path
stringlengths 9
117
| type
stringclasses 2
values | project
stringclasses 10
values | commit_hash
stringlengths 40
40
| commit_message
stringlengths 1
137
| ground_truth
stringlengths 0
2.74k
| main_code
stringlengths 102
3.37k
| context
stringlengths 0
14.7k
|
---|---|---|---|---|---|---|---|
app.backend.app/ensure_openai_token
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9da71efaebcb92ab6d73546f303e34f772088534
|
Port to Quart (#503)
|
<2>:<add> openai_token = await current_app.config[CONFIG_CREDENTIAL].get_token("https://cognitiveservices.azure.com/.default")
<del> openai_token = current_app.config[CONFIG_CREDENTIAL].get_token("https://cognitiveservices.azure.com/.default")
|
# module: app.backend.app
@bp.before_request
+ async def ensure_openai_token():
- def ensure_openai_token():
<0> openai_token = current_app.config[CONFIG_OPENAI_TOKEN]
<1> if openai_token.expires_on < time.time() + 60:
<2> openai_token = current_app.config[CONFIG_CREDENTIAL].get_token("https://cognitiveservices.azure.com/.default")
<3> current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
<4> openai.api_key = openai_token.token
<5>
|
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
bp = Blueprint("routes", __name__, static_folder='static')
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
at: time
time() -> float
===========changed ref 0===========
# module: app.backend.app
@bp.route("/assets/<path:path>")
+ async def assets(path):
- def assets(path):
+ return await send_from_directory("static/assets", path)
- return send_from_directory("static/assets", path)
===========changed ref 1===========
# module: app.backend.app
@bp.route("/favicon.ico")
+ async def favicon():
- def favicon():
+ return await bp.send_static_file("favicon.ico")
- return bp.send_static_file("favicon.ico")
===========changed ref 2===========
# module: app.backend.app
@bp.route("/")
+ async def index():
- def index():
+ return await bp.send_static_file("index.html")
- return bp.send_static_file("index.html")
===========changed ref 3===========
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
+ async def chat():
- def chat():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
+ request_json = await request.get_json()
+ approach = request_json["approach"]
- approach = request.json["approach"]
try:
impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
+ r = await impl.run(request_json["history"], request_json.get("overrides") or {})
- r = impl.run(request.json["history"], request.json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /chat")
return jsonify({"error": str(e)}), 500
===========changed ref 4===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
+ async def ask():
- def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
+ request_json = await request.get_json()
+ approach = request_json["approach"]
- approach = request.json["approach"]
try:
impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
+ r = await impl.run(request_json["question"], request_json.get("overrides") or {})
- r = impl.run(request.json["question"], request.json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
===========changed ref 5===========
# module: app.backend.app
# Serve content files from blob storage from within the app to keep the example self-contained.
# *** NOTE *** this assumes that the content files are public, or at least that all users of the app
# can access all the files. This is also slow and memory hungry.
@bp.route("/content/<path>")
+ async def content_file(path):
- def content_file(path):
blob_container = current_app.config[CONFIG_BLOB_CLIENT].get_container_client(AZURE_STORAGE_CONTAINER)
+ blob = await blob_container.get_blob_client(path).download_blob()
- blob = blob_container.get_blob_client(path).download_blob()
if not blob.properties or not blob.properties.has_key("content_settings"):
abort(404)
mime_type = blob.properties["content_settings"]["content_type"]
if mime_type == "application/octet-stream":
mime_type = mimetypes.guess_type(path)[0] or "application/octet-stream"
blob_file = io.BytesIO()
+ await blob.readinto(blob_file)
- blob.readinto(blob_file)
blob_file.seek(0)
+ return await send_file(blob_file, mimetype=mime_type, as_attachment=False, attachment_filename=path)
- return send_file(blob_file, mimetype=mime_type, as_attachment=False, download_name=path)
===========changed ref 6===========
+ # module: app.backend.approaches
+
+
===========changed ref 7===========
# module: app.backend.approaches.approach
+ class AskApproach(ABC):
+ @abstractmethod
+ async def run(self, q: str, overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 8===========
# module: app.backend.approaches.approach
+ class ChatApproach(ABC):
+ @abstractmethod
+ async def run(self, history: list[dict], overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 9===========
# module: app.backend.approaches.approach
- class Approach:
- def run(self, q: str, overrides: dict[str, Any]) -> Any:
- raise NotImplementedError
-
===========changed ref 10===========
+ # module: app.backend.main
+ app = create_app()
+
===========changed ref 11===========
# module: tests.conftest
- @pytest.fixture()
- def runner(app):
- return app.test_cli_runner()
-
===========changed ref 12===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_index(client):
- def test_index(client):
+ response = await client.get("/")
- response = client.get("/")
assert response.status_code == 200
===========changed ref 13===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_with_unknown_approach(client):
- def test_chat_with_unknown_approach(client):
+ response = await client.post("/chat", json={"approach": "test"})
- response = client.post("/chat", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 14===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_ask_with_unknown_approach(client):
- def test_ask_with_unknown_approach(client):
+ response = await client.post("/ask", json={"approach": "test"})
- response = client.post("/ask", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 15===========
# module: app.backend.core.modelhelper
def get_token_limit(model_id: str) -> int:
if model_id not in MODELS_2_TOKEN_LIMITS:
raise ValueError("Expected model gpt-35-turbo and above")
+ return MODELS_2_TOKEN_LIMITS[model_id]
- return MODELS_2_TOKEN_LIMITS.get(model_id)
===========changed ref 16===========
# module: tests.conftest
+ @pytest_asyncio.fixture
- @pytest.fixture()
+ async def client():
- def client(app):
+ # mock the DefaultAzureCredential
+ with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
+ mock_default_azure_credential.return_value = MockAzureCredential()
+ quart_app = app.create_app()
- return app.test_client()
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9da71efaebcb92ab6d73546f303e34f772088534
|
Port to Quart (#503)
|
<0>:<add> app = Quart(__name__)
<del> app = Flask(__name__)
<1>:<del>
<2>:<del> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<3>:<del> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<4>:<del> # keys for each service
<5>:<del> # If you encounter a blocking error during a DefaultAzureCredntial resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<6>:<del> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
<7>:<del>
<8>:<del> # Set up clients for Cognitive Search and Storage
<9>:<del> search_client = SearchClient(
<10>:<del> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
<11>:<del> index_name=AZURE_SEARCH_INDEX,
<12>:<del> credential=azure_credential)
<13>:<del> blob_client = BlobServiceClient(
<14>:<del> account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
<15>:<del> credential=azure_credential)
<16>:<del>
<17>:<del> # Used by the OpenAI SDK
<18>:<del> openai.api_type = "azure"
<19>:<del> openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
<20>:<del> openai.api_version = "2023-05-15"
<21>:<del>
<22>:<del> # Comment these two lines out if using keys, set your API key in the OPENAI_API_KEY environment variable instead
<23>:<del> openai.api_type = "azure_ad"
<24>:<del> openai_token = azure_credential.get_token(
<25>:<del> "https://cognitiveservices.azure.com/.default"
<26>:<del> )
<27>:<del> openai.api_key = openai_token.token
<28>:<del>
<29>:<del> # Store on app.config for later use inside requests
<30>:<del> app.config[CONFIG_OPENAI_TOKEN] = openai_token
<31>:<del> app.config[CONFIG_CREDENTIAL] = azure_credential
|
# module: app.backend.app
def create_app():
<0> app = Flask(__name__)
<1>
<2> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<3> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<4> # keys for each service
<5> # If you encounter a blocking error during a DefaultAzureCredntial resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<6> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
<7>
<8> # Set up clients for Cognitive Search and Storage
<9> search_client = SearchClient(
<10> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
<11> index_name=AZURE_SEARCH_INDEX,
<12> credential=azure_credential)
<13> blob_client = BlobServiceClient(
<14> account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
<15> credential=azure_credential)
<16>
<17> # Used by the OpenAI SDK
<18> openai.api_type = "azure"
<19> openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
<20> openai.api_version = "2023-05-15"
<21>
<22> # Comment these two lines out if using keys, set your API key in the OPENAI_API_KEY environment variable instead
<23> openai.api_type = "azure_ad"
<24> openai_token = azure_credential.get_token(
<25> "https://cognitiveservices.azure.com/.default"
<26> )
<27> openai.api_key = openai_token.token
<28>
<29> # Store on app.config for later use inside requests
<30> app.config[CONFIG_OPENAI_TOKEN] = openai_token
<31> app.config[CONFIG_CREDENTIAL] = azure_credential
</s>
|
===========below chunk 0===========
# module: app.backend.app
def create_app():
# offset: 1
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rrr": ReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_GPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rda": ReadDecomposeAsk(search_client,
AZURE_OPENAI_GPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
)
}
app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
app.register_blueprint(bp)
return app
===========unchanged ref 0===========
at: app.backend.app
AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
AZURE_OPENAI_GPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT", "davinci")
AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CLIENT = "blob_client"
bp = Blueprint("routes", __name__, static_folder='static')
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
===========unchanged ref 1===========
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
===========changed ref 0===========
# module: app.backend.app
@bp.route("/assets/<path:path>")
+ async def assets(path):
- def assets(path):
+ return await send_from_directory("static/assets", path)
- return send_from_directory("static/assets", path)
===========changed ref 1===========
# module: app.backend.app
@bp.route("/favicon.ico")
+ async def favicon():
- def favicon():
+ return await bp.send_static_file("favicon.ico")
- return bp.send_static_file("favicon.ico")
===========changed ref 2===========
# module: app.backend.app
@bp.route("/")
+ async def index():
- def index():
+ return await bp.send_static_file("index.html")
- return bp.send_static_file("index.html")
===========changed ref 3===========
# module: app.backend.app
@bp.before_request
+ async def ensure_openai_token():
- def ensure_openai_token():
openai_token = current_app.config[CONFIG_OPENAI_TOKEN]
if openai_token.expires_on < time.time() + 60:
+ openai_token = await current_app.config[CONFIG_CREDENTIAL].get_token("https://cognitiveservices.azure.com/.default")
- openai_token = current_app.config[CONFIG_CREDENTIAL].get_token("https://cognitiveservices.azure.com/.default")
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
openai.api_key = openai_token.token
===========changed ref 4===========
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
+ async def chat():
- def chat():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
+ request_json = await request.get_json()
+ approach = request_json["approach"]
- approach = request.json["approach"]
try:
impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
+ r = await impl.run(request_json["history"], request_json.get("overrides") or {})
- r = impl.run(request.json["history"], request.json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /chat")
return jsonify({"error": str(e)}), 500
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.search
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9da71efaebcb92ab6d73546f303e34f772088534
|
Port to Quart (#503)
|
<9>:<add> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
<del> query_vector = openai.Embedding.create(engine=self.embedding_deployment, input=query_text)["data"][0]["embedding"]
<15>:<add> query_text = ""
<del> query_text = None
<18>:<add> r = await self.search_client.search(query_text,
<del> r = self.search_client.search(query_text,
|
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> str:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> query_vector = openai.Embedding.create(engine=self.embedding_deployment, input=query_text)["data"][0]["embedding"]
<10> else:
<11> query_vector = None
<12>
<13> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<14> if not has_text:
<15> query_text = None
<16>
<17> if overrides.get("semantic_ranker") and has_text:
<18> r = self.search_client.search(query_text,
<19> filter=filter,
<20> query_type=QueryType.SEMANTIC,
<21> query_language="en-us",
<22> query_speller="lexicon",
<23> semantic_configuration_name="default",
<24> top=top,
<25> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<26> vector=query_vector,
<27> top_k=50 if query_vector else None,
<28> vector</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> str:
# offset: 1
else:
r = self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
self.results = [doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc['@search.captions'] ])) for doc in r]
else:
self.results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) for doc in r]
return "\n".join(self.results)
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.search_client = search_client
self.embedding_deployment = embedding_deployment
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
+ # module: app.backend.approaches
+
+
===========changed ref 1===========
# module: app.backend.approaches.approach
+ class AskApproach(ABC):
+ @abstractmethod
+ async def run(self, q: str, overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 2===========
# module: app.backend.approaches.approach
+ class ChatApproach(ABC):
+ @abstractmethod
+ async def run(self, history: list[dict], overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 3===========
# module: app.backend.approaches.approach
- class Approach:
- def run(self, q: str, overrides: dict[str, Any]) -> Any:
- raise NotImplementedError
-
===========changed ref 4===========
+ # module: app.backend.main
+ app = create_app()
+
===========changed ref 5===========
# module: tests.conftest
- @pytest.fixture()
- def runner(app):
- return app.test_cli_runner()
-
===========changed ref 6===========
# module: app.backend.app
- if __name__ == "__main__":
- app = create_app()
- app.run()
-
===========changed ref 7===========
# module: app.backend.app
@bp.route("/assets/<path:path>")
+ async def assets(path):
- def assets(path):
+ return await send_from_directory("static/assets", path)
- return send_from_directory("static/assets", path)
===========changed ref 8===========
# module: app.backend.app
@bp.route("/")
+ async def index():
- def index():
+ return await bp.send_static_file("index.html")
- return bp.send_static_file("index.html")
===========changed ref 9===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_index(client):
- def test_index(client):
+ response = await client.get("/")
- response = client.get("/")
assert response.status_code == 200
===========changed ref 10===========
# module: app.backend.app
@bp.route("/favicon.ico")
+ async def favicon():
- def favicon():
+ return await bp.send_static_file("favicon.ico")
- return bp.send_static_file("favicon.ico")
===========changed ref 11===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_with_unknown_approach(client):
- def test_chat_with_unknown_approach(client):
+ response = await client.post("/chat", json={"approach": "test"})
- response = client.post("/chat", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 12===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_ask_with_unknown_approach(client):
- def test_ask_with_unknown_approach(client):
+ response = await client.post("/ask", json={"approach": "test"})
- response = client.post("/ask", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 13===========
# module: app.backend.core.modelhelper
def get_token_limit(model_id: str) -> int:
if model_id not in MODELS_2_TOKEN_LIMITS:
raise ValueError("Expected model gpt-35-turbo and above")
+ return MODELS_2_TOKEN_LIMITS[model_id]
- return MODELS_2_TOKEN_LIMITS.get(model_id)
===========changed ref 14===========
# module: tests.conftest
+ @pytest_asyncio.fixture
- @pytest.fixture()
+ async def client():
- def client(app):
+ # mock the DefaultAzureCredential
+ with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
+ mock_default_azure_credential.return_value = MockAzureCredential()
+ quart_app = app.create_app()
- return app.test_client()
===========changed ref 15===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_request_must_be_json(client):
- def test_chat_request_must_be_json(client):
+ response = await client.post("/chat")
- response = client.post("/chat")
assert response.status_code == 415
+ result = await response.get_json()
+ assert result["error"] == "request must be json"
- assert response.json["error"] == "request must be json"
===========changed ref 16===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_ask_request_must_be_json(client):
- def test_ask_request_must_be_json(client):
+ response = await client.post("/ask")
- response = client.post("/ask")
assert response.status_code == 415
+ result = await response.get_json()
+ assert result["error"] == "request must be json"
- assert response.json["error"] == "request must be json"
===========changed ref 17===========
# module: app.backend.gunicorn.conf
max_requests = 1000
max_requests_jitter = 50
log_file = "-"
bind = "0.0.0.0"
+ timeout = 600
num_cpus = multiprocessing.cpu_count()
workers = (num_cpus * 2) + 1
- threads = 1 if num_cpus == 1 else 2
- timeout = 600
- worker_class = "gthread"
+ worker_class = "uvicorn.workers.UvicornWorker"
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.lookup
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9da71efaebcb92ab6d73546f303e34f772088534
|
Port to Quart (#503)
|
<0>:<add> r = await self.search_client.search(q,
<del> r = self.search_client.search(q,
<10>:<add> answers = await r.get_answers()
<del> answers = r.get_answers()
<13>:<add> if await r.get_count() > 0:
<del> if r.get_count() > 0:
<14>:<add> return "\n".join([d['content'] async for d in r])
<del> return "\n".join(d['content'] for d in r)
|
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def lookup(self, q: str) -> Optional[str]:
- def lookup(self, q: str) -> Optional[str]:
<0> r = self.search_client.search(q,
<1> top = 1,
<2> include_total_count=True,
<3> query_type=QueryType.SEMANTIC,
<4> query_language="en-us",
<5> query_speller="lexicon",
<6> semantic_configuration_name="default",
<7> query_answer="extractive|count-1",
<8> query_caption="extractive|highlight-false")
<9>
<10> answers = r.get_answers()
<11> if answers and len(answers) > 0:
<12> return answers[0].text
<13> if r.get_count() > 0:
<14> return "\n".join(d['content'] for d in r)
<15> return None
<16>
|
===========changed ref 0===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> str:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
top = overrides.get("top") or 3
exclude_category = overrides.get("exclude_category") or None
filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
+ query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
- query_vector = openai.Embedding.create(engine=self.embedding_deployment, input=query_text)["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
+ query_text = ""
- query_text = None
if overrides.get("semantic_ranker") and has_text:
+ r = await self.search_client.search(query_text,
- r = self.search_client.search(query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-</s>
===========changed ref 1===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> str:
# offset: 1
<s>
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
else:
+ r = await self.search_client.search(query_text,
- r = self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
+ results = [doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc['@search.captions'] ])) async for doc in r]
- self.results = [doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc['@search.captions'] ])) for doc in r]
else:
+ results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) async for doc in r]
- self.results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) for doc in r]
+ return results, "\n".join(results)
===========changed ref 2===========
+ # module: app.backend.approaches
+
+
===========changed ref 3===========
# module: app.backend.approaches.approach
+ class AskApproach(ABC):
+ @abstractmethod
+ async def run(self, q: str, overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 4===========
# module: app.backend.approaches.approach
+ class ChatApproach(ABC):
+ @abstractmethod
+ async def run(self, history: list[dict], overrides: dict[str, Any]) -> Any:
+ ...
+
===========changed ref 5===========
# module: app.backend.approaches.approach
- class Approach:
- def run(self, q: str, overrides: dict[str, Any]) -> Any:
- raise NotImplementedError
-
===========changed ref 6===========
+ # module: app.backend.main
+ app = create_app()
+
===========changed ref 7===========
# module: tests.conftest
- @pytest.fixture()
- def runner(app):
- return app.test_cli_runner()
-
===========changed ref 8===========
# module: app.backend.app
- if __name__ == "__main__":
- app = create_app()
- app.run()
-
===========changed ref 9===========
# module: app.backend.app
@bp.route("/assets/<path:path>")
+ async def assets(path):
- def assets(path):
+ return await send_from_directory("static/assets", path)
- return send_from_directory("static/assets", path)
===========changed ref 10===========
# module: app.backend.app
@bp.route("/")
+ async def index():
- def index():
+ return await bp.send_static_file("index.html")
- return bp.send_static_file("index.html")
===========changed ref 11===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_index(client):
- def test_index(client):
+ response = await client.get("/")
- response = client.get("/")
assert response.status_code == 200
===========changed ref 12===========
# module: app.backend.app
@bp.route("/favicon.ico")
+ async def favicon():
- def favicon():
+ return await bp.send_static_file("favicon.ico")
- return bp.send_static_file("favicon.ico")
===========changed ref 13===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_with_unknown_approach(client):
- def test_chat_with_unknown_approach(client):
+ response = await client.post("/chat", json={"approach": "test"})
- response = client.post("/chat", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 14===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_ask_with_unknown_approach(client):
- def test_ask_with_unknown_approach(client):
+ response = await client.post("/ask", json={"approach": "test"})
- response = client.post("/ask", json={"approach": "test"})
assert response.status_code == 400
===========changed ref 15===========
# module: app.backend.core.modelhelper
def get_token_limit(model_id: str) -> int:
if model_id not in MODELS_2_TOKEN_LIMITS:
raise ValueError("Expected model gpt-35-turbo and above")
+ return MODELS_2_TOKEN_LIMITS[model_id]
- return MODELS_2_TOKEN_LIMITS.get(model_id)
===========changed ref 16===========
# module: tests.conftest
+ @pytest_asyncio.fixture
- @pytest.fixture()
+ async def client():
- def client(app):
+ # mock the DefaultAzureCredential
+ with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
+ mock_default_azure_credential.return_value = MockAzureCredential()
+ quart_app = app.create_app()
- return app.test_client()
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9da71efaebcb92ab6d73546f303e34f772088534
|
Port to Quart (#503)
|
<0>:<del> # Not great to keep this as instance state, won't work with interleaving (e.g. if using async), but keeps the example simple
<1>:<add> search_results = None
<del> self.results = None
<2>:<add> async def search_and_store(q: str) -> Any:
<add> nonlocal search_results
<add> search_results, content = await self.search(q, overrides)
<add> return content
<9>:<add> Tool(name="Search", func=lambda _: 'Not implemented', coroutine=search_and_store, description="useful for when you need to ask with search", callbacks=cb_manager),
<del> Tool(name="Search", func=lambda q: self.search(q, overrides), description="useful for when you need to ask with search", callbacks=cb_manager),
<10>:<add> Tool(name="Lookup", func=lambda _: 'Not implemented', coroutine=self.lookup, description="useful for when you need to ask with lookup", callbacks=cb_manager)
<del> Tool(name="Lookup", func=self.lookup, description="useful for when you need to ask with lookup", callbacks=cb_manager)
<13>:<del> # Like results above, not great to keep this as a global, will interfere with interleaving
<14>:<del> global prompt
<19>:<add> class ReAct(ReActDocstoreAgent):
<add> @classmethod
<add> def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
<add> return prompt
<add>
<21>:<add> result = await chain.arun(q)
<del> result = chain.run(q)
|
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def run(self, q: str, overrides: dict[str, Any]) -> Any:
- def run(self, q: str, overrides: dict[str, Any]) -> Any:
<0> # Not great to keep this as instance state, won't work with interleaving (e.g. if using async), but keeps the example simple
<1> self.results = None
<2>
<3> # Use to capture thought process during iterations
<4> cb_handler = HtmlCallbackHandler()
<5> cb_manager = CallbackManager(handlers=[cb_handler])
<6>
<7> llm = AzureOpenAI(deployment_name=self.openai_deployment, temperature=overrides.get("temperature") or 0.3, openai_api_key=openai.api_key)
<8> tools = [
<9> Tool(name="Search", func=lambda q: self.search(q, overrides), description="useful for when you need to ask with search", callbacks=cb_manager),
<10> Tool(name="Lookup", func=self.lookup, description="useful for when you need to ask with lookup", callbacks=cb_manager)
<11> ]
<12>
<13> # Like results above, not great to keep this as a global, will interfere with interleaving
<14> global prompt
<15> prompt_prefix = overrides.get("prompt_template")
<16> prompt = PromptTemplate.from_examples(
<17> EXAMPLES, SUFFIX, ["input", "agent_scratchpad"], prompt_prefix + "\n\n" + PREFIX if prompt_prefix else PREFIX)
<18>
<19> agent = ReAct.from_llm_and_tools(llm, tools)
<20> chain = AgentExecutor.from_agent_and_tools(agent, tools, verbose=True, callback_manager=cb_manager)
<21> result = chain.run(q)
<22>
<23> # Replace substrings of the form <file.ext> with [file.ext] so that the frontend can render them as links, match them with a regex to avoid
<24> #</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def run(self, q: str, overrides: dict[str, Any]) -> Any:
- def run(self, q: str, overrides: dict[str, Any]) -> Any:
# offset: 1
result = re.sub(r"<([a-zA-Z0-9_ \-\.]+)>", r"[\1]", result)
return {"data_points": self.results or [], "answer": result, "thoughts": cb_handler.get_and_reset_log()}
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask
EXAMPLES = [
"""Question: What is the elevation range for the area that the eastern sector of the
Colorado orogeny extends into?
Thought: I need to search Colorado orogeny, find the area that the eastern sector
of the Colorado orogeny extends into, then find the elevation range of the
area.
Action: Search[Colorado orogeny]
Observation: <info1.pdf> The Colorado orogeny was an episode of mountain building (an orogeny) in
Colorado and surrounding areas.
Thought: It does not mention the eastern sector. So I need to look up eastern
sector.
Action: Lookup[eastern sector]
Observation: <info2.txt> (Result 1 / 1) The eastern sector extends into the High Plains and is called
the Central Plains orogeny.
Thought: The eastern sector of Colorado orogeny extends into the High Plains. So I
need to search High Plains and find its elevation range.
Action: Search[High Plains]
Observation: <some_file.pdf> High Plains refers to one of two distinct land regions
Thought: I need to instead search High Plains (United States).
Action: Search[High Plains (United States)]
Observation: <filea.pdf> The High Plains are a subregion of the Great Plains. <another-ref.docx> From east to west, the
High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130
m).
Thought: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer
is 1,800 to 7,000 ft.
Action: Finish[1,800 to 7,000 ft <filea.pdf>]""",
"""Question: Musician and satirist Allie Goertz wrote a song about the "The Simpsons"
character Milhouse, who</s>
===========unchanged ref 1===========
SUFFIX = """\nQuestion: {input}
{agent_scratchpad}"""
PREFIX = "Answer questions as shown in the following examples, by splitting the question into individual search or lookup actions to find facts until you can answer the question. " \
"Observations are prefixed by their source name in angled brackets, source names MUST be included with the actions in the answers." \
"All questions must be answered from the results from search or look up actions, only facts resulting from those can be used in an answer. "
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
===========changed ref 0===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def lookup(self, q: str) -> Optional[str]:
- def lookup(self, q: str) -> Optional[str]:
+ r = await self.search_client.search(q,
- r = self.search_client.search(q,
top = 1,
include_total_count=True,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
query_answer="extractive|count-1",
query_caption="extractive|highlight-false")
+ answers = await r.get_answers()
- answers = r.get_answers()
if answers and len(answers) > 0:
return answers[0].text
+ if await r.get_count() > 0:
- if r.get_count() > 0:
+ return "\n".join([d['content'] async for d in r])
- return "\n".join(d['content'] for d in r)
return None
===========changed ref 1===========
# module: app.backend.approaches.readdecomposeask
+ class ReadDecomposeAsk(AskApproach):
- class ReadDecomposeAsk(Approach):
+ def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> str:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
top = overrides.get("top") or 3
exclude_category = overrides.get("exclude_category") or None
filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
+ query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
- query_vector = openai.Embedding.create(engine=self.embedding_deployment, input=query_text)["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
+ query_text = ""
- query_text = None
if overrides.get("semantic_ranker") and has_text:
+ r = await self.search_client.search(query_text,
- r = self.search_client.search(query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-</s>
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
9ee22bf60904780d271b4e1e49645e10f84e77a9
|
Add application insights for request and backend tracing of performance data (#515)
|
<0>:<add> if APPLICATIONINSIGHTS_CONNECTION_STRING:
<add> configure_azure_monitor()
<add> AioHttpClientInstrumentor().instrument()
<2>:<add> app.asgi_app = OpenTelemetryMiddleware(app.asgi_app)
<add>
|
# module: app.backend.app
def create_app():
<0> app = Quart(__name__)
<1> app.register_blueprint(bp)
<2> return app
<3>
|
===========changed ref 0===========
# module: app.backend.app
# Replace these with your own values, either in environment variables or directly here
AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER", "content")
AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
AZURE_OPENAI_GPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT", "davinci")
AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_CATEGORY = os.getenv("KB_FIELDS_CATEGORY", "category")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CLIENT = "blob_client"
+ APPLICATIONINSIGHTS_CONNECTION_STRING = os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
bp = Blueprint("routes", __name__, static_folder='static')
|
scripts.prepdocs/compute_embedding
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
cf3a348ec05bef13647b4c89a02dfd4a06a7fc2d
|
Address recent bugs (#529)
|
<0>:<add> refresh_openai_token()
|
# module: scripts.prepdocs
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding(text):
<0> return openai.Embedding.create(engine=args.openaideployment, input=text)["data"][0]["embedding"]
<1>
|
===========unchanged ref 0===========
at: scripts.prepdocs.create_sections
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename
}
section["embedding"] = compute_embedding(content)
===========changed ref 0===========
# module: scripts.prepdocs
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
+ open_ai_token_cache = {}
+ CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
+ CACHE_KEY_CREATED_TIME = 'created_time'
+ CACHE_KEY_TOKEN_TYPE = 'token_type'
+
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
cf3a348ec05bef13647b4c89a02dfd4a06a7fc2d
|
Address recent bugs (#529)
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach(ChatApproach):
def run(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> Any:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> user_q = 'Generate search query for: ' + history[-1]["user"]
<8>
<9> # STEP 1: Generate an optimized keyword search query based on the chat history and the last question
<10> messages = self.get_messages_from_history(
<11> self.query_prompt_template,
<12> self.chatgpt_model,
<13> history,
<14> user_q,
<15> self.query_prompt_few_shots,
<16> self.chatgpt_token_limit - len(user_q)
<17> )
<18>
<19> chat_completion = await openai.ChatCompletion.acreate(
<20> deployment_id=self.chatgpt_deployment,
<21> model=self.chatgpt_model,
<22> messages=messages,
<23> temperature=0.0,
<24> max_tokens=32,
<25> n=1)
<26>
<27> query_text = chat_completion.choices[0].message.content
<28> if query_text.strip() == "0":
<29> query_text = history[-1]["user"] # Use the last user input if we failed to generate a better query
<30>
<31> # STEP 2: Retrieve relevant documents from the search index with the GPT optimized query
<32>
<33> # If retrieval mode includes vectors, compute an embedding for the</s>
|
===========below chunk 0===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach(ChatApproach):
def run(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> Any:
# offset: 1
if has_vector:
query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = None
# Use semantic L2 reranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
else:
r = await self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc['@search.captions']])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field])</s>
===========below chunk 1===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach(ChatApproach):
def run(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> Any:
# offset: 2
<s>
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
follow_up_questions_prompt = self.follow_up_questions_prompt_content if overrides.get("suggest_followup_questions") else ""
# STEP 3: Generate a contextual and content specific answer using the search results and chat history
# Allow client to replace the entire prompt, or to inject into the exiting prompt using >>>
prompt_override = overrides.get("prompt_override")
if prompt_override is None:
system_message = self.system_message_chat_conversation.format(injected_prompt="", follow_up_questions_prompt=follow_up_questions_prompt)
elif prompt_override.startswith(">>>"):
system_message = self.system_message_chat_conversation.format(injected_prompt=prompt_override[3:] + "\n", follow_up_questions_prompt=follow_up_questions_prompt)
else:
system_message = prompt_override.format(follow_up_questions_prompt=follow_up_questions_prompt)
messages = self.get_messages_from_history(
system_message + "\n\nSources:\n" + content,
self.chatgpt_model,
history,
history[-1]["user"],
max_tokens=self.chatgpt_token_limit)
chat_completion = await openai.ChatCompletion.acreate(
deployment_id=self.chatgpt_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or</s>
===========below chunk 2===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach(ChatApproach):
def run(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> Any:
# offset: 3
<s>7,
max_tokens=1024,
n=1)
chat_content = chat_completion.choices[0].message.content
msg_to_display = '\n\n'.join([str(message) for message in messages])
return {"data_points": results, "answer": chat_content, "thoughts": f"Searched for:<br>{query_text}<br><br>Conversations:<br>" + msg_to_display.replace('\n', '<br>')}
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
|
|
app.backend.app/ask
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2b077d857f56c983bd7eb1ce8248daf263eceb89
|
Add workaround for connection reset issue (#525)
|
<8>:<add> # Workaround for: https://github.com/openai/openai-python/issues/371
<add> async with aiohttp.ClientSession() as s:
<add> openai.aiosession.set(s)
<add> r = await impl.run(request_json["question"], request_json.get("overrides") or {})
<del> r = await impl.run(request_json["question"], request_json.get("overrides") or {})
|
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> r = await impl.run(request_json["question"], request_json.get("overrides") or {})
<9> return jsonify(r)
<10> except Exception as e:
<11> logging.exception("Exception in /ask")
<12> return jsonify({"error": str(e)}), 500
<13>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_ASK_APPROACHES = "ask_approaches"
bp = Blueprint("routes", __name__, static_folder='static')
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
|
app.backend.app/chat
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2b077d857f56c983bd7eb1ce8248daf263eceb89
|
Add workaround for connection reset issue (#525)
|
<8>:<add> # Workaround for: https://github.com/openai/openai-python/issues/371
<add> async with aiohttp.ClientSession() as s:
<add> openai.aiosession.set(s)
<add> r = await impl.run(request_json["history"], request_json.get("overrides") or {})
<del> r = await impl.run(request_json["history"], request_json.get("overrides") or {})
|
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> r = await impl.run(request_json["history"], request_json.get("overrides") or {})
<9> return jsonify(r)
<10> except Exception as e:
<11> logging.exception("Exception in /chat")
<12> return jsonify({"error": str(e)}), 500
<13>
|
===========unchanged ref 0===========
at: app.backend.app
CONFIG_CHAT_APPROACHES = "chat_approaches"
bp = Blueprint("routes", __name__, static_folder='static')
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
===========changed ref 0===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
approach = request_json["approach"]
try:
impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
+ # Workaround for: https://github.com/openai/openai-python/issues/371
+ async with aiohttp.ClientSession() as s:
+ openai.aiosession.set(s)
+ r = await impl.run(request_json["question"], request_json.get("overrides") or {})
- r = await impl.run(request_json["question"], request_json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
fb3aa0ab9499b8d79a5292ded2bc7d2ea718edab
|
Remove unneeded deployment (#540)
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<1> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<2> # keys for each service
<3> # If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<4> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
<5>
<6> # Set up clients for Cognitive Search and Storage
<7> search_client = SearchClient(
<8> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
<9> index_name=AZURE_SEARCH_INDEX,
<10> credential=azure_credential)
<11> blob_client = BlobServiceClient(
<12> account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
<13> credential=azure_credential)
<14>
<15> # Used by the OpenAI SDK
<16> openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
<17> openai.api_version = "2023-05-15"
<18> openai.api_type = "azure_ad"
<19> openai_token = await azure_credential.get_token(
<20> "https://cognitiveservices.azure.com/.default"
<21> )
<22> openai.api_key = openai_token.token
<23>
<24> # Store on app.config for later use inside requests
<25> current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
<26> current_app.config[CONFIG_CREDENTIAL] = azure_credential
<27> current_app.config[CONFIG_BLOB_CLIENT] = blob_client
<28> # Various approaches to integrate GPT and external knowledge, most applications will use a single one</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rrr": ReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_GPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rda": ReadDecomposeAsk(search_client,
AZURE_OPENAI_GPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
)
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CLIENT = "blob_client"
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
===========unchanged ref 1===========
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
===========changed ref 0===========
# module: app.backend.app
# Replace these with your own values, either in environment variables or directly here
AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER", "content")
AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
- AZURE_OPENAI_GPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT", "davinci")
AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_CATEGORY = os.getenv("KB_FIELDS_CATEGORY", "category")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CLIENT = "blob_client"
APPLICATIONINSIGHTS_CONNECTION_STRING = os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
bp = Blueprint("routes", __name__, static_folder='static')
|
|
tests.conftest/client
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
e166911098414c9cb07dcd6acec63ba3278536d9
|
Remove defaults for getenv (#550)
|
<0>:<add> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<add> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<add> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<add> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<add> monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
<add> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "test-chatgpt")
<add> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<add> monkeypatch.setenv("AZURE_OPENAI_EMB_DEPLOYMENT", "test-ada")
<add>
<del> # mock the DefaultAzureCredential
|
# module: tests.conftest
@pytest_asyncio.fixture
+ async def client(monkeypatch):
- async def client():
<0> # mock the DefaultAzureCredential
<1> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<2> mock_default_azure_credential.return_value = MockAzureCredential()
<3> quart_app = app.create_app()
<4>
<5> async with quart_app.test_app() as test_app:
<6> quart_app.config.update(
<7> {
<8> "TESTING": True,
<9> app.CONFIG_ASK_APPROACHES: {"mock": MockedAskApproach()},
<10> app.CONFIG_CHAT_APPROACHES: {"mock": MockedChatApproach()},
<11> }
<12> )
<13>
<14> yield test_app.test_client()
<15>
|
===========unchanged ref 0===========
at: _pytest.monkeypatch
monkeypatch() -> Generator["MonkeyPatch", None, None]
at: tests.conftest
MockAzureCredential()
at: unittest.mock
_patcher(target: Any, new: _T, spec: Optional[Any]=..., create: bool=..., spec_set: Optional[Any]=..., autospec: Optional[Any]=..., new_callable: Optional[Any]=..., **kwargs: Any) -> _patch[_T]
_patcher(target: Any, *, spec: Optional[Any]=..., create: bool=..., spec_set: Optional[Any]=..., autospec: Optional[Any]=..., new_callable: Optional[Any]=..., **kwargs: Any) -> _patch[Union[MagicMock, AsyncMock]]
at: unittest.mock.NonCallableMock.__get_return_value
self.return_value = ret
|
app.backend.app/content_file
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
e166911098414c9cb07dcd6acec63ba3278536d9
|
Remove defaults for getenv (#550)
|
<0>:<add> blob_container_client = current_app.config[CONFIG_BLOB_CONTAINER_CLIENT]
<del> blob_container = current_app.config[CONFIG_BLOB_CLIENT].get_container_client(AZURE_STORAGE_CONTAINER)
<1>:<add> blob = await blob_container_client.get_blob_client(path).download_blob()
<del> blob = await blob_container.get_blob_client(path).download_blob()
|
# module: app.backend.app
# Serve content files from blob storage from within the app to keep the example self-contained.
# *** NOTE *** this assumes that the content files are public, or at least that all users of the app
# can access all the files. This is also slow and memory hungry.
@bp.route("/content/<path>")
async def content_file(path):
<0> blob_container = current_app.config[CONFIG_BLOB_CLIENT].get_container_client(AZURE_STORAGE_CONTAINER)
<1> blob = await blob_container.get_blob_client(path).download_blob()
<2> if not blob.properties or not blob.properties.has_key("content_settings"):
<3> abort(404)
<4> mime_type = blob.properties["content_settings"]["content_type"]
<5> if mime_type == "application/octet-stream":
<6> mime_type = mimetypes.guess_type(path)[0] or "application/octet-stream"
<7> blob_file = io.BytesIO()
<8> await blob.readinto(blob_file)
<9> blob_file.seek(0)
<10> return await send_file(blob_file, mimetype=mime_type, as_attachment=False, attachment_filename=path)
<11>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_ASK_APPROACHES = "ask_approaches"
bp = Blueprint("routes", __name__, static_folder='static')
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
===========changed ref 0===========
# module: app.backend.app
- # Replace these with your own values, either in environment variables or directly here
- AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
- AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER", "content")
- AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
- AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
- AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
- AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
- AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
- AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
-
- KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
- KB_FIELDS_CATEGORY = os.getenv("KB_FIELDS_CATEGORY", "category")
- KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
-
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
+ CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
- CONFIG_BLOB_CLIENT = "blob_client"
-
- APPLICATIONINSIGHTS_CONNECTION_STRING = os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
bp = Blueprint("routes", __name__, static_folder='static')
===========changed ref 1===========
# module: tests.conftest
@pytest_asyncio.fixture
+ async def client(monkeypatch):
- async def client():
+ monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
+ monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
+ monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
+ monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
+ monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
+ monkeypatch.setenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "test-chatgpt")
+ monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
+ monkeypatch.setenv("AZURE_OPENAI_EMB_DEPLOYMENT", "test-ada")
+
- # mock the DefaultAzureCredential
with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
mock_default_azure_credential.return_value = MockAzureCredential()
quart_app = app.create_app()
async with quart_app.test_app() as test_app:
quart_app.config.update(
{
"TESTING": True,
app.CONFIG_ASK_APPROACHES: {"mock": MockedAskApproach()},
app.CONFIG_CHAT_APPROACHES: {"mock": MockedChatApproach()},
}
)
yield test_app.test_client()
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
e166911098414c9cb07dcd6acec63ba3278536d9
|
Remove defaults for getenv (#550)
|
<0>:<add> # Replace these with your own values, either in environment variables or directly here
<add> AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT")
<add> AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER")
<add> AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE")
<add> AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX")
<add> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<add> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<add> AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL")
<add> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<add>
<add> KB_FIELDS_CONTENT = os
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<1> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<2> # keys for each service
<3> # If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<4> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
<5>
<6> # Set up clients for Cognitive Search and Storage
<7> search_client = SearchClient(
<8> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
<9> index_name=AZURE_SEARCH_INDEX,
<10> credential=azure_credential)
<11> blob_client = BlobServiceClient(
<12> account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
<13> credential=azure_credential)
<14>
<15> # Used by the OpenAI SDK
<16> openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
<17> openai.api_version = "2023-05-15"
<18> openai.api_type = "azure_ad"
<19> openai_token = await azure_credential.get_token(
<20> "https://cognitiveservices.azure.com/.default"
<21> )
<22> openai.api_key = openai_token.token
<23>
<24> # Store on app.config for later use inside requests
<25> current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
<26> current_app.config[CONFIG_CREDENTIAL] = azure_credential
<27> current_app.config[CONFIG_BLOB_CLIENT] = blob_client
<28> # Various approaches to integrate GPT and external knowledge, most applications will use a single one</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rrr": ReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rda": ReadDecomposeAsk(search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
)
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
at: app.backend.app.setup_clients
AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT")
AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER")
AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE")
AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX")
AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL")
AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
===========unchanged ref 1===========
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
===========changed ref 0===========
# module: app.backend.app
# Serve content files from blob storage from within the app to keep the example self-contained.
# *** NOTE *** this assumes that the content files are public, or at least that all users of the app
# can access all the files. This is also slow and memory hungry.
@bp.route("/content/<path>")
async def content_file(path):
+ blob_container_client = current_app.config[CONFIG_BLOB_CONTAINER_CLIENT]
- blob_container = current_app.config[CONFIG_BLOB_CLIENT].get_container_client(AZURE_STORAGE_CONTAINER)
+ blob = await blob_container_client.get_blob_client(path).download_blob()
- blob = await blob_container.get_blob_client(path).download_blob()
if not blob.properties or not blob.properties.has_key("content_settings"):
abort(404)
mime_type = blob.properties["content_settings"]["content_type"]
if mime_type == "application/octet-stream":
mime_type = mimetypes.guess_type(path)[0] or "application/octet-stream"
blob_file = io.BytesIO()
await blob.readinto(blob_file)
blob_file.seek(0)
return await send_file(blob_file, mimetype=mime_type, as_attachment=False, attachment_filename=path)
===========changed ref 1===========
# module: app.backend.app
- # Replace these with your own values, either in environment variables or directly here
- AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
- AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER", "content")
- AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
- AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
- AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
- AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
- AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
- AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
-
- KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
- KB_FIELDS_CATEGORY = os.getenv("KB_FIELDS_CATEGORY", "category")
- KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
-
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
+ CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
- CONFIG_BLOB_CLIENT = "blob_client"
-
- APPLICATIONINSIGHTS_CONNECTION_STRING = os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
bp = Blueprint("routes", __name__, static_folder='static')
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
e166911098414c9cb07dcd6acec63ba3278536d9
|
Remove defaults for getenv (#550)
|
<0>:<add> if os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING"):
<del> if APPLICATIONINSIGHTS_CONNECTION_STRING:
|
# module: app.backend.app
def create_app():
<0> if APPLICATIONINSIGHTS_CONNECTION_STRING:
<1> configure_azure_monitor()
<2> AioHttpClientInstrumentor().instrument()
<3> app = Quart(__name__)
<4> app.register_blueprint(bp)
<5> app.asgi_app = OpenTelemetryMiddleware(app.asgi_app)
<6>
<7> return app
<8>
|
===========unchanged ref 0===========
at: app.backend.app
bp = Blueprint("routes", __name__, static_folder='static')
at: os
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
===========changed ref 0===========
# module: app.backend.app
# Serve content files from blob storage from within the app to keep the example self-contained.
# *** NOTE *** this assumes that the content files are public, or at least that all users of the app
# can access all the files. This is also slow and memory hungry.
@bp.route("/content/<path>")
async def content_file(path):
+ blob_container_client = current_app.config[CONFIG_BLOB_CONTAINER_CLIENT]
- blob_container = current_app.config[CONFIG_BLOB_CLIENT].get_container_client(AZURE_STORAGE_CONTAINER)
+ blob = await blob_container_client.get_blob_client(path).download_blob()
- blob = await blob_container.get_blob_client(path).download_blob()
if not blob.properties or not blob.properties.has_key("content_settings"):
abort(404)
mime_type = blob.properties["content_settings"]["content_type"]
if mime_type == "application/octet-stream":
mime_type = mimetypes.guess_type(path)[0] or "application/octet-stream"
blob_file = io.BytesIO()
await blob.readinto(blob_file)
blob_file.seek(0)
return await send_file(blob_file, mimetype=mime_type, as_attachment=False, attachment_filename=path)
===========changed ref 1===========
# module: app.backend.app
- # Replace these with your own values, either in environment variables or directly here
- AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT", "mystorageaccount")
- AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER", "content")
- AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE", "gptkb")
- AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX", "gptkbindex")
- AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE", "myopenai")
- AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "chat")
- AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
- AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT", "embedding")
-
- KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
- KB_FIELDS_CATEGORY = os.getenv("KB_FIELDS_CATEGORY", "category")
- KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
-
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
+ CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
- CONFIG_BLOB_CLIENT = "blob_client"
-
- APPLICATIONINSIGHTS_CONNECTION_STRING = os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING")
bp = Blueprint("routes", __name__, static_folder='static')
===========changed ref 2===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
+ # Replace these with your own values, either in environment variables or directly here
+ AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT")
+ AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER")
+ AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE")
+ AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX")
+ AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
+ AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
+ AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL")
+ AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
+
+ KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
+ KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
+
# Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
# just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
# keys for each service
# If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
# Set up clients for Cognitive Search and Storage
search_client = SearchClient(
endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
index_name=AZURE_SEARCH</s>
===========changed ref 3===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
<s> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
index_name=AZURE_SEARCH_INDEX,
credential=azure_credential)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
credential=azure_credential)
+ blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-05-15"
openai.api_type = "azure_ad"
openai_token = await azure_credential.get_token(
"https://cognitiveservices.azure.com/.default"
)
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
current_app.config[CONFIG_CREDENTIAL] = azure_credential
+ current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
- current_app.config[CONFIG_BLOB_CLIENT] = blob_client
+
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPEN</s>
|
scripts.prepdocs/create_sections
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
886f445370a94cff658a4300e4edf1f7de24039f
|
Allow for subdirectory structure within data directory (#569)
|
<1>:<add> for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
<del> for i, (content, pagenum) in enumerate(split_text(page_map)):
|
# module: scripts.prepdocs
def create_sections(filename, page_map, use_vectors):
<0> file_id = filename_to_id(filename)
<1> for i, (content, pagenum) in enumerate(split_text(page_map)):
<2> section = {
<3> "id": f"{file_id}-page-{i}",
<4> "content": content,
<5> "category": args.category,
<6> "sourcepage": blob_name_from_file_page(filename, pagenum),
<7> "sourcefile": filename
<8> }
<9> if use_vectors:
<10> section["embedding"] = compute_embedding(content)
<11> yield section
<12>
|
===========unchanged ref 0===========
at: scripts.prepdocs
blob_name_from_file_page(filename, page=0)
split_text(page_map, filename)
filename_to_id(filename)
compute_embedding(text)
args = parser.parse_args()
|
scripts.prepdocs/read_files
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
e1a077d29b3f33e182b540d1219b9528778d1be2
|
Indexing: Improve vectors throughput (#556)
|
<11>:<add> read_files(filename + "/*", use_vectors, vectors_batch_support)
<del> read_files(filename + "/*", use_vectors)
<17>:<add> sections = create_sections(os.path.basename(filename), page_map, use_vectors and not vectors_batch_support)
<del> sections = create_sections(os.path.basename(filename), page_map, use_vectors)
<18>:<add> print (use_vectors and vectors_batch_support)
<add> if use_vectors and vectors_batch_support:
<add> sections = update_embeddings_in_batch(sections)
|
# module: scripts.prepdocs
+ def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool):
- def read_files(path_pattern: str, use_vectors: bool):
<0> """
<1> Recursively read directory structure under `path_pattern`
<2> and execute indexing for the individual files
<3> """
<4> for filename in glob.glob(path_pattern):
<5> if args.verbose: print(f"Processing '{filename}'")
<6> if args.remove:
<7> remove_blobs(filename)
<8> remove_from_index(filename)
<9> else:
<10> if os.path.isdir(filename):
<11> read_files(filename + "/*", use_vectors)
<12> continue
<13> try:
<14> if not args.skipblobs:
<15> upload_blobs(filename)
<16> page_map = get_document_text(filename)
<17> sections = create_sections(os.path.basename(filename), page_map, use_vectors)
<18> index_sections(os.path.basename(filename), sections)
<19> except Exception as e:
<20> print(f"\tGot an error while reading {filename} -> {e} --> skipping file")
<21>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = parser.parse_args()
search_creds = default_creds if args.searchkey is None else AzureKeyCredential(args.searchkey)
at: scripts.prepdocs.update_embeddings_in_batch
copy_s = []
batch_response[item["id"]] = emb
batch_response = {}
===========changed ref 0===========
# module: scripts.prepdocs
+ @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
+ def compute_embedding_in_batch(texts):
+ refresh_openai_token()
+ emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
+ return [data.embedding for data in emb_response.data]
+
===========changed ref 1===========
# module: scripts.prepdocs
+ def calculate_tokens_emb_aoai(input: str):
+ encoding = tiktoken.encoding_for_model(args.openaimodelname)
+ return len(encoding.encode(input))
+
===========changed ref 2===========
# module: scripts.prepdocs
+ def update_embeddings_in_batch(sections):
+ batch_queue = []
+ copy_s = []
+ batch_response = {}
+ token_count = 0
+ for s in sections:
+ token_count += calculate_tokens_emb_aoai(s["content"])
+ if token_count <= SUPPORTED_BATCH_AOAI_MODEL[args.openaimodelname]['token_limit'] and len(batch_queue) < SUPPORTED_BATCH_AOAI_MODEL[args.openaimodelname]['max_batch_size']:
+ batch_queue.append(s)
+ copy_s.append(s)
+ else:
+ emb_responses = compute_embedding_in_batch([item["content"] for item in batch_queue])
+ if args.verbose: print(f"Batch Completed. Batch size {len(batch_queue)} Token count {token_count}")
+ for emb, item in zip(emb_responses, batch_queue):
+ batch_response[item["id"]] = emb
+ batch_queue = []
+ batch_queue.append(s)
+ token_count = calculate_tokens_emb_aoai(s["content"])
+
+ if batch_queue:
+ emb_responses = compute_embedding_in_batch([item["content"] for item in batch_queue])
+ if args.verbose: print(f"Batch Completed. Batch size {len(batch_queue)} Token count {token_count}")
+ for emb, item in zip(emb_responses, batch_queue):
+ batch_response[item["id"]] = emb
+
+ for s in copy_s:
+ s["embedding"] = batch_response[s["id"]]
+ yield s
+
===========changed ref 3===========
# module: scripts.prepdocs
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
+ #Embedding batch support section
+ SUPPORTED_BATCH_AOAI_MODEL = {
+ 'text-embedding-ada-002': {
+ 'token_limit' : 8100,
+ 'max_batch_size' : 16
+ }
+ }
+
|
tests.conftest/client
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
b4c45b12db4788d2dff62ba7b18bf0329f85b603
|
Adds optional streaming support for chat requests (#532)
|
<14>:<add> quart_app.config.update({"TESTING": True})
<del> quart_app.config.update(
<15>:<del> {
<16>:<del> "TESTING": True,
<17>:<del> app.CONFIG_ASK_APPROACHES: {"mock": MockedAskApproach()},
<18>:<del> app.CONFIG_CHAT_APPROACHES: {"mock": MockedChatApproach()},
<19>:<del> }
<20>:<del> )
|
# module: tests.conftest
@pytest_asyncio.fixture
+ async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search):
- async def client(monkeypatch):
<0> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<1> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<2> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<3> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<4> monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
<5> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "test-chatgpt")
<6> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<7> monkeypatch.setenv("AZURE_OPENAI_EMB_DEPLOYMENT", "test-ada")
<8>
<9> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<10> mock_default_azure_credential.return_value = MockAzureCredential()
<11> quart_app = app.create_app()
<12>
<13> async with quart_app.test_app() as test_app:
<14> quart_app.config.update(
<15> {
<16> "TESTING": True,
<17> app.CONFIG_ASK_APPROACHES: {"mock": MockedAskApproach()},
<18> app.CONFIG_CHAT_APPROACHES: {"mock": MockedChatApproach()},
<19> }
<20> )
<21>
<22> yield test_app.test_client()
<23>
|
===========unchanged ref 0===========
at: _pytest.fixtures
fixture(fixture_function: FixtureFunction, *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[
Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]]
]=..., name: Optional[str]=...) -> FixtureFunction
fixture(fixture_function: None=..., *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[
Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]]
]=..., name: Optional[str]=None) -> FixtureFunctionMarker
at: _pytest.monkeypatch.MonkeyPatch
setattr(target: object, name: str, value: object, raising: bool=...) -> None
setattr(target: str, name: object, value: Notset=..., raising: bool=...) -> None
at: openai.api_resources.chat_completion
ChatCompletion(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.util
convert_to_openai_object(resp, api_key=None, api_version=None, organization=None, engine=None, plain_old_data=False)
at: tests.conftest.mock_openai_chatcompletion
AsyncChatCompletionIterator(answer)
===========changed ref 0===========
# module: tests.conftest
- class MockedChatApproach(ChatReadRetrieveReadApproach):
- def __init__(self):
- pass
-
===========changed ref 1===========
# module: tests.conftest
- class MockedAskApproach(AskApproach):
- def run(self, question, overrides):
- assert question == "What is the capital of France?"
- return {"answer": "Paris"}
-
===========changed ref 2===========
# module: tests.conftest
+ @pytest.fixture
+ def mock_openai_embedding(monkeypatch):
+ async def mock_acreate(*args, **kwargs):
+ return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
+
+ monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
+
===========changed ref 3===========
# module: tests.conftest
- class MockedChatApproach(ChatReadRetrieveReadApproach):
- def run(self, history, overrides):
- messages = ChatReadRetrieveReadApproach.get_messages_from_history(self, ChatReadRetrieveReadApproach.query_prompt_template, "gpt-3.5-turbo", history, "Generate search query")
- assert messages[0]["role"] == "system"
- assert messages[1]["content"] == "Generate search query"
- assert messages[1]["role"] == "user"
- return {"answer": "Paris", "data_points": [], "thoughts": ""}
-
===========changed ref 4===========
# module: tests.conftest
+ @pytest.fixture
+ def mock_openai_chatcompletion(monkeypatch):
+ class AsyncChatCompletionIterator:
+ def __init__(self, answer):
+ self.num = 1
+ self.answer = answer
+
+ def __aiter__(self):
+ return self
+
+ async def __anext__(self):
+ if self.num == 1:
+ self.num = 0
+ return openai.util.convert_to_openai_object({"choices": [{"delta": {"content": self.answer}}]})
+ else:
+ raise StopAsyncIteration
+
+ async def mock_acreate(*args, **kwargs):
+ messages = kwargs["messages"]
+ if messages[-1]["content"] == "Generate search query for: What is the capital of France?":
+ answer = "capital of France"
+ else:
+ answer = "The capital of France is Paris."
+ if "stream" in kwargs and kwargs["stream"] is True:
+ return AsyncChatCompletionIterator(answer)
+ else:
+ return openai.util.convert_to_openai_object({"choices": [{"message": {"content": answer}}]})
+
+ monkeypatch.setattr(openai.ChatCompletion, "acreate", mock_acreate)
+
===========changed ref 5===========
# module: app.backend.approaches.approach
- class ChatApproach(ABC):
- @abstractmethod
- async def run(self, history: list[dict], overrides: dict[str, Any]) -> Any:
- ...
-
|
app.backend.app/chat
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
b4c45b12db4788d2dff62ba7b18bf0329f85b603
|
Adds optional streaming support for chat requests (#532)
|
<11>:<add> r = await impl.run_without_streaming(request_json["history"], request_json.get("overrides", {}))
<del> r = await impl.run(request_json["history"], request_json.get("overrides") or {})
|
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> # Workaround for: https://github.com/openai/openai-python/issues/371
<9> async with aiohttp.ClientSession() as s:
<10> openai.aiosession.set(s)
<11> r = await impl.run(request_json["history"], request_json.get("overrides") or {})
<12> return jsonify(r)
<13> except Exception as e:
<14> logging.exception("Exception in /chat")
<15> return jsonify({"error": str(e)}), 500
<16>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_CHAT_APPROACHES = "chat_approaches"
bp = Blueprint("routes", __name__, static_folder='static')
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
===========changed ref 0===========
# module: tests.conftest
- class MockedChatApproach(ChatReadRetrieveReadApproach):
- def __init__(self):
- pass
-
===========changed ref 1===========
# module: app.backend.approaches.approach
- class ChatApproach(ABC):
- @abstractmethod
- async def run(self, history: list[dict], overrides: dict[str, Any]) -> Any:
- ...
-
===========changed ref 2===========
# module: tests.conftest
- class MockedAskApproach(AskApproach):
- def run(self, question, overrides):
- assert question == "What is the capital of France?"
- return {"answer": "Paris"}
-
===========changed ref 3===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_stream_with_unknown_approach(client):
+ response = await client.post("/chat_stream", json={"approach": "test"})
+ assert response.status_code == 400
+
===========changed ref 4===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_stream_request_must_be_json(client):
+ response = await client.post("/chat_stream")
+ assert response.status_code == 415
+ result = await response.get_json()
+ assert result["error"] == "request must be json"
+
===========changed ref 5===========
# module: app.backend.approaches.chatreadretrieveread
+ class ChatReadRetrieveReadApproach:
- class ChatReadRetrieveReadApproach(ChatApproach):
+ def run_with_streaming(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> AsyncGenerator[dict, None]:
+ extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=True)
+ yield extra_info
+ async for event in await chat_coroutine:
+ yield event
+
===========changed ref 6===========
# module: tests.conftest
+ @pytest.fixture
+ def mock_openai_embedding(monkeypatch):
+ async def mock_acreate(*args, **kwargs):
+ return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
+
+ monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
+
===========changed ref 7===========
# module: app.backend.approaches.chatreadretrieveread
+ class ChatReadRetrieveReadApproach:
- class ChatReadRetrieveReadApproach(ChatApproach):
+ def run_without_streaming(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> dict[str, Any]:
+ extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=False)
+ chat_content = (await chat_coroutine).choices[0].message.content
+ extra_info["answer"] = chat_content
+ return extra_info
+
===========changed ref 8===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_mock_approach(client):
- response = await client.post("/ask", json={"approach": "mock", "question": "What is the capital of France?"})
- assert response.status_code == 200
- result = await response.get_json()
- assert result["answer"] == "Paris"
-
===========changed ref 9===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_mock_approach(client):
- response = await client.post(
- "/chat",
- json={
- "approach": "mock",
- "history": [{"user": "What is the capital of France?"}],
- },
- )
- assert response.status_code == 200
- result = await response.get_json()
- assert result["answer"] == "Paris"
-
===========changed ref 10===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_chat_stream_text(client, snapshot):
+ response = await client.post(
+ "/chat_stream",
+ json={
+ "approach": "rrr",
+ "history": [{"user": "What is the capital of France?"}],
+ "overrides": {"retrieval_mode": "text"},
+ },
+ )
+ assert response.status_code == 200
+ result = await response.get_data()
+ snapshot.assert_match(result, "result.jsonlines")
+
===========changed ref 11===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_ask_rtr_text(client, snapshot):
+ response = await client.post(
+ "/ask",
+ json={
+ "approach": "rtr",
+ "question": "What is the capital of France?",
+ "overrides": {"retrieval_mode": "text"},
+ },
+ )
+ assert response.status_code == 200
+ result = await response.get_json()
+ snapshot.assert_match(json.dumps(result, indent=4), "result.json")
+
===========changed ref 12===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_format_as_ndjson():
+ async def gen():
+ yield {"a": "I ❤️ 🐍"}
+ yield {"b": "Newlines inside \n strings are fine"}
+
+ result = [line async for line in format_as_ndjson(gen())]
+ assert result == ['{"a": "I ❤️ 🐍"}\n', '{"b": "Newlines inside \\n strings are fine"}\n']
+
|
scripts.prepdocs/create_sections
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
56d60ecaae1d125375b22d7af958913e53fc07b8
|
Fix prepdocs compatibility with openai key and add test (#605)
|
<10>:<add> section["embedding"] = compute_embedding(content, embedding_deployment)
<del> section["embedding"] = compute_embedding(content)
|
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
- def create_sections(filename, page_map, use_vectors):
<0> file_id = filename_to_id(filename)
<1> for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
<2> section = {
<3> "id": f"{file_id}-page-{i}",
<4> "content": content,
<5> "category": args.category,
<6> "sourcepage": blob_name_from_file_page(filename, pagenum),
<7> "sourcefile": filename
<8> }
<9> if use_vectors:
<10> section["embedding"] = compute_embedding(content)
<11> yield section
<12>
|
===========unchanged ref 0===========
at: base64
b16encode(s: _encodable) -> bytes
at: re
sub(pattern: AnyStr, repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: AnyStr, repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
at: scripts.prepdocs
split_text(page_map, filename)
at: scripts.prepdocs.split_text
find_page(offset)
all_text = "".join(p[2] for p in page_map)
start = min(end - SECTION_OVERLAP, start + last_table_start)
start = 0
start = last_word
start = end - SECTION_OVERLAP
start -= 1
end = length
end = start + MAX_SECTION_LENGTH
end = last_word # Fall back to at least keeping a whole word
end += 1
===========changed ref 0===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False)
+
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
#Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {
'text-embedding-ada-002': {
'token_limit' : 8100,
'max_batch_size' : 16
}
}
|
scripts.prepdocs/compute_embedding
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
56d60ecaae1d125375b22d7af958913e53fc07b8
|
Fix prepdocs compatibility with openai key and add test (#605)
|
<1>:<add> return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
<del> return openai.Embedding.create(engine=args.openaideployment, input=text)["data"][0]["embedding"]
|
<s>prepdocs
+ @retry(retry=retry_if_exception_type(openai.error.RateLimitError), wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
+ def compute_embedding(text, embedding_deployment):
- def compute_embedding(text):
<0> refresh_openai_token()
<1> return openai.Embedding.create(engine=args.openaideployment, input=text)["data"][0]["embedding"]
<2>
|
===========unchanged ref 0===========
at: scripts.prepdocs
compute_embedding(text, embedding_deployment)
===========changed ref 0===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
- def create_sections(filename, page_map, use_vectors):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment)
- section["embedding"] = compute_embedding(content)
yield section
===========changed ref 1===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False)
+
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
#Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {
'text-embedding-ada-002': {
'token_limit' : 8100,
'max_batch_size' : 16
}
}
|
scripts.prepdocs/refresh_openai_token
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
56d60ecaae1d125375b22d7af958913e53fc07b8
|
Fix prepdocs compatibility with openai key and add test (#605)
|
<0>:<add> """
<add> Refresh OpenAI token every 5 minutes
<add> """
<add> if CACHE_KEY_TOKEN_TYPE in open_ai_token_cache and open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] == 'azure_ad' and open_ai_token_cache[CACHE_KEY_CREATED_TIME] + 300 < time.time():
<del> if open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] == 'azure_ad' and open_ai_token_cache[CACHE_KEY_CREATED_TIME] + 300 < time.time():
|
# module: scripts.prepdocs
- # refresh open ai token every 5 minutes
def refresh_openai_token():
<0> if open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] == 'azure_ad' and open_ai_token_cache[CACHE_KEY_CREATED_TIME] + 300 < time.time():
<1> token_cred = open_ai_token_cache[CACHE_KEY_TOKEN_CRED]
<2> openai.api_key = token_cred.get_token("https://cognitiveservices.azure.com/.default").token
<3> open_ai_token_cache[CACHE_KEY_CREATED_TIME] = time.time()
<4>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(verbose=False)
args = parser.parse_args()
at: scripts.prepdocs.remove_from_index
search_client = SearchClient(endpoint=f"https://{args.searchservice}.search.windows.net/",
index_name=args.index,
credential=search_creds)
at: time
sleep(secs: float) -> None
===========changed ref 0===========
<s>prepdocs
+ @retry(retry=retry_if_exception_type(openai.error.RateLimitError), wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
+ def compute_embedding(text, embedding_deployment):
- def compute_embedding(text):
refresh_openai_token()
+ return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=args.openaideployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
- def create_sections(filename, page_map, use_vectors):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment)
- section["embedding"] = compute_embedding(content)
yield section
===========changed ref 2===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False)
+
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
#Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {
'text-embedding-ada-002': {
'token_limit' : 8100,
'max_batch_size' : 16
}
}
|
scripts.prepdocs/read_files
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
56d60ecaae1d125375b22d7af958913e53fc07b8
|
Fix prepdocs compatibility with openai key and add test (#605)
|
<17>:<add> sections = create_sections(os.path.basename(filename), page_map, use_vectors and not vectors_batch_support, embedding_deployment)
<del> sections = create_sections(os.path.basename(filename), page_map, use_vectors and not vectors_batch_support)
<18>:<del> print (use_vectors and vectors_batch_support)
|
# module: scripts.prepdocs
+ def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool, embedding_deployment: str = None):
- def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool):
<0> """
<1> Recursively read directory structure under `path_pattern`
<2> and execute indexing for the individual files
<3> """
<4> for filename in glob.glob(path_pattern):
<5> if args.verbose: print(f"Processing '{filename}'")
<6> if args.remove:
<7> remove_blobs(filename)
<8> remove_from_index(filename)
<9> else:
<10> if os.path.isdir(filename):
<11> read_files(filename + "/*", use_vectors, vectors_batch_support)
<12> continue
<13> try:
<14> if not args.skipblobs:
<15> upload_blobs(filename)
<16> page_map = get_document_text(filename)
<17> sections = create_sections(os.path.basename(filename), page_map, use_vectors and not vectors_batch_support)
<18> print (use_vectors and vectors_batch_support)
<19> if use_vectors and vectors_batch_support:
<20> sections = update_embeddings_in_batch(sections)
<21> index_sections(os.path.basename(filename), sections)
<22> except Exception as e:
<23> print(f"\tGot an error while reading {filename} -> {e} --> skipping file")
<24>
|
===========unchanged ref 0===========
at: glob
glob(pathname: AnyStr, *, recursive: bool=...) -> List[AnyStr]
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
at: os.path
isdir(s: AnyPath) -> bool
at: scripts.prepdocs
args = argparse.Namespace(verbose=False)
args = parser.parse_args()
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
remove_blobs(filename)
remove_from_index(filename)
at: time
time() -> float
===========changed ref 0===========
<s>prepdocs
+ @retry(retry=retry_if_exception_type(openai.error.RateLimitError), wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
+ def compute_embedding(text, embedding_deployment):
- def compute_embedding(text):
refresh_openai_token()
+ return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=args.openaideployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
- # refresh open ai token every 5 minutes
def refresh_openai_token():
+ """
+ Refresh OpenAI token every 5 minutes
+ """
+ if CACHE_KEY_TOKEN_TYPE in open_ai_token_cache and open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] == 'azure_ad' and open_ai_token_cache[CACHE_KEY_CREATED_TIME] + 300 < time.time():
- if open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] == 'azure_ad' and open_ai_token_cache[CACHE_KEY_CREATED_TIME] + 300 < time.time():
token_cred = open_ai_token_cache[CACHE_KEY_TOKEN_CRED]
openai.api_key = token_cred.get_token("https://cognitiveservices.azure.com/.default").token
open_ai_token_cache[CACHE_KEY_CREATED_TIME] = time.time()
===========changed ref 2===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
- def create_sections(filename, page_map, use_vectors):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment)
- section["embedding"] = compute_embedding(content)
yield section
===========changed ref 3===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False)
+
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = 'openai_token_cred'
CACHE_KEY_CREATED_TIME = 'created_time'
CACHE_KEY_TOKEN_TYPE = 'token_type'
#Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {
'text-embedding-ada-002': {
'token_limit' : 8100,
'max_batch_size' : 16
}
}
|
tests.test_app/test_format_as_ndjson
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
583b56229baf679c3665c29eb436c659bb232bf2
|
Use environ vs getenv (#611)
|
<4>:<add> result = [line async for line in app.format_as_ndjson(gen())]
<del> result = [line async for line in format_as_ndjson(gen())]
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_format_as_ndjson():
<0> async def gen():
<1> yield {"a": "I ❤️ 🐍"}
<2> yield {"b": "Newlines inside \n strings are fine"}
<3>
<4> result = [line async for line in format_as_ndjson(gen())]
<5> assert result == ['{"a": "I ❤️ 🐍"}\n', '{"b": "Newlines inside \\n strings are fine"}\n']
<6>
|
===========unchanged ref 0===========
at: tests.test_app.test_chat_stream_text
response = await client.post(
"/chat_stream",
json={
"approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
===========changed ref 0===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_missing_env_vars():
+ quart_app = app.create_app()
+
+ with pytest.raises(quart.testing.app.LifespanError) as exc_info:
+ async with quart_app.test_app() as test_app:
+ test_app.test_client()
+ assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
+
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
583b56229baf679c3665c29eb436c659bb232bf2
|
Use environ vs getenv (#611)
|
<1>:<add> AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
<del> AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT")
<2>:<add> AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
<del> AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER")
<3>:<add> AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
<del> AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE")
<4>:<add> AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
<del> AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX")
<5>:<add> AZURE_OPENAI_SERVICE = os.environ["AZURE_OPENAI_SERVICE"]
<del> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<6>:<add> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.environ["AZURE_OPENAI_CHATGPT_DEPLOYMENT"]
<del> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<7>:<add> AZURE_OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<del> AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL")
<8>:<add> AZURE_OPENAI_EMB_DEPLOYMENT = os.environ["AZURE_OPENAI_EMB_DEPLOYMENT"]
<del> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Replace these with your own values, either in environment variables or directly here
<1> AZURE_STORAGE_ACCOUNT = os.getenv("AZURE_STORAGE_ACCOUNT")
<2> AZURE_STORAGE_CONTAINER = os.getenv("AZURE_STORAGE_CONTAINER")
<3> AZURE_SEARCH_SERVICE = os.getenv("AZURE_SEARCH_SERVICE")
<4> AZURE_SEARCH_INDEX = os.getenv("AZURE_SEARCH_INDEX")
<5> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<6> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<7> AZURE_OPENAI_CHATGPT_MODEL = os.getenv("AZURE_OPENAI_CHATGPT_MODEL")
<8> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<9>
<10> KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
<11> KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
<12>
<13> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<14> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<15> # keys for each service
<16> # If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<17> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential = True)
<18>
<19> # Set up clients for Cognitive Search and Storage
<20> search_client = SearchClient(
<21> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
credential=azure_credential)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net",
credential=azure_credential)
blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-05-15"
openai.api_type = "azure_ad"
openai_token = await azure_credential.get_token(
"https://cognitiveservices.azure.com/.default"
)
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
current_app.config[CONFIG_CREDENTIAL] = azure_credential
current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rrr": ReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,</s>
===========below chunk 1===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 2
<s>_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
),
"rda": ReadDecomposeAsk(search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT
)
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
bp = Blueprint("routes", __name__, static_folder='static')
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
at: os
environ = _createenviron()
===========unchanged ref 1===========
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
===========changed ref 0===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_missing_env_vars():
+ quart_app = app.create_app()
+
+ with pytest.raises(quart.testing.app.LifespanError) as exc_info:
+ async with quart_app.test_app() as test_app:
+ test_app.test_client()
+ assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
+
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_format_as_ndjson():
async def gen():
yield {"a": "I ❤️ 🐍"}
yield {"b": "Newlines inside \n strings are fine"}
+ result = [line async for line in app.format_as_ndjson(gen())]
- result = [line async for line in format_as_ndjson(gen())]
assert result == ['{"a": "I ❤️ 🐍"}\n', '{"b": "Newlines inside \\n strings are fine"}\n']
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
de2f451b171e537c7dd4a5a853affaab0bae00ac
|
Update README.md with logging info (#610)
|
<6>:<add> # Level should be one of https://docs.python.org/3/library/logging.html#logging-levels
<add> logging.basicConfig(level=os.getenv("APP_LOG_LEVEL", "ERROR"))
<del>
|
# module: app.backend.app
def create_app():
<0> if os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING"):
<1> configure_azure_monitor()
<2> AioHttpClientInstrumentor().instrument()
<3> app = Quart(__name__)
<4> app.register_blueprint(bp)
<5> app.asgi_app = OpenTelemetryMiddleware(app.asgi_app)
<6>
<7> return app
<8>
|
===========unchanged ref 0===========
at: app.backend.app
bp = Blueprint("routes", __name__, static_folder='static')
at: logging
basicConfig(*, filename: Optional[StrPath]=..., filemode: str=..., format: str=..., datefmt: Optional[str]=..., style: str=..., level: Optional[_Level]=..., stream: Optional[IO[str]]=..., handlers: Optional[Iterable[Handler]]=...) -> None
at: os
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_until_final_call
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2ba024a76108729a0db812fc5b47ad7c58a6b8e0
|
Fix prompt_template override, add tests (#606)
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> user_q = 'Generate search query for: ' + history[-1]["user"]
<8>
<9> # STEP 1: Generate an optimized keyword search query based on the chat history and the last question
<10> messages = self.get_messages_from_history(
<11> self.query_prompt_template,
<12> self.chatgpt_model,
<13> history,
<14> user_q,
<15> self.query_prompt_few_shots,
<16> self.chatgpt_token_limit - len(user_q)
<17> )
<18>
<19> chat_completion = await openai.ChatCompletion.acreate(
<20> deployment_id=self.chatgpt_deployment,
<21> model=self.chatgpt_model,
<22> messages=messages,
<23> temperature=0.0,
<24> max_tokens=32,
<25> n=1)
<26>
<27> query_text = chat_completion.choices[0].message.content
<28> if query_text.strip() == "0":
<29> query_text = history[-1]["user"] # Use the last user input if we failed to generate a better query
<30>
<31> # STEP 2: Retrieve relevant documents from the search index with the GPT optimized query
<32>
<33> # If</s>
|
===========below chunk 0===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
# offset: 1
if has_vector:
query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = None
# Use semantic L2 reranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
else:
r = await self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc['@search.captions']])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ": " + nonew</s>
===========below chunk 1===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
# offset: 2
<s> async for doc in r]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
follow_up_questions_prompt = self.follow_up_questions_prompt_content if overrides.get("suggest_followup_questions") else ""
# STEP 3: Generate a contextual and content specific answer using the search results and chat history
# Allow client to replace the entire prompt, or to inject into the exiting prompt using >>>
prompt_override = overrides.get("prompt_override")
if prompt_override is None:
system_message = self.system_message_chat_conversation.format(injected_prompt="", follow_up_questions_prompt=follow_up_questions_prompt)
elif prompt_override.startswith(">>>"):
system_message = self.system_message_chat_conversation.format(injected_prompt=prompt_override[3:] + "\n", follow_up_questions_prompt=follow_up_questions_prompt)
else:
system_message = prompt_override.format(follow_up_questions_prompt=follow_up_questions_prompt)
messages = self.get_messages_from_history(
system_message,
self.chatgpt_model,
history,
history[-1]["user"]+ "\n\nSources:\n" + content, # Model does not handle lengthy system messages well. Moving sources to latest user conversation to solve follow up questions prompt.
max_tokens=self.chatgpt_token_limit)
msg_to_display = '\n\n'.join([</s>
===========below chunk 2===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
# offset: 3
<s>message) for message in messages])
extra_info = {"data_points": results, "thoughts": f"Searched for:<br>{query_text}<br><br>Conversations:<br>" + msg_to_display.replace('\n', '<br>')}
chat_coroutine = openai.ChatCompletion.acreate(
deployment_id=self.chatgpt_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.7,
max_tokens=1024,
n=1,
stream=should_stream)
return (extra_info, chat_coroutine)
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
|
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.retrieve
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
38dd16c0a39dbc54a37f2b0124b7f99be3b54817
|
Run black on all Python files (#632)
|
<9>:<add> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
<del> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
<10>:<add> query_vector = embedding["data"][0]["embedding"]
<19>:<add> r = await self.search_client.search(
<del> r = await self.search_client.search(query_text,
<20>:<add> query_text,
<add> filter=filter,
<del> filter=filter,
<21>:<add> query_type=QueryType.SEMANTIC,
<del> query_type=QueryType.SEMANTIC,
<22>:<add> query_language="en-us",
<del> query_language="en-us",
<23>:<add> query_speller="lexicon",
<del> query_speller="lexicon",
<24>:<add> semantic_configuration_name="default",
<del> semantic_configuration_name="default",
<25>:<add> top=top,
<del> top = top,
<26>:<add> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<del> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<27>:<add> vector=query_vector,
<del> vector=query_vector,
<28>:<add> top_k=50 if query_vector else None,
<del> top_k=50 if query_vector else None,
<29>:<add> vector_fields="embedding" if query_vector else None,
<del> vector_fields="embedding" if query_vector else None)
<30>:<add> )
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
<10> else:
<11> query_vector = None
<12>
<13> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<14> if not has_text:
<15> query_text = ""
<16>
<17> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<18> if overrides.get("semantic_ranker") and has_text:
<19> r = await self.search_client.search(query_text,
<20> filter=filter,
<21> query_type=QueryType.SEMANTIC,
<22> query_language="en-us",
<23> query_speller="lexicon",
<24> semantic_configuration_name="default",
<25> top = top,
<26> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<27> vector=query_vector,
<28> top_k=50 if query_vector else None,
<29> vector_fields="embedding" if query_vector else None)
<30> else</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
# offset: 1
r = await self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ":" + nonewlines(" -.- ".join([c.text for c in doc['@search.captions']])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:250]) async for doc in r]
content = "\n".join(results)
return results, content
===========unchanged ref 0===========
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach
template_prefix = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
"Answer the question using only the data provided in the information sources below. "
"For tabular information return it as an html table. Do not return markdown format. "
"Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. "
'For example, if the question is "What color is the sky?" and one of the information sources says "info123: the sky is blue whenever it\'s not cloudy", then answer with "The sky is blue [info123]" '
'It\'s important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (":"). '
'If there are multiple sources, cite each one in their own square brackets. For example, use "[info343][ref-76]" and not "[info343,ref-76]". '
"Never quote tool names as sources."
"If you cannot answer using the sources below, say that you don't know. "
"\n\nYou can access to the following tools:"
)
template_suffix = """
Begin!
Question: {input}
Thought: {agent_scratchpad}"""
CognitiveSearchToolDescription = "useful for searching the Microsoft employee benefits information such as healthcare plans, retirement plans, etc."
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
===========unchanged ref 1===========
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
"""
Attempt to answer questions by iteratively evaluating the question to see what information is missing, and once all information
is present then formulate an answer. Each iteration consists of two parts:
1. use GPT to see if we need more information
2. if more data is needed, use the requested "tool" to retrieve it.
The last call to GPT answers the actual question.
This is inspired by the MKRL paper[1] and applied here using the implementation in Langchain.
[1] E. Karpas, et al. arXiv:2205.00445
"""
+ template_prefix = (
- template_prefix = \
+ "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
- "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " \
+ "Answer the question using only the data provided in the information sources below. "
- "Answer the question using only the data provided in the information sources below. " \
+ "For tabular information return it as an html table. Do not return markdown format. "
- "For tabular information return it as an html table. Do not return markdown format. " \
+ "Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. "
- "Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. " \
+ 'For example, if the question is "What color is the sky?" and one of the information sources says "info123: the sky is blue whenever it\'s not cloudy", then answer with "The sky is blue [info123]" '
- "For example, if the question is \"What color is the sky?\" and one of the information sources says \"info123: the sky is blue whenever it's not cloudy\", then answer with \"The sky is blue [info123]</s>
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
# offset: 1
<s> information sources says \"info123: the sky is blue whenever it's not cloudy\", then answer with \"The sky is blue [info123]\" " \
+ 'It\'s important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (":"). '
- "It's important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (\":\"). " \
+ 'If there are multiple sources, cite each one in their own square brackets. For example, use "[info343][ref-76]" and not "[info343,ref-76]". '
- "If there are multiple sources, cite each one in their own square brackets. For example, use \"[info343][ref-76]\" and not \"[info343,ref-76]\". " \
+ "Never quote tool names as sources."
- "Never quote tool names as sources." \
+ "If you cannot answer using the sources below, say that you don't know. "
- "If you cannot answer using the sources below, say that you don't know. " \
+ "\n\nYou can access to the following tools:"
- "\n\nYou can access to the following tools:"
+ )
template_suffix = """
Begin!
Question: {input}
Thought: {agent_scratchpad}"""
CognitiveSearchToolDescription = "useful for searching the Microsoft employee benefits information such as healthcare plans, retirement plans, etc."
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_until_final_call
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
38dd16c0a39dbc54a37f2b0124b7f99be3b54817
|
Run black on all Python files (#632)
|
<7>:<add> user_q = "Generate search query for: " + history[-1]["user"]
<del> user_q = 'Generate search query for: ' + history[-1]["user"]
<16>:<add> self.chatgpt_token_limit - len(user_q),
<del> self.chatgpt_token_limit - len(user_q)
<17>:<add> )
<del> )
<25>:<add> n=1,
<del> n=1)
<26>:<add> )
<29>:<add> query_text = history[-1]["user"] # Use the last user input if we failed to generate a better query
<del> query_text =
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
+ def run_until_final_call(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
- def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
+ ) -> tuple:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> user_q = 'Generate search query for: ' + history[-1]["user"]
<8>
<9> # STEP 1: Generate an optimized keyword search query based on the chat history and the last question
<10> messages = self.get_messages_from_history(
<11> self.query_prompt_template,
<12> self.chatgpt_model,
<13> history,
<14> user_q,
<15> self.query_prompt_few_shots,
<16> self.chatgpt_token_limit - len(user_q)
<17> )
<18>
<19> chat_completion = await openai.ChatCompletion.acreate(
<20> deployment_id=self.chatgpt_deployment,
<21> model=self.chatgpt_model,
<22> messages=messages,
<23> temperature=0.0,
<24> max_tokens=32,
<25> n=1)
<26>
<27> query_text = chat_completion.choices[0].message.content
<28> if query_text.strip() == "0":
<29> query_text =</s>
|
===========below chunk 0===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
+ def run_until_final_call(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
- def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
+ ) -> tuple:
# offset: 1
# STEP 2: Retrieve relevant documents from the search index with the GPT optimized query
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = None
# Use semantic L2 reranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
else:
r = await self.search_client.search(query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_</s>
===========below chunk 1===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
+ def run_until_final_call(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
- def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
+ ) -> tuple:
# offset: 2
<s>_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc['@search.captions']])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
follow_up_questions_prompt = self.follow_up_questions_prompt_content if overrides.get("suggest_followup_questions") else ""
# STEP 3: Generate a contextual and content specific answer using the search results and chat history
# Allow client to replace the entire prompt, or to inject into the exiting prompt using >>>
prompt_override = overrides.get("prompt_template")
if prompt_override is None:
system_message = self.system_message_chat_conversation.format(injected_prompt="", follow_up_questions_prompt=follow_up_questions_prompt)
elif prompt_override.startswith(">>>"):
system_message = self.system_message_chat_conversation.format(injected_prompt=prompt_override[3:] + "\n", follow_up_questions_prompt=follow_up_questions_prompt)
else:
system_</s>
===========below chunk 2===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
+ def run_until_final_call(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
- def run_until_final_call(self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False) -> tuple:
+ ) -> tuple:
# offset: 3
<s> prompt_override.format(follow_up_questions_prompt=follow_up_questions_prompt)
messages = self.get_messages_from_history(
system_message,
self.chatgpt_model,
history,
history[-1]["user"]+ "\n\nSources:\n" + content, # Model does not handle lengthy system messages well. Moving sources to latest user conversation to solve follow up questions prompt.
max_tokens=self.chatgpt_token_limit)
msg_to_display = '\n\n'.join([str(message) for message in messages])
extra_info = {"data_points": results, "thoughts": f"Searched for:<br>{query_text}<br><br>Conversations:<br>" + msg_to_display.replace('\n', '<br>')}
chat_coroutine = openai.ChatCompletion.acreate(
deployment_id=self.chatgpt_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.7,
max_tokens=1024,
n=1,
stream=should_stream)
return (extra_info, chat_coroutine)
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
|
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
38dd16c0a39dbc54a37f2b0124b7f99be3b54817
|
Run black on all Python files (#632)
|
<9>:<add> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=q)
<del> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=q))["data"][0]["embedding"]
<10>:<add> query_vector = embedding["data"][0]["embedding"]
<18>:<add> r = await self.search_client.search(
<del> r = await self.search_client.search(query_text,
<19>:<add> query_text,
<add> filter=filter,
<del> filter=filter,
<20>:<add> query_type=QueryType.SEMANTIC,
<del> query_type=QueryType.SEMANTIC,
<21>:<add> query_language="en-us",
<del> query_language="en-us",
<22>:<add> query_speller="lexicon",
<del> query_speller="lexicon",
<23>:<add> semantic_configuration_name="default",
<del> semantic_configuration_name="default",
<24>:<add> top=top,
<del> top=top,
<25>:<add> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<del> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<26>:<add> vector=query_vector,
<del> vector=query_vector,
<27>:<add> top_k=50 if query_vector else None,
<del> top_k=50 if query_vector else None,
<28>:<add> vector_fields="embedding" if query_vector else None,
<del> vector_fields="embedding" if query_vector else None)
<29>:<add> )
|
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=q))["data"][0]["embedding"]
<10> else:
<11> query_vector = None
<12>
<13> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<14> query_text = q if has_text else ""
<15>
<16> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<17> if overrides.get("semantic_ranker") and has_text:
<18> r = await self.search_client.search(query_text,
<19> filter=filter,
<20> query_type=QueryType.SEMANTIC,
<21> query_language="en-us",
<22> query_speller="lexicon",
<23> semantic_configuration_name="default",
<24> top=top,
<25> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<26> vector=query_vector,
<27> top_k=50 if query_vector else None,
<28> vector_fields="embedding" if query_vector else None)
<29> else:
</s>
|
===========below chunk 0===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc['@search.captions']])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
message_builder = MessageBuilder(overrides.get("prompt_template") or self.system_chat_template, self.chatgpt_model)
# add user question
user_content = q + "\n" + f"Sources:\n {content}"
message_builder.append_message('user', user_content)
# Add shots/samples. This helps model to mimic response and make sure they match rules laid out in system message.
message_builder.append_message('assistant', self.answer)
message_builder.append_message('user', self.question)
messages = message_builder.messages
chat_completion = await openai.ChatCompletion.acreate(
deployment_id=self.openai_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.3,
max_tokens=1024,
n=1)
return {"data_points": results, "answer": chat_completion.choices[0].message.content, "thoughts": f"Question:<br>{query_text}<br><br>Prompt:<br>" + '\n\n'.join([str(message</s>
===========below chunk 1===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 2
<s> f"Question:<br>{query_text}<br><br>Prompt:<br>" + '\n\n'.join([str(message) for message in messages])}
===========unchanged ref 0===========
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach
system_chat_template = \
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " + \
"Use 'you' to refer to the individual asking the questions even if they ask with 'I'. " + \
"Answer the following question using only the data provided in the sources below. " + \
"For tabular information return it as an html table. Do not return markdown format. " + \
"Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. " + \
"If you cannot answer using the sources below, say you don't know. Use below example to answer"
question = """
'What is the deductible for the employee plan for a visit to Overlake in Bellevue?'
Sources:
info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family.
info2.pdf: Overlake is in-network for the employee plan.
info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue.
info4.pdf: In-network institutions include Overlake, Swedish and others in the region
"""
answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]."
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__
self.search_client = search_client
self.openai_deployment = openai_deployment
self.chatgpt_model = chatgpt_model
self.embedding_deployment = embedding_deployment
===========unchanged ref 1===========
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]
at: core.messagebuilder
MessageBuilder(system_content: str, chatgpt_model: str)
at: core.messagebuilder.MessageBuilder
append_message(role: str, content: str, index: int=1)
at: core.messagebuilder.MessageBuilder.__init__
self.messages = [{"role": "system", "content": system_content}]
at: openai.api_resources.chat_completion
ChatCompletion(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.chat_completion.ChatCompletion
engine_required = False
OBJECT_NAME = "chat.completions"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
===========unchanged ref 2===========
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.search
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
38dd16c0a39dbc54a37f2b0124b7f99be3b54817
|
Run black on all Python files (#632)
|
<9>:<add> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
<del> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
<10>:<add> query_vector = embedding["data"][0]["embedding"]
<18>:<add> r = await self.search_client.search(
<del> r = await self.search_client.search(query_text,
<19>:<add> query_text,
<add> filter=filter,
<del> filter=filter,
<20>:<add> query_type=QueryType.SEMANTIC,
<del> query_type=QueryType.SEMANTIC,
<21>:<add> query_language="en-us",
<del> query_language="en-us",
<22>:<add> query_speller="lexicon",
<del> query_speller="lexicon",
<23>:<add> semantic_configuration_name="default",
<del> semantic_configuration_name="default",
<24>:<add> top=top,
<del> top=top,
<25>:<add> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<del> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<26>:<add> vector=query_vector,
<del> vector=query_vector,
<27>:<add> top_k=50 if query_vector else None,
<del> top_k=50 if query_vector else None,
<28>:<add> vector_fields="embedding" if query_vector else None,
<del> vector_fields="embedding" if query_vector else None)
<29>:<add> )
<30>:<add> r = await self.search_client.search(
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> query_vector = (await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text))["data"][0]["embedding"]
<10> else:
<11> query_vector = None
<12>
<13> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<14> if not has_text:
<15> query_text = ""
<16>
<17> if overrides.get("semantic_ranker") and has_text:
<18> r = await self.search_client.search(query_text,
<19> filter=filter,
<20> query_type=QueryType.SEMANTIC,
<21> query_language="en-us",
<22> query_speller="lexicon",
<23> semantic_configuration_name="default",
<24> top=top,
<25> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<26> vector=query_vector,
<27> top_k=50 if query_vector else None,
<28> vector_fields="embedding" if query_vector else None)
<29> else:
<30> r = await self.search_client.search(query_text</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
# offset: 1
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None)
if use_semantic_captions:
results = [doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc['@search.captions'] ])) async for doc in r]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) async for doc in r]
return results, "\n".join(results)
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.search_client = search_client
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
"""
Simple retrieve-then-read implementation, using the Cognitive Search and OpenAI APIs directly. It first retrieves
top documents from search, then constructs a prompt with them, and then uses OpenAI to generate an completion
(answer) with that prompt.
"""
+ system_chat_template = (
- system_chat_template = \
+ "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
- "You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. " + \
+ + "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. "
- "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. " + \
+ + "Answer the following question using only the data provided in the sources below. "
- "Answer the following question using only the data provided in the sources below. " + \
+ + "For tabular information return it as an html table. Do not return markdown format. "
- "For tabular information return it as an html table. Do not return markdown format. " + \
+ + "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. "
- "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. " + \
+ + "If you cannot answer using the sources below, say you don't know. Use below example to answer"
- "If you cannot answer using the sources below, say you don't know. Use below example to answer"
+ )
+ # shots/sample conversation
- #shots/sample conversation
question = """
'What is the deductible for the employee plan for a visit to Overlake in Bellevue?'
Sources:
info1.txt: deductibles depend on whether you are in-</s>
===========changed ref 1===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
# offset: 1
<s> Overlake in Bellevue?'
Sources:
info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family.
info2.pdf: Overlake is in-network for the employee plan.
info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue.
info4.pdf: In-network institutions include Overlake, Swedish and others in the region
"""
answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]."
===========changed ref 2===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
# Chat roles
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
"""
Simple retrieve-then-read implementation, using the Cognitive Search and OpenAI APIs directly. It first retrieves
top documents from search, then constructs a prompt with them, and then uses OpenAI to generate an completion
(answer) with that prompt.
"""
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.
Generate a search query based on the conversation and the new</s>
|
scripts.prepdocs/create_sections
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<10>:<add> section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
<del> section["embedding"] = compute_embedding(content, embedding_deployment)
|
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
<0> file_id = filename_to_id(filename)
<1> for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
<2> section = {
<3> "id": f"{file_id}-page-{i}",
<4> "content": content,
<5> "category": args.category,
<6> "sourcepage": blob_name_from_file_page(filename, pagenum),
<7> "sourcefile": filename,
<8> }
<9> if use_vectors:
<10> section["embedding"] = compute_embedding(content, embedding_deployment)
<11> yield section
<12>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
blob_name_from_file_page(filename, page=0)
split_text(page_map, filename)
filename_to_id(filename)
compute_embedding(text, embedding_deployment, embedding_model)
===========changed ref 0===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/compute_embedding
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<1>:<add> embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
<add> return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
<del> return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
|
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
<0> refresh_openai_token()
<1> return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
<2>
|
===========unchanged ref 0===========
at: openai.error
RateLimitError(message=None, http_body=None, http_status=None, json_body=None, headers=None, code=None)
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
before_retry_sleep(retry_state)
refresh_openai_token()
at: tenacity
retry(stop: "StopBaseT"=stop_never, wait: "WaitBaseT"=wait_none(), retry: "RetryBaseT"=retry_if_exception_type(), before: t.Callable[["RetryCallState"], None]=before_nothing, after: t.Callable[["RetryCallState"], None]=after_nothing, before_sleep: t.Optional[t.Callable[["RetryCallState"], None]]=None, reraise: bool=False, retry_error_cls: t.Type[RetryError]=RetryError, retry_error_callback: t.Optional[t.Callable[["RetryCallState"], t.Any]]=None, *, sleep: t.Callable[[t.Union[int, float]], None]=sleep) -> t.Any
at: tenacity.retry
retry_if_exception_type(exception_types: typing.Union[
typing.Type[BaseException],
typing.Tuple[typing.Type[BaseException], ...],
]=Exception)
at: tenacity.stop
stop_after_attempt(max_attempt_number: int)
at: tenacity.wait
wait_random_exponential(multiplier: typing.Union[int, float]=1, max: _utils.time_unit_type=_utils.MAX_WAIT, exp_base: typing.Union[int, float]=2, min: _utils.time_unit_type=0)
===========changed ref 0===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 1===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/compute_embedding_in_batch
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<1>:<add> embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
<add> emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
<del> emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
|
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
<0> refresh_openai_token()
<1> emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
<2> return [data.embedding for data in emb_response.data]
<3>
|
===========unchanged ref 0===========
at: openai.error
RateLimitError(message=None, http_body=None, http_status=None, json_body=None, headers=None, code=None)
at: tenacity
retry(stop: "StopBaseT"=stop_never, wait: "WaitBaseT"=wait_none(), retry: "RetryBaseT"=retry_if_exception_type(), before: t.Callable[["RetryCallState"], None]=before_nothing, after: t.Callable[["RetryCallState"], None]=after_nothing, before_sleep: t.Optional[t.Callable[["RetryCallState"], None]]=None, reraise: bool=False, retry_error_cls: t.Type[RetryError]=RetryError, retry_error_callback: t.Optional[t.Callable[["RetryCallState"], t.Any]]=None, *, sleep: t.Callable[[t.Union[int, float]], None]=sleep) -> t.Any
at: tenacity.retry
retry_if_exception_type(exception_types: typing.Union[
typing.Type[BaseException],
typing.Tuple[typing.Type[BaseException], ...],
]=Exception)
at: tenacity.stop
stop_after_attempt(max_attempt_number: int)
at: tenacity.wait
wait_random_exponential(multiplier: typing.Union[int, float]=1, max: _utils.time_unit_type=_utils.MAX_WAIT, exp_base: typing.Union[int, float]=2, min: _utils.time_unit_type=0)
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 2===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/read_files
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<23>:<add> embedding_model,
|
# module: scripts.prepdocs
+ def read_files(
+ path_pattern: str,
+ use_vectors: bool,
+ vectors_batch_support: bool,
+ embedding_deployment: str = None,
+ embedding_model: str = None,
+ ):
- def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool, embedding_deployment: str = None):
<0> """
<1> Recursively read directory structure under `path_pattern`
<2> and execute indexing for the individual files
<3> """
<4> for filename in glob.glob(path_pattern):
<5> if args.verbose:
<6> print(f"Processing '{filename}'")
<7> if args.remove:
<8> remove_blobs(filename)
<9> remove_from_index(filename)
<10> else:
<11> if os.path.isdir(filename):
<12> read_files(filename + "/*", use_vectors, vectors_batch_support)
<13> continue
<14> try:
<15> if not args.skipblobs:
<16> upload_blobs(filename)
<17> page_map = get_document_text(filename)
<18> sections = create_sections(
<19> os.path.basename(filename),
<20> page_map,
<21> use_vectors and not vectors_batch_support,
<22> embedding_deployment,
<23> )
<24> if use_vectors and vectors_batch_support:
<25> sections = update_embeddings_in_batch(sections)
<26> index_sections(os.path.basename(filename), sections)
<27> except Exception as e:
<28> print(f"\tGot an error while reading {filename} -> {e} --> skipping file")
<29>
|
===========unchanged ref 0===========
at: glob
glob(pathname: AnyStr, *, recursive: bool=...) -> List[AnyStr]
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
at: os.path
isdir(s: AnyPath) -> bool
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
open_ai_token_cache = {}
open_ai_token_cache[CACHE_KEY_TOKEN_TYPE] = "azure_ad"
open_ai_token_cache[CACHE_KEY_TOKEN_CRED] = azd_credential
open_ai_token_cache[CACHE_KEY_CREATED_TIME] = time.time()
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
remove_blobs(filename)
remove_from_index(filename)
at: time
time() -> float
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 2===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 3===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.__init__
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<2>:<add> self.openai_model = openai_model
<3>:<add> self.embedding_model = embedding_model
<5>:<add> self.openai_host = openai_host
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
<0> self.search_client = search_client
<1> self.openai_deployment = openai_deployment
<2> self.embedding_deployment = embedding_deployment
<3> self.sourcepage_field = sourcepage_field
<4> self.content_field = content_field
<5>
|
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 2===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 3===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 4===========
# module: scripts.prepdocs
+ def read_files(
+ path_pattern: str,
+ use_vectors: bool,
+ vectors_batch_support: bool,
+ embedding_deployment: str = None,
+ embedding_model: str = None,
+ ):
- def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool, embedding_deployment: str = None):
"""
Recursively read directory structure under `path_pattern`
and execute indexing for the individual files
"""
for filename in glob.glob(path_pattern):
if args.verbose:
print(f"Processing '{filename}'")
if args.remove:
remove_blobs(filename)
remove_from_index(filename)
else:
if os.path.isdir(filename):
read_files(filename + "/*", use_vectors, vectors_batch_support)
continue
try:
if not args.skipblobs:
upload_blobs(filename)
page_map = get_document_text(filename)
sections = create_sections(
os.path.basename(filename),
page_map,
use_vectors and not vectors_batch_support,
embedding_deployment,
+ embedding_model,
)
if use_vectors and vectors_batch_support:
sections = update_embeddings_in_batch(sections)
index_sections(os.path.basename(filename), sections)
except Exception as e:
print(f"\tGot an error while reading {filename} -> {e} --> skipping file")
===========changed ref 5===========
# module: scripts.prepdocs
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.",
epilog="Example: prepdocs.py '..\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v",
)
parser.add_argument("files", help="Files to be processed")
parser.add_argument(
"--category", help="Value for the category field in the search index for all sections indexed in this run"
)
parser.add_argument(
"--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage"
)
parser.add_argument("--storageaccount", help="Azure Blob Storage account name")
parser.add_argument("--container", help="Azure Blob Storage container name")
parser.add_argument(
"--storagekey",
required=False,
help="Optional. Use this Azure Blob Storage account key instead of the current user identity to login (use az login to set current user for Azure)",
)
parser.add_argument(
"--tenantid", required=False, help="Optional. Use this to define the Azure directory where to authenticate)"
)
parser.add_argument(
"--searchservice",
help="Name of the Azure Cognitive Search service where content should be indexed (must exist already)",
)
parser.add_argument(
"--index",
help="Name of the Azure Cognitive Search index where content should be indexed (will be created if it doesn't exist)",
)
parser.add_argument(
"--searchkey",
required=False,
help="Optional. Use this Azure Cognitive Search account key instead of the current user identity to login (use az login to set current user for Azure)",
)
+ parser.add_argument("--openaihost", help="Host of the API used to compute embeddings ('azure' or 'openai')")
parser.add_argument("--openaiservice", help="</s>
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.retrieve
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<9>:<add> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<add> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
<del> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
<10> query_vector = embedding["data"][0]["embedding"]
<11> else:
<12> query_vector = None
<13>
<14> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<15> if not has_text:
<16> query_text = ""
<17>
<18> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<19> if overrides.get("semantic_ranker") and has_text:
<20> r = await self.search_client.search(
<21> query_text,
<22> filter=filter,
<23> query_type=QueryType.SEMANTIC,
<24> query_language="en-us",
<25> query_speller="lexicon",
<26> semantic_configuration_name="default",
<27> top=top,
<28> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<29> vector=query_vector,
<30> top_k=50 if query_vector else None,
<31> vector_fields="embedding" if query_vector else None,
<32> )
<33> </s>
|
===========below chunk 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
# offset: 1
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ":" + nonewlines(" -.- ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:250]) async for doc in r]
content = "\n".join(results)
return results, content
===========unchanged ref 0===========
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach
template_prefix = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
"Answer the question using only the data provided in the information sources below. "
"For tabular information return it as an html table. Do not return markdown format. "
"Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. "
'For example, if the question is "What color is the sky?" and one of the information sources says "info123: the sky is blue whenever it\'s not cloudy", then answer with "The sky is blue [info123]" '
'It\'s important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (":"). '
'If there are multiple sources, cite each one in their own square brackets. For example, use "[info343][ref-76]" and not "[info343,ref-76]". '
"Never quote tool names as sources."
"If you cannot answer using the sources below, say that you don't know. "
"\n\nYou can access to the following tools:"
)
template_suffix = """
Begin!
Question: {input}
Thought: {agent_scratchpad}"""
CognitiveSearchToolDescription = "useful for searching the Microsoft employee benefits information such as healthcare plans, retirement plans, etc."
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach.__init__
self.search_client = search_client
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
===========unchanged ref 1===========
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 2===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 3===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 4===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<27>:<add> if self.openai_type == "azure":
<add> llm = AzureOpenAI(
<del> llm = AzureOpenAI(
<28>:<add> deployment_name=self.openai_deployment,
<del> deployment_name=self.openai_deployment,
<29>:<add> temperature=overrides.get("temperature", 0.3),
<del> temperature=overrides.get("temperature") or 0.3,
<30>:<add> openai_api_key=openai.api_key,
<del> openai_api_key=openai.api_key,
<31>:<add> )
<del> )
<32>:<add> else:
<add> llm = OpenAI(
<add> model_name=self.openai_model,
<add> temperature=overrides.get("temperature", 0.3),
<add> openai_api_key=openai.api_key,
<add> )
<add>
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> retrieve_results = None
<1>
<2> async def retrieve_and_store(q: str) -> Any:
<3> nonlocal retrieve_results
<4> retrieve_results, content = await self.retrieve(q, overrides)
<5> return content
<6>
<7> # Use to capture thought process during iterations
<8> cb_handler = HtmlCallbackHandler()
<9> cb_manager = CallbackManager(handlers=[cb_handler])
<10>
<11> acs_tool = Tool(
<12> name="CognitiveSearch",
<13> func=lambda _: "Not implemented",
<14> coroutine=retrieve_and_store,
<15> description=self.CognitiveSearchToolDescription,
<16> callbacks=cb_manager,
<17> )
<18> employee_tool = EmployeeInfoTool("Employee1", callbacks=cb_manager)
<19> tools = [acs_tool, employee_tool]
<20>
<21> prompt = ZeroShotAgent.create_prompt(
<22> tools=tools,
<23> prefix=overrides.get("prompt_template_prefix") or self.template_prefix,
<24> suffix=overrides.get("prompt_template_suffix") or self.template_suffix,
<25> input_variables=["input", "agent_scratchpad"],
<26> )
<27> llm = AzureOpenAI(
<28> deployment_name=self.openai_deployment,
<29> temperature=overrides.get("temperature") or 0.3,
<30> openai_api_key=openai.api_key,
<31> )
<32> chain = LLMChain(llm=llm, prompt=prompt)
<33> agent_exec = AgentExecutor.from_agent_and_tools(
<34> agent=ZeroShotAgent(llm_chain=chain), tools=tools, verbose=True, callback_manager=cb_manager
<35> )
<36> result = await agent_exec.arun(q)
<37>
<38> # Remove references to tool</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
result = result.replace("[CognitiveSearch]", "").replace("[Employee]", "")
return {"data_points": retrieve_results or [], "answer": result, "thoughts": cb_handler.get_and_reset_log()}
===========unchanged ref 0===========
at: app.backend.approaches.readretrieveread
EmployeeInfoTool(employee_name: str, callbacks: Callbacks=None)
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach
template_prefix = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
"Answer the question using only the data provided in the information sources below. "
"For tabular information return it as an html table. Do not return markdown format. "
"Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. "
'For example, if the question is "What color is the sky?" and one of the information sources says "info123: the sky is blue whenever it\'s not cloudy", then answer with "The sky is blue [info123]" '
'It\'s important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (":"). '
'If there are multiple sources, cite each one in their own square brackets. For example, use "[info343][ref-76]" and not "[info343,ref-76]". '
"Never quote tool names as sources."
"If you cannot answer using the sources below, say that you don't know. "
"\n\nYou can access to the following tools:"
)
template_suffix = """
Begin!
Question: {input}
Thought: {agent_scratchpad}"""
CognitiveSearchToolDescription = "useful for searching the Microsoft employee benefits information such as healthcare plans, retirement plans, etc."
retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any
retrieve(query_text: str, overrides: dict[str, Any]) -> Any
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach.__init__
self.openai_deployment = openai_deployment
===========unchanged ref 1===========
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach.retrieve
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
top = overrides.get("top") or 3
exclude_category = overrides.get("exclude_category") or None
filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
+ embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
+ embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
- embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = ""
# Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
</s>
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
# offset: 1
<s>_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ":" + nonewlines(" -.- ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:250]) async for doc in r]
content = "\n".join(results)
return results, content
|
tests.test_prepdocs/test_compute_embedding_success
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<22>:<add> assert compute_embedding("foo", "ada", "text-ada-003") == [
<del> assert compute_embedding("foo", "ada") == [
|
# module: tests.test_prepdocs
def test_compute_embedding_success(monkeypatch, capsys):
<0> monkeypatch.setattr(args, "verbose", True)
<1>
<2> def mock_create(*args, **kwargs):
<3> # From https://platform.openai.com/docs/api-reference/embeddings/create
<4> return {
<5> "object": "list",
<6> "data": [
<7> {
<8> "object": "embedding",
<9> "embedding": [
<10> 0.0023064255,
<11> -0.009327292,
<12> -0.0028842222,
<13> ],
<14> "index": 0,
<15> }
<16> ],
<17> "model": "text-embedding-ada-002",
<18> "usage": {"prompt_tokens": 8, "total_tokens": 8},
<19> }
<20>
<21> monkeypatch.setattr(openai.Embedding, "create", mock_create)
<22> assert compute_embedding("foo", "ada") == [
<23> 0.0023064255,
<24> -0.009327292,
<25> -0.0028842222,
<26> ]
<27>
|
===========unchanged ref 0===========
at: _pytest.capture
capsys(request: SubRequest) -> Generator[CaptureFixture[str], None, None]
at: _pytest.monkeypatch
monkeypatch() -> Generator["MonkeyPatch", None, None]
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
compute_embedding(text, embedding_deployment, embedding_model)
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 2===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 3===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 4===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 5===========
# module: scripts.prepdocs
+ def read_files(
+ path_pattern: str,
+ use_vectors: bool,
+ vectors_batch_support: bool,
+ embedding_deployment: str = None,
+ embedding_model: str = None,
+ ):
- def read_files(path_pattern: str, use_vectors: bool, vectors_batch_support: bool, embedding_deployment: str = None):
"""
Recursively read directory structure under `path_pattern`
and execute indexing for the individual files
"""
for filename in glob.glob(path_pattern):
if args.verbose:
print(f"Processing '{filename}'")
if args.remove:
remove_blobs(filename)
remove_from_index(filename)
else:
if os.path.isdir(filename):
read_files(filename + "/*", use_vectors, vectors_batch_support)
continue
try:
if not args.skipblobs:
upload_blobs(filename)
page_map = get_document_text(filename)
sections = create_sections(
os.path.basename(filename),
page_map,
use_vectors and not vectors_batch_support,
embedding_deployment,
+ embedding_model,
)
if use_vectors and vectors_batch_support:
sections = update_embeddings_in_batch(sections)
index_sections(os.path.basename(filename), sections)
except Exception as e:
print(f"\tGot an error while reading {filename} -> {e} --> skipping file")
|
tests.test_prepdocs/test_compute_embedding_ratelimiterror
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<8>:<add> compute_embedding("foo", "ada", "text-ada-003")
<del> compute_embedding("foo", "ada")
|
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
<0> monkeypatch.setattr(args, "verbose", True)
<1>
<2> def mock_create(*args, **kwargs):
<3> raise openai.error.RateLimitError
<4>
<5> monkeypatch.setattr(openai.Embedding, "create", mock_create)
<6> monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
<7> with pytest.raises(tenacity.RetryError):
<8> compute_embedding("foo", "ada")
<9> captured = capsys.readouterr()
<10> assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
<11>
|
===========unchanged ref 0===========
at: _pytest.python_api
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], func: Callable[..., Any], *args: Any, **kwargs: Any) -> _pytest._code.ExceptionInfo[E]
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], *, match: Optional[Union[str, Pattern[str]]]=...) -> "RaisesContext[E]"
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.error
RateLimitError(message=None, http_body=None, http_status=None, json_body=None, headers=None, code=None)
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
compute_embedding(text, embedding_deployment, embedding_model)
at: tenacity
RetryError(last_attempt: "Future")
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: tests.test_prepdocs
def test_compute_embedding_success(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
# From https://platform.openai.com/docs/api-reference/embeddings/create
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
-0.0028842222,
],
"index": 0,
}
],
"model": "text-embedding-ada-002",
"usage": {"prompt_tokens": 8, "total_tokens": 8},
}
monkeypatch.setattr(openai.Embedding, "create", mock_create)
+ assert compute_embedding("foo", "ada", "text-ada-003") == [
- assert compute_embedding("foo", "ada") == [
0.0023064255,
-0.009327292,
-0.0028842222,
]
===========changed ref 2===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 3===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 4===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 5===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
|
tests.test_prepdocs/test_compute_embedding_autherror
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<8>:<add> compute_embedding("foo", "ada", "text-ada-003")
<del> compute_embedding("foo", "ada")
|
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
<0> monkeypatch.setattr(args, "verbose", True)
<1>
<2> def mock_create(*args, **kwargs):
<3> raise openai.error.AuthenticationError
<4>
<5> monkeypatch.setattr(openai.Embedding, "create", mock_create)
<6> monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
<7> with pytest.raises(openai.error.AuthenticationError):
<8> compute_embedding("foo", "ada")
<9>
|
===========unchanged ref 0===========
at: _pytest.python_api
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], func: Callable[..., Any], *args: Any, **kwargs: Any) -> _pytest._code.ExceptionInfo[E]
raises(expected_exception: Union[Type[E], Tuple[Type[E], ...]], *, match: Optional[Union[str, Pattern[str]]]=...) -> "RaisesContext[E]"
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.error
AuthenticationError(message=None, http_body=None, http_status=None, json_body=None, headers=None, code=None)
at: scripts.prepdocs
args = argparse.Namespace(verbose=False, openaihost="azure")
args = parser.parse_args()
compute_embedding(text, embedding_deployment, embedding_model)
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.RateLimitError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(tenacity.RetryError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
captured = capsys.readouterr()
assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
===========changed ref 2===========
# module: tests.test_prepdocs
def test_compute_embedding_success(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
# From https://platform.openai.com/docs/api-reference/embeddings/create
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
-0.0028842222,
],
"index": 0,
}
],
"model": "text-embedding-ada-002",
"usage": {"prompt_tokens": 8, "total_tokens": 8},
}
monkeypatch.setattr(openai.Embedding, "create", mock_create)
+ assert compute_embedding("foo", "ada", "text-ada-003") == [
- assert compute_embedding("foo", "ada") == [
0.0023064255,
-0.009327292,
-0.0028842222,
]
===========changed ref 3===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 4===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 5===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 6===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
|
tests.conftest/mock_openai_embedding
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<1>:<add> if openai.api_type == "openai":
<add> assert kwargs.get("deployment_id") is None
<add> else:
<add> assert kwargs.get("deployment_id") is not None
|
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
<0> async def mock_acreate(*args, **kwargs):
<1> return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
<2>
<3> monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
<4>
|
===========changed ref 0===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 2===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 3===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 4===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 5===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 6===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 7===========
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.RateLimitError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(tenacity.RetryError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
captured = capsys.readouterr()
assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
===========changed ref 8===========
# module: tests.test_prepdocs
def test_compute_embedding_success(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
# From https://platform.openai.com/docs/api-reference/embeddings/create
return {
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
-0.0028842222,
],
"index": 0,
}
],
"model": "text-embedding-ada-002",
"usage": {"prompt_tokens": 8, "total_tokens": 8},
}
monkeypatch.setattr(openai.Embedding, "create", mock_create)
+ assert compute_embedding("foo", "ada", "text-ada-003") == [
- assert compute_embedding("foo", "ada") == [
0.0023064255,
-0.009327292,
-0.0028842222,
]
|
tests.conftest/mock_openai_chatcompletion
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<16>:<add> if openai.api_type == "openai":
<add> assert kwargs.get("deployment_id") is None
<add> else:
<add> assert kwargs.get("deployment_id") is not None
|
# module: tests.conftest
@pytest.fixture
def mock_openai_chatcompletion(monkeypatch):
<0> class AsyncChatCompletionIterator:
<1> def __init__(self, answer):
<2> self.num = 1
<3> self.answer = answer
<4>
<5> def __aiter__(self):
<6> return self
<7>
<8> async def __anext__(self):
<9> if self.num == 1:
<10> self.num = 0
<11> return openai.util.convert_to_openai_object({"choices": [{"delta": {"content": self.answer}}]})
<12> else:
<13> raise StopAsyncIteration
<14>
<15> async def mock_acreate(*args, **kwargs):
<16> messages = kwargs["messages"]
<17> if messages[-1]["content"] == "Generate search query for: What is the capital of France?":
<18> answer = "capital of France"
<19> else:
<20> answer = "The capital of France is Paris."
<21> if "stream" in kwargs and kwargs["stream"] is True:
<22> return AsyncChatCompletionIterator(answer)
<23> else:
<24> return openai.util.convert_to_openai_object({"choices": [{"message": {"content": answer}}]})
<25>
<26> monkeypatch.setattr(openai.ChatCompletion, "acreate", mock_acreate)
<27>
|
===========changed ref 0===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 1===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 2===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 3===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 4===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 5===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 6===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 7===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 8===========
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.RateLimitError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(tenacity.RetryError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
captured = capsys.readouterr()
assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
|
tests.conftest/client
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<4>:<del> monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
<5>:<del> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "test-chatgpt")
<7>:<add> for key, value in request.param.items():
<add> monkeypatch.setenv(key, value)
<del> monkeypatch.setenv("AZURE_OPENAI_EMB_DEPLOYMENT", "test-ada")
|
# module: tests.conftest
+ @pytest_asyncio.fixture(params=envs)
- @pytest_asyncio.fixture
+ async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
- async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search):
<0> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<1> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<2> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<3> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<4> monkeypatch.setenv("AZURE_OPENAI_SERVICE", "test-openai-service")
<5> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT", "test-chatgpt")
<6> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<7> monkeypatch.setenv("AZURE_OPENAI_EMB_DEPLOYMENT", "test-ada")
<8>
<9> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<10> mock_default_azure_credential.return_value = MockAzureCredential()
<11> quart_app = app.create_app()
<12>
<13> async with quart_app.test_app() as test_app:
<14> quart_app.config.update({"TESTING": True})
<15>
<16> yield test_app.test_client()
<17>
|
===========changed ref 0===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 1===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture
def mock_openai_chatcompletion(monkeypatch):
class AsyncChatCompletionIterator:
def __init__(self, answer):
self.num = 1
self.answer = answer
def __aiter__(self):
return self
async def __anext__(self):
if self.num == 1:
self.num = 0
return openai.util.convert_to_openai_object({"choices": [{"delta": {"content": self.answer}}]})
else:
raise StopAsyncIteration
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
messages = kwargs["messages"]
if messages[-1]["content"] == "Generate search query for: What is the capital of France?":
answer = "capital of France"
else:
answer = "The capital of France is Paris."
if "stream" in kwargs and kwargs["stream"] is True:
return AsyncChatCompletionIterator(answer)
else:
return openai.util.convert_to_openai_object({"choices": [{"message": {"content": answer}}]})
monkeypatch.setattr(openai.ChatCompletion, "acreate", mock_acreate)
===========changed ref 3===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 4===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 5===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 6===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 7===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 8===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.__init__
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<1>:<add> self.openai_host = openai_host
<4>:<add> self.embedding_model = embedding_model
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
chatgpt_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
<0> self.search_client = search_client
<1> self.chatgpt_deployment = chatgpt_deployment
<2> self.chatgpt_model = chatgpt_model
<3> self.embedding_deployment = embedding_deployment
<4> self.sourcepage_field = sourcepage_field
<5> self.content_field = content_field
<6> self.chatgpt_token_limit = get_token_limit(chatgpt_model)
<7>
|
===========unchanged ref 0===========
at: core.modelhelper
get_token_limit(model_id: str) -> int
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 3===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 4===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 5===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 6===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 7===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 8===========
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.RateLimitError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(tenacity.RetryError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
captured = capsys.readouterr()
assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_until_final_call
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<19>:<add> chatgpt_args = {"deployment_id": self.chatgpt_deployment} if self.openai_host == "azure" else {}
<20>:<add> **chatgpt_args,
<del> deployment_id=self.chatgpt_deployment,
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(
self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> user_q = "Generate search query for: " + history[-1]["user"]
<8>
<9> # STEP 1: Generate an optimized keyword search query based on the chat history and the last question
<10> messages = self.get_messages_from_history(
<11> self.query_prompt_template,
<12> self.chatgpt_model,
<13> history,
<14> user_q,
<15> self.query_prompt_few_shots,
<16> self.chatgpt_token_limit - len(user_q),
<17> )
<18>
<19> chat_completion = await openai.ChatCompletion.acreate(
<20> deployment_id=self.chatgpt_deployment,
<21> model=self.chatgpt_model,
<22> messages=messages,
<23> temperature=0.0,
<24> max_tokens=32,
<25> n=1,
<26> )
<27>
<28> query_text = chat_completion.choices[0].message.content
<29> if query_text.strip() == "0":
<30> query_text = history[-1]["user"] # Use the last user input if we failed to generate a better query
<31>
<32> # STEP 2: Retrieve relevant documents from the search index with the GPT</s>
|
===========below chunk 0===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(
self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 1
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = None
# Use semantic L2 reranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
</s>
===========below chunk 1===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(
self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 2
<s>lines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
follow_up_questions_prompt = (
self.follow_up_questions_prompt_content if overrides.get("suggest_followup_questions") else ""
)
# STEP 3: Generate a contextual and content specific answer using the search results and chat history
# Allow client to replace the entire prompt, or to inject into the exiting prompt using >>>
prompt_override = overrides.get("prompt_template")
if prompt_override is None:
system_message = self.system_message_chat_conversation.format(
injected_prompt="", follow_up_questions_prompt=follow_up_questions_prompt
)
elif prompt_override.startswith(">>>"):
system_message = self.system_message_chat_conversation.format(
injected_prompt=prompt_override[3:] + "\n", follow_up_questions_prompt=follow_up_questions_prompt
)
else:
system_message = prompt_override.format(follow_up_questions_prompt=follow_up_questions_prompt)
messages = self.get_messages_from_history(
system_message,
self.chatgpt_model,
history,
# Model does not handle lengthy system messages well.
# Moved sources to latest user conversation to solve follow up questions prompt.
history[-1][</s>
===========below chunk 2===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_until_final_call(
self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 3
<s>"] + "\n\nSources:\n" + content,
max_tokens=self.chatgpt_token_limit,
)
msg_to_display = "\n\n".join([str(message) for message in messages])
extra_info = {
"data_points": results,
"thoughts": f"Searched for:<br>{query_text}<br><br>Conversations:<br>"
+ msg_to_display.replace("\n", "<br>"),
}
chat_coroutine = openai.ChatCompletion.acreate(
deployment_id=self.chatgpt_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.7,
max_tokens=1024,
n=1,
stream=should_stream,
)
return (extra_info, chat_coroutine)
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
|
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.__init__
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<1>:<add> self.openai_host = openai_host
<add> self.chatgpt_deployment = chatgpt_deployment
<del> self.openai_deployment = openai_deployment
<3>:<add> self.embedding_model = embedding_model
|
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
+ chatgpt_deployment: str,
- openai_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
<0> self.search_client = search_client
<1> self.openai_deployment = openai_deployment
<2> self.chatgpt_model = chatgpt_model
<3> self.embedding_deployment = embedding_deployment
<4> self.sourcepage_field = sourcepage_field
<5> self.content_field = content_field
<6>
|
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 3===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 4===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
chatgpt_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
self.chatgpt_deployment = chatgpt_deployment
self.chatgpt_model = chatgpt_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
self.chatgpt_token_limit = get_token_limit(chatgpt_model)
===========changed ref 5===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 6===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 7===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 8===========
# module: scripts.prepdocs
+ def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None, embedding_model: str = None):
- def create_sections(filename, page_map, use_vectors, embedding_deployment: str = None):
file_id = filename_to_id(filename)
for i, (content, pagenum) in enumerate(split_text(page_map, filename)):
section = {
"id": f"{file_id}-page-{i}",
"content": content,
"category": args.category,
"sourcepage": blob_name_from_file_page(filename, pagenum),
"sourcefile": filename,
}
if use_vectors:
+ section["embedding"] = compute_embedding(content, embedding_deployment, embedding_model)
- section["embedding"] = compute_embedding(content, embedding_deployment)
yield section
===========changed ref 9===========
# module: tests.test_prepdocs
def test_compute_embedding_ratelimiterror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.RateLimitError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(tenacity.RetryError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
captured = capsys.readouterr()
assert captured.out.count("Rate limited on the OpenAI embeddings API") == 14
|
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<9>:<add> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<add> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=q)
<del> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=q)
|
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=q)
<10> query_vector = embedding["data"][0]["embedding"]
<11> else:
<12> query_vector = None
<13>
<14> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<15> query_text = q if has_text else ""
<16>
<17> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<18> if overrides.get("semantic_ranker") and has_text:
<19> r = await self.search_client.search(
<20> query_text,
<21> filter=filter,
<22> query_type=QueryType.SEMANTIC,
<23> query_language="en-us",
<24> query_speller="lexicon",
<25> semantic_configuration_name="default",
<26> top=top,
<27> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<28> vector=query_vector,
<29> top_k=50 if query_vector else None,
<30> vector_fields="embedding" if query_vector else None,
<31> )
<32> else</s>
|
===========below chunk 0===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
message_builder = MessageBuilder(
overrides.get("prompt_template") or self.system_chat_template, self.chatgpt_model
)
# add user question
user_content = q + "\n" + f"Sources:\n {content}"
message_builder.append_message("user", user_content)
# Add shots/samples. This helps model to mimic response and make sure they match rules laid out in system message.
message_builder.append_message("assistant", self.answer)
message_builder.append_message("user", self.question)
messages = message_builder.messages
chat_completion = await openai.ChatCompletion.acreate(
deployment_id=self.openai_deployment,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.3,
max_tokens=1024,
n=1,
)
return {
"data_points": results,
"answer": chat_completion.choices[0].message.content,
</s>
===========below chunk 1===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 2
<s> return {
"data_points": results,
"answer": chat_completion.choices[0].message.content,
"thoughts": f"Question:<br>{query_text}<br><br>Prompt:<br>"
+ "\n\n".join([str(message) for message in messages]),
}
===========unchanged ref 0===========
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach
system_chat_template = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
+ "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. "
+ "Answer the following question using only the data provided in the sources below. "
+ "For tabular information return it as an html table. Do not return markdown format. "
+ "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. "
+ "If you cannot answer using the sources below, say you don't know. Use below example to answer"
)
question = """
'What is the deductible for the employee plan for a visit to Overlake in Bellevue?'
Sources:
info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family.
info2.pdf: Overlake is in-network for the employee plan.
info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue.
info4.pdf: In-network institutions include Overlake, Swedish and others in the region
"""
answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]."
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__
self.search_client = search_client
self.openai_deployment = openai_deployment
self.chatgpt_model = chatgpt_model
self.embedding_deployment = embedding_deployment
===========unchanged ref 1===========
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]
at: core.messagebuilder
MessageBuilder(system_content: str, chatgpt_model: str)
at: core.messagebuilder.MessageBuilder
append_message(role: str, content: str, index: int=1)
at: core.messagebuilder.MessageBuilder.__init__
self.messages = [{"role": "system", "content": system_content}]
at: openai.api_resources.chat_completion
ChatCompletion(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.chat_completion.ChatCompletion
engine_required = False
OBJECT_NAME = "chat.completions"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
===========unchanged ref 2===========
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
|
app.backend.app/ensure_openai_token
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<0>:<add> if openai.api_type != "azure_ad":
<add> return
|
# module: app.backend.app
@bp.before_request
async def ensure_openai_token():
<0> openai_token = current_app.config[CONFIG_OPENAI_TOKEN]
<1> if openai_token.expires_on < time.time() + 60:
<2> openai_token = await current_app.config[CONFIG_CREDENTIAL].get_token(
<3> "https://cognitiveservices.azure.com/.default"
<4> )
<5> current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
<6> openai.api_key = openai_token.token
<7>
|
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
bp = Blueprint("routes", __name__, static_folder="static")
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
at: time
time() -> float
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 3===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
+ chatgpt_deployment: str,
- openai_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
+ self.chatgpt_deployment = chatgpt_deployment
- self.openai_deployment = openai_deployment
self.chatgpt_model = chatgpt_model
+ self.embedding_model = embedding_model
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
===========changed ref 4===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 5===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
chatgpt_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
self.chatgpt_deployment = chatgpt_deployment
self.chatgpt_model = chatgpt_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
self.chatgpt_token_limit = get_token_limit(chatgpt_model)
===========changed ref 6===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 7===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 8===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<5>:<add> # Shared by all OpenAI deployments
<add> OPENAI_HOST = os.getenv("OPENAI_HOST", "azure")
<del> AZURE_OPENAI_SERVICE = os.environ["AZURE_OPENAI_SERVICE"]
<6>:<del> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.environ["AZURE_OPENAI_CHATGPT_DEPLOYMENT"]
<7>:<add> OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<del> AZURE_OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<8>:<add> OPENAI_EMB_MODEL = os.getenv("AZURE_OPENAI_EMB_MODEL_NAME", "text-embedding-ada-002")
<add> # Used with Azure OpenAI deployments
<add> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<add> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<add> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<del> AZURE_OPENAI_EMB_DEPLOYMENT = os.environ["AZURE_OPENAI_EMB_DEPLOYMENT"]
<9>:<add> # Used only with non-Azure OpenAI deployments
<add> OPENAI_API_KEY = os.getenv("OPENAI_API_KEY
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Replace these with your own values, either in environment variables or directly here
<1> AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
<2> AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
<3> AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
<4> AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
<5> AZURE_OPENAI_SERVICE = os.environ["AZURE_OPENAI_SERVICE"]
<6> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.environ["AZURE_OPENAI_CHATGPT_DEPLOYMENT"]
<7> AZURE_OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<8> AZURE_OPENAI_EMB_DEPLOYMENT = os.environ["AZURE_OPENAI_EMB_DEPLOYMENT"]
<9>
<10> KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
<11> KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
<12>
<13> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<14> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
<15> # keys for each service
<16> # If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
<17> azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)
<18>
<19> # Set up clients for Cognitive Search and Storage
<20> search_client = SearchClient(
<21> endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
<22> index_name=AZURE</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
credential=azure_credential,
)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net", credential=azure_credential
)
blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-05-15"
openai.api_type = "azure_ad"
openai_token = await azure_credential.get_token("https://cognitiveservices.azure.com/.default")
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
current_app.config[CONFIG_CREDENTIAL] = azure_credential
current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rrr": ReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
</s>
===========below chunk 1===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 2
<s>PLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rda": ReadDecomposeAsk(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
AZURE_OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_deployment: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_deployment: str, chatgpt_model: str, embedding_deployment: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
at: os
environ = _createenviron()
===========unchanged ref 1===========
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
===========changed ref 0===========
# module: app.backend.app
@bp.before_request
async def ensure_openai_token():
+ if openai.api_type != "azure_ad":
+ return
openai_token = current_app.config[CONFIG_OPENAI_TOKEN]
if openai_token.expires_on < time.time() + 60:
openai_token = await current_app.config[CONFIG_CREDENTIAL].get_token(
"https://cognitiveservices.azure.com/.default"
)
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
openai.api_key = openai_token.token
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 2===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.__init__
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<2>:<add> self.openai_model = openai_model
<3>:<add> self.embedding_model = embedding_model
<5>:<add> self.openai_host = openai_host
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
<0> self.search_client = search_client
<1> self.openai_deployment = openai_deployment
<2> self.embedding_deployment = embedding_deployment
<3> self.sourcepage_field = sourcepage_field
<4> self.content_field = content_field
<5>
|
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 3===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
+ chatgpt_deployment: str,
- openai_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
+ self.chatgpt_deployment = chatgpt_deployment
- self.openai_deployment = openai_deployment
self.chatgpt_model = chatgpt_model
+ self.embedding_model = embedding_model
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
===========changed ref 4===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 5===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
chatgpt_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
self.chatgpt_deployment = chatgpt_deployment
self.chatgpt_model = chatgpt_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
self.chatgpt_token_limit = get_token_limit(chatgpt_model)
===========changed ref 6===========
# module: tests.test_prepdocs
def test_compute_embedding_autherror(monkeypatch, capsys):
monkeypatch.setattr(args, "verbose", True)
def mock_create(*args, **kwargs):
raise openai.error.AuthenticationError
monkeypatch.setattr(openai.Embedding, "create", mock_create)
monkeypatch.setattr(tenacity.nap.time, "sleep", lambda x: None)
with pytest.raises(openai.error.AuthenticationError):
+ compute_embedding("foo", "ada", "text-ada-003")
- compute_embedding("foo", "ada")
===========changed ref 7===========
# module: app.backend.app
@bp.before_request
async def ensure_openai_token():
+ if openai.api_type != "azure_ad":
+ return
openai_token = current_app.config[CONFIG_OPENAI_TOKEN]
if openai_token.expires_on < time.time() + 60:
openai_token = await current_app.config[CONFIG_CREDENTIAL].get_token(
"https://cognitiveservices.azure.com/.default"
)
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
openai.api_key = openai_token.token
===========changed ref 8===========
# module: tests.conftest
MockToken = namedtuple("MockToken", ["token", "expires_on"])
+ envs = [
+ {
+ "OPENAI_HOST": "openai",
+ "OPENAI_API_KEY": "secretkey",
+ "OPENAI_ORGANIZATION": "organization",
+ },
+ {
+ "OPENAI_HOST": "azure",
+ "AZURE_OPENAI_SERVICE": "test-openai-service",
+ "AZURE_OPENAI_CHATGPT_DEPLOYMENT": "test-chatgpt",
+ "AZURE_OPENAI_EMB_DEPLOYMENT": "test-ada",
+ },
+ ]
+
===========changed ref 9===========
# module: scripts.prepdocs
+ args = argparse.Namespace(verbose=False, openaihost="azure")
- args = argparse.Namespace(verbose=False)
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.search
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<9>:<add> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<add> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
<del> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
<10> query_vector = embedding["data"][0]["embedding"]
<11> else:
<12> query_vector = None
<13>
<14> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<15> if not has_text:
<16> query_text = ""
<17>
<18> if overrides.get("semantic_ranker") and has_text:
<19> r = await self.search_client.search(
<20> query_text,
<21> filter=filter,
<22> query_type=QueryType.SEMANTIC,
<23> query_language="en-us",
<24> query_speller="lexicon",
<25> semantic_configuration_name="default",
<26> top=top,
<27> query_caption="extractive|highlight-false" if use_semantic_captions else None,
<28> vector=query_vector,
<29> top_k=50 if query_vector else None,
<30> vector_fields="embedding" if query_vector else None,
<31> )
<32> else:
<33> r = await self.search_client.search(
</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
# offset: 1
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) async for doc in r]
return results, "\n".join(results)
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.search_client = search_client
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
openai_deployment: str,
+ openai_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
self.openai_deployment = openai_deployment
+ self.openai_model = openai_model
self.embedding_deployment = embedding_deployment
+ self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
+ self.openai_host = openai_host
===========changed ref 2===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
+ def compute_embedding(text, embedding_deployment, embedding_model):
- def compute_embedding(text, embedding_deployment):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
+ return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
- return openai.Embedding.create(engine=embedding_deployment, input=text)["data"][0]["embedding"]
===========changed ref 3===========
# module: tests.conftest
@pytest.fixture
def mock_openai_embedding(monkeypatch):
async def mock_acreate(*args, **kwargs):
+ if openai.api_type == "openai":
+ assert kwargs.get("deployment_id") is None
+ else:
+ assert kwargs.get("deployment_id") is not None
return {"data": [{"embedding": [0.1, 0.2, 0.3]}]}
monkeypatch.setattr(openai.Embedding, "acreate", mock_acreate)
===========changed ref 4===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
def __init__(
self,
search_client: SearchClient,
+ openai_host: str,
+ chatgpt_deployment: str,
- openai_deployment: str,
chatgpt_model: str,
embedding_deployment: str,
+ embedding_model: str,
sourcepage_field: str,
content_field: str,
):
self.search_client = search_client
+ self.openai_host = openai_host
+ self.chatgpt_deployment = chatgpt_deployment
- self.openai_deployment = openai_deployment
self.chatgpt_model = chatgpt_model
+ self.embedding_model = embedding_model
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
===========changed ref 5===========
<s>retry(
+ retry=retry_if_exception_type(openai.error.RateLimitError),
+ wait=wait_random_exponential(min=15, max=60),
+ stop=stop_after_attempt(15),
+ before_sleep=before_retry_sleep,
+ )
- @retry(wait=wait_random_exponential(min=15, max=60), stop=stop_after_attempt(15), before_sleep=before_retry_sleep)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
+ emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
- emb_response = openai.Embedding.create(engine=args.openaideployment, input=texts)
return [data.embedding for data in emb_response.data]
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
62e22486632194ca387ba3c7187c4db4db8a5425
|
Adding support for non-Azure openai instances (#507)
|
<11>:<add> if self.openai_host == "azure":
<add> llm = AzureOpenAI(
<del> llm = AzureOpenAI(
<12>:<add> deployment_name=self.openai_deployment,
<del> deployment_name=self.openai_deployment,
<13>:<add> temperature=overrides.get("temperature", 0.3),
<del> temperature=overrides.get("temperature") or 0.3,
<14>:<add> openai_api_key=openai.api_key,
<del> openai_api_key=openai.api_key,
<15>:<add> )
<del> )
<16>:<add> else:
<add> llm = OpenAI(
<add> model_name=self.openai_model,
<add> temperature=overrides.get("temperature", 0.3),
<add> openai_api_key=openai.api_key,
<add> )
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> search_results = None
<1>
<2> async def search_and_store(q: str) -> Any:
<3> nonlocal search_results
<4> search_results, content = await self.search(q, overrides)
<5> return content
<6>
<7> # Use to capture thought process during iterations
<8> cb_handler = HtmlCallbackHandler()
<9> cb_manager = CallbackManager(handlers=[cb_handler])
<10>
<11> llm = AzureOpenAI(
<12> deployment_name=self.openai_deployment,
<13> temperature=overrides.get("temperature") or 0.3,
<14> openai_api_key=openai.api_key,
<15> )
<16> tools = [
<17> Tool(
<18> name="Search",
<19> func=lambda _: "Not implemented",
<20> coroutine=search_and_store,
<21> description="useful for when you need to ask with search",
<22> callbacks=cb_manager,
<23> ),
<24> Tool(
<25> name="Lookup",
<26> func=lambda _: "Not implemented",
<27> coroutine=self.lookup,
<28> description="useful for when you need to ask with lookup",
<29> callbacks=cb_manager,
<30> ),
<31> ]
<32>
<33> prompt_prefix = overrides.get("prompt_template")
<34> prompt = PromptTemplate.from_examples(
<35> EXAMPLES,
<36> SUFFIX,
<37> ["input", "agent_scratchpad"],
<38> prompt_prefix + "\n\n" + PREFIX if prompt_prefix else PREFIX,
<39> )
<40>
<41> class ReAct(ReActDocstoreAgent):
<42> @classmethod
<43> def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
<44> return prompt
<45>
<46> agent = ReAct.from_llm_and_tools(llm, tools)
<47> chain =</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
result = await chain.arun(q)
# Replace substrings of the form <file.ext> with [file.ext] so that the frontend can render them as links, match them with a regex to avoid
# generalizing too much and disrupt HTML snippets if present
result = re.sub(r"<([a-zA-Z0-9_ \-\.]+)>", r"[\1]", result)
return {"data_points": search_results or [], "answer": result, "thoughts": cb_handler.get_and_reset_log()}
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask
EXAMPLES = [
"""Question: What is the elevation range for the area that the eastern sector of the
Colorado orogeny extends into?
Thought: I need to search Colorado orogeny, find the area that the eastern sector
of the Colorado orogeny extends into, then find the elevation range of the
area.
Action: Search[Colorado orogeny]
Observation: <info1.pdf> The Colorado orogeny was an episode of mountain building (an orogeny) in
Colorado and surrounding areas.
Thought: It does not mention the eastern sector. So I need to look up eastern
sector.
Action: Lookup[eastern sector]
Observation: <info2.txt> (Result 1 / 1) The eastern sector extends into the High Plains and is called
the Central Plains orogeny.
Thought: The eastern sector of Colorado orogeny extends into the High Plains. So I
need to search High Plains and find its elevation range.
Action: Search[High Plains]
Observation: <some_file.pdf> High Plains refers to one of two distinct land regions
Thought: I need to instead search High Plains (United States).
Action: Search[High Plains (United States)]
Observation: <filea.pdf> The High Plains are a subregion of the Great Plains. <another-ref.docx> From east to west, the
High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130
m).
Thought: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer
is 1,800 to 7,000 ft.
Action: Finish[1,800 to 7,000 ft <filea.pdf>]""",
"""Question: Musician and satirist Allie Goertz wrote a song about the "The Simpsons"
character Milhouse, who</s>
===========unchanged ref 1===========
SUFFIX = """\nQuestion: {input}
{agent_scratchpad}"""
PREFIX = (
"Answer questions as shown in the following examples, by splitting the question into individual search or lookup actions to find facts until you can answer the question. "
"Observations are prefixed by their source name in angled brackets, source names MUST be included with the actions in the answers."
"All questions must be answered from the results from search or look up actions, only facts resulting from those can be used in an answer. "
)
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk
search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]
search(query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]
lookup(q: str) -> Optional[str]
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.openai_deployment = openai_deployment
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]
at: langchainadapters.HtmlCallbackHandler
html: str = ""
get_and_reset_log() -> str
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
===========unchanged ref 2===========
at: re
sub(pattern: AnyStr, repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: AnyStr, repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
top = overrides.get("top") or 3
exclude_category = overrides.get("exclude_category") or None
filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
+ embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
+ embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
- embedding = await openai.Embedding.acreate(engine=self.embedding_deployment, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = ""
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_</s>
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
7b7e6cedad841c5816abf7900cb42a0bdf471ea5
|
Stabilize search query generation (#652)
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Replace these with your own values, either in environment variables or directly here
<1> AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
<2> AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
<3> AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
<4> AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
<5> # Shared by all OpenAI deployments
<6> OPENAI_HOST = os.getenv("OPENAI_HOST", "azure")
<7> OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<8> OPENAI_EMB_MODEL = os.getenv("AZURE_OPENAI_EMB_MODEL_NAME", "text-embedding-ada-002")
<9> # Used with Azure OpenAI deployments
<10> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<11> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<12> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<13> # Used only with non-Azure OpenAI deployments
<14> OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
<15> OPENAI_ORGANIZATION = os.getenv("OPENAI_ORGANIZATION")
<16>
<17> KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
<18> KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
<19>
<20> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<21> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
# keys for each service
# If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)
# Set up clients for Cognitive Search and Storage
search_client = SearchClient(
endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
index_name=AZURE_SEARCH_INDEX,
credential=azure_credential,
)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net", credential=azure_credential
)
blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
if OPENAI_HOST == "azure":
openai.api_type = "azure_ad"
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-05-15"
openai_token = await azure_credential.get_token("https://cognitiveservices.azure.com/.default")
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
else:
openai.api_type = "openai"
openai.api_key = OPENAI_API_KEY
openai.organization = OPENAI_ORGANIZATION
current_app.config[CONFIG_CREDENTIAL] = azure_credential
current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these</s>
===========below chunk 1===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 2
<s> blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rrr": ReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rda": ReadDecomposeAsk(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_</s>
===========below chunk 2===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 3
<s>
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_host: str, openai_deployment: str, openai_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_host: str, openai_deployment: str, openai_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
organization = os.environ.get("OPENAI_ORGANIZATION")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
===========unchanged ref 1===========
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
at: os
environ = _createenviron()
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
|
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_without_streaming
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
7b7e6cedad841c5816abf7900cb42a0bdf471ea5
|
Stabilize search query generation (#652)
|
<1>:<add> chat_resp = await chat_coroutine
<add> chat_content = chat_resp.choices[0].message.content
<del> chat_content = (await chat_coroutine).choices[0].message.content
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_without_streaming(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> dict[str, Any]:
<0> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=False)
<1> chat_content = (await chat_coroutine).choices[0].message.content
<2> extra_info["answer"] = chat_content
<3> return extra_info
<4>
|
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.__init__
self.chatgpt_token_limit = get_token_limit(chatgpt_model)
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach.run_until_final_call
content = "\n".join(results)
messages = self.get_messages_from_history(
system_message,
self.chatgpt_model,
history,
# Model does not handle lengthy system messages well.
# Moved sources to latest user conversation to solve follow up questions prompt.
history[-1]["user"] + "\n\nSources:\n" + content,
max_tokens=self.chatgpt_token_limit,
)
===========changed ref 0===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
# Chat roles
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
+
+ NO_RESPONSE = "0"
"""
Simple retrieve-then-read implementation, using the Cognitive Search and OpenAI APIs directly. It first retrieves
top documents from search, then constructs a prompt with them, and then uses OpenAI to generate an completion
(answer) with that prompt.
"""
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.</s>
===========changed ref 1===========
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
# offset: 1
<s> asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.
+ You have access to Azure Cognitive Search index with 100's of documents.
Generate a search query based on the conversation and the new question.
Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms.
Do not include any text inside [] or <<>> in the search query terms.
Do not include any special characters like '+'.
If the question is not in English, translate the question to English before generating the search query.
If you cannot generate a search query, return just the number 0.
"""
query_prompt_few_shots = [
{"role": USER, "content": "What are my health plans?"},
{"role": ASSISTANT, "content": "Show available health plans"},
{"role": USER, "content": "does my plan cover cardio?"},
{"role": ASSISTANT, "content": "Health plan cardio coverage"},
]
===========changed ref 2===========
+ # module: tests.test_chatapproach
+
+
===========changed ref 3===========
+ # module: tests.test_chatapproach
+ def test_get_search_query_returns_default():
+ chat_approach = ChatReadRetrieveReadApproach(None, "", "gpt-35-turbo", "gpt-35-turbo", "", "", "", "")
+
+ payload = '{"id":"chatcmpl-81JkxYqYppUkPtOAia40gki2vJ9QM","object":"chat.completion","created":1695324963,"model":"gpt-35-turbo","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"choices":[{"index":0,"finish_reason":"function_call","message":{"role":"assistant"},"content_filter_results":{}}],"usage":{"completion_tokens":19,"prompt_tokens":425,"total_tokens":444}}'
+ default_query = "hello"
+ query = chat_approach.get_search_query(json.loads(payload), default_query)
+
+ assert query == default_query
+
===========changed ref 4===========
+ # module: tests.test_chatapproach
+ def test_get_search_query():
+ chat_approach = ChatReadRetrieveReadApproach(None, "", "gpt-35-turbo", "gpt-35-turbo", "", "", "", "")
+
+ payload = '{"id":"chatcmpl-81JkxYqYppUkPtOAia40gki2vJ9QM","object":"chat.completion","created":1695324963,"model":"gpt-35-turbo","prompt_filter_results":[{"prompt_index":0,"content_filter_results":{"hate":{"filtered":false,"severity":"safe"},"self_harm":{"filtered":false,"severity":"safe"},"sexual":{"filtered":false,"severity":"safe"},"violence":{"filtered":false,"severity":"safe"}}}],"choices":[{"index":0,"finish_reason":"function_call","message":{"role":"assistant","function_call":{"name":"search_sources","arguments":"{\\n\\"search_query\\":\\"accesstelemedicineservices\\"\\n}"}},"content_filter_results":{}}],"usage":{"completion_tokens":19,"prompt_tokens":425,"total_tokens":444}}'
+ default_query = "hello"
+ query = chat_approach.get_search_query(json.loads(payload), default_query)
+
+ assert query == "accesstelemedicineservices"
+
|
tests.conftest/mock_openai_chatcompletion
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f3cc2ad9c7de12aaa575cd5c4252efe1eaa400bd
|
Hotfix: Workaround for stream bug (#664)
|
<2>:<add> self.num = 2
<del> self.num = 1
<9>:<add> if self.num == 2:
<add> self.num -= 1
<add> # Emulate the first response being empty - bug with "2023-07-01-preview"
<add> return openai.util.convert_to_openai_object({"choices": []})
<add> elif self.num == 1:
<del> if self.num == 1:
<10>:<add> self.num -= 1
<del> self.num = 0
|
# module: tests.conftest
@pytest.fixture
def mock_openai_chatcompletion(monkeypatch):
<0> class AsyncChatCompletionIterator:
<1> def __init__(self, answer):
<2> self.num = 1
<3> self.answer = answer
<4>
<5> def __aiter__(self):
<6> return self
<7>
<8> async def __anext__(self):
<9> if self.num == 1:
<10> self.num = 0
<11> return openai.util.convert_to_openai_object({"choices": [{"delta": {"content": self.answer}}]})
<12> else:
<13> raise StopAsyncIteration
<14>
<15> async def mock_acreate(*args, **kwargs):
<16> if openai.api_type == "openai":
<17> assert kwargs.get("deployment_id") is None
<18> else:
<19> assert kwargs.get("deployment_id") is not None
<20> messages = kwargs["messages"]
<21> if messages[-1]["content"] == "Generate search query for: What is the capital of France?":
<22> answer = "capital of France"
<23> else:
<24> answer = "The capital of France is Paris."
<25> if "stream" in kwargs and kwargs["stream"] is True:
<26> return AsyncChatCompletionIterator(answer)
<27> else:
<28> return openai.util.convert_to_openai_object({"choices": [{"message": {"content": answer}}]})
<29>
<30> monkeypatch.setattr(openai.ChatCompletion, "acreate", mock_acreate)
<31>
|
===========unchanged ref 0===========
at: _pytest.fixtures
fixture(fixture_function: FixtureFunction, *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[
Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]]
]=..., name: Optional[str]=...) -> FixtureFunction
fixture(fixture_function: None=..., *, scope: "Union[_ScopeName, Callable[[str, Config], _ScopeName]]"=..., params: Optional[Iterable[object]]=..., autouse: bool=..., ids: Optional[
Union[Sequence[Optional[object]], Callable[[Any], Optional[object]]]
]=..., name: Optional[str]=None) -> FixtureFunctionMarker
at: _pytest.monkeypatch
monkeypatch() -> Generator["MonkeyPatch", None, None]
at: openai
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
at: openai.util
convert_to_openai_object(resp, api_key=None, api_version=None, organization=None, engine=None, plain_old_data=False)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_with_streaming
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f3cc2ad9c7de12aaa575cd5c4252efe1eaa400bd
|
Hotfix: Workaround for stream bug (#664)
|
<3>:<add> # "2023-07-01-preview" API version has a bug where first response has empty choices
<add> if event["choices"]:
<add> yield event
<del> yield event
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach:
def run_with_streaming(
self, history: list[dict[str, str]], overrides: dict[str, Any]
) -> AsyncGenerator[dict, None]:
<0> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=True)
<1> yield extra_info
<2> async for event in await chat_coroutine:
<3> yield event
<4>
|
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
NO_RESPONSE = "0"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
===========unchanged ref 1===========
query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.
You have access to Azure Cognitive Search index with 100's of documents.
Generate a search query based on the conversation and the new question.
Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms.
Do not include any text inside [] or <<>> in the search query terms.
Do not include any special characters like '+'.
If the question is not in English, translate the question to English before generating the search query.
If you cannot generate a search query, return just the number 0.
"""
query_prompt_few_shots = [
{"role": USER, "content": "What are my health plans?"},
{"role": ASSISTANT, "content": "Show available health plans"},
{"role": USER, "content": "does my plan cover cardio?"},
{"role": ASSISTANT, "content": "Health plan cardio coverage"},
]
run_until_final_call(history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool=False) -> tuple
at: typing
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
===========changed ref 0===========
# module: tests.conftest
@pytest.fixture
def mock_openai_chatcompletion(monkeypatch):
class AsyncChatCompletionIterator:
def __init__(self, answer):
+ self.num = 2
- self.num = 1
self.answer = answer
def __aiter__(self):
return self
async def __anext__(self):
+ if self.num == 2:
+ self.num -= 1
+ # Emulate the first response being empty - bug with "2023-07-01-preview"
+ return openai.util.convert_to_openai_object({"choices": []})
+ elif self.num == 1:
- if self.num == 1:
+ self.num -= 1
- self.num = 0
return openai.util.convert_to_openai_object({"choices": [{"delta": {"content": self.answer}}]})
else:
raise StopAsyncIteration
async def mock_acreate(*args, **kwargs):
if openai.api_type == "openai":
assert kwargs.get("deployment_id") is None
else:
assert kwargs.get("deployment_id") is not None
messages = kwargs["messages"]
if messages[-1]["content"] == "Generate search query for: What is the capital of France?":
answer = "capital of France"
else:
answer = "The capital of France is Paris."
if "stream" in kwargs and kwargs["stream"] is True:
return AsyncChatCompletionIterator(answer)
else:
return openai.util.convert_to_openai_object({"choices": [{"message": {"content": answer}}]})
monkeypatch.setattr(openai.ChatCompletion, "acreate", mock_acreate)
|
scripts.prepdocs/compute_embedding
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<1>:<add> embedding_args = {"deployment_id": embedding_deployment} if args.openaihost != "openai" else {}
<del> embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
|
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding(text, embedding_deployment, embedding_model):
<0> refresh_openai_token()
<1> embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
<2> return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
<3>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(
verbose=False,
openaihost="azure",
datalakestorageaccount=None,
datalakefilesystem=None,
datalakepath=None,
remove=False,
useacls=False,
skipblobs=False,
storageaccount=None,
container=None,
)
args = parser.parse_args()
blob_name_from_file_page(filename, page=0)
compute_embedding(text, embedding_deployment, embedding_model)
at: scripts.prepdocs.create_sections
file_id = filename_to_id(filename)
===========changed ref 0===========
# module: scripts.prepdocs
+ args = argparse.Namespace(
+ verbose=False,
+ openaihost="azure",
+ datalakestorageaccount=None,
+ datalakefilesystem=None,
+ datalakepath=None,
+ remove=False,
+ useacls=False,
+ skipblobs=False,
+ storageaccount=None,
+ container=None,
+ )
+ adls_gen2_creds = None
+ storage_creds = None
- args = argparse.Namespace(verbose=False, openaihost="azure")
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/compute_embedding_in_batch
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<1>:<add> embedding_args = {"deployment_id": args.openaideployment} if args.openaihost != "openai" else {}
<del> embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
|
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding_in_batch(texts):
<0> refresh_openai_token()
<1> embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
<2> emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
<3> return [data.embedding for data in emb_response.data]
<4>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(
verbose=False,
openaihost="azure",
datalakestorageaccount=None,
datalakefilesystem=None,
datalakepath=None,
remove=False,
useacls=False,
skipblobs=False,
storageaccount=None,
container=None,
)
args = parser.parse_args()
at: tenacity
retry(stop: "StopBaseT"=stop_never, wait: "WaitBaseT"=wait_none(), retry: "RetryBaseT"=retry_if_exception_type(), before: t.Callable[["RetryCallState"], None]=before_nothing, after: t.Callable[["RetryCallState"], None]=after_nothing, before_sleep: t.Optional[t.Callable[["RetryCallState"], None]]=None, reraise: bool=False, retry_error_cls: t.Type[RetryError]=RetryError, retry_error_callback: t.Optional[t.Callable[["RetryCallState"], t.Any]]=None, *, sleep: t.Callable[[t.Union[int, float]], None]=sleep) -> t.Any
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding(text, embedding_deployment, embedding_model):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
+ args = argparse.Namespace(
+ verbose=False,
+ openaihost="azure",
+ datalakestorageaccount=None,
+ datalakefilesystem=None,
+ datalakepath=None,
+ remove=False,
+ useacls=False,
+ skipblobs=False,
+ storageaccount=None,
+ container=None,
+ )
+ adls_gen2_creds = None
+ storage_creds = None
- args = argparse.Namespace(verbose=False, openaihost="azure")
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/create_search_index
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<5>:<add> fields = [
<add> SimpleField(name="id", type="Edm.String", key=True),
<add> SearchableField(name="content", type="Edm.String", analyzer_name="en.microsoft"),
<add> SearchField(
<add> name="embedding",
<add> type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
<add> hidden=False,
<add> searchable=True,
<add> filterable=False,
<add> sortable=False,
<add> facetable=False,
<add> vector_search_dimensions=1536,
<add> vector_search_configuration="default",
<add> ),
<add> SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
<add> SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
<add> SimpleField(name="sourcefile", type="Edm.String", filterable=True, facetable=True),
<add> ]
<add> if args.useacls:
<add> fields.
|
# module: scripts.prepdocs
def create_search_index():
<0> if args.verbose:
<1> print(f"Ensuring search index {args.index} exists")
<2> index_client = SearchIndexClient(
<3> endpoint=f"https://{args.searchservice}.search.windows.net/", credential=search_creds
<4> )
<5> if args.index not in index_client.list_index_names():
<6> index = SearchIndex(
<7> name=args.index,
<8> fields=[
<9> SimpleField(name="id", type="Edm.String", key=True),
<10> SearchableField(name="content", type="Edm.String", analyzer_name="en.microsoft"),
<11> SearchField(
<12> name="embedding",
<13> type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
<14> hidden=False,
<15> searchable=True,
<16> filterable=False,
<17> sortable=False,
<18> facetable=False,
<19> vector_search_dimensions=1536,
<20> vector_search_configuration="default",
<21> ),
<22> SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
<23> SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
<24> SimpleField(name="sourcefile", type="Edm.String", filterable=True, facetable=True),
<25> ],
<26> semantic_settings=SemanticSettings(
<27> configurations=[
<28> SemanticConfiguration(
<29> name="default",
<30> prioritized_fields=PrioritizedFields(
<31> title_field=None, prioritized_content_fields=[SemanticField(field_name="content")]
<32> ),
<33> )
<34> ]
<35> ),
<36> vector_search=VectorSearch(
<37> algorithm_configurations=[
<38> VectorSearchAlgorithmConfiguration(
<39> name="default", kind="hnsw", hnsw_parameters=HnswParameters(metric="cosine")
<40> )
<41> ]
<42> ),
</s>
|
===========below chunk 0===========
# module: scripts.prepdocs
def create_search_index():
# offset: 1
if args.verbose:
print(f"Creating {args.index} search index")
index_client.create_index(index)
else:
if args.verbose:
print(f"Search index {args.index} already exists")
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(
verbose=False,
openaihost="azure",
datalakestorageaccount=None,
datalakefilesystem=None,
datalakepath=None,
remove=False,
useacls=False,
skipblobs=False,
storageaccount=None,
container=None,
)
args = parser.parse_args()
before_retry_sleep(retry_state)
at: tenacity
retry(stop: "StopBaseT"=stop_never, wait: "WaitBaseT"=wait_none(), retry: "RetryBaseT"=retry_if_exception_type(), before: t.Callable[["RetryCallState"], None]=before_nothing, after: t.Callable[["RetryCallState"], None]=after_nothing, before_sleep: t.Optional[t.Callable[["RetryCallState"], None]]=None, reraise: bool=False, retry_error_cls: t.Type[RetryError]=RetryError, retry_error_callback: t.Optional[t.Callable[["RetryCallState"], t.Any]]=None, *, sleep: t.Callable[[t.Union[int, float]], None]=sleep) -> t.Any
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding(text, embedding_deployment, embedding_model):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 2===========
# module: scripts.prepdocs
+ args = argparse.Namespace(
+ verbose=False,
+ openaihost="azure",
+ datalakestorageaccount=None,
+ datalakefilesystem=None,
+ datalakepath=None,
+ remove=False,
+ useacls=False,
+ skipblobs=False,
+ storageaccount=None,
+ container=None,
+ )
+ adls_gen2_creds = None
+ storage_creds = None
- args = argparse.Namespace(verbose=False, openaihost="azure")
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
|
scripts.prepdocs/index_sections
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<8>:<add> if acls:
<add> s.update(acls)
|
# module: scripts.prepdocs
+ def index_sections(filename, sections, acls=None):
- def index_sections(filename, sections):
<0> if args.verbose:
<1> print(f"Indexing sections from '{filename}' into search index '{args.index}'")
<2> search_client = SearchClient(
<3> endpoint=f"https://{args.searchservice}.search.windows.net/", index_name=args.index, credential=search_creds
<4> )
<5> i = 0
<6> batch = []
<7> for s in sections:
<8> batch.append(s)
<9> i += 1
<10> if i % 1000 == 0:
<11> results = search_client.upload_documents(documents=batch)
<12> succeeded = sum([1 for r in results if r.succeeded])
<13> if args.verbose:
<14> print(f"\tIndexed {len(results)} sections, {succeeded} succeeded")
<15> batch = []
<16>
<17> if len(batch) > 0:
<18> results = search_client.upload_documents(documents=batch)
<19> succeeded = sum([1 for r in results if r.succeeded])
<20> if args.verbose:
<21> print(f"\tIndexed {len(results)} sections, {succeeded} succeeded")
<22>
|
===========unchanged ref 0===========
at: scripts.prepdocs
args = argparse.Namespace(
verbose=False,
openaihost="azure",
datalakestorageaccount=None,
datalakefilesystem=None,
datalakepath=None,
remove=False,
useacls=False,
skipblobs=False,
storageaccount=None,
container=None,
)
args = parser.parse_args()
===========changed ref 0===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding(text, embedding_deployment, embedding_model):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
===========changed ref 1===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding_in_batch(texts):
refresh_openai_token()
+ embedding_args = {"deployment_id": args.openaideployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": args.openaideployment} if args.openaihost == "azure" else {}
emb_response = openai.Embedding.create(**embedding_args, model=args.openaimodelname, input=texts)
return [data.embedding for data in emb_response.data]
===========changed ref 2===========
# module: scripts.prepdocs
+ args = argparse.Namespace(
+ verbose=False,
+ openaihost="azure",
+ datalakestorageaccount=None,
+ datalakefilesystem=None,
+ datalakepath=None,
+ remove=False,
+ useacls=False,
+ skipblobs=False,
+ storageaccount=None,
+ container=None,
+ )
+ adls_gen2_creds = None
+ storage_creds = None
- args = argparse.Namespace(verbose=False, openaihost="azure")
MAX_SECTION_LENGTH = 1000
SENTENCE_SEARCH_LIMIT = 100
SECTION_OVERLAP = 100
open_ai_token_cache = {}
CACHE_KEY_TOKEN_CRED = "openai_token_cred"
CACHE_KEY_CREATED_TIME = "created_time"
CACHE_KEY_TOKEN_TYPE = "token_type"
# Embedding batch support section
SUPPORTED_BATCH_AOAI_MODEL = {"text-embedding-ada-002": {"token_limit": 8100, "max_batch_size": 16}}
===========changed ref 3===========
# module: scripts.prepdocs
def create_search_index():
if args.verbose:
print(f"Ensuring search index {args.index} exists")
index_client = SearchIndexClient(
endpoint=f"https://{args.searchservice}.search.windows.net/", credential=search_creds
)
+ fields = [
+ SimpleField(name="id", type="Edm.String", key=True),
+ SearchableField(name="content", type="Edm.String", analyzer_name="en.microsoft"),
+ SearchField(
+ name="embedding",
+ type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
+ hidden=False,
+ searchable=True,
+ filterable=False,
+ sortable=False,
+ facetable=False,
+ vector_search_dimensions=1536,
+ vector_search_configuration="default",
+ ),
+ SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
+ SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
+ SimpleField(name="sourcefile", type="Edm.String", filterable=True, facetable=True),
+ ]
+ if args.useacls:
+ fields.append(
+ SimpleField(name="oids", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True)
+ )
+ fields.append(
+ SimpleField(name="groups", type=SearchFieldDataType.Collection(SearchFieldDataType.String), filterable=True)
+ )
+
if args.index not in index_client.list_index_names():
index = SearchIndex(
name=args.index,
+ fields=fields,
- fields=[
- SimpleField(name="id", type="Edm.String", key=True),
- SearchableField(name="content", type="Edm.String", analyzer_name="en.microsoft"),
- SearchField(
- name="</s>
===========changed ref 4===========
# module: scripts.prepdocs
def create_search_index():
# offset: 1
<s>="content", type="Edm.String", analyzer_name="en.microsoft"),
- SearchField(
- name="embedding",
- type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
- hidden=False,
- searchable=True,
- filterable=False,
- sortable=False,
- facetable=False,
- vector_search_dimensions=1536,
- vector_search_configuration="default",
- ),
- SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
- SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
- SimpleField(name="sourcefile", type="Edm.String", filterable=True, facetable=True),
- ],
semantic_settings=SemanticSettings(
configurations=[
SemanticConfiguration(
name="default",
prioritized_fields=PrioritizedFields(
title_field=None, prioritized_content_fields=[SemanticField(field_name="content")]
),
)
]
),
vector_search=VectorSearch(
algorithm_configurations=[
VectorSearchAlgorithmConfiguration(
name="default", kind="hnsw", hnsw_parameters=HnswParameters(metric="cosine")
)
]
),
)
if args.verbose:
print(f"Creating {args.index} search index")
index_client.create_index(index)
else:
if args.verbose:
print(f"Search index {args.index} already exists")
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.retrieve
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> top = overrides.get("top", 3)
<del> top = overrides.get("top") or 3
<4>:<del> exclude_category = overrides.get("exclude_category") or None
<5>:<del> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>:<add> filter = self.build_filter(overrides, auth_claims)
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def retrieve(self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Any:
- def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<10> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
<11> query_vector = embedding["data"][0]["embedding"]
<12> else:
<13> query_vector = None
<14>
<15> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<16> if not has_text:
<17> query_text = ""
<18>
<19> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<20> if overrides.get("semantic_ranker") and has_text:
<21> r = await self.search_client.search(
<22> query_text,
<23> filter=filter,
<24> query_type=QueryType.SEMANTIC,
<25> query_language="en-us",
<26> query_speller="lexicon",
<27> semantic_configuration_name="default",
<28> top=top,</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def retrieve(self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Any:
- def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
# offset: 1
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ":" + nonewlines(" -.- ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:250]) async for doc in r]
content = "\n".join(results)
return results, content
===========unchanged ref 0===========
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach
template_prefix = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
"Answer the question using only the data provided in the information sources below. "
"For tabular information return it as an html table. Do not return markdown format. "
"Each source has a name followed by colon and the actual data, quote the source name for each piece of data you use in the response. "
'For example, if the question is "What color is the sky?" and one of the information sources says "info123: the sky is blue whenever it\'s not cloudy", then answer with "The sky is blue [info123]" '
'It\'s important to strictly follow the format where the name of the source is in square brackets at the end of the sentence, and only up to the prefix before the colon (":"). '
'If there are multiple sources, cite each one in their own square brackets. For example, use "[info343][ref-76]" and not "[info343,ref-76]". '
"Never quote tool names as sources."
"If you cannot answer using the sources below, say that you don't know. "
"\n\nYou can access to the following tools:"
)
template_suffix = """
Begin!
Question: {input}
Thought: {agent_scratchpad}"""
CognitiveSearchToolDescription = "useful for searching the Microsoft employee benefits information such as healthcare plans, retirement plans, etc."
at: app.backend.approaches.readretrieveread.ReadRetrieveReadApproach.__init__
self.search_client = search_client
self.embedding_deployment = embedding_deployment
self.embedding_model = embedding_model
self.openai_host = openai_host
at: approaches.approach.Approach
build_filter(overrides: dict[str, Any], auth_claims: dict[str, Any]) -> str
===========unchanged ref 1===========
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 1===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 2===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_unauthorized(mock_confidential_client_overage, mock_list_groups_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 3===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_unauthorized(mock_confidential_client_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 4===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_unauthorized(mock_list_groups_unauthorized):
+ with pytest.raises(AuthError) as exc_info:
+ await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert exc_info.value.error == '{"error": "unauthorized"}'
+
===========changed ref 5===========
+ # module: tests.test_authenticationhelper
+ def create_authentication_helper():
+ return AuthenticationHelper(
+ use_authentication=True,
+ server_app_id="SERVER_APP",
+ server_app_secret="SERVER_SECRET",
+ client_app_id="CLIENT_APP",
+ tenant_id="TENANT_ID",
+ token_cache_path=None,
+ )
+
===========changed ref 6===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_success(mock_confidential_client_success):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert auth_claims.get("oid") == "OID_X"
+ assert auth_claims.get("groups") == ["GROUP_Y", "GROUP_Z"]
+
===========changed ref 7===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_success(mock_confidential_client_overage, mock_list_groups_success):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert auth_claims.get("oid") == "OID_X"
+ assert auth_claims.get("groups") == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
|
app.backend.approaches.readretrieveread/ReadRetrieveReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<4>:<add> retrieve_results, content = await self.retrieve(q, overrides, auth_claims)
<del> retrieve_results, content = await self.retrieve(q, overrides)
|
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> retrieve_results = None
<1>
<2> async def retrieve_and_store(q: str) -> Any:
<3> nonlocal retrieve_results
<4> retrieve_results, content = await self.retrieve(q, overrides)
<5> return content
<6>
<7> # Use to capture thought process during iterations
<8> cb_handler = HtmlCallbackHandler()
<9> cb_manager = CallbackManager(handlers=[cb_handler])
<10>
<11> acs_tool = Tool(
<12> name="CognitiveSearch",
<13> func=lambda _: "Not implemented",
<14> coroutine=retrieve_and_store,
<15> description=self.CognitiveSearchToolDescription,
<16> callbacks=cb_manager,
<17> )
<18> employee_tool = EmployeeInfoTool("Employee1", callbacks=cb_manager)
<19> tools = [acs_tool, employee_tool]
<20>
<21> prompt = ZeroShotAgent.create_prompt(
<22> tools=tools,
<23> prefix=overrides.get("prompt_template_prefix") or self.template_prefix,
<24> suffix=overrides.get("prompt_template_suffix") or self.template_suffix,
<25> input_variables=["input", "agent_scratchpad"],
<26> )
<27> if self.openai_type == "azure":
<28> llm = AzureOpenAI(
<29> deployment_name=self.openai_deployment,
<30> temperature=overrides.get("temperature", 0.3),
<31> openai_api_key=openai.api_key,
<32> )
<33> else:
<34> llm = OpenAI(
<35> model_name=self.openai_model,
<36> temperature=overrides.get("temperature", 0.3),
<37> openai</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
)
chain = LLMChain(llm=llm, prompt=prompt)
agent_exec = AgentExecutor.from_agent_and_tools(
agent=ZeroShotAgent(llm_chain=chain), tools=tools, verbose=True, callback_manager=cb_manager
)
result = await agent_exec.arun(q)
# Remove references to tool names that might be confused with a citation
result = result.replace("[CognitiveSearch]", "").replace("[Employee]", "")
return {"data_points": retrieve_results or [], "answer": result, "thoughts": cb_handler.get_and_reset_log()}
===========unchanged ref 0===========
at: app.backend.approaches.readretrieveread
EmployeeInfoTool(employee_name: str, callbacks: Callbacks=None)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
===========changed ref 0===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def retrieve(self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Any:
- def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
+ top = overrides.get("top", 3)
- top = overrides.get("top") or 3
- exclude_category = overrides.get("exclude_category") or None
- filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
+ filter = self.build_filter(overrides, auth_claims)
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = ""
# Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
</s>
===========changed ref 1===========
# module: app.backend.approaches.readretrieveread
class ReadRetrieveReadApproach(AskApproach):
+ def retrieve(self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> Any:
- def retrieve(self, query_text: str, overrides: dict[str, Any]) -> Any:
# offset: 1
<s>_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ":" + nonewlines(" -.- ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:250]) async for doc in r]
content = "\n".join(results)
return results, content
===========changed ref 2===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 3===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 4===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_unauthorized(mock_confidential_client_overage, mock_list_groups_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 5===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_unauthorized(mock_confidential_client_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 6===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_unauthorized(mock_list_groups_unauthorized):
+ with pytest.raises(AuthError) as exc_info:
+ await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert exc_info.value.error == '{"error": "unauthorized"}'
+
===========changed ref 7===========
+ # module: tests.test_authenticationhelper
+ def create_authentication_helper():
+ return AuthenticationHelper(
+ use_authentication=True,
+ server_app_id="SERVER_APP",
+ server_app_secret="SERVER_SECRET",
+ client_app_id="CLIENT_APP",
+ tenant_id="TENANT_ID",
+ token_cache_path=None,
+ )
+
===========changed ref 8===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_success(mock_confidential_client_success):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert auth_claims.get("oid") == "OID_X"
+ assert auth_claims.get("groups") == ["GROUP_Y", "GROUP_Z"]
+
|
tests.conftest/client
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<7>:<add> if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
<add> monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
|
# module: tests.conftest
@pytest_asyncio.fixture(params=envs)
async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
<0> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<1> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<2> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<3> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<4> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<5> for key, value in request.param.items():
<6> monkeypatch.setenv(key, value)
<7>
<8> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<9> mock_default_azure_credential.return_value = MockAzureCredential()
<10> quart_app = app.create_app()
<11>
<12> async with quart_app.test_app() as test_app:
<13> quart_app.config.update({"TESTING": True})
<14>
<15> yield test_app.test_client()
<16>
|
===========changed ref 0===========
# module: tests.conftest
+ @pytest.fixture
+ def mock_acs_search_filter(monkeypatch):
+ class AsyncSearchResultsIterator:
+ def __init__(self):
+ self.num = 1
+
+ def __aiter__(self):
+ return self
+
+ async def __anext__(self):
+ raise StopAsyncIteration
+
+ async def mock_search(self, *args, **kwargs):
+ self.filter = kwargs.get("filter")
+ return AsyncSearchResultsIterator()
+
+ monkeypatch.setattr(SearchClient, "search", mock_search)
+
===========changed ref 1===========
+ # module: tests.test_adlsgen2setup
+
+
===========changed ref 2===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 3===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ """
+ Sets up a Data Lake Storage Gen 2 account with sample data and access control
+ """
+
===========changed ref 4===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def create_service_client(self):
+ return DataLakeServiceClient(
+ account_url=f"https://{self.storage_account_name}.dfs.core.windows.net", credential=self.credentials
+ )
+
===========changed ref 5===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 6===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_unauthorized(mock_confidential_client_overage, mock_list_groups_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 7===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_unauthorized(mock_confidential_client_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 8===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def upload_file(self, directory_client: DataLakeDirectoryClient, file_path: str):
+ with open(file=file_path, mode="rb") as f:
+ file_client = directory_client.get_file_client(file=os.path.basename(file_path))
+ await file_client.upload_data(f, overwrite=True)
+
===========changed ref 9===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_unauthorized(mock_list_groups_unauthorized):
+ with pytest.raises(AuthError) as exc_info:
+ await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert exc_info.value.error == '{"error": "unauthorized"}'
+
===========changed ref 10===========
+ # module: tests.test_adlsgen2setup
+ @pytest.fixture
+ def mock_get_group_missing(monkeypatch):
+ def mock_get(*args, **kwargs):
+ return MockResponse(
+ text=json.dumps({"value": []}),
+ status=200,
+ )
+
+ monkeypatch.setattr(aiohttp.ClientSession, "get", mock_get)
+
===========changed ref 11===========
+ # module: tests.test_authenticationhelper
+ def create_authentication_helper():
+ return AuthenticationHelper(
+ use_authentication=True,
+ server_app_id="SERVER_APP",
+ server_app_secret="SERVER_SECRET",
+ client_app_id="CLIENT_APP",
+ tenant_id="TENANT_ID",
+ token_cache_path=None,
+ )
+
===========changed ref 12===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_success(mock_confidential_client_success):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert auth_claims.get("oid") == "OID_X"
+ assert auth_claims.get("groups") == ["GROUP_Y", "GROUP_Z"]
+
===========changed ref 13===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_success(mock_confidential_client_overage, mock_list_groups_success):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert auth_claims.get("oid") == "OID_X"
+ assert auth_claims.get("groups") == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 14===========
+ # module: tests.test_adlsgen2setup
+ @pytest.fixture
+ def mock_open(monkeypatch):
+ class MockOpenedFile:
+ def __enter__(self, *args, **kwargs):
+ pass
+
+ def __exit__(self, *args, **kwargs):
+ return self
+
+ def mock_open(*args, **kwargs):
+ return MockOpenedFile()
+
+ monkeypatch.setattr(builtins, "open", mock_open)
+
===========changed ref 15===========
# module: scripts.prepdocs
@retry(
retry=retry_if_exception_type(openai.error.RateLimitError),
wait=wait_random_exponential(min=15, max=60),
stop=stop_after_attempt(15),
before_sleep=before_retry_sleep,
)
def compute_embedding(text, embedding_deployment, embedding_model):
refresh_openai_token()
+ embedding_args = {"deployment_id": embedding_deployment} if args.openaihost != "openai" else {}
- embedding_args = {"deployment_id": embedding_deployment} if args.openaihost == "azure" else {}
return openai.Embedding.create(**embedding_args, model=embedding_model, input=text)["data"][0]["embedding"]
===========changed ref 16===========
# module: app.backend.approaches.approach
+ class Approach(ABC):
+ def build_filter(self, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> str:
+ exclude_category = overrides.get("exclude_category") or None
+ security_filter = AuthenticationHelper.build_security_filters(overrides, auth_claims)
+ filters = []
+ if exclude_category:
+ filters.append("category ne '{}'".format(exclude_category.replace("'", "''")))
+ if security_filter:
+ filters.append(security_filter)
+ return None if len(filters) == 0 else " and ".join(filters)
+
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_without_streaming
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<0>:<add> extra_info, chat_coroutine = await self.run_until_final_call(
<del> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=False)
<1>:<add> history, overrides, auth_claims, should_stream=False
<add> )
|
<s>.approaches.chatreadretrieveread
+ class ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
+ def run_without_streaming(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any]
- def run_without_streaming(self, history: list[dict[str, str]], overrides: dict[str, Any]) -> dict[str, Any]:
+ ) -> dict[str, Any]:
<0> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=False)
<1> chat_resp = await chat_coroutine
<2> chat_content = chat_resp.choices[0].message.content
<3> extra_info["answer"] = chat_content
<4> return extra_info
<5>
|
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
NO_RESPONSE = "0"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
===========unchanged ref 1===========
query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.
You have access to Azure Cognitive Search index with 100's of documents.
Generate a search query based on the conversation and the new question.
Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms.
Do not include any text inside [] or <<>> in the search query terms.
Do not include any special characters like '+'.
If the question is not in English, translate the question to English before generating the search query.
If you cannot generate a search query, return just the number 0.
"""
query_prompt_few_shots = [
{"role": USER, "content": "What are my health plans?"},
{"role": ASSISTANT, "content": "Show available health plans"},
{"role": USER, "content": "does my plan cover cardio?"},
{"role": ASSISTANT, "content": "Health plan cardio coverage"},
]
run_until_final_call(history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool=False) -> tuple
===========changed ref 0===========
<s>veread
+ class ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_until_final_call(
+ self,
+ history: list[dict[str, str]],
+ overrides: dict[str, Any],
+ auth_claims: dict[str, Any],
+ should_stream: bool = False,
- self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
+ top = overrides.get("top", 3)
- top = overrides.get("top") or 3
- exclude_category = overrides.get("exclude_category") or None
- filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
+ filter = self.build_filter(overrides, auth_claims)
user_query_request = "Generate search query for: " + history[-1]["user"]
functions = [
{
"name": "search_sources",
"description": "Retrieve sources from the Azure Cognitive Search index",
"parameters": {
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "Query string to retrieve documents from azure search eg: 'Health care plan'",
}
},
"required": ["search_query"],
},
}
]
# STEP 1: Generate an optimized keyword search query based on the chat history and the last question
messages = self.get_messages_from_history(
self.query_prompt_template,
self.chatgpt_model,
history,
user_query_request,
self.query_</s>
===========changed ref 1===========
<s> ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_until_final_call(
+ self,
+ history: list[dict[str, str]],
+ overrides: dict[str, Any],
+ auth_claims: dict[str, Any],
+ should_stream: bool = False,
- self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 1
<s>template,
self.chatgpt_model,
history,
user_query_request,
self.query_prompt_few_shots,
self.chatgpt_token_limit - len(user_query_request),
)
chatgpt_args = {"deployment_id": self.chatgpt_deployment} if self.openai_host == "azure" else {}
chat_completion = await openai.ChatCompletion.acreate(
**chatgpt_args,
model=self.chatgpt_model,
messages=messages,
temperature=0.0,
max_tokens=32,
n=1,
functions=functions,
function_call="auto",
)
query_text = self.get_search_query(chat_completion, history[-1]["user"])
# STEP 2: Retrieve relevant documents from the search index with the GPT optimized query
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval</s>
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.run_with_streaming
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<0>:<add> extra_info, chat_coroutine = await self.run_until_final_call(
<del> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=True)
<1>:<add> history, overrides, auth_claims, should_stream=True
<add> )
|
# module: app.backend.approaches.chatreadretrieveread
+ class ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_with_streaming(
+ self, history: list[dict[str, str]], overrides: dict[str, Any], auth_claims: dict[str, Any]
- self, history: list[dict[str, str]], overrides: dict[str, Any]
) -> AsyncGenerator[dict, None]:
<0> extra_info, chat_coroutine = await self.run_until_final_call(history, overrides, should_stream=True)
<1> yield extra_info
<2> async for event in await chat_coroutine:
<3> # "2023-07-01-preview" API version has a bug where first response has empty choices
<4> if event["choices"]:
<5> yield event
<6>
|
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
run_until_final_call(history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool=False) -> tuple
at: typing
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
===========changed ref 0===========
<s>veread
+ class ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_until_final_call(
+ self,
+ history: list[dict[str, str]],
+ overrides: dict[str, Any],
+ auth_claims: dict[str, Any],
+ should_stream: bool = False,
- self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
+ top = overrides.get("top", 3)
- top = overrides.get("top") or 3
- exclude_category = overrides.get("exclude_category") or None
- filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
+ filter = self.build_filter(overrides, auth_claims)
user_query_request = "Generate search query for: " + history[-1]["user"]
functions = [
{
"name": "search_sources",
"description": "Retrieve sources from the Azure Cognitive Search index",
"parameters": {
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "Query string to retrieve documents from azure search eg: 'Health care plan'",
}
},
"required": ["search_query"],
},
}
]
# STEP 1: Generate an optimized keyword search query based on the chat history and the last question
messages = self.get_messages_from_history(
self.query_prompt_template,
self.chatgpt_model,
history,
user_query_request,
self.query_</s>
===========changed ref 1===========
<s> ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_until_final_call(
+ self,
+ history: list[dict[str, str]],
+ overrides: dict[str, Any],
+ auth_claims: dict[str, Any],
+ should_stream: bool = False,
- self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 1
<s>template,
self.chatgpt_model,
history,
user_query_request,
self.query_prompt_few_shots,
self.chatgpt_token_limit - len(user_query_request),
)
chatgpt_args = {"deployment_id": self.chatgpt_deployment} if self.openai_host == "azure" else {}
chat_completion = await openai.ChatCompletion.acreate(
**chatgpt_args,
model=self.chatgpt_model,
messages=messages,
temperature=0.0,
max_tokens=32,
n=1,
functions=functions,
function_call="auto",
)
query_text = self.get_search_query(chat_completion, history[-1]["user"])
# STEP 2: Retrieve relevant documents from the search index with the GPT optimized query
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval</s>
===========changed ref 2===========
<s> ChatReadRetrieveReadApproach(Approach):
- class ChatReadRetrieveReadApproach:
def run_until_final_call(
+ self,
+ history: list[dict[str, str]],
+ overrides: dict[str, Any],
+ auth_claims: dict[str, Any],
+ should_stream: bool = False,
- self, history: list[dict[str, str]], overrides: dict[str, Any], should_stream: bool = False
) -> tuple:
# offset: 2
<s> text, otherwise drop it
if not has_text:
query_text = None
# Use semantic L2 reranker if requested and if retrieval mode is text or hybrid (vectors + text)
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,
query_caption="extractive|highlight-false" if use_semantic_captions else None,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
</s>
|
app.backend.approaches.retrievethenread/RetrieveThenReadApproach.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> top = overrides.get("top", 3)
<del> top = overrides.get("top") or 3
<4>:<del> exclude_category = overrides.get("exclude_category") or None
<5>:<del> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>:<add> filter = self.build_filter(overrides, auth_claims)
|
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<10> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=q)
<11> query_vector = embedding["data"][0]["embedding"]
<12> else:
<13> query_vector = None
<14>
<15> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<16> query_text = q if has_text else ""
<17>
<18> # Use semantic ranker if requested and if retrieval mode is text or hybrid (vectors + text)
<19> if overrides.get("semantic_ranker") and has_text:
<20> r = await self.search_client.search(
<21> query_text,
<22> filter=filter,
<23> query_type=QueryType.SEMANTIC,
<24> query_language="en-us",
<25> query_speller="lexicon",
<26> semantic_configuration_name="default",
<27> top=top,</s>
|
===========below chunk 0===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
results = [
doc[self.sourcepage_field] + ": " + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ": " + nonewlines(doc[self.content_field]) async for doc in r]
content = "\n".join(results)
message_builder = MessageBuilder(
overrides.get("prompt_template") or self.system_chat_template, self.chatgpt_model
)
# add user question
user_content = q + "\n" + f"Sources:\n {content}"
message_builder.append_message("user", user_content)
# Add shots/samples. This helps model to mimic response and make sure they match rules laid out in system message.
message_builder.append_message("assistant", self.answer)
message_builder.append_message("user", self.question)
messages = message_builder.messages
chatgpt_args = {"deployment_id": self.chatgpt_deployment} if self.openai_host == "azure</s>
===========below chunk 1===========
# module: app.backend.approaches.retrievethenread
class RetrieveThenReadApproach(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 2
<s> chatgpt_args = {"deployment_id": self.chatgpt_deployment} if self.openai_host == "azure" else {}
chat_completion = await openai.ChatCompletion.acreate(
**chatgpt_args,
model=self.chatgpt_model,
messages=messages,
temperature=overrides.get("temperature") or 0.3,
max_tokens=1024,
n=1,
)
return {
"data_points": results,
"answer": chat_completion.choices[0].message.content,
"thoughts": f"Question:<br>{query_text}<br><br>Prompt:<br>"
+ "\n\n".join([str(message) for message in messages]),
}
===========unchanged ref 0===========
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach
system_chat_template = (
"You are an intelligent assistant helping Contoso Inc employees with their healthcare plan questions and employee handbook questions. "
+ "Use 'you' to refer to the individual asking the questions even if they ask with 'I'. "
+ "Answer the following question using only the data provided in the sources below. "
+ "For tabular information return it as an html table. Do not return markdown format. "
+ "Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. "
+ "If you cannot answer using the sources below, say you don't know. Use below example to answer"
)
question = """
'What is the deductible for the employee plan for a visit to Overlake in Bellevue?'
Sources:
info1.txt: deductibles depend on whether you are in-network or out-of-network. In-network deductibles are $500 for employee and $1000 for family. Out-of-network deductibles are $1000 for employee and $2000 for family.
info2.pdf: Overlake is in-network for the employee plan.
info3.pdf: Overlake is the name of the area that includes a park and ride near Bellevue.
info4.pdf: In-network institutions include Overlake, Swedish and others in the region
"""
answer = "In-network deductibles are $500 for employee and $1000 for family [info1.txt] and Overlake is in-network for the employee plan [info2.pdf][info4.pdf]."
at: app.backend.approaches.retrievethenread.RetrieveThenReadApproach.__init__
self.search_client = search_client
self.openai_host = openai_host
self.chatgpt_deployment = chatgpt_deployment
self.chatgpt_model = chatgpt_model
===========unchanged ref 1===========
self.embedding_model = embedding_model
self.embedding_deployment = embedding_deployment
self.sourcepage_field = sourcepage_field
self.content_field = content_field
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]
at: core.messagebuilder
MessageBuilder(system_content: str, chatgpt_model: str)
at: core.messagebuilder.MessageBuilder
append_message(role: str, content: str, index: int=1)
at: core.messagebuilder.MessageBuilder.__init__
self.messages = [{"role": "system", "content": system_content}]
at: openai.api_resources.chat_completion
ChatCompletion(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.chat_completion.ChatCompletion
engine_required = False
OBJECT_NAME = "chat.completions"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
===========unchanged ref 2===========
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
+ # module: app.backend.core.authentication
+
+
===========changed ref 1===========
+ # module: tests.test_adlsgen2setup
+
+
|
app.backend.app/ask
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<add> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<11>:<add> r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
<del> r = await impl.run(request_json["question"], request_json.get("overrides") or {})
|
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> # Workaround for: https://github.com/openai/openai-python/issues/371
<9> async with aiohttp.ClientSession() as s:
<10> openai.aiosession.set(s)
<11> r = await impl.run(request_json["question"], request_json.get("overrides") or {})
<12> return jsonify(r)
<13> except Exception as e:
<14> logging.exception("Exception in /ask")
<15> return jsonify({"error": str(e)}), 500
<16>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_ASK_APPROACHES = "ask_approaches"
bp = Blueprint("routes", __name__, static_folder="static")
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
===========changed ref 0===========
# module: app.backend.app
+ # Empty page is recommended for login redirect to work.
+ # See https://github.com/AzureAD/microsoft-authentication-library-for-js/blob/dev/lib/msal-browser/docs/initialization.md#redirecturi-considerations for more information
+ @bp.route("/redirect")
+ async def redirect():
+ return ""
+
===========changed ref 1===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
+ CONFIG_AUTH_CLIENT = "auth_client"
+ CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 2===========
+ # module: tests.test_manageacl
+
+
===========changed ref 3===========
+ # module: app.backend.core.authentication
+
+
===========changed ref 4===========
+ # module: tests.test_adlsgen2setup
+
+
===========changed ref 5===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 6===========
# module: tests.conftest
+ class MockResponse:
+ def __aexit__(self, exc_type, exc, tb):
+ pass
+
===========changed ref 7===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __aiter__(self):
+ return self
+
===========changed ref 8===========
# module: tests.conftest
+ class MockResponse:
+ def __aenter__(self):
+ return self
+
===========changed ref 9===========
# module: tests.conftest
+ class MockResponse:
+ def text(self):
+ return self._text
+
===========changed ref 10===========
# module: tests.conftest
+ class MockResponse:
+ def json(self):
+ return json.loads(self.text)
+
===========changed ref 11===========
# module: tests.conftest
+ class MockResponse:
+ def __init__(self, text, status):
+ self.text = text
+ self.status = status
+
===========changed ref 12===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __init__(self, results):
+ self.results = results
+ self.num = len(results)
+
===========changed ref 13===========
+ # module: app.backend.core.authentication
+ class AuthenticationHelper:
+ scope: str = "https://graph.microsoft.com/.default"
+
===========changed ref 14===========
+ # module: app.backend.core.authentication
+ # AuthError is raised when the authentication token sent by the client UI cannot be parsed or there is an authentication error accessing the graph API
+ class AuthError(Exception):
+ def __init__(self, error, status_code):
+ self.error = error
+ self.status_code = status_code
+
===========changed ref 15===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ """
+ Sets up a Data Lake Storage Gen 2 account with sample data and access control
+ """
+
===========changed ref 16===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __anext__(self):
+ self.num -= 1
+ if self.num >= 0:
+ return self.results[self.num]
+
+ raise StopAsyncIteration
+
===========changed ref 17===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def create_service_client(self):
+ return DataLakeServiceClient(
+ account_url=f"https://{self.storage_account_name}.dfs.core.windows.net", credential=self.credentials
+ )
+
===========changed ref 18===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def get_documents(self, search_client: SearchClient):
+ filter = f"sourcefile eq '{self.document}'"
+ result = await search_client.search("", filter=filter, select=["id", self.acl_type])
+ return result
+
===========changed ref 19===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ """
+ Manually enable document level access control on a search index and manually set access control values using the [manageacl.ps1](./scripts/manageacl.ps1) script.
+ """
+
===========changed ref 20===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def view_acl(self, search_client: SearchClient):
+ async for document in await self.get_documents(search_client):
+ # Assumes the acls are consistent across all sections of the document
+ print(json.dumps(document[self.acl_type]))
+ return
+
===========changed ref 21===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 22===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_unauthorized(mock_confidential_client_overage, mock_list_groups_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
===========changed ref 23===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_unauthorized(mock_confidential_client_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
|
app.backend.app/chat
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<add> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<11>:<add> r = await impl.run_without_streaming(
<add> request_json["history"], request_json.get("overrides", {}), auth_claims
<add> )
<del> r = await impl.run_without_streaming(request_json["history"], request_json.get("overrides", {}))
|
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> # Workaround for: https://github.com/openai/openai-python/issues/371
<9> async with aiohttp.ClientSession() as s:
<10> openai.aiosession.set(s)
<11> r = await impl.run_without_streaming(request_json["history"], request_json.get("overrides", {}))
<12> return jsonify(r)
<13> except Exception as e:
<14> logging.exception("Exception in /chat")
<15> return jsonify({"error": str(e)}), 500
<16>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_CHAT_APPROACHES = "chat_approaches"
bp = Blueprint("routes", __name__, static_folder="static")
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
===========changed ref 0===========
# module: app.backend.app
+ # Empty page is recommended for login redirect to work.
+ # See https://github.com/AzureAD/microsoft-authentication-library-for-js/blob/dev/lib/msal-browser/docs/initialization.md#redirecturi-considerations for more information
+ @bp.route("/redirect")
+ async def redirect():
+ return ""
+
===========changed ref 1===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
+ CONFIG_AUTH_CLIENT = "auth_client"
+ CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 2===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
+ auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
+ auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
approach = request_json["approach"]
try:
impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
+ r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
- r = await impl.run(request_json["question"], request_json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
===========changed ref 3===========
+ # module: tests.test_manageacl
+
+
===========changed ref 4===========
+ # module: app.backend.core.authentication
+
+
===========changed ref 5===========
+ # module: tests.test_adlsgen2setup
+
+
===========changed ref 6===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 7===========
# module: tests.conftest
+ class MockResponse:
+ def __aexit__(self, exc_type, exc, tb):
+ pass
+
===========changed ref 8===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __aiter__(self):
+ return self
+
===========changed ref 9===========
# module: tests.conftest
+ class MockResponse:
+ def __aenter__(self):
+ return self
+
===========changed ref 10===========
# module: tests.conftest
+ class MockResponse:
+ def text(self):
+ return self._text
+
===========changed ref 11===========
# module: tests.conftest
+ class MockResponse:
+ def json(self):
+ return json.loads(self.text)
+
===========changed ref 12===========
# module: tests.conftest
+ class MockResponse:
+ def __init__(self, text, status):
+ self.text = text
+ self.status = status
+
===========changed ref 13===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __init__(self, results):
+ self.results = results
+ self.num = len(results)
+
===========changed ref 14===========
+ # module: app.backend.core.authentication
+ class AuthenticationHelper:
+ scope: str = "https://graph.microsoft.com/.default"
+
===========changed ref 15===========
+ # module: app.backend.core.authentication
+ # AuthError is raised when the authentication token sent by the client UI cannot be parsed or there is an authentication error accessing the graph API
+ class AuthError(Exception):
+ def __init__(self, error, status_code):
+ self.error = error
+ self.status_code = status_code
+
===========changed ref 16===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ """
+ Sets up a Data Lake Storage Gen 2 account with sample data and access control
+ """
+
===========changed ref 17===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __anext__(self):
+ self.num -= 1
+ if self.num >= 0:
+ return self.results[self.num]
+
+ raise StopAsyncIteration
+
===========changed ref 18===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def create_service_client(self):
+ return DataLakeServiceClient(
+ account_url=f"https://{self.storage_account_name}.dfs.core.windows.net", credential=self.credentials
+ )
+
===========changed ref 19===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def get_documents(self, search_client: SearchClient):
+ filter = f"sourcefile eq '{self.document}'"
+ result = await search_client.search("", filter=filter, select=["id", self.acl_type])
+ return result
+
===========changed ref 20===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ """
+ Manually enable document level access control on a search index and manually set access control values using the [manageacl.ps1](./scripts/manageacl.ps1) script.
+ """
+
===========changed ref 21===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def view_acl(self, search_client: SearchClient):
+ async for document in await self.get_documents(search_client):
+ # Assumes the acls are consistent across all sections of the document
+ print(json.dumps(document[self.acl_type]))
+ return
+
|
app.backend.app/chat_stream
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<add> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<8>:<add> response_generator = impl.run_with_streaming(
<add> request_json["history"], request_json.get("overrides", {}), auth_claims
<add> )
<del> response_generator = impl.run_with_streaming(request_json["history"], request_json.get("overrides", {}))
|
# module: app.backend.app
@bp.route("/chat_stream", methods=["POST"])
async def chat_stream():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> approach = request_json["approach"]
<4> try:
<5> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<6> if not impl:
<7> return jsonify({"error": "unknown approach"}), 400
<8> response_generator = impl.run_with_streaming(request_json["history"], request_json.get("overrides", {}))
<9> response = await make_response(format_as_ndjson(response_generator))
<10> response.timeout = None # type: ignore
<11> return response
<12> except Exception as e:
<13> logging.exception("Exception in /chat")
<14> return jsonify({"error": str(e)}), 500
<15>
|
===========unchanged ref 0===========
at: app.backend.app
CONFIG_CHAT_APPROACHES = "chat_approaches"
bp = Blueprint("routes", __name__, static_folder="static")
format_as_ndjson(r: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None]
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
===========changed ref 0===========
# module: app.backend.app
+ # Empty page is recommended for login redirect to work.
+ # See https://github.com/AzureAD/microsoft-authentication-library-for-js/blob/dev/lib/msal-browser/docs/initialization.md#redirecturi-considerations for more information
+ @bp.route("/redirect")
+ async def redirect():
+ return ""
+
===========changed ref 1===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
+ CONFIG_AUTH_CLIENT = "auth_client"
+ CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 2===========
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
+ auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
+ auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
approach = request_json["approach"]
try:
impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
+ r = await impl.run_without_streaming(
+ request_json["history"], request_json.get("overrides", {}), auth_claims
+ )
- r = await impl.run_without_streaming(request_json["history"], request_json.get("overrides", {}))
return jsonify(r)
except Exception as e:
logging.exception("Exception in /chat")
return jsonify({"error": str(e)}), 500
===========changed ref 3===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
+ auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
+ auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
approach = request_json["approach"]
try:
impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
if not impl:
return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
+ r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
- r = await impl.run(request_json["question"], request_json.get("overrides") or {})
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
===========changed ref 4===========
+ # module: tests.test_manageacl
+
+
===========changed ref 5===========
+ # module: app.backend.core.authentication
+
+
===========changed ref 6===========
+ # module: tests.test_adlsgen2setup
+
+
===========changed ref 7===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 8===========
# module: tests.conftest
+ class MockResponse:
+ def __aexit__(self, exc_type, exc, tb):
+ pass
+
===========changed ref 9===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __aiter__(self):
+ return self
+
===========changed ref 10===========
# module: tests.conftest
+ class MockResponse:
+ def __aenter__(self):
+ return self
+
===========changed ref 11===========
# module: tests.conftest
+ class MockResponse:
+ def text(self):
+ return self._text
+
===========changed ref 12===========
# module: tests.conftest
+ class MockResponse:
+ def json(self):
+ return json.loads(self.text)
+
===========changed ref 13===========
# module: tests.conftest
+ class MockResponse:
+ def __init__(self, text, status):
+ self.text = text
+ self.status = status
+
===========changed ref 14===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __init__(self, results):
+ self.results = results
+ self.num = len(results)
+
===========changed ref 15===========
+ # module: app.backend.core.authentication
+ class AuthenticationHelper:
+ scope: str = "https://graph.microsoft.com/.default"
+
===========changed ref 16===========
+ # module: app.backend.core.authentication
+ # AuthError is raised when the authentication token sent by the client UI cannot be parsed or there is an authentication error accessing the graph API
+ class AuthError(Exception):
+ def __init__(self, error, status_code):
+ self.error = error
+ self.status_code = status_code
+
===========changed ref 17===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ """
+ Sets up a Data Lake Storage Gen 2 account with sample data and access control
+ """
+
===========changed ref 18===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __anext__(self):
+ self.num -= 1
+ if self.num >= 0:
+ return self.results[self.num]
+
+ raise StopAsyncIteration
+
===========changed ref 19===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def create_service_client(self):
+ return DataLakeServiceClient(
+ account_url=f"https://{self.storage_account_name}.dfs.core.windows.net", credential=self.credentials
+ )
+
===========changed ref 20===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def get_documents(self, search_client: SearchClient):
+ filter = f"sourcefile eq '{self.document}'"
+ result = await search_client.search("", filter=filter, select=["id", self.acl_type])
+ return result
+
===========changed ref 21===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ """
+ Manually enable document level access control on a search index and manually set access control values using the [manageacl.ps1](./scripts/manageacl.ps1) script.
+ """
+
===========changed ref 22===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def view_acl(self, search_client: SearchClient):
+ async for document in await self.get_documents(search_client):
+ # Assumes the acls are consistent across all sections of the document
+ print(json.dumps(document[self.acl_type]))
+ return
+
===========changed ref 23===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<16>:<add> AZURE_USE_AUTHENTICATION = os.getenv("AZURE_USE_AUTHENTICATION", "").lower() == "true"
<add> AZURE_SERVER_APP_ID = os.getenv("AZURE_SERVER_APP_ID")
<add> AZURE_SERVER_APP_SECRET = os.getenv("AZURE_SERVER_APP_SECRET")
<add> AZURE_CLIENT_APP_ID = os.getenv("AZURE_CLIENT_APP_ID")
<add> AZURE_TENANT_ID = os.getenv("AZURE_TENANT_ID")
<add> TOKEN_CACHE_PATH = os.getenv("TOKEN_CACHE_PATH")
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Replace these with your own values, either in environment variables or directly here
<1> AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
<2> AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
<3> AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
<4> AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
<5> # Shared by all OpenAI deployments
<6> OPENAI_HOST = os.getenv("OPENAI_HOST", "azure")
<7> OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<8> OPENAI_EMB_MODEL = os.getenv("AZURE_OPENAI_EMB_MODEL_NAME", "text-embedding-ada-002")
<9> # Used with Azure OpenAI deployments
<10> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<11> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<12> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<13> # Used only with non-Azure OpenAI deployments
<14> OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
<15> OPENAI_ORGANIZATION = os.getenv("OPENAI_ORGANIZATION")
<16>
<17> KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
<18> KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
<19>
<20> # Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
<21> # just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
# keys for each service
# If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)
# Set up clients for Cognitive Search and Storage
search_client = SearchClient(
endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
index_name=AZURE_SEARCH_INDEX,
credential=azure_credential,
)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net", credential=azure_credential
)
blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
if OPENAI_HOST == "azure":
openai.api_type = "azure_ad"
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-07-01-preview"
openai_token = await azure_credential.get_token("https://cognitiveservices.azure.com/.default")
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
else:
openai.api_type = "openai"
openai.api_key = OPENAI_API_KEY
openai.organization = OPENAI_ORGANIZATION
current_app.config[CONFIG_CREDENTIAL] = azure_credential
current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one</s>
===========below chunk 1===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 2
<s>] = blob_container_client
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rrr": ReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rda": ReadDecomposeAsk(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATG</s>
===========below chunk 2===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 3
<s>MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.readdecomposeask
ReadDecomposeAsk(search_client: SearchClient, openai_host: str, openai_deployment: str, openai_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.readretrieveread
ReadRetrieveReadApproach(search_client: SearchClient, openai_host: str, openai_deployment: str, openai_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
organization = os.environ.get("OPENAI_ORGANIZATION")
api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1")
api_type = os.environ.get("OPENAI_API_TYPE", "open_ai")
===========unchanged ref 1===========
api_version = os.environ.get(
"OPENAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
at: os
environ = _createenviron()
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
===========changed ref 0===========
# module: app.backend.app
+ # Empty page is recommended for login redirect to work.
+ # See https://github.com/AzureAD/microsoft-authentication-library-for-js/blob/dev/lib/msal-browser/docs/initialization.md#redirecturi-considerations for more information
+ @bp.route("/redirect")
+ async def redirect():
+ return ""
+
===========changed ref 1===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACHES = "ask_approaches"
CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
+ CONFIG_AUTH_CLIENT = "auth_client"
+ CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.search
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<3>:<add> top = overrides.get("top", 3)
<del> top = overrides.get("top") or 3
<4>:<del> exclude_category = overrides.get("exclude_category") or None
<5>:<del> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>:<add> filter = self.build_filter(overrides, auth_claims)
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
+ def search(
+ self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]
+ ) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
<0> has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
<1> has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
<2> use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
<3> top = overrides.get("top") or 3
<4> exclude_category = overrides.get("exclude_category") or None
<5> filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
<6>
<7> # If retrieval mode includes vectors, compute an embedding for the query
<8> if has_vector:
<9> embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
<10> embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
<11> query_vector = embedding["data"][0]["embedding"]
<12> else:
<13> query_vector = None
<14>
<15> # Only keep the text query if the retrieval mode uses text, otherwise drop it
<16> if not has_text:
<17> query_text = ""
<18>
<19> if overrides.get("semantic_ranker") and has_text:
<20> r = await self.search_client.search(
<21> query_text,
<22> filter=filter,
<23> query_type=QueryType.SEMANTIC,
<24> query_language="en-us",
<25> query_speller="lexicon",
<26> semantic_configuration_name="default",
<27> top=top,
<28> query_</s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
+ def search(
+ self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]
+ ) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
# offset: 1
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
else:
r = await self.search_client.search(
query_text,
filter=filter,
top=top,
vector=query_vector,
top_k=50 if query_vector else None,
vector_fields="embedding" if query_vector else None,
)
if use_semantic_captions:
self.results = [
doc[self.sourcepage_field] + ":" + nonewlines(" . ".join([c.text for c in doc["@search.captions"]]))
async for doc in r
]
else:
results = [doc[self.sourcepage_field] + ":" + nonewlines(doc[self.content_field][:500]) async for doc in r]
return results, "\n".join(results)
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.search_client = search_client
self.embedding_deployment = embedding_deployment
self.embedding_model = embedding_model
self.sourcepage_field = sourcepage_field
self.content_field = content_field
self.openai_host = openai_host
at: openai.api_resources.embedding
Embedding(engine: Optional[str]=None, *, id=None, api_key=None, api_version=None, api_type=None, organization=None, response_ms: Optional[int]=None, api_base=None, **params)
at: openai.api_resources.embedding.Embedding
OBJECT_NAME = "embeddings"
acreate(api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, /, *, api_key=None, api_base=None, api_type=None, request_id=None, api_version=None, organization=None, **params)
at: text
nonewlines(s: str) -> str
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
+ # module: tests.test_manageacl
+
+
===========changed ref 1===========
+ # module: app.backend.core.authentication
+
+
===========changed ref 2===========
+ # module: tests.test_adlsgen2setup
+
+
===========changed ref 3===========
+ # module: tests.test_authenticationhelper
+
+
===========changed ref 4===========
# module: tests.conftest
+ class MockResponse:
+ def __aexit__(self, exc_type, exc, tb):
+ pass
+
===========changed ref 5===========
# module: app.backend.app
+ # Empty page is recommended for login redirect to work.
+ # See https://github.com/AzureAD/microsoft-authentication-library-for-js/blob/dev/lib/msal-browser/docs/initialization.md#redirecturi-considerations for more information
+ @bp.route("/redirect")
+ async def redirect():
+ return ""
+
===========changed ref 6===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __aiter__(self):
+ return self
+
===========changed ref 7===========
# module: tests.conftest
+ class MockResponse:
+ def __aenter__(self):
+ return self
+
===========changed ref 8===========
# module: tests.conftest
+ class MockResponse:
+ def text(self):
+ return self._text
+
===========changed ref 9===========
# module: tests.conftest
+ class MockResponse:
+ def json(self):
+ return json.loads(self.text)
+
===========changed ref 10===========
# module: tests.conftest
+ class MockResponse:
+ def __init__(self, text, status):
+ self.text = text
+ self.status = status
+
===========changed ref 11===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __init__(self, results):
+ self.results = results
+ self.num = len(results)
+
===========changed ref 12===========
+ # module: app.backend.core.authentication
+ class AuthenticationHelper:
+ scope: str = "https://graph.microsoft.com/.default"
+
===========changed ref 13===========
+ # module: app.backend.core.authentication
+ # AuthError is raised when the authentication token sent by the client UI cannot be parsed or there is an authentication error accessing the graph API
+ class AuthError(Exception):
+ def __init__(self, error, status_code):
+ self.error = error
+ self.status_code = status_code
+
===========changed ref 14===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ """
+ Sets up a Data Lake Storage Gen 2 account with sample data and access control
+ """
+
===========changed ref 15===========
+ # module: tests.test_manageacl
+ class AsyncSearchResultsIterator:
+ def __anext__(self):
+ self.num -= 1
+ if self.num >= 0:
+ return self.results[self.num]
+
+ raise StopAsyncIteration
+
===========changed ref 16===========
# module: app.backend.app
+ # Send MSAL.js settings to the client UI
+ @bp.route("/auth_setup", methods=["GET"])
+ def auth_setup():
+ auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
+ return jsonify(auth_helper.get_auth_setup_for_client())
+
===========changed ref 17===========
+ # module: scripts.adlsgen2setup
+ class AdlsGen2Setup:
+ def create_service_client(self):
+ return DataLakeServiceClient(
+ account_url=f"https://{self.storage_account_name}.dfs.core.windows.net", credential=self.credentials
+ )
+
===========changed ref 18===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def get_documents(self, search_client: SearchClient):
+ filter = f"sourcefile eq '{self.document}'"
+ result = await search_client.search("", filter=filter, select=["id", self.acl_type])
+ return result
+
===========changed ref 19===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ """
+ Manually enable document level access control on a search index and manually set access control values using the [manageacl.ps1](./scripts/manageacl.ps1) script.
+ """
+
===========changed ref 20===========
+ # module: scripts.manageacl
+ class ManageAcl:
+ def view_acl(self, search_client: SearchClient):
+ async for document in await self.get_documents(search_client):
+ # Assumes the acls are consistent across all sections of the document
+ print(json.dumps(document[self.acl_type]))
+ return
+
===========changed ref 21===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_list_groups_success(mock_list_groups_success):
+ groups = await AuthenticationHelper.list_groups(graph_resource_access_token={"access_token": "MockToken"})
+ assert groups == ["OVERAGE_GROUP_Y", "OVERAGE_GROUP_Z"]
+
===========changed ref 22===========
+ # module: tests.test_authenticationhelper
+ @pytest.mark.asyncio
+ async def test_get_auth_claims_overage_unauthorized(mock_confidential_client_overage, mock_list_groups_unauthorized):
+ helper = create_authentication_helper()
+ auth_claims = await helper.get_auth_claims_if_enabled(headers={"Authorization": "Bearer Token"})
+ assert len(auth_claims.keys()) == 0
+
|
app.backend.approaches.readdecomposeask/ReadDecomposeAsk.run
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
c8b8486d68527026b0660a3a75cc4e5e376793c1
|
Add support for an optional login and document level access control system. (#624)
|
<4>:<add> search_results, content = await self.search(q, overrides, auth_claims)
<del> search_results, content = await self.search(q, overrides)
|
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
<0> search_results = None
<1>
<2> async def search_and_store(q: str) -> Any:
<3> nonlocal search_results
<4> search_results, content = await self.search(q, overrides)
<5> return content
<6>
<7> # Use to capture thought process during iterations
<8> cb_handler = HtmlCallbackHandler()
<9> cb_manager = CallbackManager(handlers=[cb_handler])
<10>
<11> if self.openai_host == "azure":
<12> llm = AzureOpenAI(
<13> deployment_name=self.openai_deployment,
<14> temperature=overrides.get("temperature", 0.3),
<15> openai_api_key=openai.api_key,
<16> )
<17> else:
<18> llm = OpenAI(
<19> model_name=self.openai_model,
<20> temperature=overrides.get("temperature", 0.3),
<21> openai_api_key=openai.api_key,
<22> )
<23> tools = [
<24> Tool(
<25> name="Search",
<26> func=lambda _: "Not implemented",
<27> coroutine=search_and_store,
<28> description="useful for when you need to ask with search",
<29> callbacks=cb_manager,
<30> ),
<31> Tool(
<32> name="Lookup",
<33> func=lambda _: "Not implemented",
<34> coroutine=self.lookup,
<35> description="useful for when you need to ask with lookup",
<36> callbacks=cb_manager,
<37> ),
<38> ]
<39>
<40> prompt_prefix = overrides.get("prompt_template")
<41> prompt = PromptTemplate.from_examples(
<42> EXAMPLES,
<43> SUFFIX,
<44> </s>
|
===========below chunk 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
+ def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- def run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]:
# offset: 1
prompt_prefix + "\n\n" + PREFIX if prompt_prefix else PREFIX,
)
class ReAct(ReActDocstoreAgent):
@classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
return prompt
agent = ReAct.from_llm_and_tools(llm, tools)
chain = AgentExecutor.from_agent_and_tools(agent, tools, verbose=True, callback_manager=cb_manager)
result = await chain.arun(q)
# Replace substrings of the form <file.ext> with [file.ext] so that the frontend can render them as links, match them with a regex to avoid
# generalizing too much and disrupt HTML snippets if present
result = re.sub(r"<([a-zA-Z0-9_ \-\.]+)>", r"[\1]", result)
return {"data_points": search_results or [], "answer": result, "thoughts": cb_handler.get_and_reset_log()}
===========unchanged ref 0===========
at: app.backend.approaches.readdecomposeask
EXAMPLES = [
"""Question: What is the elevation range for the area that the eastern sector of the
Colorado orogeny extends into?
Thought: I need to search Colorado orogeny, find the area that the eastern sector
of the Colorado orogeny extends into, then find the elevation range of the
area.
Action: Search[Colorado orogeny]
Observation: <info1.pdf> The Colorado orogeny was an episode of mountain building (an orogeny) in
Colorado and surrounding areas.
Thought: It does not mention the eastern sector. So I need to look up eastern
sector.
Action: Lookup[eastern sector]
Observation: <info2.txt> (Result 1 / 1) The eastern sector extends into the High Plains and is called
the Central Plains orogeny.
Thought: The eastern sector of Colorado orogeny extends into the High Plains. So I
need to search High Plains and find its elevation range.
Action: Search[High Plains]
Observation: <some_file.pdf> High Plains refers to one of two distinct land regions
Thought: I need to instead search High Plains (United States).
Action: Search[High Plains (United States)]
Observation: <filea.pdf> The High Plains are a subregion of the Great Plains. <another-ref.docx> From east to west, the
High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130
m).
Thought: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer
is 1,800 to 7,000 ft.
Action: Finish[1,800 to 7,000 ft <filea.pdf>]""",
"""Question: Musician and satirist Allie Goertz wrote a song about the "The Simpsons"
character Milhouse, who</s>
===========unchanged ref 1===========
SUFFIX = """\nQuestion: {input}
{agent_scratchpad}"""
PREFIX = (
"Answer questions as shown in the following examples, by splitting the question into individual search or lookup actions to find facts until you can answer the question. "
"Observations are prefixed by their source name in angled brackets, source names MUST be included with the actions in the answers."
"All questions must be answered from the results from search or look up actions, only facts resulting from those can be used in an answer. "
)
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk
search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]
search(query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]
lookup(q: str) -> Optional[str]
at: app.backend.approaches.readdecomposeask.ReadDecomposeAsk.__init__
self.openai_deployment = openai_deployment
self.openai_model = openai_model
self.openai_host = openai_host
at: approaches.approach.AskApproach
run(self, q: str, overrides: dict[str, Any]) -> dict[str, Any]
at: langchainadapters.HtmlCallbackHandler
html: str = ""
get_and_reset_log() -> str
at: openai
api_key = os.environ.get("OPENAI_API_KEY")
===========unchanged ref 2===========
at: re
sub(pattern: AnyStr, repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: AnyStr, repl: Callable[[Match[AnyStr]], AnyStr], string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
sub(pattern: Pattern[AnyStr], repl: AnyStr, string: AnyStr, count: int=..., flags: _FlagsType=...) -> AnyStr
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: app.backend.approaches.readdecomposeask
class ReadDecomposeAsk(AskApproach):
+ def search(
+ self, query_text: str, overrides: dict[str, Any], auth_claims: dict[str, Any]
+ ) -> tuple[list[str], str]:
- def search(self, query_text: str, overrides: dict[str, Any]) -> tuple[list[str], str]:
has_text = overrides.get("retrieval_mode") in ["text", "hybrid", None]
has_vector = overrides.get("retrieval_mode") in ["vectors", "hybrid", None]
use_semantic_captions = True if overrides.get("semantic_captions") and has_text else False
+ top = overrides.get("top", 3)
- top = overrides.get("top") or 3
- exclude_category = overrides.get("exclude_category") or None
- filter = "category ne '{}'".format(exclude_category.replace("'", "''")) if exclude_category else None
+ filter = self.build_filter(overrides, auth_claims)
# If retrieval mode includes vectors, compute an embedding for the query
if has_vector:
embedding_args = {"deployment_id": self.embedding_deployment} if self.openai_host == "azure" else {}
embedding = await openai.Embedding.acreate(**embedding_args, model=self.embedding_model, input=query_text)
query_vector = embedding["data"][0]["embedding"]
else:
query_vector = None
# Only keep the text query if the retrieval mode uses text, otherwise drop it
if not has_text:
query_text = ""
if overrides.get("semantic_ranker") and has_text:
r = await self.search_client.search(
query_text,
filter=filter,
query_type=QueryType.SEMANTIC,
query_language="en-us",
query_speller="lexicon",
semantic_configuration_name="default",
top=top,</s>
|
tests.test_app/test_missing_env_vars
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2ff334456c3d0bff6bf000c423e90a6180619484
|
Add E2E tests using Playwright, increase accessibility of buttons (#677)
|
<0>:<add> with mock.patch.dict(os.environ, clear=True):
<add> quart_app = app.create_app()
<del> quart_app = app.create_app()
<2>:<add> with pytest.raises(quart.testing.app.LifespanError, match="Error during startup 'AZURE_STORAGE_ACCOUNT'"):
<del> with pytest.raises(quart.testing.app.LifespanError) as exc_info:
<3>:<add> async with quart_app.test_app() as test_app:
<del> async with quart_app.test_app() as test_app:
<4>:<add> test_app.test_client()
<del> test_app.test_client()
<5>:<del> assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_missing_env_vars():
<0> quart_app = app.create_app()
<1>
<2> with pytest.raises(quart.testing.app.LifespanError) as exc_info:
<3> async with quart_app.test_app() as test_app:
<4> test_app.test_client()
<5> assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
<6>
| |
tests.conftest/client
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2ff334456c3d0bff6bf000c423e90a6180619484
|
Add E2E tests using Playwright, increase accessibility of buttons (#677)
|
<0>:<del> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<1>:<del> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<2>:<del> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<3>:<del> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<4>:<del> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<5>:<del> for key, value in request.param.items():
<6>:<del> monkeypatch.setenv(key, value)
<7>:<del> if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
<8>:<del> monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
<9>:<add> quart_app = app.create_app()
<10>:<del> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<11>:<del> mock_default_azure_credential.return_value = MockAzureCredential()
<12>:<del> quart_app = app.create_app()
<13>:<add> async with quart_app.test_app() as test_app:
<add> quart_app.config.update({"TESTING": True})
<14>:<del> async with quart_app.test_app() as test_app:
<15>:<del> quart_app.config.update({"TESTING": True})
<16>:<add> yield test_app.test_client()
<17>:<del> yield test_app.test_client()
<18>:<del>
|
# module: tests.conftest
+ @pytest_asyncio.fixture()
- @pytest_asyncio.fixture(params=envs)
+ async def client(monkeypatch, mock_env, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
- async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
<0> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<1> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<2> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<3> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<4> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<5> for key, value in request.param.items():
<6> monkeypatch.setenv(key, value)
<7> if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
<8> monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
<9>
<10> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<11> mock_default_azure_credential.return_value = MockAzureCredential()
<12> quart_app = app.create_app()
<13>
<14> async with quart_app.test_app() as test_app:
<15> quart_app.config.update({"TESTING": True})
<16>
<17> yield test_app.test_client()
<18>
|
===========changed ref 0===========
# module: tests.conftest
+ @pytest.fixture(params=envs, ids=["client0", "client1"])
+ def mock_env(monkeypatch, request):
+ with mock.patch.dict(os.environ, clear=True):
+ monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
+ monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
+ monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
+ monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
+ monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
+ for key, value in request.param.items():
+ monkeypatch.setenv(key, value)
+ if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
+ monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
+
+ with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
+ mock_default_azure_credential.return_value = MockAzureCredential()
+ yield
+
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_missing_env_vars():
+ with mock.patch.dict(os.environ, clear=True):
+ quart_app = app.create_app()
- quart_app = app.create_app()
+ with pytest.raises(quart.testing.app.LifespanError, match="Error during startup 'AZURE_STORAGE_ACCOUNT'"):
- with pytest.raises(quart.testing.app.LifespanError) as exc_info:
+ async with quart_app.test_app() as test_app:
- async with quart_app.test_app() as test_app:
+ test_app.test_client()
- test_app.test_client()
- assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
|
app.backend.app/assets
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
2ff334456c3d0bff6bf000c423e90a6180619484
|
Add E2E tests using Playwright, increase accessibility of buttons (#677)
|
<0>:<add> return await send_from_directory(Path(__file__).resolve().parent / "static" / "assets", path)
<del> return await send_from_directory("static/assets", path)
|
# module: app.backend.app
@bp.route("/assets/<path:path>")
async def assets(path):
<0> return await send_from_directory("static/assets", path)
<1>
|
===========unchanged ref 0===========
at: app.backend.app
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 0===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_missing_env_vars():
+ with mock.patch.dict(os.environ, clear=True):
+ quart_app = app.create_app()
- quart_app = app.create_app()
+ with pytest.raises(quart.testing.app.LifespanError, match="Error during startup 'AZURE_STORAGE_ACCOUNT'"):
- with pytest.raises(quart.testing.app.LifespanError) as exc_info:
+ async with quart_app.test_app() as test_app:
- async with quart_app.test_app() as test_app:
+ test_app.test_client()
- test_app.test_client()
- assert str(exc_info.value) == "Lifespan failure in startup. ''AZURE_OPENAI_EMB_DEPLOYMENT''"
===========changed ref 1===========
# module: tests.conftest
+ @pytest.fixture(params=envs, ids=["client0", "client1"])
+ def mock_env(monkeypatch, request):
+ with mock.patch.dict(os.environ, clear=True):
+ monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
+ monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
+ monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
+ monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
+ monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
+ for key, value in request.param.items():
+ monkeypatch.setenv(key, value)
+ if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
+ monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
+
+ with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
+ mock_default_azure_credential.return_value = MockAzureCredential()
+ yield
+
===========changed ref 2===========
# module: tests.conftest
+ @pytest_asyncio.fixture()
- @pytest_asyncio.fixture(params=envs)
+ async def client(monkeypatch, mock_env, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
- async def client(monkeypatch, mock_openai_chatcompletion, mock_openai_embedding, mock_acs_search, request):
- monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
- monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
- monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
- monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
- monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
- for key, value in request.param.items():
- monkeypatch.setenv(key, value)
- if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
- monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
+ quart_app = app.create_app()
- with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
- mock_default_azure_credential.return_value = MockAzureCredential()
- quart_app = app.create_app()
+ async with quart_app.test_app() as test_app:
+ quart_app.config.update({"TESTING": True})
- async with quart_app.test_app() as test_app:
- quart_app.config.update({"TESTING": True})
+ yield test_app.test_client()
- yield test_app.test_client()
-
|
tests.conftest/mock_env
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
22a45dc1eab44c289e417de53c8b1d60d000e228
|
Enable CORS support (#717)
|
<6>:<add> monkeypatch.setenv("ALLOWED_ORIGIN", "https://frontend.com")
|
# module: tests.conftest
@pytest.fixture(params=envs, ids=["client0", "client1"])
def mock_env(monkeypatch, request):
<0> with mock.patch.dict(os.environ, clear=True):
<1> monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
<2> monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
<3> monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
<4> monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
<5> monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
<6> for key, value in request.param.items():
<7> monkeypatch.setenv(key, value)
<8> if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
<9> monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
<10>
<11> with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
<12> mock_default_azure_credential.return_value = MockAzureCredential()
<13> yield
<14>
|
===========changed ref 0===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_cors_notallowed(client) -> None:
+ response = await client.get("/", headers={"Origin": "https://quart.com"})
+ assert "Access-Control-Allow-Origin" not in response.headers
+
===========changed ref 1===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_cors_allowed(client) -> None:
+ response = await client.get("/", headers={"Origin": "https://frontend.com"})
+ assert response.access_control_allow_origin == "https://frontend.com"
+ assert "Access-Control-Allow-Origin" in response.headers
+
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
22a45dc1eab44c289e417de53c8b1d60d000e228
|
Enable CORS support (#717)
|
<6>:<add>
<8>:<add>
<add> if allowed_origin := os.getenv("ALLOWED_ORIGIN"):
<add> app.logger.info("CORS enabled for %s", allowed_origin)
<add> cors(app, allow_origin=allowed_origin, allow_methods=["GET", "POST"])
|
# module: app.backend.app
def create_app():
<0> if os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING"):
<1> configure_azure_monitor()
<2> AioHttpClientInstrumentor().instrument()
<3> app = Quart(__name__)
<4> app.register_blueprint(bp)
<5> app.asgi_app = OpenTelemetryMiddleware(app.asgi_app)
<6> # Level should be one of https://docs.python.org/3/library/logging.html#logging-levels
<7> logging.basicConfig(level=os.getenv("APP_LOG_LEVEL", "ERROR"))
<8> return app
<9>
|
===========unchanged ref 0===========
at: app.backend.app
bp = Blueprint("routes", __name__, static_folder="static")
at: os
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
===========changed ref 0===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_cors_notallowed(client) -> None:
+ response = await client.get("/", headers={"Origin": "https://quart.com"})
+ assert "Access-Control-Allow-Origin" not in response.headers
+
===========changed ref 1===========
# module: tests.test_app
+ @pytest.mark.asyncio
+ async def test_cors_allowed(client) -> None:
+ response = await client.get("/", headers={"Origin": "https://frontend.com"})
+ assert response.access_control_allow_origin == "https://frontend.com"
+ assert "Access-Control-Allow-Origin" in response.headers
+
===========changed ref 2===========
# module: tests.conftest
@pytest.fixture(params=envs, ids=["client0", "client1"])
def mock_env(monkeypatch, request):
with mock.patch.dict(os.environ, clear=True):
monkeypatch.setenv("AZURE_STORAGE_ACCOUNT", "test-storage-account")
monkeypatch.setenv("AZURE_STORAGE_CONTAINER", "test-storage-container")
monkeypatch.setenv("AZURE_SEARCH_INDEX", "test-search-index")
monkeypatch.setenv("AZURE_SEARCH_SERVICE", "test-search-service")
monkeypatch.setenv("AZURE_OPENAI_CHATGPT_MODEL", "gpt-35-turbo")
+ monkeypatch.setenv("ALLOWED_ORIGIN", "https://frontend.com")
for key, value in request.param.items():
monkeypatch.setenv(key, value)
if os.getenv("AZURE_USE_AUTHENTICATION") is not None:
monkeypatch.delenv("AZURE_USE_AUTHENTICATION")
with mock.patch("app.DefaultAzureCredential") as mock_default_azure_credential:
mock_default_azure_credential.return_value = MockAzureCredential()
yield
|
app.backend.app/create_app
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
fd739e2772ec04946784a8c9537163317959a9c8
|
Default log level for dev vs prod (#718)
|
<8>:<add> default_level = "INFO" # In development, log more verbosely
<add> if os.getenv("WEBSITE_HOSTNAME"): # In production, don't log as heavily
<add> default_level = "WARNING"
<add> logging.basicConfig(level=os.getenv("APP_LOG_LEVEL", default_level))
<del> logging.basicConfig(level=os.getenv("APP_LOG_LEVEL", "ERROR"))
|
# module: app.backend.app
def create_app():
<0> if os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING"):
<1> configure_azure_monitor()
<2> AioHttpClientInstrumentor().instrument()
<3> app = Quart(__name__)
<4> app.register_blueprint(bp)
<5> app.asgi_app = OpenTelemetryMiddleware(app.asgi_app)
<6>
<7> # Level should be one of https://docs.python.org/3/library/logging.html#logging-levels
<8> logging.basicConfig(level=os.getenv("APP_LOG_LEVEL", "ERROR"))
<9>
<10> if allowed_origin := os.getenv("ALLOWED_ORIGIN"):
<11> app.logger.info("CORS enabled for %s", allowed_origin)
<12> cors(app, allow_origin=allowed_origin, allow_methods=["GET", "POST"])
<13> return app
<14>
|
===========unchanged ref 0===========
at: app.backend.app
bp = Blueprint("routes", __name__, static_folder="static")
at: logging
basicConfig(*, filename: Optional[StrPath]=..., filemode: str=..., format: str=..., datefmt: Optional[str]=..., style: str=..., level: Optional[_Level]=..., stream: Optional[IO[str]]=..., handlers: Optional[Iterable[Handler]]=...) -> None
at: os
getenv(key: str, default: _T) -> Union[str, _T]
getenv(key: str) -> Optional[str]
|
locustfile/ChatUser.ask_question
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<17>:<del> "approach": "rrr",
<38>:<del> "approach": "rrr",
|
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
<0> self.client.get("/")
<1> time.sleep(5)
<2> self.client.post(
<3> "/chat",
<4> json={
<5> "history": [
<6> {
<7> "user": random.choice(
<8> [
<9> "What is included in my Northwind Health Plus plan that is not in standard?",
<10> "What does a Product Manager do?",
<11> "What happens in a performance review?",
<12> "Whats your whistleblower policy?",
<13> ]
<14> )
<15> }
<16> ],
<17> "approach": "rrr",
<18> "overrides": {
<19> "retrieval_mode": "hybrid",
<20> "semantic_ranker": True,
<21> "semantic_captions": False,
<22> "top": 3,
<23> "suggest_followup_questions": False,
<24> },
<25> },
<26> )
<27> time.sleep(5)
<28> self.client.post(
<29> "/chat",
<30> json={
<31> "history": [
<32> {
<33> "user": "What happens in a performance review?",
<34> "bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
<35> },
<36> {"user": "Does my plan cover eye exams?"},
<37> ],
<38> "approach": "rrr",
<39> "overrides": {
<40> "retrieval_mode": "hybrid",
<41> "semantic_</s>
|
===========below chunk 0===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
===========unchanged ref 0===========
at: locustfile.ChatUser
wait_time = between(5, 20)
at: random
choice = _inst.choice
at: time
sleep(secs: float) -> None
===========changed ref 0===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
|
tests.test_app/test_ask_rtr_text
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rtr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
<0> response = await client.post(
<1> "/ask",
<2> json={
<3> "approach": "rtr",
<4> "question": "What is the capital of France?",
<5> "overrides": {"retrieval_mode": "text"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_ask_rtr_text
response = await client.post(
"/ask",
json={
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 2===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 3===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_ask_rtr_text_filter
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<4>:<del> "approach": "rtr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
<0> response = await auth_client.post(
<1> "/ask",
<2> headers={"Authorization": "Bearer MockToken"},
<3> json={
<4> "approach": "rtr",
<5> "question": "What is the capital of France?",
<6> "overrides": {
<7> "retrieval_mode": "text",
<8> "use_oid_security_filter": True,
<9> "use_groups_security_filter": True,
<10> "exclude_category": "excluded",
<11> },
<12> },
<13> )
<14> assert response.status_code == 200
<15> assert (
<16> auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
<17> == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
<18> )
<19> result = await response.get_json()
<20> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<21>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_ask_rtr_text_filter
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 3===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 4===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_ask_rtr_text_semanticranker
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rtr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
<0> response = await client.post(
<1> "/ask",
<2> json={
<3> "approach": "rtr",
<4> "question": "What is the capital of France?",
<5> "overrides": {"retrieval_mode": "text", "semantic_ranker": True},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_ask_rtr_text_semanticranker
response = await client.post(
"/ask",
json={
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 4===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 5===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_ask_rtr_text_semanticcaptions
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rtr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
<0> response = await client.post(
<1> "/ask",
<2> json={
<3> "approach": "rtr",
<4> "question": "What is the capital of France?",
<5> "overrides": {"retrieval_mode": "text", "semantic_captions": True},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_ask_rtr_text_semanticcaptions
response = await client.post(
"/ask",
json={
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 5===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 6===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_ask_rtr_hybrid
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rtr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
<0> response = await client.post(
<1> "/ask",
<2> json={
<3> "approach": "rtr",
<4> "question": "What is the capital of France?",
<5> "overrides": {"retrieval_mode": "hybrid"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_ask_rtr_hybrid
response = await client.post(
"/ask",
json={
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 6===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 7===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_chat_text
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: tests.test_app.test_chat_text_filter
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 8===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
self.client.get("/")
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": random.choice(
[
"What is included in my Northwind Health Plus plan that is not in standard?",
"What does a Product Manager do?",
"What happens in a performance review?",
"Whats your whistleblower policy?",
]
)
}
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
time.sleep(5)
self.client.post(
"/chat",
json={
"history": [
{
"user": "What happens in a performance review?",
"bot": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
{"user": "Does my plan cover eye exams?"},
],
- "approach": "rrr",
"overrides": {
"retrieval_mode": "hybrid",
"semantic_ranker": True,
"semantic_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
</s>
===========changed ref 9===========
# module: locustfile
class ChatUser(HttpUser):
@task
def ask_question(self):
# offset: 1
<s>_captions": False,
"top": 3,
"suggest_followup_questions": False,
},
},
)
|
tests.test_app/test_chat_text_filter
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<4>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
<0> response = await auth_client.post(
<1> "/chat",
<2> headers={"Authorization": "Bearer MockToken"},
<3> json={
<4> "approach": "rrr",
<5> "history": [{"user": "What is the capital of France?"}],
<6> "overrides": {
<7> "retrieval_mode": "text",
<8> "use_oid_security_filter": True,
<9> "use_groups_security_filter": True,
<10> "exclude_category": "excluded",
<11> },
<12> },
<13> )
<14> assert response.status_code == 200
<15> assert (
<16> auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
<17> == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
<18> )
<19> result = await response.get_json()
<20> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<21>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_text_filter
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
|
tests.test_app/test_chat_text_semanticranker
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text", "semantic_ranker": True},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_text_semanticcaptions
response = await client.post(
"/chat",
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
|
tests.test_app/test_chat_text_semanticcaptions
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text", "semantic_captions": True},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_prompt_template
response = await client.post(
"/chat",
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
|
tests.test_app/test_chat_prompt_template
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_prompt_template_concat
response = await client.post(
"/chat",
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/ask",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
tests.test_app/test_chat_prompt_template_concat
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template_concat(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_hybrid
response = await client.post(
"/chat",
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "hybrid"},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
tests.test_app/test_chat_hybrid
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_hybrid(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "hybrid"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: tests.test_app.test_chat_vector
response = await client.post(
"/chat",
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "vector"},
},
)
===========changed ref 0===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template_concat(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 1===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
tests.test_app/test_chat_vector
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_vector(client, snapshot):
<0> response = await client.post(
<1> "/chat",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "vector"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_json()
<10> snapshot.assert_match(json.dumps(result, indent=4), "result.json")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
===========changed ref 0===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_hybrid(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template_concat(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 11===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 12===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_filter(auth_client, snapshot):
response = await auth_client.post(
"/chat",
headers={"Authorization": "Bearer MockToken"},
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
assert response.status_code == 200
assert (
auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
== "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
)
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
tests.test_app/test_chat_stream_text
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<3>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text(client, snapshot):
<0> response = await client.post(
<1> "/chat_stream",
<2> json={
<3> "approach": "rrr",
<4> "history": [{"user": "What is the capital of France?"}],
<5> "overrides": {"retrieval_mode": "text"},
<6> },
<7> )
<8> assert response.status_code == 200
<9> result = await response.get_data()
<10> snapshot.assert_match(result, "result.jsonlines")
<11>
|
===========unchanged ref 0===========
at: _pytest.mark.structures
MARK_GEN = MarkGenerator(_ispytest=True)
at: tests.test_app.test_chat_stream_text_filter
response = await auth_client.post(
"/chat_stream",
headers={"Authorization": "Bearer MockToken"},
json={
"history": [{"user": "What is the capital of France?"}],
"overrides": {
"retrieval_mode": "text",
"use_oid_security_filter": True,
"use_groups_security_filter": True,
"exclude_category": "excluded",
},
},
)
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_stream_with_unknown_approach(client):
- response = await client.post("/chat_stream", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_vector(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "vector"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_hybrid(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template_concat(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 11===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 12===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
tests.test_app/test_chat_stream_text_filter
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<4>:<del> "approach": "rrr",
|
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text_filter(auth_client, snapshot):
<0> response = await auth_client.post(
<1> "/chat_stream",
<2> headers={"Authorization": "Bearer MockToken"},
<3> json={
<4> "approach": "rrr",
<5> "history": [{"user": "What is the capital of France?"}],
<6> "overrides": {
<7> "retrieval_mode": "text",
<8> "use_oid_security_filter": True,
<9> "use_groups_security_filter": True,
<10> "exclude_category": "excluded",
<11> },
<12> },
<13> )
<14> assert response.status_code == 200
<15> assert (
<16> auth_client.config[app.CONFIG_SEARCH_CLIENT].filter
<17> == "category ne 'excluded' and (oids/any(g:search.in(g, 'OID_X')) or groups/any(g:search.in(g, 'GROUP_Y, GROUP_Z')))"
<18> )
<19> result = await response.get_data()
<20> snapshot.assert_match(result, "result.jsonlines")
<21>
|
===========changed ref 0===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_stream_with_unknown_approach(client):
- response = await client.post("/chat_stream", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 1===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text(client, snapshot):
response = await client.post(
"/chat_stream",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_data()
snapshot.assert_match(result, "result.jsonlines")
===========changed ref 2===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_vector(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "vector"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 3===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_hybrid(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 4===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template_concat(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": ">>> Meow like a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 5===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_prompt_template(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "prompt_template": "You are a cat."},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticcaptions(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text_semanticranker(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 11===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 12===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 13===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticranker(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_ranker": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
app.backend.app/ask
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<5>:<del> approach = request_json["approach"]
<7>:<add> impl = current_app.config[CONFIG_ASK_APPROACH]
<del> impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
<8>:<del> if not impl:
<9>:<del> return jsonify({"error": "unknown approach"}), 400
|
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<4> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<5> approach = request_json["approach"]
<6> try:
<7> impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
<8> if not impl:
<9> return jsonify({"error": "unknown approach"}), 400
<10> # Workaround for: https://github.com/openai/openai-python/issues/371
<11> async with aiohttp.ClientSession() as s:
<12> openai.aiosession.set(s)
<13> r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
<14> return jsonify(r)
<15> except Exception as e:
<16> logging.exception("Exception in /ask")
<17> return jsonify({"error": str(e)}), 500
<18>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_ASK_APPROACH = "ask_approach"
CONFIG_AUTH_CLIENT = "auth_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
===========changed ref 0===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
+ CONFIG_ASK_APPROACH = "ask_approach"
- CONFIG_ASK_APPROACHES = "ask_approaches"
+ CONFIG_CHAT_APPROACH = "chat_approach"
- CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
CONFIG_AUTH_CLIENT = "auth_client"
CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 1===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 2===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 3===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 4===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_stream_with_unknown_approach(client):
- response = await client.post("/chat_stream", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 5===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text(client, snapshot):
response = await client.post(
"/chat_stream",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_data()
snapshot.assert_match(result, "result.jsonlines")
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_vector(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "vector"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_text(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_hybrid(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 11===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text_semanticcaptions(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text", "semantic_captions": True},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
app.backend.app/chat
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<5>:<del> approach = request_json["approach"]
<7>:<add> impl = current_app.config[CONFIG_CHAT_APPROACH]
<del> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<8>:<del> if not impl:
<9>:<del> return jsonify({"error": "unknown approach"}), 400
|
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<4> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<5> approach = request_json["approach"]
<6> try:
<7> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<8> if not impl:
<9> return jsonify({"error": "unknown approach"}), 400
<10> # Workaround for: https://github.com/openai/openai-python/issues/371
<11> async with aiohttp.ClientSession() as s:
<12> openai.aiosession.set(s)
<13> r = await impl.run_without_streaming(
<14> request_json["history"], request_json.get("overrides", {}), auth_claims
<15> )
<16> return jsonify(r)
<17> except Exception as e:
<18> logging.exception("Exception in /chat")
<19> return jsonify({"error": str(e)}), 500
<20>
|
===========unchanged ref 0===========
at: _contextvars.ContextVar
set(value, /)
at: aiohttp.client
ClientSession(base_url: Optional[StrOrURL]=None, *, connector: Optional[BaseConnector]=None, loop: Optional[asyncio.AbstractEventLoop]=None, cookies: Optional[LooseCookies]=None, headers: Optional[LooseHeaders]=None, skip_auto_headers: Optional[Iterable[str]]=None, auth: Optional[BasicAuth]=None, json_serialize: JSONEncoder=json.dumps, request_class: Type[ClientRequest]=ClientRequest, response_class: Type[ClientResponse]=ClientResponse, ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse, version: HttpVersion=http.HttpVersion11, cookie_jar: Optional[AbstractCookieJar]=None, connector_owner: bool=True, raise_for_status: bool=False, read_timeout: Union[float, object]=sentinel, conn_timeout: Optional[float]=None, timeout: Union[object, ClientTimeout]=sentinel, auto_decompress: bool=True, trust_env: bool=False, requote_redirect_url: bool=True, trace_configs: Optional[List[TraceConfig]]=None, read_bufsize: int=2**16, fallback_charset_resolver: _CharsetResolver=(
_default_fallback_charset_resolver
))
at: app.backend.app
CONFIG_CHAT_APPROACH = "chat_approach"
CONFIG_AUTH_CLIENT = "auth_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: app.backend.app.chat
request_json = await request.get_json()
===========unchanged ref 1===========
at: json
dumps(obj: Any, *, skipkeys: bool=..., ensure_ascii: bool=..., check_circular: bool=..., allow_nan: bool=..., cls: Optional[Type[JSONEncoder]]=..., indent: Union[None, int, str]=..., separators: Optional[Tuple[str, str]]=..., default: Optional[Callable[[Any], Any]]=..., sort_keys: bool=..., **kwds: Any) -> str
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: openai
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
at: typing
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
===========changed ref 0===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
+ CONFIG_ASK_APPROACH = "ask_approach"
- CONFIG_ASK_APPROACHES = "ask_approaches"
+ CONFIG_CHAT_APPROACH = "chat_approach"
- CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
CONFIG_AUTH_CLIENT = "auth_client"
CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 1===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
- approach = request_json["approach"]
try:
+ impl = current_app.config[CONFIG_ASK_APPROACH]
- impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
- if not impl:
- return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
===========changed ref 2===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 3===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 4===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 5===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_stream_with_unknown_approach(client):
- response = await client.post("/chat_stream", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 6===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text(client, snapshot):
response = await client.post(
"/chat_stream",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_data()
snapshot.assert_match(result, "result.jsonlines")
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
app.backend.app/chat_stream
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
<5>:<del> approach = request_json["approach"]
<7>:<add> impl = current_app.config[CONFIG_CHAT_APPROACH]
<del> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<8>:<del> if not impl:
<9>:<del> return jsonify({"error": "unknown approach"}), 400
|
# module: app.backend.app
@bp.route("/chat_stream", methods=["POST"])
async def chat_stream():
<0> if not request.is_json:
<1> return jsonify({"error": "request must be json"}), 415
<2> request_json = await request.get_json()
<3> auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
<4> auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
<5> approach = request_json["approach"]
<6> try:
<7> impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
<8> if not impl:
<9> return jsonify({"error": "unknown approach"}), 400
<10> response_generator = impl.run_with_streaming(
<11> request_json["history"], request_json.get("overrides", {}), auth_claims
<12> )
<13> response = await make_response(format_as_ndjson(response_generator))
<14> response.timeout = None # type: ignore
<15> return response
<16> except Exception as e:
<17> logging.exception("Exception in /chat")
<18> return jsonify({"error": str(e)}), 500
<19>
|
===========unchanged ref 0===========
at: app.backend.app
CONFIG_CHAT_APPROACH = "chat_approach"
CONFIG_AUTH_CLIENT = "auth_client"
bp = Blueprint("routes", __name__, static_folder="static")
format_as_ndjson(r: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None]
at: app.backend.app.chat_stream
request_json = await request.get_json()
auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
at: logging
exception(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
===========changed ref 0===========
# module: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
+ CONFIG_ASK_APPROACH = "ask_approach"
- CONFIG_ASK_APPROACHES = "ask_approaches"
+ CONFIG_CHAT_APPROACH = "chat_approach"
- CONFIG_CHAT_APPROACHES = "chat_approaches"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
CONFIG_AUTH_CLIENT = "auth_client"
CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
===========changed ref 1===========
# module: app.backend.app
@bp.route("/chat", methods=["POST"])
async def chat():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
- approach = request_json["approach"]
try:
+ impl = current_app.config[CONFIG_CHAT_APPROACH]
- impl = current_app.config[CONFIG_CHAT_APPROACHES].get(approach)
- if not impl:
- return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
r = await impl.run_without_streaming(
request_json["history"], request_json.get("overrides", {}), auth_claims
)
return jsonify(r)
except Exception as e:
logging.exception("Exception in /chat")
return jsonify({"error": str(e)}), 500
===========changed ref 2===========
# module: app.backend.app
@bp.route("/ask", methods=["POST"])
async def ask():
if not request.is_json:
return jsonify({"error": "request must be json"}), 415
request_json = await request.get_json()
auth_helper = current_app.config[CONFIG_AUTH_CLIENT]
auth_claims = await auth_helper.get_auth_claims_if_enabled(request.headers)
- approach = request_json["approach"]
try:
+ impl = current_app.config[CONFIG_ASK_APPROACH]
- impl = current_app.config[CONFIG_ASK_APPROACHES].get(approach)
- if not impl:
- return jsonify({"error": "unknown approach"}), 400
# Workaround for: https://github.com/openai/openai-python/issues/371
async with aiohttp.ClientSession() as s:
openai.aiosession.set(s)
r = await impl.run(request_json["question"], request_json.get("overrides") or {}, auth_claims)
return jsonify(r)
except Exception as e:
logging.exception("Exception in /ask")
return jsonify({"error": str(e)}), 500
===========changed ref 3===========
# module: app.backend.approaches.approach
- class AskApproach(Approach):
- @abstractmethod
- async def run(self, q: str, overrides: dict[str, Any], auth_claims: dict[str, Any]) -> dict[str, Any]:
- ...
-
===========changed ref 4===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_with_unknown_approach(client):
- response = await client.post("/chat", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 5===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_ask_with_unknown_approach(client):
- response = await client.post("/ask", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 6===========
# module: tests.test_app
- @pytest.mark.asyncio
- async def test_chat_stream_with_unknown_approach(client):
- response = await client.post("/chat_stream", json={"approach": "test"})
- assert response.status_code == 400
-
===========changed ref 7===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_stream_text(client, snapshot):
response = await client.post(
"/chat_stream",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_data()
snapshot.assert_match(result, "result.jsonlines")
===========changed ref 8===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_text(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "text"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 9===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_ask_rtr_hybrid(client, snapshot):
response = await client.post(
"/ask",
json={
- "approach": "rtr",
"question": "What is the capital of France?",
"overrides": {"retrieval_mode": "hybrid"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
===========changed ref 10===========
# module: tests.test_app
@pytest.mark.asyncio
async def test_chat_vector(client, snapshot):
response = await client.post(
"/chat",
json={
- "approach": "rrr",
"history": [{"user": "What is the capital of France?"}],
"overrides": {"retrieval_mode": "vector"},
},
)
assert response.status_code == 200
result = await response.get_json()
snapshot.assert_match(json.dumps(result, indent=4), "result.json")
|
app.backend.app/setup_clients
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
f10946742b93c8e2e16483d0c059f53f6b4ff615
|
Remove broken langchain-based approaches (#738)
|
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
<0> # Replace these with your own values, either in environment variables or directly here
<1> AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
<2> AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
<3> AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
<4> AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
<5> # Shared by all OpenAI deployments
<6> OPENAI_HOST = os.getenv("OPENAI_HOST", "azure")
<7> OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
<8> OPENAI_EMB_MODEL = os.getenv("AZURE_OPENAI_EMB_MODEL_NAME", "text-embedding-ada-002")
<9> # Used with Azure OpenAI deployments
<10> AZURE_OPENAI_SERVICE = os.getenv("AZURE_OPENAI_SERVICE")
<11> AZURE_OPENAI_CHATGPT_DEPLOYMENT = os.getenv("AZURE_OPENAI_CHATGPT_DEPLOYMENT")
<12> AZURE_OPENAI_EMB_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT")
<13> # Used only with non-Azure OpenAI deployments
<14> OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
<15> OPENAI_ORGANIZATION = os.getenv("OPENAI_ORGANIZATION")
<16> AZURE_USE_AUTHENTICATION = os.getenv("AZURE_USE_AUTHENTICATION", "").lower() == "true"
<17> AZURE_SERVER_APP_ID = os.getenv("AZURE_SERVER_APP_ID")
<18> AZURE_SERVER_APP_SECRET = os.getenv("AZURE_SERVER_APP_SECRET")
<19> AZURE_CLIENT_APP_ID = os.getenv("AZURE_CLIENT_APP_ID")</s>
|
===========below chunk 0===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 1
TOKEN_CACHE_PATH = os.getenv("TOKEN_CACHE_PATH")
KB_FIELDS_CONTENT = os.getenv("KB_FIELDS_CONTENT", "content")
KB_FIELDS_SOURCEPAGE = os.getenv("KB_FIELDS_SOURCEPAGE", "sourcepage")
# Use the current user identity to authenticate with Azure OpenAI, Cognitive Search and Blob Storage (no secrets needed,
# just use 'az login' locally, and managed identity when deployed on Azure). If you need to use keys, use separate AzureKeyCredential instances with the
# keys for each service
# If you encounter a blocking error during a DefaultAzureCredential resolution, you can exclude the problematic credential by using a parameter (ex. exclude_shared_token_cache_credential=True)
azure_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)
# Set up authentication helper
auth_helper = AuthenticationHelper(
use_authentication=AZURE_USE_AUTHENTICATION,
server_app_id=AZURE_SERVER_APP_ID,
server_app_secret=AZURE_SERVER_APP_SECRET,
client_app_id=AZURE_CLIENT_APP_ID,
tenant_id=AZURE_TENANT_ID,
token_cache_path=TOKEN_CACHE_PATH,
)
# Set up clients for Cognitive Search and Storage
search_client = SearchClient(
endpoint=f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
index_name=AZURE_SEARCH_INDEX,
credential=azure_credential,
)
blob_client = BlobServiceClient(
account_url=f"https://{AZURE_STORAGE_ACCOUNT}.blob.core.windows.net", credential=azure_credential
)
blob_container_client = blob_client.get_container_client(AZURE_STORAGE_CONTAINER)
# Used by the OpenAI SDK
if OPENAI_HOST == "azure":
openai.api</s>
===========below chunk 1===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 2
<s>_CONTAINER)
# Used by the OpenAI SDK
if OPENAI_HOST == "azure":
openai.api_type = "azure_ad"
openai.api_base = f"https://{AZURE_OPENAI_SERVICE}.openai.azure.com"
openai.api_version = "2023-07-01-preview"
openai_token = await azure_credential.get_token("https://cognitiveservices.azure.com/.default")
openai.api_key = openai_token.token
# Store on app.config for later use inside requests
current_app.config[CONFIG_OPENAI_TOKEN] = openai_token
else:
openai.api_type = "openai"
openai.api_key = OPENAI_API_KEY
openai.organization = OPENAI_ORGANIZATION
current_app.config[CONFIG_CREDENTIAL] = azure_credential
current_app.config[CONFIG_SEARCH_CLIENT] = search_client
current_app.config[CONFIG_BLOB_CONTAINER_CLIENT] = blob_container_client
current_app.config[CONFIG_AUTH_CLIENT] = auth_helper
# Various approaches to integrate GPT and external knowledge, most applications will use a single one of these patterns
# or some derivative, here we include several for exploration purposes
current_app.config[CONFIG_ASK_APPROACHES] = {
"rtr": RetrieveThenReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)</s>
===========below chunk 2===========
# module: app.backend.app
@bp.before_app_serving
async def setup_clients():
# offset: 3
<s> "rrr": ReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
"rda": ReadDecomposeAsk(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
),
}
current_app.config[CONFIG_CHAT_APPROACHES] = {
"rrr": ChatReadRetrieveReadApproach(
search_client,
OPENAI_HOST,
AZURE_OPENAI_CHATGPT_DEPLOYMENT,
OPENAI_CHATGPT_MODEL,
AZURE_OPENAI_EMB_DEPLOYMENT,
OPENAI_EMB_MODEL,
KB_FIELDS_SOURCEPAGE,
KB_FIELDS_CONTENT,
)
}
===========unchanged ref 0===========
at: app.backend.app
CONFIG_OPENAI_TOKEN = "openai_token"
CONFIG_CREDENTIAL = "azure_credential"
CONFIG_ASK_APPROACH = "ask_approach"
CONFIG_CHAT_APPROACH = "chat_approach"
CONFIG_BLOB_CONTAINER_CLIENT = "blob_container_client"
CONFIG_AUTH_CLIENT = "auth_client"
CONFIG_SEARCH_CLIENT = "search_client"
bp = Blueprint("routes", __name__, static_folder="static")
at: app.backend.app.setup_clients
AZURE_STORAGE_ACCOUNT = os.environ["AZURE_STORAGE_ACCOUNT"]
AZURE_STORAGE_CONTAINER = os.environ["AZURE_STORAGE_CONTAINER"]
AZURE_SEARCH_SERVICE = os.environ["AZURE_SEARCH_SERVICE"]
AZURE_SEARCH_INDEX = os.environ["AZURE_SEARCH_INDEX"]
OPENAI_HOST = os.getenv("OPENAI_HOST", "azure")
OPENAI_CHATGPT_MODEL = os.environ["AZURE_OPENAI_CHATGPT_MODEL"]
OPENAI_EMB_MODEL = os.getenv("AZURE_OPENAI_EMB_MODEL_NAME", "text-embedding-ada-002")
at: approaches.chatreadretrieveread
ChatReadRetrieveReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
at: approaches.retrievethenread
RetrieveThenReadApproach(search_client: SearchClient, openai_host: str, chatgpt_deployment: str, chatgpt_model: str, embedding_deployment: str, embedding_model: str, sourcepage_field: str, content_field: str)
|
|
app.backend.approaches.chatreadretrieveread/ChatReadRetrieveReadApproach.get_messages_from_history
|
Modified
|
Azure-Samples~azure-search-openai-demo
|
969272dd68d2bde4a3f4172f1bc330d7cfe3ba3f
|
Normalize text in messages to reduce token length (#688)
|
<6>:<del> user_content = user_conv
<12>:<add> if message_builder.token_length > max_tokens:
<add> break
<16>:<del> if message_builder.token_length > max_tokens:
<17>:<del> break
<19>:<add> return message_builder.messages
<del> messages = message_builder.messages
<20>:<del> return messages
|
# module: app.backend.approaches.chatreadretrieveread
class ChatReadRetrieveReadApproach(Approach):
def get_messages_from_history(
self,
system_prompt: str,
model_id: str,
history: list[dict[str, str]],
+ user_content: str,
- user_conv: str,
few_shots=[],
max_tokens: int = 4096,
) -> list:
<0> message_builder = MessageBuilder(system_prompt, model_id)
<1>
<2> # Add examples to show the chat what responses we want. It will try to mimic any responses and make sure they match the rules laid out in the system message.
<3> for shot in few_shots:
<4> message_builder.append_message(shot.get("role"), shot.get("content"))
<5>
<6> user_content = user_conv
<7> append_index = len(few_shots) + 1
<8>
<9> message_builder.append_message(self.USER, user_content, index=append_index)
<10>
<11> for h in reversed(history[:-1]):
<12> if bot_msg := h.get("bot"):
<13> message_builder.append_message(self.ASSISTANT, bot_msg, index=append_index)
<14> if user_msg := h.get("user"):
<15> message_builder.append_message(self.USER, user_msg, index=append_index)
<16> if message_builder.token_length > max_tokens:
<17> break
<18>
<19> messages = message_builder.messages
<20> return messages
<21>
|
===========unchanged ref 0===========
at: app.backend.approaches.chatreadretrieveread.ChatReadRetrieveReadApproach
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
NO_RESPONSE = "0"
system_message_chat_conversation = """Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.
Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. Do not generate answers that don't use the sources below. If asking a clarifying question to the user would help, ask the question.
For tabular information return it as an html table. Do not return markdown format. If the question is not in English, answer in the language used in the question.
Each source has a name followed by colon and the actual information, always include the source name for each fact you use in the response. Use square brackets to reference the source, e.g. [info1.txt]. Don't combine sources, list each source separately, e.g. [info1.txt][info2.pdf].
{follow_up_questions_prompt}
{injected_prompt}
"""
follow_up_questions_prompt_content = """Generate three very brief follow-up questions that the user would likely ask next about their healthcare plan and employee handbook.
Use double angle brackets to reference the questions, e.g. <<Are there exclusions for prescriptions?>>.
Try not to repeat questions that have already been asked.
Only generate questions and do not generate any text before or after the questions, such as 'Next Questions'"""
===========unchanged ref 1===========
query_prompt_template = """Below is a history of the conversation so far, and a new question asked by the user that needs to be answered by searching in a knowledge base about employee healthcare plans and the employee handbook.
You have access to Azure Cognitive Search index with 100's of documents.
Generate a search query based on the conversation and the new question.
Do not include cited source filenames and document names e.g info.txt or doc.pdf in the search query terms.
Do not include any text inside [] or <<>> in the search query terms.
Do not include any special characters like '+'.
If the question is not in English, translate the question to English before generating the search query.
If you cannot generate a search query, return just the number 0.
"""
query_prompt_few_shots = [
{"role": USER, "content": "What are my health plans?"},
{"role": ASSISTANT, "content": "Show available health plans"},
{"role": USER, "content": "does my plan cover cardio?"},
{"role": ASSISTANT, "content": "Health plan cardio coverage"},
]
at: core.messagebuilder
MessageBuilder(system_content: str, chatgpt_model: str)
at: core.messagebuilder.MessageBuilder
append_message(role: str, content: str, index: int=1)
at: core.messagebuilder.MessageBuilder.__init__
self.messages = [{"role": "system", "content": self.normalize_content(system_content)}]
self.token_length = num_tokens_from_messages(self.messages[-1], self.model)
at: core.messagebuilder.MessageBuilder.append_message
self.token_length += num_tokens_from_messages(self.messages[index], self.model)
at: typing.Mapping
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
get(key: _KT) -> Optional[_VT_co]
===========changed ref 0===========
# module: tests.test_messagebuilder
+ def test_messagebuilder_unicode():
+ builder = MessageBuilder("a\u0301", "gpt-35-turbo")
+ assert builder.messages == [
+ # 1 token, 1 token, 1 token, 1 token
+ {"role": "system", "content": "á"}
+ ]
+ assert builder.model == "gpt-35-turbo"
+ assert builder.token_length == 4
+
===========changed ref 1===========
# module: tests.test_messagebuilder
+ def test_messagebuilder_unicode_append():
+ builder = MessageBuilder("a\u0301", "gpt-35-turbo")
+ builder.append_message("user", "a\u0301")
+ assert builder.messages == [
+ # 1 token, 1 token, 1 token, 1 token
+ {"role": "system", "content": "á"},
+ # 1 token, 1 token, 1 token, 1 token
+ {"role": "user", "content": "á"},
+ ]
+ assert builder.model == "gpt-35-turbo"
+ assert builder.token_length == 8
+
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.