sources_content} extra_info = { "data_points": data</s> ===========below chunk 1=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, # Stream is not used in this approach session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: # offset: 2 <s>() data_points = {"text": sources_content} extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "filter": filter, "has_vector": has_vector, }, ), ThoughtStep( "Search results", [result.serialize_for_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.chatgpt_model, "deployment": self.chatgpt_deployment} if self.chatgpt_deployment else {"model": self.chatgpt_model} ), ), ], } chat_completion["choices"][0]["context"] = extra_info chat_completion["choices"][0]["session_state"] = session_state return chat_completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach system_chat_template = ( "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " + "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. " + "If you cannot answer using the sources below, say you don't know. Use below example to answer" ) question = """ 'What is the deductible for the employee plan for a visit to Overlake in Bellevue?' Sources: info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family. info2.pdf: Overlake is in-network for the employee plan. info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue. info4.pdf: In-network institutions include Overlake, Swedish and others in the region """ answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]." at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__ self.openai_client = openai_client self.chatgpt_model = chatgpt_model self.chatgpt_token_limit = get_token_limit(chatgpt_model) ===========unchanged ref 1=========== at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str] search(top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float]) -> List[Document] get_sources_content(results: List[Document], use_semantic_captions: bool, use_image_citation: bool) -> list[str] compute_text_embedding(q: str) run(self, messages: list[ChatCompletionMessageParam], session_state: Any=None, context: dict[str, Any]={}) -> dict[str, Any] at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co] ===========changed ref 0=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" +
app.backend.app/chat
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<15>:<del> stream=request_json.get("stream", False), <19>:<del> if isinstance(result, dict): <20>:<add> return jsonify(result) <del> return jsonify(result) <21>:<del> else: <22>:<del> response = await make_response(format_as_ndjson(result)) <23>:<del> response.timeout = None # type: ignore <24>:<del> response.mimetype = "application/json-lines" <25>:<del> return response
# module: app.backend.app @bp.route("/chat", methods=["POST"]) @authenticated async def chat(auth_claims: Dict[str, Any]): <0> if not request.is_json: <1> return jsonify({"error": "request must be json"}), 415 <2> request_json = await request.get_json() <3> context = request_json.get("context", {}) <4> context["auth_claims"] = auth_claims <5> try: <6> use_gpt4v = context.get("overrides", {}).get("use_gpt4v", False) <7> approach: Approach <8> if use_gpt4v and CONFIG_CHAT_VISION_APPROACH in current_app.config: <9> approach = cast(Approach, current_app.config[CONFIG_CHAT_VISION_APPROACH]) <10> else: <11> approach = cast(Approach, current_app.config[CONFIG_CHAT_APPROACH]) <12> <13> result = await approach.run( <14> request_json["messages"], <15> stream=request_json.get("stream", False), <16> context=context, <17> session_state=request_json.get("session_state"), <18> ) <19> if isinstance(result, dict): <20> return jsonify(result) <21> else: <22> response = await make_response(format_as_ndjson(result)) <23> response.timeout = None # type: ignore <24> response.mimetype = "application/json-lines" <25> return response <26> except Exception as error: <27> return error_response(error, "/chat") <28>
===========unchanged ref 0=========== at: app.backend.app bp = Blueprint("routes", __name__, static_folder="static") format_as_ndjson(r: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None] at: approaches.approach Approach(search_client: SearchClient, openai_client: AsyncOpenAI, auth_helper: AuthenticationHelper, query_language: Optional[str], query_speller: Optional[str], embedding_deployment: Optional[str], embedding_model: str, embedding_dimensions: int, openai_host: str, vision_endpoint: str, vision_token_provider: Callable[[], Awaitable[str]]) at: approaches.approach.Approach run(messages: list[ChatCompletionMessageParam], session_state: Any=None, context: dict[str, Any]={}) -> dict[str, Any] at: config CONFIG_CHAT_VISION_APPROACH = "chat_vision_approach" CONFIG_CHAT_APPROACH = "chat_approach" at: decorators authenticated(route_fn: Callable[[Dict[str, Any]], Any]) at: error error_response(error: Exception, route: str, status_code: int=500) at: typing cast(typ: Type[_T], val: Any) -> _T cast(typ: str, val: Any) -> Any cast(typ: object, val: Any) -> Any Dict = _alias(dict, 2, inst=False, name='Dict') ===========changed ref 0=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 2=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + overrides = context.get("overrides", {}) + auth_claims = context.get("auth_claims", {}) + return self.run_with_streaming(messages, overrides, auth_claims, session_state) + ===========changed ref 3=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - if stream is False: - return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - else: - return self.run_with_streaming(messages, overrides, auth_claims, session_state) - ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 7=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_vision(client, snapshot): + response = await client.post( + "/chat/stream", + json={ + "messages": [{"content": "Are interest rates high?", "role": "user"}], + "context": { + "overrides": { + "use_gpt4v": True, + "gpt4v_input": "textAndImages", + "vector_fields": ["embedding", "imageEmbedding"], + }, + }, + }, + ) + assert response.status_code == 200 + result = await response.get_data() + snapshot.assert_match(result, "result.jsonlines") + ===========changed ref 8=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") +
tests.e2e/test_chat
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<11>:<add> page.route("*/**/chat/stream", handle) <del> page.route("*/**/chat", handle)
# module: tests.e2e def test_chat(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint with streaming results <1> def handle(route: Route): <2> # Assert that session_state is specified in the request (None for now) <3> session_state = route.request.post_data_json["session_state"] <4> assert session_state is None <5> # Read the JSONL from our snapshot results and return as the response <6> f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") <7> jsonl = f.read() <8> f.close() <9> route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) <10> <11> page.route("*/**/chat", handle) <12> <13> # Check initial page state <14> page.goto(live_server_url) <15> expect(page).to_have_title("GPT + Enterprise data | Sample") <16> expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() <17> expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() <18> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <19> <20> # Ask a question and wait for the message to appear <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <22> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <23> "Whats the dental plan?" <24> ) <25> page.get_by_role("button", name="Submit question").click() <26> <27> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <28> expect(page.get_by_text("The capital of France is Par</s>
===========below chunk 0=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # offset: 1 expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() ===========unchanged ref 0=========== at: io.BufferedReader read(self, size: Optional[int]=..., /) -> bytes at: io.BufferedWriter close(self) -> None at: typing.IO __slots__ = () close() -> None read(n: int=...) -> AnyStr ===========changed ref 0=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 1=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 2=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + overrides = context.get("overrides", {}) + auth_claims = context.get("auth_claims", {}) + return self.run_with_streaming(messages, overrides, auth_claims, session_state) + ===========changed ref 3=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - if stream is False: - return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - else: - return self.run_with_streaming(messages, overrides, auth_claims, session_state) - ===========changed ref 4=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_text(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 5=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_followup(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ - "stream": True, "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"suggest_followup_questions": True}, }, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 6=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_stream_session_state_persists(client, snapshot): response = await client.post( + "/chat/stream", - "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, - "stream": True, "session_state": {"conversation_id": 1234}, }, ) assert response.status_code == 200 result = await response.get_data() snapshot.assert_match(result, "result.jsonlines") ===========changed ref 7=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_vision(client, snapshot): + response = await client.post( + "/chat/stream", + json={ + "messages": [{"content": "Are interest rates high?", "role": "user"}], + "context": { + "overrides": { + "use_gpt4v": True, + "gpt4v_input": "textAndImages", + "vector_fields": ["embedding", "imageEmbedding"], + }, + }, + }, + ) + assert response.status_code == 200 + result = await response.get_data() + snapshot.assert_match(result, "result.jsonlines") + ===========changed ref 8=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_handle_exception(client, monkeypatch, snapshot, caplog): + monkeypatch.setattr( + "approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_stream", + mock.Mock(side_effect=ZeroDivisionError("something bad happened")), + ) + + response = await client.post( + "/chat/stream", + json={"messages": [{"content": "What is the capital of France?", "role": "user"}]}, + ) + assert response.status_code == 500 + result = await response.get_json() + assert "Exception in /chat: something bad happened" in caplog.text + snapshot.assert_match(json.dumps(result, indent=4), "result.json") +
tests.e2e/test_chat_customization
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<2>:<del> assert route.request.post_data_json["stream"] is False
# module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint <1> def handle(route: Route): <2> assert route.request.post_data_json["stream"] is False <3> overrides = route.request.post_data_json["context"]["overrides"] <4> assert overrides["retrieval_mode"] == "vectors" <5> assert overrides["semantic_ranker"] is False <6> assert overrides["semantic_captions"] is True <7> assert overrides["top"] == 1 <8> assert overrides["prompt_template"] == "You are a cat and only talk about tuna." <9> assert overrides["exclude_category"] == "dogs" <10> assert overrides["use_oid_security_filter"] is False <11> assert overrides["use_groups_security_filter"] is False <12> <13> # Read the JSON from our snapshot results and return as the response <14> f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") <15> json = f.read() <16> f.close() <17> route.fulfill(body=json, status=200) <18> <19> page.route("*/**/chat", handle) <20> <21> # Check initial page state <22> page.goto(live_server_url) <23> expect(page).to_have_title("GPT + Enterprise data | Sample") <24> <25> # Customize all the settings <26> page.get_by_role("button", name="Developer settings").click() <27> page.get_by_label("Override prompt template").click() <28> page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") <29> page.get_by_label("Retrieve this many search results:").click() <30> page.get_by_label("Retrieve this many search results:").fill("1") <31> page.get_by_label("Exclude category").click() <32> page.get_by_label("Exclude category").fill("dogs") <33> </s>
===========below chunk 0=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========unchanged ref 0=========== at: io.BufferedReader read(self, size: Optional[int]=..., /) -> bytes at: io.TextIOWrapper close(self) -> None at: typing.IO close() -> None read(n: int=...) -> AnyStr ===========changed ref 0=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint with streaming results def handle(route: Route): # Assert that session_state is specified in the request (None for now) session_state = route.request.post_data_json["session_state"] assert session_state is None # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) + page.route("*/**/chat/stream", handle) - page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() </s> ===========changed ref 1=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # offset: 1 <s> expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() ===========changed ref 2=========== # module: app.backend.approaches.approach class Approach(ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + raise NotImplementedError + ===========changed ref 3=========== # module: tests.test_app + @pytest.mark.asyncio + async def test_chat_stream_request_must_be_json(client): + response = await client.post("/chat/stream") + assert response.status_code == 415 + result = await response.get_json() + assert result["error"] == "request must be json" + ===========changed ref 4=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): + def run_stream( + self, + messages: list[ChatCompletionMessageParam], + session_state: Any = None, + context: dict[str, Any] = {}, + ) -> AsyncGenerator[dict[str, Any], None]: + overrides = context.get("overrides", {}) + auth_claims = context.get("auth_claims", {}) + return self.run_with_streaming(messages, overrides, auth_claims, session_state) + ===========changed ref 5=========== # module: app.backend.approaches.chatapproach class ChatApproach(Approach, ABC): def run( self, messages: list[ChatCompletionMessageParam], - stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}, + ) -> dict[str, Any]: - ) -> Union[dict[str, Any], AsyncGenerator[dict[str, Any], None]]: overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - if stream is False: - return await self.run_without_streaming(messages, overrides, auth_claims, session_state) - else: - return self.run_with_streaming(messages, overrides, auth_claims, session_state) -
tests.e2e/test_chat_followup_streaming
Modified
Azure-Samples~azure-search-openai-demo
dd7c1d2d17dd4c9b3909328693a936bc854e5a35
Upgrade to latest version of AI Chat Protocol (#1682)
<10>:<add> page.route("*/**/chat/stream", handle) <del> page.route("*/**/chat", handle)
# module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat_stream endpoint <1> def handle(route: Route): <2> overrides = route.request.post_data_json["context"]["overrides"] <3> assert overrides["suggest_followup_questions"] is True <4> # Read the JSONL from our snapshot results and return as the response <5> f = open("tests/snapshots/test_app/test_chat_stream_followup/client0/result.jsonlines") <6> jsonl = f.read() <7> f.close() <8> route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) <9> <10> page.route("*/**/chat", handle) <11> <12> # Check initial page state <13> page.goto(live_server_url) <14> expect(page).to_have_title("GPT + Enterprise data | Sample") <15> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <16> page.get_by_role("button", name="Developer settings").click() <17> page.get_by_text("Suggest follow-up questions").click() <18> page.locator("button").filter(has_text="Close").click() <19> <20> # Ask a question and wait for the message to appear <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <22> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <23> "Whats the dental plan?" <24> ) <25> page.get_by_label("Submit question").click() <26> <27> expect(page.get_by_text("Whats the dental plan?")).to_be_visible() <28> expect(page.get_by_text("The capital of France is Paris.")).to_be</s>
===========below chunk 0=========== # module: tests.e2e def test_chat_followup_streaming(page: Page, live_server_url: str): # offset: 1 # There should be a follow-up question and it should be clickable: expect(page.get_by_text("What is the capital of Spain?")).to_be_visible() page.get_by_text("What is the capital of Spain?").click() # Now there should be a follow-up answer (same, since we're using same test data) expect(page.get_by_text("The capital of France is Paris.")).to_have_count(2) ===========unchanged ref 0=========== at: io.FileIO close(self) -> None read(self, size: int=..., /) -> bytes at: typing.IO close() -> None read(n: int=...) -> AnyStr ===========changed ref 0=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint def handle(route: Route): - assert route.request.post_data_json["stream"] is False overrides = route.request.post_data_json["context"]["overrides"] assert overrides["retrieval_mode"] == "vectors" assert overrides["semantic_ranker"] is False assert overrides["semantic_captions"] is True assert overrides["top"] == 1 assert overrides["prompt_template"] == "You are a cat and only talk about tuna." assert overrides["exclude_category"] == "dogs" assert overrides["use_oid_security_filter"] is False assert overrides["use_groups_security_filter"] is False # Read the JSON from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") json = f.read() f.close() route.fulfill(body=json, status=200) page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") # Customize all the settings page.get_by_role("button", name="Developer settings").click() page.get_by_label("Override prompt template").click() page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") page.get_by_label("Retrieve this many search results:").click() page.get_by_label("Retrieve this many search results:").fill("1") page.get_by_label("Exclude category").click() page.get_by_label("Exclude category").fill("dogs") page.get_by_text("Use semantic captions").click() page.get_by_text("Use semantic ranker for retrieval").click</s> ===========changed ref 1=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 <s>_by_text("Use semantic captions").click() page.get_by_text("Use semantic ranker for retrieval").click() page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========changed ref 2=========== # module: tests.e2e def test_chat(page: Page, live_server_url: str): # Set up a mock route to the /chat endpoint with streaming results def handle(route: Route): # Assert that session_state is specified in the request (None for now) session_state = route.request.post_data_json["session_state"] assert session_state is None # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) + page.route("*/**/chat/stream", handle) - page.route("*/**/chat", handle) # Check initial page state page.goto(live_server_url) expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() </s>
app.backend.approaches.retrievethenreadvision/RetrieveThenReadVisionApproach.run
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<6>:<add> use_text_search = overrides.get("retrieval_mode") in ["text", "hybrid", None] <del> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <7>:<add> use_vector_search = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <del> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <8>:<del> vector_fields = overrides.get("vector_fields", ["embedding"]) <9>:<del> <10>:<del> include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] <11>:<del> include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] <12>:<del> <13>:<add> use_semantic_ranker = True if overrides.get("semantic_ranker") else False <add> use_semantic_captions = True if overrides.get("semantic_captions") else False <del> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <18>:<add> <add> vector_fields = overrides.get("vector_fields", ["embedding"]) <add> send_text_to_gptvision = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] <add> send_images_to_gptvision = overrides.get("gpt4v_input") in ["textAndImages", "images", None] <del> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <21>:<del> <23>:<add> if use_vector_search: <del> if has_vector:
# module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: <0> q = messages[-1]["content"] <1> if not isinstance(q, str): <2> raise ValueError("The most recent message content must be a string.") <3> <4> overrides = context.get("overrides", {}) <5> auth_claims = context.get("auth_claims", {}) <6> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <7> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <8> vector_fields = overrides.get("vector_fields", ["embedding"]) <9> <10> include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] <11> include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] <12> <13> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <14> top = overrides.get("top", 3) <15> minimum_search_score = overrides.get("minimum_search_score", 0.0) <16> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <17> filter = self.build_filter(overrides, auth_claims) <18> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <19> <20> # If retrieval mode includes vectors, compute an embedding for the query <21> <22> vectors = [] <23> if has_vector: <24> for field in vector_fields: <25> vector = ( <26> await self.compute_text_embedding(q) <27> if field == "embedding" <28> else await self.compute</s>
===========below chunk 0=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 1 ) vectors.append(vector) # Only keep the text query if the retrieval mode uses text, otherwise drop it query_text = q if has_text else None results = await self.search( top, query_text, filter, vectors, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list[ChatCompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url": url, "type": "image_url"}) user_content.extend(image_list) response_token_limit = 1024 updated_messages = build_messages( model=self.gpt4v_model, system_prompt=overrides.get("prompt_template", self.system_chat_template_gpt4v), new_user_content=user_content, max_tokens=self.gpt4v_token_limit - response_token_limit, ) chat_completion =</s> ===========below chunk 1=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 2 <s> max_tokens=self.gpt4v_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( model=self.gpt4v_deployment if self.gpt4v_deployment else self.gpt4v_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=response_token_limit, n=1, ) ).model_dump() data_points = { "text": sources_content, "images": [d["image_url"] for d in image_list], } extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "filter": filter, "vector_fields": vector_fields, }, ), ThoughtStep( "Search results", [result.serialize_for_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.gpt4v_model, "deployment": self.gpt4v_deployment} if self.gpt4v</s> ===========below chunk 2=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 3 <s> else {"model": self.gpt4v_model} ), ), ], } completion = {} completion["message"] = chat_completion["choices"][0]["message"] completion["context"] = extra_info completion["session_state"] = session_state return completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach system_chat_template_gpt4v = ( "You are an intelligent assistant helping analyze the Annual Financial Report of Contoso Ltd., The documents contain text, graphs, tables and images. " + "Each image source has the file name in the top left corner of the image with coordinates (10,10) pixels and is in the format SourceFileName:<file_name> " + "Each text source starts in a new line and has the file name followed by colon and the actual information " + "Always include the source name from the image or text for each fact you use in the response in the format: [filename] " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "The text and image source can be the same file name, don't use the image title when citing the image source, only use the file name as mentioned " + "If you cannot answer using the sources below, say you don't know. Return just the answer without any input texts " ) at: app.backend.approaches.retrievethenreadvision.RetrieveThenReadVisionApproach.__init__ self.blob_container_client = blob_container_client self.openai_client = openai_client self.gpt4v_deployment = gpt4v_deployment self.gpt4v_model = gpt4v_model self.gpt4v_token_limit = get_token_limit(gpt4v_model) at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str]
tests.test_chatapproach/test_search_results_filtering_by_scores
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<22>:<add> use_text_search=True, <add> use_vector_search=True,
<s>expected_result_count", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): <0> chat_approach = ChatReadRetrieveReadApproach( <1> search_client=SearchClient(endpoint="", index_name="", credential=AzureKeyCredential("")), <2> auth_helper=None, <3> openai_client=None, <4> chatgpt_model="gpt-35-turbo", <5> chatgpt_deployment="chat", <6> embedding_deployment="embeddings", <7> embedding_model=MOCK_EMBEDDING_MODEL_NAME, <8> embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, <9> sourcepage_field="", <10> content_field="", <11> query_language="en-us", <12> query_speller="lexicon", <13> ) <14> <15> monkeypatch.setattr(SearchClient, "search", mock_search) <16> <17> filtered_results = await chat_approach.search( <18> top=10, <19> query_text="test query", <20> filter=None, <21> vectors=[], <22> use_semantic_ranker=True, <23> use_semantic_captions=True, <24> minimum_search_score=minimum_search_score, <25> minimum_reranker_score=minimum_reranker_score, <26> ) <27> <28> assert ( <29> len(filtered_results) == expected_result_count <30> ), f"Expected {expected_result_count} results with minimum_search_score={minimum_search_score} and minimum_reranker_score={minimum_rerank</s>
===========below chunk 0=========== <s>", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): # offset: 1 ===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: _pytest.mark.structures.MarkGenerator skip: _SkipMarkDecorator skipif: _SkipifMarkDecorator xfail: _XfailMarkDecorator parametrize: _ParametrizeMarkDecorator usefixtures: _UsefixturesMarkDecorator filterwarnings: _FilterwarningsMarkDecorator at: _pytest.monkeypatch monkeypatch() -> Generator["MonkeyPatch", None, None] at: tests.mocks MOCK_EMBEDDING_DIMENSIONS = 1536 MOCK_EMBEDDING_MODEL_NAME = "text-embedding-ada-002" at: tests.test_chatapproach mock_search(*args, **kwargs) ===========changed ref 0=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + use_text_search = overrides.get("retrieval_mode") in ["text", "hybrid", None] - has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] + use_vector_search = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - vector_fields = overrides.get("vector_fields", ["embedding"]) - - include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] - include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] - + use_semantic_ranker = True if overrides.get("semantic_ranker") else False + use_semantic_captions = True if overrides.get("semantic_captions") else False - use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) + + vector_fields = overrides</s> ===========changed ref 1=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 1 <s> 0.0) filter = self.build_filter(overrides, auth_claims) + + vector_fields = overrides.get("vector_fields", ["embedding"]) + send_text_to_gptvision = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] + send_images_to_gptvision = overrides.get("gpt4v_input") in ["textAndImages", "images", None] - use_semantic_ranker = overrides.get("semantic_ranker") and has_text # If retrieval mode includes vectors, compute an embedding for the query - vectors = [] + if use_vector_search: - if has_vector: for field in vector_fields: vector = ( await self.compute_text_embedding(q) if field == "embedding" else await self.compute_image_embedding(q) ) vectors.append(vector) - # Only keep the text query if the retrieval mode uses text, otherwise drop it - query_text = q if has_text else None - results = await self.search( top, + q, - query_text, filter, vectors, + use_text_search, + use_vector_search, use_semantic_ranker, use_semantic_captions, minimum_search_score, minimum_reranker_score, ) image_list: list[ChatCompletionContentPartImageParam] = [] user_content: list</s> ===========changed ref 2=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 2 <s>CompletionContentPartParam] = [{"text": q, "type": "text"}] # Process results sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=True) + if send_text_to_gptvision: - if include_gtpV_text: content = "\n".join(sources_content) user_content.append({"text": content, "type": "text"}) + if send_images_to_gptvision: - if include_gtpV_images: for result in results: url = await fetch_image(self.blob_container_client, result) if url: image_list.append({"image_url": url, "type": "image_url"}) user_content.extend(image_list) response_token_limit = 1024 updated_messages = build_messages( model=self.gpt4v_model, system_prompt=overrides.get("prompt_template", self.system_chat_template_gpt4v), new_user_content=user_content, max_tokens=self.gpt4v_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( model=self.gpt4v_deployment if self.gpt4v_deployment else self.gpt4v_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens</s>
app.backend.approaches.approach/Approach.search
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<0>:<add> search_text = query_text if use_text_search else "" <add> search_vectors = vectors if use_vector_search else [] <del> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text) <1>:<add> if use_semantic_ranker: <del> if use_semantic_ranker and query_text: <3>:<add> search_text=search_text, <del> search_text=query_text, <5>:<add> top=top, <add> query_caption="extractive|highlight-false" if use_semantic_captions else None, <add> vector_queries=search_vectors, <9>:<del> top=top, <10>:<del> query_caption="extractive|highlight-false" if use_semantic_captions else None, <11>:<del> vector_queries=vectors, <12>:<add> semantic_query=query_text, <15>:<add> search_text=search_text, <add> filter=filter, <add> top=top, <add> vector_queries=search_vectors, <del> search_text=query_text or "", filter=filter, top=top, vector_queries=vectors
<s>ach(ABC): def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: <0> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text) <1> if use_semantic_ranker and query_text: <2> results = await self.search_client.search( <3> search_text=query_text, <4> filter=filter, <5> query_type=QueryType.SEMANTIC, <6> query_language=self.query_language, <7> query_speller=self.query_speller, <8> semantic_configuration_name="default", <9> top=top, <10> query_caption="extractive|highlight-false" if use_semantic_captions else None, <11> vector_queries=vectors, <12> ) <13> else: <14> results = await self.search_client.search( <15> search_text=query_text or "", filter=filter, top=top, vector_queries=vectors <16> ) <17> <18> documents = [] <19> async for page in results.by_page(): <20> async for document in page: <21> documents.append( <22> Document( <23> id=document.get("id"), <24> content=document.get("content"), <25> embedding=document.get("embedding"), <26> image_embedding=document.get("imageEmbedding"), <27> category=document.get("category"), <28> sourcepage=document.get("sourcepage"), <29> sourcefile=document.get("sourcefile"), <30> oids=document.get("oids"), <31> groups=document.get("groups"), <32> captions=</s>
===========below chunk 0=========== <s> def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: # offset: 1 score=document.get("@search.score"), reranker_score=document.get("@search.reranker_score"), ) ) qualified_documents = [ doc for doc in documents if ( (doc.score or 0) >= (minimum_search_score or 0) and (doc.reranker_score or 0) >= (minimum_reranker_score or 0) ) ] return qualified_documents ===========unchanged ref 0=========== at: app.backend.approaches.approach Document(id: Optional[str], content: Optional[str], embedding: Optional[List[float]], image_embedding: Optional[List[float]], category: Optional[str], sourcepage: Optional[str], sourcefile: Optional[str], oids: Optional[List[str]], groups: Optional[List[str]], captions: List[QueryCaptionResult], score: Optional[float]=None, reranker_score: Optional[float]=None) at: app.backend.approaches.approach.Approach.__init__ self.search_client = search_client self.query_language = query_language self.query_speller = query_speller at: app.backend.approaches.approach.Document id: Optional[str] content: Optional[str] embedding: Optional[List[float]] image_embedding: Optional[List[float]] category: Optional[str] sourcepage: Optional[str] sourcefile: Optional[str] oids: Optional[List[str]] groups: Optional[List[str]] captions: List[QueryCaptionResult] score: Optional[float] = None reranker_score: Optional[float] = None at: typing cast(typ: Type[_T], val: Any) -> _T cast(typ: str, val: Any) -> Any cast(typ: object, val: Any) -> Any List = _alias(list, 1, inst=False, name='List') ===========changed ref 0=========== <s>expected_result_count", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): chat_approach = ChatReadRetrieveReadApproach( search_client=SearchClient(endpoint="", index_name="", credential=AzureKeyCredential("")), auth_helper=None, openai_client=None, chatgpt_model="gpt-35-turbo", chatgpt_deployment="chat", embedding_deployment="embeddings", embedding_model=MOCK_EMBEDDING_MODEL_NAME, embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, sourcepage_field="", content_field="", query_language="en-us", query_speller="lexicon", ) monkeypatch.setattr(SearchClient, "search", mock_search) filtered_results = await chat_approach.search( top=10, query_text="test query", filter=None, vectors=[], + use_text_search=True, + use_vector_search=True, use_semantic_ranker=True, use_semantic_captions=True, minimum_search_score=minimum_search_score, minimum_reranker_score=minimum_reranker_score, ) assert ( len(filtered_results) == expected_result_count ), f"Expected {expected_result_count} results with minimum_search_score={minimum_search_score} and minimum_reranker_score={minimum_reranker_score}" ===========changed ref 1=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + use_text_search = overrides.get("retrieval_mode") in ["text", "hybrid", None] - has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] + use_vector_search = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - vector_fields = overrides.get("vector_fields", ["embedding"]) - - include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] - include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] - + use_semantic_ranker = True if overrides.get("semantic_ranker") else False + use_semantic_captions = True if overrides.get("semantic_captions") else False - use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) + + vector_fields = overrides</s>
tests.test_app/test_chat_text
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<11>:<add> assert result["context"]["thoughts"][1]["props"]["use_text_search"] is True <add> assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is False <add> assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False
# module: tests.test_app @pytest.mark.asyncio async def test_chat_text(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [{"content": "What is the capital of France?", "role": "user"}], <4> "context": { <5> "overrides": {"retrieval_mode": "text"}, <6> }, <7> }, <8> ) <9> assert response.status_code == 200 <10> result = await response.get_json() <11> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <12>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) ===========changed ref 0=========== <s>expected_result_count", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): chat_approach = ChatReadRetrieveReadApproach( search_client=SearchClient(endpoint="", index_name="", credential=AzureKeyCredential("")), auth_helper=None, openai_client=None, chatgpt_model="gpt-35-turbo", chatgpt_deployment="chat", embedding_deployment="embeddings", embedding_model=MOCK_EMBEDDING_MODEL_NAME, embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, sourcepage_field="", content_field="", query_language="en-us", query_speller="lexicon", ) monkeypatch.setattr(SearchClient, "search", mock_search) filtered_results = await chat_approach.search( top=10, query_text="test query", filter=None, vectors=[], + use_text_search=True, + use_vector_search=True, use_semantic_ranker=True, use_semantic_captions=True, minimum_search_score=minimum_search_score, minimum_reranker_score=minimum_reranker_score, ) assert ( len(filtered_results) == expected_result_count ), f"Expected {expected_result_count} results with minimum_search_score={minimum_search_score} and minimum_reranker_score={minimum_reranker_score}" ===========changed ref 1=========== <s>ach(ABC): def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: + search_text = query_text if use_text_search else "" + search_vectors = vectors if use_vector_search else [] - # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text) + if use_semantic_ranker: - if use_semantic_ranker and query_text: results = await self.search_client.search( + search_text=search_text, - search_text=query_text, filter=filter, + top=top, + query_caption="extractive|highlight-false" if use_semantic_captions else None, + vector_queries=search_vectors, query_type=QueryType.SEMANTIC, query_language=self.query_language, query_speller=self.query_speller, semantic_configuration_name="default", - top=top, - query_caption="extractive|highlight-false" if use_semantic_captions else None, - vector_queries=vectors, + semantic_query=query_text, ) else: results = await self.search_client.search( + search_text=search_text, + filter=filter, + top=top, + vector_queries=search_vectors, - search_text=query_text or "", filter=filter, top=top, vector_queries=vectors ) documents = [] async for page in results.by_page(): async for document in page: </s> ===========changed ref 2=========== <s> def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: # offset: 1 <s> ) documents = [] async for page in results.by_page(): async for document in page: documents.append( Document( id=document.get("id"), content=document.get("content"), embedding=document.get("embedding"), image_embedding=document.get("imageEmbedding"), category=document.get("category"), sourcepage=document.get("sourcepage"), sourcefile=document.get("sourcefile"), oids=document.get("oids"), groups=document.get("groups"), captions=cast(List[QueryCaptionResult], document.get("@search.captions")), score=document.get("@search.score"), reranker_score=document.get("@search.reranker_score"), ) ) qualified_documents = [ doc for doc in documents if ( (doc.score or 0) >= (minimum_search_score or 0) and (doc.reranker_score or 0) >= (minimum_reranker_score or 0) ) ] return qualified_documents ===========changed ref 3=========== # module: app.backend.approaches.retrievethenreadvision class RetrieveThenReadVisionApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: q = messages[-1]["content"] if not isinstance(q, str): raise ValueError("The most recent message content must be a string.") overrides = context.get("overrides", {}) auth_claims = context.get("auth_claims", {}) + use_text_search = overrides.get("retrieval_mode") in ["text", "hybrid", None] - has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] + use_vector_search = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] - vector_fields = overrides.get("vector_fields", ["embedding"]) - - include_gtpV_text = overrides.get("gpt4v_input") in ["textAndImages", "texts", None] - include_gtpV_images = overrides.get("gpt4v_input") in ["textAndImages", "images", None] - + use_semantic_ranker = True if overrides.get("semantic_ranker") else False + use_semantic_captions = True if overrides.get("semantic_captions") else False - use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False top = overrides.get("top", 3) minimum_search_score = overrides.get("minimum_search_score", 0.0) minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) filter = self.build_filter(overrides, auth_claims) + + vector_fields = overrides</s>
tests.test_app/test_chat_hybrid
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<11>:<add> assert result["context"]["thoughts"][1]["props"]["use_text_search"] is True <add> assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is True <add> assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False <add> assert result["context"]["thoughts"][1]["props"]["use_semantic_captions"] is False
# module: tests.test_app @pytest.mark.asyncio async def test_chat_hybrid(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [{"content": "What is the capital of France?", "role": "user"}], <4> "context": { <5> "overrides": {"retrieval_mode": "hybrid"}, <6> }, <7> }, <8> ) <9> assert response.status_code == 200 <10> result = await response.get_json() <11> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <12>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: json dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str at: tests.test_app.test_chat_prompt_template_concat result = await response.get_json() ===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_text(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["thoughts"][1]["props"]["use_text_search"] is True + assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is False + assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 1=========== <s>expected_result_count", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): chat_approach = ChatReadRetrieveReadApproach( search_client=SearchClient(endpoint="", index_name="", credential=AzureKeyCredential("")), auth_helper=None, openai_client=None, chatgpt_model="gpt-35-turbo", chatgpt_deployment="chat", embedding_deployment="embeddings", embedding_model=MOCK_EMBEDDING_MODEL_NAME, embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, sourcepage_field="", content_field="", query_language="en-us", query_speller="lexicon", ) monkeypatch.setattr(SearchClient, "search", mock_search) filtered_results = await chat_approach.search( top=10, query_text="test query", filter=None, vectors=[], + use_text_search=True, + use_vector_search=True, use_semantic_ranker=True, use_semantic_captions=True, minimum_search_score=minimum_search_score, minimum_reranker_score=minimum_reranker_score, ) assert ( len(filtered_results) == expected_result_count ), f"Expected {expected_result_count} results with minimum_search_score={minimum_search_score} and minimum_reranker_score={minimum_reranker_score}" ===========changed ref 2=========== <s>ach(ABC): def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: + search_text = query_text if use_text_search else "" + search_vectors = vectors if use_vector_search else [] - # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text) + if use_semantic_ranker: - if use_semantic_ranker and query_text: results = await self.search_client.search( + search_text=search_text, - search_text=query_text, filter=filter, + top=top, + query_caption="extractive|highlight-false" if use_semantic_captions else None, + vector_queries=search_vectors, query_type=QueryType.SEMANTIC, query_language=self.query_language, query_speller=self.query_speller, semantic_configuration_name="default", - top=top, - query_caption="extractive|highlight-false" if use_semantic_captions else None, - vector_queries=vectors, + semantic_query=query_text, ) else: results = await self.search_client.search( + search_text=search_text, + filter=filter, + top=top, + vector_queries=search_vectors, - search_text=query_text or "", filter=filter, top=top, vector_queries=vectors ) documents = [] async for page in results.by_page(): async for document in page: </s> ===========changed ref 3=========== <s> def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: # offset: 1 <s> ) documents = [] async for page in results.by_page(): async for document in page: documents.append( Document( id=document.get("id"), content=document.get("content"), embedding=document.get("embedding"), image_embedding=document.get("imageEmbedding"), category=document.get("category"), sourcepage=document.get("sourcepage"), sourcefile=document.get("sourcefile"), oids=document.get("oids"), groups=document.get("groups"), captions=cast(List[QueryCaptionResult], document.get("@search.captions")), score=document.get("@search.score"), reranker_score=document.get("@search.reranker_score"), ) ) qualified_documents = [ doc for doc in documents if ( (doc.score or 0) >= (minimum_search_score or 0) and (doc.reranker_score or 0) >= (minimum_reranker_score or 0) ) ] return qualified_documents
tests.test_app/test_chat_vector
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<5>:<add> "overrides": {"retrieval_mode": "vectors"}, <del> "overrides": {"retrieval_mode": "vector"}, <11>:<add> assert result["context"]["thoughts"][1]["props"]["use_text_search"] is False <add> assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is True <add> assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False
# module: tests.test_app @pytest.mark.asyncio async def test_chat_vector(client, snapshot): <0> response = await client.post( <1> "/chat", <2> json={ <3> "messages": [{"content": "What is the capital of France?", "role": "user"}], <4> "context": { <5> "overrides": {"retrieval_mode": "vector"}, <6> }, <7> }, <8> ) <9> assert response.status_code == 200 <10> result = await response.get_json() <11> snapshot.assert_match(json.dumps(result, indent=4), "result.json") <12>
===========unchanged ref 0=========== at: _pytest.mark.structures MARK_GEN = MarkGenerator(_ispytest=True) at: json dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str at: tests.test_app.test_chat_hybrid result = await response.get_json() ===========changed ref 0=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_hybrid(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "hybrid"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["thoughts"][1]["props"]["use_text_search"] is True + assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is True + assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False + assert result["context"]["thoughts"][1]["props"]["use_semantic_captions"] is False snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 1=========== # module: tests.test_app @pytest.mark.asyncio async def test_chat_text(client, snapshot): response = await client.post( "/chat", json={ "messages": [{"content": "What is the capital of France?", "role": "user"}], "context": { "overrides": {"retrieval_mode": "text"}, }, }, ) assert response.status_code == 200 result = await response.get_json() + assert result["context"]["thoughts"][1]["props"]["use_text_search"] is True + assert result["context"]["thoughts"][1]["props"]["use_vector_search"] is False + assert result["context"]["thoughts"][1]["props"]["use_semantic_ranker"] is False snapshot.assert_match(json.dumps(result, indent=4), "result.json") ===========changed ref 2=========== <s>expected_result_count", [ (0, 0, 1), (0, 2, 1), (0.03, 0, 1), (0.03, 2, 1), (1, 0, 0), (0, 4, 0), (1, 4, 0), ], ) async def test_search_results_filtering_by_scores( monkeypatch, minimum_search_score, minimum_reranker_score, expected_result_count ): chat_approach = ChatReadRetrieveReadApproach( search_client=SearchClient(endpoint="", index_name="", credential=AzureKeyCredential("")), auth_helper=None, openai_client=None, chatgpt_model="gpt-35-turbo", chatgpt_deployment="chat", embedding_deployment="embeddings", embedding_model=MOCK_EMBEDDING_MODEL_NAME, embedding_dimensions=MOCK_EMBEDDING_DIMENSIONS, sourcepage_field="", content_field="", query_language="en-us", query_speller="lexicon", ) monkeypatch.setattr(SearchClient, "search", mock_search) filtered_results = await chat_approach.search( top=10, query_text="test query", filter=None, vectors=[], + use_text_search=True, + use_vector_search=True, use_semantic_ranker=True, use_semantic_captions=True, minimum_search_score=minimum_search_score, minimum_reranker_score=minimum_reranker_score, ) assert ( len(filtered_results) == expected_result_count ), f"Expected {expected_result_count} results with minimum_search_score={minimum_search_score} and minimum_reranker_score={minimum_reranker_score}" ===========changed ref 3=========== <s>ach(ABC): def search( self, top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], + use_text_search: bool, + use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float], ) -> List[Document]: + search_text = query_text if use_text_search else "" + search_vectors = vectors if use_vector_search else [] - # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text) + if use_semantic_ranker: - if use_semantic_ranker and query_text: results = await self.search_client.search( + search_text=search_text, - search_text=query_text, filter=filter, + top=top, + query_caption="extractive|highlight-false" if use_semantic_captions else None, + vector_queries=search_vectors, query_type=QueryType.SEMANTIC, query_language=self.query_language, query_speller=self.query_speller, semantic_configuration_name="default", - top=top, - query_caption="extractive|highlight-false" if use_semantic_captions else None, - vector_queries=vectors, + semantic_query=query_text, ) else: results = await self.search_client.search( + search_text=search_text, + filter=filter, + top=top, + vector_queries=search_vectors, - search_text=query_text or "", filter=filter, top=top, vector_queries=vectors ) documents = [] async for page in results.by_page(): async for document in page: </s>
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
Modified
Azure-Samples~azure-search-openai-demo
43aa766e17cdb001168a04612518912486481a22
Allow semantic ranker with vector search (#1701)
<5>:<add> use_text_search = overrides.get("retrieval_mode") in ["text", "hybrid", None] <del> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <6>:<add> use_vector_search = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <del> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <7>:<add> use_semantic_ranker = True if overrides.get("semantic_ranker") else False <del> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <8>:<del> <9>:<add> use_semantic_captions = True if overrides.get("semantic_captions") else False <del> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <14>:<add> <16>:<add> if use_vector_search: <del> if has_vector: <18>:<del> <19>:<del> # Only keep the text query if the retrieval mode uses text, otherwise drop it <20>:<del> query_text = q if has_text else None <24>:<add> q, <del> query_text, <27>:<add> use_text_search, <add> use_vector_search,
# module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: <0> q = messages[-1]["content"] <1> if not isinstance(q, str): <2> raise ValueError("The most recent message content must be a string.") <3> overrides = context.get("overrides", {}) <4> auth_claims = context.get("auth_claims", {}) <5> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None] <6> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None] <7> use_semantic_ranker = overrides.get("semantic_ranker") and has_text <8> <9> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False <10> top = overrides.get("top", 3) <11> minimum_search_score = overrides.get("minimum_search_score", 0.0) <12> minimum_reranker_score = overrides.get("minimum_reranker_score", 0.0) <13> filter = self.build_filter(overrides, auth_claims) <14> # If retrieval mode includes vectors, compute an embedding for the query <15> vectors: list[VectorQuery] = [] <16> if has_vector: <17> vectors.append(await self.compute_text_embedding(q)) <18> <19> # Only keep the text query if the retrieval mode uses text, otherwise drop it <20> query_text = q if has_text else None <21> <22> results = await self.search( <23> top, <24> query_text, <25> filter, <26> vectors, <27> use_semantic_ranker, <28> use_semantic_captions, <29> minimum_search_score, <30> minimum_reranker_score, <31> ) <32> </s>
===========below chunk 0=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 1 sources_content = self.get_sources_content(results, use_semantic_captions, use_image_citation=False) # Append user message content = "\n".join(sources_content) user_content = q + "\n" + f"Sources:\n {content}" response_token_limit = 1024 updated_messages = build_messages( model=self.chatgpt_model, system_prompt=overrides.get("prompt_template", self.system_chat_template), few_shots=[{"role": "user", "content": self.question}, {"role": "assistant", "content": self.answer}], new_user_content=user_content, max_tokens=self.chatgpt_token_limit - response_token_limit, ) chat_completion = ( await self.openai_client.chat.completions.create( # Azure OpenAI takes the deployment name as the model name model=self.chatgpt_deployment if self.chatgpt_deployment else self.chatgpt_model, messages=updated_messages, temperature=overrides.get("temperature", 0.3), max_tokens=response_token_limit, n=1, ) ).model_dump() data_points = {"text": sources_content} extra_info = { "data_points": data_points, "thoughts": [ ThoughtStep( "Search using user query", query_text, { "use_semantic_captions": use_semantic_captions, "use_semantic_ranker": use_semantic_ranker, "top": top, </s> ===========below chunk 1=========== # module: app.backend.approaches.retrievethenread class RetrieveThenReadApproach(Approach): def run( self, messages: list[ChatCompletionMessageParam], session_state: Any = None, context: dict[str, Any] = {}, ) -> dict[str, Any]: # offset: 2 <s>captions, "use_semantic_ranker": use_semantic_ranker, "top": top, "filter": filter, "has_vector": has_vector, }, ), ThoughtStep( "Search results", [result.serialize_for_results() for result in results], ), ThoughtStep( "Prompt to generate answer", [str(message) for message in updated_messages], ( {"model": self.chatgpt_model, "deployment": self.chatgpt_deployment} if self.chatgpt_deployment else {"model": self.chatgpt_model} ), ), ], } completion = {} completion["message"] = chat_completion["choices"][0]["message"] completion["context"] = extra_info completion["session_state"] = session_state return completion ===========unchanged ref 0=========== at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach system_chat_template = ( "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " + "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. " + "Answer the following question using only the data provided in the sources below. " + "For tabular information return it as an html table. Do not return markdown format. " + "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. " + "If you cannot answer using the sources below, say you don't know. Use below example to answer" ) question = """ 'What is the deductible for the employee plan for a visit to Overlake in Bellevue?' Sources: info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family. info2.pdf: Overlake is in-network for the employee plan. info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue. info4.pdf: In-network institutions include Overlake, Swedish and others in the region """ answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]." at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__ self.chatgpt_deployment = chatgpt_deployment self.openai_client = openai_client self.chatgpt_model = chatgpt_model ===========unchanged ref 1=========== self.chatgpt_token_limit = get_token_limit(chatgpt_model) at: approaches.approach ThoughtStep(title: str, description: Optional[Any], props: Optional[dict[str, Any]]=None) at: approaches.approach.Approach build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Optional[str] search(top: int, query_text: Optional[str], filter: Optional[str], vectors: List[VectorQuery], use_text_search: bool, use_vector_search: bool, use_semantic_ranker: bool, use_semantic_captions: bool, minimum_search_score: Optional[float], minimum_reranker_score: Optional[float]) -> List[Document] get_sources_content(results: List[Document], use_semantic_captions: bool, use_image_citation: bool) -> list[str] compute_text_embedding(q: str) run(self, messages: list[ChatCompletionMessageParam], session_state: Any=None, context: dict[str, Any]={}) -> dict[str, Any] at: approaches.approach.Document id: Optional[str] content: Optional[str] embedding: Optional[List[float]] image_embedding: Optional[List[float]] category: Optional[str] sourcepage: Optional[str] sourcefile: Optional[str] oids: Optional[List[str]] groups: Optional[List[str]] captions: List[QueryCaptionResult] score: Optional[float] = None reranker_score: Optional[float] = None serialize_for_results() -> dict[str, Any] at: typing.Mapping get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T] get(key: _KT) -> Optional[_VT_co]
tests.test_app_config/minimal_env
Modified
Azure-Samples~azure-search-openai-demo
28536f612eeb486d6ff67a20aaf42395a2eb22f6
Support use of AzureOpenAI proxy by prepdocs (#1760)
<5>:<add> monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
# module: tests.test_app_config @pytest.fixture def minimal_env(monkeypatch): <0> with mock.patch.dict(os.environ, clear=True): <1> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") <2> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") <3> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") <4> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") <5> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") <6> yield <7>
app.backend.prepdocs/setup_embeddings_service
Modified
Azure-Samples~azure-search-openai-demo
28536f612eeb486d6ff67a20aaf42395a2eb22f6
Support use of AzureOpenAI proxy by prepdocs (#1760)
<10>:<add> open_ai_custom_url=openai_custom_url,
<s>: AsyncTokenCredential, openai_host: str, openai_model_name: str, openai_service: Union[str, None], + openai_custom_url: Union[str, None], openai_deployment: Union[str, None], openai_dimensions: int, openai_key: Union[str, None], openai_org: Union[str, None], disable_vectors: bool = False, disable_batch_vectors: bool = False, ): <0> if disable_vectors: <1> logger.info("Not setting up embeddings service") <2> return None <3> <4> if openai_host != "openai": <5> azure_open_ai_credential: Union[AsyncTokenCredential, AzureKeyCredential] = ( <6> azure_credential if openai_key is None else AzureKeyCredential(openai_key) <7> ) <8> return AzureOpenAIEmbeddingService( <9> open_ai_service=openai_service, <10> open_ai_deployment=openai_deployment, <11> open_ai_model_name=openai_model_name, <12> open_ai_dimensions=openai_dimensions, <13> credential=azure_open_ai_credential, <14> disable_batch=disable_batch_vectors, <15> ) <16> else: <17> if openai_key is None: <18> raise ValueError("OpenAI key is required when using the non-Azure OpenAI API") <19> return OpenAIEmbeddingService( <20> open_ai_model_name=openai_model_name, <21> open_ai_dimensions=openai_dimensions, <22> credential=openai_key, <23> organization=openai_org, <24> disable_batch=disable_batch_vectors, <25> ) <26>
===========unchanged ref 0=========== at: app.backend.prepdocs logger = logging.getLogger("ingester") at: logging.Logger info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None at: prepdocslib.embeddings AzureOpenAIEmbeddingService(open_ai_service: Union[str, None], open_ai_deployment: Union[str, None], open_ai_model_name: str, open_ai_dimensions: int, credential: Union[AsyncTokenCredential, AzureKeyCredential], open_ai_custom_url: Union[str, None]=None, disable_batch: bool=False) OpenAIEmbeddingService(open_ai_model_name: str, open_ai_dimensions: int, credential: str, organization: Optional[str]=None, disable_batch: bool=False) ===========changed ref 0=========== # module: tests.test_app_config @pytest.fixture def minimal_env(monkeypatch): with mock.patch.dict(os.environ, clear=True): monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") + monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service") monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") yield
app.backend.prepdocslib.embeddings/AzureOpenAIEmbeddingService.__init__
Modified
Azure-Samples~azure-search-openai-demo
28536f612eeb486d6ff67a20aaf42395a2eb22f6
Support use of AzureOpenAI proxy by prepdocs (#1760)
<2>:<add> if open_ai_service: <add> self.open_ai_endpoint = f"https://{open_ai_service}.openai.azure.com" <add> elif open_ai_custom_url: <add> self.open_ai_endpoint = open_ai_custom_url <add> else: <add> raise ValueError("Either open_ai_service or open_ai_custom_url must be provided")
<s>.embeddings class AzureOpenAIEmbeddingService(OpenAIEmbeddings): def __init__( self, open_ai_service: Union[str, None], open_ai_deployment: Union[str, None], open_ai_model_name: str, open_ai_dimensions: int, credential: Union[AsyncTokenCredential, AzureKeyCredential], + open_ai_custom_url: Union[str, None] = None, disable_batch: bool = False, ): <0> super().__init__(open_ai_model_name, open_ai_dimensions, disable_batch) <1> self.open_ai_service = open_ai_service <2> self.open_ai_deployment = open_ai_deployment <3> self.credential = credential <4>
===========unchanged ref 0=========== at: app.backend.prepdocslib.embeddings.OpenAIEmbeddings SUPPORTED_BATCH_AOAI_MODEL = { "text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}, "text-embedding-3-small": {"token_limit": 8100, "max_batch_size": 16}, "text-embedding-3-large": {"token_limit": 8100, "max_batch_size": 16}, } SUPPORTED_DIMENSIONS_MODEL = { "text-embedding-ada-002": False, "text-embedding-3-small": True, "text-embedding-3-large": True, } __init__(self, open_ai_model_name: str, open_ai_dimensions: int, disable_batch: bool=False) __init__(open_ai_model_name: str, open_ai_dimensions: int, disable_batch: bool=False) ===========changed ref 0=========== # module: tests.test_app_config @pytest.fixture def minimal_env(monkeypatch): with mock.patch.dict(os.environ, clear=True): monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") + monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service") monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") yield ===========changed ref 1=========== <s>: AsyncTokenCredential, openai_host: str, openai_model_name: str, openai_service: Union[str, None], + openai_custom_url: Union[str, None], openai_deployment: Union[str, None], openai_dimensions: int, openai_key: Union[str, None], openai_org: Union[str, None], disable_vectors: bool = False, disable_batch_vectors: bool = False, ): if disable_vectors: logger.info("Not setting up embeddings service") return None if openai_host != "openai": azure_open_ai_credential: Union[AsyncTokenCredential, AzureKeyCredential] = ( azure_credential if openai_key is None else AzureKeyCredential(openai_key) ) return AzureOpenAIEmbeddingService( open_ai_service=openai_service, + open_ai_custom_url=openai_custom_url, open_ai_deployment=openai_deployment, open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=azure_open_ai_credential, disable_batch=disable_batch_vectors, ) else: if openai_key is None: raise ValueError("OpenAI key is required when using the non-Azure OpenAI API") return OpenAIEmbeddingService( open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=openai_key, organization=openai_org, disable_batch=disable_batch_vectors, ) ===========changed ref 2=========== # module: app.backend.prepdocs if __name__ == "__main__": parser = argparse.ArgumentParser( description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.", epilog="Example: prepdocs.py '.\\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v", ) parser.add_argument("files", nargs="?", help="Files to be processed") parser.add_argument( "--datalakestorageaccount", required=False, help="Optional. Azure Data Lake Storage Gen2 Account name" ) parser.add_argument( "--datalakefilesystem", required=False, default="gptkbcontainer", help="Optional. Azure Data Lake Storage Gen2 filesystem name", ) parser.add_argument( "--datalakepath", required=False, help="Optional. Azure Data Lake Storage Gen2 filesystem path containing files to index. If omitted, index the entire filesystem", ) parser.add_argument( "--datalakekey", required=False, help="Optional. Use this key when authenticating to Azure Data Lake Gen2" ) parser.add_argument( "--useacls", action="store_true", help="Store ACLs from Azure Data Lake Gen2 Filesystem in the search index" ) parser.add_argument( "--category", help="Value for the category field in the search index for all sections indexed in this run" ) parser.add_argument( "--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage" ) parser.add_argument("--storageaccount", help="Azure Blob Storage account name") parser.add_argument("--container", help="Azure Blob Storage container name") parser.add_argument("--storageresourcegroup", help="Azure blob storage resource group") parser.add_argument( "--storagekey", required=False, help="Optional. Use this Azure Blob</s> ===========changed ref 3=========== # module: app.backend.prepdocs # offset: 1 <s> parser.add_argument( "--storagekey", required=False, help="Optional. Use this Azure Blob Storage account key instead of the current user identity to login (use az login to set current user for Azure)", ) parser.add_argument( "--tenantid", required=False, help="Optional. Use this to define the Azure directory where to authenticate)" ) parser.add_argument( "--subscriptionid", required=False, help="Optional. Use this to define managed identity connection string in integrated vectorization", ) parser.add_argument( "--searchservice", help="Name of the Azure AI Search service where content should be indexed (must exist already)", ) parser.add_argument( "--searchserviceassignedid", required=False, help="Search service system assigned Identity (Managed identity) (used for integrated vectorization)", ) parser.add_argument( "--index", help="Name of the Azure AI Search index where content should be indexed (will be created if it doesn't exist)", ) parser.add_argument( "--searchkey", required=False, help="Optional. Use this Azure AI Search account key instead of the current user identity to login (use az login to set current user for Azure)", ) parser.add_argument( "--searchanalyzername", required=False, default="en.microsoft", help="Optional. Name of the Azure AI Search analyzer to use for the content field in the index", ) parser.add_argument("--openaihost", help="Host of the API used to compute embeddings ('azure' or 'openai')") parser.add_argument("--openaiservice", help="Name of the Azure OpenAI service used to compute embeddings") parser.add_argument( "--openaideployment", help="Name of the Azure</s>
app.backend.prepdocslib.embeddings/AzureOpenAIEmbeddingService.create_client
Modified
Azure-Samples~azure-search-openai-demo
28536f612eeb486d6ff67a20aaf42395a2eb22f6
Support use of AzureOpenAI proxy by prepdocs (#1760)
<15>:<add> azure_endpoint=self.open_ai_endpoint, <del> azure_endpoint=f"https://{self.open_ai_service}.openai.azure.com",
# module: app.backend.prepdocslib.embeddings class AzureOpenAIEmbeddingService(OpenAIEmbeddings): def create_client(self) -> AsyncOpenAI: <0> class AuthArgs(TypedDict, total=False): <1> api_key: str <2> azure_ad_token_provider: Callable[[], Union[str, Awaitable[str]]] <3> <4> auth_args = AuthArgs() <5> if isinstance(self.credential, AzureKeyCredential): <6> auth_args["api_key"] = self.credential.key <7> elif isinstance(self.credential, AsyncTokenCredential): <8> auth_args["azure_ad_token_provider"] = get_bearer_token_provider( <9> self.credential, "https://cognitiveservices.azure.com/.default" <10> ) <11> else: <12> raise TypeError("Invalid credential type") <13> <14> return AsyncAzureOpenAI( <15> azure_endpoint=f"https://{self.open_ai_service}.openai.azure.com", <16> azure_deployment=self.open_ai_deployment, <17> api_version="2023-05-15", <18> **auth_args, <19> ) <20>
===========unchanged ref 0=========== at: app.backend.prepdocslib.embeddings.OpenAIEmbeddings create_client(self) -> AsyncOpenAI at: typing Awaitable = _alias(collections.abc.Awaitable, 1) Callable = _CallableType(collections.abc.Callable, 2) ===========changed ref 0=========== <s>.embeddings class AzureOpenAIEmbeddingService(OpenAIEmbeddings): def __init__( self, open_ai_service: Union[str, None], open_ai_deployment: Union[str, None], open_ai_model_name: str, open_ai_dimensions: int, credential: Union[AsyncTokenCredential, AzureKeyCredential], + open_ai_custom_url: Union[str, None] = None, disable_batch: bool = False, ): super().__init__(open_ai_model_name, open_ai_dimensions, disable_batch) self.open_ai_service = open_ai_service + if open_ai_service: + self.open_ai_endpoint = f"https://{open_ai_service}.openai.azure.com" + elif open_ai_custom_url: + self.open_ai_endpoint = open_ai_custom_url + else: + raise ValueError("Either open_ai_service or open_ai_custom_url must be provided") self.open_ai_deployment = open_ai_deployment self.credential = credential ===========changed ref 1=========== # module: tests.test_app_config @pytest.fixture def minimal_env(monkeypatch): with mock.patch.dict(os.environ, clear=True): monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") + monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service") monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") yield ===========changed ref 2=========== <s>: AsyncTokenCredential, openai_host: str, openai_model_name: str, openai_service: Union[str, None], + openai_custom_url: Union[str, None], openai_deployment: Union[str, None], openai_dimensions: int, openai_key: Union[str, None], openai_org: Union[str, None], disable_vectors: bool = False, disable_batch_vectors: bool = False, ): if disable_vectors: logger.info("Not setting up embeddings service") return None if openai_host != "openai": azure_open_ai_credential: Union[AsyncTokenCredential, AzureKeyCredential] = ( azure_credential if openai_key is None else AzureKeyCredential(openai_key) ) return AzureOpenAIEmbeddingService( open_ai_service=openai_service, + open_ai_custom_url=openai_custom_url, open_ai_deployment=openai_deployment, open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=azure_open_ai_credential, disable_batch=disable_batch_vectors, ) else: if openai_key is None: raise ValueError("OpenAI key is required when using the non-Azure OpenAI API") return OpenAIEmbeddingService( open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=openai_key, organization=openai_org, disable_batch=disable_batch_vectors, ) ===========changed ref 3=========== # module: app.backend.prepdocs if __name__ == "__main__": parser = argparse.ArgumentParser( description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.", epilog="Example: prepdocs.py '.\\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v", ) parser.add_argument("files", nargs="?", help="Files to be processed") parser.add_argument( "--datalakestorageaccount", required=False, help="Optional. Azure Data Lake Storage Gen2 Account name" ) parser.add_argument( "--datalakefilesystem", required=False, default="gptkbcontainer", help="Optional. Azure Data Lake Storage Gen2 filesystem name", ) parser.add_argument( "--datalakepath", required=False, help="Optional. Azure Data Lake Storage Gen2 filesystem path containing files to index. If omitted, index the entire filesystem", ) parser.add_argument( "--datalakekey", required=False, help="Optional. Use this key when authenticating to Azure Data Lake Gen2" ) parser.add_argument( "--useacls", action="store_true", help="Store ACLs from Azure Data Lake Gen2 Filesystem in the search index" ) parser.add_argument( "--category", help="Value for the category field in the search index for all sections indexed in this run" ) parser.add_argument( "--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage" ) parser.add_argument("--storageaccount", help="Azure Blob Storage account name") parser.add_argument("--container", help="Azure Blob Storage container name") parser.add_argument("--storageresourcegroup", help="Azure blob storage resource group") parser.add_argument( "--storagekey", required=False, help="Optional. Use this Azure Blob</s> ===========changed ref 4=========== # module: app.backend.prepdocs # offset: 1 <s> parser.add_argument( "--storagekey", required=False, help="Optional. Use this Azure Blob Storage account key instead of the current user identity to login (use az login to set current user for Azure)", ) parser.add_argument( "--tenantid", required=False, help="Optional. Use this to define the Azure directory where to authenticate)" ) parser.add_argument( "--subscriptionid", required=False, help="Optional. Use this to define managed identity connection string in integrated vectorization", ) parser.add_argument( "--searchservice", help="Name of the Azure AI Search service where content should be indexed (must exist already)", ) parser.add_argument( "--searchserviceassignedid", required=False, help="Search service system assigned Identity (Managed identity) (used for integrated vectorization)", ) parser.add_argument( "--index", help="Name of the Azure AI Search index where content should be indexed (will be created if it doesn't exist)", ) parser.add_argument( "--searchkey", required=False, help="Optional. Use this Azure AI Search account key instead of the current user identity to login (use az login to set current user for Azure)", ) parser.add_argument( "--searchanalyzername", required=False, default="en.microsoft", help="Optional. Name of the Azure AI Search analyzer to use for the content field in the index", ) parser.add_argument("--openaihost", help="Host of the API used to compute embeddings ('azure' or 'openai')") parser.add_argument("--openaiservice", help="Name of the Azure OpenAI service used to compute embeddings") parser.add_argument( "--openaideployment", help="Name of the Azure</s>
tests.e2e/run_server
Modified
Azure-Samples~azure-search-openai-demo
28536f612eeb486d6ff67a20aaf42395a2eb22f6
Support use of AzureOpenAI proxy by prepdocs (#1760)
<13>:<add> "AZURE_OPENAI_SERVICE": "test-openai-service",
# module: tests.e2e def run_server(port: int): <0> with mock.patch.dict( <1> os.environ, <2> { <3> "AZURE_STORAGE_ACCOUNT": "test-storage-account", <4> "AZURE_STORAGE_CONTAINER": "test-storage-container", <5> "AZURE_STORAGE_RESOURCE_GROUP": "test-storage-rg", <6> "AZURE_SUBSCRIPTION_ID": "test-storage-subid", <7> "USE_SPEECH_INPUT_BROWSER": "false", <8> "USE_SPEECH_OUTPUT_AZURE": "false", <9> "AZURE_SEARCH_INDEX": "test-search-index", <10> "AZURE_SEARCH_SERVICE": "test-search-service", <11> "AZURE_SPEECH_SERVICE_ID": "test-id", <12> "AZURE_SPEECH_SERVICE_LOCATION": "eastus", <13> "AZURE_OPENAI_CHATGPT_MODEL": "gpt-35-turbo", <14> }, <15> clear=True, <16> ): <17> uvicorn.run(app.create_app(), port=port) <18>
===========changed ref 0=========== <s>.embeddings class AzureOpenAIEmbeddingService(OpenAIEmbeddings): def __init__( self, open_ai_service: Union[str, None], open_ai_deployment: Union[str, None], open_ai_model_name: str, open_ai_dimensions: int, credential: Union[AsyncTokenCredential, AzureKeyCredential], + open_ai_custom_url: Union[str, None] = None, disable_batch: bool = False, ): super().__init__(open_ai_model_name, open_ai_dimensions, disable_batch) self.open_ai_service = open_ai_service + if open_ai_service: + self.open_ai_endpoint = f"https://{open_ai_service}.openai.azure.com" + elif open_ai_custom_url: + self.open_ai_endpoint = open_ai_custom_url + else: + raise ValueError("Either open_ai_service or open_ai_custom_url must be provided") self.open_ai_deployment = open_ai_deployment self.credential = credential ===========changed ref 1=========== # module: tests.test_app_config @pytest.fixture def minimal_env(monkeypatch): with mock.patch.dict(os.environ, clear=True): monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account") monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container") monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index") monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service") + monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service") monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo") yield ===========changed ref 2=========== # module: app.backend.prepdocslib.embeddings class AzureOpenAIEmbeddingService(OpenAIEmbeddings): def create_client(self) -> AsyncOpenAI: class AuthArgs(TypedDict, total=False): api_key: str azure_ad_token_provider: Callable[[], Union[str, Awaitable[str]]] auth_args = AuthArgs() if isinstance(self.credential, AzureKeyCredential): auth_args["api_key"] = self.credential.key elif isinstance(self.credential, AsyncTokenCredential): auth_args["azure_ad_token_provider"] = get_bearer_token_provider( self.credential, "https://cognitiveservices.azure.com/.default" ) else: raise TypeError("Invalid credential type") return AsyncAzureOpenAI( + azure_endpoint=self.open_ai_endpoint, - azure_endpoint=f"https://{self.open_ai_service}.openai.azure.com", azure_deployment=self.open_ai_deployment, api_version="2023-05-15", **auth_args, ) ===========changed ref 3=========== <s>: AsyncTokenCredential, openai_host: str, openai_model_name: str, openai_service: Union[str, None], + openai_custom_url: Union[str, None], openai_deployment: Union[str, None], openai_dimensions: int, openai_key: Union[str, None], openai_org: Union[str, None], disable_vectors: bool = False, disable_batch_vectors: bool = False, ): if disable_vectors: logger.info("Not setting up embeddings service") return None if openai_host != "openai": azure_open_ai_credential: Union[AsyncTokenCredential, AzureKeyCredential] = ( azure_credential if openai_key is None else AzureKeyCredential(openai_key) ) return AzureOpenAIEmbeddingService( open_ai_service=openai_service, + open_ai_custom_url=openai_custom_url, open_ai_deployment=openai_deployment, open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=azure_open_ai_credential, disable_batch=disable_batch_vectors, ) else: if openai_key is None: raise ValueError("OpenAI key is required when using the non-Azure OpenAI API") return OpenAIEmbeddingService( open_ai_model_name=openai_model_name, open_ai_dimensions=openai_dimensions, credential=openai_key, organization=openai_org, disable_batch=disable_batch_vectors, ) ===========changed ref 4=========== # module: app.backend.prepdocs if __name__ == "__main__": parser = argparse.ArgumentParser( description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.", epilog="Example: prepdocs.py '.\\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v", ) parser.add_argument("files", nargs="?", help="Files to be processed") parser.add_argument( "--datalakestorageaccount", required=False, help="Optional. Azure Data Lake Storage Gen2 Account name" ) parser.add_argument( "--datalakefilesystem", required=False, default="gptkbcontainer", help="Optional. Azure Data Lake Storage Gen2 filesystem name", ) parser.add_argument( "--datalakepath", required=False, help="Optional. Azure Data Lake Storage Gen2 filesystem path containing files to index. If omitted, index the entire filesystem", ) parser.add_argument( "--datalakekey", required=False, help="Optional. Use this key when authenticating to Azure Data Lake Gen2" ) parser.add_argument( "--useacls", action="store_true", help="Store ACLs from Azure Data Lake Gen2 Filesystem in the search index" ) parser.add_argument( "--category", help="Value for the category field in the search index for all sections indexed in this run" ) parser.add_argument( "--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage" ) parser.add_argument("--storageaccount", help="Azure Blob Storage account name") parser.add_argument("--container", help="Azure Blob Storage container name") parser.add_argument("--storageresourcegroup", help="Azure blob storage resource group") parser.add_argument( "--storagekey", required=False, help="Optional. Use this Azure Blob</s>
tests.e2e/test_home
Modified
Azure-Samples~azure-search-openai-demo
1603e94b021ea64f15ce7cb87ce1de42904d556d
CSS changes for responsive design (#1646)
<1>:<add> expect(page).to_have_title("Azure OpenAI + AI Search") <del> expect(page).to_have_title("GPT + Enterprise data | Sample")
# module: tests.e2e def test_home(page: Page, live_server_url: str): <0> page.goto(live_server_url) <1> expect(page).to_have_title("GPT + Enterprise data | Sample") <2>
===========unchanged ref 0=========== at: _pytest.fixtures fixture(fixture_function: FixtureFunction, *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[ Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]] ]=..., name: Optional[str]=...) -> FixtureFunction fixture(fixture_function: None=..., *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[ Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]] ]=..., name: Optional[str]=None) -> FixtureFunctionMarker
tests.e2e/test_chat
Modified
Azure-Samples~azure-search-openai-demo
1603e94b021ea64f15ce7cb87ce1de42904d556d
CSS changes for responsive design (#1646)
<0>:<add> page = sized_page <add> <15>:<add> expect(page).to_have_title("Azure OpenAI + AI Search") <del> expect(page).to_have_title("GPT + Enterprise data | Sample")
# module: tests.e2e + def test_chat(sized_page: Page, live_server_url: str): - def test_chat(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint with streaming results <1> def handle(route: Route): <2> # Assert that session_state is specified in the request (None for now) <3> session_state = route.request.post_data_json["session_state"] <4> assert session_state is None <5> # Read the JSONL from our snapshot results and return as the response <6> f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") <7> jsonl = f.read() <8> f.close() <9> route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) <10> <11> page.route("*/**/chat/stream", handle) <12> <13> # Check initial page state <14> page.goto(live_server_url) <15> expect(page).to_have_title("GPT + Enterprise data | Sample") <16> expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() <17> expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() <18> expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() <19> <20> # Ask a question and wait for the message to appear <21> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() <22> page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( <23> "Whats the dental plan?" <24> ) <25> page.get_by_role("button", name="Submit question").click() <26> <27> expect(page.get_by_text("Whats the dental plan?")).to</s>
===========below chunk 0=========== # module: tests.e2e + def test_chat(sized_page: Page, live_server_url: str): - def test_chat(page: Page, live_server_url: str): # offset: 1 expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() ===========unchanged ref 0=========== at: io.BufferedReader close(self) -> None at: io.FileIO read(self, size: int=..., /) -> bytes at: typing.IO __slots__ = () close() -> None read(n: int=...) -> AnyStr ===========changed ref 0=========== # module: tests.e2e + @pytest.fixture(params=[(480, 800), (600, 1024), (768, 1024), (992, 1024), (1024, 768)]) + def sized_page(page: Page, request): + size = request.param + page.set_viewport_size({"width": size[0], "height": size[1]}) + yield page + ===========changed ref 1=========== # module: tests.e2e def test_home(page: Page, live_server_url: str): page.goto(live_server_url) + expect(page).to_have_title("Azure OpenAI + AI Search") - expect(page).to_have_title("GPT + Enterprise data | Sample")
tests.e2e/test_chat_customization
Modified
Azure-Samples~azure-search-openai-demo
1603e94b021ea64f15ce7cb87ce1de42904d556d
CSS changes for responsive design (#1646)
<22>:<add> expect(page).to_have_title("Azure OpenAI + AI Search") <del> expect(page).to_have_title("GPT + Enterprise data | Sample")
# module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): <0> # Set up a mock route to the /chat endpoint <1> def handle(route: Route): <2> overrides = route.request.post_data_json["context"]["overrides"] <3> assert overrides["retrieval_mode"] == "vectors" <4> assert overrides["semantic_ranker"] is False <5> assert overrides["semantic_captions"] is True <6> assert overrides["top"] == 1 <7> assert overrides["prompt_template"] == "You are a cat and only talk about tuna." <8> assert overrides["exclude_category"] == "dogs" <9> assert overrides["use_oid_security_filter"] is False <10> assert overrides["use_groups_security_filter"] is False <11> <12> # Read the JSON from our snapshot results and return as the response <13> f = open("tests/snapshots/test_app/test_chat_text/client0/result.json") <14> json = f.read() <15> f.close() <16> route.fulfill(body=json, status=200) <17> <18> page.route("*/**/chat", handle) <19> <20> # Check initial page state <21> page.goto(live_server_url) <22> expect(page).to_have_title("GPT + Enterprise data | Sample") <23> <24> # Customize all the settings <25> page.get_by_role("button", name="Developer settings").click() <26> page.get_by_label("Override prompt template").click() <27> page.get_by_label("Override prompt template").fill("You are a cat and only talk about tuna.") <28> page.get_by_label("Retrieve this many search results:").click() <29> page.get_by_label("Retrieve this many search results:").fill("1") <30> page.get_by_label("Exclude category").click() <31> page.get_by_label("Exclude category").fill("dogs") <32> page.get_by_text("Use semantic captions").click() <33> </s>
===========below chunk 0=========== # module: tests.e2e def test_chat_customization(page: Page, live_server_url: str): # offset: 1 page.get_by_text("Vectors + Text (Hybrid)").click() page.get_by_role("option", name="Vectors", exact=True).click() page.get_by_text("Stream chat completion responses").click() page.locator("button").filter(has_text="Close").click() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() ===========unchanged ref 0=========== at: io.BufferedWriter read(self, size: Optional[int]=..., /) -> bytes at: io.FileIO close(self) -> None at: tests.e2e.test_chat page = sized_page at: typing.IO close() -> None read(n: int=...) -> AnyStr ===========changed ref 0=========== # module: tests.e2e + @pytest.fixture(params=[(480, 800), (600, 1024), (768, 1024), (992, 1024), (1024, 768)]) + def sized_page(page: Page, request): + size = request.param + page.set_viewport_size({"width": size[0], "height": size[1]}) + yield page + ===========changed ref 1=========== # module: tests.e2e def test_home(page: Page, live_server_url: str): page.goto(live_server_url) + expect(page).to_have_title("Azure OpenAI + AI Search") - expect(page).to_have_title("GPT + Enterprise data | Sample") ===========changed ref 2=========== # module: tests.e2e + def test_chat(sized_page: Page, live_server_url: str): - def test_chat(page: Page, live_server_url: str): + page = sized_page + # Set up a mock route to the /chat endpoint with streaming results def handle(route: Route): # Assert that session_state is specified in the request (None for now) session_state = route.request.post_data_json["session_state"] assert session_state is None # Read the JSONL from our snapshot results and return as the response f = open("tests/snapshots/test_app/test_chat_stream_text/client0/result.jsonlines") jsonl = f.read() f.close() route.fulfill(body=jsonl, status=200, headers={"Transfer-encoding": "Chunked"}) page.route("*/**/chat/stream", handle) # Check initial page state page.goto(live_server_url) + expect(page).to_have_title("Azure OpenAI + AI Search") - expect(page).to_have_title("GPT + Enterprise data | Sample") expect(page.get_by_role("heading", name="Chat with your data")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_disabled() expect(page.get_by_role("button", name="Developer settings")).to_be_enabled() # Ask a question and wait for the message to appear page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").click() page.get_by_placeholder("Type a new question (e.g. does my plan cover annual eye exams?)").fill( "Whats the dental plan?" ) page.get_by_role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental</s> ===========changed ref 3=========== # module: tests.e2e + def test_chat(sized_page: Page, live_server_url: str): - def test_chat(page: Page, live_server_url: str): # offset: 1 <s>role("button", name="Submit question").click() expect(page.get_by_text("Whats the dental plan?")).to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).to_be_visible() expect(page.get_by_role("button", name="Clear chat")).to_be_enabled() # Show the citation document page.get_by_text("1. Benefit_Options-2.pdf").click() expect(page.get_by_role("tab", name="Citation")).to_be_visible() expect(page.get_by_title("Citation")).to_be_visible() # Show the thought process page.get_by_label("Show thought process").click() expect(page.get_by_title("Thought process")).to_be_visible() expect(page.get_by_text("Generated search query")).to_be_visible() # Show the supporting content page.get_by_label("Show supporting content").click() expect(page.get_by_title("Supporting content")).to_be_visible() expect(page.get_by_role("heading", name="Benefit_Options-2.pdf")).to_be_visible() # Clear the chat page.get_by_role("button", name="Clear chat").click() expect(page.get_by_text("Whats the dental plan?")).not_to_be_visible() expect(page.get_by_text("The capital of France is Paris.")).not_to_be_visible() expect(page.get