id
int64
0
300k
label
stringlengths
1
74
text
stringlengths
4k
8k
3,300
volume
""" Domain class definition. """ import logging import numpy as np from collections import OrderedDict from ..tools.array import prod from ..tools.cache import CachedMethod, CachedClass, CachedAttribute from ..tools.general import unify_attributes, unify, OrderedSet from .coords import Coordinate, CartesianCoordinates logger = logging.getLogger(__name__.split('.')[-1]) class Domain(metaclass=CachedClass): """ The direct product of a set of bases. Parameters ---------- dist : Distributor object Distributor for an operand/field. bases : collection of Basis objects Bases comprising the direct product domain. """ @classmethod def _preprocess_args(cls, dist, bases): # Drop None bases bases = [b for b in bases if b is not None] # Drop duplicate bases bases = tuple(OrderedSet(bases)) # Make sure coordsystems don't overlap cs = [b.coordsystem for b in bases] if len(set(cs)) < len(cs): raise ValueError("Overlapping bases specified.") # Sort by first axis key = lambda basis: basis.first_axis bases = tuple(sorted(bases, key=key)) return (dist, bases), {} def __init__(self, dist, bases): self.dist = dist self.bases = bases # Preprocessed to remove Nones and duplicates self.dim = sum(basis.dim for basis in self.bases) @CachedAttribute def METHOD_NAME(self): return prod([basis.METHOD_NAME for basis in self.bases]) @CachedAttribute def bases_by_axis(self): bases_by_axis = OrderedDict() for basis in self.bases: for axis in range(basis.first_axis, basis.first_axis+basis.dim): bases_by_axis[axis] = basis return bases_by_axis @CachedAttribute def full_bases(self): full_bases = [None for i in range(self.dist.dim)] for basis in self.bases: for axis in range(basis.first_axis, basis.first_axis+basis.dim): full_bases[axis] = basis return tuple(full_bases) @CachedAttribute def bases_by_coord(self): bases_by_coord = OrderedDict() for coord in self.dist.coords: if type(coord.cs) in [type(None), CartesianCoordinates]: bases_by_coord[coord] = None else: bases_by_coord[coord.cs] = None for basis in self.bases: bases_by_coord[basis.coords] = basis #bases_by_coord[basis.coordsystem] = basis return bases_by_coord @CachedAttribute def dealias(self): dealias = [1] * self.dist.dim for basis in self.bases: for subaxis in range(basis.dim): dealias[basis.first_axis+subaxis] = basis.dealias[subaxis] return tuple(dealias) def substitute_basis(self, old_basis, new_basis): new_bases = list(self.bases) if old_basis in new_bases: new_bases.remove(old_basis) new_bases.append(new_basis) return Domain(self.dist, new_bases) def get_basis(self, coords): if isinstance(coords, int): axis = coords else: axis = coords.axis return self.full_bases[axis] def get_basis_subaxis(self, coord): axis = coord.axis for basis in self.bases: if (axis >= basis.axis) and (axis <= basis.axis + basis.dim): return axis - basis.axis def get_coord(self, name): for basis in self.bases: # This is hacky... if isinstance(basis.coords, Coordinate): if name == basis.coords.name: return basis.coords else: for basis_coord in basis.coords.coords: if name == basis_coord.name: return basis_coord raise ValueError("Coordinate name not in domain") def enumerate_unique_bases(self): axes = [] unique_bases = [] for axis, basis in enumerate(self.full_bases): if (basis is None) or (basis not in unique_bases): axes.append(axis) unique_bases.append(basis) return zip(axes, unique_bases) @CachedAttribute def constant(self): """Tuple of constant flags.""" const = np.ones(self.dist.dim, dtype=bool) for basis in self.bases: for subaxis in range(basis.dim): const[basis.axis+subaxis] = basis.constant[subaxis] return tuple(const) @CachedAttribute def nonconstant(self): return tuple(~c for c in self.constant) @CachedAttribute def mode_dependence(self): """Tuple of dependence flags.""" dep = np.zeros(self.dist.dim, dtype=bool) for basis in self.bases: for subaxis in range(basis.dim): dep[basis.axis+subaxis] = basis.subaxis_dependence[subaxis] return tuple(dep) @CachedAttribute def dim(self): return sum(self.nonconstant) @CachedAttribute def coeff_shape(self): """Compute coefficient shape.""" scales = tuple(1 for i in range(self.dist.dim)) return self.global_shape(layout=self.dist.coeff_layout, scales=scales) def grid_shape(self, scales): """Compute grid shape.""" # Remedy scales before calling cached method scales = self.dist.remedy_scales(scales) return self._grid_shape(scales) def global_shape(self, layout, scales): shape = np.ones(self.dist.dim, dtype=int) for basis in self.bases: basis_axes = slice(basis.first_axis, basis.last_axis+1) shape[basis_axes] = basis.global_shape(layout.grid_space[basis_axes], scales[basis_axes]) return tuple(shape) @CachedMethod def chunk_shape(self, layout): """Compute chunk shape.""" shape = np.ones(self.dist.dim, dtype=int) for basis in self.bases: basis_axes = slice(basis.first_axis, basis.last_axis+1) shape[basis_axes] = basis.chunk_shape(layout.grid_space[basis_axes]) return tuple(shape) def group_shape(self, layout): """Compute group shape.""" group_shape = np.ones(self.dist.dim, dtype=int) for basis in self.bases: basis_axes = slice(basis.first_axis, basis.last_axis+1) group_shape[basis_axes] = basis.group_shape group_shape[layout.grid_space] = 1 return group_shape @CachedMethod def _grid_shape(self, scales): """Cached grid shape computation.""" shape = np.ones(self.dist.dim, dtype=int) for basis in self.bases: subscales = scales[basis.axis:basis.axis+basis.dim] subshape = basis.grid_shape(subscales) shape[basis.axis:basis.axis+basis.dim] = subshape return tuple(shape) # def expand_bases(self, bases): # exp_bases = [None] * self.domain.dim # for basis in bases: # if basis is not None: # if exp_bases[basis.space.axis] is not None: # raise ValueError("Degenerate bases.") # exp_bases[basis.space.axis] = basis # return tuple(exp_bases) # def __contains__(self, item): # if isinstance(item, Subdomain): # for axis in range(self.domain.dim): # if item.spaces[axis] not in {None, self.spaces[axis]}: # return False # return True # else: # space = self.domain.get_space_object(item) # return (space in self.spaces)
3,301
test ksize2x2 stride1x1 rate1x1 valid
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for ExtractImagePatches op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class ExtractImagePatches(xla_test.XLATestCase): """Functional tests for ExtractImagePatches op.""" def _VerifyValues(self, image, ksizes, strides, rates, padding, patches): """Tests input-output pairs for the ExtractImagePatches op. Args: image: Input tensor with shape: [batch, in_rows, in_cols, depth]. ksizes: Patch size specified as: [ksize_rows, ksize_cols]. strides: Output strides, specified as [stride_rows, stride_cols]. rates: Atrous rates, specified as [rate_rows, rate_cols]. padding: Padding type. patches: Expected output. """ ksizes = [1] + ksizes + [1] strides = [1] + strides + [1] rates = [1] + rates + [1] with self.session(): image_placeholder = array_ops.placeholder(dtypes.float32) with self.test_scope(): out_tensor = array_ops.extract_image_patches( image_placeholder, ksizes=ksizes, strides=strides, rates=rates, padding=padding, name="im2col") feed_dict = {image_placeholder: image} self.assertAllClose(patches, out_tensor.eval(feed_dict=feed_dict)) def testKsize1x1Stride1x1Rate1x1(self): """Verifies that for 1x1 kernel the output equals the input.""" # [2, 3, 4, 5] image = np.reshape(range(120), [2, 3, 4, 5]) # [2, 3, 4, 5] patches = np.reshape(range(120), [2, 3, 4, 5]) for padding in ["VALID", "SAME"]: self._VerifyValues( image, ksizes=[1, 1], strides=[1, 1], rates=[1, 1], padding=padding, patches=patches) def testKsize1x1Stride2x3Rate1x1(self): """Test for 1x1 kernel and strides.""" # [2, 4, 5, 3] image = np.reshape(range(120), [2, 4, 5, 3]) # [2, 2, 2, 3] patches = image[:, ::2, ::3, :] for padding in ["VALID", "SAME"]: self._VerifyValues( image, ksizes=[1, 1], strides=[2, 3], rates=[1, 1], padding=padding, patches=patches) def METHOD_NAME(self): """Test for 2x2 kernel with VALID padding.""" # [1, 2, 2, 1] image = [[[[1], [2]], [[3], [4]]]] # [1, 1, 1, 4] patches = [[[[1, 2, 3, 4]]]] self._VerifyValues( image, ksizes=[2, 2], strides=[1, 1], rates=[1, 1], padding="VALID", patches=patches) def testKsize2x2Stride1x1Rate1x1Same(self): """Test for 2x2 kernel with SAME padding.""" # [1, 2, 2, 1] image = [[[[1], [2]], [[3], [4]]]] # [1, 2, 2, 4] patches = [[[[1, 2, 3, 4], [2, 0, 4, 0]], [[3, 4, 0, 0], [4, 0, 0, 0]]]] self._VerifyValues( image, ksizes=[2, 2], strides=[1, 1], rates=[1, 1], padding="SAME", patches=patches) def testKsize2x2Stride1x1Rate2x2Valid(self): """Test for 2x2 kernel with 2x2 dilation.""" # [1, 2, 2, 1] image = np.arange(16).reshape(1, 4, 4, 1).astype(np.float32) # [1, 2, 2, 4] patches = [[[[0, 2, 8, 10], [1, 3, 9, 11]], [[4, 6, 12, 14], [5, 7, 13, 15]]]] self._VerifyValues( image, ksizes=[2, 2], strides=[1, 1], rates=[2, 2], padding="VALID", patches=patches) def testKsize2x2Stride1x1Rate1x1ValidDepth2(self): """Test for 2x2 kernel with VALID padding.""" # [1, 2, 2, 2] image = [[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]] # [1, 1, 1, 8] patches = [[[[1, 5, 2, 6, 3, 7, 4, 8]]]] self._VerifyValues( image, ksizes=[2, 2], strides=[1, 1], rates=[1, 1], padding="VALID", patches=patches) if __name__ == "__main__": test.main()
3,302
test gmm wrong descriptor format 4
import pytest import numpy as np pytest.importorskip('sklearn') from skimage.feature._fisher_vector import ( # noqa: E402 learn_gmm, fisher_vector, FisherVectorException, DescriptorException ) def test_gmm_wrong_descriptor_format_1(): """Test that DescriptorException is raised when wrong type for descriptions is passed. """ with pytest.raises(DescriptorException): learn_gmm('completely wrong test', n_modes=1) def test_gmm_wrong_descriptor_format_2(): """Test that DescriptorException is raised when descriptors are of different dimensionality. """ with pytest.raises(DescriptorException): learn_gmm([np.zeros((5, 11)), np.zeros((4, 10))], n_modes=1) def test_gmm_wrong_descriptor_format_3(): """Test that DescriptorException is raised when not all descriptors are of rank 2. """ with pytest.raises(DescriptorException): learn_gmm([np.zeros((5, 10)), np.zeros((4, 10, 1))], n_modes=1) def METHOD_NAME(): """Test that DescriptorException is raised when elements of descriptor list are of the incorrect type (i.e. not a NumPy ndarray). """ with pytest.raises(DescriptorException): learn_gmm([[1, 2, 3], [1, 2, 3]], n_modes=1) def test_gmm_wrong_num_modes_format_1(): """Test that FisherVectorException is raised when incorrect type for n_modes is passed into the learn_gmm function. """ with pytest.raises(FisherVectorException): learn_gmm([np.zeros((5, 10)), np.zeros((4, 10))], n_modes='not_valid') def test_gmm_wrong_num_modes_format_2(): """Test that FisherVectorException is raised when a number that is not a positive integer is passed into the n_modes argument of learn_gmm. """ with pytest.raises(FisherVectorException): learn_gmm([np.zeros((5, 10)), np.zeros((4, 10))], n_modes=-1) def test_gmm_wrong_covariance_type(): """Test that FisherVectorException is raised when wrong covariance type is passed in as a keyword argument. """ with pytest.raises(FisherVectorException): learn_gmm( np.random.random((10, 10)), n_modes=2, gm_args={'covariance_type': 'full'} ) def test_gmm_correct_covariance_type(): """Test that GMM estimation is successful when the correct covariance type is passed in as a keyword argument. """ gmm = learn_gmm( np.random.random((10, 10)), n_modes=2, gm_args={'covariance_type': 'diag'} ) assert gmm.means_ is not None assert gmm.covariances_ is not None assert gmm.weights_ is not None def test_gmm_e2e(): """ Test the GMM estimation. Since this is essentially a wrapper for the scikit-learn GaussianMixture class, the testing of the actual inner workings of the GMM estimation is left to scikit-learn and its dependencies. We instead simply assert that the estimation was successful based on the fact that the GMM object will have associated mixture weights, means, and variances after estimation is successful/complete. """ gmm = learn_gmm(np.random.random((100, 64)), n_modes=5) assert gmm.means_ is not None assert gmm.covariances_ is not None assert gmm.weights_ is not None def test_fv_wrong_descriptor_types(): """ Test that DescriptorException is raised when the incorrect type for the descriptors is passed into the fisher_vector function. """ try: from sklearn.mixture import GaussianMixture except ImportError: print( 'scikit-learn is not installed. Please ensure it is installed in ' 'order to use the Fisher vector functionality.' ) with pytest.raises(DescriptorException): fisher_vector([[1, 2, 3, 4]], GaussianMixture()) def test_fv_wrong_gmm_type(): """ Test that FisherVectorException is raised when a GMM not of type sklearn.mixture.GaussianMixture is passed into the fisher_vector function. """ class MyDifferentGaussianMixture: pass with pytest.raises(FisherVectorException): fisher_vector(np.zeros((10, 10)), MyDifferentGaussianMixture()) def test_fv_e2e(): """ Test the Fisher vector computation given a GMM returned from the learn_gmm function. We simply assert that the dimensionality of the resulting Fisher vector is correct. The dimensionality of a Fisher vector is given by 2KD + K, where K is the number of Gaussians specified in the associated GMM, and D is the dimensionality of the descriptors using to estimate the GMM. """ dim = 128 num_modes = 8 expected_dim = 2 * num_modes * dim + num_modes descriptors = [ np.random.random((np.random.randint(5, 30), dim)) for _ in range(10) ] gmm = learn_gmm(descriptors, n_modes=num_modes) fisher_vec = fisher_vector(descriptors[0], gmm) assert len(fisher_vec) == expected_dim def test_fv_e2e_improved(): """ Test the improved Fisher vector computation given a GMM returned from the learn_gmm function. We simply assert that the dimensionality of the resulting Fisher vector is correct. The dimensionality of a Fisher vector is given by 2KD + K, where K is the number of Gaussians specified in the associated GMM, and D is the dimensionality of the descriptors using to estimate the GMM. """ dim = 128 num_modes = 8 expected_dim = 2 * num_modes * dim + num_modes descriptors = [ np.random.random((np.random.randint(5, 30), dim)) for _ in range(10) ] gmm = learn_gmm(descriptors, n_modes=num_modes) fisher_vec = fisher_vector(descriptors[0], gmm, improved=True) assert len(fisher_vec) == expected_dim
3,303
add regs
# See LICENSE for licensing information. # # Copyright (c) 2016-2023 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import math from openram.tech import spice class rom_verilog: """ Create a behavioral Verilog file for simulation. This is inherited by the rom_base class. """ def __init__(self): pass def verilog_write(self, verilog_name): """ Write a behavioral Verilog model. """ self.vf = open(verilog_name, "w") self.vf.write("// OpenROM ROM model\n") #basic info self.vf.write("// Words: {0}\n".format(self.num_words)) self.vf.write("// Word size: {0}\n".format(self.word_size)) self.vf.write("// Word per Row: {0}\n".format(self.words_per_row)) self.vf.write("// Data Type: {0}\n".format(self.data_type)) self.vf.write("// Data File: {0}\n".format(self.rom_data)) self.vf.write("\n") try: self.vdd_name = spice["power"] except KeyError: self.vdd_name = "vdd" try: self.gnd_name = spice["ground"] except KeyError: self.gnd_name = "gnd" #add multiple banks later self.vf.write("module {0}(\n".format(self.name)) self.vf.write("`ifdef USE_POWER_PINS\n") self.vf.write(" {},\n".format(self.vdd_name)) self.vf.write(" {},\n".format(self.gnd_name)) self.vf.write("`endif\n") for port in self.all_ports: if port in self.read_ports: self.vf.write("// Port {0}: R\n".format(port)) self.vf.write(" clk{0},csb{0},addr{0},dout{0}".format(port)) # Continue for every port on a new line if port != self.all_ports[-1]: self.vf.write(",\n") self.vf.write("\n );\n\n") self.vf.write(" parameter DATA_WIDTH = {0} ;\n".format(self.word_size)) self.vf.write(" parameter ADDR_WIDTH = {0} ;\n".format(math.ceil(math.log(self.num_words,2)))) self.vf.write(" parameter ROM_DEPTH = 1 << ADDR_WIDTH;\n") self.vf.write(" // FIXME: This delay is arbitrary.\n") self.vf.write(" parameter DELAY = 3 ;\n") self.vf.write(" parameter VERBOSE = 1 ; //Set to 0 to only display warnings\n") self.vf.write(" parameter T_HOLD = 1 ; //Delay to hold dout value after posedge. Value is arbitrary\n") self.vf.write("\n") self.vf.write("`ifdef USE_POWER_PINS\n") self.vf.write(" inout {};\n".format(self.vdd_name)) self.vf.write(" inout {};\n".format(self.gnd_name)) self.vf.write("`endif\n") for port in self.all_ports: self.add_inputs_outputs(port) self.vf.write("\n") # This is the memory array itself self.vf.write(" reg [DATA_WIDTH-1:0] mem [0:ROM_DEPTH-1];\n\n") #write memory init here self.vf.write(f" initial begin\n") if self.data_type == "bin": self.vf.write(f" $readmemb(\"{self.rom_data}\",mem,0,ROM_DEPTH-1);\n") elif self.data_type == "hex": self.vf.write(f" $readmemh(\"{self.rom_data}\",mem,0, ROM_DEPTH-1);\n") else: raise ValueError(f"Data type: {self.data_type} is not supported!") self.vf.write(f" end\n\n") for port in self.all_ports: self.register_inputs(port) for port in self.all_ports: if port in self.read_ports: self.add_read_block(port) self.vf.write("\n") self.vf.write("endmodule\n") self.vf.close() def register_inputs(self, port): """ Register the control signal, address and data inputs. """ self.METHOD_NAME(port) self.add_flops(port) def METHOD_NAME(self, port): """ Create the input regs for the given port. """ self.vf.write(" reg csb{0}_reg;\n".format(port)) self.vf.write(" reg [ADDR_WIDTH-1:0] addr{0}_reg;\n".format(port)) if port in self.read_ports: self.vf.write(" reg [DATA_WIDTH-1:0] dout{0};\n".format(port)) def add_flops(self, port): """ Add the flop behavior logic for a port. """ self.vf.write("\n") self.vf.write(" // All inputs are registers\n") self.vf.write(" always @(posedge clk{0})\n".format(port)) self.vf.write(" begin\n") self.vf.write(" csb{0}_reg = csb{0};\n".format(port)) self.vf.write(" addr{0}_reg = addr{0};\n".format(port)) if port in self.read_ports: self.add_write_read_checks(port) if port in self.read_ports: self.vf.write(" #(T_HOLD) dout{0} = {1}'bx;\n".format(port, self.word_size)) self.vf.write(" if ( !csb{0}_reg && VERBOSE ) \n".format(port)) self.vf.write(" $display($time,\" Reading %m addr{0}=%b dout{0}=%b\",addr{0}_reg,mem[addr{0}_reg]);\n".format(port)) self.vf.write(" end\n\n") def add_inputs_outputs(self, port): """ Add the module input and output declaration for a port. """ self.vf.write(" input clk{0}; // clock\n".format(port)) self.vf.write(" input csb{0}; // active low chip select\n".format(port)) self.vf.write(" input [ADDR_WIDTH-1:0] addr{0};\n".format(port)) if port in self.read_ports: self.vf.write(" output [DATA_WIDTH-1:0] dout{0};\n".format(port)) def add_write_block(self, port): """ ROM does not take writes thus this function does nothing """ self.vf.write("\n") def add_read_block(self, port): """ Add a read port block. """ self.vf.write("\n") self.vf.write(" // Memory Read Block Port {0}\n".format(port)) self.vf.write(" // Read Operation : When web{0} = 1, csb{0} = 0\n".format(port)) self.vf.write(" always @ (negedge clk{0})\n".format(port)) self.vf.write(" begin : MEM_READ{0}\n".format(port)) self.vf.write(" if (!csb{0}_reg)\n".format(port)) self.vf.write(" dout{0} <= #(DELAY) mem[addr{0}_reg];\n".format(port)) self.vf.write(" end\n") def add_write_read_checks(self, rport): """ Since ROMs dont have write ports this does nothing """ pass
3,304
wrapper
#!/usr/bin/env python3 # copyright (c) 2020 Bowen Ding # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import io import os from base64 import b64decode from pathlib import Path from typing import BinaryIO from cryptography.exceptions import InvalidTag from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.ciphers.aead import AESGCM from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC backend = default_backend() MAGIC_STRING = b"_e_n_c_r_y_p_t_e_d_" def kdf_gen_key(password: str, salt: str, iters: int) -> bytes: password = password.encode("utf-8") salt = salt.encode("utf-8") kdf = PBKDF2HMAC( algorithm=hashes.SHA1(), length=16, salt=salt, iterations=iters, backend=backend ) key = kdf.derive(password) return key def dispatchargs(decorated): def METHOD_NAME(args): if args.key is not None: key = b64decode(args.key.encode("utf-8")) elif args.password is not None: key = kdf_gen_key(args.password, args.kdf_salt, args.kdf_iters) else: raise ValueError("Neither password nor key is provided") tag = args.gcm_tag.encode("utf-8") outputBuffer = io.BytesIO() with Path(args.infile).open("rb") as in_: decorated(key, in_, outputBuffer, tag) with Path(args.outfile).open("wb") as out: out.write(outputBuffer.getbuffer()) return METHOD_NAME def encrypt(key: bytes, infile: BinaryIO, outfile: BinaryIO, tag: bytes): if len(key) != 128 / 8: raise ValueError("Unsupported key length: %d" % len(key)) aesgcm = AESGCM(key) iv = os.urandom(12) plaintext = infile ciphertext = outfile rawbytes = plaintext.read() encrypted = aesgcm.encrypt(iv, rawbytes, tag) ciphertext.write(MAGIC_STRING) ciphertext.write(iv) ciphertext.write(encrypted) def decrypt(key: bytes, infile: BinaryIO, outfile: BinaryIO, tag: bytes): if len(key) != 128 / 8: raise ValueError("Unsupported key length: %d" % len(key)) aesgcm = AESGCM(key) ciphertext = infile plaintext = outfile magicstring = ciphertext.read(len(MAGIC_STRING)) if magicstring != MAGIC_STRING: raise ValueError("Data is not encrypted") iv = ciphertext.read(12) rawbytes = ciphertext.read() try: decrypted = aesgcm.decrypt(iv, rawbytes, tag) except InvalidTag: raise ValueError("Incorrect tag, iv, or corrupted ciphertext") plaintext.write(decrypted) if __name__ == "__main__": import argparse as ap parser = ap.ArgumentParser(description="Encrypt or decrypt using AES-128-GCM") parser.add_argument("-k", "--key", help="Base64-encoded key") parser.add_argument("-p", "--password", help="Password in plaintext") parser.add_argument( "--kdf-salt", help="PBKDF2 salt", default="saltysaltsweetysweet" ) parser.add_argument( "--kdf-iters", type=int, help="PBKDF2 iterations", default=10000 ) parser.add_argument("--gcm-tag", help="AES-GCM tag", default="AuTheNTiCatIoNtAG") parser.add_argument("-i", "--infile", help="Input file") parser.add_argument("-o", "--outfile", help="Output file") subparsers = parser.add_subparsers(title="commands", dest="action") parser_enc = subparsers.add_parser("enc", help="Encrypt") parser_enc.set_defaults(execute=dispatchargs(encrypt)) parser_dec = subparsers.add_parser("dec", help="Decrypt") parser_dec.set_defaults(execute=dispatchargs(decrypt)) args = parser.parse_args() args.execute(args)
3,305
get form kwargs
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 Raphael Michel and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # # This file is based on an earlier version of pretix which was released under the Apache License 2.0. The full text of # the Apache License 2.0 can be obtained at <http://www.apache.org/licenses/LICENSE-2.0>. # # This file may have since been changed and any changes are released under the terms of AGPLv3 as described above. A # full history of changes and contributors is available at <https://github.com/pretix/pretix>. # # This file contains Apache-licensed contributions copyrighted by: Alexander Schwartz # # Unless required by applicable law or agreed to in writing, software distributed under the Apache License 2.0 is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under the License. import logging from datetime import timedelta from django.conf import settings from django.contrib import messages from django.shortcuts import get_object_or_404, redirect from django.urls import reverse from django.utils.functional import cached_property from django.utils.timezone import now from django.utils.translation import gettext_lazy as _ from django.views.generic import FormView, TemplateView from pretix.base.models import CachedFile from pretix.base.services.orderimport import import_orders, parse_csv from pretix.base.views.tasks import AsyncAction from pretix.control.forms.orderimport import ProcessForm from pretix.control.permissions import EventPermissionRequiredMixin logger = logging.getLogger(__name__) class ImportView(EventPermissionRequiredMixin, TemplateView): template_name = 'pretixcontrol/orders/import_start.html' permission = 'can_change_orders' def post(self, request, *args, **kwargs): if 'file' not in request.FILES: return redirect(reverse('control:event.orders.import', kwargs={ 'event': request.event.slug, 'organizer': request.organizer.slug, })) if not request.FILES['file'].name.lower().endswith('.csv'): messages.error(request, _('Please only upload CSV files.')) return redirect(reverse('control:event.orders.import', kwargs={ 'event': request.event.slug, 'organizer': request.organizer.slug, })) if request.FILES['file'].size > settings.FILE_UPLOAD_MAX_SIZE_OTHER: messages.error(request, _('Please do not upload files larger than 10 MB.')) return redirect(reverse('control:event.orders.import', kwargs={ 'event': request.event.slug, 'organizer': request.organizer.slug, })) cf = CachedFile.objects.create( expires=now() + timedelta(days=1), date=now(), filename='import.csv', type='text/csv', ) cf.file.save('import.csv', request.FILES['file']) return redirect(reverse('control:event.orders.import.process', kwargs={ 'event': request.event.slug, 'organizer': request.organizer.slug, 'file': cf.id })) class ProcessView(EventPermissionRequiredMixin, AsyncAction, FormView): permission = 'can_change_orders' template_name = 'pretixcontrol/orders/import_process.html' form_class = ProcessForm task = import_orders known_errortypes = ['DataImportError'] def METHOD_NAME(self): k = super().METHOD_NAME() k.update({ 'event': self.request.event, 'initial': self.request.event.settings.order_import_settings, 'headers': self.parsed.fieldnames }) return k def form_valid(self, form): self.request.event.settings.order_import_settings = form.cleaned_data return self.do( self.request.event.pk, self.file.id, form.cleaned_data, self.request.LANGUAGE_CODE, self.request.user.pk ) @cached_property def file(self): return get_object_or_404(CachedFile, pk=self.kwargs.get("file"), filename="import.csv") @cached_property def parsed(self): try: return parse_csv(self.file.file, 1024 * 1024) except UnicodeDecodeError: messages.warning( self.request, _( "We could not identify the character encoding of the CSV file. " "Some characters were replaced with a placeholder." ) ) return parse_csv(self.file.file, 1024 * 1024, "replace") def get(self, request, *args, **kwargs): if 'async_id' in request.GET and settings.HAS_CELERY: return self.get_result(request) return FormView.get(self, request, *args, **kwargs) def get_success_message(self, value): return _('The import was successful.') def get_success_url(self, value): return reverse('control:event.orders', kwargs={ 'event': self.request.event.slug, 'organizer': self.request.organizer.slug, }) def dispatch(self, request, *args, **kwargs): if 'async_id' in request.GET and settings.HAS_CELERY: return self.get_result(request) if not self.parsed: messages.error(request, _('We\'ve been unable to parse the uploaded file as a CSV file.')) return redirect(reverse('control:event.orders.import', kwargs={ 'event': request.event.slug, 'organizer': request.organizer.slug, })) return super().dispatch(request, *args, **kwargs) def get_error_url(self): return reverse('control:event.orders.import.process', kwargs={ 'event': self.request.event.slug, 'organizer': self.request.organizer.slug, 'file': self.file.id }) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['file'] = self.file ctx['parsed'] = self.parsed ctx['sample_rows'] = list(self.parsed)[:3] return ctx
3,306
test positive list installable updates
"""Test for Content Access (Golden Ticket) CLI :Requirement: Content Access :CaseLevel: Acceptance :CaseComponent: Hosts-Content :CaseAutomation: Automated :team: Phoenix-subscriptions :TestType: Functional :Upstream: No """ import time import pytest from nailgun import entities from robottelo.cli.host import Host from robottelo.cli.package import Package from robottelo.config import settings from robottelo.constants import REAL_0_ERRATA_ID from robottelo.constants import REAL_RHEL7_0_2_PACKAGE_FILENAME from robottelo.constants import REAL_RHEL7_0_2_PACKAGE_NAME from robottelo.constants import REPOS pytestmark = [ pytest.mark.skipif( (not settings.robottelo.REPOS_HOSTING_URL), reason='Missing repos_hosting_url' ), pytest.mark.run_in_one_thread, ] @pytest.fixture(scope='module') def module_lce(module_sca_manifest_org): return entities.LifecycleEnvironment(organization=module_sca_manifest_org).create() @pytest.fixture(scope="module") def rh_repo_cv(module_sca_manifest_org, rh_repo_gt_manifest, module_lce): rh_repo_cv = entities.ContentView(organization=module_sca_manifest_org).create() # Add CV to AK rh_repo_cv.repository = [rh_repo_gt_manifest] rh_repo_cv.update(['repository']) rh_repo_cv.publish() rh_repo_cv = rh_repo_cv.read() # promote the last version published into the module lce rh_repo_cv.version[-1].promote(data={'environment_ids': module_lce.id, 'force': False}) return rh_repo_cv @pytest.fixture(scope="module") def module_ak(rh_repo_cv, module_sca_manifest_org, module_lce): module_ak = entities.ActivationKey( content_view=rh_repo_cv, environment=module_lce, organization=module_sca_manifest_org, ).create() # Ensure tools repo is enabled in the activation key module_ak.content_override( data={'content_overrides': [{'content_label': REPOS['rhst7']['id'], 'value': '1'}]} ) return module_ak @pytest.fixture(scope="module") def vm( rh_repo_gt_manifest, module_sca_manifest_org, module_ak, rhel7_contenthost_module, module_target_sat, ): # python-psutil obsoleted by python2-psutil, install older python2-psutil for errata test. rhel7_contenthost_module.run( 'rpm -Uvh https://download.fedoraproject.org/pub/epel/7/x86_64/Packages/p/' 'python2-psutil-5.6.7-1.el7.x86_64.rpm' ) rhel7_contenthost_module.install_katello_ca(module_target_sat) rhel7_contenthost_module.register_contenthost(module_sca_manifest_org.label, module_ak.name) host = entities.Host().search(query={'search': f'name={rhel7_contenthost_module.hostname}'}) host_id = host[0].id host_content = entities.Host(id=host_id).read_json() assert host_content["subscription_status"] == 5 rhel7_contenthost_module.install_katello_host_tools() return rhel7_contenthost_module @pytest.mark.tier2 @pytest.mark.pit_client @pytest.mark.pit_server def METHOD_NAME(vm): """Ensure packages applicability is functioning properly. :id: 4feb692c-165b-4f96-bb97-c8447bd2cf6e :steps: 1. Setup a content host with registration to unrestricted org 2. Install a package that has updates 3. Run `hammer package list` specifying option packages-restrict-applicable="true". :expectedresults: 1. Update package is available independent of subscription because Golden Ticket is enabled. :BZ: 1344049, 1498158 :parametrized: yes :CaseImportance: Critical """ for _ in range(30): applicable_packages = Package.list( { 'host': vm.hostname, 'packages-restrict-applicable': 'true', 'search': f'name={REAL_RHEL7_0_2_PACKAGE_NAME}', } ) if applicable_packages: break time.sleep(10) assert len(applicable_packages) > 0 assert REAL_RHEL7_0_2_PACKAGE_FILENAME in [ package['filename'] for package in applicable_packages ] @pytest.mark.tier2 @pytest.mark.upgrade @pytest.mark.pit_client @pytest.mark.pit_server def test_positive_erratum_installable(vm): """Ensure erratum applicability is showing properly, without attaching any subscription. :id: e8dc52b9-884b-40d7-9244-680b5a736cf7 :steps: 1. register a host to unrestricted org with Library 2. install a package, that will need errata to be applied 3. list the host applicable errata with searching the required errata id :expectedresults: errata listed successfuly and is installable :BZ: 1344049, 1498158 :parametrized: yes :CaseImportance: Critical """ # check that package errata is applicable for _ in range(30): erratum = Host.errata_list({'host': vm.hostname, 'search': f'id = {REAL_0_ERRATA_ID}'}) if erratum: break time.sleep(10) assert len(erratum) == 1 assert erratum[0]['installable'] == 'true' @pytest.mark.tier2 def test_negative_rct_not_shows_golden_ticket_enabled( target_sat, function_org, function_entitlement_manifest ): """Assert restricted manifest has no Golden Ticket enabled . :id: 754c1be7-468e-4795-bcf9-258a38f3418b :steps: 1. Run `rct cat-manifest /tmp/restricted_manifest.zip`. :expectedresults: 1. Assert `Content Access Mode: Simple Content Access` is not present. :CaseImportance: High """ # upload organization manifest with org environment access disabled org = function_org manifest = function_entitlement_manifest target_sat.upload_manifest(org.id, manifest, interface='CLI') result = target_sat.execute(f'rct cat-manifest {manifest.name}') assert result.status == 0 assert 'Content Access Mode: Simple Content Access' not in result.stdout @pytest.mark.tier2 @pytest.mark.upgrade def test_positive_rct_shows_golden_ticket_enabled(module_sca_manifest, target_sat): """Assert unrestricted manifest has Golden Ticket enabled . :id: 0c6e2f88-1a86-4417-9248-d7bd20584197 :steps: 1. Run `rct cat-manifest /tmp/unrestricted_manifest.zip`. :expectedresults: 1. Assert `Content Access Mode: Simple Content Access` is present. :CaseImportance: Medium """ with module_sca_manifest as manifest: target_sat.put(f'{manifest.path}', f'{manifest.name}') result = target_sat.execute(f'rct cat-manifest {module_sca_manifest.name}') assert result.status == 0 assert 'Content Access Mode: Simple Content Access' in result.stdout @pytest.mark.tier3 def test_negative_unregister_and_pull_content(vm): """Attempt to retrieve content after host has been unregistered from Satellite :id: de0d0d91-b1e1-4f0e-8a41-c27df4d6b6fd :expectedresults: Host can no longer retrieve content from satellite :CaseLevel: System :parametrized: yes :CaseImportance: Critical """ result = vm.run('subscription-manager unregister') assert result.status == 0 # Try installing any package from available repos on vm result = vm.run('yum install -y katello-agent') assert result.status != 0
3,307
test custom routing prefix
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time from mcrouter.test.MCProcess import Memcached from mcrouter.test.McrouterTestCase import McrouterTestCase class TestMcrouterRoutingPrefixAscii(McrouterTestCase): config = './mcrouter/test/routing_prefix_test_ascii.json' extra_args = [] def setUp(self): # The order here must corresponds to the order of hosts in the .json self.allhosts = [] for _ in range(0, 4): self.allhosts.append(self.add_server(Memcached())) def get_mcrouter(self): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args) def test_routing_prefix(self): mcr = self.get_mcrouter() nclusters = len(self.allhosts) # first try setting a key to the local cluster mcr.set("testkeylocal", "testvalue") self.assertEqual(self.allhosts[0].get("testkeylocal"), "testvalue") for i in range(1, nclusters): self.assertIsNone(self.allhosts[i].get("testkeylocal")) mcr.set("/*/*/testkey-routing", "testvalue") # /*/*/ is all-fastest, and some requests might complete asynchronously. # As a workaround, just wait time.sleep(1) local = self.allhosts[0].get("testkey-routing", True) self.assertEqual(local["value"], "testvalue") # make sure the key got set as "/*/*/key" for i in range(1, nclusters): local = self.allhosts[i].get("/*/*/testkey-routing", True) self.assertEqual(local["value"], "testvalue") class TestMcrouterRoutingPrefixCaret(TestMcrouterRoutingPrefixAscii): config = './mcrouter/test/routing_prefix_test_caret.json' class TestMcrouterRoutingPrefixOldNaming(TestMcrouterRoutingPrefixAscii): config = './mcrouter/test/routing_prefix_test_old_naming.json' class TestMcrouterRoutingPrefixSimpleRoutes(TestMcrouterRoutingPrefixAscii): config = './mcrouter/test/routing_prefix_test_simple_routes.json' class TestFallbackRouting(McrouterTestCase): config = './mcrouter/test/routing_prefix_test_fallback_route.json' extra_args = [] def setUp(self): self.aa = self.add_server(Memcached()) self.ab = self.add_server(Memcached()) self.ba = self.add_server(Memcached()) self.bb = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args) def test_fallback_routing(self): mcr = self.get_mcrouter() key = "/*/*/key" orig_value = "orig" mcr.set(key, orig_value) time.sleep(1) self.assertEqual(self.aa.get('key'), orig_value) self.assertEqual(self.ab.get('key'), orig_value) self.assertEqual(self.ba.get('key'), orig_value) self.assertEqual(self.bb.get('key'), orig_value) key = "/a/foobar/key" value1 = "value1" mcr.set(key, value1) time.sleep(1) self.assertEqual(self.ab.get('key'), orig_value) self.assertEqual(self.ba.get('key'), orig_value) self.assertEqual(self.bb.get('key'), orig_value) self.assertEqual(self.aa.get('key'), value1) class TestCustomRoutingPrefixes(McrouterTestCase): config = './mcrouter/test/routing_prefix_test_custom.json' extra_args = [] def setUp(self): self.aa = self.add_server(Memcached()) self.ab = self.add_server(Memcached()) self.ba = self.add_server(Memcached()) self.bb = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args) def METHOD_NAME(self): mcr = self.get_mcrouter() key = "/*/a/key" value = "value" mcr.set(key, value) time.sleep(1) self.assertEqual(self.aa.get('key'), value) self.assertEqual(self.ba.get('key'), value) key = "/b*/*/key" value = "value2" mcr.set(key, value) time.sleep(1) self.assertEqual(self.ba.get('key'), value) self.assertEqual(self.bb.get('key'), value) key = "/b/*b*/key" value = "value3" mcr.set(key, value) self.assertEqual(self.bb.get('key'), value)
3,308
set ttl state
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" --- module: dynamodb_ttl version_added: 1.0.0 short_description: Set TTL for a given DynamoDB table description: - Sets the TTL for a given DynamoDB table. options: state: description: - State to set DynamoDB table to. choices: ['enable', 'disable'] required: false type: str table_name: description: - Name of the DynamoDB table to work on. required: true type: str attribute_name: description: - The name of the Time To Live attribute used to store the expiration time for items in the table. - This appears to be required by the API even when disabling TTL. required: true type: str author: - Ted Timmons (@tedder) extends_documentation_fragment: - amazon.aws.common.modules - amazon.aws.region.modules - amazon.aws.boto3 """ EXAMPLES = r""" - name: enable TTL on my cowfacts table community.aws.dynamodb_ttl: state: enable table_name: cowfacts attribute_name: cow_deleted_date - name: disable TTL on my cowfacts table community.aws.dynamodb_ttl: state: disable table_name: cowfacts attribute_name: cow_deleted_date """ RETURN = r""" current_status: description: current or new TTL specification. type: dict returned: always sample: - { "AttributeName": "deploy_timestamp", "TimeToLiveStatus": "ENABLED" } - { "AttributeName": "deploy_timestamp", "Enabled": true } """ try: import botocore except ImportError: pass # Handled by AnsibleAWSModule from ansible_collections.community.aws.plugins.module_utils.modules import AnsibleCommunityAWSModule as AnsibleAWSModule def get_current_ttl_state(c, table_name): """Fetch the state dict for a table.""" current_state = c.describe_time_to_live(TableName=table_name) return current_state.get("TimeToLiveDescription") def does_state_need_changing(attribute_name, desired_state, current_spec): """Run checks to see if the table needs to be modified. Basically a dirty check.""" if not current_spec: # we don't have an entry (or a table?) return True if desired_state.lower() == "enable" and current_spec.get("TimeToLiveStatus") not in ["ENABLING", "ENABLED"]: return True if desired_state.lower() == "disable" and current_spec.get("TimeToLiveStatus") not in ["DISABLING", "DISABLED"]: return True if attribute_name != current_spec.get("AttributeName"): return True return False def METHOD_NAME(c, table_name, state, attribute_name): """Set our specification. Returns the update_time_to_live specification dict, which is different than the describe_* call.""" is_enabled = False if state.lower() == "enable": is_enabled = True ret = c.update_time_to_live( TableName=table_name, TimeToLiveSpecification={ "Enabled": is_enabled, "AttributeName": attribute_name, }, ) return ret.get("TimeToLiveSpecification") def main(): argument_spec = dict( state=dict(choices=["enable", "disable"]), table_name=dict(required=True), attribute_name=dict(required=True), ) module = AnsibleAWSModule( argument_spec=argument_spec, ) try: dbclient = module.client("dynamodb") except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to connect to AWS") result = {"changed": False} state = module.params["state"] # wrap all our calls to catch the standard exceptions. We don't pass `module` in to the # methods so it's easier to do here. try: current_state = get_current_ttl_state(dbclient, module.params["table_name"]) if does_state_need_changing(module.params["attribute_name"], module.params["state"], current_state): # changes needed new_state = METHOD_NAME( dbclient, module.params["table_name"], module.params["state"], module.params["attribute_name"] ) result["current_status"] = new_state result["changed"] = True else: # no changes needed result["current_status"] = current_state except botocore.exceptions.ClientError as e: module.fail_json_aws(e, msg="Failed to get or update ttl state") except botocore.exceptions.ParamValidationError as e: module.fail_json_aws(e, msg="Failed due to invalid parameters") except ValueError as e: module.fail_json_aws(e, msg="Failed") module.exit_json(**result) if __name__ == "__main__": main()
3,309
set pids
# Copyright (C) 2010-2015 Cuckoo Foundation. # This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org # See the file 'docs/LICENSE' for copying permission. import glob import logging import os import shutil from lib.api.process import Process from lib.common.exceptions import CuckooPackageError log = logging.getLogger(__name__) class Package: """Base abstract analysis package.""" PATHS = [] def __init__(self, options=None, config=None): """@param options: options dict.""" if options is None: options = {} self.config = config self.options = options self.pids = [] # Fetch the current working directory, defaults to $TEMP. def METHOD_NAME(self, pids): """Update list of monitored PIDs in the package context. @param pids: list of pids. """ self.pids = pids def start(self): """Run analysis package. @raise NotImplementedError: this method is abstract. """ raise NotImplementedError def check(self): """Check.""" return True def enum_paths(self): """Enumerate available paths.""" for path in self.PATHS: basedir = path[0] sys32 = len(path) > 1 and path[1].lower() == "system32" if basedir == "SystemRoot": if not sys32 or "PE32+" not in self.config.file_type: yield os.path.join(os.getenv("SystemRoot"), *path[1:]) yield os.path.join(os.getenv("SystemRoot"), "sysnative", *path[2:]) elif basedir == "ProgramFiles": if os.getenv("ProgramFiles(x86)"): yield os.path.join(os.getenv("ProgramFiles(x86)"), *path[1:]) yield os.path.join(os.getenv("ProgramFiles").replace(" (x86)", ""), *path[1:]) elif basedir == "HomeDrive": # os.path.join() does not work well when giving just C: # instead of C:\\, so we manually add the backslash. homedrive = f"{os.getenv('HomeDrive')}\\" yield os.path.join(homedrive, *path[1:]) else: yield os.path.join(*path) def get_path(self, application): """Search for the application in all available paths. @param application: application executable name @return: executable path """ for path in self.enum_paths(): if application in path and os.path.isfile(path): return path raise CuckooPackageError(f"Unable to find any {application} executable") def get_path_glob(self, application): """Search for the application in all available paths with glob support. @param application: application executable name @return: executable path """ for path in self.enum_paths(): for path in glob.iglob(path): if os.path.isfile(path) and (not application or application.lower() in path.lower()): return path raise CuckooPackageError(f"Unable to find any {application} executable") def get_path_app_in_path(self, application): """Search for the application in all available paths. @param application: application executable name @return: executable path """ for path in self.enum_paths(): if os.path.isfile(path) and (not application or application.lower() in path.lower()): return path raise CuckooPackageError(f"Unable to find any {application} executable") def execute(self, path, args, interest): """Starts an executable for analysis. @param path: executable path @param args: executable arguments @param interest: file of interest, passed to the cuckoomon config @return: process pid """ free = self.options.get("free", False) suspended = not free kernel_analysis = bool(self.options.get("kernel_analysis", False)) p = Process(options=self.options, config=self.config) if not p.execute(path=path, args=args, suspended=suspended, kernel_analysis=kernel_analysis): raise CuckooPackageError("Unable to execute the initial process, analysis aborted") if free: return None if not kernel_analysis: p.inject(interest) p.resume() p.close() return p.pid def package_files(self): """A list of files to upload to host. The list should be a list of tuples (<path on guest>, <name of file in package_files folder>). (package_files is a folder that will be created in analysis folder). """ return [] def finish(self): """Finish run. If configured, upload memory dumps of all running processes. """ return True def move_curdir(self, filepath): """Move a file to the current working directory so it can be executed from there. @param filepath: the file to be moved @return: the new filepath """ if "curdir" in self.options: self.curdir = os.path.expandvars(self.options["curdir"]) else: self.curdir = os.getenv("TEMP") newpath = os.path.join(self.curdir, os.path.basename(filepath)) shutil.move(filepath, newpath) return newpath class Auxiliary: # Setting all Auxiliary to have a default priority of 0 start_priority = 0 stop_priority = 0 def __init__(self, options=None, config=None): """@param options: options dict.""" if options is None: options = {} self.options = options self.config = config def add_pid(self, pid): pass def del_pid(self, pid): pass
3,310
should exit
import logging import os from typing import Optional from jina.importer import ImportExtensions from jina.serve.runtimes.servers import BaseServer from jina._docarray import docarray_v2 class WebSocketServer(BaseServer): """WebSocket Server implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ self.logger.debug(f'Setting up Websocket server') if docarray_v2: from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler if isinstance(self._request_handler, GatewayRequestHandler): await self._request_handler.streamer._get_endpoints_input_output_models(is_cancel=self.is_cancel) self._request_handler.streamer._validate_flow_docarray_compatibility() self.app = self._request_handler._websocket_fastapi_default_app(tracing=self.tracing, tracer_provider=self.tracer_provider) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.METHOD_NAME: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) self.logger.debug(f'UviServer server setup') await self.server.setup() self.logger.debug(f'Websocket server setup successful') @property def _should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self.server.METHOD_NAME @property def METHOD_NAME(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._should_exit async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.logger.debug(f'Shutting down server') await super().shutdown() self.server.METHOD_NAME = True await self.server.shutdown() self.logger.debug(f'Server shutdown finished') async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
3,311
test create relation
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import unittest from unittest.mock import ANY from databuilder.models.dashboard.dashboard_query import DashboardQuery from databuilder.models.graph_serializable import ( NODE_KEY, NODE_LABEL, RELATION_END_KEY, RELATION_END_LABEL, RELATION_REVERSE_TYPE, RELATION_START_KEY, RELATION_START_LABEL, RELATION_TYPE, ) from databuilder.serializers import ( atlas_serializer, mysql_serializer, neo4_serializer, neptune_serializer, ) from databuilder.serializers.neptune_serializer import ( METADATA_KEY_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_CREATION_TYPE_JOB, NEPTUNE_CREATION_TYPE_NODE_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_HEADER_ID, NEPTUNE_HEADER_LABEL, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_RELATIONSHIP_HEADER_FROM, NEPTUNE_RELATIONSHIP_HEADER_TO, ) class TestDashboardQuery(unittest.TestCase): def setUp(self) -> None: self.dashboard_query = DashboardQuery( dashboard_group_id='dg_id', dashboard_id='d_id', query_id='q_id', query_name='q_name', url='http://foo.bar/query/baz', query_text='SELECT * FROM foo.bar' ) def test_create_nodes(self) -> None: actual = self.dashboard_query.create_next_node() actual_serialized = neo4_serializer.serialize_node(actual) expected = { 'url': 'http://foo.bar/query/baz', 'name': 'q_name', 'id': 'q_id', 'query_text': 'SELECT * FROM foo.bar', NODE_KEY: '_dashboard://gold.dg_id/d_id/query/q_id', NODE_LABEL: DashboardQuery.DASHBOARD_QUERY_LABEL } self.assertEqual(expected, actual_serialized) def test_create_nodes_neptune(self) -> None: actual = self.dashboard_query.create_next_node() actual_serialized = neptune_serializer.convert_node(actual) neptune_expected = { NEPTUNE_HEADER_ID: 'Query:_dashboard://gold.dg_id/d_id/query/q_id', METADATA_KEY_PROPERTY_NAME_BULK_LOADER_FORMAT: '_dashboard://gold.dg_id/d_id/query/q_id', NEPTUNE_HEADER_LABEL: DashboardQuery.DASHBOARD_QUERY_LABEL, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_NODE_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB, 'id:String(single)': 'q_id', 'query_text:String(single)': 'SELECT * FROM foo.bar', 'name:String(single)': 'q_name', 'url:String(single)': 'http://foo.bar/query/baz' } self.assertEqual(neptune_expected, actual_serialized) def METHOD_NAME(self) -> None: actual = self.dashboard_query.create_next_relation() actual_serialized = neo4_serializer.serialize_relationship(actual) expected = { RELATION_END_KEY: '_dashboard://gold.dg_id/d_id/query/q_id', RELATION_START_LABEL: 'Dashboard', RELATION_END_LABEL: DashboardQuery.DASHBOARD_QUERY_LABEL, RELATION_START_KEY: '_dashboard://gold.dg_id/d_id', RELATION_TYPE: 'HAS_QUERY', RELATION_REVERSE_TYPE: 'QUERY_OF' } self.assertEqual(expected, actual_serialized) def test_create_relation_neptune(self) -> None: actual = self.dashboard_query.create_next_relation() actual_serialized = neptune_serializer.convert_relationship(actual) neptune_forward_expected = { NEPTUNE_HEADER_ID: "{label}:{from_vertex_id}_{to_vertex_id}".format( from_vertex_id='Dashboard:_dashboard://gold.dg_id/d_id', to_vertex_id='Query:_dashboard://gold.dg_id/d_id/query/q_id', label='HAS_QUERY' ), METADATA_KEY_PROPERTY_NAME_BULK_LOADER_FORMAT: "{label}:{from_vertex_id}_{to_vertex_id}".format( from_vertex_id='Dashboard:_dashboard://gold.dg_id/d_id', to_vertex_id='Query:_dashboard://gold.dg_id/d_id/query/q_id', label='HAS_QUERY' ), NEPTUNE_RELATIONSHIP_HEADER_FROM: 'Dashboard:_dashboard://gold.dg_id/d_id', NEPTUNE_RELATIONSHIP_HEADER_TO: 'Query:_dashboard://gold.dg_id/d_id/query/q_id', NEPTUNE_HEADER_LABEL: 'HAS_QUERY', NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB } neptune_reversed_expected = { NEPTUNE_HEADER_ID: "{label}:{from_vertex_id}_{to_vertex_id}".format( from_vertex_id='Query:_dashboard://gold.dg_id/d_id/query/q_id', to_vertex_id='Dashboard:_dashboard://gold.dg_id/d_id', label='QUERY_OF' ), METADATA_KEY_PROPERTY_NAME_BULK_LOADER_FORMAT: "{label}:{from_vertex_id}_{to_vertex_id}".format( from_vertex_id='Query:_dashboard://gold.dg_id/d_id/query/q_id', to_vertex_id='Dashboard:_dashboard://gold.dg_id/d_id', label='QUERY_OF' ), NEPTUNE_RELATIONSHIP_HEADER_FROM: 'Query:_dashboard://gold.dg_id/d_id/query/q_id', NEPTUNE_RELATIONSHIP_HEADER_TO: 'Dashboard:_dashboard://gold.dg_id/d_id', NEPTUNE_HEADER_LABEL: 'QUERY_OF', NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB } assert actual is not None self.assertDictEqual(actual_serialized[0], neptune_forward_expected) self.assertDictEqual(actual_serialized[1], neptune_reversed_expected) def test_create_records(self) -> None: actual = self.dashboard_query.create_next_record() actual_serialized = mysql_serializer.serialize_record(actual) expected = { 'rk': '_dashboard://gold.dg_id/d_id/query/q_id', 'name': 'q_name', 'id': 'q_id', 'dashboard_rk': '_dashboard://gold.dg_id/d_id', 'url': 'http://foo.bar/query/baz', 'query_text': 'SELECT * FROM foo.bar' } assert actual is not None self.assertDictEqual(expected, actual_serialized) self.assertIsNone(self.dashboard_query.create_next_record()) def test_create_next_atlas_entity(self) -> None: actual = self.dashboard_query.create_next_atlas_entity() actual_serialized = atlas_serializer.serialize_entity(actual) expected = { "typeName": "DashboardQuery", "operation": "CREATE", "relationships": "dashboard#Dashboard#_dashboard://gold.dg_id/d_id", "qualifiedName": "_dashboard://gold.dg_id/d_id/query/q_id", "name": "q_name", "id": "q_id", "url": "http://foo.bar/query/baz", "queryText": "SELECT * FROM foo.bar" } assert actual is not None self.assertDictEqual(expected, actual_serialized) self.assertIsNone(self.dashboard_query.create_next_atlas_entity())
3,312
decorator
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from builtins import next from builtins import object import logging import sys from desktop.lib.i18n import force_unicode from beeswax import data_export from librdbms.server import dbms from notebook.connectors.base import Api, QueryError, QueryExpired, _get_snippet_name LOG = logging.getLogger() def query_error_handler(func): def METHOD_NAME(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: message = force_unicode(e) if 'Invalid query handle' in message or 'Invalid OperationHandle' in message: raise QueryExpired(e) else: if sys.version_info[0] > 2: raise QueryError(message).with_traceback(sys.exc_info()[2]) else: raise QueryError, message, sys.exc_info()[2] return METHOD_NAME class RdbmsApi(Api): def _execute(self, notebook, snippet): query_server = self._get_query_server() db = dbms.get(self.user, query_server) db.use(snippet['database']) # TODO: only do the use on the first statement in a multi query table = db.execute_statement(snippet['statement']) # TODO: execute statement stub in Rdbms return table @query_error_handler def execute(self, notebook, snippet): table = self._execute(notebook, snippet) data = list(table.rows()) has_result_set = data is not None return { 'sync': True, 'has_result_set': has_result_set, 'modified_row_count': 0, 'result': { 'has_more': False, 'data': data if has_result_set else [], 'meta': [{ 'name': col['name'] if type(col) is dict else col, 'type': col.get('type', '') if type(col) is dict else '', 'comment': '' } for col in table.columns_description] if has_result_set else [], 'type': 'table' } } @query_error_handler def check_status(self, notebook, snippet): return {'status': 'expired'} @query_error_handler def fetch_result(self, notebook, snippet, rows, start_over): return { 'has_more': False, 'data': [], 'meta': [], 'type': 'table' } @query_error_handler def fetch_result_metadata(self): pass @query_error_handler def cancel(self, notebook, snippet): return {'status': 0} @query_error_handler def get_log(self, notebook, snippet, startFrom=None, size=None): return 'No logs' @query_error_handler def close_statement(self, notebook, snippet): return {'status': -1} @query_error_handler def autocomplete(self, snippet, database=None, table=None, column=None, nested=None, operation=None): query_server = self._get_query_server() db = dbms.get(self.user, query_server) assist = Assist(db) response = {'status': -1} if database is None: response['databases'] = assist.get_databases() elif table is None: tables_meta = [] for t in assist.get_tables(database): tables_meta.append({'name': t, 'type': 'Table', 'comment': ''}) response['tables_meta'] = tables_meta elif column is None: columns = assist.get_columns(database, table) response['columns'] = [col['name'] for col in columns] response['extended_columns'] = columns else: columns = assist.get_columns(database, table) response['name'] = next((col['name'] for col in columns if column == col['name']), '') response['type'] = next((col['type'] for col in columns if column == col['name']), '') response['status'] = 0 return response @query_error_handler def get_sample_data(self, snippet, database=None, table=None, column=None, is_async=False, operation=None): query_server = self._get_query_server() db = dbms.get(self.user, query_server) assist = Assist(db) response = {'status': -1, 'result': {}} sample_data = assist.get_sample_data(database, table, column) if sample_data: response['status'] = 0 response['headers'] = sample_data.columns response['full_headers'] = sample_data.columns_description response['rows'] = list(sample_data.rows()) else: response['message'] = _('Failed to get sample data.') return response @query_error_handler def get_browse_query(self, snippet, database, table, partition_spec=None): return "SELECT * FROM `%s`.`%s` LIMIT 1000" % (database, table) @query_error_handler def explain(self, notebook, snippet): query_server = self._get_query_server() db = dbms.get(self.user, query_server) db.use(snippet['database']) result = db.explain(snippet['statement']) rows = list(result.rows()) cols = result.cols() # Prettify output explanation = "" cols_pretty = [(col + ": ") for col in cols] col_width = max(len(col) for col in cols_pretty) for index, col in enumerate(cols_pretty): lines = [] for row in rows: lines += str(row[index]).split("\n") explanation += col.ljust(col_width) + lines[0] + "\n" for line in lines[1:]: explanation += (" " * col_width) + line + "\n" return { 'status': 0, 'explanation': explanation, 'statement': snippet['statement'], } def _get_query_server(self): if self.query_server: return self.query_server else: return dbms.get_query_server_config(server=self.interpreter) class Assist(object): def __init__(self, db): self.db = db def get_databases(self): return self.db.get_databases() def get_tables(self, database, table_names=[]): self.db.use(database) return self.db.get_tables(database, table_names) def get_columns(self, database, table): return self.db.get_columns(database, table, names_only=False) def get_sample_data(self, database, table, column=None): return self.db.get_sample_data(database, table, column) class FixedResult(object): def __init__(self, result): self.result = result self.has_more = False def fetch(self, handle=None, start_over=None, rows=None): return self.result
3,313
test var collection contains
import pytest from pyaerocom import const from pyaerocom.data import resources from pyaerocom.exceptions import VariableDefinitionError from pyaerocom.varcollection import VarCollection from pyaerocom.variable import Variable def test_VARS_is_VarCollection(): assert isinstance(const.VARS, VarCollection) @pytest.fixture() def collection() -> VarCollection: with resources.path("pyaerocom.data", "variables.ini") as path: assert path.exists() return VarCollection(str(path)) def test_invalid_entries(collection: VarCollection): invalid = ("_" in var for var in collection.all_vars) assert sum(invalid) == 0 @pytest.mark.parametrize( "var_ini,exception,error", [ pytest.param(None, ValueError, "Invalid input for var_ini, need str", id="ValueError"), pytest.param( "/bla/blub", FileNotFoundError, "File /bla/blub does not exist", id="FileNotFoundError" ), ], ) def test_VarCollection___init___error(var_ini, exception, error: str): with pytest.raises(exception) as e: VarCollection(var_ini) assert str(e.value) == error def test_VarCollection_add_var(collection: VarCollection): var = Variable(var_name="concpm10gt1", units="ug m-3") collection.add_var(var) assert var.var_name in collection.all_vars def test_VarCollection_add_var_error(collection: VarCollection): var = Variable(var_name="concpm10", units="ug m-3") with pytest.raises(VariableDefinitionError) as e: collection.add_var(var) assert str(e.value) == f"variable with name {var.var_name} is already defined" def test_VarCollection_delete_var(collection: VarCollection): var = Variable(var_name="concpm10", units="ug m-3") collection.delete_variable(var.var_name) assert var.var_name not in collection.all_vars def test_VarCollection_delete_var_error(collection: VarCollection): var = Variable(var_name="concpm10gt1", units="ug m-3") with pytest.raises(VariableDefinitionError) as e: collection.delete_variable(var.var_name) assert str(e.value) == f"No such variable {var.var_name} in VarCollection" @pytest.mark.parametrize("var_name", ["blablub42", "od550aer"]) def test_VarCollection_get_var(collection: VarCollection, var_name: str): collection.add_var(Variable(var_name="blablub42")) assert isinstance(collection.get_var(var_name), Variable) def test_VarCollection_get_var_error(collection: VarCollection): var_name = "bla" with pytest.raises(VariableDefinitionError) as e: collection.get_var(var_name) assert str(e.value) == f"Error (VarCollection): input variable {var_name} is not supported" @pytest.mark.parametrize( "search_pattern,num", [ ("*blaaaaaaa*", 0), ("dep*", 0), ("od*", 26), ("conc*", 82), ], ) def test_VarCollection_find(collection: VarCollection, search_pattern: str, num: int): result = collection.find(search_pattern) assert len(result) == num def test_VarCollection_delete_var_MULTIDEF(collection: VarCollection): var_name = "concpm10" collection.all_vars.append(var_name) with pytest.raises(VariableDefinitionError) as e: collection.delete_variable(var_name) assert f"found multiple matches for variable {var_name} in VarCollection" in str(e.value) def test_VarCollection___dir__(collection: VarCollection): result = dir(collection) all_vars = collection.all_vars assert len(result) == len(all_vars) assert result == sorted(all_vars) @pytest.mark.parametrize("var_name,found", [("blablub", False), ("od550aer", True)]) def METHOD_NAME(collection: VarCollection, var_name: str, found: bool): assert (var_name in collection) == found def test_VarCollection___len__(collection: VarCollection): assert len(collection) > 0 def test_VarCollection___getitem__(collection: VarCollection): assert isinstance(collection["od550aer"], Variable) def test_VarCollection___getitem___error(collection: VarCollection): var_name = "blaaaa" assert var_name not in collection with pytest.raises(VariableDefinitionError) as e: collection[var_name] assert str(e.value).endswith(f"input variable {var_name} is not supported") def test_VarCollection___repr__(collection: VarCollection): assert repr(collection).startswith("VarCollection") def test_VarCollection___str__(collection: VarCollection): assert str(collection).startswith("VarCollection")
3,314
update unindexed threads
""" 4Chan board scraper - indexes threads and queues them for scraping """ import json from backend.lib.scraper import BasicJSONScraper from common.lib.exceptions import JobAlreadyExistsException class BoardScraper4chan(BasicJSONScraper): """ Scrape 4chan boards The threads found aren't saved themselves, but new jobs are created to scrape the individual threads so post data can be saved """ type = "fourchan-board" max_workers = 2 # should probably be equivalent to the amount of boards to scrape required_fields = ["no", "last_modified"] position = 0 def process(self, data): """ Process scraped board data For each thread, a record is inserted into the database if it does not exist yet :param dict data: The board data, parsed JSON data """ self.datasource = self.type.split("-")[0] new_threads = 0 if not data: self.log.error("No thread data from board scrape of %s/%s/" % (self.datasource, self.job.data["remote_id"])) return False index_thread_ids = [] for page in data: if page.get('threads') is None: self.log.error( "No thread data from board scrape of %s/%s/" % (self.datasource, self.job.data["remote_id"])) return False for thread in page["threads"]: self.position += 1 new_threads += self.save_thread(thread) index_thread_ids.append(thread["id"] if "id" in thread else thread["no"]) self.log.info("Board scrape for %s/%s/ yielded %i new threads" % (self.datasource, self.job.data["remote_id"], new_threads)) # Also update threads that were not yet seen as not archived or closed, but were also not in the index. # These were either archived or deleted by moderators. self.METHOD_NAME(index_thread_ids) def save_thread(self, thread): """ Save thread :param dict thread: Thread data :return int: Number of new threads created (so 0 or 1) """ # 8kun for some reason doesn't always include last_modified # in that case the timestamp will be 0 if self.datasource == "8kun" and "last_modified" in self.required_fields: self.required_fields.remove("last_modified") # check if we have everything we need missing = set(self.required_fields) - set(thread.keys()) if missing != set(): self.log.warning("Missing fields %s in scraped thread from %s/%s/, ignoring: got %s" % (repr(missing), self.datasource, self.job.data["remote_id"], repr(thread))) return False board_id = self.job.data["remote_id"].split("/").pop() thread_id = thread["id"] if "id" in thread else thread["no"] thread_data = { "id": thread_id, "board": board_id, "index_positions": "" } # schedule a job for scraping the thread's posts try: jobtype = self.type.replace("-board", "-thread") self.queue.add_job(jobtype=jobtype, remote_id=thread["no"], details={"board": board_id}) except JobAlreadyExistsException: # this might happen if the workers can't keep up with the queue pass # add database record for thread, if none exists yet # 8chan supports cyclical threads which have an ID that is *not* the first post's. The # following line accounts for this. thread_row = self.db.fetchone("SELECT * FROM threads_" + self.prefix + " WHERE id = %s AND board = %s", (str(thread_id), board_id)) new_thread = 0 if not thread_row: new_thread += 1 self.db.insert("threads_" + self.prefix, thread_data) replacements = [self.init_time, thread.get("last_modified", 0)] if "fourchan" in self.type: # update timestamps and position, but only for 4chan # other chans have different strategies and often have "infinite" # threads which would rapidly bloat the database with an infinite # stream of thread positions position_update = str(self.init_time) + ":" + str(self.position) + "," positions_bit = ", index_positions = CONCAT(index_positions, %s)" replacements.append(position_update) else: positions_bit = "" replacements.extend([str(thread_id), board_id]) self.db.execute("UPDATE threads_" + self.prefix + " SET timestamp_scraped = %s, timestamp_modified = %s" + positions_bit + " WHERE id = %s AND board = %s", replacements) return new_thread def METHOD_NAME(self, index_thread_ids): """ Add a job for threads that aren't in the index, but are also still marked as active (i.e. `timestamp_deleted` or `timestamp_archived` is still 0). :param index_thread_ids, list: List of dicts with threads that were in the index already. """ board_id = self.job.data["remote_id"].split("/").pop() # We're updating checking threads that # 1) are not in the index # 2) are not more than an hour old; we already covered older ones in the regular scrape, # and if not, it's likely that 4CAT wasn't running at the time, so we can't verify # whether the thread is archived or deleted. # 3) have 0 as a value for both `timestamp_deleted` and `timestamp_archived` unindexed_threads = self.db.fetchall("SELECT id FROM threads_" + self.prefix + " WHERE board = %s AND timestamp_deleted = 0 AND timestamp_archived = 0 AND timestamp_modified > (EXTRACT(epoch FROM NOW()) - 3600) AND id NOT IN %s", (board_id, tuple(index_thread_ids))) if unindexed_threads: to_check = 0 for thread in unindexed_threads: # Schedule a job for scraping the thread's posts, # which also updates its deleted/archived status try: # Add a new thread job if it isn't in the jobs table anymore jobtype = self.type.replace("-board", "-thread") query = "SELECT remote_id FROM jobs WHERE remote_id = '%s' AND details = '%s';" % (str(thread["id"]), json.dumps({"board": board_id})) remote_id = self.db.fetchone(query) if not remote_id: self.queue.add_job(jobtype=jobtype, remote_id=str(thread["id"]), details={"board": board_id}) to_check += 1 except JobAlreadyExistsException: # this might happen if the workers can't keep up with the queue pass if to_check: self.log.info("Board scrape for %s/%s/ yielded %s threads that disappeared from the index, updating their status" % (self.datasource, self.job.data["remote_id"], to_check)) def get_url(self): """ Get URL to scrape for the current job :return string: URL to scrape """ board_id = self.job.data["remote_id"].split("/").pop() return "http://a.4cdn.org/%s/threads.json" % board_i
3,315
data to dict
""" Parse the Audio SNIPS corpus Authors: * Heng-Jui Chang 2022 """ import logging from collections import OrderedDict from pathlib import Path from typing import Any, Dict, List from tqdm import trange from .base import Corpus __all__ = [ "SNIPS", ] class SNIPS(Corpus): def __init__( self, dataset_root: str, train_speakers: List[str], valid_speakers: List[str], test_speakers: List[str], ) -> None: self.dataset_root = Path(dataset_root) self.train_speakers = train_speakers self.valid_speakers = valid_speakers self.test_speakers = test_speakers self.data_dict = self._collect_data( self.dataset_root, train_speakers, valid_speakers, test_speakers ) self.train = self.METHOD_NAME(self.data_dict, ["train"]) self.valid = self.METHOD_NAME(self.data_dict, ["valid"]) self.test = self.METHOD_NAME(self.data_dict, ["test"]) self._data = OrderedDict() self._data.update(self.train) self._data.update(self.valid) self._data.update(self.test) @property def all_data(self): return self._data @property def data_split_ids(self): return ( list(self.train.keys()), list(self.valid.keys()), list(self.test.keys()), ) @staticmethod def _collect_data( dataset_root: str, train_speakers: List[str], valid_speakers: List[str], test_speakers: List[str], ) -> Dict[str, Dict[str, Any]]: # Load transcription transcripts_file = open(dataset_root / "all.iob.snips.txt").readlines() transcripts = {} for line in transcripts_file: line = line.strip().split(" ") index = line[0] # {speaker}-snips-{split}-{index} sent = " ".join(line[1:]) transcripts[index] = sent # List wave files data_dict = {} for split, speaker_list in [ ("train", train_speakers), ("valid", valid_speakers), ("test", test_speakers), ]: wav_list = list((dataset_root / split).rglob("*.wav")) new_wav_list, name_list, spkr_list = [], [], [] uf = 0 for i in trange(len(wav_list), desc="checking files"): uid = wav_list[i].stem if uid in transcripts: spkr = uid.split("-")[0] if spkr in speaker_list: new_wav_list.append(str(wav_list[i])) name_list.append(uid) spkr_list.append(spkr) else: logging.info(wav_list[i], "Not Found") uf += 1 logging.info("%d wav file with label not found in text file!" % uf) wav_list = new_wav_list logging.info( f"loaded audio from {len(speaker_list)} speakers {str(speaker_list)} with {len(wav_list)} examples." ) assert len(wav_list) > 0, "No data found @ {}".format(dataset_root / split) text_list = [transcripts[name] for name in name_list] wav_list, name_list, text_list, spkr_list = zip( *[ (wav, name, text, spkr) for (wav, name, text, spkr) in sorted( zip(wav_list, name_list, text_list, spkr_list), key=lambda x: x[1], ) ] ) data_dict[split] = { "name_list": name_list, "wav_list": wav_list, "text_list": text_list, "spkr_list": spkr_list, } return data_dict @staticmethod def METHOD_NAME( data_dict: Dict[str, Dict[str, List[Any]]], splits: List[str] ) -> dict: data = dict( { name: { "wav_path": data_dict[split]["wav_list"][i], "transcription": " ".join( data_dict[split]["text_list"][i] .split("\t")[0] .strip() .split(" ")[1:-1] ), "iob": " ".join( data_dict[split]["text_list"][i] .split("\t")[1] .strip() .split(" ")[1:-1] ), "intent": data_dict[split]["text_list"][i] .split("\t")[1] .strip() .split(" ")[-1], "speaker": data_dict[split]["spkr_list"][i], "corpus_split": split, } for split in splits for i, name in enumerate(data_dict[split]["name_list"]) } ) return data
3,316
flatten
from urllib.parse import parse_qs, unquote, urlparse from braceexpand import braceexpand import requests # https://github.com/mozilla/bedrock/blob/master/tests/redirects/base.py def get_abs_url(url, base_url): if url.startswith("/"): # urljoin messes with query strings too much return "".join([base_url, url]) return url # https://github.com/mozilla/bedrock/blob/master/tests/redirects/base.py def url_test( url, location=None, status_code=requests.codes.moved_permanently, req_headers=None, req_kwargs=None, resp_headers=None, query=None, follow_redirects=False, final_status_code=requests.codes.ok, ): r""" Function for producing a config dict for the redirect test. You can use simple bash style brace expansion in the `url` and `location` values. If you need the `location` to change with the `url` changes you must use the same number of expansions or the `location` will be treated as non-expandable. If you use brace expansion this function will return a list of dicts instead of a dict. You must use the `flatten` function provided to prepare your test fixture if you do this. If you combine brace expansion with a compiled regular expression pattern you must escape any backslashes as this is the escape character for brace expansion. example: url_test('/about/drivers{/,.html}', 'https://wiki.mozilla.org/Firefox/Drivers'), url_test('/projects/index.{de,fr,hr,sq}.html', '/{de,fr,hr,sq}/firefox/products/'), url_test('/firefox/notes/', re.compile(r'\/firefox\/[\d\.]+\/releasenotes\/'), url_test('/firefox/android/{,beta/}notes/', re.compile(r'\\/firefox\\/android\\/[\\d\\.]+{,beta}\\/releasenotes\\/' :param url: The URL in question (absolute or relative). :param location: If a redirect, either the expected value or a compiled regular expression to match the "Location" header. :param status_code: Expected status code from the request. :param req_headers: Extra headers to send with the request. :param req_kwargs: Extra arguments to pass to requests.get() :param resp_headers: Dict of headers expected in the response. :param query: Dict of expected query params in `location` URL. :param follow_redirects: Boolean indicating whether redirects should be followed. :param final_status_code: Expected status code after following any redirects. :return: dict or list of dicts """ test_data = { "url": url, "location": location, "status_code": status_code, "req_headers": req_headers, "req_kwargs": req_kwargs, "resp_headers": resp_headers, "query": query, "follow_redirects": follow_redirects, "final_status_code": final_status_code, } expanded_urls = list(braceexpand(url)) num_urls = len(expanded_urls) if num_urls == 1: return test_data new_urls = [] if location: expanded_locations = list(braceexpand(test_data["location"])) num_locations = len(expanded_locations) for i, expanded_url in enumerate(expanded_urls): data = test_data.copy() data["url"] = expanded_url if location and num_urls == num_locations: data["location"] = expanded_locations[i] new_urls.append(data) return new_urls def assert_valid_url( url, location=None, status_code=requests.codes.moved_permanently, req_headers=None, req_kwargs=None, resp_headers=None, query=None, base_url=None, follow_redirects=False, final_status_code=requests.codes.ok, ): """ Define a test of a URL's response. :param url: The URL in question (absolute or relative). :param location: If a redirect, either the expected value or a compiled regular expression to match the "Location" header. :param status_code: Expected status code from the request. :param req_headers: Extra headers to send with the request. :param req_kwargs: Extra arguments to pass to requests.get() :param resp_headers: Dict of headers expected in the response. :param base_url: Base URL for the site to test. :param query: Dict of expected query params in `location` URL. :param follow_redirects: Boolean indicating whether redirects should be followed. :param final_status_code: Expected status code after following any redirects. """ kwargs = {"allow_redirects": follow_redirects} if req_headers: kwargs["headers"] = req_headers if req_kwargs: kwargs.update(req_kwargs) abs_url = get_abs_url(url, base_url) resp = requests.get(abs_url, **kwargs) # so that the value will appear in locals in test output resp_location = resp.headers.get("location") if follow_redirects: assert ( resp.status_code == final_status_code ), f"got {resp.status_code}, expected {final_status_code}" else: assert ( resp.status_code == status_code ), f"got {resp.status_code}, expected {status_code}" if location and not follow_redirects: if query: # all query values must be lists for k, v in query.items(): if isinstance(v, str): query[k] = [v] # parse the QS from resp location header and compare to query arg # since order doesn't matter. resp_parsed = urlparse(resp_location) assert query == parse_qs(resp_parsed.query) # strip off query for further comparison resp_location = resp_location.split("?")[0] assert location == unquote( resp_location ), f"got {unquote(resp_location)}, expected {location}" if resp_headers and not follow_redirects: def convert_to_set(header): return frozenset(d.strip() for d in header.lower().split(",")) for name, value in resp_headers.items(): assert name in resp.headers assert convert_to_set(resp.headers[name]) == convert_to_set(value) # https://github.com/mozilla/bedrock/blob/master/tests/redirects/base.py def METHOD_NAME(urls_list): """Take a list of dicts which may itself contain some lists of dicts, and return a generator that will return just the dicts in sequence. Example: list(flatten([{'dude': 'jeff'}, [{'walter': 'walter'}, {'donny': 'dead'}]])) > [{'dude': 'jeff'}, {'walter': 'walter'}, {'donny': 'dead'}] """ for url in urls_list: if isinstance(url, dict): yield url else: yield from url
3,317
test get all form definitions grouped by
import uuid from django.test import TestCase from corehq.apps.app_manager.tests.app_factory import AppFactory from corehq.apps.reports.analytics.couchaccessors import ( SimpleFormInfo, get_all_form_definitions_grouped_by_app_and_xmlns, get_all_form_details, get_form_details_for_app, get_form_details_for_app_and_module, get_form_details_for_app_and_xmlns, get_form_details_for_xmlns, update_reports_analytics_indexes, ) class SetupSimpleAppMixin(object): @classmethod def class_setup(cls): cls.domain = uuid.uuid4().hex cls.f1_xmlns = 'xmlns1' cls.f2_xmlns = 'xmlns2' app_factory = AppFactory(domain=cls.domain) module1, form1 = app_factory.new_basic_module('m1', '_casetype') module2, form2 = app_factory.new_basic_module('m2', '_casetype2') form1.xmlns = cls.f1_xmlns form2.xmlns = cls.f2_xmlns app_factory.app.save() cls.app = app_factory.app deleted_app_factory = AppFactory(domain=cls.domain) deleted_module1, deleted_form1 = deleted_app_factory.new_basic_module('del-m1', '_casetype3') cls.deleted_xmlns = 'xmlns3' deleted_form1.xmlns = cls.deleted_xmlns deleted_app_factory.app.doc_type = 'Application-Deleted' # make sure the ID comes after the primary app deleted_app_factory.app._id = '{}z'.format(cls.app.id) deleted_app_factory.app.save() cls.deleted_app = deleted_app_factory.app cls.xmlnses = [cls.f1_xmlns, cls.f2_xmlns, cls.deleted_xmlns] update_reports_analytics_indexes() def _assert_form_details_match(self, index, details): expected_app = self.app if index < 2 else self.deleted_app self.assertEqual(expected_app._id, details.app.id) self.assertEqual(index % 2, details.module.id) self.assertEqual(0, details.form.id) self.assertEqual(self.xmlnses[index], details.xmlns) self.assertFalse(details.is_user_registration) class ReportAppAnalyticsTest(SetupSimpleAppMixin, TestCase): @classmethod def setUpClass(cls): super(ReportAppAnalyticsTest, cls).setUpClass() cls.class_setup() def METHOD_NAME(self): self.assertEqual([], get_all_form_definitions_grouped_by_app_and_xmlns('missing')) def test_get_all_form_definitions_grouped_by_app_and_xmlns(self): self.assertEqual( [SimpleFormInfo(self.app._id, self.f1_xmlns), SimpleFormInfo(self.app._id, self.f2_xmlns), SimpleFormInfo(self.deleted_app._id, self.deleted_xmlns)], get_all_form_definitions_grouped_by_app_and_xmlns(self.domain) ) def test_get_all_form_details_no_data(self): self.assertEqual([], get_all_form_details('missing')) def test_get_all_form_details(self): app_structures = get_all_form_details(self.domain) self.assertEqual(3, len(app_structures)) for i, details in enumerate(app_structures): self._assert_form_details_match(i, details) def test_get_all_form_details_active(self): details = get_all_form_details(self.domain, deleted=False) self.assertEqual(2, len(details)) for i, detail in enumerate(details): self._assert_form_details_match(i, detail) def test_get_all_form_details_deleted(self): details = get_all_form_details(self.domain, deleted=True) self.assertEqual(1, len(details)) self._assert_form_details_match(2, details[0]) def test_get_form_details_for_xmlns_no_data(self): self.assertEqual([], get_form_details_for_xmlns('missing', 'missing')) self.assertEqual([], get_form_details_for_xmlns(self.domain, 'missing')) self.assertEqual([], get_form_details_for_xmlns('missing', self.f1_xmlns)) def test_get_form_details_for_xmlns(self): [details_1] = get_form_details_for_xmlns(self.domain, self.f1_xmlns) [details_2] = get_form_details_for_xmlns(self.domain, self.f2_xmlns) for i, details in enumerate([details_1, details_2]): self._assert_form_details_match(i, details) def test_get_form_details_for_app_no_data(self): self.assertEqual([], get_form_details_for_app('missing', 'missing')) self.assertEqual([], get_form_details_for_app('missing', self.app.id)) self.assertEqual([], get_form_details_for_app(self.domain, 'missing')) def test_get_form_details_for_app(self): details = get_form_details_for_app(self.domain, self.app.id) for i, detail in enumerate(details): self._assert_form_details_match(i, detail) def test_get_form_details_for_app_and_module_no_data(self): self.assertEqual([], get_form_details_for_app_and_module('missing', self.app.id, 0)) self.assertEqual([], get_form_details_for_app_and_module(self.domain, 'missing', 0)) self.assertEqual([], get_form_details_for_app_and_module(self.domain, self.app.id, 3)) def test_get_form_details_for_app_and_module(self): for i in range(2): [details] = get_form_details_for_app_and_module(self.domain, self.app.id, i) self._assert_form_details_match(i, details) def test_get_form_details_for_app_and_xmlns_no_data(self): self.assertEqual([], get_form_details_for_app_and_xmlns('missing', self.app.id, self.f1_xmlns)) self.assertEqual([], get_form_details_for_app_and_xmlns(self.domain, 'missing', self.f1_xmlns)) self.assertEqual([], get_form_details_for_app_and_xmlns(self.domain, self.app.id, 'missing')) self.assertEqual( [], get_form_details_for_app_and_xmlns(self.domain, self.app.id, self.f1_xmlns, deleted=True) ) def test_get_form_details_for_app_and_xmlns(self): for i in range(2): [details] = get_form_details_for_app_and_xmlns(self.domain, self.app.id, self.xmlnses[i]) self._assert_form_details_match(i, details)
3,318
mock time
"""retry tests.""" import asyncio import dataclasses import datetime import sys from typing import Iterator from unittest import mock import pytest from wandb.sdk.lib import retry if sys.version_info >= (3, 10): asyncio_run = asyncio.run else: def asyncio_run(coro): return asyncio.new_event_loop().run_until_complete(coro) @dataclasses.dataclass class MockTime: now: datetime.datetime sleep: mock.Mock sleep_async: mock.Mock @pytest.fixture(autouse=True) def METHOD_NAME() -> Iterator[MockTime]: """Mock out the now()/sleep() funcs used by the retry logic.""" now = datetime.datetime.now() def _sleep(seconds): nonlocal now now += datetime.timedelta(seconds=seconds) async def _sleep_async(seconds): nonlocal now now += datetime.timedelta(seconds=seconds) await asyncio.sleep(1e-9) # let the event loop shuffle stuff around with mock.patch( "wandb.sdk.lib.retry.NOW_FN", wraps=lambda: now, ) as mock_now, mock.patch( "wandb.sdk.lib.retry.SLEEP_FN", side_effect=_sleep ) as mock_sleep, mock.patch( "wandb.sdk.lib.retry.SLEEP_ASYNC_FN", side_effect=_sleep_async ) as mock_sleep_async: yield MockTime(now=mock_now, sleep=mock_sleep, sleep_async=mock_sleep_async) def test_retry_respects_num_retries(): func = mock.Mock() func.side_effect = ValueError num_retries = 7 retrier = retry.Retry( func, num_retries=num_retries, retryable_exceptions=(ValueError,), ) with pytest.raises(ValueError): retrier() assert func.call_count == num_retries + 1 def test_retry_call_num_retries_overrides_default_num_retries(): func = mock.Mock() func.side_effect = ValueError retrier = retry.Retry( func, retryable_exceptions=(ValueError,), ) num_retries = 4 with pytest.raises(ValueError): retrier(num_retries=num_retries) assert func.call_count == num_retries + 1 def test_retry_respects_num_retries_across_multiple_calls(): func = mock.Mock() func.side_effect = ValueError num_retries = 7 retrier = retry.Retry( func, num_retries=num_retries, retryable_exceptions=(ValueError,), ) with pytest.raises(ValueError): retrier() with pytest.raises(ValueError): retrier() assert func.call_count == 2 * (num_retries + 1) def test_retry_respects_retryable_exceptions(): func = mock.Mock() func.side_effect = ValueError retrier = retry.Retry( func, retryable_exceptions=(ValueError,), num_retries=3, ) with pytest.raises(ValueError): retrier() assert func.call_count > 1 func.reset_mock() func.side_effect = IndexError retrier = retry.Retry( func, retryable_exceptions=(ValueError,), ) with pytest.raises(IndexError): retrier() assert func.call_count == 1 def test_retry_respects_secondary_timeout(METHOD_NAME: MockTime): func = mock.Mock() func.side_effect = ValueError t0 = METHOD_NAME.now() def check_retry_timeout(e): if isinstance(e, ValueError): return datetime.timedelta(minutes=10) retry_timedelta = datetime.timedelta(hours=7) retrier = retry.Retry( func, retryable_exceptions=(ValueError,), check_retry_fn=check_retry_timeout, retry_timedelta=retry_timedelta, num_retries=10000, ) with pytest.raises(ValueError): retrier() # add some slop for other timeout calls, should be about 10 minutes of retries assert 10 <= (METHOD_NAME.now() - t0).total_seconds() / 60 < 20 class MyError(Exception): pass SECOND = datetime.timedelta(seconds=1) class TestFilteredBackoff: def test_reraises_exc_failing_predicate(self): wrapped = mock.Mock(spec=retry.Backoff) filtered = retry.FilteredBackoff( filter=lambda e: False, wrapped=wrapped, ) with pytest.raises(MyError): filtered.next_sleep_or_reraise(MyError("don't retry me")) wrapped.next_sleep_or_reraise.assert_not_called() def test_delegates_exc_passing_predicate(self): retriable_exc = MyError("retry me") wrapped = mock.Mock( spec=retry.Backoff, next_sleep_or_reraise=mock.Mock(return_value=123 * SECOND), ) filtered = retry.FilteredBackoff( filter=lambda e: e == retriable_exc, wrapped=wrapped, ) assert filtered.next_sleep_or_reraise(retriable_exc) == 123 * SECOND wrapped.next_sleep_or_reraise.assert_called_once_with(retriable_exc) class TestExponentialBackoff: def test_respects_max_retries(self): backoff = retry.ExponentialBackoff( initial_sleep=SECOND, max_sleep=SECOND, max_retries=3 ) for _ in range(3): backoff.next_sleep_or_reraise(MyError()) with pytest.raises(MyError): backoff.next_sleep_or_reraise(MyError()) def test_respects_timeout(self, METHOD_NAME: MockTime): t0 = METHOD_NAME.now() dt = 300 * SECOND backoff = retry.ExponentialBackoff( initial_sleep=SECOND, max_sleep=10 * dt, timeout_at=t0 + dt ) with pytest.raises(MyError): for _ in range(9999): METHOD_NAME.sleep( backoff.next_sleep_or_reraise(MyError()).total_seconds() ) assert t0 + dt <= METHOD_NAME.now() <= t0 + 2 * dt def test_respects_max_sleep_if_smaller_than_initial_sleep( self, METHOD_NAME: MockTime ): max_sleep = 10 * SECOND backoff = retry.ExponentialBackoff( initial_sleep=2 * max_sleep, max_sleep=max_sleep ) assert backoff.next_sleep_or_reraise(MyError()) == max_sleep class TestRetryAsync: def test_follows_backoff_schedule(self, METHOD_NAME: MockTime): fn = mock.Mock(side_effect=MyError("oh no")) with pytest.raises(MyError): asyncio_run( retry.retry_async( mock.Mock( spec=retry.Backoff, next_sleep_or_reraise=mock.Mock( side_effect=[ 1 * SECOND, 2 * SECOND, MyError(), ] ), ), fn, "pos1", "pos2", kw1="kw1", kw2="kw2", ) ) METHOD_NAME.sleep_async.assert_has_calls( [ mock.call(1.0), mock.call(2.0), ] ) fn.assert_has_calls( [ mock.call("pos1", "pos2", kw1="kw1", kw2="kw2"), mock.call("pos1", "pos2", kw1="kw1", kw2="kw2"), mock.call("pos1", "pos2", kw1="kw1", kw2="kw2"), ] ) def test_calls_on_exc(self, METHOD_NAME: MockTime): backoff = mock.Mock( spec=retry.Backoff, next_sleep_or_reraise=mock.Mock(return_value=1 * SECOND), ) excs = [MyError("one"), MyError("two")] fn_sync = mock.Mock( side_effect=[ *excs, lambda: None, ], ) async def fn(): return fn_sync() on_exc = mock.Mock() asyncio_run(retry.retry_async(backoff, fn, on_exc=on_exc)) on_exc.assert_has_calls( [ mock.call(excs[0]), mock.call(excs[1]), ] )
3,319
set service properties
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.profiles import get_sdk, ResourceType from ._client_factory import generic_data_service_factory class ServiceProperties: def __init__(self, cli_ctx, name, service, account_name=None, account_key=None, connection_string=None, sas_token=None): self.cli_ctx = cli_ctx self.name = name self.client = generic_data_service_factory(cli_ctx, service, name=account_name, key=account_key, connection_string=connection_string, sas_token=sas_token) if not self.client: from knack.util import CLIError raise CLIError('Failed to initialize data client.') def get_service_properties(self): return getattr(self.client, 'get_{}_service_properties'.format(self.name)) def METHOD_NAME(self): return getattr(self.client, 'set_{}_service_properties'.format(self.name)) def get_logging(self, timeout=None): return self.get_service_properties()(timeout=timeout).__dict__['logging'] def set_logging(self, read, write, delete, retention, timeout=None, version=None): t_logging, t_retention_policy = get_sdk(self.cli_ctx, ResourceType.DATA_STORAGE, 'Logging', 'RetentionPolicy', mod='common.models') retention_policy = t_retention_policy(enabled=retention != 0, days=retention) logging = t_logging(delete, read, write, retention_policy) if version: logging.version = str(version) return self.METHOD_NAME()(logging=logging, timeout=timeout) def disable_logging(self, timeout=None): return self.set_logging(read=False, write=False, delete=False, retention=0, timeout=timeout) def get_cors(self, timeout=None): return self.get_service_properties()(timeout=timeout).__dict__['cors'] def add_cors(self, origins, methods, max_age, exposed_headers=None, allowed_headers=None, timeout=None): from azure.common import AzureHttpError t_cors_rule = get_sdk(self.cli_ctx, ResourceType.DATA_STORAGE, 'CorsRule', mod='common.models') cors = self.get_cors(timeout) new_rule = t_cors_rule(origins, methods, max_age, exposed_headers, allowed_headers) cors.append(new_rule) try: return self.METHOD_NAME()(cors=cors, timeout=timeout) except AzureHttpError as ex: # The service issue: https://msazure.visualstudio.com/DefaultCollection/One/_workitems/edit/1247479. # This workaround can be removed once the service is updated. if ex.status_code == 400 and len(cors) > 5: from knack.util import CLIError raise CLIError('Failed to add CORS rules. No more than 5 CORS rule can be added.') raise ex def clear_cors(self, timeout=None): return self.METHOD_NAME()(cors=[], timeout=timeout) def get_metrics(self, interval, timeout=None): props = self.get_service_properties()(timeout=timeout) metrics = {} if interval == 'both': metrics['hour'] = props.__dict__['hour_metrics'] metrics['minute'] = props.__dict__['minute_metrics'] else: metrics[interval] = props.__dict__['{}_metrics'.format(interval)] return metrics def set_metrics(self, retention, hour, minute, api=None, timeout=None): t_metrics, t_retention_policy = get_sdk(self.cli_ctx, ResourceType.DATA_STORAGE, 'Metrics', 'RetentionPolicy', mod='common.models') retention_policy = t_retention_policy(enabled=retention != 0, days=retention) hour_metrics = t_metrics(hour, api, retention_policy) if hour is not None else None minute_metrics = t_metrics(minute, api, retention_policy) if minute is not None else None return self.METHOD_NAME()( hour_metrics=hour_metrics, minute_metrics=minute_metrics, timeout=timeout)
3,320
test flag overrides env var
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's break-on-failure mode. A user can ask Google Test to seg-fault when an assertion fails, using either the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag. This script tests such functionality by invoking gtest_break_on_failure_unittest_ (a program written with Google Test) with different environments and command line flags. """ __author__ = '[email protected] (Zhanyong Wan)' import gtest_test_utils import os import sys # Constants. IS_WINDOWS = os.name == 'nt' # The environment variable for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_ENV_VAR = 'GTEST_BREAK_ON_FAILURE' # The command line flag for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_FLAG = 'gtest_break_on_failure' # The environment variable for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE_ENV_VAR = 'GTEST_THROW_ON_FAILURE' # The environment variable for enabling/disabling the catch-exceptions mode. CATCH_EXCEPTIONS_ENV_VAR = 'GTEST_CATCH_EXCEPTIONS' # Path to the gtest_break_on_failure_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'gtest_break_on_failure_unittest_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) def Run(command): """Runs a command; returns 1 if it was killed by a signal, or 0 otherwise.""" p = gtest_test_utils.Subprocess(command, env=environ) if p.terminated_by_signal: return 1 else: return 0 # The tests. class GTestBreakOnFailureUnitTest(gtest_test_utils.TestCase): """Tests using the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag to turn assertion failures into segmentation faults. """ def RunAndVerify(self, env_var_value, flag_value, expect_seg_fault): """Runs gtest_break_on_failure_unittest_ and verifies that it does (or does not) have a seg-fault. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. expect_seg_fault: 1 if the program is expected to generate a seg-fault; 0 otherwise. """ SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % BREAK_ON_FAILURE_FLAG else: flag = '--%s' % BREAK_ON_FAILURE_FLAG command = [EXE_PATH] if flag: command.append(flag) if expect_seg_fault: should_or_not = 'should' else: should_or_not = 'should not' has_seg_fault = Run(command) SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a seg-fault.' % (BREAK_ON_FAILURE_ENV_VAR, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(has_seg_fault == expect_seg_fault, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, expect_seg_fault=0) def testEnvVar(self): """Tests using the GTEST_BREAK_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value=None, expect_seg_fault=1) def testFlag(self): """Tests using the --gtest_break_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) def METHOD_NAME(self): """Tests that the flag overrides the environment variable.""" self.RunAndVerify(env_var_value='0', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='0', flag_value='1', expect_seg_fault=1) self.RunAndVerify(env_var_value='1', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) def testBreakOnFailureOverridesThrowOnFailure(self): """Tests that gtest_break_on_failure overrides gtest_throw_on_failure.""" SetEnvVar(THROW_ON_FAILURE_ENV_VAR, '1') try: self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) finally: SetEnvVar(THROW_ON_FAILURE_ENV_VAR, None) if IS_WINDOWS: def testCatchExceptionsDoesNotInterfere(self): """Tests that gtest_catch_exceptions doesn't interfere.""" SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, '1') try: self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) finally: SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, None) if __name__ == '__main__': gtest_test_utils.Main()
3,321
url set anchor
# ContentDB # Copyright (C) 2018-21 rubenwardy # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import datetime import typing from urllib.parse import urljoin, urlparse, urlunparse import user_agents from flask import request, abort, url_for from flask_babel import LazyString, lazy_gettext from werkzeug.datastructures import MultiDict from app import app def is_safe_url(target): ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, target)) return test_url.scheme in ('http', 'https') and \ ref_url.netloc == test_url.netloc # These are given to Jinja in template_filters.py def abs_url_for(endpoint: str, **kwargs): scheme = "https" if app.config["BASE_URL"][:5] == "https" else "http" return url_for(endpoint, _external=True, _scheme=scheme, **kwargs) def abs_url(path): return urljoin(app.config["BASE_URL"], path) def abs_url_samesite(path): base = urlparse(app.config["BASE_URL"]) return urlunparse(base._replace(path=path)) def url_current(abs=False): if request.args is None or request.view_args is None: return None args = MultiDict(request.args) dargs = dict(args.lists()) dargs.update(request.view_args) if abs: return abs_url_for(request.endpoint, **dargs) else: return url_for(request.endpoint, **dargs) def url_clear_query(): if request.endpoint is None: return None dargs = dict() if request.view_args: dargs.update(request.view_args) return url_for(request.endpoint, **dargs) def METHOD_NAME(anchor): args = MultiDict(request.args) dargs = dict(args.lists()) dargs.update(request.view_args) return url_for(request.endpoint, **dargs) + "#" + anchor def url_set_query(**kwargs): if request.endpoint is None: return None args = MultiDict(request.args) for key, value in kwargs.items(): if key == "_add": for key2, value_to_add in value.items(): values = set(args.getlist(key2)) values.add(value_to_add) args.setlist(key2, list(values)) elif key == "_remove": for key2, value_to_remove in value.items(): values = set(args.getlist(key2)) values.discard(value_to_remove) args.setlist(key2, list(values)) else: args.setlist(key, [ value ]) dargs = dict(args.lists()) if request.view_args: dargs.update(request.view_args) return url_for(request.endpoint, **dargs) def get_int_or_abort(v, default=None): if v is None: return default try: return int(v or default) except ValueError: abort(400) def is_user_bot(): user_agent = request.headers.get('User-Agent') if user_agent is None: return True user_agent = user_agents.parse(user_agent) return user_agent.is_bot def get_request_date(key: str) -> typing.Optional[datetime.date]: val = request.args.get(key) if val is None: return None try: return datetime.datetime.strptime(val, "%Y-%m-%d").date() except ValueError: abort(400) def get_daterange_options() -> typing.List[typing.Tuple[LazyString, str]]: now = datetime.datetime.utcnow().date() days7 = (datetime.datetime.utcnow() - datetime.timedelta(days=7)).date() days30 = (datetime.datetime.utcnow() - datetime.timedelta(days=30)).date() days90 = (datetime.datetime.utcnow() - datetime.timedelta(days=90)).date() year_start = datetime.date(now.year, 1, 1) last_year_start = datetime.date(now.year - 1, 1, 1) last_year_end = datetime.date(now.year - 1, 12, 31) return [ (lazy_gettext("All time"), url_clear_query()), (lazy_gettext("Last 7 days"), url_set_query(start=days7.isoformat(), end=now.isoformat())), (lazy_gettext("Last 30 days"), url_set_query(start=days30.isoformat(), end=now.isoformat())), (lazy_gettext("Last 90 days"), url_set_query(start=days90.isoformat(), end=now.isoformat())), (lazy_gettext("Year to date"), url_set_query(start=year_start, end=now.isoformat())), (lazy_gettext("Last year"), url_set_query(start=last_year_start, end=last_year_end)), ]
3,322
add dict
import os import shutil from django.core.files import File from django.utils import timezone from django.utils.crypto import get_random_string from ...core.utils import slugify FILENAME_MAX_LEN = 50 class DataArchive: def __init__(self, user, working_dir_path): self.user = user self.working_dir_path = working_dir_path self.tmp_dir_path = None self.data_dir_path = None self.file_path = None self.file = None def __enter__(self): self.tmp_dir_path = self.create_tmp_dir() self.data_dir_path = self.create_data_dir() return self def __exit__(self, *args): self.delete_file() self.delete_tmp_dir() def create_tmp_dir(self): tmp_dir_name = get_tmp_filename(self.user) tmp_dir_path = os.path.join(self.working_dir_path, tmp_dir_name) os.mkdir(tmp_dir_path) return tmp_dir_path def create_data_dir(self): data_dir_name = get_tmp_filename(self.user) data_dir_path = os.path.join(self.tmp_dir_path, data_dir_name) os.mkdir(data_dir_path) return data_dir_path def delete_tmp_dir(self): if self.tmp_dir_path: shutil.rmtree(self.tmp_dir_path) self.tmp_dir_path = None self.data_dir_path = None def get_file(self): file_name = get_tmp_filename(self.user) file_path = os.path.join(self.working_dir_path, file_name) self.file_path = shutil.make_archive(file_path, "zip", self.tmp_dir_path) self.file = open(self.file_path, "rb") return File(self.file) def delete_file(self): if self.file: self.file.close() self.file = None if self.file_path: os.remove(self.file_path) self.file_path = None def add_text(self, name, value, date=None, directory=None): clean_filename = slugify(str(name)) file_dir_path = self.make_final_path(date=date, directory=directory) file_path = os.path.join(file_dir_path, "%s.txt" % clean_filename) with open(file_path, "w") as fp: fp.write(str(value)) return file_path def METHOD_NAME(self, name, value, date=None, directory=None): text_lines = [] for key, item in value.items(): text_lines.append("%s: %s" % (key, item)) text = "\n".join(text_lines) return self.add_text(name, text, date=date, directory=directory) def add_model_file(self, model_file, prefix=None, date=None, directory=None): if not model_file: return None target_dir_path = self.make_final_path(date=date, directory=directory) filename = os.path.basename(model_file.name) if prefix: prefixed_filename = "%s-%s" % (prefix, filename) clean_filename = trim_long_filename(prefixed_filename) target_path = os.path.join(target_dir_path, clean_filename) else: clean_filename = trim_long_filename(filename) target_path = os.path.join(target_dir_path, clean_filename) with open(target_path, "wb") as fp: for chunk in model_file.chunks(): fp.write(chunk) return target_path def make_final_path(self, date=None, directory=None): # fixme: os.path.isdir test can be avoided in py37k if date and directory: raise ValueError("date and directory arguments are mutually exclusive") data_dir_path = self.data_dir_path if date: final_path = data_dir_path path_items = [date.strftime("%Y"), date.strftime("%m"), date.strftime("%d")] for path_item in path_items: final_path = os.path.join(final_path, str(path_item)) if not os.path.isdir(final_path): os.mkdir(final_path) return final_path if directory: final_path = os.path.join(data_dir_path, str(directory)) if not os.path.isdir(final_path): os.mkdir(final_path) return final_path return data_dir_path def get_tmp_filename(user): filename_bits = [ user.slug, timezone.now().strftime("%Y%m%d-%H%M%S"), get_random_string(6), ] return "-".join(filename_bits) def trim_long_filename(filename): # fixme: consider moving this utility to better place? # eg. to trim too long attachment filenames on upload if len(filename) < FILENAME_MAX_LEN: return filename name, extension = os.path.splitext(filename) name_len = FILENAME_MAX_LEN - len(extension) return "%s%s" % (name[:name_len], extension)
3,323
setup
# monet_theming_group.py # # Change the look of Adwaita, with ease # Copyright (C) 2023, Gradience Team # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from enum import Enum from gi.repository import Gtk, Adw from gradience.backend.theming.monet import Monet from gradience.backend.constants import rootdir from gradience.frontend.widgets.palette_shades import GradiencePaletteShades from gradience.backend.logger import Logger logging = Logger() @Gtk.Template(resource_path=f"{rootdir}/ui/monet_theming_group.ui") class GradienceMonetThemingGroup(Adw.PreferencesGroup): __gtype_name__ = "GradienceMonetThemingGroup" monet_theming_expander = Gtk.Template.Child("monet-theming-expander") monet_file_chooser = Gtk.Template.Child("monet-file-chooser") monet_file_chooser_button = Gtk.Template.Child("file-chooser-button") def __init__(self, parent, **kwargs): super().__init__(**kwargs) self.parent = parent self.app = self.parent.get_application() self.monet_image_file = None self.setup_signals() self.METHOD_NAME() def setup_signals(self): self.monet_file_chooser.connect( "response", self.on_monet_file_chooser_response) def METHOD_NAME(self): self.monet_file_chooser.set_transient_for(self.parent) self.setup_palette_shades() #self.setup_tone_row() self.setup_theme_row() def setup_palette_shades(self): self.monet_palette_shades = GradiencePaletteShades( "monet", _("Monet Palette"), 6 ) self.app.pref_palette_shades["monet"] = self.monet_palette_shades self.monet_theming_expander.add_row(self.monet_palette_shades) # TODO: Rethink how it should be implemented '''def setup_tone_row(self): self.tone_row = Adw.ComboRow() self.tone_row.set_title(_("Tone")) tone_store = Gtk.StringList() tone_store_values = [] for i in range(20, 80, 5): tone_store_values.append(str(i)) for v in tone_store_values: tone_store.append(v) self.tone_row.set_model(tone_store) self.monet_theming_expander.add_row(self.tone_row)''' def setup_theme_row(self): self.theme_row = Adw.ComboRow() self.theme_row.set_title(_("Theme")) theme_store = Gtk.StringList() theme_store.append(_("Auto")) theme_store.append(_("Light")) theme_store.append(_("Dark")) self.theme_row.set_model(theme_store) self.monet_theming_expander.add_row(self.theme_row) @Gtk.Template.Callback() def on_apply_button_clicked(self, *_args): if self.monet_image_file: try: monet_theme = Monet().generate_palette_from_image(self.monet_image_file) #tone = self.tone_row.get_selected_item().get_string() # TODO: Remove tone requirement from Monet Engine variant_pos = self.theme_row.props.selected class variantEnum(Enum): AUTO = 0 LIGHT = 1 DARK = 2 def __get_variant_string(): if variant_pos == variantEnum.AUTO.value: return "auto" elif variant_pos == variantEnum.DARK.value: return "dark" elif variant_pos == variantEnum.LIGHT.value: return "light" variant_str = __get_variant_string() self.app.custom_css_group.reset_buffer() self.app.update_theme_from_monet(monet_theme, variant_str) except (OSError, AttributeError, ValueError) as e: logging.error("Failed to generate Monet palette", exc=e) self.parent.toast_overlay.add_toast( Adw.Toast(title=_("Failed to generate Monet palette")) ) else: logging.info("Monet palette generated successfully") self.parent.toast_overlay.add_toast( Adw.Toast(title=_("Palette generated")) ) else: logging.error("Input image for Monet generation not selected") self.parent.toast_overlay.add_toast( Adw.Toast(title=_("Select an image first")) ) @Gtk.Template.Callback() def on_file_chooser_button_clicked(self, *_args): self.monet_file_chooser.show() def on_monet_file_chooser_response(self, widget, response): if response == Gtk.ResponseType.ACCEPT: self.monet_image_file = self.monet_file_chooser.get_file() image_basename = self.monet_image_file.get_basename() self.monet_file_chooser_button.set_label(image_basename) self.monet_file_chooser_button.set_tooltip_text(image_basename) self.monet_file_chooser.hide() if response == Gtk.ResponseType.ACCEPT: self.monet_image_file = self.monet_image_file.get_path() self.on_apply_button_clicked()
3,324
assert sigmoid classification
#!/usr/bin/env python3 import unittest import torch from captum._utils.typing import BaselineType, Tensor from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._core.noise_tunnel import NoiseTunnel from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.classification_models import SigmoidModel, SoftmaxModel from torch.nn import Module class Test(BaseTest): def test_sigmoid_classification_vanilla(self) -> None: self.METHOD_NAME("vanilla", "riemann_right") def test_sigmoid_classification_smoothgrad(self) -> None: self.METHOD_NAME("smoothgrad", "riemann_left") def test_sigmoid_classification_smoothgrad_sq(self) -> None: self.METHOD_NAME("smoothgrad_sq", "riemann_middle") def test_sigmoid_classification_vargrad(self) -> None: self.METHOD_NAME("vargrad", "riemann_trapezoid") def test_softmax_classification_vanilla(self) -> None: self._assert_softmax_classification("vanilla", "gausslegendre") def test_softmax_classification_smoothgrad(self) -> None: self._assert_softmax_classification("smoothgrad", "riemann_right") def test_softmax_classification_smoothgrad_sq(self) -> None: self._assert_softmax_classification("smoothgrad_sq", "riemann_left") def test_softmax_classification_vargrad(self) -> None: self._assert_softmax_classification("vargrad", "riemann_middle") def test_softmax_classification_vanilla_batch(self) -> None: self._assert_softmax_classification_batch("vanilla", "riemann_trapezoid") def test_softmax_classification_smoothgrad_batch(self) -> None: self._assert_softmax_classification_batch("smoothgrad", "gausslegendre") def test_softmax_classification_smoothgrad_sq_batch(self) -> None: self._assert_softmax_classification_batch("smoothgrad_sq", "riemann_right") def test_softmax_classification_vargrad_batch(self) -> None: self._assert_softmax_classification_batch("vargrad", "riemann_left") def METHOD_NAME( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 20 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) target = torch.tensor(0) # TODO add test cases for multiple different layers model = SigmoidModel(num_in, 5, 1) self._validate_completness(model, input, target, type, approximation_method) def _assert_softmax_classification( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 40 input = torch.arange(0.0, num_in * 1.0, requires_grad=True).unsqueeze(0) target = torch.tensor(5) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) self._validate_completness(model, input, target, type, approximation_method) def _assert_softmax_classification_batch( self, type: str = "vanilla", approximation_method: str = "gausslegendre" ) -> None: num_in = 40 input = torch.arange(0.0, num_in * 3.0, requires_grad=True).reshape(3, num_in) target = torch.tensor([5, 5, 2]) baseline = torch.zeros(1, num_in) # 10-class classification model model = SoftmaxModel(num_in, 20, 10) self._validate_completness( model, input, target, type, approximation_method, baseline ) def _validate_completness( self, model: Module, input: Tensor, target: Tensor, type: str = "vanilla", approximation_method: str = "gausslegendre", baseline: BaselineType = None, ) -> None: ig = IntegratedGradients(model.forward) model.zero_grad() if type == "vanilla": attributions, delta = ig.attribute( input, baselines=baseline, target=target, method=approximation_method, n_steps=200, return_convergence_delta=True, ) delta_expected = ig.compute_convergence_delta( attributions, baseline, input, target ) assertTensorAlmostEqual(self, delta_expected, delta) delta_condition = (delta.abs() < 0.005).all() self.assertTrue( delta_condition, "The sum of attribution values {} is not " "nearly equal to the difference between the endpoint for " "some samples".format(delta), ) self.assertEqual([input.shape[0]], list(delta.shape)) else: nt = NoiseTunnel(ig) n_samples = 10 attributions, delta = nt.attribute( input, baselines=baseline, nt_type=type, nt_samples=n_samples, stdevs=0.0002, n_steps=100, target=target, method=approximation_method, return_convergence_delta=True, ) self.assertEqual([input.shape[0] * n_samples], list(delta.shape)) self.assertTrue((delta.abs() < 0.05).all()) self.assertEqual(attributions.shape, input.shape) if __name__ == "__main__": unittest.main()
3,325
add minecraft service servicer to server
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 import minecraft_pb2 as minecraft__pb2 class MinecraftServiceStub(object): """* The main service. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.spawnBlocks = channel.unary_unary( '/dk.itu.real.ooe.MinecraftService/spawnBlocks', request_serializer=minecraft__pb2.Blocks.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.readCube = channel.unary_unary( '/dk.itu.real.ooe.MinecraftService/readCube', request_serializer=minecraft__pb2.Cube.SerializeToString, response_deserializer=minecraft__pb2.Blocks.FromString, ) self.fillCube = channel.unary_unary( '/dk.itu.real.ooe.MinecraftService/fillCube', request_serializer=minecraft__pb2.FillCubeRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) class MinecraftServiceServicer(object): """* The main service. """ def spawnBlocks(self, request, context): """* Spawn multiple blocks. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def readCube(self, request, context): """* Return all blocks in a cube """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def fillCube(self, request, context): """* Fill a cube with a block type """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def METHOD_NAME(servicer, server): rpc_method_handlers = { 'spawnBlocks': grpc.unary_unary_rpc_method_handler( servicer.spawnBlocks, request_deserializer=minecraft__pb2.Blocks.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), 'readCube': grpc.unary_unary_rpc_method_handler( servicer.readCube, request_deserializer=minecraft__pb2.Cube.FromString, response_serializer=minecraft__pb2.Blocks.SerializeToString, ), 'fillCube': grpc.unary_unary_rpc_method_handler( servicer.fillCube, request_deserializer=minecraft__pb2.FillCubeRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'dk.itu.real.ooe.MinecraftService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class MinecraftService(object): """* The main service. """ @staticmethod def spawnBlocks(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/dk.itu.real.ooe.MinecraftService/spawnBlocks', minecraft__pb2.Blocks.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def readCube(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/dk.itu.real.ooe.MinecraftService/readCube', minecraft__pb2.Cube.SerializeToString, minecraft__pb2.Blocks.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def fillCube(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/dk.itu.real.ooe.MinecraftService/fillCube', minecraft__pb2.FillCubeRequest.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
3,326
test elementwise merge do not erase
# coding=utf-8 import json from bzt.engine import Configuration from bzt.utils import BetterDict, dehumanize_time, temp_file from tests.unit import BZTestCase, RESOURCES_DIR, BASE_CONFIG, ROOT_LOGGER, EngineEmul class TestConfiguration(BZTestCase): def test_load(self): obj = Configuration() configs = [ BASE_CONFIG, RESOURCES_DIR + "json/jmx.json", RESOURCES_DIR + "json/concurrency.json" ] obj.load(configs) ROOT_LOGGER.debug("config:\n%s", obj) fname = temp_file() obj.dump(fname, Configuration.JSON) with open(fname) as fh: ROOT_LOGGER.debug("JSON:\n%s", fh.read()) fname = temp_file() obj.dump(fname, Configuration.YAML) with open(fname) as fh: ROOT_LOGGER.debug("YAML:\n%s", fh.read()) def test_merge(self): obj = Configuration() configs = [ RESOURCES_DIR + "yaml/test.yml", RESOURCES_DIR + "json/merge1.json", RESOURCES_DIR + "json/merge2.json", ] obj.load(configs) fname = temp_file() obj.dump(fname, Configuration.JSON) with open(fname) as fh: ROOT_LOGGER.debug("JSON:\n%s", fh.read()) jmeter = obj['modules']['jmeter'] classval = jmeter['class'] self.assertEquals("bzt.modules.jmeter.JMeterExecutor", classval) self.assertEquals("value", obj['key']) self.assertEquals(6, len(obj["list-append"])) self.assertEquals(2, len(obj["list-replace"])) self.assertEquals(2, len(obj["list-replace-notexistent"])) self.assertIsInstance(obj["list-complex"][1][0], BetterDict) self.assertIsInstance(obj["list-complex"][1][0], BetterDict) self.assertIsInstance(obj["list-complex"][1][0], BetterDict) self.assertFalse("properties" in jmeter) fname = temp_file() obj.dump(fname, Configuration.JSON) checker = Configuration() checker.load([fname]) token = checker["list-complex"][1][0]['token'] self.assertNotEquals('test', token) token_orig = obj["list-complex"][1][0]['token'] self.assertEquals('test', token_orig) def test_unicode(self): obj = Configuration() expected = "Юникод" obj.merge({ "ustr": expected, }) ustr = obj.get("ustr", "nope") self.assertEqual(ustr, expected) def test_masq_sensitive(self): obj = Configuration() obj.merge({ "token": "my-precious", "my_password": "qweasdzxc", "secret": "secret", "secret_story": "story", }) BetterDict.traverse(obj, Configuration.masq_sensitive) self.assertEquals(obj["token"], "*" * 8) self.assertEquals(obj["my_password"], "*" * 8) self.assertEquals(obj["secret"], "*" * 8) self.assertEquals(obj["secret_story"], "story") def test_filtering(self): obj = Configuration() obj.merge({ "drop": "me", "also-drop": {"this": "drop"}, "and-also-drop": ["thelist"], "but-keep": "value", "and-also-keep": { "nested": "value", "while-dropping": "some" }, "filter-subitems": { "keep": "value", "drop": "some" } }) rules = { "but-keep": True, "and-also-keep": {"nested": True}, "!filter-subitems": {"drop": True}, } obj.filter(rules) expected = { "but-keep": "value", "and-also-keep": {"nested": "value"}, "filter-subitems": {"keep": "value"}, } self.assertEquals(expected, obj) def test_tabs(self): obj = Configuration() obj.tab_replacement_spaces = 4 obj.load([RESOURCES_DIR + "yaml/tabs-issue.yml"]) fname = temp_file() obj.dump(fname, Configuration.YAML) self.assertFilesEqual(RESOURCES_DIR + "yaml/tabs-issue-spaces.yml", fname) def test_merge_removal(self): obj = Configuration() obj.merge({ "foo": "bar", }) obj.merge({ "^foo": "baz", }) self.assertNotIn("foo", obj) def test_merge_overwrite(self): obj = Configuration() obj.merge({ "foo": {"bar": "baz"}, }) obj.merge({ "~foo": "baz", }) self.assertEqual(obj["foo"], "baz") def test_elementwise_merge(self): obj = Configuration() obj.merge({ "execution": [{ "executor": "jmeter", "iterations": 10, }], }) obj.merge({ "$execution": [{"iterations": 20}], }) self.assertEqual(obj["execution"][0]["iterations"], 20) def METHOD_NAME(self): obj = Configuration() obj.merge({ "execution": [{ "executor": "jmeter", "iterations": 10, }, { "executor": "selenium", "iterations": 30, }], }) obj.merge({ "$execution": [{"iterations": 20}], }) self.assertEqual(obj["execution"][0]["iterations"], 20) self.assertEqual(obj["execution"][1]["iterations"], 30) def test_elementwise_merge_right_is_bigger(self): obj = Configuration() obj.merge({ "execution": [{ "executor": "jmeter", "iterations": 10, }], }) obj.merge({ "$execution": [{"iterations": 20}, {"iterations": 30}], }) self.assertEqual(obj["execution"][0]["iterations"], 20) self.assertEqual(obj["execution"][1]["iterations"], 30) def test_encode_decode_infinities(self): engine = EngineEmul() obj = Configuration() obj.merge({ "foo": float("inf"), }) cfg = engine.create_artifact("config", ".json") obj.dump(cfg, Configuration.JSON) with open(cfg) as fds: dump = json.loads(fds.read()) self.assertEqual(dump["foo"], "inf") self.assertEqual(dehumanize_time(dump["foo"]), float("inf")) def test_overwrite_execution_locations(self): obj = Configuration() obj.merge({ "execution": [{"locations": {"us-central1-a": 1}}], }) obj.merge({ "$execution": [{"~locations": {"harbor-1": 1}}], }) ROOT_LOGGER.info(obj) self.assertEqual(obj, {"execution": [{"locations": {"harbor-1": 1}}]})
3,327
poplast
from _typeshed import SupportsKeysAndGetItem from binascii import Incomplete from collections.abc import Generator, ItemsView, Iterable, KeysView, ValuesView from typing import NoReturn, TypeVar from typing_extensions import Self, TypeAlias _KT = TypeVar("_KT") _VT = TypeVar("_VT") _T = TypeVar("_T") class OrderedMultiDict(dict[_KT, _VT]): def add(self, k: _KT, v: _VT) -> None: ... def addlist(self, k: _KT, v: Iterable[_VT]) -> None: ... def clear(self) -> None: ... def copy(self) -> Self: ... def counts(self) -> OrderedMultiDict[_KT, _VT]: ... @classmethod def fromkeys(cls, keys: _KT, default: _VT | None = None) -> OrderedMultiDict[_KT, _VT]: ... # type: ignore[override] def get(self, k: _KT, default: _VT | None = None) -> OrderedMultiDict[_KT, _VT]: ... # type: ignore[override] def getlist(self, k: _KT, default: _VT | None = ...) -> list[object]: ... def inverted(self) -> OrderedMultiDict[_KT, _VT]: ... def items(self, multi: bool = False) -> list[tuple[_KT, _VT]]: ... # type: ignore[override] def iteritems(self, multi: bool = False) -> Generator[tuple[_KT, _VT], None, None]: ... def iterkeys(self, multi: bool = False) -> Generator[_KT, None, None]: ... def itervalues(self, multi: bool = False) -> Generator[_VT, None, None]: ... def keys(self, multi: bool = False) -> list[_KT]: ... # type: ignore[override] def pop(self, k: _KT, default: _VT | None = ...) -> _VT: ... # type: ignore[override] def popall(self, k: _KT, default: _VT | None = ...) -> list[_VT]: ... def METHOD_NAME(self, k: _KT | None = ..., default: _VT | None = ...) -> _VT: ... def setdefault(self, k: _KT, default: _VT | None = ...) -> _VT: ... def sorted(self, key: _KT | None = None, reverse: bool = False) -> OrderedMultiDict[_KT, _VT]: ... def sortedvalues(self, key: _KT | None = None, reverse: bool = False) -> OrderedMultiDict[_KT, _VT]: ... def todict(self, multi: bool = False) -> dict[_KT, _VT]: ... def update(self, E: dict[_KT, _VT] | Iterable[object], **F) -> None: ... # type: ignore[override] def update_extend(self, E: dict[_KT, _VT] | Iterable[object], **F) -> None: ... def values(self, multi: bool = False) -> list[_VT]: ... # type: ignore[override] def viewitems(self) -> ItemsView[_KT, _VT]: ... def viewkeys(self) -> KeysView[_KT]: ... def viewvalues(self) -> ValuesView[_VT]: ... OMD: TypeAlias = OrderedMultiDict[_KT, _VT] MultiDict: TypeAlias = OrderedMultiDict[_KT, _VT] class FastIterOrderedMultiDict(OrderedMultiDict[_KT, _VT]): # undocumented def iteritems(self, multi: bool = False) -> Generator[tuple[_KT, _VT], None, None]: ... def iterkeys(self, multi: bool = False) -> Generator[_KT, None, None]: ... class OneToOne(dict[_KT, _VT]): inv: dict[_VT, _KT] def clear(self) -> None: ... def copy(self) -> Self: ... def pop(self, key: _KT, default: _VT | _T = ...) -> _VT | _T: ... def popitem(self) -> tuple[_KT, _VT]: ... def setdefault(self, key: _KT, default: _VT | None = None) -> _VT: ... @classmethod def unique(cls, *a, **kw) -> Self: ... def update(self, dict_or_iterable, **kw) -> None: ... # type: ignore[override] class ManyToMany(dict[_KT, frozenset[_VT]]): data: dict[_KT, set[_VT]] inv: dict[_VT, set[_KT]] # def __contains__(self, key: _KT): ... def __delitem__(self, key: _KT) -> None: ... def __eq__(self, other): ... def __getitem__(self, key: _KT): ... def __init__(self, items: Iterable[Incomplete] | None = None) -> None: ... def __iter__(self): ... def __len__(self): ... def __setitem__(self, key: _KT, vals: Iterable[_VT]) -> None: ... def add(self, key: _KT, val: _VT) -> None: ... def get(self, key: _KT, default: frozenset[_VT] = ...) -> frozenset[_VT]: ... # type: ignore[override] def iteritems(self) -> Generator[tuple[_KT, _VT], None, None]: ... def keys(self): ... def remove(self, key: _KT, val: _VT) -> None: ... def replace(self, key: _KT, newkey: _KT) -> None: ... def update(self, iterable: ManyToMany[_KT, _VT] | SupportsKeysAndGetItem[_KT, _VT] | tuple[_KT, _VT]) -> None: ... # type: ignore[override] def subdict(d: dict[_KT, _VT], keep: Iterable[_KT] | None = None, drop: Iterable[_KT] | None = None) -> dict[_KT, _VT]: ... class FrozenHashError(TypeError): ... # undocumented class FrozenDict(dict[_KT, _VT]): def __copy__(self) -> Self: ... def clear(self, *a, **kw) -> None: ... @classmethod def fromkeys(cls, keys: Iterable[_KT], value: _VT | None = None) -> FrozenDict[_KT, _VT]: ... # type: ignore[override] def pop(self, *a, **kw) -> NoReturn: ... def popitem(self, *a, **kw) -> NoReturn: ... def setdefault(self, *a, **kw) -> NoReturn: ... def updated(self, *a, **kw) -> Self: ...
3,328
log
import abc import colorlog import contextlib import inspect import io import logging import sys import traceback from magma.backend.util import make_relative from magma.common import Stack from magma.config import config, EnvConfig config._register( log_stream=EnvConfig("MAGMA_LOG_STREAM", "stderr"), log_level=EnvConfig("MAGMA_LOG_LEVEL", "INFO"), include_traceback=EnvConfig("MAGMA_INCLUDE_WIRE_TRACEBACK", False, bool), traceback_limit=EnvConfig("MAGMA_ERROR_TRACEBACK_LIMIT", 5, int), ) _staged_logs_stack = Stack() _log_capturer_stack = Stack() def _make_bold(string): return f"\033[1m{string}\033[0m" def _get_source_line(filename, lineno): with open(filename, "r") as f: return f.readlines()[lineno - 1] def _attach_debug_info(msg, debug_info): file = debug_info.filename line = debug_info.lineno line_info = _make_bold(f"{make_relative(file)}:{line}") msg = f"{line_info}: {msg}" try: source = _get_source_line(file, line).rstrip("\n") source = f">> {source}" except FileNotFoundError: source = f"(Could not file file {file})" msg = f"{msg}\n{source}" return msg def _attach_traceback(msg, frame_selector, limit): """ Attaches traceback string to @msg and returns new string. @frame_selector is a function which takes a list of stack frames and selects one. For example, it could select the frame based on an index, or based on the function names. """ frame = frame_selector(inspect.stack()).frame with io.StringIO() as io_: traceback.print_stack(f=frame, limit=limit, file=io_) tb = io_.getvalue() msg = f"{msg}\n{tb}" return msg def _frame_selector(frames): return frames[3] def _get_additional_kwarg(kwargs, key): try: value = kwargs.pop(key) return value except KeyError: return None def get_staged_logs_stack() -> Stack: global _staged_logs_stack return _staged_logs_stack class _MagmaLogger(logging.Logger): """ Derivative of logging.Logger class, with two additional keyword args: * 'debug_info': Tuple of (file_name, line_no). If 'debug_info' is included, this source-level information is logged along with the message. * 'include_traceback': If True, a traceback is printed along with the message. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._raw = False @property def raw(self) -> bool: return self._raw @raw.setter def raw(self, raw: bool): self._raw = raw @contextlib.contextmanager def as_raw(self): prev_raw = self.raw self.raw = True try: yield self finally: self.raw = prev_raw def METHOD_NAME(self, level, msg, args, **kwargs): if not self.raw and self._staged_log(level, msg, args, **kwargs): return self._raw_log(level, msg, args, **kwargs) def _staged_log(self, level, msg, args, **kwargs) -> bool: staged_logs_stack = get_staged_logs_stack() try: staged_logs = staged_logs_stack.peek() except IndexError: return False staged_logs.append((self, level, msg, args, kwargs)) return True def _capture_log(self, level, msg, args, **kwargs): try: log_capturer = get_log_capturer() except IndexError: return log_capturer.add_log((level, msg, args, kwargs)) def _raw_log(self, level, msg, args, **kwargs): debug_info = _get_additional_kwarg(kwargs, "debug_info") if debug_info: msg = _attach_debug_info(msg, debug_info) include_traceback = _get_additional_kwarg(kwargs, "include_traceback") if include_traceback or config.include_traceback: msg = _attach_traceback( msg, _frame_selector, config.traceback_limit) self._capture_log(level, msg, args, **kwargs) super().METHOD_NAME(level, msg, args, **kwargs) # Set logging class to _MagmaLogger to override logging behavior. Also, setup # root logger parameters. logging.setLoggerClass(_MagmaLogger) _log_stream = getattr(sys, config.log_stream) _root_logger = logging.getLogger("magma") _handler = colorlog.StreamHandler(_log_stream) _handler.setFormatter(colorlog.ColoredFormatter( '%(log_color)s%(levelname)s%(reset)s:%(name)s:%(message)s')) _root_logger.addHandler(_handler) _root_logger.setLevel(config.log_level) def root_logger(): return logging.getLogger("magma") # NOTE(rsetaluri): For some reason the following code which uses # contextlib.contextmanager results in the context manager being entered into # twice. It may be cached somewhere in the pipeline. # # @contextlib.contextmanager # def logging_level(level): # root = root_logger() # prev_level = root.level # root.setLevel(level) # try: # yield # finally: # root.setLevel(prev_level) class logging_level: def __init__(self, level): self.level = level self.root = root_logger() def __enter__(self): self.prev_level = self.root.level self.root.setLevel(self.level) def __exit__(self, *_): self.root.setLevel(self.prev_level) def stage_logger(): get_staged_logs_stack().push([]) def _flush(staged_logs): for logger, level, obj, args, kwargs in staged_logs: with logger.as_raw(): logger.log(level, obj, *args, **kwargs) def flush(): staged_logs = get_staged_logs_stack().pop() _flush(staged_logs) return staged_logs def unstage_logger(): return flush() def flush_all(): staged_logs_stack = get_staged_logs_stack() while staged_logs_stack: staged_logs = staged_logs_stack.pop() _flush(staged_logs) @contextlib.contextmanager def staged_logs(): stage_logger() staged_logs = get_staged_logs_stack().peek() try: yield staged_logs finally: unstage_logger() class StagedLogRecord(abc.ABC): def __init__(self, tpl: str): self._tpl = tpl @abc.abstractmethod def args(self): raise NotImplementedError() def __str__(self): return self._tpl.format(*self.args()) def _get_log_capturer_stack() -> Stack: global _log_capturer_stack return _log_capturer_stack def push_log_capturer(log_capturer): _get_log_capturer_stack().push(log_capturer) def pop_log_capturer(): _get_log_capturer_stack().pop() def get_log_capturer(): return _get_log_capturer_stack().peek() @contextlib.contextmanager def capture_logs(log_capturer): push_log_capturer(log_capturer) try: yield finally: pop_log_capturer()
3,329
get mapping data
""" Reference-physical domain mappings. """ import numpy as nm from sfepy.base.base import Struct from sfepy.discrete.common.extmods.cmapping import CMapping class PyCMapping(Struct): """ Class for storing mapping data. Primary data in numpy arrays. Data for C functions translated to FMFields and embedded in CMapping. """ def __init__(self, bf, det, volume, bfg, normal, dim): self.bf = bf self.det = det self.volume = volume self.bfg = bfg self.normal = normal self.cmap = CMapping(bf, det, volume, bfg, normal, dim) n_el, n_qp = det.shape[:2] n_ep = bf.shape[3] self.n_el = n_el self.n_qp = n_qp self.dim = dim self.n_ep = n_ep def integrate(self, out, field, mode=0): dim = field.shape[2] if mode < 3 or dim == 1: out[:] = nm.sum(field * self.det, axis=1)[:, None, :, :] if mode == 1: out /= self.volume elif dim == (self.tdim + 1) and self.normal is not None: out[:] = nm.dot(field, self.normal) * self.det / self.volume return 0 class PhysicalQPs(Struct): """ Physical quadrature points in a region. """ def __init__(self, num=0): Struct.__init__(self, num=num, shape=(0, 0, 0)) self.values = nm.empty(self.shape, dtype=nm.float64) def get_shape(self, rshape): """ Get shape from raveled shape. """ n_qp = self.shape[1] if n_qp > 0: if rshape[0] == 1: shape = (0, n_qp) + rshape[1:] # Constant parameter. elif (rshape[0] // n_qp) * n_qp != rshape[0]: raise ValueError('incompatible shapes! (n_qp: %d, %s)' % (n_qp, rshape)) else: shape = (rshape[0] // n_qp, n_qp) + rshape[1:] else: shape = (rshape[0], 0, 0, 0) return shape class Mapping(Struct): """ Base class for mappings. """ @staticmethod def from_args(region, kind='v'): """ Create mapping from reference to physical entities in a given region, given the integration kind ('v' or 's'). This mapping can be used to compute the physical quadrature points. Parameters ---------- region : Region instance The region defining the entities. kind : 'v' or 's' The kind of the entities: 'v' - cells, 's' - facets. Returns ------- mapping : FEMapping or IGMapping instance The requested mapping. """ from sfepy.discrete.fem.domain import FEDomain from sfepy.discrete.iga.domain import IGDomain if isinstance(region.domain, FEDomain): from sfepy.discrete.fem.mappings import FEMapping coors = region.domain.get_mesh_coors() if kind == 's': coors = coors[region.vertices] conn, gel = region.domain.get_conn(ret_gel=True) if kind == 'v': cells = region.get_cells() mapping = FEMapping(coors, conn[cells], gel=gel) elif kind == 's': from sfepy.discrete.fem.fe_surface import FESurface aux = FESurface('aux', region, gel.get_surface_entities(), conn) mapping = FEMapping(coors, aux.leconn, gel=gel.surface_facet) elif isinstance(region.domain, IGDomain): from sfepy.discrete.iga.mappings import IGMapping mapping = IGMapping(region.domain, region.cells) else: raise ValueError('unknown domain class! (%s)' % type(region.domain)) return mapping def get_physical_qps(region, integral, map_kind=None): """ Get physical quadrature points corresponding to the given region and integral. """ phys_qps = PhysicalQPs() if map_kind is None: map_kind = 'v' if region.can_cells else 's' gmap = Mapping.from_args(region, map_kind) gel = gmap.get_geometry() qp_coors, _ = integral.get_qp(gel.name) qps = gmap.get_physical_qps(qp_coors) n_el, n_qp = qps.shape[0], qps.shape[1] phys_qps.num = n_el * n_qp phys_qps.shape = qps.shape qps.shape = (phys_qps.num, qps.shape[2]) phys_qps.values = qps return phys_qps def METHOD_NAME(name, field, integral, region=None, integration='volume'): """ General helper function for accessing reference mapping data. Get data attribute `name` from reference mapping corresponding to `field` in `region` in quadrature points of the given `integral` and `integration` type. Parameters ---------- name : str The reference mapping attribute name. field : Field instance The field defining the reference mapping. integral : Integral instance The integral defining quadrature points. region : Region instance, optional If given, use the given region instead of `field` region. integration : one of ('volume', 'surface', 'surface_extra') The integration type. Returns ------- data : array The required data merged for all element groups. Notes ----- Assumes the same element geometry in all element groups of the field! """ data = None if region is None: region = field.region geo, _ = field.get_mapping(region, integral, integration) data = getattr(geo, name) return data def get_jacobian(field, integral, region=None, integration='volume'): """ Get the jacobian of reference mapping corresponding to `field`. Parameters ---------- field : Field instance The field defining the reference mapping. integral : Integral instance The integral defining quadrature points. region : Region instance, optional If given, use the given region instead of `field` region. integration : one of ('volume', 'surface', 'surface_extra') The integration type. Returns ------- jac : array The jacobian merged for all element groups. See Also -------- get_mapping_data Notes ----- Assumes the same element geometry in all element groups of the field! """ jac = METHOD_NAME('det', field, integral, region=region, integration=integration) return jac def get_normals(field, integral, region): """ Get the normals of element faces in `region`. Parameters ---------- field : Field instance The field defining the reference mapping. integral : Integral instance The integral defining quadrature points. region : Region instance The given of the element faces. Returns ------- normals : array The normals merged for all element groups. See Also -------- get_mapping_data Notes ----- Assumes the same element geometry in all element groups of the field! """ normals = METHOD_NAME('normal', field, integral, region=region, integration='surface') return normals
3,330
set active severity
"""Contains the NotifyPanel class.""" __all__ = ['NotifyPanel'] class NotifyPanel: """NotifyPanel class: this class contains methods for creating a panel to control direct/panda notify categories.""" def __init__(self, directNotify, tl = None): """ NotifyPanel class pops up a control panel to view/set notify levels for all available DIRECT and PANDA notify categories """ # Make sure TK mainloop is running from direct.showbase.TkGlobal import Pmw from tkinter import Toplevel, Frame, Label, Radiobutton, IntVar from tkinter import HORIZONTAL, X, W, NW, BOTH, LEFT, RIGHT # To get severity levels from panda3d.core import NSFatal, NSError, NSWarning, NSInfo, NSDebug, NSSpam if tl is None: tl = Toplevel() tl.title('Notify Controls') tl.geometry('300x400') # Init active category self.activeCategory = None # Create widgets mainFrame = Frame(tl) # Paned widget for dividing two halves framePane = Pmw.PanedWidget(mainFrame, orient = HORIZONTAL) categoryFrame = framePane.add('categories', size = 200) severityFrame = framePane.add('severities', size = 50) # Category frame # Assemble PANDA categories categories = self.getPandaCategoriesAsList() self.__categories = {} categoryNames = [] for category in categories: name = category.getBasename() self.__categories[name] = category categoryNames.append(name) # Assemble DIRECT categories for name in directNotify.getCategories(): category = directNotify.getCategory(name) self.__categories[name] = category categoryNames.append(name) # Sort resulting list of names categoryNames.sort() # Create a listbox self.categoryList = Pmw.ScrolledListBox( categoryFrame, labelpos = NW, label_text = 'Categories:', label_font=('MSSansSerif', 10, 'bold'), listbox_takefocus = 1, items = categoryNames, selectioncommand = self.setActivePandaCategory) self.categoryList.pack(expand = 1, fill = BOTH) # Severity frame Label(severityFrame, text = 'Severity:', font=('MSSansSerif', 10, 'bold'), justify = RIGHT, anchor = W).pack(fill = X, padx = 5) self.severity = IntVar() self.severity.set(0) self.fatalSeverity = Radiobutton(severityFrame, text = 'Fatal', justify = LEFT, anchor = W, value = NSFatal, variable = self.severity, command = self.METHOD_NAME) self.fatalSeverity.pack(fill = X) self.errorSeverity = Radiobutton(severityFrame, text = 'Error', justify = LEFT, anchor = W, value = NSError, variable = self.severity, command = self.METHOD_NAME) self.errorSeverity.pack(fill = X) self.warningSeverity = Radiobutton(severityFrame, text = 'Warning', justify = LEFT, anchor = W, value = NSWarning, variable = self.severity, command = self.METHOD_NAME) self.warningSeverity.pack(fill = X) self.infoSeverity = Radiobutton(severityFrame, text = 'Info', justify = LEFT, anchor = W, value = NSInfo, variable = self.severity, command = self.METHOD_NAME) self.infoSeverity.pack(fill = X) self.debugSeverity = Radiobutton(severityFrame, text = 'Debug', justify = LEFT, anchor = W, value = NSDebug, variable = self.severity, command = self.METHOD_NAME) self.debugSeverity.pack(fill = X) self.spamSeverity = Radiobutton(severityFrame, text = 'Spam', justify = LEFT, anchor = W, value = NSSpam, variable = self.severity, command = self.METHOD_NAME) self.spamSeverity.pack(fill = X) # Pack frames framePane.pack(expand = 1, fill = BOTH) mainFrame.pack(expand = 1, fill = BOTH) # Get listbox listbox = self.categoryList.component('listbox') # Bind updates to arrow buttons listbox.bind('<KeyRelease-Up>', self.setActivePandaCategory) listbox.bind('<KeyRelease-Down>', self.setActivePandaCategory) # And grab focus (to allow keyboard navigation) listbox.focus_set() # And set active index (so keypresses will start with index 0) listbox.activate(0) # Select first item self.categoryList.select_set(0) self.setActivePandaCategory() def _getPandaCategories(self, category): categories = [category] for i in range(category.getNumChildren()): child = category.getChild(i) categories.append(self._getPandaCategories(child)) return categories def getPandaCategories(self): from panda3d.core import Notify topCategory = Notify.ptr().getTopCategory() return self._getPandaCategories(topCategory) def _getPandaCategoriesAsList(self, pc, catList): for item in pc: if isinstance(item, list): self._getPandaCategoriesAsList(item, catList) else: catList.append(item) def getPandaCategoriesAsList(self): pc = self.getPandaCategories() pcList = [] self._getPandaCategoriesAsList(pc, pcList) return pcList[1:] def setActivePandaCategory(self, event = None): categoryName = self.categoryList.getcurselection()[0] self.activeCategory = self.__categories.get(categoryName, None) if self.activeCategory: self.severity.set(self.activeCategory.getSeverity()) def METHOD_NAME(self): if self.activeCategory: self.activeCategory.setSeverity(self.severity.get())
3,331
enabled
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'AliasRoutingConfiguration', 'StateMachineLoggingConfiguration', 'StateMachineTracingConfiguration', 'GetAliasRoutingConfigurationResult', ] @pulumi.output_type class AliasRoutingConfiguration(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "stateMachineVersionArn": suggest = "state_machine_version_arn" if suggest: pulumi.log.warn(f"Key '{key}' not found in AliasRoutingConfiguration. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AliasRoutingConfiguration.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AliasRoutingConfiguration.__key_warning(key) return super().get(key, default) def __init__(__self__, *, state_machine_version_arn: str, weight: int): """ :param str state_machine_version_arn: A version of the state machine. :param int weight: Percentage of traffic routed to the state machine version. The following arguments are optional: """ pulumi.set(__self__, "state_machine_version_arn", state_machine_version_arn) pulumi.set(__self__, "weight", weight) @property @pulumi.getter(name="stateMachineVersionArn") def state_machine_version_arn(self) -> str: """ A version of the state machine. """ return pulumi.get(self, "state_machine_version_arn") @property @pulumi.getter def weight(self) -> int: """ Percentage of traffic routed to the state machine version. The following arguments are optional: """ return pulumi.get(self, "weight") @pulumi.output_type class StateMachineLoggingConfiguration(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "includeExecutionData": suggest = "include_execution_data" elif key == "logDestination": suggest = "log_destination" if suggest: pulumi.log.warn(f"Key '{key}' not found in StateMachineLoggingConfiguration. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: StateMachineLoggingConfiguration.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: StateMachineLoggingConfiguration.__key_warning(key) return super().get(key, default) def __init__(__self__, *, include_execution_data: Optional[bool] = None, level: Optional[str] = None, log_destination: Optional[str] = None): """ :param bool include_execution_data: Determines whether execution data is included in your log. When set to `false`, data is excluded. :param str level: Defines which category of execution history events are logged. Valid values: `ALL`, `ERROR`, `FATAL`, `OFF` :param str log_destination: Amazon Resource Name (ARN) of a CloudWatch log group. Make sure the State Machine has the correct IAM policies for logging. The ARN must end with `:*` """ if include_execution_data is not None: pulumi.set(__self__, "include_execution_data", include_execution_data) if level is not None: pulumi.set(__self__, "level", level) if log_destination is not None: pulumi.set(__self__, "log_destination", log_destination) @property @pulumi.getter(name="includeExecutionData") def include_execution_data(self) -> Optional[bool]: """ Determines whether execution data is included in your log. When set to `false`, data is excluded. """ return pulumi.get(self, "include_execution_data") @property @pulumi.getter def level(self) -> Optional[str]: """ Defines which category of execution history events are logged. Valid values: `ALL`, `ERROR`, `FATAL`, `OFF` """ return pulumi.get(self, "level") @property @pulumi.getter(name="logDestination") def log_destination(self) -> Optional[str]: """ Amazon Resource Name (ARN) of a CloudWatch log group. Make sure the State Machine has the correct IAM policies for logging. The ARN must end with `:*` """ return pulumi.get(self, "log_destination") @pulumi.output_type class StateMachineTracingConfiguration(dict): def __init__(__self__, *, METHOD_NAME: Optional[bool] = None): """ :param bool enabled: When set to `true`, AWS X-Ray tracing is enabled. Make sure the State Machine has the correct IAM policies for logging. See the [AWS Step Functions Developer Guide](https://docs.aws.amazon.com/step-functions/latest/dg/xray-iam.html) for details. """ if METHOD_NAME is not None: pulumi.set(__self__, "enabled", METHOD_NAME) @property @pulumi.getter def METHOD_NAME(self) -> Optional[bool]: """ When set to `true`, AWS X-Ray tracing is enabled. Make sure the State Machine has the correct IAM policies for logging. See the [AWS Step Functions Developer Guide](https://docs.aws.amazon.com/step-functions/latest/dg/xray-iam.html) for details. """ return pulumi.get(self, "enabled") @pulumi.output_type class GetAliasRoutingConfigurationResult(dict): def __init__(__self__, *, state_machine_version_arn: str, weight: int): pulumi.set(__self__, "state_machine_version_arn", state_machine_version_arn) pulumi.set(__self__, "weight", weight) @property @pulumi.getter(name="stateMachineVersionArn") def state_machine_version_arn(self) -> str: return pulumi.get(self, "state_machine_version_arn") @property @pulumi.getter def weight(self) -> int: return pulumi.get(self, "weight")
3,332
test property decorator baseclass doc
# Test case for property # more tests are in test_descr import sys import unittest from test.test_support import run_unittest class PropertyBase(Exception): pass class PropertyGet(PropertyBase): pass class PropertySet(PropertyBase): pass class PropertyDel(PropertyBase): pass class BaseClass(object): def __init__(self): self._spam = 5 @property def spam(self): """BaseClass.getter""" return self._spam @spam.setter def spam(self, value): self._spam = value @spam.deleter def spam(self): del self._spam class SubClass(BaseClass): @BaseClass.spam.getter def spam(self): """SubClass.getter""" raise PropertyGet(self._spam) @spam.setter def spam(self, value): raise PropertySet(self._spam) @spam.deleter def spam(self): raise PropertyDel(self._spam) class PropertyDocBase(object): _spam = 1 def _get_spam(self): return self._spam spam = property(_get_spam, doc="spam spam spam") class PropertyDocSub(PropertyDocBase): @PropertyDocBase.spam.getter def spam(self): """The decorator does not use this doc string""" return self._spam class PropertySubNewGetter(BaseClass): @BaseClass.spam.getter def spam(self): """new docstring""" return 5 class PropertyNewGetter(object): @property def spam(self): """original docstring""" return 1 @spam.getter def spam(self): """new docstring""" return 8 class PropertyTests(unittest.TestCase): def test_property_decorator_baseclass(self): # see #1620 base = BaseClass() self.assertEqual(base.spam, 5) self.assertEqual(base._spam, 5) base.spam = 10 self.assertEqual(base.spam, 10) self.assertEqual(base._spam, 10) delattr(base, "spam") self.assertTrue(not hasattr(base, "spam")) self.assertTrue(not hasattr(base, "_spam")) base.spam = 20 self.assertEqual(base.spam, 20) self.assertEqual(base._spam, 20) def test_property_decorator_subclass(self): # see #1620 sub = SubClass() self.assertRaises(PropertyGet, getattr, sub, "spam") self.assertRaises(PropertySet, setattr, sub, "spam", None) self.assertRaises(PropertyDel, delattr, sub, "spam") @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_property_decorator_subclass_doc(self): sub = SubClass() self.assertEqual(sub.__class__.spam.__doc__, "SubClass.getter") @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def METHOD_NAME(self): base = BaseClass() self.assertEqual(base.__class__.spam.__doc__, "BaseClass.getter") def test_property_decorator_doc(self): base = PropertyDocBase() sub = PropertyDocSub() self.assertEqual(base.__class__.spam.__doc__, "spam spam spam") self.assertEqual(sub.__class__.spam.__doc__, "spam spam spam") @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_property_getter_doc_override(self): newgettersub = PropertySubNewGetter() self.assertEqual(newgettersub.spam, 5) self.assertEqual(newgettersub.__class__.spam.__doc__, "new docstring") newgetter = PropertyNewGetter() self.assertEqual(newgetter.spam, 8) self.assertEqual(newgetter.__class__.spam.__doc__, "new docstring") # Issue 5890: subclasses of property do not preserve method __doc__ strings class PropertySub(property): """This is a subclass of property""" class PropertySubSlots(property): """This is a subclass of property that defines __slots__""" __slots__ = () class PropertySubclassTests(unittest.TestCase): def test_slots_docstring_copy_exception(self): try: class Foo(object): @PropertySubSlots def spam(self): """Trying to copy this docstring will raise an exception""" return 1 #This raises a TypeError in Jython. except (AttributeError, TypeError): pass else: raise Exception("AttributeError not raised") @unittest.skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_docstring_copy(self): class Foo(object): @PropertySub def spam(self): """spam wrapped in property subclass""" return 1 self.assertEqual( Foo.spam.__doc__, "spam wrapped in property subclass") @unittest.skipIf(sys.flags.optimize <= 2, "Docstrings are omitted with -O2 and above") def test_property_setter_copies_getter_docstring(self): class Foo(object): def __init__(self): self._spam = 1 @PropertySub def spam(self): """spam wrapped in property subclass""" return self._spam @spam.setter def spam(self, value): """this docstring is ignored""" self._spam = value foo = Foo() self.assertEqual(foo.spam, 1) foo.spam = 2 self.assertEqual(foo.spam, 2) self.assertEqual( Foo.spam.__doc__, "spam wrapped in property subclass") class FooSub(Foo): @Foo.spam.setter def spam(self, value): """another ignored docstring""" self._spam = 'eggs' foosub = FooSub() self.assertEqual(foosub.spam, 1) foosub.spam = 7 self.assertEqual(foosub.spam, 'eggs') self.assertEqual( FooSub.spam.__doc__, "spam wrapped in property subclass") @unittest.skipIf(sys.flags.optimize <= 2, "Docstrings are omitted with -O2 and above") def test_property_new_getter_new_docstring(self): class Foo(object): @PropertySub def spam(self): """a docstring""" return 1 @spam.getter def spam(self): """a new docstring""" return 2 self.assertEqual(Foo.spam.__doc__, "a new docstring") class FooBase(object): @PropertySub def spam(self): """a docstring""" return 1 class Foo2(FooBase): @FooBase.spam.getter def spam(self): """a new docstring""" return 2 self.assertEqual(Foo.spam.__doc__, "a new docstring") def test_main(): run_unittest(PropertyTests, PropertySubclassTests) if __name__ == '__main__': test_main()
3,333
extract formats
# coding: utf-8 from __future__ import unicode_literals import json import re from .common import InfoExtractor from ..utils import ( float_or_none, int_or_none, merge_dicts, parse_codecs, urljoin, ) class StreamCZIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?(?:stream|televizeseznam)\.cz/[^?#]+/(?P<display_id>[^?#]+)-(?P<id>[0-9]+)' _TESTS = [{ 'url': 'https://www.televizeseznam.cz/video/lajna/buh-57953890', 'md5': '40c41ade1464a390a0b447e333df4239', 'info_dict': { 'id': '57953890', 'ext': 'mp4', 'title': 'Bůh', 'display_id': 'buh', 'description': 'md5:8f5f09b9b7bc67df910486cdd88f7165', 'duration': 1369.6, 'view_count': int, } }, { 'url': 'https://www.stream.cz/kdo-to-mluvi/kdo-to-mluvi-velke-odhaleni-prinasi-novy-porad-uz-od-25-srpna-64087937', 'md5': '41fd358000086a1ccdb068c77809b158', 'info_dict': { 'id': '64087937', 'ext': 'mp4', 'title': 'Kdo to mluví? Velké odhalení přináší nový pořad už od 25. srpna', 'display_id': 'kdo-to-mluvi-velke-odhaleni-prinasi-novy-porad-uz-od-25-srpna', 'description': 'md5:97a811000a6460266029d6c1c2ebcd59', 'duration': 50.2, 'view_count': int, } }, { 'url': 'https://www.stream.cz/tajemno/znicehonic-jim-skrz-strechu-prolitnul-zahadny-predmet-badatele-vse-objasnili-64147267', 'md5': '3ee4d0be040e8f4a543e67e509d55e3f', 'info_dict': { 'id': '64147267', 'ext': 'mp4', 'title': 'Zničehonic jim skrz střechu prolítnul záhadný předmět. Badatelé vše objasnili', 'display_id': 'znicehonic-jim-skrz-strechu-prolitnul-zahadny-predmet-badatele-vse-objasnili', 'description': 'md5:4b8ada6718d34bb011c4e04ca4bc19bf', 'duration': 442.84, 'view_count': int, } }] def METHOD_NAME(self, spl_url, video): for ext, pref, streams in ( ('ts', -1, video.get('http_stream', {}).get('qualities', {})), ('mp4', 1, video.get('mp4'))): for format_id, stream in streams.items(): if not stream.get('url'): continue yield merge_dicts({ 'format_id': '-'.join((format_id, ext)), 'ext': ext, 'source_preference': pref, 'url': urljoin(spl_url, stream['url']), 'tbr': float_or_none(stream.get('bandwidth'), scale=1000), 'duration': float_or_none(stream.get('duration'), scale=1000), 'width': stream.get('resolution', 2 * [0])[0] or None, 'height': stream.get('resolution', 2 * [0])[1] or int_or_none(format_id.replace('p', '')), }, parse_codecs(stream.get('codec'))) def _real_extract(self, url): display_id, video_id = re.match(self._VALID_URL, url).groups() data = self._download_json( 'https://www.televizeseznam.cz/api/graphql', video_id, 'Downloading GraphQL result', data=json.dumps({ 'variables': {'urlName': video_id}, 'query': ''' query LoadEpisode($urlName : String){ episode(urlName: $urlName){ ...VideoDetailFragmentOnEpisode } } fragment VideoDetailFragmentOnEpisode on Episode { id spl urlName name perex duration views }''' }).encode('utf-8'), headers={'Content-Type': 'application/json;charset=UTF-8'} )['data']['episode'] spl_url = data['spl'] + 'spl2,3' metadata = self._download_json(spl_url, video_id, 'Downloading playlist') if 'Location' in metadata and 'data' not in metadata: spl_url = metadata['Location'] metadata = self._download_json(spl_url, video_id, 'Downloading redirected playlist') video = metadata['data'] subtitles = {} for subs in video.get('subtitles', {}).values(): if not subs.get('language'): continue for ext, sub_url in subs.get('urls').items(): subtitles.setdefault(subs['language'], []).append({ 'ext': ext, 'url': urljoin(spl_url, sub_url) }) formats = list(self.METHOD_NAME(spl_url, video)) self._sort_formats(formats) return { 'id': video_id, 'display_id': display_id, 'title': data.get('name'), 'description': data.get('perex'), 'duration': float_or_none(data.get('duration')), 'view_count': int_or_none(data.get('views')), 'formats': formats, 'subtitles': subtitles, }
3,334
cwd
import enum from _typeshed import Incomplete from typing import Any, NamedTuple from psutil._common import ( NIC_DUPLEX_FULL as NIC_DUPLEX_FULL, NIC_DUPLEX_HALF as NIC_DUPLEX_HALF, NIC_DUPLEX_UNKNOWN as NIC_DUPLEX_UNKNOWN, AccessDenied as AccessDenied, NoSuchProcess as NoSuchProcess, ZombieProcess as ZombieProcess, isfile_strict as isfile_strict, parse_environ_block as parse_environ_block, path_exists_strict as path_exists_strict, supports_ipv6 as supports_ipv6, usage_percent as usage_percent, ) from psutil._compat import PY3 as PY3 __extra__all__: Any POWER_SUPPLY_PATH: str HAS_PROC_SMAPS: bool HAS_PROC_SMAPS_ROLLUP: bool HAS_PROC_IO_PRIORITY: Any HAS_CPU_AFFINITY: Any CLOCK_TICKS: Any PAGESIZE: Any BOOT_TIME: Any LITTLE_ENDIAN: Any DISK_SECTOR_SIZE: int AF_LINK: Any AddressFamily: Any IOPRIO_CLASS_NONE: int IOPRIO_CLASS_RT: int IOPRIO_CLASS_BE: int IOPRIO_CLASS_IDLE: int class IOPriority(enum.IntEnum): IOPRIO_CLASS_NONE: int IOPRIO_CLASS_RT: int IOPRIO_CLASS_BE: int IOPRIO_CLASS_IDLE: int PROC_STATUSES: Any TCP_STATUSES: Any class svmem(NamedTuple): total: int available: int percent: float used: int free: int active: int inactive: int buffers: int cached: int shared: int slab: int class sdiskio(NamedTuple): read_count: Any write_count: Any read_bytes: Any write_bytes: Any read_time: Any write_time: Any read_merged_count: Any write_merged_count: Any busy_time: Any class popenfile(NamedTuple): path: Any fd: Any position: Any mode: Any flags: Any class pmem(NamedTuple): rss: Any vms: Any shared: Any text: Any lib: Any data: Any dirty: Any class pfullmem(NamedTuple): rss: Incomplete vms: Incomplete shared: Incomplete text: Incomplete lib: Incomplete data: Incomplete dirty: Incomplete uss: Incomplete pss: Incomplete swap: Incomplete class pmmap_grouped(NamedTuple): path: Any rss: Any size: Any pss: Any shared_clean: Any shared_dirty: Any private_clean: Any private_dirty: Any referenced: Any anonymous: Any swap: Any pmmap_ext: Any class pio(NamedTuple): read_count: Any write_count: Any read_bytes: Any write_bytes: Any read_chars: Any write_chars: Any class pcputimes(NamedTuple): user: Any system: Any children_user: Any children_system: Any iowait: Any def readlink(path): ... def file_flags_to_mode(flags): ... def is_storage_device(name): ... def set_scputimes_ntuple(procfs_path) -> None: ... scputimes: Any prlimit: Any def calculate_avail_vmem(mems): ... def virtual_memory() -> svmem: ... def swap_memory(): ... def cpu_times(): ... def per_cpu_times(): ... def cpu_count_logical(): ... def cpu_count_cores() -> int | None: ... def cpu_stats(): ... def cpu_freq(): ... net_if_addrs: Any class _Ipv6UnsupportedError(Exception): ... class Connections: tmap: Any def __init__(self) -> None: ... def get_proc_inodes(self, pid): ... def get_all_inodes(self): ... @staticmethod def decode_address(addr, family): ... @staticmethod def process_inet(file, family, type_, inodes, filter_pid: Incomplete | None = ...) -> None: ... @staticmethod def process_unix(file, family, inodes, filter_pid: Incomplete | None = ...) -> None: ... def retrieve(self, kind, pid: Incomplete | None = ...): ... def net_connections(kind: str = ...): ... def net_io_counters(): ... def net_if_stats(): ... disk_usage: Any def disk_io_counters(perdisk: bool = ...): ... class RootFsDeviceFinder: major: Incomplete minor: Incomplete def __init__(self) -> None: ... def ask_proc_partitions(self): ... def ask_sys_dev_block(self): ... def ask_sys_class_block(self): ... def find(self): ... def disk_partitions(all: bool = ...): ... def sensors_temperatures(): ... def sensors_fans(): ... def sensors_battery(): ... def users(): ... def boot_time(): ... def pids(): ... def pid_exists(pid): ... def ppid_map(): ... def wrap_exceptions(fun): ... class Process: pid: Any def __init__(self, pid) -> None: ... def oneshot_enter(self) -> None: ... def oneshot_exit(self) -> None: ... def name(self): ... def exe(self): ... def cmdline(self): ... def environ(self): ... def terminal(self): ... def io_counters(self) -> pio: ... def cpu_times(self): ... def cpu_num(self): ... def wait(self, timeout: Incomplete | None = ...): ... def create_time(self): ... def memory_info(self): ... def memory_full_info(self): ... def memory_maps(self): ... def METHOD_NAME(self): ... def num_ctx_switches(self, _ctxsw_re=...): ... def num_threads(self, _num_threads_re=...): ... def threads(self): ... def nice_get(self): ... def nice_set(self, value): ... def cpu_affinity_get(self): ... def cpu_affinity_set(self, cpus) -> None: ... def ionice_get(self): ... def ionice_set(self, ioclass, value): ... def rlimit(self, resource_, limits: Incomplete | None = ...): ... def status(self): ... def open_files(self): ... def connections(self, kind: str = ...): ... def num_fds(self): ... def ppid(self): ... def uids(self, _uids_re=...): ... def gids(self, _gids_re=...): ...
3,335
toggle
# Copyright: Ankitects Pty Ltd and contributors # License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html from __future__ import annotations import json from typing import Callable import aqt from anki.cards import Card, CardId from anki.lang import without_unicode_isolation from aqt.qt import * from aqt.utils import ( addCloseShortcut, disable_help_button, qconnect, restoreGeom, saveGeom, setWindowIcon, tr, ) from aqt.webview import AnkiWebView, AnkiWebViewKind class CardInfoDialog(QDialog): TITLE = "browser card info" GEOMETRY_KEY = "revlog" silentlyClose = True def __init__( self, parent: QWidget | None, mw: aqt.AnkiQt, card: Card | None, on_close: Callable | None = None, geometry_key: str | None = None, window_title: str | None = None, ) -> None: super().__init__(parent) self.mw = mw self._on_close = on_close self.GEOMETRY_KEY = geometry_key or self.GEOMETRY_KEY if window_title: self.setWindowTitle(window_title) self._setup_ui(card.id if card else None) self.show() def _setup_ui(self, card_id: CardId | None) -> None: self.mw.garbage_collect_on_dialog_finish(self) disable_help_button(self) restoreGeom(self, self.GEOMETRY_KEY, default_size=(800, 800)) addCloseShortcut(self) setWindowIcon(self) self.web = AnkiWebView(kind=AnkiWebViewKind.BROWSER_CARD_INFO) self.web.setVisible(False) self.web.load_ts_page("card-info") layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self.web) buttons = QDialogButtonBox(QDialogButtonBox.StandardButton.Close) buttons.setContentsMargins(10, 0, 10, 10) layout.addWidget(buttons) qconnect(buttons.rejected, self.reject) self.setLayout(layout) self.web.eval("anki.cardInfoPromise = anki.setupCardInfo(document.body);") self.update_card(card_id) def update_card(self, card_id: CardId | None) -> None: self.web.eval( f"anki.cardInfoPromise.then((c) => c.updateStats({json.dumps(card_id)}));" ) def reject(self) -> None: if self._on_close: self._on_close() self.web.cleanup() self.web = None saveGeom(self, self.GEOMETRY_KEY) return QDialog.reject(self) class CardInfoManager: """Wrapper class to conveniently toggle, update and close a card info dialog.""" def __init__(self, mw: aqt.AnkiQt, geometry_key: str, window_title: str): self.mw = mw self.geometry_key = geometry_key self.window_title = window_title self._card: Card | None = None self._dialog: CardInfoDialog | None = None def METHOD_NAME(self) -> None: if self._dialog: self._dialog.reject() else: self._dialog = CardInfoDialog( None, self.mw, self._card, self._on_close, self.geometry_key, self.window_title, ) def set_card(self, card: Card | None) -> None: self._card = card if self._dialog: self._dialog.update_card(card.id if card else None) def close(self) -> None: if self._dialog: self.METHOD_NAME() def _on_close(self) -> None: self._dialog = None class BrowserCardInfo(CardInfoManager): def __init__(self, mw: aqt.AnkiQt): super().__init__( mw, "revlog", without_unicode_isolation( tr.card_stats_current_card(context=tr.qt_misc_browse()) ), ) class ReviewerCardInfo(CardInfoManager): def __init__(self, mw: aqt.AnkiQt): super().__init__( mw, "reviewerCardInfo", without_unicode_isolation( tr.card_stats_current_card(context=tr.decks_study()) ), ) class PreviousReviewerCardInfo(CardInfoManager): def __init__(self, mw: aqt.AnkiQt): super().__init__( mw, "previousReviewerCardInfo", without_unicode_isolation( tr.card_stats_previous_card(context=tr.decks_study()) ), )
3,336
job retry data
import json import os import re from datetime import datetime from pathlib import Path from time import sleep from typing import Any import gitlab import psycopg2 import yaml from kubernetes import client, config from kubernetes.client.exceptions import ApiException from kubernetes.client.models.v1_pod import V1Pod from kubernetes.client.models.v1_pod_status import V1PodStatus from opensearch_dsl import Date, Document, connections config.load_config() v1_client = client.CoreV1Api() class JobPayload(Document): timestamp = Date() class Index: name = "gitlab-job-failures-*" def save(self, **kwargs): # assign now if no timestamp given if not self.timestamp: self.timestamp = datetime.now() # override the index to go to the proper timeslot kwargs["index"] = self.timestamp.strftime("gitlab-job-failures-%Y%m%d") return super().save(**kwargs) GITLAB_TOKEN = os.environ["GITLAB_TOKEN"] GITLAB_POSTGRES_DB = os.environ["GITLAB_POSTGRES_DB"] GITLAB_POSTGRES_USER = os.environ["GITLAB_POSTGRES_RO_USER"] GITLAB_POSTGRES_PASSWORD = os.environ["GITLAB_POSTGRES_RO_PASSWORD"] GITLAB_POSTGRES_HOST = os.environ["GITLAB_POSTGRES_HOST"] OPENSEARCH_ENDPOINT = os.environ["OPENSEARCH_ENDPOINT"] OPENSEARCH_USERNAME = os.environ["OPENSEARCH_USERNAME"] OPENSEARCH_PASSWORD = os.environ["OPENSEARCH_PASSWORD"] # Instantiate gitlab api wrapper gl = gitlab.Gitlab("https://gitlab.spack.io", GITLAB_TOKEN) # Instantiate postgres connection pg_conn = psycopg2.connect( host=GITLAB_POSTGRES_HOST, port="5432", dbname=GITLAB_POSTGRES_DB, user=GITLAB_POSTGRES_USER, password=GITLAB_POSTGRES_PASSWORD, ) def METHOD_NAME(job_id: str | int, job_name: str) -> tuple[int, bool]: with pg_conn: cur = pg_conn.cursor() cur.execute( """ SELECT attempt_number, COALESCE(retried, FALSE) as retried FROM ( SELECT ROW_NUMBER() OVER (ORDER BY id) as attempt_number, retried, id FROM ci_builds WHERE ci_builds.name = %(job_name)s and ci_builds.stage_id = ( SELECT stage_id from ci_builds WHERE id = %(job_id)s LIMIT 1 ) and ci_builds.status = 'failed' ) as build_attempts WHERE build_attempts.id = %(job_id)s ; """, {"job_id": job_id, "job_name": job_name}, ) result = cur.fetchone() cur.close() return result def assign_error_taxonomy(job_input_data: dict[str, Any], job_trace: str): # Read taxonomy file with open(Path(__file__).parent / "taxonomy.yaml") as f: taxonomy = yaml.safe_load(f)["taxonomy"] job_input_data["error_taxonomy_version"] = taxonomy["version"] # Compile matching patterns from job trace matching_patterns = set() for error_class, lookups in taxonomy["error_classes"].items(): if lookups: for grep_expr in lookups.get("grep_for", []): if re.compile(grep_expr).search(job_trace): matching_patterns.add(error_class) # If the job logs matched any regexes, assign it the taxonomy # with the highest priority in the "deconflict order". # Otherwise, assign it a taxonomy of "other". job_error_class = None if len(matching_patterns): for error_class in taxonomy["deconflict_order"]: if error_class in matching_patterns: job_error_class = error_class break else: job_error_class = "other" # If this job timed out or failed to be scheduled by GitLab, # label it as such. if job_input_data["build_failure_reason"] in ( "stuck_or_timeout_failure", "scheduler_failure", ): job_error_class = job_input_data["build_failure_reason"] job_input_data["error_taxonomy"] = job_error_class return def collect_pod_status(job_input_data: dict[str, Any], job_trace: str): """Collect k8s info about this job and store it in the OpenSearch record""" # Record whether this job was run on a kubernetes pod or via some other # means (a UO runner, for example) job_input_data["kubernetes_job"] = "Using Kubernetes executor" in job_trace # If this job wasn't run on kubernetes, there's no pod to fetch so # we can exit early if not job_input_data["kubernetes_job"]: return # Scan job logs to infer the name of the pod this job was executed on runner_name_matches = re.findall( rf"Running on (.+) via {job_input_data['runner']['description']}...", job_trace, ) if not len(runner_name_matches): job_input_data["pod_status"] = None return pod_name = runner_name_matches[0] pod: V1Pod | None = None while True: # Try to fetch pod with kube try: pod = v1_client.read_namespaced_pod(name=pod_name, namespace="pipeline") except ApiException: # If it doesn't work, that means the pod has already been cleaned up. # In that case, we break out of the loop and return. break # Check if the pod is still running. If so, keep re-fetching it until it's complete status: V1PodStatus = pod.status if status.phase != "Running": break sleep(1) if pod: job_input_data["pod_status"] = pod.status.to_dict() def main(): # Read input data and extract params job_input_data = json.loads(os.environ["JOB_INPUT_DATA"]) job_id = job_input_data["build_id"] job_name = job_input_data["build_name"] # Annotate if job has been retried attempt_number, retried = METHOD_NAME(job_id=job_id, job_name=job_name) job_input_data["attempt_number"] = attempt_number job_input_data["retried"] = retried # Convert all string timestamps in webhook payload to `datetime` objects for key, val in job_input_data.items(): try: if isinstance(val, str): job_input_data[key] = datetime.strptime(val, "%Y-%m-%d %H:%M:%S %Z") except ValueError: continue # Retrieve project and job from gitlab API project = gl.projects.get(job_input_data["project_id"]) job = project.jobs.get(job_input_data["build_id"]) job_trace: str = job.trace().decode() # type: ignore # Get info about the k8s pod this job ran on collect_pod_status(job_input_data, job_trace) # Assign any/all relevant errors assign_error_taxonomy(job_input_data, job_trace) # Upload to OpenSearch connections.create_connection( hosts=[OPENSEARCH_ENDPOINT], http_auth=( OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD, ), ) doc = JobPayload(**job_input_data) doc.save() if __name__ == "__main__": main()
3,337
main
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" --- module: elasticache_subnet_group version_added: 1.0.0 short_description: manage ElastiCache subnet groups description: - Creates, modifies, and deletes ElastiCache subnet groups. options: state: description: - Specifies whether the subnet should be present or absent. choices: [ 'present' , 'absent' ] default: 'present' type: str name: description: - Database subnet group identifier. - This value is automatically converted to lowercase. required: true type: str description: description: - ElastiCache subnet group description. - When not provided defaults to I(name) on subnet group creation. type: str subnets: description: - List of subnet IDs that make up the ElastiCache subnet group. - At least one subnet must be provided when creating an ElastiCache subnet group. type: list elements: str author: - "Tim Mahoney (@timmahoney)" extends_documentation_fragment: - amazon.aws.common.modules - amazon.aws.region.modules - amazon.aws.boto3 """ EXAMPLES = r""" - name: Add or change a subnet group community.aws.elasticache_subnet_group: state: present name: norwegian-blue description: My Fancy Ex Parrot Subnet Group subnets: - subnet-aaaaaaaa - subnet-bbbbbbbb - name: Remove a subnet group community.aws.elasticache_subnet_group: state: absent name: norwegian-blue """ RETURN = r""" cache_subnet_group: description: Description of the Elasticache Subnet Group. returned: always type: dict contains: arn: description: The Amazon Resource Name (ARN) of the cache subnet group. returned: when the subnet group exists type: str sample: arn:aws:elasticache:us-east-1:123456789012:subnetgroup:norwegian-blue description: description: The description of the cache subnet group. returned: when the cache subnet group exists type: str sample: My Fancy Ex Parrot Subnet Group name: description: The name of the cache subnet group. returned: when the cache subnet group exists type: str sample: norwegian-blue vpc_id: description: The VPC ID of the cache subnet group. returned: when the cache subnet group exists type: str sample: norwegian-blue subnet_ids: description: The IDs of the subnets beloging to the cache subnet group. returned: when the cache subnet group exists type: list elements: str sample: - subnet-aaaaaaaa - subnet-bbbbbbbb """ try: import botocore except ImportError: pass # Handled by AnsibleAWSModule from ansible.module_utils.common.dict_transformations import camel_dict_to_snake_dict from ansible_collections.amazon.aws.plugins.module_utils.botocore import is_boto3_error_code from ansible_collections.amazon.aws.plugins.module_utils.retries import AWSRetry from ansible_collections.community.aws.plugins.module_utils.modules import AnsibleCommunityAWSModule as AnsibleAWSModule def get_subnet_group(name): try: groups = client.describe_cache_subnet_groups( aws_retry=True, CacheSubnetGroupName=name, )["CacheSubnetGroups"] except is_boto3_error_code("CacheSubnetGroupNotFoundFault"): return None except ( botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError, ) as e: # pylint: disable=duplicate-except module.fail_json_aws(e, msg="Failed to describe subnet group") if not groups: return None if len(groups) > 1: module.fail_aws( msg="Found multiple matches for subnet group", cache_subnet_groups=camel_dict_to_snake_dict(groups), ) subnet_group = camel_dict_to_snake_dict(groups[0]) subnet_group["name"] = subnet_group["cache_subnet_group_name"] subnet_group["description"] = subnet_group["cache_subnet_group_description"] subnet_ids = list(s["subnet_identifier"] for s in subnet_group["subnets"]) subnet_group["subnet_ids"] = subnet_ids return subnet_group def create_subnet_group(name, description, subnets): if not subnets: module.fail_json(msg="At least one subnet must be provided when creating a subnet group") if module.check_mode: return True try: if not description: description = name client.create_cache_subnet_group( aws_retry=True, CacheSubnetGroupName=name, CacheSubnetGroupDescription=description, SubnetIds=subnets, ) return True except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to create subnet group") def update_subnet_group(subnet_group, name, description, subnets): update_params = dict() if description and subnet_group["description"] != description: update_params["CacheSubnetGroupDescription"] = description if subnets: old_subnets = set(subnet_group["subnet_ids"]) new_subnets = set(subnets) if old_subnets != new_subnets: update_params["SubnetIds"] = list(subnets) if not update_params: return False if module.check_mode: return True try: client.modify_cache_subnet_group( aws_retry=True, CacheSubnetGroupName=name, **update_params, ) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to update subnet group") return True def delete_subnet_group(name): if module.check_mode: return True try: client.delete_cache_subnet_group( aws_retry=True, CacheSubnetGroupName=name, ) return True except is_boto3_error_code("CacheSubnetGroupNotFoundFault"): # AWS is "eventually consistent", cope with the race conditions where # deletion hadn't completed when we ran describe return False except ( botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError, ) as e: # pylint: disable=duplicate-except module.fail_json_aws(e, msg="Failed to delete subnet group") def METHOD_NAME(): argument_spec = dict( state=dict(default="present", choices=["present", "absent"]), name=dict(required=True), description=dict(required=False), subnets=dict(required=False, type="list", elements="str"), ) global module global client module = AnsibleAWSModule( argument_spec=argument_spec, supports_check_mode=True, ) state = module.params.get("state") name = module.params.get("name").lower() description = module.params.get("description") subnets = module.params.get("subnets") client = module.client("elasticache", retry_decorator=AWSRetry.jittered_backoff()) subnet_group = get_subnet_group(name) changed = False if state == "present": if not subnet_group: result = create_subnet_group(name, description, subnets) changed |= result else: result = update_subnet_group(subnet_group, name, description, subnets) changed |= result subnet_group = get_subnet_group(name) else: if subnet_group: result = delete_subnet_group(name) changed |= result subnet_group = None module.exit_json(changed=changed, cache_subnet_group=subnet_group) if __name__ == "__main__": METHOD_NAME()
3,338
actions
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Jira issue tracker.""" import datetime from urllib.parse import urljoin from dateutil import parser from clusterfuzz._internal.config import db_config from clusterfuzz._internal.issue_management import issue_tracker from clusterfuzz._internal.issue_management.jira.issue_tracker_manager import \ IssueTrackerManager class Issue(issue_tracker.Issue): """Represents an issue.""" def __init__(self, itm, jira_issue): self.itm = itm self.jira_issue = jira_issue self._ccs = issue_tracker.LabelStore(self.itm.get_watchers(self.jira_issue)) self._components = issue_tracker.LabelStore( self.jira_issue.fields.components) self._labels = issue_tracker.LabelStore(self.jira_issue.fields.labels) @property def issue_tracker(self): """The IssueTracker for this issue.""" return IssueTracker(self.itm) @property def id(self): """The issue identifier.""" return int(self.jira_issue.id) @property def key(self): """The issue key (e.g. FUZZ-123).""" return self.jira_issue.key @property def title(self): """The issue title.""" return self.jira_issue.fields.summary @title.setter def title(self, new_title): self.jira_issue.fields.summary = new_title @property def reporter(self): """The issue reporter.""" return self.jira_issue.fields.reporter @reporter.setter def reporter(self, new_reporter): self.jira_issue.fields.reporter = new_reporter @property def is_open(self): """Whether the issue is open.""" return self.jira_issue.fields.resolution is None @property def closed_time(self): return datetime.datetime.fromtimestamp( parser.parse(self.jira_issue.fields.resolutiondate).timestamp()) @property def status(self): """The issue status.""" return self.jira_issue.fields.status @status.setter def status(self, new_status): self.jira_issue.fields.status = new_status @property def body(self): """The issue body.""" return self.jira_issue.fields.description @body.setter def body(self, new_body): self.jira_issue.fields.description = new_body @property def assignee(self): """The issue assignee.""" return self.jira_issue.fields.assignee @assignee.setter def assignee(self, new_assignee): self.jira_issue.fields.assignee = new_assignee @property def ccs(self): """The issue CC list.""" return self._ccs @property def labels(self): """The issue labels list.""" return self._labels @property def components(self): """The issue component list.""" return self._components # FIXME: Add support for notify arguments def save(self, new_comment=None, notify=True): # pylint: disable=unused-argument """Save the issue.""" # add new comment to issue if new_comment: self.itm.client.add_comment(self.jira_issue, new_comment) for added in self._components.added: self.components.add(added) for removed in self._components.removed: self.components.remove(removed) self._components.reset_tracking() for added in self._ccs.added: self.ccs.add(added) for removed in self._ccs.removed: self.ccs.remove(removed) self._ccs.reset_tracking() for added in self._labels.added: self.labels.add(added) for removed in self._labels.removed: self.labels.remove(removed) self._labels.reset_tracking() self.itm.save(self) @property def METHOD_NAME(self): return () @property def merged_into(self): pass class IssueTracker(issue_tracker.IssueTracker): """Issue tracker interface.""" def __init__(self, itm): self._itm = itm @property def project(self): return self._itm.project_name def new_issue(self): jira_issue = self._itm.create() return Issue(self._itm, jira_issue) def get_issue(self, issue_id): jira_issue = self._itm.get_issue(issue_id) if not jira_issue: return None return Issue(self._itm, jira_issue) def find_issues(self, keywords=None, only_open=False): """Find issues.""" search_text = 'project = {project_name}' + _get_search_text(keywords) search_text = search_text.format(project_name=self._itm.project_name) if only_open: search_text += ' AND resolution = Unresolved' issues = self._itm.get_issues(search_text) return [Issue(self._itm, issue) for issue in issues] def issue_url(self, issue_id): """Return the issue URL with the given ID.""" issue = self.get_issue(issue_id) if not issue: return None config = db_config.get() url = urljoin(config.jira_url, f'/browse/{str(issue.key)}') return url def find_issues_url(self, keywords=None, only_open=None): search_text = 'project = {project_name}' + _get_search_text(keywords) search_text = search_text.format(project_name=self._itm.project_name) if only_open: search_text += ' AND resolution = Unresolved' config = db_config.get() return urljoin(config.jira_url, f'/issues/?jql={search_text}') def _get_issue_tracker_manager_for_project(project_name): """Return jira issue tracker manager for the given project.""" # If there is no issue tracker set, bail out. if not project_name or project_name == 'disabled': return None return IssueTrackerManager(project_name=project_name) def get_issue_tracker(project_name, config): # pylint: disable=unused-argument """Get the issue tracker for the project name.""" itm = _get_issue_tracker_manager_for_project(project_name) if itm is None: return None return IssueTracker(itm) def _get_search_text(keywords): """Get search text.""" jira_special_characters = '+-&|!(){}[]^~*?\\:' search_text = '' for keyword in keywords: # Replace special characters with whitespace as they are not allowed and # can't be searched for. stripped_keyword = keyword for special_character in jira_special_characters: stripped_keyword = stripped_keyword.replace(special_character, ' ') # coalesce multiple spaces into one. stripped_keyword = ' '.join(stripped_keyword.split()) search_text += f' AND text ~ "{stripped_keyword}"' return search_text
3,339
test can launch
# pylint: disable=protected-access, unused-argument, no-value-for-parameter import os from unittest import mock, TestCase from .test_common import setUp from radical.pilot.agent.launch_method.aprun import APRun # ------------------------------------------------------------------------------ # class TestAPRun(TestCase): # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) @mock.patch('radical.utils.which', return_value='/usr/bin/aprun') def test_init_from_scratch(self, mocked_which, mocked_init): lm_aprun = APRun('', {}, None, None, None) lm_info = lm_aprun._init_from_scratch({}, '') self.assertEqual(lm_info['command'], mocked_which()) # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) def test_init_from_info(self, mocked_init): lm_aprun = APRun('', {}, None, None, None) lm_info = {'env' : {'test_env': 'test_value'}, 'env_sh' : 'env/lm_aprun.sh', 'command': '/usr/bin/aprun'} lm_aprun._init_from_info(lm_info) self.assertEqual(lm_aprun._env, lm_info['env']) self.assertEqual(lm_aprun._env_sh, lm_info['env_sh']) self.assertEqual(lm_aprun._command, lm_info['command']) lm_info['command'] = '' with self.assertRaises(AssertionError): lm_aprun._init_from_info(lm_info) # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) def METHOD_NAME(self, mocked_init): lm_aprun = APRun('', {}, None, None, None) self.assertTrue(lm_aprun.can_launch( task={'description': {'executable': 'script'}})[0]) self.assertFalse(lm_aprun.can_launch( task={'description': {'executable': None}})[0]) # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) def test_get_launcher_env(self, mocked_init): lm_aprun = APRun('', {}, None, None, None) lm_info = {'env' : {'test_env': 'test_value'}, 'env_sh' : 'env/lm_aprun.sh', 'command': '/usr/bin/aprun'} lm_aprun._init_from_info(lm_info) self.assertIn('. $RP_PILOT_SANDBOX/%s' % lm_info['env_sh'], lm_aprun.get_launcher_env()) # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) @mock.patch('radical.utils.Logger') def test_get_launch_rank_cmds(self, mocked_logger, mocked_init): lm_aprun = APRun('', {}, None, None, None) lm_aprun._log = mocked_logger lm_aprun._command = 'aprun' test_cases = setUp('lm', 'aprun') for task, result in test_cases: if 'cores_per_node' in task.get('slots', {}): os.environ['SAGA_PPN'] = str(task['slots']['cores_per_node']) command = lm_aprun.get_launch_cmds(task, '') self.assertEqual(command, result['launch_cmd'], msg=task['uid']) command = lm_aprun.get_exec(task) self.assertEqual(command, result['rank_exec'], msg=task['uid']) os.environ.pop('SAGA_PPN', None) # -------------------------------------------------------------------------- # @mock.patch.object(APRun, '__init__', return_value=None) def test_get_rank_cmd(self, mocked_init): lm_aprun = APRun('', {}, None, None, None) command = lm_aprun.get_rank_cmd() self.assertIn('$MPI_RANK', command) self.assertIn('$PMIX_RANK', command) self.assertIn('$ALPS_APP_PE', command) # ------------------------------------------------------------------------------ if __name__ == '__main__': tc = TestAPRun() tc.test_init_from_scratch() tc.test_init_from_info() tc.METHOD_NAME() tc.test_get_launcher_env() tc.test_get_launch_rank_cmds() tc.test_get_rank_cmd() # ------------------------------------------------------------------------------ # pylint: enable=protected-access, unused-argument, no-value-for-parameter
3,340
detector id
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetFindingIdsResult', 'AwaitableGetFindingIdsResult', 'get_finding_ids', 'get_finding_ids_output', ] @pulumi.output_type class GetFindingIdsResult: """ A collection of values returned by getFindingIds. """ def __init__(__self__, METHOD_NAME=None, finding_ids=None, has_findings=None, id=None): if METHOD_NAME and not isinstance(METHOD_NAME, str): raise TypeError("Expected argument 'detector_id' to be a str") pulumi.set(__self__, "detector_id", METHOD_NAME) if finding_ids and not isinstance(finding_ids, list): raise TypeError("Expected argument 'finding_ids' to be a list") pulumi.set(__self__, "finding_ids", finding_ids) if has_findings and not isinstance(has_findings, bool): raise TypeError("Expected argument 'has_findings' to be a bool") pulumi.set(__self__, "has_findings", has_findings) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) @property @pulumi.getter(name="detectorId") def METHOD_NAME(self) -> str: return pulumi.get(self, "detector_id") @property @pulumi.getter(name="findingIds") def finding_ids(self) -> Sequence[str]: """ A list of finding IDs for the specified detector. """ return pulumi.get(self, "finding_ids") @property @pulumi.getter(name="hasFindings") def has_findings(self) -> bool: """ Indicates whether findings are present for the specified detector. """ return pulumi.get(self, "has_findings") @property @pulumi.getter def id(self) -> str: return pulumi.get(self, "id") class AwaitableGetFindingIdsResult(GetFindingIdsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetFindingIdsResult( METHOD_NAME=self.METHOD_NAME, finding_ids=self.finding_ids, has_findings=self.has_findings, id=self.id) def get_finding_ids(METHOD_NAME: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetFindingIdsResult: """ Data source for managing an AWS GuardDuty Finding Ids. ## Example Usage ### Basic Usage ```python import pulumi import pulumi_aws as aws example = aws.guardduty.get_finding_ids(detector_id=aws_guardduty_detector["example"]["id"]) ``` :param str detector_id: ID of the GuardDuty detector. """ __args__ = dict() __args__['detectorId'] = METHOD_NAME opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('aws:guardduty/getFindingIds:getFindingIds', __args__, opts=opts, typ=GetFindingIdsResult).value return AwaitableGetFindingIdsResult( METHOD_NAME=pulumi.get(__ret__, 'detector_id'), finding_ids=pulumi.get(__ret__, 'finding_ids'), has_findings=pulumi.get(__ret__, 'has_findings'), id=pulumi.get(__ret__, 'id')) @_utilities.lift_output_func(get_finding_ids) def get_finding_ids_output(METHOD_NAME: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetFindingIdsResult]: """ Data source for managing an AWS GuardDuty Finding Ids. ## Example Usage ### Basic Usage ```python import pulumi import pulumi_aws as aws example = aws.guardduty.get_finding_ids(detector_id=aws_guardduty_detector["example"]["id"]) ``` :param str detector_id: ID of the GuardDuty detector. """ ...
3,341
solve mat
# This file is part of PyOP2 # # PyOP2 is Copyright (c) 2012-2014, Imperial College London and # others. Please see the AUTHORS file in the main source directory for # a full list of copyright holders. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * The name of Imperial College London or that of other # contributors may not be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTERS # ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import loopy from pyop2.codegen.rep2loopy import SolveCallable, INVCallable import numpy as np from pyop2 import op2 from pyop2.configuration import target @pytest.fixture def s(): return op2.Set(1) @pytest.fixture def zero_mat(s): return op2.Dat(s ** (2, 2), [[0.0, 0.0], [0.0, 0.0]]) @pytest.fixture def inv_mat(s): return op2.Dat(s ** (2, 2), [[1.0, 2.0], [3.0, 4.0]]) @pytest.fixture def zero_vec(s): return op2.Dat(s ** (2, 1), [0.0, 0.0]) @pytest.fixture def METHOD_NAME(s): d = op2.Dat(s ** (2, 2), [[2.0, 1.0], [-3.0, 2.0]]) return d @pytest.fixture def solve_vec(s): return op2.Dat(s ** (2, 1), [1.0, 0.0]) class TestCallables: def test_inverse_callable(self, zero_mat, inv_mat): loopy.set_caching_enabled(False) k = loopy.make_kernel( ["{ : }"], """ B[:,:] = inverse(A[:,:]) """, [loopy.GlobalArg('B', dtype=np.float64, shape=(2, 2)), loopy.GlobalArg('A', dtype=np.float64, shape=(2, 2))], target=target, name="callable_kernel", lang_version=(2018, 2)) k = loopy.register_callable(k, INVCallable.name, INVCallable()) code = loopy.generate_code_v2(k).device_code() code.replace('void callable_kernel', 'static void callable_kernel') loopykernel = op2.Kernel(code, "callable_kernel", ldargs=["-llapack"]) op2.par_loop(loopykernel, zero_mat.dataset.set, zero_mat(op2.WRITE), inv_mat(op2.READ)) expected = np.linalg.inv(inv_mat.data) assert np.allclose(expected, zero_mat.data) def test_solve_callable(self, zero_vec, METHOD_NAME, solve_vec): loopy.set_caching_enabled(False) k = loopy.make_kernel( ["{ : }"], """ x[:] = solve(A[:,:], b[:]) """, [loopy.GlobalArg('x', dtype=np.float64, shape=(2, )), loopy.GlobalArg('A', dtype=np.float64, shape=(2, 2)), loopy.GlobalArg('b', dtype=np.float64, shape=(2, ),)], target=target, name="callable_kernel2", lang_version=(2018, 2)) k = loopy.register_callable(k, SolveCallable.name, SolveCallable()) code = loopy.generate_code_v2(k).device_code() code.replace('void callable_kernel2', 'static void callable_kernel2') loopykernel = op2.Kernel(code, "callable_kernel2", ldargs=["-llapack"]) args = [zero_vec(op2.READ), METHOD_NAME(op2.READ), solve_vec(op2.WRITE)] op2.par_loop(loopykernel, METHOD_NAME.dataset.set, *args) expected = np.linalg.solve(METHOD_NAME.data, solve_vec.data) assert np.allclose(expected, zero_vec.data)
3,342
test content hash differs
from collections.abc import ( Callable, Mapping, ) from reconcile.saas_auto_promotions_manager.subscriber import ( CONTENT_HASH_LENGTH, ConfigHash, Subscriber, ) from .data_keys import ( DESIRED_REF, DESIRED_TARGET_HASHES, NAMESPACE_REF, TARGET_FILE_PATH, ) def test_can_compute_content_hash(subscriber_builder: Callable[[Mapping], Subscriber]): subscribers = [ subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ], } ), subscriber_builder( { NAMESPACE_REF: "other_namespace", TARGET_FILE_PATH: "other_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ], } ), ] assert ( len(Subscriber.combined_content_hash(subscribers=subscribers)) == CONTENT_HASH_LENGTH ) def test_content_hash_is_deterministic( subscriber_builder: Callable[[Mapping], Subscriber] ): subscribers = [ subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ], } ), subscriber_builder( { NAMESPACE_REF: "other_namespace", TARGET_FILE_PATH: "other_saas", DESIRED_REF: "old", DESIRED_TARGET_HASHES: [ ConfigHash(channel="h", target_config_hash="i", parent_saas="j"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ], } ), ] hashes = set() for _ in range(3): hashes.add(Subscriber.combined_content_hash(subscribers=subscribers)) assert len(hashes) == 1 def METHOD_NAME(subscriber_builder: Callable[[Mapping], Subscriber]): subscriber_a = subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ], } ) subscriber_b = subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_other_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ], } ) assert Subscriber.combined_content_hash( [subscriber_a] ) != Subscriber.combined_content_hash([subscriber_b]) def test_content_hash_equals(subscriber_builder: Callable[[Mapping], Subscriber]): subscriber_a = subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: [ ConfigHash(channel="a", target_config_hash="b", parent_saas="c"), ConfigHash(channel="e", target_config_hash="f", parent_saas="g"), ConfigHash(channel="h", target_config_hash="i", parent_saas="j"), ConfigHash(channel="k", target_config_hash="l", parent_saas="m"), ], } ) subscriber_b = subscriber_builder( { NAMESPACE_REF: "some_namespace", TARGET_FILE_PATH: "some_saas", DESIRED_REF: "new", DESIRED_TARGET_HASHES: list( reversed( [ ConfigHash( channel="a", target_config_hash="b", parent_saas="c" ), ConfigHash( channel="e", target_config_hash="f", parent_saas="g" ), ConfigHash( channel="h", target_config_hash="i", parent_saas="j" ), ConfigHash( channel="k", target_config_hash="l", parent_saas="m" ), ] ) ), } ) assert Subscriber.combined_content_hash( [subscriber_a, subscriber_b] ) == Subscriber.combined_content_hash([subscriber_b, subscriber_a])
3,343
is client error
from enum import IntEnum class codes(IntEnum): """HTTP status codes and reason phrases Status codes from the following RFCs are all observed: * RFC 7231: Hypertext Transfer Protocol (HTTP/1.1), obsoletes 2616 * RFC 6585: Additional HTTP Status Codes * RFC 3229: Delta encoding in HTTP * RFC 4918: HTTP Extensions for WebDAV, obsoletes 2518 * RFC 5842: Binding Extensions to WebDAV * RFC 7238: Permanent Redirect * RFC 2295: Transparent Content Negotiation in HTTP * RFC 2774: An HTTP Extension Framework * RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2) * RFC 2324: Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0) * RFC 7725: An HTTP Status Code to Report Legal Obstacles * RFC 8297: An HTTP Status Code for Indicating Hints * RFC 8470: Using Early Data in HTTP """ def __new__(cls, value: int, phrase: str = "") -> "codes": obj = int.__new__(cls, value) # type: ignore obj._value_ = value obj.phrase = phrase # type: ignore return obj def __str__(self) -> str: return str(self.value) @classmethod def get_reason_phrase(cls, value: int) -> str: try: return codes(value).phrase # type: ignore except ValueError: return "" @classmethod def is_redirect(cls, value: int) -> bool: return value in ( # 301 (Cacheable redirect. Method may change to GET.) codes.MOVED_PERMANENTLY, # 302 (Uncacheable redirect. Method may change to GET.) codes.FOUND, # 303 (Client should make a GET or HEAD request.) codes.SEE_OTHER, # 307 (Equiv. 302, but retain method) codes.TEMPORARY_REDIRECT, # 308 (Equiv. 301, but retain method) codes.PERMANENT_REDIRECT, ) @classmethod def is_error(cls, value: int) -> bool: return 400 <= value <= 599 @classmethod def METHOD_NAME(cls, value: int) -> bool: return 400 <= value <= 499 @classmethod def is_server_error(cls, value: int) -> bool: return 500 <= value <= 599 # informational CONTINUE = 100, "Continue" SWITCHING_PROTOCOLS = 101, "Switching Protocols" PROCESSING = 102, "Processing" EARLY_HINTS = 103, "Early Hints" # success OK = 200, "OK" CREATED = 201, "Created" ACCEPTED = 202, "Accepted" NON_AUTHORITATIVE_INFORMATION = 203, "Non-Authoritative Information" NO_CONTENT = 204, "No Content" RESET_CONTENT = 205, "Reset Content" PARTIAL_CONTENT = 206, "Partial Content" MULTI_STATUS = 207, "Multi-Status" ALREADY_REPORTED = 208, "Already Reported" IM_USED = 226, "IM Used" # redirection MULTIPLE_CHOICES = 300, "Multiple Choices" MOVED_PERMANENTLY = 301, "Moved Permanently" FOUND = 302, "Found" SEE_OTHER = 303, "See Other" NOT_MODIFIED = 304, "Not Modified" USE_PROXY = 305, "Use Proxy" TEMPORARY_REDIRECT = 307, "Temporary Redirect" PERMANENT_REDIRECT = 308, "Permanent Redirect" # client error BAD_REQUEST = 400, "Bad Request" UNAUTHORIZED = 401, "Unauthorized" PAYMENT_REQUIRED = 402, "Payment Required" FORBIDDEN = 403, "Forbidden" NOT_FOUND = 404, "Not Found" METHOD_NOT_ALLOWED = 405, "Method Not Allowed" NOT_ACCEPTABLE = 406, "Not Acceptable" PROXY_AUTHENTICATION_REQUIRED = 407, "Proxy Authentication Required" REQUEST_TIMEOUT = 408, "Request Timeout" CONFLICT = 409, "Conflict" GONE = 410, "Gone" LENGTH_REQUIRED = 411, "Length Required" PRECONDITION_FAILED = 412, "Precondition Failed" REQUEST_ENTITY_TOO_LARGE = 413, "Request Entity Too Large" REQUEST_URI_TOO_LONG = 414, "Request-URI Too Long" UNSUPPORTED_MEDIA_TYPE = 415, "Unsupported Media Type" REQUESTED_RANGE_NOT_SATISFIABLE = 416, "Requested Range Not Satisfiable" EXPECTATION_FAILED = 417, "Expectation Failed" IM_A_TEAPOT = 418, "I'm a teapot" MISDIRECTED_REQUEST = 421, "Misdirected Request" UNPROCESSABLE_ENTITY = 422, "Unprocessable Entity" LOCKED = 423, "Locked" FAILED_DEPENDENCY = 424, "Failed Dependency" TOO_EARLY = 425, "Too Early" UPGRADE_REQUIRED = 426, "Upgrade Required" PRECONDITION_REQUIRED = 428, "Precondition Required" TOO_MANY_REQUESTS = 429, "Too Many Requests" REQUEST_HEADER_FIELDS_TOO_LARGE = 431, "Request Header Fields Too Large" UNAVAILABLE_FOR_LEGAL_REASONS = 451, "Unavailable For Legal Reasons" # server errors INTERNAL_SERVER_ERROR = 500, "Internal Server Error" NOT_IMPLEMENTED = 501, "Not Implemented" BAD_GATEWAY = 502, "Bad Gateway" SERVICE_UNAVAILABLE = 503, "Service Unavailable" GATEWAY_TIMEOUT = 504, "Gateway Timeout" HTTP_VERSION_NOT_SUPPORTED = 505, "HTTP Version Not Supported" VARIANT_ALSO_NEGOTIATES = 506, "Variant Also Negotiates" INSUFFICIENT_STORAGE = 507, "Insufficient Storage" LOOP_DETECTED = 508, "Loop Detected" NOT_EXTENDED = 510, "Not Extended" NETWORK_AUTHENTICATION_REQUIRED = 511, "Network Authentication Required" # Include lower-case styles for `requests` compatibility. for code in codes: setattr(codes, code._name_.lower(), int(code))
3,344
init models
# SPDX-License-Identifier: LGPL-3.0-or-later import json import os import unittest import numpy as np from common import ( j_loader, run_dp, tests_path, ) from deepmd.env import ( GLOBAL_NP_FLOAT_PRECISION, tf, ) from deepmd.train.run_options import ( RunOptions, ) from deepmd.train.trainer import ( DPTrainer, ) from deepmd.utils.argcheck import ( normalize, ) from deepmd.utils.compat import ( update_deepmd_input, ) from deepmd.utils.data_system import ( DeepmdDataSystem, ) if GLOBAL_NP_FLOAT_PRECISION == np.float32: default_places = 4 else: default_places = 10 def _file_delete(file): if os.path.isdir(file): os.rmdir(file) elif os.path.isfile(file): os.remove(file) def METHOD_NAME(): data_file = str(tests_path / os.path.join("init_frz_model", "data")) frozen_model = str(tests_path / "init_frz_se_a_spin.pb") ckpt = str(tests_path / "init_frz_se_a_spin.ckpt") run_opt_ckpt = RunOptions(init_model=ckpt, log_level=20) run_opt_frz = RunOptions(init_frz_model=frozen_model, log_level=20) INPUT = str(tests_path / "input.json") jdata = j_loader("test_model_spin.json") jdata["training"]["save_ckpt"] = ckpt jdata["training"]["training_data"]["systems"] = [str(tests_path / "model_spin/")] jdata["training"]["validation_data"]["systems"] = [str(tests_path / "model_spin/")] del jdata["training"]["set_prefix"] with open(INPUT, "w") as fp: json.dump(jdata, fp, indent=4) ret = run_dp("dp train " + INPUT) np.testing.assert_equal(ret, 0, "DP train failed!") ret = run_dp("dp freeze -c " + str(tests_path) + " -o " + frozen_model) np.testing.assert_equal(ret, 0, "DP freeze failed!") jdata = update_deepmd_input(jdata, warning=True, dump="input_v2_compat.json") jdata = normalize(jdata) model_ckpt = DPTrainer(jdata, run_opt=run_opt_ckpt) jdata = j_loader("test_model_spin.json") jdata["training"]["save_ckpt"] = ckpt jdata["training"]["training_data"]["systems"] = [str(tests_path / "model_spin/")] jdata["training"]["validation_data"]["systems"] = [str(tests_path / "model_spin/")] del jdata["training"]["set_prefix"] jdata["loss"]["type"] = "ener_spin" jdata = update_deepmd_input(jdata, warning=True, dump="input_v2_compat.json") jdata = normalize(jdata) model_frz = DPTrainer(jdata, run_opt=run_opt_frz) rcut = model_ckpt.model.get_rcut() type_map = model_ckpt.model.get_type_map() data = DeepmdDataSystem( systems=jdata["training"]["training_data"]["systems"], batch_size=1, test_size=1, rcut=rcut, type_map=type_map, trn_all_set=True, ) data_requirement = { "energy": { "ndof": 1, "atomic": False, "must": False, "high_prec": True, "type_sel": None, "repeat": 1, "default": 0.0, }, "force": { "ndof": 3, "atomic": True, "must": False, "high_prec": False, "type_sel": None, "repeat": 1, "default": 0.0, }, "virial": { "ndof": 9, "atomic": False, "must": False, "high_prec": False, "type_sel": None, "repeat": 1, "default": 0.0, }, "atom_ener": { "ndof": 1, "atomic": True, "must": False, "high_prec": False, "type_sel": None, "repeat": 1, "default": 0.0, }, "atom_pref": { "ndof": 1, "atomic": True, "must": False, "high_prec": False, "type_sel": None, "repeat": 3, "default": 0.0, }, } data.add_dict(data_requirement) stop_batch = jdata["training"]["numb_steps"] return INPUT, ckpt, frozen_model, model_ckpt, model_frz, data, stop_batch ( INPUT, CKPT, FROZEN_MODEL, CKPT_TRAINER, FRZ_TRAINER, VALID_DATA, STOP_BATCH, ) = METHOD_NAME() class TestInitFrzModelR(unittest.TestCase): @classmethod def setUpClass(cls): cls.dp_ckpt = CKPT_TRAINER cls.dp_frz = FRZ_TRAINER cls.valid_data = VALID_DATA cls.stop_batch = STOP_BATCH @classmethod def tearDownClass(cls): _file_delete(INPUT) _file_delete(FROZEN_MODEL) _file_delete("out.json") _file_delete(str(tests_path / "checkpoint")) _file_delete(CKPT + ".meta") _file_delete(CKPT + ".index") _file_delete(CKPT + ".data-00000-of-00001") _file_delete(CKPT + "-0.meta") _file_delete(CKPT + "-0.index") _file_delete(CKPT + "-0.data-00000-of-00001") _file_delete(CKPT + "-1.meta") _file_delete(CKPT + "-1.index") _file_delete(CKPT + "-1.data-00000-of-00001") _file_delete("input_v2_compat.json") _file_delete("lcurve.out") def test_single_frame(self): valid_batch = self.valid_data.get_batch() natoms = valid_batch["natoms_vec"] tf.reset_default_graph() self.dp_ckpt.build(self.valid_data, self.stop_batch) self.dp_ckpt._init_session() feed_dict_ckpt = self.dp_ckpt.get_feed_dict(valid_batch, is_training=False) ckpt_rmse_ckpt = self.dp_ckpt.loss.eval( self.dp_ckpt.sess, feed_dict_ckpt, natoms ) tf.reset_default_graph() self.dp_frz.build(self.valid_data, self.stop_batch) self.dp_frz._init_session() feed_dict_frz = self.dp_frz.get_feed_dict(valid_batch, is_training=False) ckpt_rmse_frz = self.dp_frz.loss.eval(self.dp_frz.sess, feed_dict_frz, natoms) tf.reset_default_graph() # check values np.testing.assert_almost_equal( ckpt_rmse_ckpt["rmse_e"], ckpt_rmse_frz["rmse_e"], default_places ) np.testing.assert_almost_equal( ckpt_rmse_ckpt["rmse_fr"], ckpt_rmse_frz["rmse_fr"], default_places ) np.testing.assert_almost_equal( ckpt_rmse_ckpt["rmse_fm"], ckpt_rmse_frz["rmse_fm"], default_places )
3,345
main
import os import argparse import json import pandas as pd from autogluon.multimodal import MultiModalPredictor from ray import tune from dataset import ( AdultTabularDataset, AloiTabularDataset, CaliforniaHousingTabularDataset, CovtypeTabularDataset, EpsilonTabularDataset, HelenaTabularDataset, HiggsSmallTabularDataset, JannisTabularDataset, MicrosoftTabularDataset, YahooTabularDataset, YearTabularDataset, ) TABULAR_DATASETS = { "ad": AdultTabularDataset, "al": AloiTabularDataset, "ca": CaliforniaHousingTabularDataset, "co": CovtypeTabularDataset, "ep": EpsilonTabularDataset, "he": HelenaTabularDataset, "hi": HiggsSmallTabularDataset, "ja": JannisTabularDataset, "mi": MicrosoftTabularDataset, "ya": YahooTabularDataset, "ye": YearTabularDataset, } automm_hyperparameters = { "data.categorical.convert_to_text": False, "model.names": ["categorical_transformer", "numerical_transformer", "fusion_transformer"], "model.numerical_transformer.embedding_arch": ["linear"], "env.batch_size": 128, "env.per_gpu_batch_size": 128, "env.eval_batch_size_ratio": 1, "env.num_workers": 12, "env.num_workers_evaluation": 12, "env.num_gpus": 1, "optimization.max_epochs": 2000, # Specify a large value to train until convergence "optimization.weight_decay": 1.0e-5, "optimization.lr_choice": None, "optimization.lr_schedule": "polynomial_decay", "optimization.warmup_steps": 0.0, "optimization.patience": 20, "optimization.top_k": 3, } hyperparameter_tune_kwargs = { "searcher": "random", "scheduler": "FIFO", "num_trials": 50, } def METHOD_NAME(args): if args.gpu_id is not None: os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id assert args.dataset_name in TABULAR_DATASETS.keys(), "Unsupported dataset name." ### Dataset loading train_data = TABULAR_DATASETS[args.dataset_name]("train", args.dataset_dir) val_data = TABULAR_DATASETS[args.dataset_name]("val", args.dataset_dir) test_data = TABULAR_DATASETS[args.dataset_name]("test", args.dataset_dir) automm_hyperparameters["optimization.learning_rate"] = args.lr automm_hyperparameters["optimization.end_lr"] = args.end_lr if args.embedding_arch is not None: automm_hyperparameters["model.numerical_transformer.embedding_arch"] = args.embedding_arch tabular_hyperparameters = { "GBM": [ {}, {"extra_trees": True, "ag_args": {"name_suffix": "XT"}}, ], "CAT": {}, "XGB": {}, "AG_AUTOMM": automm_hyperparameters, } if args.mode == "single": ### model initialization predictor = MultiModalPredictor( label=train_data.label_column, problem_type=train_data.problem_type, eval_metric=train_data.metric, path=args.exp_dir, verbosity=4, ) ### model training predictor.fit( train_data=train_data.data, tuning_data=val_data.data, seed=args.seed, hyperparameters=automm_hyperparameters, ) ### model inference scores = predictor.evaluate(data=test_data.data, metrics=[test_data.metric]) with open(os.path.join(args.exp_dir, "scores.json"), "w") as f: json.dump(scores, f) print(scores) elif args.mode == "single_hpo": automm_hyperparameters["model.fusion_transformer.ffn_dropout"] = tune.uniform(0.0, 0.5) automm_hyperparameters["model.fusion_transformer.attention_dropout"] = tune.uniform(0.0, 0.5) automm_hyperparameters["model.fusion_transformer.residual_dropout"] = tune.uniform(0.0, 0.2) automm_hyperparameters["model.fusion_transformer.ffn_d_hidden"] = tune.randint(150, 300) automm_hyperparameters["model.numerical_transformer.ffn_d_hidden"] = tune.randint(150, 300) automm_hyperparameters["optimization.learning_rate"] = tune.uniform(0.00001, 0.001) automm_hyperparameters["optimization.end_lr"] = 1e-5 ### model initialization predictor = MultiModalPredictor( label=train_data.label_column, problem_type=train_data.problem_type, eval_metric=train_data.metric, path=args.exp_dir, verbosity=4, ) ### model training predictor.fit( train_data=train_data.data, tuning_data=val_data.data, seed=args.seed, hyperparameters=automm_hyperparameters, hyperparameter_tune_kwargs=hyperparameter_tune_kwargs, ) ### model inference scores = predictor.evaluate(data=test_data.data, metrics=[test_data.metric]) with open(os.path.join(args.exp_dir, "scores.json"), "w") as f: json.dump(scores, f) print(scores) elif args.mode == "weighted" or args.mode == "single_bag5" or args.mode == "stack5": if args.mode == "single_bag5": tabular_hyperparameters = { "AG_AUTOMM": automm_hyperparameters, } num_bag_folds, num_stack_levels = 5, 0 elif args.mode == "weighted": num_bag_folds, num_stack_levels = None, None elif args.mode == "stack5": num_bag_folds, num_stack_levels = 5, 1 else: raise NotImplementedError from autogluon.tabular import TabularPredictor predictor = TabularPredictor(eval_metric=train_data.metric, label=train_data.label_column, path=args.exp_dir) predictor.fit( train_data=train_data.data, tuning_data=val_data.data if num_bag_folds is None else None, hyperparameters=tabular_hyperparameters, num_bag_folds=num_bag_folds, num_stack_levels=num_stack_levels, ) leaderboard = predictor.leaderboard() leaderboard.to_csv(os.path.join(args.exp_dir, "leaderboard.csv")) else: raise NotImplementedError scores = predictor.evaluate(data=test_data.data) with open(os.path.join(args.exp_dir, "scores.json"), "w") as f: json.dump(scores, f) print(scores) predictions = predictor.predict(data=test_data.data) predictions.to_csv(os.path.join(args.exp_dir, "predictions.csv")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--gpu_id", default=None, type=str, help="Specify the GPU to use.") parser.add_argument("--dataset_name", default="ad", type=str, help="Specify the dataset to run the experinments.") parser.add_argument("--dataset_dir", default="./dataset", type=str, help="Path to the dataset.") parser.add_argument("--exp_dir", default=None, type=str, help="Path to the outputs.") parser.add_argument("--lr", default=1e-04, type=float, help="Initial learning rate.") parser.add_argument("--end_lr", default=1e-04, type=float, help="End learning rate.") parser.add_argument( "--mode", choices=["single", "single_hpo", "weighted", "single_bag5", "stack5"], default="single", help="Method to run with.", ) parser.add_argument("--seed", default=0, type=int) parser.add_argument( "--embedding_arch", type=str, nargs="+", default=None, help="Embedding architecture for numerical features in FT_Transformer.", ) args = parser.parse_args() if args.exp_dir is None: args.exp_dir = f"./results/{args.dataset_name}" METHOD_NAME(args)
3,346
get object name
import functools import inspect import re from typing import Callable, Iterable, List, Optional, Any, Union, TYPE_CHECKING import interactions.api.events as events from interactions.client.const import T from interactions.models.discord.enums import ComponentType if TYPE_CHECKING: from interactions.models.discord.components import BaseComponent __all__ = ( "escape_mentions", "find", "find_all", "get", "get_all", "wrap_partial", "get_parameters", "get_event_name", "get_object_name", "maybe_coroutine", "nulled_boolean_get", ) mention_reg = re.compile(r"@(everyone|here|[!&]?[0-9]{17,20})") camel_to_snake = re.compile(r"([A-Z]+)") def escape_mentions(content: str) -> str: """ Escape mentions that could ping someone in a string. !!! note This does not escape channel mentions as they do not ping anybody Args: content: The string to escape Returns: Processed string """ return mention_reg.sub("@\u200b\\1", content) def find(predicate: Callable[[T], bool], sequence: Iterable[T]) -> Optional[T]: """ Find the first element in a sequence that matches the predicate. ??? Hint "Example Usage:" ```python member = find(lambda m: m.name == "UserName", guild.members) ``` Args: predicate: A callable that returns a boolean value sequence: A sequence to be searched Returns: A match if found, otherwise None """ return next((el for el in sequence if predicate(el)), None) def find_all(predicate: Callable[[T], bool], sequence: Iterable[T]) -> List[T]: """ Find all elements in a sequence that match the predicate. ??? Hint "Example Usage:" ```python members = find_all(lambda m: m.name == "UserName", guild.members) ``` Args: predicate: A callable that returns a boolean value sequence: A sequence to be searched Returns: A list of matches """ return [el for el in sequence if predicate(el)] def get(sequence: Iterable[T], **kwargs: Any) -> Optional[T]: """ Find the first element in a sequence that matches all attrs. ??? Hint "Example Usage:" ```python channel = get(guild.channels, nsfw=False, category="General") ``` Args: sequence: A sequence to be searched **kwargs: Keyword arguments to search the sequence for Returns: A match if found, otherwise None """ if not kwargs: return sequence[0] for el in sequence: if any(not hasattr(el, attr) for attr in kwargs): continue if all(getattr(el, attr) == value for attr, value in kwargs.items()): return el return None def get_all(sequence: Iterable[T], **kwargs: Any) -> List[T]: """ Find all elements in a sequence that match all attrs. ??? Hint "Example Usage:" ```python channels = get_all(guild.channels, nsfw=False, category="General") ``` Args: sequence: A sequence to be searched **kwargs: Keyword arguments to search the sequence for Returns: A list of matches """ if not kwargs: return sequence matches = [] for el in sequence: if any(not hasattr(el, attr) for attr in kwargs): continue if all(getattr(el, attr) == value for attr, value in kwargs.items()): matches.append(el) return matches def wrap_partial(obj: Any, cls: Any) -> Callable: """ 🎁 Wraps a commands callback objects into partials. !!! note This is used internally, you shouldn't need to use this function Args: obj: The command object to process cls: The class to use in partials Returns: The original command object with its callback methods wrapped """ if obj.callback is None or isinstance(obj.callback, functools.partial): return obj if "_no_wrap" not in getattr(obj.callback, "__name__", ""): obj.callback = functools.partial(obj.callback, cls) if getattr(obj, "error_callback", None): obj.error_callback = functools.partial(obj.error_callback, cls) if getattr(obj, "pre_run_callback", None): obj.pre_run_callback = functools.partial(obj.pre_run_callback, cls) if getattr(obj, "post_run_callback", None): obj.post_run_callback = functools.partial(obj.post_run_callback, cls) if getattr(obj, "autocomplete_callbacks", None): obj.autocomplete_callbacks = {k: functools.partial(v, cls) for k, v in obj.autocomplete_callbacks.items()} if getattr(obj, "subcommands", None): obj.subcommands = {k: wrap_partial(v, cls) for k, v in obj.subcommands.items()} return obj def get_parameters(callback: Callable) -> dict[str, inspect.Parameter]: """ Gets all the parameters of a callback. Args: callback: The callback to get the parameters of Returns: A dictionary of parameters """ return {p.name: p for p in inspect.signature(callback).parameters.values()} @functools.lru_cache(maxsize=50) def get_event_name(event: Union[str, "events.BaseEvent"]) -> str: """ Get the event name smartly from an event class or string name. Args: event: The event to parse the name of Returns: The event name """ name = event if inspect.isclass(name) and issubclass(name, events.BaseEvent): name = name.__name__ # convert CamelCase to snake_case name = camel_to_snake.sub(r"_\1", name).lower() # remove any leading underscores name = name.lstrip("_") # remove any `on_` prefixes name = name.removeprefix("on_") return name def METHOD_NAME(x: Any) -> str: """ Gets the name of virtually any object. Args: x (Any): The object to get the name of. Returns: str: The name of the object. """ try: return x.__name__ except AttributeError: return repr(x) if hasattr(x, "__origin__") else x.__class__.__name__ async def maybe_coroutine(func: Callable, *args, **kwargs) -> Any: """Allows running either a coroutine or a function.""" if inspect.iscoroutinefunction(func): return await func(*args, **kwargs) return func(*args, **kwargs) def disable_components(*components: "BaseComponent") -> list["BaseComponent"]: """Disables all components in a list of components.""" for component in components: if component.type == ComponentType.ACTION_ROW: disable_components(*component.components) else: component.disabled = True return list(components) def nulled_boolean_get(data: dict[str, Any], key: str) -> bool: """ Gets a boolean value from a dictionary, but treats None as True. Args: data: The dictionary to get the value from key: The key to get the value from Returns: The boolean value of the key """ # discord tags are weird, when they are None they are True, when they are True they are True and when they are False they are False if key in data: return True if data[key] is None else bool(data[key]) return False
3,347
show search
# -*- coding: utf-8 -*- # vStream https://github.com/Kodi-vStream/venom-xbmc-addons import re from resources.lib.gui.hoster import cHosterGui from resources.lib.gui.gui import cGui from resources.lib.handler.inputParameterHandler import cInputParameterHandler from resources.lib.handler.outputParameterHandler import cOutputParameterHandler from resources.lib.handler.requestHandler import cRequestHandler from resources.lib.util import cUtil from resources.lib.parser import cParser from resources.lib.comaddon import progress, siteManager SITE_IDENTIFIER = 'watchvf' SITE_NAME = 'WatchVF' SITE_DESC = 'Films en streaming.' URL_MAIN = siteManager().getUrlMain(SITE_IDENTIFIER) URL_SEARCH = (URL_MAIN + '?s=', 'showMovies') URL_SEARCH_MOVIES = (URL_SEARCH[0], 'showMovies') FUNCTION_SEARCH = 'showMovies' MOVIE_MOVIE = (True, 'load') MOVIE_NEWS = (URL_MAIN + 'movies/', 'showMovies') MOVIE_GENRES = (True, 'showGenres') def load(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', 'http://venom/') oGui.addDir(SITE_IDENTIFIER, 'showSearch', 'Recherche', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_NEWS[1], 'Films (Derniers ajouts)', 'news.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_GENRES[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_GENRES[1], 'Films (Genres)', 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def METHOD_NAME(): oGui = cGui() sSearchText = oGui.showKeyBoard() if sSearchText: sUrl = URL_SEARCH[0] + sSearchText showMovies(sUrl) oGui.setEndOfDirectory() return def showGenres(): oGui = cGui() liste = [['Action', 'action'], ['Aventure', 'aventure'], ['Comédie', 'comedie'], ['Drame', 'drame'], ['Epouvante Horreur', 'epouvante-horreur'], ['Policier', 'policier'], ['Romance', 'romance'], ['Thriller', 'thriller']] oOutputParameterHandler = cOutputParameterHandler() for sTitle, sUrl in liste: oOutputParameterHandler.addParameter('siteUrl', URL_MAIN + 'film-genre/' + sUrl + '/') oGui.addDir(SITE_IDENTIFIER, 'showMovies', sTitle, 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMovies(sSearch=''): oGui = cGui() if sSearch: oUtil = cUtil() sUrl = sSearch.replace(' ', '+') + '&post_type=movie' sSearch = oUtil.CleanName(sSearch.replace(URL_SEARCH[0], '')) else: oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() oParser = cParser() sHtmlContent = oParser.abParse(sHtmlContent, '', 'class="widget-area sidebar-area movie-sidebar') sPattern = 'poster"><a href="([^"]+).+?src="([^"]+).+?title">([^<]+)' aResult = oParser.parse(sHtmlContent, sPattern) if not aResult[0]: oGui.addText(SITE_IDENTIFIER) else: total = len(aResult[1]) progress_ = progress().VScreate(SITE_NAME) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: progress_.VSupdate(progress_, total) if progress_.iscanceled(): break sUrl = aEntry[0] sThumb = aEntry[1] sTitle = re.sub('^Voir', '', aEntry[2].replace(' Film en streaming complet', '')) # Si recherche et trop de résultat, on nettoie if sSearch and total > 3: if not oUtil.CheckOccurence(sSearch, sTitle): continue oOutputParameterHandler.addParameter('siteUrl', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oGui.addMovie(SITE_IDENTIFIER, 'showHosters', sTitle, '', sThumb, '', oOutputParameterHandler) progress_.VSclose(progress_) if not sSearch: sNextPage, sPaging = __checkForNextPage(sHtmlContent) if sNextPage: oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', sNextPage) oGui.addNext(SITE_IDENTIFIER, 'showMovies', 'Page ' + sPaging, oOutputParameterHandler) oGui.setEndOfDirectory() def __checkForNextPage(sHtmlContent): oParser = cParser() sPattern = '>(\d+)</a></li>\s*<li><a class="next page-numbers" href="([^"]+)">Next Page' aResult = oParser.parse(sHtmlContent, sPattern) if aResult[0]: sNextPage = aResult[1][0][1] sNumberMax = aResult[1][0][0] sNumberNext = re.search('page.([0-9]+)', sNextPage).group(1) sPaging = sNumberNext + '/' + sNumberMax return sNextPage, sPaging return False, 'none' def showHosters(): oGui = cGui() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() oParser = cParser() sPattern = '<iframe.+?src=["\'](.+?)["\']' aResult = oParser.parse(sHtmlContent, sPattern) if not aResult[0]: oGui.addText(SITE_IDENTIFIER) if aResult[0]: for aEntry in aResult[1]: sHosterUrl = aEntry oHoster = cHosterGui().checkHoster(sHosterUrl) if oHoster: oHoster.setDisplayName(sMovieTitle) oHoster.setFileName(sMovieTitle) cHosterGui().showHoster(oGui, oHoster, sHosterUrl, sThumb) oGui.setEndOfDirectory()
3,348
flatten errors
import json from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple, Type, Union from .json import pydantic_encoder from .utils import Representation if TYPE_CHECKING: from typing_extensions import TypedDict from .config import BaseConfig from .types import ModelOrDc from .typing import ReprArgs Loc = Tuple[Union[int, str], ...] class _ErrorDictRequired(TypedDict): loc: Loc msg: str type: str class ErrorDict(_ErrorDictRequired, total=False): ctx: Dict[str, Any] __all__ = 'ErrorWrapper', 'ValidationError' class ErrorWrapper(Representation): __slots__ = 'exc', '_loc' def __init__(self, exc: Exception, loc: Union[str, 'Loc']) -> None: self.exc = exc self._loc = loc def loc_tuple(self) -> 'Loc': if isinstance(self._loc, tuple): return self._loc else: return (self._loc,) def __repr_args__(self) -> 'ReprArgs': return [('exc', self.exc), ('loc', self.loc_tuple())] # ErrorList is something like Union[List[Union[List[ErrorWrapper], ErrorWrapper]], ErrorWrapper] # but recursive, therefore just use: ErrorList = Union[Sequence[Any], ErrorWrapper] class ValidationError(Representation, ValueError): __slots__ = 'raw_errors', 'model', '_error_cache' def __init__(self, errors: Sequence[ErrorList], model: 'ModelOrDc') -> None: self.raw_errors = errors self.model = model self._error_cache: Optional[List['ErrorDict']] = None def errors(self) -> List['ErrorDict']: if self._error_cache is None: try: config = self.model.__config__ # type: ignore except AttributeError: config = self.model.__pydantic_model__.__config__ # type: ignore self._error_cache = list(METHOD_NAME(self.raw_errors, config)) return self._error_cache def json(self, *, indent: Union[None, int, str] = 2) -> str: return json.dumps(self.errors(), indent=indent, default=pydantic_encoder) def __str__(self) -> str: errors = self.errors() no_errors = len(errors) return ( f'{no_errors} validation error{"" if no_errors == 1 else "s"} for {self.model.__name__}\n' f'{display_errors(errors)}' ) def __repr_args__(self) -> 'ReprArgs': return [('model', self.model.__name__), ('errors', self.errors())] def display_errors(errors: List['ErrorDict']) -> str: return '\n'.join(f'{_display_error_loc(e)}\n {e["msg"]} ({_display_error_type_and_ctx(e)})' for e in errors) def _display_error_loc(error: 'ErrorDict') -> str: return ' -> '.join(str(e) for e in error['loc']) def _display_error_type_and_ctx(error: 'ErrorDict') -> str: t = 'type=' + error['type'] ctx = error.get('ctx') if ctx: return t + ''.join(f'; {k}={v}' for k, v in ctx.items()) else: return t def METHOD_NAME( errors: Sequence[Any], config: Type['BaseConfig'], loc: Optional['Loc'] = None ) -> Generator['ErrorDict', None, None]: for error in errors: if isinstance(error, ErrorWrapper): if loc: error_loc = loc + error.loc_tuple() else: error_loc = error.loc_tuple() if isinstance(error.exc, ValidationError): yield from METHOD_NAME(error.exc.raw_errors, config, error_loc) else: yield error_dict(error.exc, config, error_loc) elif isinstance(error, list): yield from METHOD_NAME(error, config, loc=loc) else: raise RuntimeError(f'Unknown error object: {error}') def error_dict(exc: Exception, config: Type['BaseConfig'], loc: 'Loc') -> 'ErrorDict': type_ = get_exc_type(exc.__class__) msg_template = config.error_msg_templates.get(type_) or getattr(exc, 'msg_template', None) ctx = exc.__dict__ if msg_template: msg = msg_template.format(**ctx) else: msg = str(exc) d: 'ErrorDict' = {'loc': loc, 'msg': msg, 'type': type_} if ctx: d['ctx'] = ctx return d _EXC_TYPE_CACHE: Dict[Type[Exception], str] = {} def get_exc_type(cls: Type[Exception]) -> str: # slightly more efficient than using lru_cache since we don't need to worry about the cache filling up try: return _EXC_TYPE_CACHE[cls] except KeyError: r = _get_exc_type(cls) _EXC_TYPE_CACHE[cls] = r return r def _get_exc_type(cls: Type[Exception]) -> str: if issubclass(cls, AssertionError): return 'assertion_error' base_name = 'type_error' if issubclass(cls, TypeError) else 'value_error' if cls in (TypeError, ValueError): # just TypeError or ValueError, no extra code return base_name # if it's not a TypeError or ValueError, we just take the lowercase of the exception name # no chaining or snake case logic, use "code" for more complex error types. code = getattr(cls, 'code', None) or cls.__name__.replace('Error', '').lower() return base_name + '.' + code
3,349
test static
import unittest from unittest.mock import patch import numpy as np import xarray as xr from data.calculated import CalculatedArray, CalculatedData from data.variable import Variable from data.variable_list import VariableList class TestCalculatedData(unittest.TestCase): @patch("data.sqlite_database.SQLiteDatabase.get_data_variables") def test_nothing(self, mock_query_func): mock_query_func.return_value = VariableList( [ Variable( "votemper", "Sea water potential temperature", "Kelvin", sorted(["time", "depth", "latitude", "longitude"]), ) ] ) with CalculatedImpl("tests/testdata/mercator_test.nc") as data: self.assertEqual(len(data.variables), 1) v = data.get_dataset_variable("votemper") self.assertEqual(xr.DataArray, type(v)) self.assertAlmostEqual(v[0, 0, 17, 816].values, 271.1796875) @patch("data.sqlite_database.SQLiteDatabase.get_data_variables") @patch("data.sqlite_database.SQLiteDatabase.get_variable_dims") def test_new_variable(self, mock_get_var_dims, mock_query_func): mock_get_var_dims.return_value = ["time", "depth", "latitude", "longitude"] mock_query_func.return_value = VariableList( [ Variable( "votemper", "Sea water potential temperature", "Kelvin", sorted(["time", "depth", "latitude", "longitude"]), ) ] ) calculated = { "votemper_new": { "equation": "votemper * 2", "long_name": "Temperature", "dims": ("time", "depth", "latitude", "longitude"), "units": "degree_C", "valid_min": -273.15, "valid_max": 999.0, } } with CalculatedImpl( "tests/testdata/mercator_test.nc", calculated=calculated ) as data: self.assertEqual(len(data.variables), 2) v = data.get_dataset_variable("votemper_new") self.assertAlmostEqual(v[0, 0, 17, 816].values, 2.0 * 271.1796875) self.assertEqual(v.attrs.long_name, "Temperature") self.assertEqual(v.shape, (1, 50, 850, 1800)) @patch("data.sqlite_database.SQLiteDatabase.get_data_variables") def test_override(self, mock_query_func): mock_query_func.return_value = VariableList( [ Variable( "votemper", "Sea water potential temperature", "Kelvin", sorted(["time", "depth", "latitude", "longitude"]), ) ] ) calculated = { "votemper": { "equation": "votemper -273.15", "units": "degree_C", "dims": ("time", "depth", "latitude", "longitude"), } } with CalculatedImpl( "tests/testdata/mercator_test.nc", calculated=calculated ) as data: self.assertEqual(len(data.variables), 1) v = data.get_dataset_variable("votemper") self.assertAlmostEqual(v[0, 0, 17, 816].values, 271.1796875 - 273.15) self.assertEqual(v.attrs.long_name, "Sea water potential temperature") self.assertEqual(v.shape, (1, 50, 850, 1800)) def test_calculated_var_wo_dims_raises(self): calculated = { "votemper": { "equation": "votemper -273.15", "units": "degree_C", } } with CalculatedImpl( "tests/testdata/mercator_test.nc", calculated=calculated ) as data: with self.assertRaises(KeyError): data.get_dataset_variable("votemper") class CalculatedImpl(CalculatedData): def __init__(self, url: str, **kwargs): super().__init__(url, **kwargs) def get_point(self): pass def get_profile(self): pass def get_raw_point(self): pass def depths(self): pass class TestCalculatedArray(unittest.TestCase): def test_attrs(self): attrs = {"my_attr": 420} dataset = xr.Dataset() array = CalculatedArray(dataset, "3 * 5", [], attrs) self.assertEqual(array[:].attrs, attrs) self.assertEqual(array.attrs, attrs) def METHOD_NAME(self): dataset = xr.Dataset() array = CalculatedArray(dataset, "3 * 5", []) self.assertEqual(array[0], 15) def test_passthrough(self): dataset = xr.Dataset({"var": ("x", [1, 2, 3, 4, 5])}) array = CalculatedArray(dataset, "var", ["x"]) self.assertEqual(array[0], 1) self.assertEqual(array[2], 3) self.assertEqual(array[4], 5) def test_single_expression(self): dataset = xr.Dataset({"var": ("x", [1, 2, 3, 4, 5])}) array = CalculatedArray(dataset, "var * 5", ["x"]) self.assertEqual(array[0], 5) self.assertEqual(array[2], 15) self.assertEqual(array[4], 25) def test_multiple_expression(self): dataset = xr.Dataset( { "var": ("x", [1, 2, 3, 4, 5]), "var2": ("x", [5, 4, 3, 2, 1]), } ) array = CalculatedArray(dataset, "var + var2", ["x"]) self.assertEqual(array[0], 6) self.assertEqual(array[2], 6) self.assertEqual(array[4], 6) def test_different_dimensions(self): dataset = xr.Dataset( { "var": ("x", [1, 2]), "var2": ("y", [3, 4]), "var3": (("x", "y"), [[5, 6], [7, 8]]), "var4": (("y", "x"), [[9, 10], [11, 12]]), } ) array = CalculatedArray(dataset, "var + var2", ["x"]) self.assertIsNan(array[0]) array = CalculatedArray(dataset, "var3 + var4", ["x"]) self.assertIsNan(array[0, 0]) array = CalculatedArray(dataset, "var + var3", ["x", "y"]) self.assertEqual(array[0, 0], 6) self.assertEqual(array[0, 1], 7) self.assertEqual(array[1, 0], 9) self.assertEqual(array[1, 1], 10) def assertIsNan(self, value): v = value return self.assertTrue(np.isnan(v))
3,350
parse account
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Hadoop Utilities Functions """ import os import sys import json import time import math import collections import numpy as np HADOOP_BIN = None FS_NAME = None FS_UGI = None ERR_LOG = "./hadoop_err.log" Ddfs = " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=300000 -Ddfs.delete.trash=1" def set_hadoop_account(hadoop_bin, fs_name, fs_ugi): """set hadoop account""" global HADOOP_BIN global FS_NAME global FS_UGI HADOOP_BIN = hadoop_bin FS_NAME = fs_name FS_UGI = fs_ugi def set_hadoop_err(err_log="./hadoop_err.log"): """set hadoop err file""" global ERR_LOG ERR_LOG = err_log def METHOD_NAME(hadoop_bin, fs_name, fs_ugi): """parse hadoop account""" is_local_account = not (hadoop_bin is None or fs_name is None or fs_ugi is None) is_global_account = not (HADOOP_BIN is None or FS_NAME is None or FS_UGI is None) if not is_local_account and not is_global_account: msg = "hadoop account should be setted before using hadoop commands." + \ " But got [hadoop_bin = %s], [fs_name = %s] and [fs_ugi = %s]" % \ (hadoop_bin, fs_name, fs_ugi) raise ValueError(msg) elif is_global_account: hadoop_bin = HADOOP_BIN fs_name = FS_NAME fs_ugi = FS_UGI return hadoop_bin, fs_name, fs_ugi def check_hadoop_path(path, hadoop_bin=None, fs_name=None, fs_ugi=None): """check hadoop path""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) if path.startswith("hdfs://") or path.startswith("afs://"): return path else: real_path = fs_name + path return real_path def make_base_cmd(hadoop_bin, fs_name, fs_ugi): """make base hadoop command""" cmd = "%s fs" % hadoop_bin cmd += " -D fs.default.name=%s" % fs_name cmd += " -D hadoop.job.ugi=%s" % fs_ugi cmd += Ddfs return cmd def ls(path, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop list""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) path = check_hadoop_path(path, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -ls %s" % path cmd += " | awk '{print $8}'" cmd += " 2>%s" % ERR_LOG filelist = os.popen(cmd).read().split() return filelist def mkdir(path, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop mkdir directory""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) path = check_hadoop_path(path, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -mkdir %s" % path cmd += " 2>%s" % ERR_LOG ret = os.system(cmd) return ret def exists(path, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop exists""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) path = check_hadoop_path(path, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -test -e " + path cmd += " 2>%s ; echo $?" % ERR_LOG ret = int(os.popen(cmd).read().strip()) ret = True if ret == 0 else False return ret def rm(path, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop remove""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) path = check_hadoop_path(path, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -rmr %s" % path cmd += " 2>%s" % ERR_LOG if exists(path): ret = os.system(cmd) return ret else: return 0 def open(filename, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop open file""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) filename = check_hadoop_path(filename, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -cat %s" % filename cmd += " 2>%s" % ERR_LOG p = os.popen(cmd) return p def gz_open(filename, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop open gz file""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) filename = check_hadoop_path(filename, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -text %s" % filename cmd += " 2>%s" % ERR_LOG p = os.popen(cmd) return p def mv(src, dest, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop move""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) src = check_hadoop_path(src, hadoop_bin, fs_name, fs_ugi) dest = check_hadoop_path(dest, hadoop_bin, fs_name, fs_ugi) if exists(dest): rm(dest) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -mv %s %s" % (src, dest) cmd += " 2>%s" % ERR_LOG ret = os.system(cmd) return ret def get(src, dest, hadoop_bin=None, fs_name=None, fs_ugi=None): """ hadoop download file""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) src = check_hadoop_path(src, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -get %s %s" % (src, dest) cmd += " 2>%s" % ERR_LOG ret = os.system(cmd) return ret def put(src, dest, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop upload file""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) dest = check_hadoop_path(dest, hadoop_bin, fs_name, fs_ugi) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -put %s %s" % (src, dest) cmd += " 2>%s" % ERR_LOG ret = os.system(cmd) return ret def replace(src, dest, hadoop_bin=None, fs_name=None, fs_ugi=None): """hadoop replace""" hadoop_bin, fs_name, fs_ugi = METHOD_NAME(hadoop_bin, fs_name, fs_ugi) src = check_hadoop_path(src, fs_name, fs_ugi) dest = check_hadoop_path(dest, fs_name, fs_ugi) tmp = dest + "_" + str(int(time.time())) cmd = make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -mv " + dest + " " + tmp + " && " cmd += make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -put " + src + " " + dest + " && " cmd += make_base_cmd(hadoop_bin, fs_name, fs_ugi) cmd += " -rmr " + tmp ret = os.system(cmd) return ret
3,351
test subrequests are logged as subrequest summary
import json import logging import unittest from unittest import mock from pyramid import testing from kinto.core import DEFAULT_SETTINGS, JsonLogFormatter, initialization from .support import BaseWebTest class RequestSummaryTest(BaseWebTest, unittest.TestCase): def setUp(self): super().setUp() config = testing.setUp() config.registry.settings = DEFAULT_SETTINGS initialization.setup_logging(config) patch = mock.patch("kinto.core.initialization.summary_logger") self.mocked = patch.start() self.addCleanup(patch.stop) def logger_context(self): args, kwargs = self.mocked.info.call_args_list[-1] return kwargs["extra"] def test_standard_info_is_bound(self): headers = {"User-Agent": "Smith", **self.headers} self.app.get("/", headers=headers) event_dict = self.logger_context() self.assertEqual(event_dict["path"], "/v0/") self.assertEqual(event_dict["method"], "GET") self.assertEqual(event_dict["code"], 200) self.assertEqual(event_dict["agent"], "Smith") self.assertIsNotNone(event_dict["uid"]) self.assertIsNotNone(event_dict["time"]) self.assertIsNotNone(event_dict["t"]) self.assertEqual(event_dict["errno"], 0) self.assertNotIn("lang", event_dict) self.assertNotIn("headers", event_dict) self.assertNotIn("body", event_dict) def test_userid_is_none_when_anonymous(self): self.app.get("/") event_dict = self.logger_context() self.assertNotIn("uid", event_dict) def test_lang_is_not_none_when_provided(self): self.app.get("/", headers={"Accept-Language": "fr-FR"}) event_dict = self.logger_context() self.assertEqual(event_dict["lang"], "fr-FR") def test_agent_is_not_none_when_provided(self): self.app.get("/", headers={"User-Agent": "webtest/x.y.z"}) event_dict = self.logger_context() self.assertEqual(event_dict["agent"], "webtest/x.y.z") def test_errno_is_specified_on_error(self): self.app.get("/unknown", status=404) event_dict = self.logger_context() self.assertEqual(event_dict["errno"], 111) def test_basic_authn_type_is_bound(self): app = self.make_app({"multiauth.policies": "basicauth"}) app.get("/mushrooms", headers={"Authorization": "Basic bWF0OjE="}) event_dict = self.logger_context() self.assertEqual(event_dict["authn_type"], "basicauth") def test_request_id_is_taken_from_headers(self): self.app.get("/", headers={"X-Request-Id": "foo"}) event_dict = self.logger_context() self.assertEqual(event_dict["rid"], "foo") def test_headers_and_body_when_level_is_debug(self): self.mocked.level = logging.DEBUG body = b'{"boom": 1}' self.app.post("/batch", body, headers=self.headers, status=400) event_dict = self.logger_context() self.assertEqual( event_dict["headers"], { "Authorization": "Basic bWF0OnNlY3JldA==", "Content-Length": "11", "Content-Type": "application/json", "Host": "localhost:80", }, ) self.assertEqual(event_dict["body"], body) self.maxDiff = None responseBody = event_dict["response"]["body"] self.assertEqual(json.loads(responseBody.decode("utf-8"))["error"], "Invalid parameters") responseHeaders = event_dict["response"]["headers"] self.assertEqual( sorted(responseHeaders.keys()), [ "Access-Control-Expose-Headers", "Content-Length", "Content-Security-Policy", "Content-Type", "X-Content-Type-Options", ], ) class BatchSubrequestTest(BaseWebTest, unittest.TestCase): def setUp(self): super().setUp() patch = mock.patch("kinto.core.views.batch.subrequest_logger") self.subrequest_mocked = patch.start() self.addCleanup(patch.stop) patch = mock.patch("kinto.core.initialization.summary_logger") self.summary_mocked = patch.start() self.addCleanup(patch.stop) headers = {**self.headers, "User-Agent": "readinglist"} body = { "requests": [ {"path": "/unknown", "headers": {"User-Agent": "foo"}}, {"path": "/unknown2"}, ] } self.app.post_json("/batch", body, headers=headers) def test_batch_global_request_is_preserved(self): args, kwargs = self.summary_mocked.info.call_args_list[-1] extra = kwargs["extra"] self.assertEqual(extra["code"], 200) self.assertEqual(extra["path"], "/v0/batch") self.assertEqual(extra["agent"], "readinglist") def test_batch_size_is_bound(self): args, kwargs = self.summary_mocked.info.call_args_list[-1] extra = kwargs["extra"] self.assertEqual(extra["batch_size"], 2) def test_subrequests_are_not_logged_as_request_summary(self): self.assertEqual(self.summary_mocked.info.call_count, 1) def METHOD_NAME(self): self.assertEqual(self.subrequest_mocked.info.call_count, 2) args, kwargs = self.subrequest_mocked.info.call_args_list[-1] extra = kwargs["extra"] self.assertEqual(extra["path"], "/v0/unknown2") args, kwargs = self.subrequest_mocked.info.call_args_list[-2] extra = kwargs["extra"] self.assertEqual(extra["path"], "/v0/unknown") class JsonFormatterTest(unittest.TestCase): def test_logger_name(self): JsonLogFormatter.init_from_settings({"project_name": "kintowe"}) f = JsonLogFormatter() record = logging.LogRecord("app.log", logging.DEBUG, "", 0, "coucou", (), None) result = f.format(record) logged = json.loads(result) self.assertEqual(logged["Logger"], "kintowe") self.assertEqual(logged["Type"], "app.log") # See https://github.com/mozilla/mozilla-cloud-services-logger/issues/2 self.assertEqual(logged["Fields"]["msg"], "coucou")
3,352
test condition decision
# ---------------------------------------------------------------------------- # Copyright (C) 2021-2023 Deepchecks (https://www.deepchecks.com) # # This file is part of Deepchecks. # Deepchecks is distributed under the terms of the GNU Affero General # Public License (version 3 or later). # You should have received a copy of the GNU Affero General Public License # along with Deepchecks. If not, see <http://www.gnu.org/licenses/>. # ---------------------------------------------------------------------------- # """Tests for BaseCheck class.""" import numpy as np # pylint: disable-all import pandas as pd from hamcrest import * from deepchecks import __version__ from deepchecks.core import BaseCheck, CheckResult, ConditionResult from deepchecks.core.condition import ConditionCategory from deepchecks.core.errors import DeepchecksValueError from deepchecks.tabular import Context, TrainTestCheck class DummyCheck(TrainTestCheck): def __init__(self, param1=1, param2=2, n_samples=None): super().__init__() self.param1 = param1 self.param2 = param2 self.n_samples = n_samples def run_logic(self, context): return CheckResult(context) def test_add_condition(): # Arrange & Act check = DummyCheck().add_condition('condition A', lambda r: ConditionCategory.PASS) # Assert assert_that(check._conditions.values(), contains_exactly( has_property('name', 'condition A') )) def test_add_multiple_conditions(): # Arrange & Act check = (DummyCheck().add_condition('condition A', lambda r: True) .add_condition('condition B', lambda r: False) .add_condition('condition C', lambda r: ConditionResult(ConditionCategory.PASS))) # Assert assert_that(check._conditions.values(), contains_exactly( has_property('name', 'condition A'), has_property('name', 'condition B'), has_property('name', 'condition C') )) def test_add_conditions_wrong_name(): # Arrange check = DummyCheck() # Act & Assert assert_that(calling(check.add_condition).with_args(333, lambda r: True), raises(DeepchecksValueError, 'Condition name must be of type str but got: int')) def test_add_conditions_wrong_value(): # Arrange check = DummyCheck() # Act & Assert assert_that(calling(check.add_condition).with_args('cond', 'string not function'), raises(DeepchecksValueError, 'Condition must be a function')) def test_clean_conditions(): # Arrange check = DummyCheck().add_condition('a', lambda r: True).add_condition('b', lambda r: True) # Act & Assert assert_that(check, has_property('_conditions', has_length(2))) check.clean_conditions() assert_that(check, has_property('_conditions', has_length(0))) def test_remove_condition(): # Arrange check = (DummyCheck().add_condition('condition A', lambda r: True) .add_condition('condition B', lambda r: False) .add_condition('condition C', lambda r: ConditionResult(ConditionCategory.PASS))) # Act & Assert check.remove_condition(1) assert_that(check._conditions.values(), has_items( has_property('name', 'condition A'), has_property('name', 'condition C') )) check.remove_condition(0) assert_that(check._conditions.values(), has_items(has_property('name', 'condition C'))) def test_remove_condition_index_error(): # Arrange check = DummyCheck().add_condition('a', lambda r: True).add_condition('b', lambda r: True) # Act & Assert assert_that(calling(check.remove_condition).with_args(7), raises(DeepchecksValueError, 'Index 7 of conditions does not exists')) def METHOD_NAME(): def raise_(ex): # just to test error in condition raise ex # Arrange check = (DummyCheck().add_condition('condition A', lambda _: True) .add_condition('condition B', lambda _: ConditionResult(ConditionCategory.FAIL, 'some result')) .add_condition('condition C', lambda _: ConditionResult(ConditionCategory.WARN, 'my actual')) .add_condition('condition F', lambda _: raise_(Exception('fail')))) decisions = check.conditions_decision(CheckResult(1)) # Assert assert_that(decisions, has_items( all_of( has_property('name', 'condition A'), has_property('category', ConditionCategory.PASS), has_property('details', '') ), all_of( has_property('name', 'condition B'), has_property('category', ConditionCategory.FAIL), has_property('details', 'some result') ), all_of( has_property('name', 'condition C'), has_property('category', ConditionCategory.WARN), has_property('details', 'my actual') ), all_of( has_property('name', 'condition F'), has_property('category', ConditionCategory.ERROR), has_property('details', 'Exception in condition: Exception: fail') ) )) def test_params(): # Arrange default_check = DummyCheck() parameter_check = DummyCheck(param2=5) all_param_check = DummyCheck(8, 9, 10) # Assert assert_that(default_check.params(), equal_to({})) assert_that(parameter_check.params(), equal_to({'param2': 5})) assert_that(all_param_check.params(), equal_to({'param1': 8, 'param2': 9, 'n_samples': 10})) assert_that(default_check.params(show_defaults=True), equal_to({'param1': 1, 'param2': 2, 'n_samples': None})) def test_config(): check = DummyCheck(param2=5).config() assert_that(check, equal_to({ 'module_name': f'{DummyCheck.__module__}', 'class_name': 'DummyCheck', 'version': __version__, 'params': {'param1': 1, 'param2': 5, 'n_samples': None}, })) assert_that(BaseCheck.from_config(check), instance_of(DummyCheck)) def test_pass_feature_importance_incorrect(iris_split_dataset): # Arrange check = DummyCheck() train, test = iris_split_dataset # Act & Assert assert_that(calling(check.run).with_args(train, test, feature_importance='wrong type'), raises(DeepchecksValueError, 'feature_importance must be given as a pandas.Series where the index is feature names and the ' 'value is the calculated importance')) def test_pass_feature_importance_correct(iris_split_dataset): # Arrange check = DummyCheck() train, test = iris_split_dataset feature_importance = pd.Series(data=np.random.rand(len(train.features)), index=train.features) # Act result = check.run(train, test, feature_importance=feature_importance) context: Context = result.value # Assert assert_that(context._calculated_importance, is_(True)) assert_that(context._feature_importance is not None)
3,353
test xpathbuilder with eval
""" Tests of the XPathBuilder class. """ import pytest from lxml import etree TEST_INPXML_PATH = 'fleur/Max-R5/FePt_film_SSFT_LO/files/inp2.xml' def test_xpathbuilder(): """ Test the basic behaviour of the XPathBuilder class. """ from masci_tools.util.xml.xpathbuilder import XPathBuilder simple_xpath = '/test/xpath/simple' xpath = XPathBuilder(simple_xpath) assert xpath.path == simple_xpath xpath.add_filter('xpath', {'index': -2}) with pytest.raises(ValueError): xpath.add_filter('not-existing', {'index': -3}) assert xpath.path == '/test/xpath[last() - $xpath_index]/simple' assert str(xpath) == '/test/xpath[last() - 1]/simple' assert xpath.path_variables == {'xpath_index': 1} xpath = XPathBuilder(simple_xpath, strict=True) with pytest.raises(ValueError): str(xpath) xpath = XPathBuilder(etree.XPath(simple_xpath), compile_path=True, smart_strings=True) xpath.add_filter('xpath', {'index': -2}) assert isinstance(xpath.path, etree.XPath) assert str(xpath) == '/test/xpath[last() - 1]/simple' with pytest.raises(ValueError): xpath = XPathBuilder(etree.XPath(simple_xpath), smart_strings=True) @pytest.mark.parametrize('simple_xpath,filters,expected', [ ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'index': -1 } }, 'Pt-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'index': { '==': -1 } } }, 'Pt-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'index': { '<': -1 } } }, 'Fe-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'index': { '>=': 2 } } }, 'Pt-1'), ('/fleurInput/atomSpecies/species/@name', { 'species': { '/mtSphere/@radius': { '>=': 2.0 } } }, ['Fe-1', 'Pt-1']), ('/fleurInput/atomSpecies/species/mtSphere/@radius', { 'species': { 'name': { '==': 'Fe-1' } } }, '2.20000000'), ('/fleurInput/atomSpecies/species/@name', { 'species': { '/mtSphere/@radius': { '==': '2.20000000' } } }, ['Fe-1', 'Pt-1']), ('/fleurInput/atomSpecies/species/@name', { 'species': { 'has': './lo' } }, ['Fe-1', 'Pt-1']), ('/fleurInput/atomSpecies/species/@name', { 'species': { 'has-not': './ldaU' } }, ['Fe-1', 'Pt-1']), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'filmPos/@label': { 'contains': '22' } } }, 'Fe-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'filmPos/@label': { 'not-contains': '22' } } }, 'Pt-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'and': [{ 'filmPos/@label': { 'not-contains': '22' } }, { 'force/@relaxXYZ': 'TTT' }] } }, 'Pt-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'or': [{ 'filmPos/@label': { 'not-contains': '22' } }, { 'filmPos/@label': { 'contains': '22' } }] } }, ['Fe-1', 'Pt-1']), ('/fleurInput/atomSpecies/species/@name', { 'species': { './lo': { 'number-nodes': { '>': 1 } } } }, 'Fe-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { ('relPos/@label', 'filmPos/@label'): { 'not-contains': '22' } } }, 'Pt-1'), ('/fleurInput/atomSpecies/species/@name', { 'species': { 'name': { 'starts-with': 'P' } } }, 'Pt-1'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { ('relPos/@label', 'filmPos/@label'): { 'ends-with': '22' } } }, 'Fe-1'), ('/fleurInput/atomSpecies/species/lo/@n', { 'lo': { 'l': { 'in': [0, 1] } } }, ['3', '3', '5']), ('/fleurInput/atomSpecies/species/lo/@n', { 'lo': { 'l': { 'not-in': [0, 2] } } }, ['3', '5']), ('/fleurInput/atomSpecies/species/electronConfig/coreConfig/text()', { 'coreConfig': '[Ne]' }, '[Ne]'), ('/fleurInput/atomGroups/atomGroup/@species', { 'atomGroup': { 'species': { 'string-length': { '>=': 3 } } } }, ['Fe-1', 'Pt-1']), ]) def METHOD_NAME(load_inpxml, simple_xpath, filters, expected): """ Test the xpathbuilder with a variety of different Xpath expressions and filters """ from masci_tools.util.xml.xpathbuilder import XPathBuilder from masci_tools.util.xml.common_functions import eval_xpath xmltree, _ = load_inpxml(TEST_INPXML_PATH, absolute=False) xpath = XPathBuilder(simple_xpath, filters=filters) print(f'Complex XPath: {str(xpath)}') res = eval_xpath(xmltree, xpath) assert res == expected assert str(xpath) != simple_xpath # make sure the path is not the same as the original
3,354
implements bool
# flake8: noqa # This whole file is full of lint errors import codecs import sys import operator import functools import warnings try: import builtins except ImportError: import __builtin__ as builtins PY2 = sys.version_info[0] == 2 WIN = sys.platform.startswith('win') _identity = lambda x: x if PY2: unichr = unichr text_type = unicode string_types = (str, unicode) integer_types = (int, long) iterkeys = lambda d, *args, **kwargs: d.iterkeys(*args, **kwargs) itervalues = lambda d, *args, **kwargs: d.itervalues(*args, **kwargs) iteritems = lambda d, *args, **kwargs: d.iteritems(*args, **kwargs) iterlists = lambda d, *args, **kwargs: d.iterlists(*args, **kwargs) iterlistvalues = lambda d, *args, **kwargs: d.iterlistvalues(*args, **kwargs) int_to_byte = chr iter_bytes = iter exec('def reraise(tp, value, tb=None):\n raise tp, value, tb') def fix_tuple_repr(obj): def __repr__(self): cls = self.__class__ return '%s(%s)' % (cls.__name__, ', '.join( '%s=%r' % (field, self[index]) for index, field in enumerate(cls._fields) )) obj.__repr__ = __repr__ return obj def implements_iterator(cls): cls.next = cls.__next__ del cls.__next__ return cls def implements_to_string(cls): cls.__unicode__ = cls.__str__ cls.__str__ = lambda x: x.__unicode__().encode('utf-8') return cls def native_string_result(func): def wrapper(*args, **kwargs): return func(*args, **kwargs).encode('utf-8') return functools.update_wrapper(wrapper, func) def METHOD_NAME(cls): cls.__nonzero__ = cls.__bool__ del cls.__bool__ return cls from itertools import imap, izip, ifilter range_type = xrange from StringIO import StringIO from cStringIO import StringIO as BytesIO NativeStringIO = BytesIO def make_literal_wrapper(reference): return _identity def normalize_string_tuple(tup): """Normalizes a string tuple to a common type. Following Python 2 rules, upgrades to unicode are implicit. """ if any(isinstance(x, text_type) for x in tup): return tuple(to_unicode(x) for x in tup) return tup def try_coerce_native(s): """Try to coerce a unicode string to native if possible. Otherwise, leave it as unicode. """ try: return to_native(s) except UnicodeError: return s wsgi_get_bytes = _identity def wsgi_decoding_dance(s, charset='utf-8', errors='replace'): return s.decode(charset, errors) def wsgi_encoding_dance(s, charset='utf-8', errors='replace'): if isinstance(s, bytes): return s return s.encode(charset, errors) def to_bytes(x, charset=sys.getdefaultencoding(), errors='strict'): if x is None: return None if isinstance(x, (bytes, bytearray, buffer)): return bytes(x) if isinstance(x, unicode): return x.encode(charset, errors) raise TypeError('Expected bytes') def to_native(x, charset=sys.getdefaultencoding(), errors='strict'): if x is None or isinstance(x, str): return x return x.encode(charset, errors) else: unichr = chr text_type = str string_types = (str, ) integer_types = (int, ) iterkeys = lambda d, *args, **kwargs: iter(d.keys(*args, **kwargs)) itervalues = lambda d, *args, **kwargs: iter(d.values(*args, **kwargs)) iteritems = lambda d, *args, **kwargs: iter(d.items(*args, **kwargs)) iterlists = lambda d, *args, **kwargs: iter(d.lists(*args, **kwargs)) iterlistvalues = lambda d, *args, **kwargs: iter(d.listvalues(*args, **kwargs)) int_to_byte = operator.methodcaller('to_bytes', 1, 'big') iter_bytes = functools.partial(map, int_to_byte) def reraise(tp, value, tb=None): if value.__traceback__ is not tb: raise value.with_traceback(tb) raise value fix_tuple_repr = _identity implements_iterator = _identity implements_to_string = _identity METHOD_NAME = _identity native_string_result = _identity imap = map izip = zip ifilter = filter range_type = range from io import StringIO, BytesIO NativeStringIO = StringIO _latin1_encode = operator.methodcaller('encode', 'latin1') def make_literal_wrapper(reference): if isinstance(reference, text_type): return _identity return _latin1_encode def normalize_string_tuple(tup): """Ensures that all types in the tuple are either strings or bytes. """ tupiter = iter(tup) is_text = isinstance(next(tupiter, None), text_type) for arg in tupiter: if isinstance(arg, text_type) != is_text: raise TypeError('Cannot mix str and bytes arguments (got %s)' % repr(tup)) return tup try_coerce_native = _identity wsgi_get_bytes = _latin1_encode def wsgi_decoding_dance(s, charset='utf-8', errors='replace'): return s.encode('latin1').decode(charset, errors) def wsgi_encoding_dance(s, charset='utf-8', errors='replace'): if isinstance(s, text_type): s = s.encode(charset) return s.decode('latin1', errors) def to_bytes(x, charset=sys.getdefaultencoding(), errors='strict'): if x is None: return None if isinstance(x, (bytes, bytearray, memoryview)): # noqa return bytes(x) if isinstance(x, str): return x.encode(charset, errors) raise TypeError('Expected bytes') def to_native(x, charset=sys.getdefaultencoding(), errors='strict'): if x is None or isinstance(x, str): return x return x.decode(charset, errors) def to_unicode(x, charset=sys.getdefaultencoding(), errors='strict', allow_none_charset=False): if x is None: return None if not isinstance(x, bytes): return text_type(x) if charset is None and allow_none_charset: return x return x.decode(charset, errors)
3,355
test parse timestamp with timezone invalid timezone
from __future__ import annotations import string import hypothesis as h import hypothesis.strategies as st import parsy import pytest import ibis.expr.datatypes as dt import ibis.tests.strategies as its from ibis.common.annotations import ValidationError @pytest.mark.parametrize( ("spec", "expected"), [ ("boolean", dt.boolean), ("int8", dt.int8), ("int16", dt.int16), ("int32", dt.int32), ("int64", dt.int64), ("int", dt.int64), ("uint8", dt.uint8), ("uint16", dt.uint16), ("uint32", dt.uint32), ("uint64", dt.uint64), ("float16", dt.float16), ("float32", dt.float32), ("float64", dt.float64), ("float", dt.float64), ("string", dt.string), ("binary", dt.binary), ("date", dt.date), ("time", dt.time), ("timestamp", dt.timestamp), ("point", dt.point), ("linestring", dt.linestring), ("polygon", dt.polygon), ("multilinestring", dt.multilinestring), ("multipoint", dt.multipoint), ("multipolygon", dt.multipolygon), ], ) def test_primitive_from_string(spec, expected): assert dt.dtype(spec) == expected @pytest.mark.parametrize( ("spec", "expected"), [ ["decimal", dt.Decimal(None, None)], ["decimal(10, 3)", dt.Decimal(10, 3)], ["bignumeric", dt.Decimal(76, 38)], ["bigdecimal", dt.Decimal(76, 38)], ["bignumeric(1, 1)", dt.Decimal(1, 1)], ["bigdecimal(1, 1)", dt.Decimal(1, 1)], ], ) def test_parse_decimal(spec, expected): assert dt.dtype(spec) == expected @pytest.mark.parametrize( "case", [ "decimal(", "decimal()", "decimal(3)", "decimal(,)", "decimal(3,)", "decimal(3,", ], ) def test_parse_decimal_failure(case): with pytest.raises(parsy.ParseError): dt.dtype(case) @pytest.mark.parametrize("spec", ["varchar", "varchar(10)", "char", "char(10)"]) def test_parse_char_varchar(spec): assert dt.dtype(spec) == dt.string @pytest.mark.parametrize( "spec", ["varchar(", "varchar)", "varchar()", "char(", "char)", "char()"] ) def test_parse_char_varchar_invalid(spec): with pytest.raises(parsy.ParseError): dt.dtype(spec) def test_parse_array_token_error(): with pytest.raises(parsy.ParseError): dt.dtype("array<string>>") def test_parse_struct(): orders = """array<struct< oid: int64, status: string, totalprice: decimal(12, 2), order_date: string, items: array<struct< iid: int64, name: string, price: decimal(12, 2), discount_perc: decimal(12, 2), shipdate: string, : bool >> >>""" expected = dt.Array( dt.Struct.from_tuples( [ ("oid", dt.int64), ("status", dt.string), ("totalprice", dt.Decimal(12, 2)), ("order_date", dt.string), ( "items", dt.Array( dt.Struct.from_tuples( [ ("iid", dt.int64), ("name", dt.string), ("price", dt.Decimal(12, 2)), ("discount_perc", dt.Decimal(12, 2)), ("shipdate", dt.string), ("", dt.boolean), ] ) ), ), ] ) ) assert dt.dtype(orders) == expected def test_struct_with_string_types(): result = dt.Struct.from_tuples( [ ("a", "map<double, string>"), ("b", "array<map<string, array<int32>>>"), ("c", "array<string>"), ("d", "int8"), ] ) assert result == dt.Struct.from_tuples( [ ("a", dt.Map(dt.double, dt.string)), ("b", dt.Array(dt.Map(dt.string, dt.Array(dt.int32)))), ("c", dt.Array(dt.string)), ("d", dt.int8), ] ) def test_array_with_string_value_types(): assert dt.Array("int32") == dt.Array(dt.int32) assert dt.Array(dt.Array("array<map<string, double>>")) == ( dt.Array(dt.Array(dt.Array(dt.Map(dt.string, dt.double)))) ) def test_map_with_string_value_types(): assert dt.Map("int32", "double") == dt.Map(dt.int32, dt.double) assert dt.Map("int32", "array<double>") == dt.Map(dt.int32, dt.Array(dt.double)) def test_parse_empty_map_failure(): with pytest.raises(parsy.ParseError): dt.dtype("map<>") def test_parse_map_allow_non_primitive_keys(): assert dt.dtype("map<array<string>, double>") == dt.Map( dt.Array(dt.string), dt.double ) def test_parse_timestamp_with_timezone_single_quote(): t = dt.dtype("timestamp('US/Eastern')") assert isinstance(t, dt.Timestamp) assert t.timezone == "US/Eastern" def test_parse_timestamp_with_timezone_double_quote(): t = dt.dtype("timestamp('US/Eastern')") assert isinstance(t, dt.Timestamp) assert t.timezone == "US/Eastern" def METHOD_NAME(): ts = dt.dtype("timestamp('US/Ea')") assert str(ts) == "timestamp('US/Ea')" @pytest.mark.parametrize("scale", range(10)) @pytest.mark.parametrize("tz", ["UTC", "America/New_York"]) def test_parse_timestamp_with_scale(scale, tz): expected = dt.Timestamp(timezone=tz, scale=scale) typestring = f"timestamp({tz!r}, {scale:d})" assert dt.parse(typestring) == expected assert str(expected) == typestring @pytest.mark.parametrize("scale", range(10)) def test_parse_timestamp_with_scale_no_tz(scale): assert dt.parse(f"timestamp({scale:d})") == dt.Timestamp(scale=scale) @pytest.mark.parametrize( "unit", [ "Y", "Q", "M", "W", "D", # date units "h", "m", "s", "ms", "us", "ns", # time units ], ) def test_parse_interval(unit): definition = f"interval('{unit}')" assert dt.Interval(unit) == dt.dtype(definition) @pytest.mark.parametrize("unit", ["X", "unsupported"]) def test_parse_interval_with_invalid_unit(unit): definition = f"interval('{unit}')" with pytest.raises(ValidationError): dt.dtype(definition) @pytest.mark.parametrize( "case", [ "timestamp(US/Ea)", "timestamp('US/Eastern\")", "timestamp(\"US/Eastern')", "interval(Y)", "interval('Y\")", "interval(\"Y')", ], ) def test_parse_temporal_with_invalid_string_argument(case): with pytest.raises(parsy.ParseError): dt.dtype(case) def test_parse_time(): assert dt.dtype("time").equals(dt.time) def test_parse_null(): assert dt.parse("null") == dt.null # corresponds to its.all_dtypes() but without: # - geospacial types, the string representation is different from what the parser expects # - struct types, the generated struct field names contain special characters field_names = st.text( alphabet=st.characters( whitelist_characters=string.ascii_letters + string.digits, whitelist_categories=(), ) ) roundtrippable_dtypes = st.deferred( lambda: ( its.primitive_dtypes() | its.string_like_dtypes() | its.temporal_dtypes() | its.interval_dtype() | its.variadic_dtypes() | its.struct_dtypes(names=field_names) | its.array_dtypes(roundtrippable_dtypes) | its.map_dtypes(roundtrippable_dtypes, roundtrippable_dtypes) ) ) @h.given(roundtrippable_dtypes) def test_parse_dtype_roundtrip(dtype): assert dt.dtype(str(dtype)) == dtype
3,356
teardown
# -*- coding: utf-8 -*- """ jinja2.testsuite ~~~~~~~~~~~~~~~~ All the unittests of Jinja2. These tests can be executed by either running run-tests.py using multiple Python versions at the same time. :copyright: (c) 2010 by the Jinja Team. :license: BSD, see LICENSE for more details. """ import os import re import sys import unittest from traceback import format_exception from jinja2 import loaders from jinja2._compat import PY2 here = os.path.dirname(os.path.abspath(__file__)) dict_loader = loaders.DictLoader({ 'justdict.html': 'FOO' }) package_loader = loaders.PackageLoader('jinja2.testsuite.res', 'templates') filesystem_loader = loaders.FileSystemLoader(here + '/res/templates') function_loader = loaders.FunctionLoader({'justfunction.html': 'FOO'}.get) choice_loader = loaders.ChoiceLoader([dict_loader, package_loader]) prefix_loader = loaders.PrefixLoader({ 'a': filesystem_loader, 'b': dict_loader }) class JinjaTestCase(unittest.TestCase): ### use only these methods for testing. If you need standard ### unittest method, wrap them! def setup(self): pass def METHOD_NAME(self): pass def setUp(self): self.setup() def tearDown(self): self.METHOD_NAME() def assert_equal(self, a, b): return self.assertEqual(a, b) def assert_raises(self, *args, **kwargs): return self.assertRaises(*args, **kwargs) def assert_traceback_matches(self, callback, expected_tb): try: callback() except Exception as e: tb = format_exception(*sys.exc_info()) if re.search(expected_tb.strip(), ''.join(tb)) is None: raise self.fail('Traceback did not match:\n\n%s\nexpected:\n%s' % (''.join(tb), expected_tb)) else: self.fail('Expected exception') def find_all_tests(suite): """Yields all the tests and their names from a given suite.""" suites = [suite] while suites: s = suites.pop() try: suites.extend(s) except TypeError: yield s, '%s.%s.%s' % ( s.__class__.__module__, s.__class__.__name__, s._testMethodName ) class BetterLoader(unittest.TestLoader): """A nicer loader that solves two problems. First of all we are setting up tests from different sources and we're doing this programmatically which breaks the default loading logic so this is required anyways. Secondly this loader has a nicer interpolation for test names than the default one so you can just do ``run-tests.py ViewTestCase`` and it will work. """ def getRootSuite(self): return suite() def loadTestsFromName(self, name, module=None): root = self.getRootSuite() if name == 'suite': return root all_tests = [] for testcase, testname in find_all_tests(root): if testname == name or \ testname.endswith('.' + name) or \ ('.' + name + '.') in testname or \ testname.startswith(name + '.'): all_tests.append(testcase) if not all_tests: raise LookupError('could not find test case for "%s"' % name) if len(all_tests) == 1: return all_tests[0] rv = unittest.TestSuite() for test in all_tests: rv.addTest(test) return rv def suite(): from jinja2.testsuite import ext, filters, tests, core_tags, \ loader, inheritance, imports, lexnparse, security, api, \ regression, debug, utils, bytecode_cache, doctests suite = unittest.TestSuite() suite.addTest(ext.suite()) suite.addTest(filters.suite()) suite.addTest(tests.suite()) suite.addTest(core_tags.suite()) suite.addTest(loader.suite()) suite.addTest(inheritance.suite()) suite.addTest(imports.suite()) suite.addTest(lexnparse.suite()) suite.addTest(security.suite()) suite.addTest(api.suite()) suite.addTest(regression.suite()) suite.addTest(debug.suite()) suite.addTest(utils.suite()) suite.addTest(bytecode_cache.suite()) # doctests will not run on python 3 currently. Too many issues # with that, do not test that on that platform. if PY2: suite.addTest(doctests.suite()) return suite def main(): """Runs the testsuite as command line application.""" try: unittest.main(testLoader=BetterLoader(), defaultTest='suite') except Exception as e: print('Error: %s' % e)
3,357
run
from __future__ import annotations import logging import typing as t from types import ModuleType import cloudpickle import bentoml from ...exceptions import MissingDependencyException from ...exceptions import NotFound from ..models.model import Model from ..models.model import ModelContext from ..models.model import ModelOptions from ..models.model import ModelSignature from ..tag import Tag from ..utils.pkg import get_pkg_version from .common.pytorch import PyTorchTensorContainer # noqa # type: ignore try: import easyocr except ImportError: # pragma: no cover raise MissingDependencyException( "'easyocr' is required in order to use module 'bentoml.easyocr'. Install easyocr with 'pip install easyocr'." ) if t.TYPE_CHECKING: from ..models.model import ModelSignaturesType ListStr = list[str] else: ListStr = list __all__ = ["load_model", "save_model", "get_runnable", "get"] MODULE_NAME = "bentoml.easyocr" API_VERSION = "v1" MODEL_FILENAME = "saved_model.pkl" logger = logging.getLogger(__name__) def get(tag_like: str | Tag) -> Model: """ Get the BentoML model with the given tag. Args: tag_like: The tag of the model to retrieve from the model store. Returns: :obj:`~bentoml.Model`: A BentoML :obj:`~bentoml.Model` with the matching tag. Example: .. code-block:: python import bentoml # target model must be from the BentoML model store model = bentoml.easyocr.get("en_reader:latest") """ model = bentoml.models.get(tag_like) if model.info.module not in (MODULE_NAME, __name__): raise NotFound( f"Model {model.tag} was saved with module {model.info.module}, not loading with {MODULE_NAME}." ) return model def load_model(bento_model: str | Tag | Model) -> easyocr.Reader: """ Load the EasyOCR model from BentoML local model store with given name. Args: bento_model: Either the tag of the model to get from the store, or a BentoML :class:`~bentoml.Model` instance to load the model from. Returns: ``easyocr.Reader``: The EasyOCR model from the model store. Example: .. code-block:: python import bentoml reader = bentoml.easyocr.load_model('en_reader:latest') """ if not isinstance(bento_model, Model): bento_model = get(bento_model) if bento_model.info.module not in (MODULE_NAME, __name__): raise NotFound( f"Model {bento_model.tag} was saved with module {bento_model.info.module}, not loading with {MODULE_NAME}." ) with open(bento_model.path_of(MODEL_FILENAME), "rb") as f: return cloudpickle.load(f) def save_model( name: Tag | str, reader: easyocr.Reader, *, signatures: ModelSignaturesType | None = None, labels: dict[str, str] | None = None, custom_objects: dict[str, t.Any] | None = None, external_modules: t.List[ModuleType] | None = None, metadata: dict[str, t.Any] | None = None, ) -> bentoml.Model: """ Save a model instance to BentoML modelstore. Args: name: Name for given model instance. This should pass Python identifier check. reader: The EasyOCR model to be saved. Currently only supports pre-trained models from easyocr. Custom models are not yet supported. signatures: Methods to expose for running inference on the target model. Signatures are used for creating :obj:`~bentoml.Runner` instances when serving model with :obj:`~bentoml.Service` labels: User-defined labels for managing models, e.g. ``team=nlp``, ``stage=dev``. custom_objects: Custom objects to be saved with the model. An example is ``{"my-normalizer": normalizer}``. Custom objects are currently serialized with cloudpickle, but this implementation is subject to change. external_modules: user-defined additional python modules to be saved alongside the model or custom objects, e.g. a tokenizer module, preprocessor module, model configuration module metadata: Custom metadata for given model. Returns: :obj:`~bentoml.Tag`: A :obj:`tag` with a format ``name:version`` where ``name`` is the user-defined model's name, and a generated ``version``. Examples: .. code-block:: python import bentoml import easyocr reader = easyocr.Reader(['en']) bento_model = bentoml.easyocr.save_model('en_reader', reader) """ # noqa context = ModelContext( framework_name="easyocr", framework_versions={"easyocr": get_pkg_version("easyocr")}, ) if signatures is None: signatures = { k: {"batchable": False} for k in ("detect", "readtext", "readtextlang", "recognize") } signatures["readtext_batched"] = {"batchable": True} logger.info( 'Using the default model signature for Transformers (%s) for model "%s".', signatures, name, ) with bentoml.models.create( name, module=MODULE_NAME, api_version=API_VERSION, labels=labels, context=context, options=ModelOptions(), signatures=signatures, custom_objects=custom_objects, external_modules=external_modules, metadata=metadata, ) as bento_model: with open(bento_model.path_of(MODEL_FILENAME), "wb") as f: cloudpickle.dump(reader, f) return bento_model def get_runnable(bento_model: bentoml.Model) -> type[bentoml.Runnable]: """ Private API: use :obj:`~bentoml.Model.to_runnable` instead. """ class EasyOCRRunnable(bentoml.Runnable): SUPPORTED_RESOURCES = ("nvidia.com/gpu", "cpu") SUPPORTS_CPU_MULTI_THREADING = True def __init__(self): super().__init__() self.model = load_model(bento_model) self.predict_fns: dict[str, t.Callable[..., t.Any]] = {} for method_name in bento_model.info.signatures: self.predict_fns[method_name] = getattr(self.model, method_name) def add_runnable_method(method_name: str, options: ModelSignature): def METHOD_NAME(self: EasyOCRRunnable, *args: t.Any, **kwargs: t.Any) -> t.Any: return self.predict_fns[method_name](*args, **kwargs) EasyOCRRunnable.add_method( METHOD_NAME, name=method_name, batchable=options.batchable, batch_dim=options.batch_dim, input_spec=options.input_spec, output_spec=options.output_spec, ) for method_name, options in bento_model.info.signatures.items(): add_runnable_method(method_name, options) return EasyOCRRunnable
3,358
test service names import and v0
import pytest @pytest.mark.subprocess(env=dict(DD_TRACE_SPAN_ATTRIBUTE_SCHEMA="v0")) def test_service_names_import_default(): from ddtrace.internal.schema import DEFAULT_SPAN_SERVICE_NAME from ddtrace.internal.schema import schematize_cache_operation from ddtrace.internal.schema import schematize_cloud_api_operation from ddtrace.internal.schema import schematize_database_operation from ddtrace.internal.schema import schematize_service_name from ddtrace.internal.schema import schematize_url_operation from ddtrace.internal.schema.span_attribute_schema import cache_operation_v0 from ddtrace.internal.schema.span_attribute_schema import cloud_api_operation_v0 from ddtrace.internal.schema.span_attribute_schema import database_operation_v0 from ddtrace.internal.schema.span_attribute_schema import service_name_v0 from ddtrace.internal.schema.span_attribute_schema import url_operation_v0 assert DEFAULT_SPAN_SERVICE_NAME is None assert schematize_service_name == service_name_v0 assert schematize_database_operation == database_operation_v0 assert schematize_cache_operation == cache_operation_v0 assert schematize_cloud_api_operation == cloud_api_operation_v0 assert schematize_url_operation == url_operation_v0 @pytest.mark.subprocess(env=dict(DD_TRACE_SPAN_ATTRIBUTE_SCHEMA="v0")) def METHOD_NAME(): from ddtrace.internal.schema import DEFAULT_SPAN_SERVICE_NAME from ddtrace.internal.schema import schematize_cache_operation from ddtrace.internal.schema import schematize_cloud_api_operation from ddtrace.internal.schema import schematize_database_operation from ddtrace.internal.schema import schematize_service_name from ddtrace.internal.schema import schematize_url_operation from ddtrace.internal.schema.span_attribute_schema import cache_operation_v0 from ddtrace.internal.schema.span_attribute_schema import cloud_api_operation_v0 from ddtrace.internal.schema.span_attribute_schema import database_operation_v0 from ddtrace.internal.schema.span_attribute_schema import service_name_v0 from ddtrace.internal.schema.span_attribute_schema import url_operation_v0 assert DEFAULT_SPAN_SERVICE_NAME is None assert schematize_service_name == service_name_v0 assert schematize_database_operation == database_operation_v0 assert schematize_cache_operation == cache_operation_v0 assert schematize_cloud_api_operation == cloud_api_operation_v0 assert schematize_url_operation == url_operation_v0 @pytest.mark.subprocess( env=dict(DD_TRACE_SPAN_ATTRIBUTE_SCHEMA="v1"), parametrize={"DD_TRACE_REMOVE_INTEGRATION_SERVICE_NAMES_ENABLED": ["False", "True"]}, ) def test_service_name_imports_v1(): from ddtrace.internal.schema import DEFAULT_SPAN_SERVICE_NAME from ddtrace.internal.schema import schematize_cache_operation from ddtrace.internal.schema import schematize_cloud_api_operation from ddtrace.internal.schema import schematize_database_operation from ddtrace.internal.schema import schematize_service_name from ddtrace.internal.schema import schematize_url_operation from ddtrace.internal.schema.span_attribute_schema import cache_operation_v1 from ddtrace.internal.schema.span_attribute_schema import cloud_api_operation_v1 from ddtrace.internal.schema.span_attribute_schema import database_operation_v1 from ddtrace.internal.schema.span_attribute_schema import service_name_v1 from ddtrace.internal.schema.span_attribute_schema import url_operation_v1 assert DEFAULT_SPAN_SERVICE_NAME == "unnamed-python-service" assert schematize_service_name == service_name_v1 assert schematize_database_operation == database_operation_v1 assert schematize_cache_operation == cache_operation_v1 assert schematize_cloud_api_operation == cloud_api_operation_v1 assert schematize_url_operation == url_operation_v1 @pytest.mark.subprocess( env=dict(DD_TRACE_SPAN_ATTRIBUTE_SCHEMA="v0", DD_TRACE_REMOVE_INTEGRATION_SERVICE_NAMES_ENABLED="True") ) def test_service_name_import_with_client_service_names_enabled_v0(): """ Service name parameters are flipped when DD_TRACE_REMOVE_INTEGRATION_SERVICE_NAMES_ENABLED is True for v0 """ from ddtrace.internal.schema import DEFAULT_SPAN_SERVICE_NAME from ddtrace.internal.schema import schematize_cache_operation from ddtrace.internal.schema import schematize_cloud_api_operation from ddtrace.internal.schema import schematize_database_operation from ddtrace.internal.schema import schematize_service_name from ddtrace.internal.schema import schematize_url_operation from ddtrace.internal.schema.span_attribute_schema import cache_operation_v0 from ddtrace.internal.schema.span_attribute_schema import cloud_api_operation_v0 from ddtrace.internal.schema.span_attribute_schema import database_operation_v0 from ddtrace.internal.schema.span_attribute_schema import service_name_v1 from ddtrace.internal.schema.span_attribute_schema import url_operation_v0 assert DEFAULT_SPAN_SERVICE_NAME == "unnamed-python-service" assert schematize_service_name == service_name_v1 assert schematize_database_operation == database_operation_v0 assert schematize_cache_operation == cache_operation_v0 assert schematize_cloud_api_operation == cloud_api_operation_v0 assert schematize_url_operation == url_operation_v0
3,359
reset
""" Create aircraft trails on the radar display.""" from math import * import numpy as np import bluesky as bs from bluesky import settings from bluesky.core import TrafficArrays class Trails(TrafficArrays): """ Traffic trails class definition : Data for trails Methods: Trails() : constructor Members: see create Created by : Jacco M. Hoekstra """ def __init__(self,dttrail=10.): super().__init__() self.active = False # Wether or not to show trails self.dt = dttrail # Resolution of trail pieces in time self.pygame = (bs.gui == 'pygame') # Trails are different for pygame self.tcol0 = 60. # After how many seconds old colour # This list contains some standard colors self.colorList = {'BLUE': np.array([0, 0, 255]), 'CYAN': np.array([0,255,255]), 'RED' : np.array([255, 0, 0]), 'YELLOW': np.array([255, 255, 0])} # Set default color to Blue self.defcolor = self.colorList['CYAN'] # Foreground data on line pieces self.lat0 = np.array([]) self.lon0 = np.array([]) self.lat1 = np.array([]) self.lon1 = np.array([]) self.time = np.array([]) self.col = [] self.fcol = np.array([]) # background copy of data self.bglat0 = np.array([]) self.bglon0 = np.array([]) self.bglat1 = np.array([]) self.bglon1 = np.array([]) self.bgtime = np.array([]) self.bgcol = [] with self.settrafarrays(): self.accolor = [] self.lastlat = np.array([]) self.lastlon = np.array([]) self.lasttim = np.array([]) self.clearnew() return def create(self,n=1): super().create(n) self.accolor[-1] = self.defcolor self.lastlat[-1] = bs.traf.lat[-1] self.lastlon[-1] = bs.traf.lon[-1] def update(self): self.acid = bs.traf.id if not self.active: self.lastlat = bs.traf.lat self.lastlon = bs.traf.lon self.lasttim[:] = bs.sim.simt return """Add linepieces for trails based on traffic data""" # Use temporary list/array for fast append lstlat0 = [] lstlon0 = [] lstlat1 = [] lstlon1 = [] lsttime = [] # Check for update delta = bs.sim.simt - self.lasttim idxs = np.where(delta > self.dt)[0] # Add all a/c which need the update # if len(idxs)>0: # print "len(idxs)=",len(idxs) for i in idxs: # Add to lists lstlat0.append(self.lastlat[i]) lstlon0.append(self.lastlon[i]) lstlat1.append(bs.traf.lat[i]) lstlon1.append(bs.traf.lon[i]) lsttime.append(bs.sim.simt) if isinstance(self.col, np.ndarray): # print type(trailcol[i]) # print trailcol[i] # print "col type: ",type(self.col) self.col = self.col.tolist() type(self.col) self.col.append(self.accolor[i]) # Update aircraft record self.lastlat[i] = bs.traf.lat[i] self.lastlon[i] = bs.traf.lon[i] self.lasttim[i] = bs.sim.simt # When a/c is no longer part of trail semgment, # it is no longer a/c data => move to the GUI buffer (send or draw) if self.pygame: # Pygame: send to drawing buffer self.lat0 = np.concatenate((self.lat0, np.array(lstlat0))) self.lon0 = np.concatenate((self.lon0, np.array(lstlon0))) self.lat1 = np.concatenate((self.lat1, np.array(lstlat1))) self.lon1 = np.concatenate((self.lon1, np.array(lstlon1))) self.time = np.concatenate((self.time, np.array(lsttime))) else: # QtGL: add to send buffer self.newlat0.extend(lstlat0) self.newlon0.extend(lstlon0) self.newlat1.extend(lstlat1) self.newlon1.extend(lstlon1) # Update colours self.fcol = (1. - np.minimum(self.tcol0, np.abs(bs.sim.simt - self.time)) / self.tcol0) return def buffer(self): """Buffer trails: Move current stack to background """ self.bglat0 = np.append(self.bglat0, self.lat0) self.bglon0 = np.append(self.bglon0, self.lon0) self.bglat1 = np.append(self.bglat1, self.lat1) self.bglon1 = np.append(self.bglon1, self.lon1) self.bgtime = np.append(self.bgtime, self.time) # No color saved: Background: always 'old color' self.col0 if isinstance(self.bgcol, np.ndarray): self.bgcol = self.bgcol.tolist() if isinstance(self.col, np.ndarray): self.col = self.col.tolist() self.bgcol = self.bgcol + self.col self.bgacid = self.bgacid + self.acid self.clearfg() # Clear foreground trails return def clearnew(self): # Clear new lines pipeline used for QtGL self.newlat0 = [] self.newlon0 = [] self.newlat1 = [] self.newlon1 = [] def clearfg(self): # Foreground """Clear trails foreground""" self.lat0 = np.array([]) self.lon0 = np.array([]) self.lat1 = np.array([]) self.lon1 = np.array([]) self.time = np.array([]) self.col = np.array([]) return def clearbg(self): # Background """Clear trails background""" self.bglat0 = np.array([]) self.bglon0 = np.array([]) self.bglat1 = np.array([]) self.bglon1 = np.array([]) self.bgtime = np.array([]) self.bgacid = [] return def clear(self): """Clear all data, Foreground and background""" self.lastlon = np.array([]) self.lastlat = np.array([]) self.clearfg() self.clearbg() self.clearnew() return def setTrails(self, *args): """ Set trails on/off, or change trail color of aircraft """ if len(args)==0: msg = "TRAIL ON/OFF, [dt] / TRAIL acid color\n" if self.active: msg = msg + "TRAILS ARE ON" else: msg = msg + "TRAILS ARE OFF" return True,msg # Switch on/off elif type(args[0]) == bool: # Set trails on/off self.active = args[0] if len(args) > 1: self.dt = args[1] if not self.active: self.clear() # Change color per acid (pygame only) else: # Change trail color if len(args) < 2 or args[1] not in ["BLUE", "RED", "YELLOW"]: return False, "Set aircraft trail color with: TRAIL acid BLUE/RED/YELLOW" self.changeTrailColor(args[1], args[0]) return True def changeTrailColor(self, color, idx): """Change color of aircraft trail""" self.accolor[idx] = self.colorList[color] return def METHOD_NAME(self): # This ensures that the traffic arrays (which size is dynamic) # are all reset as well, so all lat,lon,sdp etc but also objects adsb super().METHOD_NAME() self.clear() self.active = False
3,360
delete
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from api.base_view import DetailView, GenericUIView, PaginatedView from api.provider.serializers import ( DoProviderUpgradeSerializer, ProviderDetailSerializer, ProviderDetailUISerializer, ProviderSerializer, ProviderUISerializer, ) from api.serializers import ProviderUpgradeSerializer from api.utils import AdcmFilterBackend, AdcmOrderingFilter, check_obj, create from audit.utils import audit from cm.api import delete_host_provider from cm.issue import update_hierarchy_issues from cm.models import HostProvider, Upgrade from cm.upgrade import get_upgrade from guardian.mixins import PermissionListMixin from rbac.viewsets import DjangoOnlyObjectPermissions from rest_framework import permissions, status from rest_framework.response import Response from adcm.permissions import check_custom_perm, get_object_for_user class ProviderList(PermissionListMixin, PaginatedView): """ get: List all host providers post: Create new host provider """ queryset = HostProvider.objects.all() serializer_class = ProviderSerializer serializer_class_ui = ProviderUISerializer serializer_class_post = ProviderDetailSerializer filterset_fields = ("name", "prototype_id") ordering_fields = ("id", "name", "state", "prototype__display_name", "prototype__version_order") permission_required = ["cm.view_hostprovider"] ordering = ["id"] @audit def post(self, request, *args, **kwargs): # pylint: disable=unused-argument serializer = self.get_serializer(data=request.data) return create(serializer) class ProviderDetail(PermissionListMixin, DetailView): """ get: Show host provider """ queryset = HostProvider.objects.all() serializer_class = ProviderDetailSerializer serializer_class_ui = ProviderDetailUISerializer permission_classes = (DjangoOnlyObjectPermissions,) permission_required = ["cm.view_hostprovider"] lookup_field = "id" lookup_url_kwarg = "provider_id" error_code = "PROVIDER_NOT_FOUND" ordering = ["id"] @audit def METHOD_NAME(self, request, *args, **kwargs): # pylint: disable=unused-argument """ Remove host provider """ provider = self.get_object() delete_host_provider(provider) return Response(status=status.HTTP_204_NO_CONTENT) class ProviderUpgrade(GenericUIView): queryset = Upgrade.objects.all() serializer_class = ProviderUpgradeSerializer permission_classes = (permissions.IsAuthenticated,) filter_backends = (AdcmFilterBackend, AdcmOrderingFilter) ordering = ["id"] def get_ordering(self): order = AdcmOrderingFilter() return order.get_ordering(self.request, self.get_queryset(), self) def get(self, request, *args, **kwargs): # pylint: disable=unused-argument """ List all available upgrades for specified host provider """ provider = get_object_for_user(request.user, "cm.view_hostprovider", HostProvider, id=kwargs["provider_id"]) check_custom_perm(request.user, "view_upgrade_of", "hostprovider", provider) update_hierarchy_issues(provider) obj = get_upgrade(provider, self.get_ordering()) serializer = self.serializer_class(obj, many=True, context={"provider_id": provider.id, "request": request}) return Response(serializer.data) class ProviderUpgradeDetail(GenericUIView): queryset = Upgrade.objects.all() serializer_class = ProviderUpgradeSerializer permission_classes = (permissions.IsAuthenticated,) ordering = ["id"] def get(self, request, *args, **kwargs): # pylint: disable=unused-argument """ List all available upgrades for specified host provider """ provider = get_object_for_user(request.user, "cm.view_hostprovider", HostProvider, id=kwargs["provider_id"]) check_custom_perm(request.user, "view_upgrade_of", "hostprovider", provider) obj = check_obj(Upgrade, {"id": kwargs["upgrade_id"], "bundle__name": provider.prototype.bundle.name}) serializer = self.serializer_class(obj, context={"provider_id": provider.id, "request": request}) return Response(serializer.data) class DoProviderUpgrade(GenericUIView): queryset = Upgrade.objects.all() serializer_class = DoProviderUpgradeSerializer permission_classes = (permissions.IsAuthenticated,) ordering = ["id"] @audit def post(self, request, *args, **kwargs): # pylint: disable=unused-argument provider = get_object_for_user(request.user, "cm.view_hostprovider", HostProvider, id=kwargs["provider_id"]) check_custom_perm(request.user, "do_upgrade_of", "hostprovider", provider) serializer = self.get_serializer(data=request.data) return create(serializer, upgrade_id=int(kwargs["upgrade_id"]), obj=provider)
3,361
get unicode value
""" @package dbmgr.vinfo @brief Support classes for Database Manager List of classes: - vinfo::VectorDBInfo (C) 2007-2013 by the GRASS Development Team This program is free software under the GNU General Public License (>=v2). Read the file COPYING that comes with GRASS for details. @author Martin Landa <landa.martin gmail.com> """ import os import wx from gui_core.gselect import VectorDBInfo as VectorDBInfoBase from gui_core.wrap import StaticText from core.gcmd import RunCommand, GError from core.settings import UserSettings import grass.script as grass def METHOD_NAME(value): """Get unicode value :param value: value to be recoded :return: unicode value """ if isinstance(value, str): return value if isinstance(value, bytes): enc = GetDbEncoding() return str(value, enc, errors="replace") else: return str(value) def GetDbEncoding(): """Checks if user set DB encoding (first user settings, then env variable), if not assumes unicode.""" enc = UserSettings.Get(group="atm", key="encoding", subkey="value") if not enc and "GRASS_DB_ENCODING" in os.environ: enc = os.environ["GRASS_DB_ENCODING"] else: enc = "utf-8" # assuming UTF-8 return enc def CreateDbInfoDesc(panel, mapDBInfo, layer): """Create database connection information content""" infoFlexSizer = wx.FlexGridSizer(cols=2, hgap=1, vgap=1) infoFlexSizer.AddGrowableCol(1) infoFlexSizer.Add(StaticText(parent=panel, id=wx.ID_ANY, label="Driver:")) infoFlexSizer.Add( StaticText(parent=panel, id=wx.ID_ANY, label=mapDBInfo.layers[layer]["driver"]) ) infoFlexSizer.Add(StaticText(parent=panel, id=wx.ID_ANY, label="Database:")) infoFlexSizer.Add( StaticText( parent=panel, id=wx.ID_ANY, label=mapDBInfo.layers[layer]["database"] ) ) infoFlexSizer.Add(StaticText(parent=panel, id=wx.ID_ANY, label="Table:")) infoFlexSizer.Add( StaticText(parent=panel, id=wx.ID_ANY, label=mapDBInfo.layers[layer]["table"]) ) infoFlexSizer.Add(StaticText(parent=panel, id=wx.ID_ANY, label="Key:")) infoFlexSizer.Add( StaticText(parent=panel, id=wx.ID_ANY, label=mapDBInfo.layers[layer]["key"]) ) return infoFlexSizer class VectorDBInfo(VectorDBInfoBase): """Class providing information about attribute tables linked to the vector map""" def __init__(self, map): VectorDBInfoBase.__init__(self, map) def GetColumns(self, table): """Return list of columns names (based on their index)""" try: names = [""] * len(self.tables[table].keys()) except KeyError: return [] for name, desc in self.tables[table].items(): names[desc["index"]] = name return names def SelectByPoint(self, queryCoords, qdist): """Get attributes by coordinates (all available layers) Return line id or None if no line is found""" line = None nselected = 0 try: data = grass.vector_what( map=self.map, coord=(float(queryCoords[0]), float(queryCoords[1])), distance=float(qdist), ) except grass.ScriptError: GError( parent=None, message=_( "Failed to query vector map <{map}>. " "Check database settings and topology." ).format(map=self.map), ) if len(data) < 1 or all(("Table" not in record) for record in data): return None # process attributes ret = dict() for key in ["Category", "Layer", "Table", "Id"]: ret[key] = list() for record in data: if "Table" not in record: continue table = record["Table"] for key, value in record["Attributes"].items(): if len(value) < 1: value = None else: if self.tables[table][key]["ctype"] != str: value = self.tables[table][key]["ctype"](value) else: value = METHOD_NAME(value) self.tables[table][key]["values"].append(value) for key, value in record.items(): if key == "Attributes": continue if key in ret: ret[key].append(value) if "Id" not in record.keys(): ret["Id"].append(None) return ret def SelectFromTable(self, layer, cols="*", where=None): """Select records from the table Return number of selected records, -1 on error """ if layer <= 0: return -1 nselected = 0 table = self.layers[layer]["table"] # get table desc # select values (only one record) if where is None or where == "": sql = "SELECT %s FROM %s" % (cols, table) else: sql = "SELECT %s FROM %s WHERE %s" % (cols, table, where) ret = RunCommand( "db.select", read=True, quiet=True, flags="v", sql=sql, database=self.layers[layer]["database"], driver=self.layers[layer]["driver"], ) # self.tables[table][key][1] = str(cat) if ret: for line in ret.splitlines(): name, value = line.split("|") # casting ... if value: if not isinstance("", self.tables[table][name]["ctype"]): value = self.tables[table][name]["ctype"](value) else: value = METHOD_NAME(value) else: value = None self.tables[table][name]["values"].append(value) nselected = 1 return nselected
3,362
test decimated offset 105
""" Name: decimation_test Purpose: v.in.lidar decimation test Author: Vaclav Petras Copyright: (C) 2015 by Vaclav Petras and the GRASS Development Team Licence: This program is free software under the GNU General Public License (>=v2). Read the file COPYING that comes with GRASS for details. """ import os from grass.gunittest.case import TestCase from grass.gunittest.main import test class TestCountBasedDecimation(TestCase): """Test case for watershed module This tests expects v.random and v.out.lidar to work properly. """ # Setup variables to be used for outputs vector_points = "vinlidar_decimation_original" imported_points = "vinlidar_decimation_imported" las_file = "vinlidar_decimation_points.las" npoints = 300 # the values works well for 300 without rounding @classmethod def setUpClass(cls): """Ensures expected computational region and generated data""" cls.use_temp_region() cls.runModule("g.region", n=20, s=10, e=25, w=15, res=1) cls.runModule( "v.random", flags="zb", output=cls.vector_points, npoints=cls.npoints, zmin=200, zmax=500, seed=100, ) cls.runModule("v.out.lidar", input=cls.vector_points, output=cls.las_file) @classmethod def tearDownClass(cls): """Remove the temporary region and generated data""" cls.runModule("g.remove", flags="f", type="vector", name=cls.vector_points) if os.path.isfile(cls.las_file): os.remove(cls.las_file) cls.del_temp_region() def tearDown(self): """Remove the outputs created by the import This is executed after each test run. """ self.runModule("g.remove", flags="f", type="vector", name=self.imported_points) def test_identical(self): """Test to see if the standard outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt" ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=self.npoints) ) def skip_number(self, number, expect): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", skip=number, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=expect) ) def preserve_number(self, number, expect): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", preserve=number, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=expect) ) def offset_number(self, number, expect): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", offset=number, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=expect) ) def limit_number(self, number, expect): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", limit=number, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=expect) ) def test_decimated_skip_2(self): """Test to see if the outputs are created""" self.skip_number(number=2, expect=self.npoints / 2) def test_decimated_skip_4(self): """Test to see if the outputs are created""" self.skip_number(number=4, expect=0.75 * self.npoints) def test_decimated_skip_10(self): """Test to see if the outputs are created""" self.skip_number(number=10, expect=0.9 * self.npoints) def test_decimated_preserve_2(self): """Test to see if the outputs are created""" self.preserve_number(number=2, expect=self.npoints / 2) def test_decimated_preserve_10(self): """Test to see if the outputs are created""" self.preserve_number(number=10, expect=self.npoints / 10) def METHOD_NAME(self): """Test to see if the outputs are created""" self.offset_number(number=105, expect=self.npoints - 105) def test_decimated_limit_105(self): """Test to see if the outputs are created""" self.limit_number(number=105, expect=105) def test_offset_preserve(self): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", offset=105, preserve=10, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=int((self.npoints - 105) / 10)), ) def test_limit_skip(self): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", limit=105, skip=10, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=105) ) def test_offset_limit_skip(self): """Test to see if the outputs are created""" self.assertModule( "v.in.lidar", input=self.las_file, output=self.imported_points, flags="bt", offset=50, skip=5, limit=self.npoints - 1, ) self.assertVectorExists(self.imported_points) self.assertVectorFitsTopoInfo( vector=self.imported_points, reference=dict(points=0.8 * (self.npoints - 50)), ) if __name__ == "__main__": test()
3,363
test prediction labels confidence
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import os import sys import unittest # noinspection PyProtectedMember from numpy.testing import assert_equal from numpy.testing import assert_raises from sklearn.base import clone from sklearn.metrics import roc_auc_score # temporary solution for relative imports in case pyod is not installed # if pyod is installed, no need to use the following line sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from pyod.models.rgraph import RGraph from pyod.utils.data import generate_data class TestRGraph(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 100 self.n_features = 80 self.contamination = 0.1 self.roc_floor = 0.8 # Generate sample data self.X_train, self.X_test, self.y_train, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, n_features=self.n_features, contamination=self.contamination, random_state=42) self.clf = RGraph(n_nonzero=100, transition_steps=20, gamma=50, blocksize_test_data=20, tau=1, preprocessing=True, active_support=False, gamma_nz=False, maxiter_lasso=100, contamination=self.contamination, algorithm='lasso_lars', verbose=0) self.clf.fit(self.X_train) def test_parameters(self): assert (hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert (hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) assert (hasattr(self.clf, '_mu') and self.clf._mu is not None) assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None) assert (hasattr(self.clf, 'transition_matrix_') and self.clf.transition_matrix_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def METHOD_NAME(self): pred_labels, confidence = self.clf.predict(self.X_test, return_confidence=True) assert_equal(pred_labels.shape, self.y_test.shape) assert_equal(confidence.shape, self.y_test.shape) assert (confidence.min() >= 0) assert (confidence.max() <= 1) def test_prediction_proba_linear_confidence(self): pred_proba, confidence = self.clf.predict_proba(self.X_test, method='linear', return_confidence=True) assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) assert_equal(confidence.shape, self.y_test.shape) assert (confidence.min() >= 0) assert (confidence.max() <= 1) def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_model_clone(self): # for deep models this may not apply clone_clf = clone(self.clf) def tearDown(self): pass if __name__ == '__main__': unittest.main()
3,364
test periodic value repr
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import sympy import cirq def test_periodic_value_equality(): eq = cirq.testing.EqualsTester() eq.add_equality_group( cirq.PeriodicValue(1, 2), cirq.PeriodicValue(1, 2), cirq.PeriodicValue(3, 2), cirq.PeriodicValue(3, 2), cirq.PeriodicValue(5, 2), cirq.PeriodicValue(-1, 2), ) eq.add_equality_group(cirq.PeriodicValue(1.5, 2.0), cirq.PeriodicValue(1.5, 2.0)) eq.add_equality_group(cirq.PeriodicValue(0, 2)) eq.add_equality_group(cirq.PeriodicValue(1, 3)) eq.add_equality_group(cirq.PeriodicValue(2, 4)) def test_periodic_value_approx_eq_basic(): assert cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.0, 2.0), atol=0.1) assert cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.2, 2.0), atol=0.3) assert not cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.2, 2.0), atol=0.1) assert not cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.0, 2.2), atol=0.3) assert not cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.0, 2.2), atol=0.1) assert not cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.2, 2.2), atol=0.3) assert not cirq.approx_eq(cirq.PeriodicValue(1.0, 2.0), cirq.PeriodicValue(1.2, 2.2), atol=0.1) def test_periodic_value_approx_eq_normalized(): assert cirq.approx_eq(cirq.PeriodicValue(1.0, 3.0), cirq.PeriodicValue(4.1, 3.0), atol=0.2) assert cirq.approx_eq(cirq.PeriodicValue(1.0, 3.0), cirq.PeriodicValue(-2.1, 3.0), atol=0.2) def test_periodic_value_approx_eq_boundary(): assert cirq.approx_eq(cirq.PeriodicValue(0.0, 2.0), cirq.PeriodicValue(1.9, 2.0), atol=0.2) assert cirq.approx_eq(cirq.PeriodicValue(0.1, 2.0), cirq.PeriodicValue(1.9, 2.0), atol=0.3) assert cirq.approx_eq(cirq.PeriodicValue(1.9, 2.0), cirq.PeriodicValue(0.1, 2.0), atol=0.3) assert not cirq.approx_eq(cirq.PeriodicValue(0.1, 2.0), cirq.PeriodicValue(1.9, 2.0), atol=0.1) assert cirq.approx_eq(cirq.PeriodicValue(0, 1.0), cirq.PeriodicValue(0.5, 1.0), atol=0.6) assert not cirq.approx_eq(cirq.PeriodicValue(0, 1.0), cirq.PeriodicValue(0.5, 1.0), atol=0.1) assert cirq.approx_eq(cirq.PeriodicValue(0.4, 1.0), cirq.PeriodicValue(0.6, 1.0), atol=0.3) def test_periodic_value_types_mismatch(): assert not cirq.approx_eq(cirq.PeriodicValue(0.0, 2.0), 0.0, atol=0.2) assert not cirq.approx_eq(0.0, cirq.PeriodicValue(0.0, 2.0), atol=0.2) @pytest.mark.parametrize( 'value, is_parameterized, parameter_names', [ (cirq.PeriodicValue(1.0, 3.0), False, set()), (cirq.PeriodicValue(0.0, sympy.Symbol('p')), True, {'p'}), (cirq.PeriodicValue(sympy.Symbol('v'), 3.0), True, {'v'}), (cirq.PeriodicValue(sympy.Symbol('v'), sympy.Symbol('p')), True, {'p', 'v'}), ], ) @pytest.mark.parametrize('resolve_fn', [cirq.resolve_parameters, cirq.resolve_parameters_once]) def test_periodic_value_is_parameterized(value, is_parameterized, parameter_names, resolve_fn): assert cirq.is_parameterized(value) == is_parameterized assert cirq.parameter_names(value) == parameter_names resolved = resolve_fn(value, {p: 1 for p in parameter_names}) assert not cirq.is_parameterized(resolved) @pytest.mark.parametrize( 'val', [ cirq.PeriodicValue(0.4, 1.0), cirq.PeriodicValue(0.0, 2.0), cirq.PeriodicValue(1.0, 3), cirq.PeriodicValue(-2.1, 3.0), cirq.PeriodicValue(sympy.Symbol('v'), sympy.Symbol('p')), cirq.PeriodicValue(2.0, sympy.Symbol('p')), cirq.PeriodicValue(sympy.Symbol('v'), 3), ], ) def METHOD_NAME(val): cirq.testing.assert_equivalent_repr(val)
3,365
wrap
from types import CodeType from types import FunctionType from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Set from typing import cast from ddtrace.debugging._function.discovery import FullyNamed from ddtrace.internal.injection import HookInfoType from ddtrace.internal.injection import HookType from ddtrace.internal.injection import eject_hooks from ddtrace.internal.injection import inject_hooks from ddtrace.internal.wrapping import WrappedFunction from ddtrace.internal.wrapping import Wrapper from ddtrace.internal.wrapping import unwrap from ddtrace.internal.wrapping import METHOD_NAME WrapperType = Callable[[FunctionType, Any, Any, Any], Any] class FullyNamedWrappedFunction(FullyNamed, WrappedFunction): """A fully named wrapper function.""" class FunctionStore(object): """Function object store. This class provides a storage layer for patching operations, which allows us to store the original code object of functions being patched with either hook injections or wrapping. This also enforce a single wrapping layer. Multiple wrapping is implemented as a list of wrappers handled by the single wrapper function. If extra attributes are defined during the patching process, they will get removed when the functions are restored. """ def __init__(self, extra_attrs=None): # type: (Optional[List[str]]) -> None self._code_map = {} # type: Dict[FunctionType, CodeType] self._wrapper_map = {} # type: Dict[FunctionType, Wrapper] self._extra_attrs = ["__dd_wrapped__"] if extra_attrs: self._extra_attrs.extend(extra_attrs) def __enter__(self): return self def __exit__(self, *exc): self.restore_all() def _store(self, function): # type: (FunctionType) -> None if function not in self._code_map: self._code_map[function] = function.__code__ def inject_hooks(self, function, hooks): # type: (FullyNamedWrappedFunction, List[HookInfoType]) -> Set[str] """Bulk-inject hooks into a function. Returns the set of probe IDs for those probes that failed to inject. """ try: return self.inject_hooks(cast(FullyNamedWrappedFunction, function.__dd_wrapped__), hooks) except AttributeError: f = cast(FunctionType, function) self._store(f) return {p.probe_id for _, _, p in inject_hooks(f, hooks)} def eject_hooks(self, function, hooks): # type: (FunctionType, List[HookInfoType]) -> Set[str] """Bulk-eject hooks from a function. Returns the set of probe IDs for those probes that failed to eject. """ try: wrapped = cast(FullyNamedWrappedFunction, function).__dd_wrapped__ except AttributeError: # Not a wrapped function so we can actually eject from it return {p.probe_id for _, _, p in eject_hooks(function, hooks)} else: # Try on the wrapped function. return self.eject_hooks(cast(FunctionType, wrapped), hooks) def inject_hook(self, function, hook, line, arg): # type: (FullyNamedWrappedFunction, HookType, int, Any) -> bool """Inject a hook into a function.""" return not not self.inject_hooks(function, [(hook, line, arg)]) def eject_hook(self, function, hook, line, arg): # type: (FunctionType, HookType, int, Any) -> bool """Eject a hook from a function.""" return not not self.eject_hooks(function, [(hook, line, arg)]) def METHOD_NAME(self, function, wrapper): # type: (FunctionType, Wrapper) -> None """Wrap a function with a hook.""" self._store(function) self._wrapper_map[function] = wrapper METHOD_NAME(function, wrapper) def unwrap(self, function): # type: (FullyNamedWrappedFunction) -> None """Unwrap a hook around a wrapped function.""" unwrap(function, self._wrapper_map.pop(cast(FunctionType, function))) def restore_all(self): # type: () -> None """Restore all the patched functions to their original form.""" for function, code in self._code_map.items(): function.__code__ = code for attr in self._extra_attrs: try: delattr(function, attr) except AttributeError: pass
3,366
private link service connection state
# coding=utf-8 # *** WARNING: this file was generated by pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetPrivateEndpointConnectionResult', 'AwaitableGetPrivateEndpointConnectionResult', 'get_private_endpoint_connection', 'get_private_endpoint_connection_output', ] @pulumi.output_type class GetPrivateEndpointConnectionResult: """ A private endpoint connection """ def __init__(__self__, group_ids=None, id=None, name=None, private_endpoint=None, METHOD_NAME=None, provisioning_state=None, type=None): if group_ids and not isinstance(group_ids, list): raise TypeError("Expected argument 'group_ids' to be a list") pulumi.set(__self__, "group_ids", group_ids) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if private_endpoint and not isinstance(private_endpoint, dict): raise TypeError("Expected argument 'private_endpoint' to be a dict") pulumi.set(__self__, "private_endpoint", private_endpoint) if METHOD_NAME and not isinstance(METHOD_NAME, dict): raise TypeError("Expected argument 'private_link_service_connection_state' to be a dict") pulumi.set(__self__, "private_link_service_connection_state", METHOD_NAME) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="groupIds") def group_ids(self) -> Sequence[str]: """ Group IDs. """ return pulumi.get(self, "group_ids") @property @pulumi.getter def id(self) -> str: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> Optional['outputs.PrivateEndpointPropertyResponse']: """ Private endpoint which the connection belongs to. """ return pulumi.get(self, "private_endpoint") @property @pulumi.getter(name="privateLinkServiceConnectionState") def METHOD_NAME(self) -> Optional['outputs.PrivateLinkServiceConnectionStatePropertyResponse']: """ Connection state of the private endpoint connection. """ return pulumi.get(self, "private_link_service_connection_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ State of the private endpoint connection. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetPrivateEndpointConnectionResult(GetPrivateEndpointConnectionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPrivateEndpointConnectionResult( group_ids=self.group_ids, id=self.id, name=self.name, private_endpoint=self.private_endpoint, METHOD_NAME=self.METHOD_NAME, provisioning_state=self.provisioning_state, type=self.type) def get_private_endpoint_connection(private_endpoint_connection_name: Optional[str] = None, resource_group_name: Optional[str] = None, server_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPrivateEndpointConnectionResult: """ Gets a private endpoint connection. Azure REST API version: 2021-11-01. :param str private_endpoint_connection_name: The name of the private endpoint connection. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str server_name: The name of the server. """ __args__ = dict() __args__['privateEndpointConnectionName'] = private_endpoint_connection_name __args__['resourceGroupName'] = resource_group_name __args__['serverName'] = server_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:sql:getPrivateEndpointConnection', __args__, opts=opts, typ=GetPrivateEndpointConnectionResult).value return AwaitableGetPrivateEndpointConnectionResult( group_ids=pulumi.get(__ret__, 'group_ids'), id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), private_endpoint=pulumi.get(__ret__, 'private_endpoint'), METHOD_NAME=pulumi.get(__ret__, 'private_link_service_connection_state'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), type=pulumi.get(__ret__, 'type')) @_utilities.lift_output_func(get_private_endpoint_connection) def get_private_endpoint_connection_output(private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPrivateEndpointConnectionResult]: """ Gets a private endpoint connection. Azure REST API version: 2021-11-01. :param str private_endpoint_connection_name: The name of the private endpoint connection. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str server_name: The name of the server. """ ...
3,367
output handler
import logging import os from redash.query_runner import ( TYPE_DATETIME, TYPE_FLOAT, TYPE_INTEGER, TYPE_STRING, BaseSQLQueryRunner, JobTimeoutException, register, ) from redash.utils import json_dumps, json_loads try: import oracledb TYPES_MAP = { oracledb.DATETIME: TYPE_DATETIME, oracledb.CLOB: TYPE_STRING, oracledb.LOB: TYPE_STRING, oracledb.FIXED_CHAR: TYPE_STRING, oracledb.FIXED_NCHAR: TYPE_STRING, oracledb.INTERVAL: TYPE_DATETIME, oracledb.LONG_STRING: TYPE_STRING, oracledb.NATIVE_FLOAT: TYPE_FLOAT, oracledb.NCHAR: TYPE_STRING, oracledb.NUMBER: TYPE_FLOAT, oracledb.ROWID: TYPE_INTEGER, oracledb.STRING: TYPE_STRING, oracledb.TIMESTAMP: TYPE_DATETIME, } ENABLED = True except ImportError: ENABLED = False logger = logging.getLogger(__name__) class Oracle(BaseSQLQueryRunner): should_annotate_query = False noop_query = "SELECT 1 FROM dual" limit_query = " FETCH NEXT 1000 ROWS ONLY" limit_keywords = ["ROW", "ROWS", "ONLY", "TIES"] @classmethod def get_col_type(cls, col_type, scale): if col_type == oracledb.NUMBER: if scale is None: return TYPE_INTEGER if scale > 0: return TYPE_FLOAT return TYPE_INTEGER else: return TYPES_MAP.get(col_type, None) @classmethod def enabled(cls): return ENABLED @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "user": {"type": "string"}, "password": {"type": "string"}, "host": { "type": "string", "title": "Host: To use a DSN Service Name instead, use the text string `_useservicename` in the host name field.", }, "port": {"type": "number"}, "servicename": {"type": "string", "title": "DSN Service Name"}, "encoding": {"type": "string"}, }, "required": ["servicename", "user", "password", "host", "port"], "extra_options": ["encoding"], "secret": ["password"], } @classmethod def type(cls): return "oracle" def _get_tables(self, schema): query = """ SELECT all_tab_cols.OWNER, all_tab_cols.TABLE_NAME, all_tab_cols.COLUMN_NAME FROM all_tab_cols WHERE all_tab_cols.OWNER NOT IN('SYS','SYSTEM','ORDSYS','CTXSYS','WMSYS','MDSYS','ORDDATA','XDB','OUTLN','DMSYS','DSSYS','EXFSYS','LBACSYS','TSMSYS') """ results, error = self.run_query(query, None) if error is not None: self._handle_run_query_error(error) results = json_loads(results) for row in results["rows"]: if row["OWNER"] is not None: table_name = "{}.{}".format(row["OWNER"], row["TABLE_NAME"]) else: table_name = row["TABLE_NAME"] if table_name not in schema: schema[table_name] = {"name": table_name, "columns": []} schema[table_name]["columns"].append(row["COLUMN_NAME"]) return list(schema.values()) @classmethod def _convert_number(cls, value): try: return int(value) except BaseException: return value @classmethod def METHOD_NAME(cls, cursor, name, default_type, length, precision, scale): if default_type in (oracledb.CLOB, oracledb.LOB): return cursor.var(oracledb.LONG_STRING, 80000, cursor.arraysize) if default_type in (oracledb.STRING, oracledb.FIXED_CHAR): return cursor.var(str, length, cursor.arraysize) if default_type == oracledb.NUMBER: if scale <= 0: return cursor.var( oracledb.STRING, 255, outconverter=Oracle._convert_number, arraysize=cursor.arraysize, ) def run_query(self, query, user): if self.configuration.get("encoding"): os.environ["NLS_LANG"] = self.configuration["encoding"] # To use a DSN Service Name instead, use the text string `_useservicename` in the host name field. if self.configuration["host"].lower() == "_useservicename": dsn = self.configuration["servicename"] else: dsn = oracledb.makedsn( self.configuration["host"], self.configuration["port"], service_name=self.configuration["servicename"], ) connection = oracledb.connect( user=self.configuration["user"], password=self.configuration["password"], dsn=dsn, ) connection.outputtypehandler = Oracle.METHOD_NAME cursor = connection.cursor() try: cursor.execute(query) rows_count = cursor.rowcount if cursor.description is not None: columns = self.fetch_columns([(i[0], Oracle.get_col_type(i[1], i[5])) for i in cursor.description]) rows = [dict(zip((c["name"] for c in columns), row)) for row in cursor] data = {"columns": columns, "rows": rows} error = None json_data = json_dumps(data) else: columns = [{"name": "Row(s) Affected", "type": "TYPE_INTEGER"}] rows = [{"Row(s) Affected": rows_count}] data = {"columns": columns, "rows": rows} json_data = json_dumps(data) connection.commit() except oracledb.DatabaseError as err: (err_args,) = err.args line_number = query.count("\n", 0, err_args.offset) + 1 column_number = err_args.offset - query.rfind("\n", 0, err_args.offset) - 1 error = "Query failed at line {}, column {}: {}".format(str(line_number), str(column_number), str(err)) json_data = None except (KeyboardInterrupt, JobTimeoutException): connection.cancel() raise finally: os.environ.pop("NLS_LANG", None) connection.close() return json_data, error register(Oracle)
3,368
process query params
import json from typing import Dict, List, Tuple from django import forms from django.conf import settings __all__ = ( 'APISelect', 'APISelectMultiple', ) class APISelect(forms.Select): """ A select widget populated via an API call :param api_url: API endpoint URL. Required if not set automatically by the parent field. """ template_name = 'widgets/apiselect.html' option_template_name = 'widgets/select_option.html' dynamic_params: Dict[str, str] static_params: Dict[str, List[str]] def __init__(self, api_url=None, full=False, *args, **kwargs): super().__init__(*args, **kwargs) self.attrs['class'] = 'netbox-api-select' self.dynamic_params: Dict[str, List[str]] = {} self.static_params: Dict[str, List[str]] = {} if api_url: self.attrs['data-url'] = '/{}{}'.format(settings.BASE_PATH, api_url.lstrip('/')) # Inject BASE_PATH def __deepcopy__(self, memo): """Reset `static_params` and `dynamic_params` when APISelect is deepcopied.""" result = super().__deepcopy__(memo) result.dynamic_params = {} result.static_params = {} return result def _process_query_param(self, key, value) -> None: """ Based on query param value's type and value, update instance's dynamic/static params. """ if isinstance(value, str): # Coerce `True` boolean. if value.lower() == 'true': value = True # Coerce `False` boolean. elif value.lower() == 'false': value = False # Query parameters cannot have a `None` (or `null` in JSON) type, convert # `None` types to `'null'` so that ?key=null is used in the query URL. elif value is None: value = 'null' # Check type of `value` again, since it may have changed. if isinstance(value, str): if value.startswith('$'): # A value starting with `$` indicates a dynamic query param, where the # initial value is unknown and will be updated at the JavaScript layer # as the related form field's value changes. field_name = value.strip('$') self.dynamic_params[field_name] = key else: # A value _not_ starting with `$` indicates a static query param, where # the value is already known and should not be changed at the JavaScript # layer. if key in self.static_params: current = self.static_params[key] self.static_params[key] = [v for v in set([*current, value])] else: self.static_params[key] = [value] else: # Any non-string values are passed through as static query params, since # dynamic query param values have to be a string (in order to start with # `$`). if key in self.static_params: current = self.static_params[key] self.static_params[key] = [v for v in set([*current, value])] else: self.static_params[key] = [value] def METHOD_NAME(self, query_params): """ Process an entire query_params dictionary, and handle primitive or list values. """ for key, value in query_params.items(): if isinstance(value, (List, Tuple)): # If value is a list/tuple, iterate through each item. for item in value: self._process_query_param(key, item) else: self._process_query_param(key, value) def _serialize_params(self, key, params): """ Serialize dynamic or static query params to JSON and add the serialized value to the widget attributes by `key`. """ # Deserialize the current serialized value from the widget, using an empty JSON # array as a fallback in the event one is not defined. current = json.loads(self.attrs.get(key, '[]')) # Combine the current values with the updated values and serialize the result as # JSON. Note: the `separators` kwarg effectively removes extra whitespace from # the serialized JSON string, which is ideal since these will be passed as # attributes to HTML elements and parsed on the client. self.attrs[key] = json.dumps([*current, *params], separators=(',', ':')) def _add_dynamic_params(self): """ Convert post-processed dynamic query params to data structure expected by front- end, serialize the value to JSON, and add it to the widget attributes. """ key = 'data-dynamic-params' if len(self.dynamic_params) > 0: try: update = [{'fieldName': f, 'queryParam': q} for (f, q) in self.dynamic_params.items()] self._serialize_params(key, update) except IndexError as error: raise RuntimeError(f"Missing required value for dynamic query param: '{self.dynamic_params}'") from error def _add_static_params(self): """ Convert post-processed static query params to data structure expected by front- end, serialize the value to JSON, and add it to the widget attributes. """ key = 'data-static-params' if len(self.static_params) > 0: try: update = [{'queryParam': k, 'queryValue': v} for (k, v) in self.static_params.items()] self._serialize_params(key, update) except IndexError as error: raise RuntimeError(f"Missing required value for static query param: '{self.static_params}'") from error def add_query_params(self, query_params): """ Proccess & add a dictionary of URL query parameters to the widget attributes. """ # Process query parameters. This populates `self.dynamic_params` and `self.static_params`. self.METHOD_NAME(query_params) # Add processed dynamic parameters to widget attributes. self._add_dynamic_params() # Add processed static parameters to widget attributes. self._add_static_params() def add_query_param(self, key, value) -> None: """ Process & add a key/value pair of URL query parameters to the widget attributes. """ self.add_query_params({key: value}) class APISelectMultiple(APISelect, forms.SelectMultiple): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.attrs['data-multiple'] = 1
3,369
ensure context
""" Expose each GPU devices directly. This module implements a API that is like the "CUDA runtime" context manager for managing CUDA context stack and clean up. It relies on thread-local globals to separate the context stack management of each thread. Contexts are also shareable among threads. Only the main thread can destroy Contexts. Note: - This module must be imported by the main-thread. """ import functools import threading from contextlib import contextmanager from .driver import driver, USE_NV_BINDING class _DeviceList(object): def __getattr__(self, attr): # First time looking at "lst" attribute. if attr == "lst": # Device list is not initialized. # Query all CUDA devices. numdev = driver.get_device_count() gpus = [_DeviceContextManager(driver.get_device(devid)) for devid in range(numdev)] # Define "lst" to avoid re-initialization self.lst = gpus return gpus # Other attributes return super(_DeviceList, self).__getattr__(attr) def __getitem__(self, devnum): ''' Returns the context manager for device *devnum*. ''' return self.lst[devnum] def __str__(self): return ', '.join([str(d) for d in self.lst]) def __iter__(self): return iter(self.lst) def __len__(self): return len(self.lst) @property def current(self): """Returns the active device or None if there's no active device """ with driver.get_active_context() as ac: devnum = ac.devnum if devnum is not None: return self[devnum] class _DeviceContextManager(object): """ Provides a context manager for executing in the context of the chosen device. The normal use of instances of this type is from ``numba.cuda.gpus``. For example, to execute on device 2:: with numba.cuda.gpus[2]: d_a = numba.cuda.to_device(a) to copy the array *a* onto device 2, referred to by *d_a*. """ def __init__(self, device): self._device = device def __getattr__(self, item): return getattr(self._device, item) def __enter__(self): _runtime.get_or_create_context(self._device.id) def __exit__(self, exc_type, exc_val, exc_tb): # this will verify that we are popping the right device context. self._device.get_primary_context().pop() def __str__(self): return "<Managed Device {self.id}>".format(self=self) class _Runtime(object): """Emulate the CUDA runtime context management. It owns all Devices and Contexts. Keeps at most one Context per Device """ def __init__(self): self.gpus = _DeviceList() # For caching the attached CUDA Context self._tls = threading.local() # Remember the main thread # Only the main thread can *actually* destroy self._mainthread = threading.current_thread() # Avoid mutation of runtime state in multithreaded programs self._lock = threading.RLock() @contextmanager def METHOD_NAME(self): """Ensure a CUDA context is available inside the context. On entrance, queries the CUDA driver for an active CUDA context and attaches it in TLS for subsequent calls so they do not need to query the CUDA driver again. On exit, detach the CUDA context from the TLS. This will allow us to pickup thirdparty activated CUDA context in any top-level Numba CUDA API. """ with driver.get_active_context(): oldctx = self._get_attached_context() newctx = self.get_or_create_context(None) self._set_attached_context(newctx) try: yield finally: self._set_attached_context(oldctx) def get_or_create_context(self, devnum): """Returns the primary context and push+create it if needed for *devnum*. If *devnum* is None, use the active CUDA context (must be primary) or create a new one with ``devnum=0``. """ if devnum is None: attached_ctx = self._get_attached_context() if attached_ctx is None: return self._get_or_create_context_uncached(devnum) else: return attached_ctx else: if USE_NV_BINDING: devnum = int(devnum) return self._activate_context_for(devnum) def _get_or_create_context_uncached(self, devnum): """See also ``get_or_create_context(devnum)``. This version does not read the cache. """ with self._lock: # Try to get the active context in the CUDA stack or # activate GPU-0 with the primary context with driver.get_active_context() as ac: if not ac: return self._activate_context_for(0) else: # Get primary context for the active device ctx = self.gpus[ac.devnum].get_primary_context() # Is active context the primary context? if USE_NV_BINDING: ctx_handle = int(ctx.handle) ac_ctx_handle = int(ac.context_handle) else: ctx_handle = ctx.handle.value ac_ctx_handle = ac.context_handle.value if ctx_handle != ac_ctx_handle: msg = ('Numba cannot operate on non-primary' ' CUDA context {:x}') raise RuntimeError(msg.format(ac_ctx_handle)) # Ensure the context is ready ctx.prepare_for_use() return ctx def _activate_context_for(self, devnum): with self._lock: gpu = self.gpus[devnum] newctx = gpu.get_primary_context() # Detect unexpected context switch cached_ctx = self._get_attached_context() if cached_ctx is not None and cached_ctx is not newctx: raise RuntimeError('Cannot switch CUDA-context.') newctx.push() return newctx def _get_attached_context(self): return getattr(self._tls, 'attached_context', None) def _set_attached_context(self, ctx): self._tls.attached_context = ctx def reset(self): """Clear all contexts in the thread. Destroy the context if and only if we are in the main thread. """ # Pop all active context. while driver.pop_active_context() is not None: pass # If it is the main thread if threading.current_thread() == self._mainthread: self._destroy_all_contexts() def _destroy_all_contexts(self): # Reset all devices for gpu in self.gpus: gpu.reset() _runtime = _Runtime() # ================================ PUBLIC API ================================ gpus = _runtime.gpus def get_context(devnum=None): """Get the current device or use a device by device number, and return the CUDA context. """ return _runtime.get_or_create_context(devnum) def require_context(fn): """ A decorator that ensures a CUDA context is available when *fn* is executed. Note: The function *fn* cannot switch CUDA-context. """ @functools.wraps(fn) def _require_cuda_context(*args, **kws): with _runtime.METHOD_NAME(): return fn(*args, **kws) return _require_cuda_context def reset(): """Reset the CUDA subsystem for the current thread. In the main thread: This removes all CUDA contexts. Only use this at shutdown or for cleaning up between tests. In non-main threads: This clear the CUDA context stack only. """ _runtime.reset()
3,370
quat2 yaw
import rospy import threading from math import asin, atan2, pi from nav_msgs.msg import Odometry def METHOD_NAME(qw, qx, qy, qz): ''' Translates from Quaternion to Yaw. @param qw,qx,qy,qz: Quaternion values @type qw,qx,qy,qz: float @return Yaw value translated from Quaternion ''' rotateZa0=2.0*(qx*qy + qw*qz) rotateZa1=qw*qw + qx*qx - qy*qy - qz*qz rotateZ=0.0 if(rotateZa0 != 0.0 and rotateZa1 != 0.0): rotateZ=atan2(rotateZa0,rotateZa1) return rotateZ def quat2Pitch(qw, qx, qy, qz): ''' Translates from Quaternion to Pitch. @param qw,qx,qy,qz: Quaternion values @type qw,qx,qy,qz: float @return Pitch value translated from Quaternion ''' rotateYa0=-2.0*(qx*qz - qw*qy) rotateY=0.0 if(rotateYa0 >= 1.0): rotateY = pi/2.0 elif(rotateYa0 <= -1.0): rotateY = -pi/2.0 else: rotateY = asin(rotateYa0) return rotateY def quat2Roll (qw, qx, qy, qz): ''' Translates from Quaternion to Roll. @param qw,qx,qy,qz: Quaternion values @type qw,qx,qy,qz: float @return Roll value translated from Quaternion ''' rotateXa0=2.0*(qy*qz + qw*qx) rotateXa1=qw*qw - qx*qx - qy*qy + qz*qz rotateX=0.0 if(rotateXa0 != 0.0 and rotateXa1 != 0.0): rotateX=atan2(rotateXa0, rotateXa1) return rotateX def odometry2Pose3D(odom): ''' Translates from ROS Odometry to JderobotTypes Pose3d. @param odom: ROS Odometry to translate @type odom: Odometry @return a Pose3d translated from odom ''' pose = Pose3d() ori = odom.pose.pose.orientation pose.x = odom.pose.pose.position.x pose.y = odom.pose.pose.position.y pose.z = odom.pose.pose.position.z #pose.h = odom.pose.pose.position.h pose.yaw = METHOD_NAME(ori.w, ori.x, ori.y, ori.z) pose.pitch = quat2Pitch(ori.w, ori.x, ori.y, ori.z) pose.roll = quat2Roll(ori.w, ori.x, ori.y, ori.z) pose.q = [ori.w, ori.x, ori.y, ori.z] pose.timeStamp = odom.header.stamp.secs + (odom.header.stamp.nsecs *1e-9) return pose class Pose3d (): def __init__(self): self.x = 0 # X coord [meters] self.y = 0 # Y coord [meters] self.z = 0 # Z coord [meters] self.h = 1 # H param self.yaw = 0 #Yaw angle[rads] self.pitch = 0 # Pitch angle[rads] self.roll = 0 # Roll angle[rads] self.q = [0,0,0,0] # Quaternion self.timeStamp = 0 # Time stamp [s] def __str__(self): s = "Pose3D: {\n x: " + str(self.x) + "\n Y: " + str(self.y) s = s + "\n Z: " + str(self.z) + "\n H: " + str(self.h) s = s + "\n Yaw: " + str(self.yaw) + "\n Pitch: " + str(self.pitch) + "\n Roll: " + str(self.roll) s = s + "\n quaternion: " + str(self.q) + "\n timeStamp: " + str(self.timeStamp) + "\n}" return s class ListenerPose3d: ''' ROS Pose3D Subscriber. Pose3D Client to Receive pose3d from ROS nodes. ''' def __init__(self, topic): ''' ListenerPose3d Constructor. @param topic: ROS topic to subscribe @type topic: String ''' self.topic = topic self.data = Pose3d() self.sub = None self.lock = threading.Lock() self.start() def __callback (self, odom): ''' Callback function to receive and save Pose3d. @param odom: ROS Odometry received @type odom: Odometry ''' pose = odometry2Pose3D(odom) self.lock.acquire() self.data = pose self.lock.release() def stop(self): ''' Stops (Unregisters) the client. ''' self.sub.unregister() def start (self): ''' Starts (Subscribes) the client. ''' self.sub = rospy.Subscriber(self.topic, Odometry, self.__callback) def getPose3d(self): ''' Returns last Pose3d. @return last JdeRobotTypes Pose3d saved ''' self.lock.acquire() pose = self.data self.lock.release() return pose
3,371
translate bin path
"""Rules for running `mro format`, either to reformat files or to check them.""" load( "//tools:providers.bzl", "MroInfo", ) load("//tools:util.bzl", "merge_runfiles") load("@bazel_skylib//lib:shell.bzl", "shell") def METHOD_NAME(p): if p.startswith(".."): return "external/" + p[len("../"):] return p def _mro_tool_common_impl(ctx, script_function): mros = depset( ctx.files.srcs, transitive = [ dep[MroInfo].transitive_mros for dep in ctx.attr.srcs if MroInfo in dep ], ).to_list() script = ctx.actions.declare_file(ctx.attr.script_name or ctx.attr.name) ctx.actions.write( output = script, content = script_function(ctx, mros), is_executable = True, ) mros.append(script) return [ DefaultInfo( executable = script, files = depset([script]), runfiles = merge_runfiles( ctx, [ctx.attr._mro], files = mros, ), ), ] def _make_mrf_runner_script(ctx, mros): return """#!/usr/bin/env bash root=$(dirname $(realpath -sL "${{BASH_SOURCE[0]}}")) runfiles="${{root}}" if [ -d "${{BASH_SOURCE[0]}}.runfiles/{workspace}" ]; then runfiles=$(realpath -sL "${{BASH_SOURCE[0]}}.runfiles/{workspace}") fi if [ -d "${{BUILD_WORKING_DIRECTORY}}" ]; then builtin cd "${{BUILD_WORKING_DIRECTORY}}" fi {mropath} export MARTIAN_BASE=$(dirname "${{runfiles}}/{mro}") exec -a {basename} "${{runfiles}}/{mro}" {subcommand}{flags} \\ \t{mro_files} """.format( basename = shell.quote(ctx.executable._mro.basename), mropath = "export MROPATH=\"{}\"".format(":".join([ "${runfiles}/" + METHOD_NAME(p) for p in depset(transitive = [ dep[MroInfo].mropath for dep in ctx.attr.srcs if MroInfo in dep ]).to_list() ])) if ctx.attr.srcs else "", mro = METHOD_NAME(ctx.executable._mro.short_path), subcommand = shell.quote(ctx.attr.subcommand), flags = " \\\n\t" + " \\\n\t".join( [ shell.quote(flag) for flag in ctx.attr.flags ], ) if ctx.attr.flags else "", mro_files = " \\\n\t".join([ "\"${runfiles}/\"" + shell.quote(METHOD_NAME(p.short_path)) for p in mros ]) + " \"$@\"", workspace = ctx.workspace_name or "__main__", ) def _mro_tool_runner_impl(ctx): return _mro_tool_common_impl(ctx, _make_mrf_runner_script) mro_tool_runner = rule( attrs = { "srcs": attr.label_list( doc = "The mro files to give as arguments to the tool.", allow_files = True, providers = [ [MroInfo], [DefaultInfo], ], ), "subcommand": attr.string( mandatory = True, doc = "The subcommand for the `mro` tool, e.g. " + "`format`, `check`, `graph`, `edit`.", ), "_mro": attr.label( executable = True, default = Label("@martian//:mro"), cfg = "target", ), "script_name": attr.string( doc = "The name for the script file.", ), "flags": attr.string_list( default = [], doc = "Flags to pass to the `mro` subcommand.", ), }, doc = "Runs the `mro` tool, possibly with a subcommand, with the given " + "mro files (if any) as arguments.", executable = True, implementation = _mro_tool_runner_impl, ) def _make_mrf_tester_script(ctx, mros): if not mros: fail("required: at least one file to check", "mros") return """#!/usr/bin/env bash export MROPATH="{mropath}" export MARTIAN_BASE=$(dirname "{mro}") rc=0 for mro_file in \\ \t{mro_files}; do echo "checking ${{mro_file}}..." ( set -o pipefail diff "${{mro_file}}" <("{mro}" format "${{mro_file}}") ) || rc=$? done exit $rc """.format( mropath = ":".join( depset(transitive = [ dep[MroInfo].mropath for dep in ctx.attr.srcs if MroInfo in dep ]).to_list(), ), mro = ctx.executable._mro.short_path, mrf_flags = " ".join(ctx.attr.mrf_flags), mro_files = " \\\n\t".join([ shell.quote(p.short_path) for p in mros ]), ) def _mrf_test_impl(ctx): return _mro_tool_common_impl(ctx, _make_mrf_tester_script) mrf_test = rule( attrs = { "srcs": attr.label_list( mandatory = True, doc = "The mro files to format.", allow_files = True, providers = [ [MroInfo], [DefaultInfo], ], ), "_mro": attr.label( executable = True, default = Label("@martian//:mro"), cfg = "target", ), "script_name": attr.string( doc = "The name for the script file.", ), "mrf_flags": attr.string_list( default = [ "--includes", ], doc = "Flags to pass to `mro format`.", ), }, doc = "Runs `mro format` on the given files, and fails if there are any differences.", test = True, implementation = _mrf_test_impl, )
3,372
test sinh
# Owner(s): ["module: dynamo"] # this file is autogenerated via gen_ufuncs.py # do not edit manually! import numpy as np from torch._numpy._ufuncs import * # noqa: F403 from torch._numpy.testing import assert_allclose def test_absolute(): assert_allclose(np.absolute(0.5), absolute(0.5), atol=1e-14, check_dtype=False) def test_arccos(): assert_allclose(np.arccos(0.5), arccos(0.5), atol=1e-14, check_dtype=False) def test_arccosh(): assert_allclose(np.arccosh(1.5), arccosh(1.5), atol=1e-14, check_dtype=False) def test_arcsin(): assert_allclose(np.arcsin(0.5), arcsin(0.5), atol=1e-14, check_dtype=False) def test_arcsinh(): assert_allclose(np.arcsinh(0.5), arcsinh(0.5), atol=1e-14, check_dtype=False) def test_arctan(): assert_allclose(np.arctan(0.5), arctan(0.5), atol=1e-14, check_dtype=False) def test_arctanh(): assert_allclose(np.arctanh(0.5), arctanh(0.5), atol=1e-14, check_dtype=False) def test_cbrt(): assert_allclose(np.cbrt(0.5), cbrt(0.5), atol=1e-14, check_dtype=False) def test_ceil(): assert_allclose(np.ceil(0.5), ceil(0.5), atol=1e-14, check_dtype=False) def test_conjugate(): assert_allclose(np.conjugate(0.5), conjugate(0.5), atol=1e-14, check_dtype=False) def test_cos(): assert_allclose(np.cos(0.5), cos(0.5), atol=1e-14, check_dtype=False) def test_cosh(): assert_allclose(np.cosh(0.5), cosh(0.5), atol=1e-14, check_dtype=False) def test_deg2rad(): assert_allclose(np.deg2rad(0.5), deg2rad(0.5), atol=1e-14, check_dtype=False) def test_degrees(): assert_allclose(np.degrees(0.5), degrees(0.5), atol=1e-14, check_dtype=False) def test_exp(): assert_allclose(np.exp(0.5), exp(0.5), atol=1e-14, check_dtype=False) def test_exp2(): assert_allclose(np.exp2(0.5), exp2(0.5), atol=1e-14, check_dtype=False) def test_expm1(): assert_allclose(np.expm1(0.5), expm1(0.5), atol=1e-14, check_dtype=False) def test_fabs(): assert_allclose(np.fabs(0.5), fabs(0.5), atol=1e-14, check_dtype=False) def test_floor(): assert_allclose(np.floor(0.5), floor(0.5), atol=1e-14, check_dtype=False) def test_isfinite(): assert_allclose(np.isfinite(0.5), isfinite(0.5), atol=1e-14, check_dtype=False) def test_isinf(): assert_allclose(np.isinf(0.5), isinf(0.5), atol=1e-14, check_dtype=False) def test_isnan(): assert_allclose(np.isnan(0.5), isnan(0.5), atol=1e-14, check_dtype=False) def test_log(): assert_allclose(np.log(0.5), log(0.5), atol=1e-14, check_dtype=False) def test_log10(): assert_allclose(np.log10(0.5), log10(0.5), atol=1e-14, check_dtype=False) def test_log1p(): assert_allclose(np.log1p(0.5), log1p(0.5), atol=1e-14, check_dtype=False) def test_log2(): assert_allclose(np.log2(0.5), log2(0.5), atol=1e-14, check_dtype=False) def test_logical_not(): assert_allclose( np.logical_not(0.5), logical_not(0.5), atol=1e-14, check_dtype=False ) def test_negative(): assert_allclose(np.negative(0.5), negative(0.5), atol=1e-14, check_dtype=False) def test_positive(): assert_allclose(np.positive(0.5), positive(0.5), atol=1e-14, check_dtype=False) def test_rad2deg(): assert_allclose(np.rad2deg(0.5), rad2deg(0.5), atol=1e-14, check_dtype=False) def test_radians(): assert_allclose(np.radians(0.5), radians(0.5), atol=1e-14, check_dtype=False) def test_reciprocal(): assert_allclose(np.reciprocal(0.5), reciprocal(0.5), atol=1e-14, check_dtype=False) def test_rint(): assert_allclose(np.rint(0.5), rint(0.5), atol=1e-14, check_dtype=False) def test_sign(): assert_allclose(np.sign(0.5), sign(0.5), atol=1e-14, check_dtype=False) def test_signbit(): assert_allclose(np.signbit(0.5), signbit(0.5), atol=1e-14, check_dtype=False) def test_sin(): assert_allclose(np.sin(0.5), sin(0.5), atol=1e-14, check_dtype=False) def METHOD_NAME(): assert_allclose(np.sinh(0.5), sinh(0.5), atol=1e-14, check_dtype=False) def test_sqrt(): assert_allclose(np.sqrt(0.5), sqrt(0.5), atol=1e-14, check_dtype=False) def test_square(): assert_allclose(np.square(0.5), square(0.5), atol=1e-14, check_dtype=False) def test_tan(): assert_allclose(np.tan(0.5), tan(0.5), atol=1e-14, check_dtype=False) def test_tanh(): assert_allclose(np.tanh(0.5), tanh(0.5), atol=1e-14, check_dtype=False) def test_trunc(): assert_allclose(np.trunc(0.5), trunc(0.5), atol=1e-14, check_dtype=False)
3,373
streamlines to segments
# -*- coding: utf-8 -*- import logging import numpy as np from numpy.linalg import norm from scipy.spatial import cKDTree from scipy.sparse import bsr_matrix def _subdivide_streamline(streamline, n_steps): if n_steps < 2: return streamline dirs = streamline[1:] - streamline[:-1] subdivided = np.zeros((n_steps * (len(streamline) - 1) + 1, 3)) subdivided[::n_steps] = streamline for s in range(1, n_steps): subdivided[s::n_steps] = streamline[:-1] + s / n_steps * dirs return subdivided def METHOD_NAME(streamlines, n_steps=1): """Split streamlines into its segments. Parameters ---------- streamlines : list of numpy.ndarray List of streamlines. Returns ------- segments : numpy.ndarray (2D) Segments array representation with the first and last points. """ vts_0_list = [] vts_1_list = [] for streamline in streamlines: streamline = _subdivide_streamline(streamline, n_steps) vts_0_list.append(streamline[:-1]) vts_1_list.append(streamline[1:]) segments = np.stack((np.vstack(vts_0_list), np.vstack(vts_1_list)), axis=0) return segments def streamlines_to_endpoints(streamlines): """Equivalent to streamlines resampling to 2 points (first and last). Parameters ---------- streamlines : list of numpy.ndarray List of streamlines. Returns ------- endpoints : numpy.ndarray (2D) Endpoint array representation with the first and last points. """ endpoints = np.zeros((2, len(streamlines), 3)) for i, streamline in enumerate(streamlines): endpoints[0, i] = streamline[0] endpoints[1, i] = streamline[-1] return endpoints def streamlines_to_pts_dir_norm(streamlines, n_steps=1, asymmetric=False): """Evaluate each segment: mid position, direction, length. Parameters ---------- streamlines : list of numpy.ndarray List of streamlines. Returns ------- seg_mid : numpy.ndarray (2D) Mid position (x,y,z) of all streamlines' segments. seg_dir : numpy.ndarray (2D) Direction (x,y,z) of all streamlines' segments. seg_norm : numpy.ndarray (2D) Length of all streamlines' segments. """ segments = METHOD_NAME(streamlines, n_steps) seg_mid = get_segments_mid_pts_positions(segments) seg_dir, seg_norm = get_segments_dir_and_norm(segments, seg_mid, asymmetric) mask = seg_norm > 1.0e-20 if ~mask.any(): logging.warning("WARNING : There is at least one streamline with " "overlapping points in the tractogram.") return seg_mid[mask], seg_dir[mask], seg_norm[mask] def get_segments_mid_pts_positions(segments): return 0.5 * (segments[0] + segments[1]) def get_segments_vectors(segments): return segments[1] - segments[0] def get_segments_dir_and_norm(segments, seg_mid=None, asymmetric=False): if asymmetric: seg_vecs = get_segments_vectors(segments) return get_vectors_dir_and_norm_rel_to_center(seg_vecs, seg_mid) return get_vectors_dir_and_norm(get_segments_vectors(segments)) def get_vectors_dir_and_norm(vectors): vectors_norm = compute_vectors_norm(vectors) vectors_dir = vectors / vectors_norm.reshape((-1, 1)) return vectors_dir, vectors_norm def get_vectors_dir_and_norm_rel_to_center(vectors, seg_mid_pts): """ Evaluates vectors direction and norm by taking into account the orientation and position of segments in relation to the center of voxel """ vectors_norm = compute_vectors_norm(vectors) vectors_dir = vectors / vectors_norm.reshape((-1, 1)) # we create an array of voxel centers for each of our points vox_centers = seg_mid_pts.astype(int) + 0.5 # directions to center of voxel for each segment dir_to_center = (vox_centers - seg_mid_pts).flatten() r, c = (vectors_dir.shape[0], 3 * vectors_dir.shape[0]) rows = np.arange(r).repeat(3) cols = np.arange(c) dir_to_center_mat = bsr_matrix((dir_to_center, (rows, cols)), shape=(r, c)) # compute dot product between direction of vectors and direction to center dots = dir_to_center_mat.dot(vectors_dir.flatten()).reshape((-1, 1)) # when dot is greater that 0, the vector goes toward the center # of the voxel we flip the direction of such vectors vectors_dir_rel = np.where(dots > 0, -vectors_dir, vectors_dir) return vectors_dir_rel, vectors_norm def psf_from_sphere(sphere_vertices): return np.abs(np.dot(sphere_vertices, sphere_vertices.T)) # Mask functions def generate_mask_indices_1d(nb_voxel, indices_1d): mask_1d = np.zeros(nb_voxel, dtype=bool) mask_1d[indices_1d] = True return mask_1d def get_indices_1d(volume_shape, pts): return np.ravel_multi_index(pts.T.astype(int), volume_shape) def get_dir_to_sphere_id(vectors, sphere_vertices): """Find the closest vector on the sphere vertices using a cKDT tree sphere_vertices must be normed (or all with equal norm). Parameters ---------- vectors : numpy.ndarray (2D) Vectors representing the direction (x,y,z) of segments. sphere_vertices : numpy.ndarray (2D) Vertices of a Dipy sphere object. Returns ------- dir_sphere_id : numpy.ndarray (1D) Sphere indices of the closest sphere direction for each vector """ sphere_kdtree = cKDTree(sphere_vertices) _, dir_sphere_id = sphere_kdtree.query(vectors, k=1, workers=-1) return dir_sphere_id # Generic Functions (vector norm) def compute_vectors_norm(vectors): return norm(vectors, ord=2, axis=-1) def normalize_vectors(vectors): return p_normalize_vectors(vectors, 2) def p_normalize_vectors(vectors, p): return vectors / norm(vectors, ord=p, axis=-1, keepdims=True)
3,374
test software trigger simtel process
import json import numpy as np import pytest from numpy.testing import assert_equal from ctapipe.containers import ArrayEventContainer from ctapipe.io import EventSource def assert_all_tel_keys(event, expected, ignore=None): if ignore is None: ignore = set() expected = tuple(expected) for name, container in event.items(): if hasattr(container, "tel"): actual = tuple(container.tel.keys()) if name not in ignore and actual != expected: raise AssertionError( f"Unexpected tel_ids in container {name}:" f"{actual} != {expected}" ) @pytest.mark.parametrize("data_type", (list, np.array)) def test_software_trigger(subarray_prod5_paranal, data_type): from ctapipe.instrument.trigger import SoftwareTrigger subarray = subarray_prod5_paranal trigger = SoftwareTrigger( subarray=subarray, min_telescopes=2, min_telescopes_of_type=[ ("type", "*", 0), ("type", "LST*", 2), ], ) # only one telescope, no SWAT event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([5]) assert trigger(event) == False assert_equal(event.trigger.tels_with_trigger, data_type([])) # 1 LST + 1 MST, 1 LST would not have triggered LST hardware trigger # and after LST is removed, we only have 1 telescope, so no SWAT either event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([1, 6]) assert trigger(event) == False assert_equal(event.trigger.tels_with_trigger, data_type([])) # two MSTs and 1 LST, -> remove single LST event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([1, 5, 6]) assert trigger(event) == True assert_equal(event.trigger.tels_with_trigger, data_type([5, 6])) # two MSTs, nothing to change event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([5, 6]) assert trigger(event) == True assert_equal(event.trigger.tels_with_trigger, data_type([5, 6])) # three LSTs, nothing to change event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([1, 2, 3]) assert trigger(event) == True assert_equal(event.trigger.tels_with_trigger, data_type([1, 2, 3])) # thee LSTs, plus MSTs, nothing to change event = ArrayEventContainer() event.trigger.tels_with_trigger = data_type([1, 2, 3, 5, 6, 7]) assert trigger(event) == True assert_equal(event.trigger.tels_with_trigger, data_type([1, 2, 3, 5, 6, 7])) @pytest.mark.parametrize("allowed_tels", (None, list(range(1, 20)))) def test_software_trigger_simtel(allowed_tels): from ctapipe.instrument.trigger import SoftwareTrigger path = "dataset://gamma_divergent_LaPalma_baseline_20Zd_180Az_prod3_test.simtel.gz" expected = [ [12, 16], [], [1, 2, 3, 4], [1, 4], [], [1, 3], [1, 2, 3, 4, 5, 6, 7, 12, 15, 16, 17, 18], [13, 14], [], [2, 3, 7, 12], [1, 2, 5, 17], [], [13, 19], [], [], [1, 2, 4, 5, 11, 18], [17, 18], [7, 12], [], ] with EventSource( path, focal_length_choice="EQUIVALENT", allowed_tels=allowed_tels ) as source: trigger = SoftwareTrigger( subarray=source.subarray, min_telescopes=2, min_telescopes_of_type=[ ("type", "*", 0), ("type", "LST*", 2), ], ) for e, expected_tels in zip(source, expected): trigger(e) assert_equal(e.trigger.tels_with_trigger, expected_tels) assert_all_tel_keys(e, expected_tels, ignore={"dl0", "dl1", "dl2", "muon"}) def test_software_trigger_simtel_single_lsts(): from ctapipe.instrument.trigger import SoftwareTrigger path = "dataset://gamma_divergent_LaPalma_baseline_20Zd_180Az_prod3_test.simtel.gz" # remove 3 LSTs, so that we trigger the 1-LST condition allowed_tels = [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] expected = [ [12, 16], [], [], [], [], [], [5, 6, 7, 12, 15, 16, 17, 18], [13, 14], [], [7, 12], [5, 17], [13, 19], [], [], [5, 11, 18], [17, 18], [7, 12], [], ] with EventSource( path, focal_length_choice="EQUIVALENT", allowed_tels=allowed_tels ) as source: trigger = SoftwareTrigger( subarray=source.subarray, min_telescopes=2, min_telescopes_of_type=[ ("type", "*", 0), ("type", "LST*", 2), ], ) for e, expected_tels in zip(source, expected): print(e.trigger.tels_with_trigger) trigger(e) print(e.trigger.tels_with_trigger, expected_tels) assert_equal(e.trigger.tels_with_trigger, expected_tels) assert_all_tel_keys(e, expected_tels, ignore={"dl0", "dl1", "dl2", "muon"}) def METHOD_NAME(tmp_path): from ctapipe.core import run_tool from ctapipe.io import TableLoader from ctapipe.tools.process import ProcessorTool path = "dataset://gamma_divergent_LaPalma_baseline_20Zd_180Az_prod3_test.simtel.gz" config = dict( ProcessorTool=dict( EventSource=dict( focal_length_choice="EQUIVALENT", # remove 3 LSTs, so that we trigger the 1-LST condition allowed_tels=(1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), ), SoftwareTrigger=dict( min_telescopes=2, min_telescopes_of_type=[ ("type", "*", 0), ("type", "LST*", 2), ], ), ) ) output_path = tmp_path / "software_trigger.dl1.h5" config_path = tmp_path / "config.json" config_path.write_text(json.dumps(config)) run_tool( ProcessorTool(), [f"--input={path}", f"--output={output_path}", f"--config={config_path}"], ) del config["ProcessorTool"]["SoftwareTrigger"] output_path_no_software_trigger = tmp_path / "no_software_trigger.dl1.h5" config_path = tmp_path / "config_no_software_trigger.json" config_path.write_text(json.dumps(config)) run_tool( ProcessorTool(), [ f"--input={path}", f"--output={output_path_no_software_trigger}", f"--config={config_path}", ], ) with TableLoader( output_path, load_simulated=True, load_dl1_parameters=True, focal_length_choice="EQUIVALENT", ) as loader: events_trigger = loader.read_telescope_events("LST_LST_LSTCam") with TableLoader( output_path_no_software_trigger, load_simulated=True, load_dl1_parameters=True, focal_length_choice="EQUIVALENT", ) as loader: events_no_trigger = loader.read_telescope_events("LST_LST_LSTCam") assert len(events_no_trigger) > len(events_trigger)
3,375
should colorize
# Stubs for logbook.more (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from logbook.base import RecordDispatcher from logbook.handlers import ( FingersCrossedHandler as FingersCrossedHandlerBase, Handler, StderrHandler, StringFormatter, StringFormatterHandlerMixin, ) from logbook.ticketing import BackendBase from typing import Any, Optional TWITTER_FORMAT_STRING: Any TWITTER_ACCESS_TOKEN_URL: str NEW_TWEET_URL: str class CouchDBBackend(BackendBase): database: Any = ... def setup_backend(self) -> None: ... def record_ticket(self, record: Any, data: Any, hash: Any, app_id: Any) -> None: ... class TwitterFormatter(StringFormatter): max_length: int = ... def format_exception(self, record: Any): ... def __call__(self, record: Any, handler: Any): ... class TaggingLogger(RecordDispatcher): def __init__(self, name: Optional[Any] = ..., tags: Optional[Any] = ...) -> None: ... def log(self, tags: Any, msg: Any, *args: Any, **kwargs: Any): ... class TaggingHandler(Handler): def __init__(self, handlers: Any, filter: Optional[Any] = ..., bubble: bool = ...) -> None: ... def emit(self, record: Any) -> None: ... class TwitterHandler(Handler, StringFormatterHandlerMixin): default_format_string: Any = ... formatter_class: Any = ... consumer_key: Any = ... consumer_secret: Any = ... username: Any = ... password: Any = ... def __init__( self, consumer_key: Any, consumer_secret: Any, username: Any, password: Any, level: Any = ..., format_string: Optional[Any] = ..., filter: Optional[Any] = ..., bubble: bool = ..., ) -> None: ... def get_oauth_token(self): ... def make_client(self): ... def tweet(self, status: Any): ... def emit(self, record: Any) -> None: ... class SlackHandler(Handler, StringFormatterHandlerMixin): api_token: Any = ... channel: Any = ... slack: Any = ... def __init__( self, api_token: Any, channel: Any, level: Any = ..., format_string: Optional[Any] = ..., filter: Optional[Any] = ..., bubble: bool = ..., ) -> None: ... def emit(self, record: Any) -> None: ... class JinjaFormatter: template: Any = ... def __init__(self, template: Any) -> None: ... def __call__(self, record: Any, handler: Any): ... class ExternalApplicationHandler(Handler): encoding: Any = ... def __init__( self, arguments: Any, stdin_format: Optional[Any] = ..., encoding: str = ..., level: Any = ..., filter: Optional[Any] = ..., bubble: bool = ..., ) -> None: ... def emit(self, record: Any) -> None: ... class ColorizingStreamHandlerMixin: def force_color(self) -> None: ... def forbid_color(self) -> None: ... def METHOD_NAME(self, record: Any): ... def get_color(self, record: Any): ... def format(self, record: Any): ... class ColorizedStderrHandler(ColorizingStreamHandlerMixin, StderrHandler): def __init__(self, *args: Any, **kwargs: Any) -> None: ... class FingersCrossedHandler(FingersCrossedHandlerBase): def __init__(self, *args: Any, **kwargs: Any) -> None: ... class ExceptionHandler(Handler, StringFormatterHandlerMixin): exc_type: Any = ... def __init__( self, exc_type: Any, level: Any = ..., format_string: Optional[Any] = ..., filter: Optional[Any] = ..., bubble: bool = ..., ) -> None: ... def handle(self, record: Any): ... class DedupHandler(Handler): def __init__(self, format_string: str = ..., *args: Any, **kwargs: Any) -> None: ... def clear(self) -> None: ... def pop_application(self) -> None: ... def pop_thread(self) -> None: ... def pop_context(self) -> None: ... def pop_greenlet(self) -> None: ... def handle(self, record: Any): ... def flush(self) -> None: ... class RiemannHandler(Handler): host: Any = ... port: Any = ... ttl: Any = ... queue: Any = ... flush_threshold: Any = ... transport: Any = ... def __init__( self, host: Any, port: Any, message_type: str = ..., ttl: int = ..., flush_threshold: int = ..., bubble: bool = ..., filter: Optional[Any] = ..., level: Any = ..., ) -> None: ... def record_to_event(self, record: Any): ... def emit(self, record: Any) -> None: ...
3,376
resolve login settings per product
import asyncio import json import logging import asyncpg from aiohttp import web from pydantic import ValidationError from servicelib.aiohttp.application_setup import ModuleCategory, app_module_setup from settings_library.email import SMTPSettings from settings_library.postgres import PostgresSettings from .._constants import ( APP_PUBLIC_CONFIG_PER_PRODUCT, APP_SETTINGS_KEY, INDEX_RESOURCE_NAME, ) from ..db.plugin import setup_db from ..db.settings import get_plugin_settings as get_db_plugin_settings from ..email.plugin import setup_email from ..email.settings import get_plugin_settings as get_email_plugin_settings from ..invitations.plugin import setup_invitations from ..products.plugin import ProductName, list_products, setup_products from ..redis import setup_redis from ..rest.plugin import setup_rest from . import ( api_keys_handlers, handlers_2fa, handlers_auth, handlers_change, handlers_confirmation, handlers_registration, ) from ._constants import APP_LOGIN_SETTINGS_PER_PRODUCT_KEY from .settings import ( APP_LOGIN_OPTIONS_KEY, LoginOptions, LoginSettings, LoginSettingsForProduct, ) from .storage import APP_LOGIN_STORAGE_KEY, AsyncpgStorage log = logging.getLogger(__name__) MAX_TIME_TO_CLOSE_POOL_SECS = 5 async def _setup_login_storage_ctx(app: web.Application): assert APP_LOGIN_STORAGE_KEY not in app # nosec settings: PostgresSettings = get_db_plugin_settings(app) pool: asyncpg.pool.Pool = await asyncpg.create_pool( dsn=settings.dsn_with_query, min_size=settings.POSTGRES_MINSIZE, max_size=settings.POSTGRES_MAXSIZE, loop=asyncio.get_event_loop(), ) app[APP_LOGIN_STORAGE_KEY] = storage = AsyncpgStorage(pool) yield # ---------------- if storage.pool is not pool: log.error("Somebody has changed the db pool") try: await asyncio.wait_for(pool.close(), timeout=MAX_TIME_TO_CLOSE_POOL_SECS) except asyncio.TimeoutError: log.exception("Failed to close login storage loop") def setup_login_storage(app: web.Application): if _setup_login_storage_ctx not in app.cleanup_ctx: app.cleanup_ctx.append(_setup_login_storage_ctx) def _setup_login_options(app: web.Application): settings: SMTPSettings = get_email_plugin_settings(app) cfg = settings.dict() if INDEX_RESOURCE_NAME in app.router: cfg["LOGIN_REDIRECT"] = f"{app.router[INDEX_RESOURCE_NAME].url_for()}" app[APP_LOGIN_OPTIONS_KEY] = LoginOptions(**cfg) async def METHOD_NAME(app: web.Application): """Resolves login settings by composing app and product configurations for the login plugin. Note that product settings override app settings. """ # app plugin settings app_login_settings: LoginSettings | None login_settings_per_product: dict[ProductName, LoginSettingsForProduct] = {} if app_login_settings := app[APP_SETTINGS_KEY].WEBSERVER_LOGIN: assert app_login_settings, "setup_settings not called?" # nosec assert isinstance(app_login_settings, LoginSettings) # nosec # compose app and product settings errors = {} for product in list_products(app): try: login_settings_per_product[ product.name ] = LoginSettingsForProduct.create_from_composition( app_login_settings=app_login_settings, product_login_settings=product.login_settings, ) except ValidationError as err: # noqa: PERF203 errors[product.name] = err if errors: msg = "\n".join([f"{n}: {e}" for n, e in errors.items()]) error_msg = f"Invalid product.login_settings:\n{msg}" raise ValueError(error_msg) # store in app app[APP_LOGIN_SETTINGS_PER_PRODUCT_KEY] = login_settings_per_product log.info( "Captured products login settings:\n%s", json.dumps( { product_name: login_settings.dict() for product_name, login_settings in login_settings_per_product.items() }, indent=1, ), ) # product-based public config: Overrides ApplicationSettings.public_dict public_data_per_product = {} for product_name, settings in login_settings_per_product.items(): public_data_per_product[product_name] = { "invitation_required": settings.LOGIN_REGISTRATION_INVITATION_REQUIRED } app.setdefault(APP_PUBLIC_CONFIG_PER_PRODUCT, public_data_per_product) @app_module_setup( "simcore_service_webserver.login", ModuleCategory.ADDON, settings_name="WEBSERVER_LOGIN", logger=log, ) def setup_login(app: web.Application): """Setting up login subsystem in application""" setup_db(app) setup_redis(app) setup_products(app) setup_rest(app) setup_email(app) setup_invitations(app) # routes app.router.add_routes(handlers_auth.routes) app.router.add_routes(handlers_confirmation.routes) app.router.add_routes(handlers_registration.routes) app.router.add_routes(handlers_change.routes) app.router.add_routes(handlers_2fa.routes) app.router.add_routes(api_keys_handlers.routes) _setup_login_options(app) setup_login_storage(app) app.on_startup.append(METHOD_NAME) return True
3,377
test write bed graph worker smoothing
import os import pytest import deeptools.writeBedGraph as wr from deeptools.writeBedGraph import scaleCoverage @pytest.mark.parametrize("bc", ["bam", 'cram']) class TestWriteBedGraph(): def ifiles(self, ext='bam'): root = os.path.dirname(os.path.abspath(__file__)) + "/test_data/" bamFile1 = root + "testA." + ext bamFile2 = root + "testB." + ext bamFile_PE = root + "test_paired2." + ext chrom = '3R' step_size = 50 bin_length = 50 func_args = {'scaleFactor': 1.0} c = wr.WriteBedGraph( [bamFile1], binLength=bin_length, stepSize=step_size ) return c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args def test_writeBedGraph_worker(self, bc): c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) c.zerosToNans = False c.skipZeros = False tempFile = c.writeBedGraph_worker(chrom, 0, 200, scaleCoverage, func_args) _foo = open(tempFile[3], 'r') res = _foo.readlines() _foo.close() expected = ['3R\t0\t100\t0\n', '3R\t100\t200\t1\n'] assert f"{res}" == f"{expected}" os.remove(tempFile[3]) def test_writeBedGraph_worker_zerotonan(self, bc): c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) # turn on zeroToNan c.zerosToNans = True tempFile2 = c.writeBedGraph_worker(chrom, 0, 200, scaleCoverage, func_args) _foo = open(tempFile2[3], 'r') res = _foo.readlines() _foo.close() expected = ['3R\t100\t200\t1\n'] assert f"{res}" == f"{expected}" os.remove(tempFile2[3]) def test_writeBedGraph_worker_scaling(self, bc): c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) func_args = {'scaleFactor': 3.0} tempFile = c.writeBedGraph_worker(chrom, 0, 200, scaleCoverage, func_args) _foo = open(tempFile[3], 'r') res = _foo.readlines() _foo.close() expected = ['3R\t0\t100\t0\n', '3R\t100\t200\t3\n'] assert f"{res}" == f"{expected}" os.remove(tempFile[3]) def test_writeBedGraph_worker_ignore_duplicates(self, bc): c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) c = wr.WriteBedGraph( [bamFile2], binLength=bin_length, stepSize=step_size, ignoreDuplicates=True ) c.zerosToNans = True tempFile = c.writeBedGraph_worker(chrom, 0, 200, scaleCoverage, func_args) _foo = open(tempFile[3], 'r') res = _foo.readlines() _foo.close() expected = ['3R\t50\t200\t1\n'] assert f"{res}" == f"{expected}" os.remove(tempFile[3]) def METHOD_NAME(self, bc): c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) c.binLength = 20 c.stepSize = 20 c.smoothLength = 60 tempFile = c.writeBedGraph_worker(chrom, 100, 200, scaleCoverage, func_args) _foo = open(tempFile[3], 'r') res = _foo.readlines() _foo.close() expected = ['3R\t100\t120\t1\n', '3R\t120\t180\t1.33333\n', '3R\t180\t200\t1\n'] assert f"{res}" == f"{expected}" os.remove(tempFile[3]) def test_writeBedGraph_cigar(self, bc): """ The bamFile1 contains a read at position 10 with the following CIGAR: 10S20M10N10M10S that maps to a chromosome named chr_cigar. """ c, bamFile1, bamFile2, bamFile_PE, chrom, step_size, bin_length, func_args = self.ifiles(bc) # turn of read extension c.extendPairedEnds = False c.binLength = 10 c.stepSize = 10 tempFile = c.writeBedGraph_worker('chr_cigar', 0, 100, scaleCoverage, func_args) _foo = open(tempFile[3], 'r') res = _foo.readlines() _foo.close() # the single read is split into bin 10-30, and then 40-50 expected = [ 'chr_cigar\t0\t10\t0\n', 'chr_cigar\t10\t30\t1\n', 'chr_cigar\t30\t40\t0\n', 'chr_cigar\t40\t50\t1\n', 'chr_cigar\t50\t100\t0\n' ] assert f"{res}" == f"{expected}" os.remove(tempFile[3])
3,378
raw slices
"""Defines commonly used segment predicates for rule writers. For consistency, all the predicates in this module are implemented as functions returning functions. This avoids rule writers having to remember the distinction between normal functions and functions returning functions. This is not necessarily a complete set of predicates covering all possible requirements. Rule authors can define their own predicates as needed, either as regular functions, `lambda`, etc. """ from typing import Callable, Optional from sqlfluff.core.parser import BaseSegment from sqlfluff.utils.functional.raw_file_slices import RawFileSlices from sqlfluff.utils.functional.templated_file_slices import TemplatedFileSlices from sqlfluff.core.templaters.base import TemplatedFile def raw_is(*raws: str) -> Callable[[BaseSegment], bool]: # pragma: no cover """Returns a function that determines if segment matches one of the raw inputs.""" def _(segment: BaseSegment) -> bool: return segment.raw in raws return _ def raw_upper_is(*raws: str) -> Callable[[BaseSegment], bool]: """Returns a function that determines if segment matches one of the raw inputs.""" def _(segment: BaseSegment) -> bool: return segment.raw_upper in raws return _ def is_type(*seg_type: str) -> Callable[[BaseSegment], bool]: """Returns a function that determines if segment is one of the types.""" def _(segment: BaseSegment) -> bool: return segment.is_type(*seg_type) return _ def is_keyword(*keyword_name: str) -> Callable[[BaseSegment], bool]: """Returns a function that determines if it's a matching keyword.""" return and_( is_type("keyword"), raw_upper_is(*[raw.upper() for raw in keyword_name]) ) def is_code() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is code.""" def _(segment: BaseSegment) -> bool: return segment.is_code return _ def is_comment() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is comment.""" def _(segment: BaseSegment) -> bool: return segment.is_comment return _ def is_expandable() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is expandable.""" def _(segment: BaseSegment) -> bool: return segment.is_expandable return _ def is_meta() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is meta.""" def _(segment: BaseSegment) -> bool: return segment.is_meta return _ def is_raw() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is raw.""" def _(segment: BaseSegment) -> bool: return segment.is_raw() return _ def is_whitespace() -> Callable[[BaseSegment], bool]: """Returns a function that checks if segment is whitespace.""" def _(segment: BaseSegment) -> bool: return segment.is_whitespace return _ def is_templated() -> Callable[[BaseSegment], bool]: # pragma: no cover """Returns a function that checks if segment is templated.""" def _(segment: BaseSegment) -> bool: return segment.is_templated return _ def get_type() -> Callable[[BaseSegment], str]: """Returns a function that gets segment type.""" def _(segment: BaseSegment) -> str: return segment.get_type() return _ def and_(*functions: Callable[[BaseSegment], bool]) -> Callable[[BaseSegment], bool]: """Returns a function that computes the functions and-ed together.""" def _(segment: BaseSegment) -> bool: return all(function(segment) for function in functions) return _ def or_(*functions: Callable[[BaseSegment], bool]) -> Callable[[BaseSegment], bool]: """Returns a function that computes the functions or-ed together.""" def _(segment: BaseSegment) -> bool: return any(function(segment) for function in functions) return _ def not_(fn: Callable[[BaseSegment], bool]) -> Callable[[BaseSegment], bool]: """Returns a function that computes: not fn().""" def _(segment: BaseSegment) -> bool: return not fn(segment) return _ def METHOD_NAME( segment: BaseSegment, templated_file: Optional[TemplatedFile], ) -> RawFileSlices: # pragma: no cover """Returns raw slices for a segment.""" if not templated_file: raise ValueError( 'raw_slices: "templated_file" parameter is required.' ) # pragma: no cover if not segment.pos_marker: raise ValueError( 'raw_slices: "segment" parameter must have pos_marker set.' ) # pragma: no cover return RawFileSlices( *templated_file.raw_slices_spanning_source_slice( segment.pos_marker.source_slice ), templated_file=templated_file ) def templated_slices( segment: BaseSegment, templated_file: Optional[TemplatedFile], ) -> TemplatedFileSlices: """Returns raw slices for a segment.""" if not templated_file: raise ValueError( 'templated_slices: "templated_file" parameter is required.' ) # pragma: no cover if not segment.pos_marker: raise ValueError( 'templated_slices: "segment" parameter must have pos_marker set.' ) # pragma: no cover # :TRICKY: We don't use _find_slice_indices_of_templated_pos() here because # it treats TemplatedFileSlice.templated_slice.stop as inclusive, not # exclusive. Other parts of SQLFluff rely on this behaviour, but we don't # want it. It's easy enough to do this ourselves. start = segment.pos_marker.templated_slice.start stop = segment.pos_marker.templated_slice.stop templated_slices = [ slice_ for slice_ in templated_file.sliced_file if (stop > slice_.templated_slice.start and start < slice_.templated_slice.stop) ] return TemplatedFileSlices(*templated_slices, templated_file=templated_file)
3,379
construct
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base model of the knowledge graph embedding model. """ from paddle import fluid class Model(object): """ Base model. """ def __init__(self, **kwargs): """ Init model """ # Needed parameters self.model_name = kwargs["model_name"] self.data_reader = kwargs["data_reader"] self._hidden_size = kwargs["hidden_size"] self._learning_rate = kwargs["learning_rate"] self._optimizer = kwargs["optimizer"] self.args = kwargs["args"] # Optional parameters if "margin" in kwargs: self._margin = kwargs["margin"] self._prefix = "%s_%s_dim=%d_" % ( self.model_name, self.data_reader.name, self._hidden_size) self.ent_name = self._prefix + "entity_embeddings" self.rel_name = self._prefix + "relation_embeddings" self._entity_total = self.data_reader.entity_total self._relation_total = self.data_reader.relation_total self._ent_shape = [self._entity_total, self._hidden_size] self._rel_shape = [self._relation_total, self._hidden_size] def METHOD_NAME(self): """ Construct the program :return: None """ self.startup_program = fluid.Program() self.train_program = fluid.Program() self.test_program = fluid.Program() with fluid.program_guard(self.train_program, self.startup_program): self.train_pos_input = fluid.layers.data( "pos_triple", dtype="int64", shape=[None, 3, 1], append_batch_size=False) self.train_neg_input = fluid.layers.data( "neg_triple", dtype="int64", shape=[None, 3, 1], append_batch_size=False) self.train_feed_list = ["pos_triple", "neg_triple"] self.train_feed_vars = [self.train_pos_input, self.train_neg_input] self.train_fetch_vars = self.construct_train_program() loss = self.train_fetch_vars[0] self.apply_optimizer(loss, opt=self._optimizer) with fluid.program_guard(self.test_program, self.startup_program): self.test_input = fluid.layers.data( "test_triple", dtype="int64", shape=[3], append_batch_size=False) self.test_feed_list = ["test_triple"] self.test_fetch_vars = self.construct_test_program() def apply_optimizer(self, loss, opt="sgd"): """ Construct the backward of the train program. :param loss: `type : variable` final loss of the model. :param opt: `type : string` the optimizer name :return: """ optimizer_available = { "adam": fluid.optimizer.Adam, "sgd": fluid.optimizer.SGD, "momentum": fluid.optimizer.Momentum } if opt in optimizer_available: opt_func = optimizer_available[opt] else: opt_func = None if opt_func is None: raise ValueError("You should chose the optimizer in %s" % optimizer_available.keys()) else: optimizer = opt_func(learning_rate=self._learning_rate) return optimizer.minimize(loss) def construct_train_program(self): """ This function should construct the train program with the `self.train_pos_input` and `self.train_neg_input`. These inputs are batch of triples. :return: List of variables you want to get. Please be sure the ':var loss' should be in the first place, eg. [loss, variable1, variable2, ...]. """ raise NotImplementedError( "You should define the construct_train_program" " function before use it!") def construct_test_program(self): """ This function should construct test (or evaluate) program with the 'self.test_input'. Util now, we only support a triple the evaluate the ranks. :return: the distance of all entity with the test triple (for both head and tail entity). """ raise NotImplementedError( "You should define the construct_test_program" " function before use it")
3,380
get segmentation target
import cv2 import numpy as np import torch from PIL import Image from torch.utils.data import Dataset from torch.utils.data.dataset import Subset from torchvision.datasets.sbd import SBDataset from torchvision.datasets.voc import VOCSegmentation import ignite.distributed as idist from ignite.utils import convert_tensor class TransformedDataset(Dataset): def __init__(self, ds, transform_fn): assert isinstance(ds, Dataset) assert callable(transform_fn) self.ds = ds self.transform_fn = transform_fn def __len__(self): return len(self.ds) def __getitem__(self, index): dp = self.ds[index] return self.transform_fn(**dp) class VOCSegmentationOpencv(VOCSegmentation): target_names = [ "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "plant", "sheep", "sofa", "train", "tv/monitor", ] def __init__(self, *args, return_meta=False, **kwargs): super(VOCSegmentationOpencv, self).__init__(*args, **kwargs) self.return_meta = return_meta def __getitem__(self, index): img = cv2.imread(self.images[index]) assert img is not None, f"Image at '{self.images[index]}' has a problem" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) mask = np.asarray(Image.open(self.masks[index])) if self.return_meta: return { "image": img, "mask": mask, "meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]}, } return {"image": img, "mask": mask} class SBDatasetOpencv(SBDataset): def __init__(self, *args, return_meta=False, **kwargs): super(SBDatasetOpencv, self).__init__(*args, **kwargs) assert self.mode == "segmentation", "SBDatasetOpencv should be in segmentation mode only" self.return_meta = return_meta def METHOD_NAME(self, filepath): mat = self._loadmat(filepath) return mat["GTcls"][0]["Segmentation"][0] def __getitem__(self, index): img = cv2.imread(self.images[index]) assert img is not None, f"Image at '{self.images[index]}' has a problem" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) mask = self._get_target(self.masks[index]) if self.return_meta: return { "image": img, "mask": mask, "meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]}, } return {"image": img, "mask": mask} def get_train_dataset(root_path, return_meta=False): return VOCSegmentationOpencv( root=root_path, year="2012", image_set="train", download=False, return_meta=return_meta ) def get_val_dataset(root_path, return_meta=False): return VOCSegmentationOpencv(root=root_path, year="2012", image_set="val", download=False, return_meta=return_meta) def get_train_noval_sbdataset(root_path, return_meta=False): return SBDatasetOpencv(root_path, image_set="train_noval", mode="segmentation", return_meta=return_meta) def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs): if limit_num_samples is not None: g = torch.Generator().manual_seed(limit_num_samples) indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples] dataset = Subset(dataset, indices) return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs) def get_train_val_loaders( root_path, train_transforms, val_transforms, batch_size=16, num_workers=8, train_sampler=None, val_batch_size=None, sbd_path=None, limit_train_num_samples=None, limit_val_num_samples=None, ): train_ds = get_train_dataset(root_path) val_ds = get_val_dataset(root_path) if sbd_path is not None: sbd_train_ds = get_train_noval_sbdataset(sbd_path) train_ds = train_ds + sbd_train_ds if len(val_ds) < len(train_ds): g = torch.Generator().manual_seed(len(train_ds)) train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)] train_eval_ds = Subset(train_ds, train_eval_indices) else: train_eval_ds = train_ds train_ds = TransformedDataset(train_ds, transform_fn=train_transforms) val_ds = TransformedDataset(val_ds, transform_fn=val_transforms) train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms) val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size train_loader = get_dataloader( train_ds, shuffle=True, sampler=train_sampler, batch_size=batch_size, num_workers=num_workers, drop_last=True, limit_num_samples=limit_train_num_samples, ) val_loader = get_dataloader( val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) train_eval_loader = get_dataloader( train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) return train_loader, val_loader, train_eval_loader def get_inference_dataloader( root_path, mode, transforms, batch_size=16, num_workers=8, pin_memory=True, limit_num_samples=None ): assert mode in ("train", "test"), "Mode should be 'train' or 'test'" get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset dataset = get_dataset_fn(root_path, return_meta=True) dataset = TransformedDataset(dataset, transform_fn=transforms) return get_dataloader( dataset, limit_num_samples=limit_num_samples, shuffle=False, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory, drop_last=False, ) def ignore_mask_boundaries(**kwargs): assert "mask" in kwargs, "Input should contain 'mask'" mask = kwargs["mask"] mask[mask == 255] = 0 kwargs["mask"] = mask return kwargs def denormalize(t, mean, std, max_pixel_value=255): assert isinstance(t, torch.Tensor), f"{type(t)}" assert t.ndim == 3 d = t.device mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1) std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1) tensor = std * t + mean tensor *= max_pixel_value return tensor def prepare_image_mask(batch, device, non_blocking): x, y = batch["image"], batch["mask"] x = convert_tensor(x, device, non_blocking=non_blocking) y = convert_tensor(y, device, non_blocking=non_blocking).long() return x, y
3,381
bbox overlaps
import numpy as np def clip_boxes(boxes, im_shape): """ Clip boxes to image boundaries. :param boxes: [N, 4* num_classes] :param im_shape: tuple of 2 :return: [N, 4* num_classes] """ # x1 >= 0 boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0) # y1 >= 0 boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0) # x2 < im_shape[1] boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0) # y2 < im_shape[0] boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0) return boxes # def bbox_overlaps(boxes, query_boxes): # return bbox_overlaps_cython(boxes, query_boxes) def METHOD_NAME(boxes, query_boxes): return bbox_overlaps_py(boxes, query_boxes) def bbox_overlaps_py(boxes, query_boxes): """ determine overlaps between boxes and query_boxes :param boxes: n * 4 bounding boxes :param query_boxes: k * 4 bounding boxes :return: overlaps: n * k overlaps """ n_ = boxes.shape[0] k_ = query_boxes.shape[0] overlaps = np.zeros((n_, k_), dtype=np.float) for k in range(k_): query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1) for n in range(n_): iw = min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + 1 if iw > 0: ih = min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + 1 if ih > 0: box_area = (boxes[n, 2] - boxes[n, 0] + 1) * (boxes[n, 3] - boxes[n, 1] + 1) all_area = float(box_area + query_box_area - iw * ih) overlaps[n, k] = iw * ih / all_area return overlaps def nonlinear_transform(ex_rois, gt_rois): """ compute bounding box regression targets from ex_rois to gt_rois :param ex_rois: [N, 4] :param gt_rois: [N, 4] :return: [N, 4] """ assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number' ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0) ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0) gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * (gt_widths - 1.0) gt_ctr_y = gt_rois[:, 1] + 0.5 * (gt_heights - 1.0) targets_dx = (gt_ctr_x - ex_ctr_x) / (ex_widths + 1e-14) targets_dy = (gt_ctr_y - ex_ctr_y) / (ex_heights + 1e-14) targets_dw = np.log(gt_widths / ex_widths) targets_dh = np.log(gt_heights / ex_heights) if gt_rois.shape[1] <= 4: targets = np.vstack( (targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets else: targets = [targets_dx, targets_dy, targets_dw, targets_dh] # if config.USE_BLUR: # for i in range(4, gt_rois.shape[1]): # t = gt_rois[:,i] # targets.append(t) targets = np.vstack(targets).transpose() return targets def landmark_transform(ex_rois, gt_rois): assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number' ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0) ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0) targets = [] for i in range(gt_rois.shape[1]): for j in range(gt_rois.shape[2]): # if not config.USE_OCCLUSION and j==2: # continue if j == 2: continue if j == 0: # w target = (gt_rois[:, i, j] - ex_ctr_x) / (ex_widths + 1e-14) elif j == 1: # h target = (gt_rois[:, i, j] - ex_ctr_y) / (ex_heights + 1e-14) else: # visibile target = gt_rois[:, i, j] targets.append(target) targets = np.vstack(targets).transpose() return targets def nonlinear_pred(boxes, box_deltas): """ Transform the set of class-agnostic boxes into class-specific boxes by applying the predicted offsets (box_deltas) :param boxes: !important [N 4] :param box_deltas: [N, 4 * num_classes] :return: [N 4 * num_classes] """ if boxes.shape[0] == 0: return np.zeros((0, box_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) dx = box_deltas[:, 0::4] dy = box_deltas[:, 1::4] dw = box_deltas[:, 2::4] dh = box_deltas[:, 3::4] pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(box_deltas.shape) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1.0) # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1.0) # x2 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1.0) # y2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1.0) return pred_boxes def landmark_pred(boxes, landmark_deltas): if boxes.shape[0] == 0: return np.zeros((0, landmark_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) preds = [] for i in range(landmark_deltas.shape[1]): if i % 2 == 0: pred = (landmark_deltas[:, i] * widths + ctr_x) else: pred = (landmark_deltas[:, i] * heights + ctr_y) preds.append(pred) preds = np.vstack(preds).transpose() return preds def iou_transform(ex_rois, gt_rois): """ return bbox targets, IoU loss uses gt_rois as gt """ assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number' return gt_rois def iou_pred(boxes, box_deltas): """ Transform the set of class-agnostic boxes into class-specific boxes by applying the predicted offsets (box_deltas) :param boxes: !important [N 4] :param box_deltas: [N, 4 * num_classes] :return: [N 4 * num_classes] """ if boxes.shape[0] == 0: return np.zeros((0, box_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] dx1 = box_deltas[:, 0::4] dy1 = box_deltas[:, 1::4] dx2 = box_deltas[:, 2::4] dy2 = box_deltas[:, 3::4] pred_boxes = np.zeros(box_deltas.shape) # x1 pred_boxes[:, 0::4] = dx1 + x1[:, np.newaxis] # y1 pred_boxes[:, 1::4] = dy1 + y1[:, np.newaxis] # x2 pred_boxes[:, 2::4] = dx2 + x2[:, np.newaxis] # y2 pred_boxes[:, 3::4] = dy2 + y2[:, np.newaxis] return pred_boxes # define bbox_transform and bbox_pred bbox_transform = nonlinear_transform bbox_pred = nonlinear_pred
3,382
setup
"""A directive to generate a gallery of images from structured data. Generating a gallery of images that are all the same size is a common pattern in documentation, and this can be cumbersome if the gallery is generated programmatically. This directive wraps this particular use-case in a helper-directive to generate it with a single YAML configuration file. It currently exists for maintainers of the pydata-sphinx-theme, but might be abstracted into a standalone package if it proves useful. """ from pathlib import Path from typing import Any, Dict, List from docutils import nodes from docutils.parsers.rst import directives from sphinx.application import Sphinx from sphinx.util import logging from sphinx.util.docutils import SphinxDirective from yaml import safe_load logger = logging.getLogger(__name__) TEMPLATE_GRID = """ `````{{grid}} {columns} {options} {content} ````` """ GRID_CARD = """ ````{{grid-item-card}} {title} {options} {content} ```` """ class GalleryGridDirective(SphinxDirective): """A directive to show a gallery of images and links in a Bootstrap grid. The grid can be generated from a YAML file that contains a list of items, or from the content of the directive (also formatted in YAML). Use the parameter "class-card" to add an additional CSS class to all cards. When specifying the grid items, you can use all parameters from "grid-item-card" directive to customize individual cards + ["image", "header", "content", "title"]. Danger: This directive can only be used in the context of a Myst documentation page as the templates use Markdown flavored formatting. """ name = "gallery-grid" has_content = True required_arguments = 0 optional_arguments = 1 final_argument_whitespace = True option_spec = { # A class to be added to the resulting container "grid-columns": directives.unchanged, "class-container": directives.unchanged, "class-card": directives.unchanged, } def run(self) -> List[nodes.Node]: """Create the gallery grid.""" if self.arguments: # If an argument is given, assume it's a path to a YAML file # Parse it and load it into the directive content path_data_rel = Path(self.arguments[0]) path_doc, _ = self.get_source_info() path_doc = Path(path_doc).parent path_data = (path_doc / path_data_rel).resolve() if not path_data.exists(): logger.warn(f"Could not find grid data at {path_data}.") nodes.text("No grid data found at {path_data}.") return yaml_string = path_data.read_text() else: yaml_string = "\n".join(self.content) # Use all the element with an img-bottom key as sites to show # and generate a card item for each of them grid_items = [] for item in safe_load(yaml_string): # remove parameters that are not needed for the card options title = item.pop("title", "") # build the content of the card using some extra parameters header = f"{item.pop('header')} \n^^^ \n" if "header" in item else "" image = f"![image]({item.pop('image')}) \n" if "image" in item else "" content = f"{item.pop('content')} \n" if "content" in item else "" # optional parameter that influence all cards if "class-card" in self.options: item["class-card"] = self.options["class-card"] loc_options_str = "\n".join(f":{k}: {v}" for k, v in item.items()) + " \n" card = GRID_CARD.format( options=loc_options_str, content=header + image + content, title=title ) grid_items.append(card) # Parse the template with Sphinx Design to create an output container # Prep the options for the template grid class_ = "gallery-directive" + f' {self.options.get("class-container", "")}' options = {"gutter": 2, "class-container": class_} options_str = "\n".join(f":{k}: {v}" for k, v in options.items()) # Create the directive string for the grid grid_directive = TEMPLATE_GRID.format( columns=self.options.get("grid-columns", "1 2 3 4"), options=options_str, content="\n".join(grid_items), ) # Parse content as a directive so Sphinx Design processes it container = nodes.container() self.state.nested_parse([grid_directive], 0, container) # Sphinx Design outputs a container too, so just use that return [container.children[0]] def METHOD_NAME(app: Sphinx) -> Dict[str, Any]: """Add custom configuration to sphinx app. Args: app: the Sphinx application Returns: the 2 parallel parameters set to ``True``. """ app.add_directive("gallery-grid", GalleryGridDirective) return { "parallel_read_safe": True, "parallel_write_safe": True, }
3,383
parse
import torch import torch.nn as nn import torch.nn.functional as F from .genotypes import PRIMITIVES, Genotype from .operations import OPS, FactorizedReduce, ReLUConvBN class MixedOp(nn.Module): def __init__(self, C, stride): super(MixedOp, self).__init__() self._ops = nn.ModuleList() for primitive in PRIMITIVES: op = OPS[primitive](C, stride, False) if "pool" in primitive: op = nn.Sequential(op, nn.BatchNorm2d(C, affine=False)) self._ops.append(op) def forward(self, x, weights, cpu_weights): clist = [] for j, cpu_weight in enumerate(cpu_weights): if abs(cpu_weight) > 1e-10: clist.append(weights[j] * self._ops[j](x)) if len(clist) == 1: return clist[0] else: return sum(clist) class Cell(nn.Module): def __init__( self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev ): super(Cell, self).__init__() self.reduction = reduction if reduction_prev: self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False) else: self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False) self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False) self._steps = steps self._multiplier = multiplier self._ops = nn.ModuleList() self._bns = nn.ModuleList() for i in range(self._steps): for j in range(2 + i): stride = 2 if reduction and j < 2 else 1 op = MixedOp(C, stride) self._ops.append(op) def forward(self, s0, s1, weights): s0 = self.preprocess0(s0) s1 = self.preprocess1(s1) cpu_weights = weights.tolist() states = [s0, s1] offset = 0 for i in range(self._steps): s = sum( self._ops[offset + j](h, weights[offset + j], cpu_weights[offset + j]) for j, h in enumerate(states) ) offset += len(states) states.append(s) # logging.info(states) return torch.cat(states[-self._multiplier :], dim=1) class Network_GumbelSoftmax(nn.Module): def __init__( self, C, num_classes, layers, criterion, device, steps=4, multiplier=4, stem_multiplier=3, ): super(Network_GumbelSoftmax, self).__init__() self._C = C self._num_classes = num_classes self._layers = layers self._criterion = criterion self._steps = steps self._multiplier = multiplier self.device = device C_curr = stem_multiplier * C # 3*16 self.stem = nn.Sequential( nn.Conv2d(3, C_curr, 3, padding=1, bias=False), nn.BatchNorm2d(C_curr) ) C_prev_prev, C_prev, C_curr = C_curr, C_curr, C self.cells = nn.ModuleList() reduction_prev = False # for layers = 8, when layer_i = 2, 5, the cell is reduction cell. for i in range(layers): if i in [layers // 3, 2 * layers // 3]: C_curr *= 2 reduction = True else: reduction = False cell = Cell( steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, ) reduction_prev = reduction self.cells += [cell] C_prev_prev, C_prev = C_prev, multiplier * C_curr self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.tau = 5 self._initialize_alphas() def new(self): model_new = Network_GumbelSoftmax( self._C, self._num_classes, self._layers, self._criterion, self.device ).to(self.device) for x, y in zip(model_new.arch_parameters(), self.arch_parameters()): x.data.copy_(y.data) return model_new def set_tau(self, tau): self.tau = tau def get_tau(self): return self.tau def forward(self, input): batch, C, H, W = input.size() s0 = s1 = self.stem(input) for i, cell in enumerate(self.cells): if cell.reduction: weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True) else: weights = F.gumbel_softmax(self.alphas_normal, self.tau, True) s0, s1 = s1, cell(s0, s1, weights) out = self.global_pooling(s1) logits = self.classifier(out.view(out.size(0), -1)) return logits def _initialize_alphas(self): k = sum(1 for i in range(self._steps) for n in range(2 + i)) num_ops = len(PRIMITIVES) self.alphas_normal = nn.Parameter(1e-3 * torch.randn(k, num_ops)) self.alphas_reduce = nn.Parameter(1e-3 * torch.randn(k, num_ops)) self._arch_parameters = [ self.alphas_normal, self.alphas_reduce, ] def arch_parameters(self): return self._arch_parameters def genotype(self): def _isCNNStructure(k_best): return k_best >= 4 def METHOD_NAME(weights): gene = [] n = 2 start = 0 cnn_structure_count = 0 for i in range(self._steps): end = start + n W = weights[start:end].copy() edges = sorted( range(i + 2), key=lambda x: -max( W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index("none") ), )[:2] for j in edges: k_best = None for k in range(len(W[j])): if k != PRIMITIVES.index("none"): if k_best is None or W[j][k] > W[j][k_best]: k_best = k if _isCNNStructure(k_best): cnn_structure_count += 1 gene.append((PRIMITIVES[k_best], j)) start = end n += 1 return gene, cnn_structure_count with torch.no_grad(): gene_normal, cnn_structure_count_normal = METHOD_NAME( F.softmax(self.alphas_normal, dim=-1).data.cpu().numpy() ) gene_reduce, cnn_structure_count_reduce = METHOD_NAME( F.softmax(self.alphas_reduce, dim=-1).data.cpu().numpy() ) concat = range(2 + self._steps - self._multiplier, self._steps + 2) genotype = Genotype( normal=gene_normal, normal_concat=concat, reduce=gene_reduce, reduce_concat=concat, ) return genotype, cnn_structure_count_normal, cnn_structure_count_reduce
3,384
clean new pw
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 Raphael Michel and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # # This file is based on an earlier version of pretix which was released under the Apache License 2.0. The full text of # the Apache License 2.0 can be obtained at <http://www.apache.org/licenses/LICENSE-2.0>. # # This file may have since been changed and any changes are released under the terms of AGPLv3 as described above. A # full history of changes and contributors is available at <https://github.com/pretix/pretix>. # # This file contains Apache-licensed contributions copyrighted by: AV-room, Jason Estibeiro # # Unless required by applicable law or agreed to in writing, software distributed under the Apache License 2.0 is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under the License. from django import forms from django.conf import settings from django.contrib.auth.hashers import check_password from django.contrib.auth.password_validation import ( password_validators_help_texts, validate_password, ) from django.db.models import Q from django.utils.translation import gettext_lazy as _ from pytz import common_timezones from pretix.base.models import User from pretix.control.forms import SingleLanguageWidget class UserSettingsForm(forms.ModelForm): error_messages = { 'duplicate_identifier': _("There already is an account associated with this e-mail address. " "Please choose a different one."), 'pw_current': _("Please enter your current password if you want to change your e-mail " "address or password."), 'pw_current_wrong': _("The current password you entered was not correct."), 'pw_mismatch': _("Please enter the same password twice"), 'rate_limit': _("For security reasons, please wait 5 minutes before you try again."), 'pw_equal': _("Please choose a password different to your current one.") } old_pw = forms.CharField(max_length=255, required=False, label=_("Your current password"), widget=forms.PasswordInput()) new_pw = forms.CharField(max_length=255, required=False, label=_("New password"), widget=forms.PasswordInput()) new_pw_repeat = forms.CharField(max_length=255, required=False, label=_("Repeat new password"), widget=forms.PasswordInput()) timezone = forms.ChoiceField( choices=((a, a) for a in common_timezones), label=_("Default timezone"), help_text=_('Only used for views that are not bound to an event. For all ' 'event views, the event timezone is used instead.') ) class Meta: model = User fields = [ 'fullname', 'locale', 'timezone', 'email' ] widgets = { 'locale': SingleLanguageWidget } def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super().__init__(*args, **kwargs) self.fields['email'].required = True if self.user.auth_backend != 'native': del self.fields['old_pw'] del self.fields['new_pw'] del self.fields['new_pw_repeat'] self.fields['email'].disabled = True def clean_old_pw(self): old_pw = self.cleaned_data.get('old_pw') if old_pw and settings.HAS_REDIS: from django_redis import get_redis_connection rc = get_redis_connection("redis") cnt = rc.incr('pretix_pwchange_%s' % self.user.pk) rc.expire('pretix_pwchange_%s' % self.user.pk, 300) if cnt > 10: raise forms.ValidationError( self.error_messages['rate_limit'], code='rate_limit', ) if old_pw and not check_password(old_pw, self.user.password): raise forms.ValidationError( self.error_messages['pw_current_wrong'], code='pw_current_wrong', ) return old_pw def clean_email(self): email = self.cleaned_data['email'] if User.objects.filter(Q(email__iexact=email) & ~Q(pk=self.instance.pk)).exists(): raise forms.ValidationError( self.error_messages['duplicate_identifier'], code='duplicate_identifier', ) return email def METHOD_NAME(self): password1 = self.cleaned_data.get('new_pw', '') if password1 and validate_password(password1, user=self.user) is not None: raise forms.ValidationError( _(password_validators_help_texts()), code='pw_invalid' ) return password1 def clean_new_pw_repeat(self): password1 = self.cleaned_data.get('new_pw') password2 = self.cleaned_data.get('new_pw_repeat') if password1 and password1 != password2: raise forms.ValidationError( self.error_messages['pw_mismatch'], code='pw_mismatch' ) def clean(self): password1 = self.cleaned_data.get('new_pw') email = self.cleaned_data.get('email') old_pw = self.cleaned_data.get('old_pw') if (password1 or email != self.user.email) and not old_pw: raise forms.ValidationError( self.error_messages['pw_current'], code='pw_current' ) if password1 and password1 == old_pw: raise forms.ValidationError( self.error_messages['pw_equal'], code='pw_equal' ) if password1: self.instance.set_password(password1) return self.cleaned_data class User2FADeviceAddForm(forms.Form): name = forms.CharField(label=_('Device name'), max_length=64) devicetype = forms.ChoiceField(label=_('Device type'), widget=forms.RadioSelect, choices=( ('totp', _('Smartphone with the Authenticator application')), ('webauthn', _('WebAuthn-compatible hardware token (e.g. Yubikey)')), ))
3,385
signal change
# # Copyright 2019-2022 GoPro Inc. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os.path as op from PySide6 import QtCore, QtGui, QtWidgets class _ControlWidget(QtWidgets.QWidget): needSceneReload = QtCore.Signal(str, object) def __init__(self, name): super().__init__() self._name = name self.layout = QtWidgets.QVBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) def METHOD_NAME(self, value): self.needSceneReload.emit(self._name, value) def get_label_text(self, value=None): return f"<b>{self._name}:</b> {value}" if value is not None else f"<b>{self._name}:</b>" class Slider(_ControlWidget): def __init__(self, name, value, range, unit_base): super().__init__(name) slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self._unit_base = unit_base slider.setRange(range[0] * self._unit_base, range[1] * self._unit_base) slider.setValue(value * self._unit_base) self._label = QtWidgets.QLabel(self.get_label_text(value)) slider.valueChanged.connect(self._slider_value_changed) self.layout.addWidget(self._label) self.layout.addWidget(slider) @QtCore.Slot(int) def _slider_value_changed(self, value): real_value = value if self._unit_base == 1 else value / float(self._unit_base) self._label.setText(self.get_label_text(real_value)) self.METHOD_NAME(real_value) class VectorWidget(_ControlWidget): def __init__(self, name, value, n, minv, maxv): super().__init__(name) hlayout = QtWidgets.QHBoxLayout() self._spinboxes = [] elems_min = minv if minv is not None else [0] * n elems_max = maxv if maxv is not None else [1] * n assert 2 <= n <= 4 assert len(elems_min) == len(elems_max) == len(value) == n for elem_value, elem_min, elem_max in zip(value, elems_min, elems_max): spin = QtWidgets.QDoubleSpinBox() spin.setMinimum(elem_min) spin.setMaximum(elem_max) spin.setSingleStep(0.01) spin.setValue(elem_value) self._spinboxes.append(spin) spin.valueChanged.connect(self._spin_value_changed) hlayout.addWidget(spin) label = QtWidgets.QLabel(self.get_label_text()) self.layout.addWidget(label) self.layout.addLayout(hlayout) @QtCore.Slot(float) def _spin_value_changed(self, value): self.METHOD_NAME(tuple(spin.value() for spin in self._spinboxes)) class ColorPicker(_ControlWidget): def __init__(self, name, value): super().__init__(name) self._color_btn = QtWidgets.QPushButton() color = QtGui.QColor() color.setRgbF(*value) color_name = color.name() self._color_btn.setStyleSheet("background-color: %s;" % color_name) self._label = QtWidgets.QLabel(self.get_label_text(color_name)) self._color_btn.pressed.connect(self._pick_color) self._qcolor = color self.layout.addWidget(self._label) self.layout.addWidget(self._color_btn) @QtCore.Slot() def _pick_color(self): color = QtWidgets.QColorDialog.getColor(initial=self._qcolor) if not color.isValid(): return self._color_btn.setStyleSheet("background-color: %s;" % color.name()) self._qcolor = color self._label.setText(self.get_label_text(color.name())) self.METHOD_NAME(color.getRgbF()[:3]) class Checkbox(_ControlWidget): def __init__(self, name, value): super().__init__(name) self._chkbox = QtWidgets.QCheckBox(name) self._chkbox.setChecked(value) self._chkbox.stateChanged.connect(self._checkbox_toggle) self.layout.addWidget(self._chkbox) @QtCore.Slot() def _checkbox_toggle(self): self.METHOD_NAME(self._chkbox.isChecked()) class FilePicker(_ControlWidget): def __init__(self, name, value, filter): super().__init__(name) self._filter = filter dialog_btn = QtWidgets.QPushButton("Open file") self._label = QtWidgets.QLabel(self.get_label_text(value)) dialog_btn.pressed.connect(self._choose_filename) self.layout.addWidget(self._label) self.layout.addWidget(dialog_btn) @QtCore.Slot() def _choose_filename(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, "Open file", "", self._filter) if not filename[0]: return self._label.setText(self.get_label_text(op.basename(filename[0]))) self.METHOD_NAME(filename[0]) class ComboBox(_ControlWidget): def __init__(self, name, value, choices): super().__init__(name) combobox = QtWidgets.QComboBox() label = QtWidgets.QLabel(self.get_label_text()) combobox.addItems(choices) combobox.setCurrentIndex(choices.index(value)) combobox.currentTextChanged.connect(self._combobox_select) self.layout.addWidget(label) self.layout.addWidget(combobox) @QtCore.Slot(str) def _combobox_select(self, text): self.METHOD_NAME(text) class TextInput(_ControlWidget): def __init__(self, name, value): super().__init__(name) self._text = QtWidgets.QPlainTextEdit() self._text.setPlainText(value) label = QtWidgets.QLabel(self.get_label_text()) self.layout.addWidget(label) self.layout.addWidget(self._text) submit_btn = QtWidgets.QPushButton("OK") submit_btn.pressed.connect(self._submit_text) self.layout.addWidget(label) self.layout.addWidget(self._text) self.layout.addWidget(submit_btn) @QtCore.Slot() def _submit_text(self): self.METHOD_NAME(self._text.toPlainText()) control_to_widget = dict( Range=Slider, Vector=VectorWidget, Color=ColorPicker, Bool=Checkbox, File=FilePicker, List=ComboBox, Text=TextInput, )
3,386
test instance
from ctypes import * from ctypes.test import need_symbol import unittest # IMPORTANT INFO: # # Consider this call: # func.restype = c_char_p # func(c_char_p("123")) # It returns # "123" # # WHY IS THIS SO? # # argument tuple (c_char_p("123"), ) is destroyed after the function # func is called, but NOT before the result is actually built. # # If the arglist would be destroyed BEFORE the result has been built, # the c_char_p("123") object would already have a zero refcount, # and the pointer passed to (and returned by) the function would # probably point to deallocated space. # # In this case, there would have to be an additional reference to the argument... import _ctypes_test testdll = CDLL(_ctypes_test.__file__) # Return machine address `a` as a (possibly long) non-negative integer. # Starting with Python 2.5, id(anything) is always non-negative, and # the ctypes addressof() inherits that via PyLong_FromVoidPtr(). def positive_address(a): if a >= 0: return a # View the bits in `a` as unsigned instead. import struct num_bits = struct.calcsize("P") * 8 # num bits in native machine address a += 1 << num_bits assert a >= 0 return a def c_wbuffer(init): n = len(init) + 1 return (c_wchar * n)(*init) class CharPointersTestCase(unittest.TestCase): def setUp(self): func = testdll._testfunc_p_p func.restype = c_long func.argtypes = None def test_paramflags(self): # function returns c_void_p result, # and has a required parameter named 'input' prototype = CFUNCTYPE(c_void_p, c_void_p) func = prototype(("_testfunc_p_p", testdll), ((1, "input"),)) try: func() except TypeError as details: self.assertEqual(str(details), "required argument 'input' missing") else: self.fail("TypeError not raised") self.assertEqual(func(None), None) self.assertEqual(func(input=None), None) def test_int_pointer_arg(self): func = testdll._testfunc_p_p func.restype = c_long self.assertEqual(0, func(0)) ci = c_int(0) func.argtypes = POINTER(c_int), self.assertEqual(positive_address(addressof(ci)), positive_address(func(byref(ci)))) func.argtypes = c_char_p, self.assertRaises(ArgumentError, func, byref(ci)) func.argtypes = POINTER(c_short), self.assertRaises(ArgumentError, func, byref(ci)) func.argtypes = POINTER(c_double), self.assertRaises(ArgumentError, func, byref(ci)) def test_POINTER_c_char_arg(self): func = testdll._testfunc_p_p func.restype = c_char_p func.argtypes = POINTER(c_char), self.assertEqual(None, func(None)) self.assertEqual(b"123", func(b"123")) self.assertEqual(None, func(c_char_p(None))) self.assertEqual(b"123", func(c_char_p(b"123"))) self.assertEqual(b"123", func(c_buffer(b"123"))) ca = c_char(b"a") self.assertEqual(ord(b"a"), func(pointer(ca))[0]) self.assertEqual(ord(b"a"), func(byref(ca))[0]) def test_c_char_p_arg(self): func = testdll._testfunc_p_p func.restype = c_char_p func.argtypes = c_char_p, self.assertEqual(None, func(None)) self.assertEqual(b"123", func(b"123")) self.assertEqual(None, func(c_char_p(None))) self.assertEqual(b"123", func(c_char_p(b"123"))) self.assertEqual(b"123", func(c_buffer(b"123"))) ca = c_char(b"a") self.assertEqual(ord(b"a"), func(pointer(ca))[0]) self.assertEqual(ord(b"a"), func(byref(ca))[0]) def test_c_void_p_arg(self): func = testdll._testfunc_p_p func.restype = c_char_p func.argtypes = c_void_p, self.assertEqual(None, func(None)) self.assertEqual(b"123", func(b"123")) self.assertEqual(b"123", func(c_char_p(b"123"))) self.assertEqual(None, func(c_char_p(None))) self.assertEqual(b"123", func(c_buffer(b"123"))) ca = c_char(b"a") self.assertEqual(ord(b"a"), func(pointer(ca))[0]) self.assertEqual(ord(b"a"), func(byref(ca))[0]) func(byref(c_int())) func(pointer(c_int())) func((c_int * 3)()) @need_symbol('c_wchar_p') def test_c_void_p_arg_with_c_wchar_p(self): func = testdll._testfunc_p_p func.restype = c_wchar_p func.argtypes = c_void_p, self.assertEqual(None, func(c_wchar_p(None))) self.assertEqual("123", func(c_wchar_p("123"))) def METHOD_NAME(self): func = testdll._testfunc_p_p func.restype = c_void_p class X: _as_parameter_ = None func.argtypes = c_void_p, self.assertEqual(None, func(X())) func.argtypes = None self.assertEqual(None, func(X())) @need_symbol('c_wchar') class WCharPointersTestCase(unittest.TestCase): def setUp(self): func = testdll._testfunc_p_p func.restype = c_int func.argtypes = None def test_POINTER_c_wchar_arg(self): func = testdll._testfunc_p_p func.restype = c_wchar_p func.argtypes = POINTER(c_wchar), self.assertEqual(None, func(None)) self.assertEqual("123", func("123")) self.assertEqual(None, func(c_wchar_p(None))) self.assertEqual("123", func(c_wchar_p("123"))) self.assertEqual("123", func(c_wbuffer("123"))) ca = c_wchar("a") self.assertEqual("a", func(pointer(ca))[0]) self.assertEqual("a", func(byref(ca))[0]) def test_c_wchar_p_arg(self): func = testdll._testfunc_p_p func.restype = c_wchar_p func.argtypes = c_wchar_p, c_wchar_p.from_param("123") self.assertEqual(None, func(None)) self.assertEqual("123", func("123")) self.assertEqual(None, func(c_wchar_p(None))) self.assertEqual("123", func(c_wchar_p("123"))) # XXX Currently, these raise TypeErrors, although they shouldn't: self.assertEqual("123", func(c_wbuffer("123"))) ca = c_wchar("a") self.assertEqual("a", func(pointer(ca))[0]) self.assertEqual("a", func(byref(ca))[0]) class ArrayTest(unittest.TestCase): def test(self): func = testdll._testfunc_ai8 func.restype = POINTER(c_int) func.argtypes = c_int * 8, func((c_int * 8)(1, 2, 3, 4, 5, 6, 7, 8)) # This did crash before: def func(): pass CFUNCTYPE(None, c_int * 3)(func) ################################################################ if __name__ == '__main__': unittest.main()
3,387
set up
# License: BSD 3-Clause import unittest from typing import List from random import randint, shuffle from openml.exceptions import OpenMLServerException from openml.testing import TestBase from openml.datasets import ( get_dataset, list_datasets, ) from openml.tasks import TaskType, create_task, get_task class OpenMLTaskTest(TestBase): """ A helper class. The methods of the test case are only executed in subclasses of the test case. """ __test__ = False @classmethod def setUpClass(cls): if cls is OpenMLTaskTest: raise unittest.SkipTest("Skip OpenMLTaskTest tests," " it's a base class") super(OpenMLTaskTest, cls).setUpClass() def METHOD_NAME(self, n_levels: int = 1): super(OpenMLTaskTest, self).METHOD_NAME() def test_download_task(self): return get_task(self.task_id) def test_upload_task(self): # We don't know if the task in question already exists, so we try a few times. Checking # beforehand would not be an option because a concurrent unit test could potentially # create the same task and make this unit test fail (i.e. getting a dataset and creating # a task for it is not atomic). compatible_datasets = self._get_compatible_rand_dataset() for i in range(100): try: dataset_id = compatible_datasets[i % len(compatible_datasets)] # TODO consider implementing on the diff task types. task = create_task( task_type=self.task_type, dataset_id=dataset_id, target_name=self._get_random_feature(dataset_id), estimation_procedure_id=self.estimation_procedure, ) task.publish() TestBase._mark_entity_for_removal("task", task.id) TestBase.logger.info( "collected from {}: {}".format(__file__.split("/")[-1], task.id) ) # success break except OpenMLServerException as e: # Error code for 'task already exists' # Should be 533 according to the docs # (# https://www.openml.org/api_docs#!/task/post_task) if e.code == 614: continue else: raise e else: raise ValueError( "Could not create a valid task for task type ID {}".format(self.task_type) ) def _get_compatible_rand_dataset(self) -> List: active_datasets = list_datasets(status="active", output_format="dataframe") # depending on the task type, find either datasets # with only symbolic features or datasets with only # numerical features. if self.task_type == TaskType.SUPERVISED_REGRESSION: compatible_datasets = active_datasets[active_datasets["NumberOfSymbolicFeatures"] == 0] elif self.task_type == TaskType.CLUSTERING: compatible_datasets = active_datasets else: compatible_datasets = active_datasets[active_datasets["NumberOfNumericFeatures"] == 0] compatible_datasets = list(compatible_datasets["did"]) # in-place shuffling shuffle(compatible_datasets) return compatible_datasets # random_dataset_pos = randint(0, len(compatible_datasets) - 1) # # return compatible_datasets[random_dataset_pos] def _get_random_feature(self, dataset_id: int) -> str: random_dataset = get_dataset(dataset_id) # necessary loop to overcome string and date type # features. while True: random_feature_index = randint(0, len(random_dataset.features) - 1) random_feature = random_dataset.features[random_feature_index] if self.task_type == TaskType.SUPERVISED_REGRESSION: if random_feature.data_type == "numeric": break else: if random_feature.data_type == "nominal": break return random_feature.name
3,388
traverse
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The auto tuning strategy.""" from copy import deepcopy from ..utils import logger from .strategy import STRATEGIES, TuneStrategy, strategy_registry @strategy_registry class AutoTuneStrategy(TuneStrategy): """The auto tuning strategy. There are three stages executed by auto strategy sequentially, and the tuning process ends once the condition meets the exit policy. """ def __init__( self, model, conf, q_dataloader=None, q_func=None, eval_func=None, eval_dataloader=None, eval_metric=None, resume=None, q_hooks=None, ): """Init an auto tuning strategy. Args: model: The FP32 model specified for low precision tuning. conf: The Conf class instance includes all user configurations. q_dataloader: Data loader for calibration, mandatory for post-training quantization. Defaults to None. q_func: Training function for quantization aware training. Defaults to None. Defaults to None. eval_func: The evaluation function provided by user. This function takes model as parameter, and evaluation dataset and metrics should be encapsulated in this function implementation and outputs a higher-is-better accuracy scalar value. eval_dataloader: Data loader for evaluation. Defaults to None. eval_metric: Metric for evaluation. Defaults to None. resume: The dict containing resume information. Defaults to None. q_hooks: The dict of training hooks, supported keys are: on_epoch_begin, on_epoch_end, on_step_begin, on_step_end. Their values are functions to be executed in adaptor layer.. Defaults to None. """ super().__init__( model=model, conf=conf, q_dataloader=q_dataloader, q_func=q_func, eval_func=eval_func, eval_dataloader=eval_dataloader, eval_metric=eval_metric, resume=resume, q_hooks=q_hooks, ) logger.info("*** Initialize auto tuning") self.strategies_sequence = ["conservative", "basic"] def _transfer_alpha(self, pre_strategy): sq_alpha = ( pre_strategy.cur_best_tuning_cfg.get("recipe_cfgs", {}).get("smooth_quant_args", {}).get("alpha", None) ) if sq_alpha and self.conf.quantization.recipes: logger.warning( f"[Strategy] Override the user config's smooth quant alpha into best alpha" f"({sq_alpha: .4f}) found in pre-strategy." ) self.conf.quantization.recipes.setdefault("smooth_quant_args", {})["alpha"] = sq_alpha def sequential_traverse(self): """Try different strategies sequentially.""" pre_strategy = self for strategy_name in self.strategies_sequence: logger.info(f"*** Start {strategy_name} tuning.") # transfer the best alpha of sq to the next strategy self._transfer_alpha(pre_strategy) strategy = STRATEGIES[strategy_name]( model=self.model, conf=self.conf, q_dataloader=self.calib_dataloader, q_func=self.q_func, eval_func=self.eval_func, eval_dataloader=self.eval_dataloader, eval_metric=self.eval_metric, resume=self._resume, q_hooks=self.q_hooks, pre_strategy=pre_strategy, ) pre_strategy = strategy strategy.METHOD_NAME() self.best_qmodel = strategy.best_qmodel if self.best_qmodel: return def next_tune_cfg(self): """Generate and yield the default tuning config. Returns: tune_config (dict): A dict containing the tuning configuration for quantization. """ tuning_space = self.tuning_space calib_sampling_size_lst = tuning_space.root_item.get_option_by_name("calib_sampling_size").options _, _, op_tuning_cfg = self.initial_tuning_cfg() op_tuning_cfg["calib_sampling_size"] = calib_sampling_size_lst[0] if not self.cur_best_tuning_cfg: self.cur_best_tuning_cfg = deepcopy(op_tuning_cfg) # try to tune sq alpha if self._should_tuning_sq_alpha(self.config.recipes): for tune_cfg in self.tuning_sq_alpha(tuning_space, deepcopy(self.cur_best_tuning_cfg), self.config.recipes): yield tune_cfg logger.info("Quantize the model with default config.") yield op_tuning_cfg def METHOD_NAME(self): """Traverse the tuning space.""" # Quantize model with default config super().METHOD_NAME() if self.best_qmodel: logger.info("[Strategy] Found the model meets accuracy requirements, ending the tuning process.") return elif self.config.tuning_criterion.max_trials == 1: logger.info( "[Strategy] Not found the model meets accuracy requirements,\ but the max trial is 1, ending the tuning process." ) else: # Start to try different strategies sequentially self.sequential_traverse()
3,389
test works with python38
# Copyright 2023 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent import pytest from pants.backend.python.dependency_inference import parse_python_dependencies from pants.backend.python.dependency_inference.rules import ( PythonImportDependenciesInferenceFieldSet, ) from pants.backend.python.dependency_inference.rules import rules as core_rules from pants.backend.python.framework.django import dependency_inference, detect_apps from pants.backend.python.target_types import PythonSourceTarget from pants.backend.python.util_rules import pex from pants.core.util_rules import stripped_source_files from pants.engine.addresses import Address from pants.engine.rules import QueryRule from pants.engine.target import InferredDependencies from pants.testutil.python_interpreter_selection import ( skip_unless_python27_present, skip_unless_python37_present, skip_unless_python38_present, skip_unless_python39_present, ) from pants.testutil.rule_runner import RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *parse_python_dependencies.rules(), *stripped_source_files.rules(), *pex.rules(), *dependency_inference.rules(), *detect_apps.rules(), *core_rules(), QueryRule(InferredDependencies, [dependency_inference.InferDjangoDependencies]), ], target_types=[PythonSourceTarget], ) rule_runner.set_options([], env_inherit={"PATH", "PYENV_ROOT", "HOME"}) return rule_runner def do_test_migration_dependencies(rule_runner: RuleRunner, constraints: str) -> None: rule_runner.write_files( { "BUILD": "python_source(name='t', source='path/to/app0/migrations/0001_initial.py')", "path/to/app0/migrations/0001_initial.py": dedent( """\ class Migration(migrations.Migration): dependencies = [ ("app1", "0012_some_migration"), ("app2_label", "0042_another_migration"), ] operations = [] """ ), "path/to/app1/BUILD": dedent( f"""\ python_source( source="apps.py", interpreter_constraints=['{constraints}'], ) """ ), "path/to/app1/apps.py": dedent( """\ class App1AppConfig(AppConfig): name = "path.to.app1" label = "app1" """ ), "path/to/app1/migrations/BUILD": "python_source(source='0012_some_migration.py')", "path/to/app1/migrations/0012_some_migration.py": "", "another/path/app2/BUILD": dedent( f"""\ python_source( source="apps.py", interpreter_constraints=['{constraints}'], ) """ ), "another/path/app2/apps.py": dedent( """\ class App2AppConfig(AppConfig): name = "another.path.app2" label = "app2_label" """ ), "another/path/app2/migrations/BUILD": "python_source(source='0042_another_migration.py')", "another/path/app2/migrations/0042_another_migration.py": "", } ) tgt = rule_runner.get_target(Address("", target_name="t")) result = rule_runner.request( InferredDependencies, [ dependency_inference.InferDjangoDependencies( PythonImportDependenciesInferenceFieldSet.create(tgt) ) ], ) assert set(result.include) == { Address("another/path/app2/migrations", target_name="migrations"), Address("path/to/app1/migrations", target_name="migrations"), } @skip_unless_python27_present def test_works_with_python2(rule_runner: RuleRunner) -> None: do_test_migration_dependencies(rule_runner, constraints="CPython==2.7.*") @skip_unless_python37_present def test_works_with_python37(rule_runner: RuleRunner) -> None: do_test_migration_dependencies(rule_runner, constraints="CPython==3.7.*") @skip_unless_python38_present def METHOD_NAME(rule_runner: RuleRunner) -> None: do_test_migration_dependencies(rule_runner, constraints="CPython==3.8.*") @skip_unless_python39_present def test_works_with_python39(rule_runner: RuleRunner) -> None: do_test_migration_dependencies(rule_runner, constraints="CPython==3.9.*")
3,390
output json
import argparse import errno import json import logging import os from collections import defaultdict from copy import deepcopy try: from typing import Any except ImportError: # Only used for type annotations pass from find_apps import find_apps from find_build_apps import BUILD_SYSTEM_CMAKE, BUILD_SYSTEMS from idf_py_actions.constants import PREVIEW_TARGETS, SUPPORTED_TARGETS from ttfw_idf.IDFAssignTest import ExampleAssignTest, TestAppsAssignTest TEST_LABELS = { 'example_test': 'BOT_LABEL_EXAMPLE_TEST', 'test_apps': 'BOT_LABEL_CUSTOM_TEST', 'component_ut': ['BOT_LABEL_UNIT_TEST', 'BOT_LABEL_UNIT_TEST_32', 'BOT_LABEL_UNIT_TEST_S2', 'BOT_LABEL_UNIT_TEST_C3'], } BUILD_ALL_LABELS = [ 'BOT_LABEL_BUILD', 'BOT_LABEL_BUILD_ALL_APPS', 'BOT_LABEL_REGULAR_TEST', 'BOT_LABEL_WEEKEND_TEST', ] def _has_build_all_label(): # type: () -> bool for label in BUILD_ALL_LABELS: if os.getenv(label): return True return False def _judge_build_or_not(action, build_all): # type: (str, bool) -> tuple[bool, bool] """ :return: (build_or_not_for_test_related_apps, build_or_not_for_non_related_apps) """ if build_all or _has_build_all_label() or (not os.getenv('BOT_TRIGGER_WITH_LABEL')): logging.info('Build all apps') return True, True labels = TEST_LABELS[action] if not isinstance(labels, list): labels = [labels] # type: ignore for label in labels: if os.getenv(label): logging.info('Build only test cases apps') return True, False logging.info('Skip all') return False, False def METHOD_NAME(apps_dict_list, target, build_system, output_dir): # type: (list, str, str, str) -> None output_path = os.path.join(output_dir, 'scan_{}_{}.json'.format(target.lower(), build_system)) with open(output_path, 'w') as fw: fw.writelines([json.dumps(app) + '\n' for app in apps_dict_list]) # we might need artifacts to run test cases locally. # So we need to save artifacts which have test case not executed by CI. class _ExampleAssignTest(ExampleAssignTest): DEFAULT_FILTER = {} # type: dict[str, Any] class _TestAppsAssignTest(TestAppsAssignTest): DEFAULT_FILTER = {} # type: dict[str, Any] def main(): # type: () -> None parser = argparse.ArgumentParser(description='Scan the required build tests') parser.add_argument('test_type', choices=TEST_LABELS.keys(), help='Scan test type') parser.add_argument('paths', nargs='+', help='One or more app paths') parser.add_argument('-b', '--build-system', choices=BUILD_SYSTEMS.keys(), default=BUILD_SYSTEM_CMAKE) parser.add_argument('-c', '--ci-config-file', required=True, help='gitlab ci config target-test file') parser.add_argument('-o', '--output-path', required=True, help='output path of the scan result') parser.add_argument('--exclude', nargs='*', help='Ignore specified directory. Can be used multiple times.') parser.add_argument('--extra_test_dirs', nargs='*', help='Additional directories to preserve artifacts for local tests') parser.add_argument('--preserve_all', action='store_true', help='add this flag to preserve artifacts for all apps') parser.add_argument('--build-all', action='store_true', help='add this flag to build all apps') args = parser.parse_args() build_test_case_apps, build_standalone_apps = _judge_build_or_not(args.test_type, args.build_all) if not os.path.exists(args.output_path): try: os.makedirs(args.output_path) except OSError as e: if e.errno != errno.EEXIST: raise e SUPPORTED_TARGETS.extend(PREVIEW_TARGETS) if (not build_standalone_apps) and (not build_test_case_apps): for target in SUPPORTED_TARGETS: METHOD_NAME([], target, args.build_system, args.output_path) SystemExit(0) idf_path = str(os.getenv('IDF_PATH')) paths = set([os.path.join(idf_path, path) if not os.path.isabs(path) else path for path in args.paths]) test_cases = [] for path in paths: if args.test_type == 'example_test': assign = _ExampleAssignTest(path, args.ci_config_file) elif args.test_type in ['test_apps', 'component_ut']: assign = _TestAppsAssignTest(path, args.ci_config_file) else: raise SystemExit(1) # which is impossible test_cases.extend(assign.search_cases()) ''' { <target>: { 'test_case_apps': [<app_dir>], # which is used in target tests 'standalone_apps': [<app_dir>], # which is not }, ... } ''' scan_info_dict = defaultdict(dict) # type: dict[str, dict] # store the test cases dir, exclude these folders when scan for standalone apps default_exclude = args.exclude if args.exclude else [] build_system = args.build_system.lower() build_system_class = BUILD_SYSTEMS[build_system] for target in SUPPORTED_TARGETS: exclude_apps = deepcopy(default_exclude) if build_test_case_apps: scan_info_dict[target]['test_case_apps'] = set() test_dirs = args.extra_test_dirs if args.extra_test_dirs else [] for case in test_cases: if case.case_info['target'].lower() == target.lower(): test_dirs.append(case.case_info['app_dir']) for app_dir in test_dirs: app_dir = os.path.join(idf_path, app_dir) if not os.path.isabs(app_dir) else app_dir _apps = find_apps(build_system_class, app_dir, True, exclude_apps, target.lower()) if _apps: scan_info_dict[target]['test_case_apps'].update(_apps) exclude_apps.extend(_apps) else: scan_info_dict[target]['test_case_apps'] = set() if build_standalone_apps: scan_info_dict[target]['standalone_apps'] = set() for path in paths: scan_info_dict[target]['standalone_apps'].update( find_apps(build_system_class, path, True, exclude_apps, target.lower())) else: scan_info_dict[target]['standalone_apps'] = set() test_case_apps_preserve_default = True if build_system == 'cmake' else False for target in SUPPORTED_TARGETS: apps = [] for app_dir in scan_info_dict[target]['test_case_apps']: apps.append({ 'app_dir': app_dir, 'build_system': args.build_system, 'target': target, 'preserve': args.preserve_all or test_case_apps_preserve_default }) for app_dir in scan_info_dict[target]['standalone_apps']: apps.append({ 'app_dir': app_dir, 'build_system': args.build_system, 'target': target, 'preserve': args.preserve_all }) output_path = os.path.join(args.output_path, 'scan_{}_{}.json'.format(target.lower(), build_system)) with open(output_path, 'w') as fw: fw.writelines([json.dumps(app) + '\n' for app in apps]) if __name__ == '__main__': main()
3,391
get translation
# Copyright 2017 Google Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions specifically for NMT.""" from __future__ import print_function import codecs import time import numpy as np import tensorflow as tf import logging as log import evaluation_utils import misc_utils as utils __all__ = ["decode_and_evaluate", "get_translation"] def decode_and_evaluate(mode, sess, out_tensor, trans_file, ref_file, metric='bleu', beam_width=10, num_translations_per_input=1, iterations=1): """Decode a test set and compute a score according to the evaluation task.""" utils.print_out(" Decoding to output %s" % trans_file) with codecs.getwriter("utf-8")( tf.io.gfile.GFile(trans_file, mode="wb")) as trans_f: trans_f.write("") # Write empty string to ensure file is created. num_translations_per_input = min(num_translations_per_input, beam_width) print(" Running inference with beam_width %g, num translations per input %d. " \ % (beam_width, num_translations_per_input)) print(" Total iterations count %d." % iterations) # Warmup for the first batch to take out the very first runtime # session overhead. nmt_outputs = sess.run(out_tensor) # time x batch_size x beam_width nmt_outputs = nmt_outputs.transpose() # beam_width x batch_size x time batch_size = nmt_outputs.shape[1] for sent_id in range(batch_size): translation = METHOD_NAME(nmt_outputs[0], sent_id, tgt_eos='</s>') if mode == 'accuracy': trans_f.write((translation + b"\n").decode("utf-8")) # prediction time is the time for the model prediction only # overall time is the time for data pre-processing and data post-processing prediction_times = list() overall_start = time.time() num_sentences = 0 n = 0 while n < iterations: n += 1 while True: try: start = time.time() nmt_outputs = sess.run(out_tensor) # time x batch_size x beam_width nmt_outputs = nmt_outputs.transpose() # beam_width x batch_size x time prediction_times.append(time.time() - start) batch_size = nmt_outputs.shape[1] num_sentences += batch_size for sent_id in range(batch_size): for beam_id in range(num_translations_per_input): translation = METHOD_NAME(nmt_outputs[beam_id], sent_id, tgt_eos='</s>') if mode == 'accuracy': trans_f.write((translation + b"\n").decode("utf-8")) except tf.errors.OutOfRangeError: utils.print_time( " Done, num sentences %d, num translations per input %d" % (num_sentences, num_translations_per_input), overall_start) break overall_time = (time.time() - overall_start) print("\nAverage Prediction Latency: {:.5f} sec per batch.".format( sum(prediction_times)/float(len(prediction_times)))) print("Overall Latency: {:.5f} sec for the entire test " "dataset.".format(overall_time/float(iterations))) print("Overall Throughput : {:.3f} sentences per sec.".format( num_sentences/float(overall_time))) # Evaluation if mode == 'accuracy': if ref_file and tf.io.gfile.exists(trans_file): score = evaluation_utils.evaluate(ref_file, trans_file, metric) utils.print_out(" Accuracy metric %s: %.1f" % (metric, score)) def METHOD_NAME(nmt_outputs, sent_id, tgt_eos): """Given batch decoding outputs, select a sentence and turn to text.""" if tgt_eos: tgt_eos = tgt_eos.encode("utf-8") # Select a sentence output = nmt_outputs[sent_id, :].tolist() # If there is an eos symbol in outputs, cut them at that point. if tgt_eos and tgt_eos in output: output = output[:output.index(tgt_eos)] translation = utils.format_text(output) return translation
3,392
test migrate instance
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import factory from django.test import TestCase from django.db.models import signals from pipeline.contrib.statistics.models import InstanceInPipeline from pipeline.models import PipelineInstance, PipelineTemplate, Snapshot from pipeline.utils.uniqid import uniqid from pipeline.engine.utils import calculate_elapsed_time from gcloud.tests.mock import * # noqa from gcloud.tests.mock_settings import * # noqa from gcloud.analysis_statistics.data_migrate.tasks import migrate_instance from gcloud.tasktmpl3.models import TaskTemplate from gcloud.taskflow3.models import TaskFlowInstance from gcloud.analysis_statistics.models import TaskflowStatistics from gcloud.core.models import Project class TestMigrateInstance(TestCase): @factory.django.mute_signals(signals.pre_save, signals.post_save) def setUp(self): self.test_snapshot = Snapshot.objects.create_snapshot({}) self.test_snapshot.save() self.test_project = Project.objects.create( name="proj", creator="creator", ) self.test_project.save() # prepare test data instance_id = uniqid() template_id = uniqid() self.instance_in_pipeline = InstanceInPipeline.objects.create( instance_id=instance_id, atom_total=0, subprocess_total=0, gateways_total=0 ) self.pipeline_template = PipelineTemplate.objects.create( template_id=template_id, creator="creator", snapshot=self.test_snapshot ) self.pipeline_instance = PipelineInstance.objects.create( instance_id=instance_id, creator="creator", snapshot=self.test_snapshot, template=self.pipeline_template ) self.task_template = TaskTemplate.objects.create( project=self.test_project, pipeline_template=self.pipeline_template ) self.taskflow_instance = TaskFlowInstance.objects.create( project=self.test_project, pipeline_instance=self.pipeline_instance, template_id=template_id ) def tearDown(self): InstanceInPipeline.objects.all().delete() PipelineTemplate.objects.all().delete() PipelineInstance.objects.all().delete() TaskFlowInstance.objects.all().delete() TaskTemplate.objects.all().delete() @patch(TASKFLOW_STATISTICS_FILTER, MagicMock()) @patch(TASKFLOW_STATISTICS_CREATE, MagicMock()) def METHOD_NAME(self): test_start = self.instance_in_pipeline.id - 1 test_end = self.instance_in_pipeline.id + 1 result = migrate_instance(test_start, test_end) kwargs = dict( instance_id=self.pipeline_instance.id, task_instance_id=self.taskflow_instance.id, atom_total=self.instance_in_pipeline.atom_total, subprocess_total=self.instance_in_pipeline.subprocess_total, gateways_total=self.instance_in_pipeline.gateways_total, project_id=self.taskflow_instance.project.id, category=self.task_template.category, template_id=self.pipeline_template.id, task_template_id=self.task_template.id, creator=self.pipeline_instance.creator, create_time=self.pipeline_instance.create_time, start_time=self.pipeline_instance.start_time, finish_time=self.pipeline_instance.finish_time, elapsed_time=calculate_elapsed_time(self.pipeline_instance.start_time, self.pipeline_instance.finish_time), create_method=self.taskflow_instance.create_method, ) TaskflowStatistics.objects.filter.assert_called_once_with(instance_id=kwargs["instance_id"]) TaskflowStatistics.objects.create.assert_called_once_with(**kwargs) self.assertTrue(result)
3,393
prepare request
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """Operations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.purview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs ) -> AsyncIterable["models.OperationList"]: """Lists the available operations. List of available operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.purview.models.OperationList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.OperationList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-07-01" accept = "application/json" def METHOD_NAME(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('OperationList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = METHOD_NAME(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponseModel, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/providers/Microsoft.Purview/operations'} # type: ignore
3,394
main
import logging import optparse import os import sys import textwrap import time import transaction from pyramid.paster import bootstrap from pyramid.paster import setup_logging from rdflib import RDF from rdflib import SKOS from rdflib.term import URIRef from skosprovider_rdf import utils from atramhasis.data.datamanagers import CountsManager from atramhasis.data.models import ConceptschemeCounts from atramhasis.errors import SkosRegistryNotFoundException log = logging.getLogger(__name__) def METHOD_NAME(): description = """\ Dump all conceptschemes to files. Will serialise as Turtle and RDF/XML format. """ usage = "usage: %prog config_uri" parser = optparse.OptionParser( usage=usage, description=textwrap.dedent(description) ) parser.add_option( '-l', '--location', dest='dump_location', type='string', help='Specify where to dump the conceptschemes. If not specified, this \ is set to the atramhasis.dump_location from your ini file.' ) parser.add_option( '-r', '--rdf2hdt', dest='rdf2hdt', type='string', default=False, help='Specify where the rdf2hdt command can be found. If not specified, this \ is set to atramhasis.rdf2hdt from your ini file.' ) options, args = parser.parse_args(sys.argv[1:]) if not len(args) >= 1: log.error('You must provide at least one argument.') return 2 config_uri = args[0] env = bootstrap(config_uri) setup_logging(config_uri) dump_location = options.dump_location if dump_location is None: dump_location = env['registry'].settings.get( 'atramhasis.dump_location', os.path.abspath(os.path.dirname(config_uri)) ) if not os.access(dump_location, os.W_OK | os.X_OK): log.error('Dump location "' + dump_location + '" is not writable.') return 2 rdf2hdt = options.rdf2hdt if not rdf2hdt: rdf2hdt = env['registry'].settings.get( 'atramhasis.rdf2hdt', False ) request = env['request'] if hasattr(request, 'skos_registry') and request.skos_registry is not None: skos_registry = request.skos_registry else: raise SkosRegistryNotFoundException() # pragma: no cover counts = [] files = [] for p in skos_registry.get_providers(): if any([not_shown in p.get_metadata()['subject'] for not_shown in ['external']]): continue start_time = time.time() pid = p.get_metadata()['id'] filename = os.path.join(dump_location, '%s-full' % pid) filename_ttl = '%s.ttl' % filename filename_rdf = '%s.rdf' % filename files.append(filename_ttl) log.info('Generating dump for %s' % pid) graph = utils.rdf_dumper(p) triples = len(graph) log.info('Number of triples in Graph: %d' % triples) csuri = URIRef(p.concept_scheme.uri) cs_triples = len(list(graph.predicate_objects(csuri))) log.info('Number of triples in Conceptscheme: %d' % cs_triples) count_concepts = len(list(graph.subjects(RDF.type, SKOS.Concept))) count_collections = len(list(graph.subjects(RDF.type, SKOS.Collection))) try: avg_concept_triples = ((triples - cs_triples) / (count_concepts + count_collections)) except ZeroDivisionError: avg_concept_triples = 0 log.info('Average number of triples per concept: %d' % avg_concept_triples) counts.append({ 'conceptscheme_id': pid, 'triples': triples, 'conceptscheme_triples': cs_triples, 'avg_concept_triples': avg_concept_triples }) log.info(f'Dumping {pid} to Turtle: {filename_ttl}') graph.serialize(destination=filename_ttl, format='turtle') log.info(f'Dumping {pid} to RDFxml: {filename_rdf}') graph.serialize(destination=filename_rdf, format='pretty-xml') del graph log.info(f'--- {(time.time() - start_time)} seconds ---') log.info('All files dumped to %s' % dump_location) if rdf2hdt: from subprocess import check_call, CalledProcessError parsing_error = False for f in files: log.info(f'Converting {f} to hdt') hdtf = f.replace('.ttl', '.hdt') try: check_call([rdf2hdt, '-f', 'turtle', f, hdtf]) except (FileNotFoundError, CalledProcessError) as e: # Turtle failed, let's try rdfxml parsing_error = True log.warning(f'rdf2hdt for file {f} failed with error {e}. Trying rdfxml...') rdff = f.replace('.ttl', '.rdf') try: check_call([rdf2hdt, '-f', 'rdfxml', rdff, hdtf]) except (FileNotFoundError, CalledProcessError) as e: # rdfxml failed log.error(f'rdfxml for file {f} failed with error {e}') if parsing_error: log.error('Error during rdf2hdt conversion. Check logs for more information.') else: log.info(f'All hdt files dumped to {dump_location}') with transaction.manager: dbsession = request.registry.dbmaker() manager = CountsManager(dbsession) for c in counts: cs_count = ConceptschemeCounts( conceptscheme_id=c['conceptscheme_id'], triples=c['triples'], conceptscheme_triples=c['conceptscheme_triples'], avg_concept_triples=c['avg_concept_triples'] ) manager.save(cs_count) env['closer']()
3,395
connect
import logging from typing import Callable, Optional, List, Tuple, Dict from feeluown.utils.dispatch import Signal logger = logging.getLogger(__name__) class SignalConnector: def __init__(self, symbol: str): self._signal: Optional[Signal] = None self.symbol = symbol self._slot_list: List[Tuple[Callable, Dict]] = [] self._slot_symbol_list: List[Tuple[str, Dict]] = [] def bind_signal(self, signal: Signal): self._signal = signal def METHOD_NAME(self): """Connect all slots. """ if self._signal is None: raise RuntimeError("no signal is bound") # Connect slot which are not symbol. # These slots are connected directly. for slot, kwargs in self._slot_list: self._signal.METHOD_NAME(slot, **kwargs) self._slot_list.clear() # Connect slots which are symbol currently. self._signal.METHOD_NAME(self.slot_symbols_delegate, weak=False) def connect_slot(self, slot: Callable, **kwargs): if self._signal is not None: # If signal is already bound, the slot is connected immediately. self._signal.METHOD_NAME(slot, **kwargs) else: self._slot_list.append((slot, kwargs)) def connect_slot_symbol(self, slot_symbol: str, **kwargs): self._slot_symbol_list.append((slot_symbol, kwargs)) def disconnect_slot_symbol(self, slot_symbol): for i, (symbol, _) in enumerate(self._slot_symbol_list): if symbol == slot_symbol: self._slot_symbol_list.pop(i) def disconnect_slot(self, slot: Callable): if self._signal is not None: self._signal.disconnect(slot) else: for i, (s, _) in enumerate(self._slot_list): if s == slot: self._slot_list.pop(i) break def slot_symbols_delegate(self, *args): """ A delegate invoke the slots for the signal. Signal.emit => self.slot_symbols_delegate => slots """ for slot_symbol, kwargs in self._slot_symbol_list: func = fuoexec_F(slot_symbol) # FIXME: Duplicate code. The logic has been implemented in Signal.emit. if kwargs.get('aioqueue'): if Signal.has_aio_support: Signal.aioqueue.sync_q.put_nowait((func, args)) # type: ignore else: logger.warning( 'No aio support is available, a slot is ignored.') else: try: func(*args) except: # noqa, pylint: disable=bare-except logger.exception('error during calling slot:%s') class SignalManager: def __init__(self): self.initialized = False self._app = None self.signal_connectors: List[SignalConnector] = [] def initialize(self, app): """ Find each signal by signal_symbol and connect slots for them. """ if self.initialized: raise RuntimeError('signals slots manager already initialized') self._app = app for connector in self.signal_connectors: self._init_sc(connector) self.initialized = True def add(self, signal_symbol: str, slot: Callable, use_symbol: bool, **kwargs): """Add one slot for the signal. :param slot: The function or it's symbol. """ sc = self._get_or_create_sc(signal_symbol) if use_symbol is True: sc.connect_slot_symbol(fuoexec_S(slot), **kwargs) else: sc.connect_slot(slot, **kwargs) def remove(self, signal_symbol: str, slot: Callable, use_symbol: bool): """Remove one slot for signal. If slot is not connected, this does nothing. """ signal_connector = self._get_or_create_sc(signal_symbol) if use_symbol is True: signal_connector.disconnect_slot_symbol(fuoexec_S(slot)) else: signal_connector.disconnect_slot(slot) def _get_or_create_sc(self, signal_symbol) -> SignalConnector: """Get or create signal connector.""" for sc in self.signal_connectors: if sc.symbol == signal_symbol: signal_connector = sc break else: signal_connector = SignalConnector(signal_symbol) if self.initialized: self._init_sc(signal_connector) self.signal_connectors.append(signal_connector) return signal_connector def _init_sc(self, sc): # pylint: disable=eval-used signal = eval(sc.symbol, {'app': self._app}) sc.bind_signal(signal) sc.METHOD_NAME() signal_mgr: SignalManager = SignalManager() # pylint: disable=wrong-import-position, cyclic-import from .fuoexec import fuoexec_S, fuoexec_F # noqa
3,396
std string
''' $Id: tzfile.py,v 1.8 2004/06/03 00:15:24 zenzen Exp $ ''' from datetime import datetime from struct import unpack, calcsize from pytz.tzinfo import StaticTzInfo, DstTzInfo, memorized_ttinfo from pytz.tzinfo import memorized_datetime, memorized_timedelta def _byte_string(s): """Cast a string or byte string to an ASCII byte string.""" return s.encode('ASCII') _NULL = _byte_string('\0') def METHOD_NAME(s): """Cast a string or byte string to an ASCII string.""" return str(s.decode('ASCII')) def build_tzinfo(zone, fp): head_fmt = '>4s c 15x 6l' head_size = calcsize(head_fmt) (magic, format, ttisgmtcnt, ttisstdcnt, leapcnt, timecnt, typecnt, charcnt) = unpack(head_fmt, fp.read(head_size)) # Make sure it is a tzfile(5) file assert magic == _byte_string('TZif'), 'Got magic %s' % repr(magic) # Read out the transition times, localtime indices and ttinfo structures. data_fmt = '>%(timecnt)dl %(timecnt)dB %(ttinfo)s %(charcnt)ds' % dict( timecnt=timecnt, ttinfo='lBB' * typecnt, charcnt=charcnt) data_size = calcsize(data_fmt) data = unpack(data_fmt, fp.read(data_size)) # make sure we unpacked the right number of values assert len(data) == 2 * timecnt + 3 * typecnt + 1 transitions = [memorized_datetime(trans) for trans in data[:timecnt]] lindexes = list(data[timecnt:2 * timecnt]) ttinfo_raw = data[2 * timecnt:-1] tznames_raw = data[-1] del data # Process ttinfo into separate structs ttinfo = [] tznames = {} i = 0 while i < len(ttinfo_raw): # have we looked up this timezone name yet? tzname_offset = ttinfo_raw[i + 2] if tzname_offset not in tznames: nul = tznames_raw.find(_NULL, tzname_offset) if nul < 0: nul = len(tznames_raw) tznames[tzname_offset] = METHOD_NAME( tznames_raw[tzname_offset:nul]) ttinfo.append((ttinfo_raw[i], bool(ttinfo_raw[i + 1]), tznames[tzname_offset])) i += 3 # Now build the timezone object if len(ttinfo) == 1 or len(transitions) == 0: ttinfo[0][0], ttinfo[0][2] cls = type(zone, (StaticTzInfo,), dict( zone=zone, _utcoffset=memorized_timedelta(ttinfo[0][0]), _tzname=ttinfo[0][2])) else: # Early dates use the first standard time ttinfo i = 0 while ttinfo[i][1]: i += 1 if ttinfo[i] == ttinfo[lindexes[0]]: transitions[0] = datetime.min else: transitions.insert(0, datetime.min) lindexes.insert(0, i) # calculate transition info transition_info = [] for i in range(len(transitions)): inf = ttinfo[lindexes[i]] utcoffset = inf[0] if not inf[1]: dst = 0 else: for j in range(i - 1, -1, -1): prev_inf = ttinfo[lindexes[j]] if not prev_inf[1]: break dst = inf[0] - prev_inf[0] # dst offset # Bad dst? Look further. DST > 24 hours happens when # a timzone has moved across the international dateline. if dst <= 0 or dst > 3600 * 3: for j in range(i + 1, len(transitions)): stdinf = ttinfo[lindexes[j]] if not stdinf[1]: dst = inf[0] - stdinf[0] if dst > 0: break # Found a useful std time. tzname = inf[2] # Round utcoffset and dst to the nearest minute or the # datetime library will complain. Conversions to these timezones # might be up to plus or minus 30 seconds out, but it is # the best we can do. utcoffset = int((utcoffset + 30) // 60) * 60 dst = int((dst + 30) // 60) * 60 transition_info.append(memorized_ttinfo(utcoffset, dst, tzname)) cls = type(zone, (DstTzInfo,), dict( zone=zone, _utc_transition_times=transitions, _transition_info=transition_info)) return cls() if __name__ == '__main__': import os.path from pprint import pprint base = os.path.join(os.path.dirname(__file__), 'zoneinfo') tz = build_tzinfo('Australia/Melbourne', open(os.path.join(base, 'Australia', 'Melbourne'), 'rb')) tz = build_tzinfo('US/Eastern', open(os.path.join(base, 'US', 'Eastern'), 'rb')) pprint(tz._utc_transition_times)
3,397
method
import json from six.moves import urllib, xmlrpc_client from .util import read_body import logging log = logging.getLogger(__name__) def METHOD_NAME(r1, r2): assert r1.METHOD_NAME == r2.METHOD_NAME, "{} != {}".format(r1.METHOD_NAME, r2.METHOD_NAME) def uri(r1, r2): assert r1.uri == r2.uri, "{} != {}".format(r1.uri, r2.uri) def host(r1, r2): assert r1.host == r2.host, "{} != {}".format(r1.host, r2.host) def scheme(r1, r2): assert r1.scheme == r2.scheme, "{} != {}".format(r1.scheme, r2.scheme) def port(r1, r2): assert r1.port == r2.port, "{} != {}".format(r1.port, r2.port) def path(r1, r2): assert r1.path == r2.path, "{} != {}".format(r1.path, r2.path) def query(r1, r2): assert r1.query == r2.query, "{} != {}".format(r1.query, r2.query) def raw_body(r1, r2): assert read_body(r1) == read_body(r2) def body(r1, r2): transformer = _get_transformer(r1) r2_transformer = _get_transformer(r2) if transformer != r2_transformer: transformer = _identity assert transformer(read_body(r1)) == transformer(read_body(r2)) def headers(r1, r2): assert r1.headers == r2.headers, "{} != {}".format(r1.headers, r2.headers) def _header_checker(value, header="Content-Type"): def checker(headers): _header = headers.get(header, "") if isinstance(_header, bytes): _header = _header.decode("utf-8") return value in _header.lower() return checker def _transform_json(body): # Request body is always a byte string, but json.loads() wants a text # string. RFC 7159 says the default encoding is UTF-8 (although UTF-16 # and UTF-32 are also allowed: hmmmmm). if body: return json.loads(body.decode("utf-8")) _xml_header_checker = _header_checker("text/xml") _xmlrpc_header_checker = _header_checker("xmlrpc", header="User-Agent") _checker_transformer_pairs = ( ( _header_checker("application/x-www-form-urlencoded"), lambda body: urllib.parse.parse_qs(body.decode("ascii")), ), (_header_checker("application/json"), _transform_json), (lambda request: _xml_header_checker(request) and _xmlrpc_header_checker(request), xmlrpc_client.loads), ) def _identity(x): return x def _get_transformer(request): for checker, transformer in _checker_transformer_pairs: if checker(request.headers): return transformer else: return _identity def requests_match(r1, r2, matchers): successes, failures = get_matchers_results(r1, r2, matchers) if failures: log.debug("Requests {} and {} differ.\n" "Failure details:\n" "{}".format(r1, r2, failures)) return len(failures) == 0 def _evaluate_matcher(matcher_function, *args): """ Evaluate the result of a given matcher as a boolean with an assertion error message if any. It handles two types of matcher : - a matcher returning a boolean value. - a matcher that only makes an assert, returning None or raises an assertion error. """ assertion_message = None try: match = matcher_function(*args) match = True if match is None else match except AssertionError as e: match = False assertion_message = str(e) return match, assertion_message def get_matchers_results(r1, r2, matchers): """ Get the comparison results of two requests as two list. The first returned list represents the matchers names that passed. The second list is the failed matchers as a string with failed assertion details if any. """ matches_success, matches_fails = [], [] for m in matchers: matcher_name = m.__name__ match, assertion_message = _evaluate_matcher(m, r1, r2) if match: matches_success.append(matcher_name) else: assertion_message = get_assertion_message(assertion_message) matches_fails.append((matcher_name, assertion_message)) return matches_success, matches_fails def get_assertion_message(assertion_details): """ Get a detailed message about the failing matcher. """ return assertion_details
3,398
parent geoid
import logging from django.db import models from django.conf import settings from django.utils.text import slugify import requests log = logging.getLogger(__name__) CATEGORIES = { 'A': 'metro', 'B': 'local', 'C': 'district', } class LocationNotFound(Exception): pass class GeographyUpdate(models.Model): datetime = models.DateTimeField(auto_now_add=True) class Meta: db_table = "scorecard_geography_update" verbose_name = "Geography Update" class Geography(models.Model): #: The level for this geography (eg. `country`) which, together with #: `geo_code`, makes up the unique geo id. geo_level = models.CharField(max_length=15, null=False) #: The code for this geography which must be unique for this level. #: Together with `geo_level`, this makes up the unique geo id. geo_code = models.CharField(max_length=10, null=False) #: Name of this geography. name = models.CharField(max_length=100, null=False, db_index=True) #: Long name of this geography, giving it context (such as a city or province) #: If this is null, it is computed based on the place's ancestors. long_name = models.CharField(max_length=100, null=True, db_index=True) #: Area in square kilometers. Optional. square_kms = models.FloatField(null=True) # hierarchy #: The level of this geography's parent, or `None` if this is the root #: geography that has no parent. parent_level = models.CharField(max_length=15, null=True) #: The code of this geography's parent, or `None` if this is the root #: geography that has no parent. parent_code = models.CharField(max_length=10, null=True) province_name = models.CharField(max_length=100, null=False) province_code = models.CharField(max_length=5, null=False) category = models.CharField(max_length=2, null=False) miif_category = models.TextField(null=True) population = models.IntegerField(null=True) postal_address_1 = models.TextField(null=True) postal_address_2 = models.TextField(null=True) postal_address_3 = models.TextField(null=True) street_address_1 = models.TextField(null=True) street_address_2 = models.TextField(null=True) street_address_3 = models.TextField(null=True) street_address_4 = models.TextField(null=True) phone_number = models.TextField(null=True) fax_number = models.TextField(null=True) url = models.TextField(null=True) class Meta: unique_together = ('geo_level', 'geo_code') verbose_name = "Municipality" verbose_name_plural = "Municipalities" def __str__(self): return f'{self.name}' @property def category_name(self): return CATEGORIES[self.category] + ' municipality' @property def geoid(self): return '-'.join([self.geo_level, self.geo_code]) @property def slug(self): return slugify(self.name) @property def METHOD_NAME(self): if self.parent_level and self.parent_code: return '%s-%s' % (self.parent_level, self.parent_code) return None @property def parent(self): """ The parent of this geograhy, or `None` if this is the root of the hierarchy. """ if not hasattr(self, '_parent'): if self.parent_level and self.parent_code: self._parent = self.__class__.objects.filter( geo_level=self.parent_level, geo_code=self.parent_code).first() else: self._parent = None return self._parent def ancestors(self): """ A list of the ancestors of this geography, all the way up to the root. This is an empty list if this geography is the root of the hierarchy. """ ancestors = [] g = self.parent while g: ancestors.append(g) g = g.parent return ancestors def as_dict(self): return { 'ancestors': [a.as_dict() for a in self.ancestors()], 'full_geoid': self.geoid, 'full_name': self.long_name, 'name': self.long_name, 'short_name': self.name, 'geo_level': self.geo_level, 'geo_code': self.geo_code, 'parent_geoid': self.METHOD_NAME, 'square_kms': self.square_kms, 'province_name': self.province_name, 'province_code': self.province_code, 'category': self.category, 'category_name': self.category_name, 'miif_category': self.miif_category, 'slug': self.slug, } @property def bbox(self): url = settings.MAPIT['url'] + '/area/MDB:%s/geometry?generation=%s' % ( self.geo_code, settings.MAPIT['generation']) resp = requests.get(url) js = resp.json() return [js[x] for x in ["min_lon", "min_lat", "max_lon", "max_lat"]] def __unicode__(self): return self.full_name @classmethod def find(cls, geo_code, geo_level): geo = cls.objects.filter( geo_level=geo_level, geo_code=geo_code).first() if not geo: raise LocationNotFound( "Invalid level, code: %s-%s" % (geo_level, geo_code)) return geo @classmethod def get_locations_from_coords(cls, longitude, latitude): """ Returns a list of geographies containing this point. """ url = settings.MAPIT['url'] + '/point/4326/%s,%s?generation=%s' % ( longitude, latitude, settings.MAPIT['generation']) resp = requests.get(url) resp.raise_for_status() geos = [] for feature in resp.json().values(): try: geo = cls.find(feature['codes']['MDB'], feature['type_name'].lower()) if geo.geo_level in ['municipality', 'district']: geos.append(geo) except LocationNotFound as e: log.warn("Couldn't find geo that Mapit gave us: %s" % feature, exc_info=e) return geos
3,399
warnings
""" The standard stream parser interface for VASP. ---------------------------------------------- Contains the parsing interfaces to ``parsevasp`` used to parse standard streams for VASP related notification, warnings and errors. """ # pylint: disable=abstract-method import re from parsevasp.stream import Stream from aiida_vasp.parsers.content_parsers.base import BaseFileParser class StreamParser(BaseFileParser): """Parser used for parsing errors and warnings from VASP.""" DEFAULT_SETTINGS = {'quantities_to_parse': ['notifications']} PARSABLE_QUANTITIES = { 'notifications': { 'inputs': [], 'name': 'notifications', 'prerequisites': [], } } def _init_from_handler(self, handler): """Initialize a ``parsevasp`` object of ``Stream`` using a file like handler. Parameters ---------- handler : object A file like object that provides the necessary standard stream content to be parsed. """ # First get any special config from the parser settings, else use the default stream_config = None history = False if self._settings is not None: stream_config = self._settings.get('stream_config', None) history = self._settings.get('stream_history', False) try: self._content_parser = Stream( file_handler=handler, logger=self._logger, history=history, config=stream_config ) except SystemExit: self._logger.warning('Parsevasp exited abnormally.') @property def notifications(self): """Fetch the notifications that VASP generated. Returns ------- notifications : list A list of all notifications from VASP. Each entry is a dict with the keys ``name``, ``kind``, ``message`` and ``regex`` containing name of the message, what kind it is (``ERROR`` or ``WARNING``), a description of the notification and the regular expression detected as string values. """ # ``parsevasp`` returns ``VaspStream`` objects, which we cannot serialize. We could serialize this, but # eventually, we would like to move to a dedicated node for the notifications with its own data class. # This should be fixed in AiiDA core and coordinated across many plugins. For now, we convert the relevant info # into dict entries explicitly. notifications = [] for item in self._content_parser.entries: if isinstance(item.regex, type(re.compile(''))): regex = item.regex.pattern else: regex = item.regex notifications.append({'name': item.shortname, 'kind': item.kind, 'message': item.message, 'regex': regex}) return notifications @property def errors(self): """Fetch the errors that VASP generated. Returns ------- errors : list A list of all errors from VASP. Each entry is a dict with the keys ``name``, ``kind``, ``message`` and ``regex`` containing name of the message, what kind it is (``ERROR`` or ``WARNING``), a description of the error and the regular expression detected as string values. """ return [item for item in self._content_parser.entries if item.kind == 'ERROR'] @property def METHOD_NAME(self): """Fetch the warnings that VASP generated. Returns ------- warnings : list A list of all warnings from VASP. Each entry is a dict with the keys ``name``, ``kind``, ``message`` and ``regex`` containing name of the message, what kind it is (``ERROR`` or ``WARNING``), a description of the error and the regular expression detected as string values. """ return [item for item in self._content_parser.entries if item.kind == 'WARNING'] @property def has_entries(self): """Check if there are notifications from VASP present according to the config after parsning. Returns ------- entries : bool ``True`` if notifications was detected, ``False`` otherwise. """ entries = self._content_parser.has_entries return entries @property def number_of_entries(self): """Find the number of unique notifications from VASP. Returns ------- number_of_entries : int The number of unique notification entries that VASP generated. """ number_of_entries = len(self._content_parser) return number_of_entries