\\n '\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t\t\t\t)\n return filename\n\n\nA__ : List[Any] =\t\t\t[\n {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0},\n {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0},\n {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0},\n {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0},\n]\nA__ : Any =\t\t\t[\n {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0},\n {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0},\n]\nA__ : Union[str, Any] =\t\t\t{\n '''col_1''': ['''0''', '''1''', '''2''', '''3'''],\n '''col_2''': [0, 1, 2, 3],\n '''col_3''': [0.0, 1.0, 2.0, 3.0],\n}\n\nA__ : int =\t\t\t[\n {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0},\n {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1},\n]\n\nA__ : Optional[Any] =\t\t\t[\n {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0},\n {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0},\n {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0},\n {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0},\n]\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t) -> List[Any]:\n return DATA_DICT_OF_LISTS\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Any:\n __snake_case\t\t\t\t: Any\t\t = datasets.Dataset.from_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.arrow'\t\t\t\t\t\t\t)\n dataset.map(cache_file_name=_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.sqlite'\t\t\t\t\t\t\t)\n with contextlib.closing(sqlitea.connect(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) as con:\n __snake_case\t\t\t\t: str\t\t = con.cursor()\n cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)'\t\t\t\t\t\t\t)\n for item in DATA:\n cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)'\t\t\t\t,tuple(item.values()\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n con.commit()\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: Tuple\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.csv'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t,newline=''\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: Optional[int]\t\t = csv.DictWriter(_UpperCAmelCase\t\t\t\t,fieldnames=['col_1', 'col_2', 'col_3']\t\t\t\t\t\t\t)\n writer.writeheader()\n for item in DATA:\n writer.writerow(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset2.csv'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t,newline=''\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: Optional[int]\t\t = csv.DictWriter(_UpperCAmelCase\t\t\t\t,fieldnames=['col_1', 'col_2', 'col_3']\t\t\t\t\t\t\t)\n writer.writeheader()\n for item in DATA:\n writer.writerow(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import bza\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.csv.bz2'\n with open(_UpperCAmelCase\t\t\t\t,'rb'\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: List[Any]\t\t = f.read()\n # data = bytes(FILE_CONTENT, \"utf-8\")\n with bza.open(_UpperCAmelCase\t\t\t\t,'wb'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : List[Any]\t\t\t\t,_UpperCAmelCase : Dict\t\t\t\t\t\t\t) -> Any:\n __snake_case\t\t\t\t: List[str]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.csv.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: Dict\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.csv.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(csv_path.replace('.csv'\t\t\t\t,'.CSV'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(csva_path.replace('.csv'\t\t\t\t,'.CSV'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Optional[int]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_with_dir.csv.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: List[str]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.parquet'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pa.schema(\n {\n 'col_1': pa.string(),\n 'col_2': pa.intaa(),\n 'col_3': pa.floataa(),\n }\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'wb'\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pq.ParquetWriter(_UpperCAmelCase\t\t\t\t,schema=_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Dict\t\t = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)] for k in DATA[0]}\t\t\t\t,schema=_UpperCAmelCase\t\t\t\t\t\t\t)\n writer.write_table(_UpperCAmelCase\t\t\t\t\t\t\t)\n writer.close()\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> str:\n __snake_case\t\t\t\t: int\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.json'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = {'data': DATA}\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n json.dump(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.json'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: str\t\t = {'data': DATA_DICT_OF_LISTS}\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n json.dump(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Tuple\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.jsonl'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in DATA:\n f.write(json.dumps(_UpperCAmelCase\t\t\t\t\t\t\t) + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset2.jsonl'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in DATA:\n f.write(json.dumps(_UpperCAmelCase\t\t\t\t\t\t\t) + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: int\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_312.jsonl'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in DATA_312:\n f.write(json.dumps(_UpperCAmelCase\t\t\t\t\t\t\t) + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: List[str]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset-str.jsonl'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in DATA_STR:\n f.write(json.dumps(_UpperCAmelCase\t\t\t\t\t\t\t) + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> str:\n import gzip\n\n __snake_case\t\t\t\t: List[str]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.txt.gz'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'rb'\t\t\t\t\t\t\t) as orig_file:\n with gzip.open(_UpperCAmelCase\t\t\t\t,'wb'\t\t\t\t\t\t\t) as zipped_file:\n zipped_file.writelines(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Optional[int]:\n import gzip\n\n __snake_case\t\t\t\t: str\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.jsonl.gz'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'rb'\t\t\t\t\t\t\t) as orig_file:\n with gzip.open(_UpperCAmelCase\t\t\t\t,'wb'\t\t\t\t\t\t\t) as zipped_file:\n zipped_file.writelines(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Any\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.jsonl.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_nested.jsonl.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('nested'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Tuple\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_with_dir.jsonl.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Optional[Any]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.jsonl.tar'\n with tarfile.TarFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.add(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.add(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: List[str]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_nested.jsonl.tar'\n with tarfile.TarFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.add(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('nested'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: int\t\t = ['0', '1', '2', '3']\n __snake_case\t\t\t\t: Dict\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.txt'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in data:\n f.write(item + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Optional[int]\t\t = ['0', '1', '2', '3']\n __snake_case\t\t\t\t: List[Any]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset2.txt'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in data:\n f.write(item + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: Dict\t\t = ['0', '1', '2', '3']\n __snake_case\t\t\t\t: str\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.abc'\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n for item in data:\n f.write(item + '\\n'\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: Optional[int]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.text.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: str\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_with_dir.text.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.join('main_dir'\t\t\t\t,os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: str\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.ext.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename('unsupported.ext'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename('unsupported_2.ext'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: List[Any]\t\t = '\\n'.join(['First', 'Second\\u2029with Unicode new line', 'Third']\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[str]\t\t = str(tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset_with_unicode_new_lines.txt'\t\t\t\t\t\t\t)\n with open(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t,encoding='utf-8'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t) -> List[str]:\n return os.path.join('tests'\t\t\t\t,'features'\t\t\t\t,'data'\t\t\t\t,'test_image_rgb.jpg'\t\t\t\t\t\t\t)\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t) -> int:\n return os.path.join('tests'\t\t\t\t,'features'\t\t\t\t,'data'\t\t\t\t,'test_audio_44100.wav'\t\t\t\t\t\t\t)\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: List[str]\t\t = tmp_path_factory.mktemp('data'\t\t\t\t\t\t\t) / 'dataset.img.zip'\n with zipfile.ZipFile(_UpperCAmelCase\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n f.write(_UpperCAmelCase\t\t\t\t,arcname=os.path.basename(_UpperCAmelCase\t\t\t\t\t\t\t).replace('.jpg'\t\t\t\t,'2.jpg'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n return path\n\n\n\n\n\n@pytest.fixture(scope='session'\t\t\t\t\t\t\t)\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = tmp_path_factory.mktemp('data_dir'\t\t\t\t\t\t\t)\n\n (data_dir / \"subdir\").mkdir()\n with open(data_dir / 'subdir' / 'train.txt'\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write('foo\\n' * 10\t\t\t\t\t\t\t)\n with open(data_dir / 'subdir' / 'test.txt'\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write('bar\\n' * 10\t\t\t\t\t\t\t)\n # hidden file\n with open(data_dir / 'subdir' / '.test.txt'\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write('bar\\n' * 10\t\t\t\t\t\t\t)\n\n # hidden directory\n (data_dir / \".subdir\").mkdir()\n with open(data_dir / '.subdir' / 'train.txt'\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write('foo\\n' * 10\t\t\t\t\t\t\t)\n with open(data_dir / '.subdir' / 'test.txt'\t\t\t\t,'w'\t\t\t\t\t\t\t) as f:\n f.write('bar\\n' * 10\t\t\t\t\t\t\t)\n\n return data_dir\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport gc\nimport unittest\n\nimport numpy as np\nimport torch\nfrom transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer\n\nfrom diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline\nfrom diffusers.pipelines.shap_e import ShapERenderer\nfrom diffusers.utils import load_numpy, slow\nfrom diffusers.utils.testing_utils import require_torch_gpu, torch_device\n\nfrom ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tShapEPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''num_inference_steps''',\n '''generator''',\n '''latents''',\n '''guidance_scale''',\n '''frame_size''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Optional[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Tuple ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 8\n @property\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[int]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Dict\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 16,\n 'embedding_dim': self.time_input_dim,\n 'num_embeddings': 32,\n 'embedding_proj_dim': self.text_embedder_hidden_size,\n 'time_embed_dim': self.time_embed_dim,\n 'num_layers': 1,\n 'clip_embed_dim': self.time_input_dim * 2,\n 'additional_embeddings': 0,\n 'time_embed_act_fn': 'gelu',\n 'norm_in_type': 'layer',\n 'encoder_hid_proj_type': None,\n 'added_emb_type': None,\n }\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = PriorTransformer(**__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Tuple\t\t = {\n 'param_shapes': (\n (self.renderer_dim, 93),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n ),\n 'd_latent': self.time_input_dim,\n 'd_hidden': self.renderer_dim,\n 'n_output': 12,\n 'background': (\n 0.1,\n 0.1,\n 0.1,\n ),\n }\n __snake_case\t\t\t\t: Optional[int]\t\t = ShapERenderer(**__a )\n return model\n def A_ ( self\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.dummy_renderer\n\n __snake_case\t\t\t\t: List[Any]\t\t = HeunDiscreteScheduler(\n beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , )\n __snake_case\t\t\t\t: int\t\t = {\n 'prior': prior,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'renderer': renderer,\n 'scheduler': scheduler,\n }\n\n return components\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: int=0 ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'num_inference_steps': 1,\n 'frame_size': 32,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = 'cpu'\n\n __snake_case\t\t\t\t: Dict\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: int\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: str\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: Dict\t\t = output.images[0]\n __snake_case\t\t\t\t: int\t\t = image[0, -3:, -3:, -1]\n\n assert image.shape == (20, 32, 32, 3)\n\n __snake_case\t\t\t\t: str\t\t = np.array(\n [\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n ] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches\n self._test_inference_batch_consistent(batch_sizes=[1, 2] )\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: str\t\t = True\n\n self._test_inference_batch_single_identical(\n batch_size=2 , test_max_difference=__a , relax_max_difference=__a , )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_dummy_components()\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Dict\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: int\t\t = 1\n __snake_case\t\t\t\t: Tuple\t\t = 2\n\n __snake_case\t\t\t\t: Tuple\t\t = self.get_dummy_inputs(__a )\n\n for key in inputs.keys():\n if key in self.batch_params:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = batch_size * [inputs[key]]\n\n __snake_case\t\t\t\t: str\t\t = pipe(**__a , num_images_per_prompt=__a )[0]\n\n assert images.shape[0] == batch_size * num_images_per_prompt\n\n\n\n@slow\n@require_torch_gpu\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n # clean up the VRAM after each test\n super().tearDown()\n gc.collect()\n torch.cuda.empty_cache()\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = load_numpy(\n 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'\n '/shap_e/test_shap_e_np_out.npy' )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ShapEPipeline.from_pretrained('openai/shap-e' )\n __snake_case\t\t\t\t: Any\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.Generator(device=__a ).manual_seed(0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pipe(\n 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]\n\n assert images.shape == (20, 64, 64, 3)\n\n assert_mean_pixel_difference(__a , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":126,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return \" \".join(input_str.split()[::-1]\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nimport time\n\nimport numpy as np\n\nA__ : str =\t\t\t[8, 5, 9, 7]\nA__ : List[str] =\t\t\t[\n [2, 0, 1, 1],\n [0, 1, 2, 1],\n [4, 0, 0, 3],\n [0, 2, 1, 0],\n [1, 0, 3, 0],\n]\nA__ : Dict =\t\t\t[\n [3, 2, 1, 4],\n [0, 2, 5, 2],\n [5, 1, 0, 5],\n [1, 5, 3, 0],\n [3, 0, 3, 3],\n]\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Union[str, Any] , __a\t\t: list[int] , __a\t\t: list[list[int]] , __a\t\t: list[list[int]] , ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = claim_vector\n __snake_case\t\t\t\t: Optional[int]\t\t = allocated_resources_table\n __snake_case\t\t\t\t: List[str]\t\t = maximum_claim_table\n def A_ ( self\t\t: str ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n sum(p_item[i] for p_item in self.__allocated_resources_table )\n for i in range(len(self.__allocated_resources_table[0] ) )\n ]\n def A_ ( self\t\t: int ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return np.array(self.__claim_vector ) - np.array(\n self.__processes_resource_summation() )\n def A_ ( self\t\t: int ) -> list[list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )\n for i, allocated_resource in enumerate(self.__allocated_resources_table )\n ]\n def A_ ( self\t\t: str ) -> dict[int, list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return {self.__need().index(__a ): i for i in self.__need()}\n def A_ ( self\t\t: Union[str, Any] , **__a\t\t: int ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.__need()\n __snake_case\t\t\t\t: List[Any]\t\t = self.__allocated_resources_table\n __snake_case\t\t\t\t: Optional[int]\t\t = self.__available_resources()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.__need_index_manager()\n for kw, val in kwargs.items():\n if kw and val is True:\n self.__pretty_data()\n print('_' * 50 + '\\n' )\n while need_list:\n __snake_case\t\t\t\t: Tuple\t\t = False\n for each_need in need_list:\n __snake_case\t\t\t\t: Any\t\t = True\n for index, need in enumerate(__a ):\n if need > available_resources[index]:\n __snake_case\t\t\t\t: List[str]\t\t = False\n break\n if execution:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n # get the original index of the process from ind_ctrl db\n for original_need_index, need_clone in need_index_manager.items():\n if each_need == need_clone:\n __snake_case\t\t\t\t: str\t\t = original_need_index\n print(f'''Process {process_number + 1} is executing.''' )\n # remove the process run from stack\n need_list.remove(__a )\n # update available/freed resources stack\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.array(__a ) + np.array(\n alloc_resources_table[process_number] )\n print(\n 'Updated available resource stack for processes: '\n + ' '.join([str(__a ) for x in available_resources] ) )\n break\n if safe:\n print('The process is in a safe state.\\n' )\n else:\n print('System in unsafe state. Aborting...\\n' )\n break\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n print(' ' * 9 + 'Allocated Resource Table' )\n for item in self.__allocated_resources_table:\n print(\n f'''P{self.__allocated_resources_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(' ' * 9 + 'System Resource Table' )\n for item in self.__maximum_claim_table:\n print(\n f'''P{self.__maximum_claim_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(\n 'Current Usage by Active Processes: '\n + ' '.join(str(__a ) for x in self.__claim_vector ) )\n print(\n 'Initial Available Resources: '\n + ' '.join(str(__a ) for x in self.__available_resources() ) )\n time.sleep(1 )\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":127,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom math import sqrt\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n number >= 0\n ), \"'number' must been an int and positive\"\n\n __snake_case\t\t\t\t: Tuple\t\t = True\n\n # 0 and 1 are none primes.\n if number <= 1:\n __snake_case\t\t\t\t: Dict\t\t = False\n\n for divisor in range(2\t\t\t\t,int(round(sqrt(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) + 1\t\t\t\t\t\t\t):\n # if 'number' divisible by 'divisor' then sets 'status'\n # of false and break up the loop.\n if number % divisor == 0:\n __snake_case\t\t\t\t: str\t\t = False\n break\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'status' must been from type bool\"\n\n return status\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> Dict:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n > 2), \"'N' must been an int and > 2\"\n\n # beginList: contains all natural numbers from 2 up to N\n __snake_case\t\t\t\t: Union[str, Any]\t\t = list(range(2\t\t\t\t,n + 1\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Tuple\t\t = [] # this list will be returns.\n\n # actual sieve of erathostenes\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n for j in range(i + 1\t\t\t\t,len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):\n __snake_case\t\t\t\t: Dict\t\t = 0\n\n # filters actual prime numbers.\n __snake_case\t\t\t\t: Optional[Any]\t\t = [x for x in begin_list if x != 0]\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been from type list\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Optional[Any]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n > 2), \"'N' must been an int and > 2\"\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n\n # iterates over all numbers between 2 up to N+1\n # if a number is prime then appends to list 'ans'\n for number in range(2\t\t\t\t,n + 1\t\t\t\t\t\t\t):\n if is_prime(_UpperCAmelCase\t\t\t\t\t\t\t):\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been from type list\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Union[str, Any]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and number >= 0, \"'number' must been an int and >= 0\"\n\n __snake_case\t\t\t\t: Any\t\t = [] # this list will be returns of the function.\n\n # potential prime number factors.\n\n __snake_case\t\t\t\t: Any\t\t = 2\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = number\n\n if number == 0 or number == 1:\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # if 'number' not prime then builds the prime factorization of 'number'\n elif not is_prime(_UpperCAmelCase\t\t\t\t\t\t\t):\n while quotient != 1:\n if is_prime(_UpperCAmelCase\t\t\t\t\t\t\t) and (quotient % factor == 0):\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n quotient /= factor\n else:\n factor += 1\n\n else:\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been from type list\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Optional[int]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n number >= 0\n ), \"'number' bust been an int and >= 0\"\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n # prime factorization of 'number'\n __snake_case\t\t\t\t: Dict\t\t = prime_factorization(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = max(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been from type int\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> str:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n number >= 0\n ), \"'number' bust been an int and >= 0\"\n\n __snake_case\t\t\t\t: List[str]\t\t = 0\n\n # prime factorization of 'number'\n __snake_case\t\t\t\t: int\t\t = prime_factorization(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: int\t\t = min(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been from type int\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Any:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'number' must been an int\"\n assert isinstance(number % 2 == 0\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"compare bust been from type bool\"\n\n return number % 2 == 0\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Union[str, Any]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"'number' must been an int\"\n assert isinstance(number % 2 != 0\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t), \"compare bust been from type bool\"\n\n return number % 2 != 0\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> Tuple:\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (number > 2) and is_even(_UpperCAmelCase\t\t\t\t\t\t\t)\n ), \"'number' must been an int, even and > 2\"\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = [] # this list will returned\n\n # creates a list of prime numbers between 2 up to 'number'\n __snake_case\t\t\t\t: List[str]\t\t = get_prime_numbers(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[Any]\t\t = len(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # run variable for while-loops.\n __snake_case\t\t\t\t: Any\t\t = 0\n __snake_case\t\t\t\t: Tuple\t\t = None\n\n # exit variable. for break up the loops\n __snake_case\t\t\t\t: Optional[int]\t\t = True\n\n while i < len_pn and loop:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = i + 1\n\n while j < len_pn and loop:\n if prime_numbers[i] + prime_numbers[j] == number:\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n ans.append(prime_numbers[i]\t\t\t\t\t\t\t)\n ans.append(prime_numbers[j]\t\t\t\t\t\t\t)\n\n j += 1\n\n i += 1\n\n # precondition\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (len(_UpperCAmelCase\t\t\t\t\t\t\t) == 2)\n and (ans[0] + ans[1] == number)\n and is_prime(ans[0]\t\t\t\t\t\t\t)\n and is_prime(ans[1]\t\t\t\t\t\t\t)\n ), \"'ans' must contains two primes. And sum of elements must been eq 'number'\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> List[str]:\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (numbera >= 0)\n and (numbera >= 0)\n ), \"'number1' and 'number2' must been positive integer.\"\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n while numbera != 0:\n __snake_case\t\t\t\t: Tuple\t\t = numbera % numbera\n __snake_case\t\t\t\t: Any\t\t = numbera\n __snake_case\t\t\t\t: Tuple\t\t = rest\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n numbera >= 0\n ), \"'number' must been from type int and positive\"\n\n return numbera\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Any:\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (numbera >= 1)\n and (numbera >= 1)\n ), \"'number1' and 'number2' must been positive integer.\"\n\n __snake_case\t\t\t\t: Any\t\t = 1 # actual answer that will be return.\n\n # for kgV (x,1)\n if numbera > 1 and numbera > 1:\n # builds the prime factorization of 'number1' and 'number2'\n __snake_case\t\t\t\t: Optional[int]\t\t = prime_factorization(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Dict\t\t = prime_factorization(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n elif numbera == 1 or numbera == 1:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n __snake_case\t\t\t\t: List[str]\t\t = max(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 0\n __snake_case\t\t\t\t: str\t\t = 0\n\n __snake_case\t\t\t\t: Optional[int]\t\t = [] # captured numbers int both 'primeFac1' and 'primeFac2'\n\n # iterates through primeFac1\n for n in prime_fac_a:\n if n not in done:\n if n in prime_fac_a:\n __snake_case\t\t\t\t: Optional[Any]\t\t = prime_fac_a.count(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = prime_fac_a.count(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n for _ in range(max(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n ans *= n\n\n else:\n __snake_case\t\t\t\t: List[str]\t\t = prime_fac_a.count(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n for _ in range(_UpperCAmelCase\t\t\t\t\t\t\t):\n ans *= n\n\n done.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # iterates through primeFac2\n for n in prime_fac_a:\n if n not in done:\n __snake_case\t\t\t\t: List[Any]\t\t = prime_fac_a.count(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n for _ in range(_UpperCAmelCase\t\t\t\t\t\t\t):\n ans *= n\n\n done.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n ans >= 0\n ), \"'ans' must been from type int and positive\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> Union[str, Any]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n >= 0), \"'number' must been a positive int\"\n\n __snake_case\t\t\t\t: int\t\t = 0\n __snake_case\t\t\t\t: Tuple\t\t = 2 # this variable holds the answer\n\n while index < n:\n index += 1\n\n ans += 1 # counts to the next number\n\n # if ans not prime then\n # runs to the next prime number.\n while not is_prime(_UpperCAmelCase\t\t\t\t\t\t\t):\n ans += 1\n\n # precondition\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and is_prime(\n _UpperCAmelCase\t\t\t\t\t\t\t), \"'ans' must been a prime number and from type int\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> List[str]:\n assert (\n is_prime(_UpperCAmelCase\t\t\t\t\t\t\t) and is_prime(_UpperCAmelCase\t\t\t\t\t\t\t) and (p_number_a < p_number_a)\n ), \"The arguments must been prime numbers and 'pNumber1' < 'pNumber2'\"\n\n __snake_case\t\t\t\t: Any\t\t = p_number_a + 1 # jump to the next number\n\n __snake_case\t\t\t\t: List[Any]\t\t = [] # this list will be returns.\n\n # if number is not prime then\n # fetch the next prime number.\n while not is_prime(_UpperCAmelCase\t\t\t\t\t\t\t):\n number += 1\n\n while number < p_number_a:\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n number += 1\n\n # fetch the next prime number.\n while not is_prime(_UpperCAmelCase\t\t\t\t\t\t\t):\n number += 1\n\n # precondition\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and ans[0] != p_number_a\n and ans[len(_UpperCAmelCase\t\t\t\t\t\t\t) - 1] != p_number_a\n ), \"'ans' must been a list without the arguments\"\n\n # 'ans' contains not 'pNumber1' and 'pNumber2' !\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> str:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n >= 1), \"'n' must been int and >= 1\"\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = [] # will be returned.\n\n for divisor in range(1\t\t\t\t,n + 1\t\t\t\t\t\t\t):\n if n % divisor == 0:\n ans.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert ans[0] == 1 and ans[len(_UpperCAmelCase\t\t\t\t\t\t\t) - 1] == n, \"Error in function getDivisiors(...)\"\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> List[str]:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (\n number > 1\n ), \"'number' must been an int and >= 1\"\n\n __snake_case\t\t\t\t: Tuple\t\t = get_divisors(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # precondition\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (divisors[0] == 1)\n and (divisors[len(_UpperCAmelCase\t\t\t\t\t\t\t) - 1] == number)\n ), \"Error in help-function getDivisiors(...)\"\n\n # summed all divisors up to 'number' (exclusive), hence [:-1]\n return sum(divisors[:-1]\t\t\t\t\t\t\t) == number\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Tuple:\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (denominator != 0)\n ), \"The arguments must been from type int and 'denominator' != 0\"\n\n # build the greatest common divisor of numerator and denominator.\n __snake_case\t\t\t\t: Optional[int]\t\t = gcd(abs(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t,abs(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n # precondition\n assert (\n isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n and (numerator % gcd_of_fraction == 0)\n and (denominator % gcd_of_fraction == 0)\n ), \"Error in function gcd(...,...)\"\n\n return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n >= 0), \"'n' must been a int and >= 0\"\n\n __snake_case\t\t\t\t: List[str]\t\t = 1 # this will be return.\n\n for factor in range(1\t\t\t\t,n + 1\t\t\t\t\t\t\t):\n ans *= factor\n\n return ans\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Dict:\n assert isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and (n >= 0), \"'n' must been an int and >= 0\"\n\n __snake_case\t\t\t\t: int\t\t = 0\n __snake_case\t\t\t\t: List[str]\t\t = 1\n __snake_case\t\t\t\t: Optional[Any]\t\t = 1 # this will be return\n\n for _ in range(n - 1\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Dict\t\t = ans\n ans += fiba\n __snake_case\t\t\t\t: Dict\t\t = tmp\n\n return ans\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nfrom typing import List, Optional, Tuple\n\nfrom tokenizers import normalizers\n\nfrom ...tokenization_utils_fast import PreTrainedTokenizerFast\nfrom .tokenization_electra import ElectraTokenizer\n\n\nA__ : Union[str, Any] =\t\t\t{'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}\n\nA__ : List[Any] =\t\t\t{\n '''vocab_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''',\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'''\n ),\n },\n '''tokenizer_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-generator''': (\n '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'''\n ),\n },\n}\n\nA__ : List[Any] =\t\t\t{\n '''google/electra-small-generator''': 5_1_2,\n '''google/electra-base-generator''': 5_1_2,\n '''google/electra-large-generator''': 5_1_2,\n '''google/electra-small-discriminator''': 5_1_2,\n '''google/electra-base-discriminator''': 5_1_2,\n '''google/electra-large-discriminator''': 5_1_2,\n}\n\nA__ : Optional[Any] =\t\t\t{\n '''google/electra-small-generator''': {'''do_lower_case''': True},\n '''google/electra-base-generator''': {'''do_lower_case''': True},\n '''google/electra-large-generator''': {'''do_lower_case''': True},\n '''google/electra-small-discriminator''': {'''do_lower_case''': True},\n '''google/electra-base-discriminator''': {'''do_lower_case''': True},\n '''google/electra-large-discriminator''': {'''do_lower_case''': True},\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_INIT_CONFIGURATION\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\tElectraTokenizer\n def __init__( self\t\t: int , __a\t\t: List[Any]=None , __a\t\t: int=None , __a\t\t: List[str]=True , __a\t\t: Any=\"[UNK]\" , __a\t\t: Any=\"[SEP]\" , __a\t\t: Union[str, Any]=\"[PAD]\" , __a\t\t: Dict=\"[CLS]\" , __a\t\t: List[Any]=\"[MASK]\" , __a\t\t: str=True , __a\t\t: Optional[int]=None , **__a\t\t: Optional[int] , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , )\n\n __snake_case\t\t\t\t: Tuple\t\t = json.loads(self.backend_tokenizer.normalizer.__getstate__() )\n if (\n normalizer_state.get('lowercase' , __a ) != do_lower_case\n or normalizer_state.get('strip_accents' , __a ) != strip_accents\n or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars\n ):\n __snake_case\t\t\t\t: List[Any]\t\t = getattr(__a , normalizer_state.pop('type' ) )\n __snake_case\t\t\t\t: str\t\t = do_lower_case\n __snake_case\t\t\t\t: Optional[int]\t\t = strip_accents\n __snake_case\t\t\t\t: Any\t\t = tokenize_chinese_chars\n __snake_case\t\t\t\t: Union[str, Any]\t\t = normalizer_class(**__a )\n\n __snake_case\t\t\t\t: Any\t\t = do_lower_case\n def A_ ( self\t\t: Any , __a\t\t: List[str] , __a\t\t: Optional[Any]=None ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = [self.cls_token_id] + token_ids_a + [self.sep_token_id]\n\n if token_ids_a:\n output += token_ids_a + [self.sep_token_id]\n\n return output\n def A_ ( self\t\t: List[Any] , __a\t\t: List[int] , __a\t\t: Optional[List[int]] = None ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = [self.sep_token_id]\n __snake_case\t\t\t\t: List[Any]\t\t = [self.cls_token_id]\n if token_ids_a is None:\n return len(cls + token_ids_a + sep ) * [0]\n return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self._tokenizer.model.save(__a , name=__a )\n return tuple(__a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":128,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available\n\n\nA__ : int =\t\t\t{\n '''configuration_groupvit''': [\n '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''GroupViTConfig''',\n '''GroupViTOnnxConfig''',\n '''GroupViTTextConfig''',\n '''GroupViTVisionConfig''',\n ],\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Tuple =\t\t\t[\n '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''GroupViTModel''',\n '''GroupViTPreTrainedModel''',\n '''GroupViTTextModel''',\n '''GroupViTVisionModel''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[int] =\t\t\t[\n '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFGroupViTModel''',\n '''TFGroupViTPreTrainedModel''',\n '''TFGroupViTTextModel''',\n '''TFGroupViTVisionModel''',\n ]\n\nif TYPE_CHECKING:\n from .configuration_groupvit import (\n GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,\n GroupViTConfig,\n GroupViTOnnxConfig,\n GroupViTTextConfig,\n GroupViTVisionConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_groupvit import (\n GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n GroupViTModel,\n GroupViTPreTrainedModel,\n GroupViTTextModel,\n GroupViTVisionModel,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_groupvit import (\n TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFGroupViTModel,\n TFGroupViTPreTrainedModel,\n TFGroupViTTextModel,\n TFGroupViTVisionModel,\n )\n\nelse:\n import sys\n\n A__ : List[str] =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = n ** (1 / 3)\n return (val * val * val) == n\n\n\nif __name__ == \"__main__\":\n print(perfect_cube(2_7))\n print(perfect_cube(4))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":129,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...utils import (\n OptionalDependencyNotAvailable,\n is_torch_available,\n is_transformers_available,\n is_transformers_version,\n)\n\n\ntry:\n if not (is_transformers_available() and is_torch_available()):\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n from ...utils.dummy_torch_and_transformers_objects import (\n ImageTextPipelineOutput,\n UniDiffuserPipeline,\n )\nelse:\n from .modeling_text_decoder import UniDiffuserTextDecoder\n from .modeling_uvit import UniDiffuserModel, UTransformeraDModel\n from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport tempfile\nfrom functools import partial\nfrom unittest import TestCase\nfrom unittest.mock import patch\n\nimport numpy as np\nimport pytest\n\nfrom datasets.arrow_dataset import Dataset\nfrom datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex\n\nfrom .utils import require_elasticsearch, require_faiss\n\n\nA__ : Tuple =\t\t\tpytest.mark.integration\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} )\n return dset\n def A_ ( self\t\t: Union[str, Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n __snake_case\t\t\t\t: Dict\t\t = dset.map(\n lambda __a , __a : {\"vecs\": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n dset.drop_index('vecs' )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n dset.save_faiss_index('vecs' , tmp_file.name )\n dset.load_faiss_index('vecs2' , tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: Union[str, Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )\n dset.drop_index('vecs' )\n self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: Any\t\t = {'acknowledged': True}\n mocked_bulk.return_value([(True, None)] * 30 )\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Elasticsearch()\n\n dset.add_elasticsearch_index('filename' , es_client=__a )\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('filename' , 'my_name-train_29' )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n\n # add vectors\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsNotNone(index.faiss_index )\n self.assertEqual(index.faiss_index.ntotal , 5 )\n index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )\n self.assertEqual(index.faiss_index.ntotal , 10 )\n\n # single query\n __snake_case\t\t\t\t: Dict\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: List[str]\t\t = 1\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n # batched queries\n __snake_case\t\t\t\t: List[str]\t\t = np.eye(5 , dtype=np.floataa )[::-1]\n __snake_case , __snake_case\t\t\t\t: Dict\t\t = index.search_batch(__a )\n self.assertRaises(__a , index.search_batch , queries[0] )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: List[Any]\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([4, 3, 2, 1, 0] , __a )\n def A_ ( self\t\t: int ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(string_factory='Flat' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n __snake_case\t\t\t\t: List[str]\t\t = FaissIndex(string_factory='LSH' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexLSH )\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Dict\t\t = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Tuple\t\t = faiss.IndexFlat(5 )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex(custom_index=__a )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n\n\n\n\n\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n index.save(tmp_file.name )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex.load(tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search(__a )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n\n\n\n\n@require_faiss\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT\t\t\t\t\t\t\t)\n index.add_vectors(np.eye(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Dict\t\t = 'index.faiss'\n __snake_case\t\t\t\t: Any\t\t = f'''mock://{index_name}'''\n index.save(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = FaissIndex.load(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = np.zeros(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: Tuple\t\t = index.search(_UpperCAmelCase\t\t\t\t\t\t\t)\n assert scores[0] > 0\n assert indices[0] == 1\n\n\n\n\n\n@require_elasticsearch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: int\t\t = Elasticsearch()\n __snake_case\t\t\t\t: Dict\t\t = {'acknowledged': True}\n __snake_case\t\t\t\t: List[Any]\t\t = ElasticSearchIndex(es_client=__a )\n mocked_bulk.return_value([(True, None)] * 3 )\n index.add_documents(['foo', 'bar', 'foobar'] )\n\n # single query\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'foo'\n __snake_case\t\t\t\t: int\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # single query with timeout\n __snake_case\t\t\t\t: Dict\t\t = 'foo'\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: Optional[Any]\t\t = index.search(__a , request_timeout=30 )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # batched queries\n __snake_case\t\t\t\t: List[Any]\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: str\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: Any\t\t = index.search_batch(__a )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Tuple\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n # batched queries with timeout\n __snake_case\t\t\t\t: Tuple\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: List[Any]\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search_batch(__a , request_timeout=30 )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Dict\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":130,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nimport time\n\nimport numpy as np\n\nA__ : str =\t\t\t[8, 5, 9, 7]\nA__ : List[str] =\t\t\t[\n [2, 0, 1, 1],\n [0, 1, 2, 1],\n [4, 0, 0, 3],\n [0, 2, 1, 0],\n [1, 0, 3, 0],\n]\nA__ : Dict =\t\t\t[\n [3, 2, 1, 4],\n [0, 2, 5, 2],\n [5, 1, 0, 5],\n [1, 5, 3, 0],\n [3, 0, 3, 3],\n]\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Union[str, Any] , __a\t\t: list[int] , __a\t\t: list[list[int]] , __a\t\t: list[list[int]] , ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = claim_vector\n __snake_case\t\t\t\t: Optional[int]\t\t = allocated_resources_table\n __snake_case\t\t\t\t: List[str]\t\t = maximum_claim_table\n def A_ ( self\t\t: str ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n sum(p_item[i] for p_item in self.__allocated_resources_table )\n for i in range(len(self.__allocated_resources_table[0] ) )\n ]\n def A_ ( self\t\t: int ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return np.array(self.__claim_vector ) - np.array(\n self.__processes_resource_summation() )\n def A_ ( self\t\t: int ) -> list[list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )\n for i, allocated_resource in enumerate(self.__allocated_resources_table )\n ]\n def A_ ( self\t\t: str ) -> dict[int, list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return {self.__need().index(__a ): i for i in self.__need()}\n def A_ ( self\t\t: Union[str, Any] , **__a\t\t: int ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.__need()\n __snake_case\t\t\t\t: List[Any]\t\t = self.__allocated_resources_table\n __snake_case\t\t\t\t: Optional[int]\t\t = self.__available_resources()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.__need_index_manager()\n for kw, val in kwargs.items():\n if kw and val is True:\n self.__pretty_data()\n print('_' * 50 + '\\n' )\n while need_list:\n __snake_case\t\t\t\t: Tuple\t\t = False\n for each_need in need_list:\n __snake_case\t\t\t\t: Any\t\t = True\n for index, need in enumerate(__a ):\n if need > available_resources[index]:\n __snake_case\t\t\t\t: List[str]\t\t = False\n break\n if execution:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n # get the original index of the process from ind_ctrl db\n for original_need_index, need_clone in need_index_manager.items():\n if each_need == need_clone:\n __snake_case\t\t\t\t: str\t\t = original_need_index\n print(f'''Process {process_number + 1} is executing.''' )\n # remove the process run from stack\n need_list.remove(__a )\n # update available/freed resources stack\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.array(__a ) + np.array(\n alloc_resources_table[process_number] )\n print(\n 'Updated available resource stack for processes: '\n + ' '.join([str(__a ) for x in available_resources] ) )\n break\n if safe:\n print('The process is in a safe state.\\n' )\n else:\n print('System in unsafe state. Aborting...\\n' )\n break\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n print(' ' * 9 + 'Allocated Resource Table' )\n for item in self.__allocated_resources_table:\n print(\n f'''P{self.__allocated_resources_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(' ' * 9 + 'System Resource Table' )\n for item in self.__maximum_claim_table:\n print(\n f'''P{self.__maximum_claim_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(\n 'Current Usage by Active Processes: '\n + ' '.join(str(__a ) for x in self.__claim_vector ) )\n print(\n 'Initial Available Resources: '\n + ' '.join(str(__a ) for x in self.__available_resources() ) )\n time.sleep(1 )\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Mapping\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...onnx import OnnxSeqaSeqConfigWithPast\nfrom ...utils import logging\n\n\nA__ : List[Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : Tuple =\t\t\t{\n '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''',\n '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''',\n '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''',\n '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''',\n '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''',\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''t5'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}\n def __init__( self\t\t: str , __a\t\t: Dict=32128 , __a\t\t: Dict=512 , __a\t\t: Union[str, Any]=64 , __a\t\t: str=2048 , __a\t\t: Union[str, Any]=6 , __a\t\t: Any=None , __a\t\t: Any=8 , __a\t\t: List[Any]=32 , __a\t\t: Any=128 , __a\t\t: Tuple=0.1 , __a\t\t: str=1e-6 , __a\t\t: Dict=1.0 , __a\t\t: Tuple=\"relu\" , __a\t\t: Dict=True , __a\t\t: Union[str, Any]=True , __a\t\t: Any=0 , __a\t\t: Dict=1 , **__a\t\t: Union[str, Any] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: str\t\t = d_model\n __snake_case\t\t\t\t: str\t\t = d_kv\n __snake_case\t\t\t\t: List[Any]\t\t = d_ff\n __snake_case\t\t\t\t: List[str]\t\t = num_layers\n __snake_case\t\t\t\t: Tuple\t\t = (\n num_decoder_layers if num_decoder_layers is not None else self.num_layers\n ) # default = symmetry\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_heads\n __snake_case\t\t\t\t: Tuple\t\t = relative_attention_num_buckets\n __snake_case\t\t\t\t: Optional[int]\t\t = relative_attention_max_distance\n __snake_case\t\t\t\t: Optional[Any]\t\t = dropout_rate\n __snake_case\t\t\t\t: str\t\t = layer_norm_epsilon\n __snake_case\t\t\t\t: List[str]\t\t = initializer_factor\n __snake_case\t\t\t\t: int\t\t = feed_forward_proj\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_cache\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.feed_forward_proj.split('-' )\n __snake_case\t\t\t\t: Dict\t\t = act_info[-1]\n __snake_case\t\t\t\t: List[str]\t\t = act_info[0] == 'gated'\n\n if len(__a ) > 1 and act_info[0] != \"gated\" or len(__a ) > 2:\n raise ValueError(\n f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''\n 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '\n '\\'gated-gelu\\' or \\'relu\\'' )\n\n # for backwards compatibility\n if feed_forward_proj == \"gated-gelu\":\n __snake_case\t\t\t\t: Dict\t\t = 'gelu_new'\n\n super().__init__(\n pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @property\n def A_ ( self\t\t: str ) -> Mapping[str, Mapping[int, str]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'input_ids': {0: 'batch', 1: 'encoder_sequence'},\n 'attention_mask': {0: 'batch', 1: 'encoder_sequence'},\n }\n if self.use_past:\n __snake_case\t\t\t\t: Tuple\t\t = 'past_encoder_sequence + sequence'\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch'}\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch', 1: 'past_decoder_sequence + sequence'}\n else:\n __snake_case\t\t\t\t: Tuple\t\t = {0: 'batch', 1: 'decoder_sequence'}\n __snake_case\t\t\t\t: int\t\t = {0: 'batch', 1: 'decoder_sequence'}\n\n if self.use_past:\n self.fill_with_past_key_values_(__a , direction='inputs' )\n\n return common_inputs\n\n\n\n\n\n @property\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 13\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":131,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : list\t\t\t\t,_UpperCAmelCase : int | None = None\t\t\t\t,_UpperCAmelCase : int | None = None\t\t\t\t\t\t\t) -> None:\n if start is None:\n __snake_case\t\t\t\t: Dict\t\t = 0\n\n if end is None:\n __snake_case\t\t\t\t: Optional[Any]\t\t = len(_UpperCAmelCase\t\t\t\t\t\t\t) - 1\n\n if start >= end:\n return\n\n __snake_case\t\t\t\t: List[str]\t\t = (start + end) // 2\n\n slowsort(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n slowsort(_UpperCAmelCase\t\t\t\t,mid + 1\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if sequence[end] < sequence[mid]:\n __snake_case , __snake_case\t\t\t\t: Union[str, Any]\t\t = sequence[mid], sequence[end]\n\n slowsort(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,end - 1\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n from doctest import testmod\n\n testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : Tuple =\t\t\tlogging.get_logger(__name__)\n\nA__ : Optional[int] =\t\t\t{}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''llama'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n def __init__( self\t\t: Any , __a\t\t: List[str]=32000 , __a\t\t: Union[str, Any]=4096 , __a\t\t: Optional[Any]=11008 , __a\t\t: Any=32 , __a\t\t: str=32 , __a\t\t: Optional[int]=None , __a\t\t: Dict=\"silu\" , __a\t\t: Dict=2048 , __a\t\t: List[str]=0.0_2 , __a\t\t: Union[str, Any]=1e-6 , __a\t\t: Dict=True , __a\t\t: List[str]=0 , __a\t\t: Tuple=1 , __a\t\t: Tuple=2 , __a\t\t: Optional[Any]=1 , __a\t\t: Any=False , __a\t\t: Tuple=None , **__a\t\t: List[Any] , ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[Any]\t\t = hidden_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = intermediate_size\n __snake_case\t\t\t\t: Optional[int]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: List[Any]\t\t = num_attention_heads\n\n # for backward compatibility\n if num_key_value_heads is None:\n __snake_case\t\t\t\t: Optional[int]\t\t = num_attention_heads\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = num_key_value_heads\n __snake_case\t\t\t\t: int\t\t = hidden_act\n __snake_case\t\t\t\t: Any\t\t = initializer_range\n __snake_case\t\t\t\t: Any\t\t = rms_norm_eps\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pretraining_tp\n __snake_case\t\t\t\t: Optional[int]\t\t = use_cache\n __snake_case\t\t\t\t: Any\t\t = rope_scaling\n self._rope_scaling_validation()\n\n super().__init__(\n pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , )\n\n\n\n\n\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if self.rope_scaling is None:\n return\n\n if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2:\n raise ValueError(\n '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '\n f'''got {self.rope_scaling}''' )\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.rope_scaling.get('type' , __a )\n __snake_case\t\t\t\t: Tuple\t\t = self.rope_scaling.get('factor' , __a )\n if rope_scaling_type is None or rope_scaling_type not in [\"linear\", \"dynamic\"]:\n raise ValueError(\n f'''`rope_scaling`\\'s name field must be one of [\\'linear\\', \\'dynamic\\'], got {rope_scaling_type}''' )\n if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0:\n raise ValueError(f'''`rope_scaling`\\'s factor field must be an float > 1, got {rope_scaling_factor}''' )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":132,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom collections import OrderedDict\nfrom typing import TYPE_CHECKING, Any, Mapping, Optional, Union\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast\nfrom ...utils import logging\n\n\nif TYPE_CHECKING:\n from ...feature_extraction_utils import FeatureExtractionMixin\n from ...tokenization_utils_base import PreTrainedTokenizerBase\n from ...utils import TensorType\n\nA__ : Dict =\t\t\tlogging.get_logger(__name__)\n\nA__ : Dict =\t\t\t{\n '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''',\n}\n\n# fmt: off\nA__ : List[Any] =\t\t\t[\n 1, 2, 7, 8, 9, 1_0, 1_4, 2_5,\n 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,\n 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,\n 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,\n 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,\n 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,\n 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,\n 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,\n 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1\n]\nA__ : str =\t\t\t[\n 1, 2, 7, 8, 9, 1_0, 1_4, 2_5,\n 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,\n 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,\n 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,\n 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,\n 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,\n 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,\n 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,\n 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2\n]\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''whisper'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}\n def __init__( self\t\t: Union[str, Any] , __a\t\t: Dict=51865 , __a\t\t: int=80 , __a\t\t: int=6 , __a\t\t: Tuple=4 , __a\t\t: Any=6 , __a\t\t: str=4 , __a\t\t: Dict=1536 , __a\t\t: List[Any]=1536 , __a\t\t: List[Any]=0.0 , __a\t\t: int=0.0 , __a\t\t: Any=50257 , __a\t\t: List[str]=True , __a\t\t: List[Any]=True , __a\t\t: List[str]=\"gelu\" , __a\t\t: Union[str, Any]=256 , __a\t\t: List[str]=0.0 , __a\t\t: str=0.0 , __a\t\t: List[Any]=0.0 , __a\t\t: int=0.0_2 , __a\t\t: List[Any]=False , __a\t\t: List[str]=1500 , __a\t\t: Dict=448 , __a\t\t: Tuple=50256 , __a\t\t: List[str]=50256 , __a\t\t: Any=50256 , __a\t\t: Optional[int]=None , __a\t\t: Any=[220, 50256] , __a\t\t: Dict=False , __a\t\t: Dict=256 , __a\t\t: Dict=False , __a\t\t: Dict=0.0_5 , __a\t\t: Optional[int]=10 , __a\t\t: str=2 , __a\t\t: int=0.0 , __a\t\t: int=10 , __a\t\t: int=0 , __a\t\t: int=7 , **__a\t\t: Optional[Any] , ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = num_mel_bins\n __snake_case\t\t\t\t: str\t\t = d_model\n __snake_case\t\t\t\t: Dict\t\t = encoder_layers\n __snake_case\t\t\t\t: Tuple\t\t = encoder_attention_heads\n __snake_case\t\t\t\t: Dict\t\t = decoder_layers\n __snake_case\t\t\t\t: int\t\t = decoder_attention_heads\n __snake_case\t\t\t\t: List[Any]\t\t = decoder_ffn_dim\n __snake_case\t\t\t\t: List[Any]\t\t = encoder_ffn_dim\n __snake_case\t\t\t\t: Optional[Any]\t\t = dropout\n __snake_case\t\t\t\t: Tuple\t\t = attention_dropout\n __snake_case\t\t\t\t: str\t\t = activation_dropout\n __snake_case\t\t\t\t: Tuple\t\t = activation_function\n __snake_case\t\t\t\t: List[Any]\t\t = init_std\n __snake_case\t\t\t\t: Dict\t\t = encoder_layerdrop\n __snake_case\t\t\t\t: Tuple\t\t = decoder_layerdrop\n __snake_case\t\t\t\t: Dict\t\t = use_cache\n __snake_case\t\t\t\t: List[Any]\t\t = encoder_layers\n __snake_case\t\t\t\t: Union[str, Any]\t\t = scale_embedding # scale factor will be sqrt(d_model) if True\n __snake_case\t\t\t\t: Any\t\t = max_source_positions\n __snake_case\t\t\t\t: int\t\t = max_target_positions\n\n # Audio Classification-specific parameters. Feel free to ignore for other classes.\n __snake_case\t\t\t\t: Any\t\t = classifier_proj_size\n __snake_case\t\t\t\t: str\t\t = use_weighted_layer_sum\n\n # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779\n __snake_case\t\t\t\t: Optional[Any]\t\t = apply_spec_augment\n __snake_case\t\t\t\t: List[str]\t\t = mask_time_prob\n __snake_case\t\t\t\t: List[str]\t\t = mask_time_length\n __snake_case\t\t\t\t: Union[str, Any]\t\t = mask_time_min_masks\n __snake_case\t\t\t\t: Optional[int]\t\t = mask_feature_prob\n __snake_case\t\t\t\t: Union[str, Any]\t\t = mask_feature_length\n __snake_case\t\t\t\t: Union[str, Any]\t\t = mask_feature_min_masks\n\n __snake_case\t\t\t\t: Dict\t\t = median_filter_width\n\n super().__init__(\n pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @property\n def A_ ( self\t\t: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = OrderedDict(\n [\n ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),\n ] )\n if self.use_past:\n __snake_case\t\t\t\t: List[str]\t\t = {0: 'batch'}\n else:\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch', 1: 'decoder_sequence'}\n\n if self.use_past:\n self.fill_with_past_key_values_(__a , direction='inputs' )\n\n return common_inputs\n def A_ ( self\t\t: Optional[int] , __a\t\t: Union[\"PreTrainedTokenizerBase\", \"FeatureExtractionMixin\"] , __a\t\t: int = -1 , __a\t\t: int = -1 , __a\t\t: bool = False , __a\t\t: Optional[\"TensorType\"] = None , __a\t\t: int = 22050 , __a\t\t: float = 5.0 , __a\t\t: int = 220 , ) -> Mapping[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = OrderedDict()\n __snake_case\t\t\t\t: Any\t\t = OnnxConfig.generate_dummy_inputs(\n self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = encoder_inputs['input_features'].shape[2]\n __snake_case\t\t\t\t: Optional[Any]\t\t = encoder_sequence_length // 2 if self.use_past else seq_length\n\n __snake_case\t\t\t\t: List[Any]\t\t = super().generate_dummy_inputs(\n preprocessor.tokenizer , __a , __a , __a , __a )\n\n __snake_case\t\t\t\t: Any\t\t = encoder_inputs.pop('input_features' )\n __snake_case\t\t\t\t: Dict\t\t = decoder_inputs.pop('decoder_input_ids' )\n\n if \"past_key_values\" in decoder_inputs:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = decoder_inputs.pop('past_key_values' )\n\n return dummy_inputs\n\n\n\n\n\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> float:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 1e-3\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : str =\t\t\t'''Muhammad Umer Farooq'''\nA__ : int =\t\t\t'''MIT'''\nA__ : Optional[int] =\t\t\t'''1.0.0'''\nA__ : List[Any] =\t\t\t'''Muhammad Umer Farooq'''\nA__ : Optional[Any] =\t\t\t'''contact@muhammadumerfarooq.me'''\nA__ : Optional[Any] =\t\t\t'''Alpha'''\n\nimport re\nfrom html.parser import HTMLParser\nfrom urllib import parse\n\nimport requests\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Union[str, Any] , __a\t\t: str ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__()\n __snake_case\t\t\t\t: list[str]\t\t = []\n __snake_case\t\t\t\t: Dict\t\t = domain\n\n\n\n\n\n def A_ ( self\t\t: Dict , __a\t\t: str , __a\t\t: list[tuple[str, str | None]] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Only parse the 'anchor' tag.\n if tag == \"a\":\n # Check the list of defined attributes.\n for name, value in attrs:\n # If href is defined, and not empty nor # print it.\n if name == \"href\" and value != \"#\" and value != \"\":\n # If not already in urls.\n if value not in self.urls:\n __snake_case\t\t\t\t: Optional[Any]\t\t = parse.urljoin(self.domain , __a )\n self.urls.append(__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return \".\".join(get_sub_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t).split('.'\t\t\t\t\t\t\t)[-2:]\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return parse.urlparse(_UpperCAmelCase\t\t\t\t\t\t\t).netloc\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"https://github.com\"\t\t\t\t\t\t\t) -> list[str]:\n __snake_case\t\t\t\t: List[Any]\t\t = get_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Initialize the parser\n __snake_case\t\t\t\t: Tuple\t\t = Parser(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n try:\n # Open URL\n __snake_case\t\t\t\t: Any\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # pass the raw HTML to the parser to get links\n parser.feed(r.text\t\t\t\t\t\t\t)\n\n # Get links and loop through\n __snake_case\t\t\t\t: Dict\t\t = set()\n for link in parser.urls:\n # open URL.\n # read = requests.get(link)\n try:\n __snake_case\t\t\t\t: List[Any]\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Get the valid email.\n __snake_case\t\t\t\t: Optional[Any]\t\t = re.findall('[a-zA-Z0-9]+@' + domain\t\t\t\t,read.text\t\t\t\t\t\t\t)\n # If not in list then append it.\n for email in emails:\n valid_emails.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n except ValueError:\n pass\n except ValueError:\n raise SystemExit(1\t\t\t\t\t\t\t)\n\n # Finally return a sorted list of email addresses with no duplicates.\n return sorted(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Tuple =\t\t\temails_from_url('''https://github.com''')\n print(F\"\"\"{len(emails)} emails found:\"\"\")\n print('''\\n'''.join(sorted(emails)))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":133,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport pandas as pd\nfrom matplotlib import pyplot as plt\nfrom sklearn.linear_model import LinearRegression\n\n# Splitting the dataset into the Training set and Test set\nfrom sklearn.model_selection import train_test_split\n\n# Fitting Polynomial Regression to the dataset\nfrom sklearn.preprocessing import PolynomialFeatures\n\n# Importing the dataset\nA__ : Optional[int] =\t\t\tpd.read_csv(\n '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/'''\n '''position_salaries.csv'''\n)\nA__ : Optional[int] =\t\t\tdataset.iloc[:, 1:2].values\nA__ : Any =\t\t\tdataset.iloc[:, 2].values\n\n\nA__ ,\t\t\t\t\tA__ ,\t\t\t\t\tA__ ,\t\t\t\t\tA__ : Dict =\t\t\ttrain_test_split(X, y, test_size=0.2, random_state=0)\n\n\nA__ : str =\t\t\tPolynomialFeatures(degree=4)\nA__ : Optional[Any] =\t\t\tpoly_reg.fit_transform(X)\nA__ : Dict =\t\t\tLinearRegression()\npol_reg.fit(X_poly, y)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Dict:\n plt.scatter(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,color='red'\t\t\t\t\t\t\t)\n plt.plot(_UpperCAmelCase\t\t\t\t,pol_reg.predict(poly_reg.fit_transform(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,color='blue'\t\t\t\t\t\t\t)\n plt.title('Truth or Bluff (Linear Regression)'\t\t\t\t\t\t\t)\n plt.xlabel('Position level'\t\t\t\t\t\t\t)\n plt.ylabel('Salary'\t\t\t\t\t\t\t)\n plt.show()\n\n\nif __name__ == \"__main__\":\n viz_polymonial()\n\n # Predicting a new result with Polymonial Regression\n pol_reg.predict(poly_reg.fit_transform([[5.5]]))\n # output should be 132148.43750003\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nimport logging\nimport os\nimport shutil\nimport sys\nimport tempfile\nimport unittest\nfrom unittest import mock\n\nimport torch\nfrom accelerate.utils import write_basic_config\n\nfrom transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device\nfrom transformers.utils import is_apex_available\n\n\nlogging.basicConfig(level=logging.DEBUG)\n\nA__ : Dict =\t\t\tlogging.getLogger()\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[Any]\t\t = argparse.ArgumentParser()\n parser.add_argument('-f'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = parser.parse_args()\n return args.f\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = {}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = os.path.join(_UpperCAmelCase\t\t\t\t,'all_results.json'\t\t\t\t\t\t\t)\n if os.path.exists(_UpperCAmelCase\t\t\t\t\t\t\t):\n with open(_UpperCAmelCase\t\t\t\t,'r'\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: List[str]\t\t = json.load(_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''can\\'t find {path}'''\t\t\t\t\t\t\t)\n return results\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.cuda.is_available() and torch_device == 'cuda'\n return is_using_cuda and is_apex_available()\n\n\nA__ : str =\t\t\tlogging.StreamHandler(sys.stdout)\nlogger.addHandler(stream_handler)\n\n\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @classmethod\n def A_ ( cls\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU\n __snake_case\t\t\t\t: Optional[int]\t\t = tempfile.mkdtemp()\n __snake_case\t\t\t\t: Dict\t\t = os.path.join(cls.tmpdir , 'default_config.yml' )\n write_basic_config(save_location=cls.configPath )\n __snake_case\t\t\t\t: List[Any]\t\t = ['accelerate', 'launch', '--config_file', cls.configPath]\n @classmethod\n def A_ ( cls\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(cls.tmpdir )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[Any]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: List[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if torch.cuda.device_count() > 1:\n # Skipping because there are not enough batches to train the model + would need a drop_last to work.\n return\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 100 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 42 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu\n __snake_case\t\t\t\t: Any\t\t = 7 if get_gpu_count() > 1 else 2\n\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertLess(result['train_loss'] , 0.5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) )\n @unittest.skip(reason='Fix me @muellerzr' )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Tuple\t\t = f'''\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.\n self.assertGreaterEqual(result['eval_f1'] , 28 )\n self.assertGreaterEqual(result['eval_exact'] , 28 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Any\t\t = f'''\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.8 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: int\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_rouge1'] , 10 )\n self.assertGreaterEqual(result['eval_rouge2'] , 2 )\n self.assertGreaterEqual(result['eval_rougeL'] , 7 )\n self.assertGreaterEqual(result['eval_rougeLsum'] , 7 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_bleu'] , 30 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) )\n @slow\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = logging.StreamHandler(sys.stdout )\n logger.addHandler(__a )\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 )\n\n\n\n\n\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Optional[int]\t\t = get_results(__a )\n # The base model scores a 25%\n self.assertGreaterEqual(result['eval_accuracy'] , 0.6 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":134,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ..utils import DummyObject, requires_backends\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: Union[str, Any] , *__a\t\t: List[str] , **__a\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: Tuple , *__a\t\t: List[str] , **__a\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: Any , *__a\t\t: List[str] , **__a\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: int , *__a\t\t: int , **__a\t\t: int ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: Any , *__a\t\t: Dict , **__a\t\t: List[str] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: int , *__a\t\t: int , **__a\t\t: List[Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: Any , *__a\t\t: str , **__a\t\t: int ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: Optional[int] , *__a\t\t: Union[str, Any] , **__a\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: Optional[int] , *__a\t\t: List[Any] , **__a\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: Dict , *__a\t\t: Dict , **__a\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: List[Any] , *__a\t\t: int , **__a\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: int , *__a\t\t: List[Any] , **__a\t\t: List[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: Optional[int] , *__a\t\t: str , **__a\t\t: List[str] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: Tuple , *__a\t\t: Optional[int] , **__a\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: Dict , *__a\t\t: Optional[Any] , **__a\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( metaclass=SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''torch''', '''transformers''', '''onnx''']\n def __init__( self\t\t: Dict , *__a\t\t: Union[str, Any] , **__a\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['torch', 'transformers', 'onnx'] )\n @classmethod\n def A_ ( cls\t\t: List[Any] , *__a\t\t: Dict , **__a\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n\n\n @classmethod\n def A_ ( cls\t\t: Tuple , *__a\t\t: int , **__a\t\t: Any ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(cls , ['torch', 'transformers', 'onnx'] )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n __snake_case\t\t\t\t: Optional[Any]\t\t = [True] * n\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n __snake_case\t\t\t\t: Dict\t\t = False\n __snake_case\t\t\t\t: List[Any]\t\t = True\n\n for i in range(3\t\t\t\t,int(n**0.5 + 1\t\t\t\t\t\t\t)\t\t\t\t,2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = i * 2\n while index < n:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n __snake_case\t\t\t\t: int\t\t = index + i\n\n __snake_case\t\t\t\t: Dict\t\t = [2]\n\n for i in range(3\t\t\t\t,_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t):\n if is_prime[i]:\n primes.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return primes\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 99_99_66_66_33_33\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: List[Any]\t\t = math.floor(math.sqrt(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) + 1_00\n __snake_case\t\t\t\t: Tuple\t\t = prime_sieve(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index]\n\n while (last_prime**2) <= limit:\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index + 1]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = last_prime**2\n __snake_case\t\t\t\t: Dict\t\t = next_prime**2\n\n # Get numbers divisible by lps(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = lower_bound + last_prime\n while upper_bound > current <= limit:\n matches_sum += current\n current += last_prime\n\n # Reset the upper_bound\n while (upper_bound - next_prime) > limit:\n upper_bound -= next_prime\n\n # Add the numbers divisible by ups(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = upper_bound - next_prime\n while current > lower_bound:\n matches_sum += current\n current -= next_prime\n\n # Remove the numbers divisible by both ups and lps\n __snake_case\t\t\t\t: List[str]\t\t = 0\n while upper_bound > current <= limit:\n if current <= lower_bound:\n # Increment the current number\n current += last_prime * next_prime\n continue\n\n if current > limit:\n break\n\n # Remove twice since it was added by both ups and lps\n matches_sum -= current * 2\n\n # Increment the current number\n current += last_prime * next_prime\n\n # Setup for next pair\n __snake_case\t\t\t\t: Dict\t\t = next_prime\n prime_index += 1\n\n return matches_sum\n\n\nif __name__ == \"__main__\":\n print(solution())\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":135,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom dataclasses import dataclass\nfrom enum import Enum\nfrom typing import List, Optional, Union\n\nimport numpy as np\nimport PIL\nfrom PIL import Image\n\nfrom ...utils import BaseOutput, is_torch_available, is_transformers_available\n\n\n\n@dataclass\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t42\n A__\t\t\t\t\t\t\t=\t\t\t\t42\n\n\nif is_transformers_available() and is_torch_available():\n from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : float\t\t\t\t,_UpperCAmelCase : float\t\t\t\t\t\t\t) -> float:\n return price * (1 + tax_rate)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{price_plus_tax(1_0_0, 0.25) = }\"\"\")\n print(F\"\"\"{price_plus_tax(1_25.50, 0.05) = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":136,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import List, Optional, Union\n\nimport numpy as np\nimport tensorflow as tf\n\nfrom .utils import logging\n\n\nA__ : Optional[int] =\t\t\tlogging.get_logger(__name__)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[tf.Tensor, np.ndarray]\t\t\t\t\t\t\t) -> List[int]:\n if isinstance(_UpperCAmelCase\t\t\t\t,np.ndarray\t\t\t\t\t\t\t):\n return list(tensor.shape\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = tf.shape(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if tensor.shape == tf.TensorShape(_UpperCAmelCase\t\t\t\t\t\t\t):\n return dynamic\n\n __snake_case\t\t\t\t: int\t\t = tensor.shape.as_list()\n\n return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCAmelCase\t\t\t\t\t\t\t)]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : tf.Tensor\t\t\t\t,_UpperCAmelCase : Optional[int] = None\t\t\t\t,_UpperCAmelCase : Optional[str] = None\t\t\t\t\t\t\t) -> tf.Tensor:\n return tf.nn.softmax(logits=logits + 1E-9\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t,name=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : List[Any]\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : str=1E-5\t\t\t\t,_UpperCAmelCase : Union[str, Any]=-1\t\t\t\t\t\t\t) -> str:\n # This is a very simplified functional layernorm, designed to duplicate\n # the functionality of PyTorch nn.functional.layer_norm when this is needed to port\n # models in Transformers.\n\n if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.'\t\t\t\t\t\t\t)\n\n # Get mean and variance on the axis to be normalized\n __snake_case , __snake_case\t\t\t\t: Union[str, Any]\t\t = tf.nn.moments(_UpperCAmelCase\t\t\t\t,axes=[axis]\t\t\t\t,keepdims=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if axis != -1:\n # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions\n # on every dimension except axis\n __snake_case\t\t\t\t: Optional[Any]\t\t = [1] * inputs.shape.rank\n __snake_case\t\t\t\t: str\t\t = shape_list(_UpperCAmelCase\t\t\t\t\t\t\t)[axis]\n __snake_case\t\t\t\t: Any\t\t = tf.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = tf.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Compute layer normalization using the batch_normalization\n # function.\n __snake_case\t\t\t\t: int\t\t = tf.nn.batch_normalization(\n _UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,offset=_UpperCAmelCase\t\t\t\t,scale=_UpperCAmelCase\t\t\t\t,variance_epsilon=_UpperCAmelCase\t\t\t\t,)\n return outputs\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : Dict=0\t\t\t\t,_UpperCAmelCase : int=-1\t\t\t\t\t\t\t) -> Dict:\n # Replicates the behavior of torch.flatten in TF\n\n # If end_dim or start_dim is negative, count them from the end\n if end_dim < 0:\n end_dim += input.shape.rank\n if start_dim < 0:\n start_dim += input.shape.rank\n\n if start_dim == end_dim:\n return input\n\n __snake_case\t\t\t\t: Any\t\t = tf.shape(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Dict\t\t = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]]\t\t\t\t,axis=0\t\t\t\t\t\t\t)\n return tf.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : tf.Tensor\t\t\t\t\t\t\t) -> tf.Tensor:\n if not isinstance(_UpperCAmelCase\t\t\t\t,tf.Tensor\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t) # Catches stray NumPy inputs\n if encoder_attention_mask.shape.rank == 3:\n __snake_case\t\t\t\t: Dict\t\t = encoder_attention_mask[:, None, :, :]\n if encoder_attention_mask.shape.rank == 2:\n __snake_case\t\t\t\t: List[str]\t\t = encoder_attention_mask[:, None, None, :]\n # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition\n # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow\n # /transformer/transformer_layers.py#L270\n # encoder_extended_attention_mask = (encoder_extended_attention_mask ==\n # encoder_extended_attention_mask.transpose(-1, -2))\n __snake_case\t\t\t\t: Any\t\t = (\n tf.cast(1\t\t\t\t,encoder_attention_mask.dtype\t\t\t\t\t\t\t) - encoder_extended_attention_mask\n ) * encoder_extended_attention_mask.dtype.min\n\n return encoder_extended_attention_mask\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : tf.Tensor\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : str = \"input_ids\"\t\t\t\t\t\t\t) -> None:\n tf.debugging.assert_less(\n _UpperCAmelCase\t\t\t\t,tf.cast(_UpperCAmelCase\t\t\t\t,dtype=tensor.dtype\t\t\t\t\t\t\t)\t\t\t\t,message=(\n f'''The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCAmelCase\t\t\t\t\t\t\t)}) must be smaller than the embedding '''\n f'''layer\\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''\n )\t\t\t\t,)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 6_45_12\n # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`\n # because in that case even chunking the array would not make the saving\n # possible.\n __snake_case\t\t\t\t: Any\t\t = [x for x in data if len(_UpperCAmelCase\t\t\t\t\t\t\t) > HDF5_OBJECT_HEADER_LIMIT]\n\n # Expecting this to never be true.\n if bad_attributes:\n raise RuntimeError(\n 'The following attributes cannot be saved to HDF5 file because '\n f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''\n f'''bytes: {bad_attributes}'''\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Tuple\t\t = np.asarray(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = 1\n __snake_case\t\t\t\t: List[str]\t\t = np.array_split(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # This will never loop forever thanks to the test above.\n while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data\t\t\t\t\t\t\t):\n num_chunks += 1\n __snake_case\t\t\t\t: List[str]\t\t = np.array_split(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if num_chunks > 1:\n for chunk_id, chunk_data in enumerate(_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Dict\t\t = chunk_data\n else:\n __snake_case\t\t\t\t: Optional[int]\t\t = data\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Optional[Any]:\n if name in group.attrs:\n __snake_case\t\t\t\t: List[str]\t\t = [n.decode('utf8'\t\t\t\t\t\t\t) if hasattr(_UpperCAmelCase\t\t\t\t,'decode'\t\t\t\t\t\t\t) else n for n in group.attrs[name]]\n else:\n __snake_case\t\t\t\t: int\t\t = []\n __snake_case\t\t\t\t: Tuple\t\t = 0\n while \"%s%d\" % (name, chunk_id) in group.attrs:\n data.extend(\n [n.decode('utf8'\t\t\t\t\t\t\t) if hasattr(_UpperCAmelCase\t\t\t\t,'decode'\t\t\t\t\t\t\t) else n for n in group.attrs['%s%d' % (name, chunk_id)]]\t\t\t\t\t\t\t)\n chunk_id += 1\n return data\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n\n def _expand_single_ad_tensor(_UpperCAmelCase : Tuple\t\t\t\t\t\t\t):\n if isinstance(_UpperCAmelCase\t\t\t\t,tf.Tensor\t\t\t\t\t\t\t) and t.shape.rank == 1:\n return tf.expand_dims(_UpperCAmelCase\t\t\t\t,axis=-1\t\t\t\t\t\t\t)\n return t\n\n return tf.nest.map_structure(_expand_single_ad_tensor\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom tempfile import TemporaryDirectory\nfrom unittest import TestCase\nfrom unittest.mock import MagicMock, patch\n\nfrom transformers import AutoModel, TFAutoModel\nfrom transformers.onnx import FeaturesManager\nfrom transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch\n\n\n\n@require_torch\n@require_tf\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = SMALL_MODEL_IDENTIFIER\n __snake_case\t\t\t\t: str\t\t = 'pt'\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'tf'\n def A_ ( self\t\t: Dict , __a\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = AutoModel.from_pretrained(self.test_model )\n model_pt.save_pretrained(__a )\n def A_ ( self\t\t: Any , __a\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = TFAutoModel.from_pretrained(self.test_model , from_pt=__a )\n model_tf.save_pretrained(__a )\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = 'mock_framework'\n\n # Framework provided - return whatever the user provides\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model , __a )\n self.assertEqual(__a , __a )\n\n # Local checkpoint and framework provided - return provided framework\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_pt )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_tf )\n\n # Invalid local checkpoint\n with TemporaryDirectory() as local_invalid_ckpt:\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Optional[int]\t\t = FeaturesManager.determine_framework(__a )\n\n\n\n\n\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ):\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # PyTorch not in environment -> use TensorFlow\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_tf )\n\n # Both in environment -> use PyTorch\n __snake_case\t\t\t\t: Optional[Any]\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # Both not in environment -> raise error\n __snake_case\t\t\t\t: str\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(self.test_model )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":137,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nimport os\nimport shutil\nimport tempfile\nimport unittest\n\nimport numpy as np\n\nfrom transformers import BertTokenizerFast\nfrom transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer\nfrom transformers.testing_utils import require_tokenizers, require_vision\nfrom transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor\n\n\n\n@require_tokenizers\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: int ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = tempfile.mkdtemp()\n\n # fmt: off\n __snake_case\t\t\t\t: List[str]\t\t = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']\n # fmt: on\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n\n __snake_case\t\t\t\t: List[str]\t\t = {\n 'do_resize': True,\n 'size': {'height': 18, 'width': 18},\n 'do_normalize': True,\n 'image_mean': [0.5, 0.5, 0.5],\n 'image_std': [0.5, 0.5, 0.5],\n }\n __snake_case\t\t\t\t: Optional[Any]\t\t = os.path.join(self.tmpdirname , __a )\n with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:\n json.dump(__a , __a )\n def A_ ( self\t\t: Optional[int] , **__a\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return BertTokenizer.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: int , **__a\t\t: Dict ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(self.tmpdirname )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]\n\n __snake_case\t\t\t\t: List[str]\t\t = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]\n\n return image_inputs\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n processor.save_pretrained(self.tmpdirname )\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = VisionTextDualEncoderProcessor(\n tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )\n processor.save_pretrained(self.tmpdirname )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor(do_normalize=__a , padding_value=1.0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor.from_pretrained(\n self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: str\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(__a , return_tensors='np' )\n __snake_case\t\t\t\t: List[str]\t\t = processor(images=__a , return_tensors='np' )\n\n for key in input_feat_extract.keys():\n self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = 'lower newer'\n\n __snake_case\t\t\t\t: Dict\t\t = processor(text=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer(__a )\n\n for key in encoded_tok.keys():\n self.assertListEqual(encoded_tok[key] , encoded_processor[key] )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: int\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )\n\n # test if it raises when no input is passed\n with self.assertRaises(__a ):\n processor()\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Any\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]\n\n __snake_case\t\t\t\t: int\t\t = processor.batch_decode(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.batch_decode(__a )\n\n self.assertListEqual(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Dict\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Tuple\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport unittest\n\nfrom transformers import BatchEncoding\nfrom transformers.models.bert.tokenization_bert import (\n BasicTokenizer,\n WordpieceTokenizer,\n _is_control,\n _is_punctuation,\n _is_whitespace,\n)\nfrom transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer\nfrom transformers.testing_utils import require_torch, slow\n\nfrom ...test_tokenization_common import TokenizerTesterMixin\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tProphetNetTokenizer\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: Optional[int] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().setUp()\n\n __snake_case\t\t\t\t: Dict\t\t = [\n '[UNK]',\n '[CLS]',\n '[SEP]',\n '[PAD]',\n '[MASK]',\n 'want',\n '##want',\n '##ed',\n 'wa',\n 'un',\n 'runn',\n '##ing',\n ',',\n 'low',\n 'lowest',\n ]\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n def A_ ( self\t\t: int , __a\t\t: Union[str, Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = 'UNwant\\u00E9d,running'\n __snake_case\t\t\t\t: List[str]\t\t = 'unwanted, running'\n return input_text, output_text\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.tokenizer_class(self.vocab_file )\n\n __snake_case\t\t\t\t: List[str]\t\t = tokenizer.tokenize('UNwant\\u00E9d,running' )\n self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] )\n self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = BasicTokenizer()\n\n self.assertListEqual(tokenizer.tokenize('ah\\u535A\\u63A8zz' ) , ['ah', '\\u535A', '\\u63A8', 'zz'] )\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['h\\u00E9llo'] )\n def A_ ( self\t\t: int ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Optional[int] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )\n def A_ ( self\t\t: Optional[int] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']\n\n __snake_case\t\t\t\t: List[Any]\t\t = {}\n for i, token in enumerate(__a ):\n __snake_case\t\t\t\t: List[str]\t\t = i\n __snake_case\t\t\t\t: Any\t\t = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' )\n\n self.assertListEqual(tokenizer.tokenize('' ) , [] )\n\n self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )\n\n self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )\n @require_torch\n def A_ ( self\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: int\t\t = ['A long paragraph for summarization.', 'Another paragraph for summarization.']\n __snake_case\t\t\t\t: str\t\t = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = tokenizer(__a , padding=__a , return_tensors='pt' )\n self.assertIsInstance(__a , __a )\n __snake_case\t\t\t\t: int\t\t = list(batch.input_ids.numpy()[0] )\n self.assertListEqual(__a , __a )\n\n self.assertEqual((2, 9) , batch.input_ids.shape )\n self.assertEqual((2, 9) , batch.attention_mask.shape )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_whitespace(' ' ) )\n self.assertTrue(_is_whitespace('\\t' ) )\n self.assertTrue(_is_whitespace('\\r' ) )\n self.assertTrue(_is_whitespace('\\n' ) )\n self.assertTrue(_is_whitespace('\\u00A0' ) )\n\n self.assertFalse(_is_whitespace('A' ) )\n self.assertFalse(_is_whitespace('-' ) )\n def A_ ( self\t\t: Dict ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_control('\\u0005' ) )\n\n self.assertFalse(_is_control('A' ) )\n self.assertFalse(_is_control(' ' ) )\n self.assertFalse(_is_control('\\t' ) )\n self.assertFalse(_is_control('\\r' ) )\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_punctuation('-' ) )\n self.assertTrue(_is_punctuation('$' ) )\n self.assertTrue(_is_punctuation('`' ) )\n self.assertTrue(_is_punctuation('.' ) )\n\n self.assertFalse(_is_punctuation('A' ) )\n self.assertFalse(_is_punctuation(' ' ) )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('sequence builders' , add_special_tokens=__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a , __a )\n\n assert encoded_sentence == text + [102]\n assert encoded_pair == text + [102] + text_a + [102]\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":138,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nfrom typing import TYPE_CHECKING, List, Optional, Tuple\n\nfrom tokenizers import pre_tokenizers\n\nfrom ...tokenization_utils_fast import PreTrainedTokenizerFast\nfrom ...utils import logging\n\n\nif TYPE_CHECKING:\n from transformers.pipelines.conversational import Conversation\n\n\nA__ : Optional[Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : str =\t\t\t{'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}\n\nA__ : Union[str, Any] =\t\t\t{\n '''tokenizer_file''': {\n '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''',\n },\n}\n\nA__ : Any =\t\t\t{\n '''gpt-neox-20b''': 2_0_4_8,\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\t['''input_ids''', '''attention_mask''']\n def __init__( self\t\t: Union[str, Any] , __a\t\t: List[str]=None , __a\t\t: List[str]=None , __a\t\t: str=None , __a\t\t: Optional[int]=\"<|endoftext|>\" , __a\t\t: Any=\"<|endoftext|>\" , __a\t\t: Tuple=\"<|endoftext|>\" , __a\t\t: str=False , **__a\t\t: Union[str, Any] , ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )\n if pre_tok_state.get('add_prefix_space' , __a ) != add_prefix_space:\n __snake_case\t\t\t\t: Any\t\t = getattr(__a , pre_tok_state.pop('type' ) )\n __snake_case\t\t\t\t: int\t\t = add_prefix_space\n __snake_case\t\t\t\t: Optional[Any]\t\t = pre_tok_class(**__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = add_prefix_space\n def A_ ( self\t\t: List[str] , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self._tokenizer.model.save(__a , name=__a )\n return tuple(__a )\n\n\n\n\n\n def A_ ( self\t\t: str , __a\t\t: \"Conversation\" ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n for is_user, text in conversation.iter_texts():\n input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )\n\n if len(__a ) > self.model_max_length:\n __snake_case\t\t\t\t: Tuple\t\t = input_ids[-self.model_max_length :]\n return input_ids\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available\n\n\nA__ : Optional[Any] =\t\t\t{\n '''configuration_nllb_moe''': [\n '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''NllbMoeConfig''',\n ]\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Dict =\t\t\t[\n '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''NllbMoeForConditionalGeneration''',\n '''NllbMoeModel''',\n '''NllbMoePreTrainedModel''',\n '''NllbMoeTop2Router''',\n '''NllbMoeSparseMLP''',\n ]\n\n\nif TYPE_CHECKING:\n from .configuration_nllb_moe import (\n NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,\n NllbMoeConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_nllb_moe import (\n NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,\n NllbMoeForConditionalGeneration,\n NllbMoeModel,\n NllbMoePreTrainedModel,\n NllbMoeSparseMLP,\n NllbMoeTopaRouter,\n )\n\n\nelse:\n import sys\n\n A__ : str =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":139,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport sys\nimport tempfile\nimport unittest\nimport unittest.mock as mock\nfrom pathlib import Path\n\nfrom huggingface_hub import HfFolder, delete_repo\nfrom huggingface_hub.file_download import http_get\nfrom requests.exceptions import HTTPError\n\nfrom transformers import (\n AlbertTokenizer,\n AutoTokenizer,\n BertTokenizer,\n BertTokenizerFast,\n GPTaTokenizerFast,\n is_tokenizers_available,\n)\nfrom transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers\nfrom transformers.tokenization_utils import Trie\n\n\nsys.path.append(str(Path(__file__).parent.parent / '''utils'''))\n\nfrom test_module.custom_tokenization import CustomTokenizer # noqa E402\n\n\nif is_tokenizers_available():\n from test_module.custom_tokenization_fast import CustomTokenizerFast\n\n\n\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Optional[Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # A mock response for an HTTP head request to emulate server down\n __snake_case\t\t\t\t: List[Any]\t\t = mock.Mock()\n __snake_case\t\t\t\t: Any\t\t = 500\n __snake_case\t\t\t\t: Optional[int]\t\t = {}\n __snake_case\t\t\t\t: Optional[int]\t\t = HTTPError\n __snake_case\t\t\t\t: List[str]\t\t = {}\n\n # Download this model to make sure it's in the cache.\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )\n\n # Under the mock environment we get a 500 error when trying to reach the tokenizer.\n with mock.patch('requests.Session.request' , return_value=__a ) as mock_head:\n __snake_case\t\t\t\t: Tuple\t\t = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )\n # This check we did call the fake head request\n mock_head.assert_called()\n @require_tokenizers\n def A_ ( self\t\t: List[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # A mock response for an HTTP head request to emulate server down\n __snake_case\t\t\t\t: Union[str, Any]\t\t = mock.Mock()\n __snake_case\t\t\t\t: Tuple\t\t = 500\n __snake_case\t\t\t\t: int\t\t = {}\n __snake_case\t\t\t\t: List[str]\t\t = HTTPError\n __snake_case\t\t\t\t: List[Any]\t\t = {}\n\n # Download this model to make sure it's in the cache.\n __snake_case\t\t\t\t: str\t\t = GPTaTokenizerFast.from_pretrained('gpt2' )\n\n # Under the mock environment we get a 500 error when trying to reach the tokenizer.\n with mock.patch('requests.Session.request' , return_value=__a ) as mock_head:\n __snake_case\t\t\t\t: Dict\t\t = GPTaTokenizerFast.from_pretrained('gpt2' )\n # This check we did call the fake head request\n mock_head.assert_called()\n def A_ ( self\t\t: List[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n # This test is for deprecated behavior and can be removed in v5\n try:\n __snake_case\t\t\t\t: Optional[int]\t\t = tempfile.mktemp()\n with open(__a , 'wb' ) as f:\n http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , __a )\n\n __snake_case\t\t\t\t: Any\t\t = AlbertTokenizer.from_pretrained(__a )\n finally:\n os.remove(__a )\n\n # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in\n # the current folder and have the right name.\n if os.path.isfile('tokenizer.json' ):\n # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.\n return\n try:\n with open('tokenizer.json' , 'wb' ) as f:\n http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , __a )\n __snake_case\t\t\t\t: Optional[int]\t\t = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )\n # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000\n self.assertEqual(tokenizer.vocab_size , 1000 )\n # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.\n\n finally:\n os.remove('tokenizer.json' )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # This test is for deprecated behavior and can be removed in v5\n __snake_case\t\t\t\t: int\t\t = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )\n\n\n\n@is_staging_test\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']\n @classmethod\n def A_ ( cls\t\t: int ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = TOKEN\n HfFolder.save_token(__a )\n @classmethod\n def A_ ( cls\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n try:\n delete_repo(token=cls._token , repo_id='test-tokenizer' )\n except HTTPError:\n pass\n\n try:\n delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )\n except HTTPError:\n pass\n\n try:\n delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )\n except HTTPError:\n pass\n def A_ ( self\t\t: List[Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n with tempfile.TemporaryDirectory() as tmp_dir:\n __snake_case\t\t\t\t: Optional[Any]\t\t = os.path.join(__a , 'vocab.txt' )\n with open(__a , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in self.vocab_tokens] ) )\n __snake_case\t\t\t\t: int\t\t = BertTokenizer(__a )\n\n tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )\n self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )\n\n # Reset repo\n delete_repo(token=self._token , repo_id='test-tokenizer' )\n\n # Push to hub via save_pretrained\n with tempfile.TemporaryDirectory() as tmp_dir:\n tokenizer.save_pretrained(__a , repo_id='test-tokenizer' , push_to_hub=__a , use_auth_token=self._token )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )\n self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n with tempfile.TemporaryDirectory() as tmp_dir:\n __snake_case\t\t\t\t: str\t\t = os.path.join(__a , 'vocab.txt' )\n with open(__a , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in self.vocab_tokens] ) )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BertTokenizer(__a )\n\n tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )\n __snake_case\t\t\t\t: List[str]\t\t = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )\n self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )\n\n # Reset repo\n delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )\n\n # Push to hub via save_pretrained\n with tempfile.TemporaryDirectory() as tmp_dir:\n tokenizer.save_pretrained(\n __a , repo_id='valid_org/test-tokenizer-org' , push_to_hub=__a , use_auth_token=self._token )\n\n __snake_case\t\t\t\t: Dict\t\t = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )\n self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )\n\n\n\n\n\n @require_tokenizers\n def A_ ( self\t\t: Optional[Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n CustomTokenizer.register_for_auto_class()\n with tempfile.TemporaryDirectory() as tmp_dir:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = os.path.join(__a , 'vocab.txt' )\n with open(__a , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in self.vocab_tokens] ) )\n __snake_case\t\t\t\t: Optional[Any]\t\t = CustomTokenizer(__a )\n\n # No fast custom tokenizer\n tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__a )\n # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module\n self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )\n\n # Fast and slow custom tokenizer\n CustomTokenizerFast.register_for_auto_class()\n with tempfile.TemporaryDirectory() as tmp_dir:\n __snake_case\t\t\t\t: Dict\t\t = os.path.join(__a , 'vocab.txt' )\n with open(__a , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in self.vocab_tokens] ) )\n\n __snake_case\t\t\t\t: Dict\t\t = BertTokenizerFast.from_pretrained(__a )\n bert_tokenizer.save_pretrained(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = CustomTokenizerFast.from_pretrained(__a )\n\n tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__a )\n # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module\n self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )\n __snake_case\t\t\t\t: int\t\t = AutoTokenizer.from_pretrained(\n f'''{USER}/test-dynamic-tokenizer''' , use_fast=__a , trust_remote_code=__a )\n # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module\n self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = Trie()\n trie.add('Hello 友達' )\n self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )\n trie.add('Hello' )\n trie.data\n self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = Trie()\n self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )\n trie.add('[CLS]' )\n trie.add('extra_id_1' )\n trie.add('extra_id_100' )\n self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )\n def A_ ( self\t\t: int ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = Trie()\n trie.add('A' )\n self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )\n self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )\n def A_ ( self\t\t: List[Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Trie()\n trie.add('TOKEN]' )\n trie.add('[SPECIAL_TOKEN]' )\n self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )\n def A_ ( self\t\t: str ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Trie()\n trie.add('A' )\n trie.add('P' )\n trie.add('[SPECIAL_TOKEN]' )\n self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )\n def A_ ( self\t\t: Dict ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = Trie()\n trie.add('AB' )\n trie.add('B' )\n trie.add('C' )\n self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = Trie()\n trie.add('ABC' )\n trie.add('B' )\n trie.add('CD' )\n self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )\n\n\n\n\n\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Even if the offsets are wrong, we necessarily output correct string\n # parts.\n __snake_case\t\t\t\t: Optional[Any]\t\t = Trie()\n __snake_case\t\t\t\t: Dict\t\t = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )\n self.assertEqual(__a , ['AB', 'C'] )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # bit count represents no. of bits in the gray code\n if bit_count < 0:\n raise ValueError('The given input must be positive'\t\t\t\t\t\t\t)\n\n # get the generated string sequence\n __snake_case\t\t\t\t: Optional[Any]\t\t = gray_code_sequence_string(_UpperCAmelCase\t\t\t\t\t\t\t)\n #\n # convert them to integers\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = int(sequence[i]\t\t\t\t,2\t\t\t\t\t\t\t)\n\n return sequence\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # The approach is a recursive one\n # Base case achieved when either n = 0 or n=1\n if bit_count == 0:\n return [\"0\"]\n\n if bit_count == 1:\n return [\"0\", \"1\"]\n\n __snake_case\t\t\t\t: Dict\t\t = 1 << bit_count # defines the length of the sequence\n # 1<< n is equivalent to 2^n\n\n # recursive answer will generate answer for n-1 bits\n __snake_case\t\t\t\t: Dict\t\t = gray_code_sequence_string(bit_count - 1\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = []\n\n # append 0 to first half of the smaller sequence generated\n for i in range(seq_len // 2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: str\t\t = '0' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # append 1 to second half ... start from the end of the list\n for i in reversed(range(seq_len // 2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = '1' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return sequence\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":140,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\n# Copyright 2023 The HuggingFace Inc. team. All rights reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\nfrom typing import TYPE_CHECKING\n\nfrom ..models.auto import AutoModelForVisionaSeq\nfrom ..utils import requires_backends\nfrom .base import PipelineTool\n\n\nif TYPE_CHECKING:\n from PIL import Image\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''Salesforce/blip-image-captioning-base'''\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n '''This is a tool that generates a description of an image. It takes an input named `image` which should be the '''\n '''image to caption, and returns a text that contains the description in English.'''\n )\n A__\t\t\t\t\t\t\t=\t\t\t\t'''image_captioner'''\n A__\t\t\t\t\t\t\t=\t\t\t\tAutoModelForVisionaSeq\n\n A__\t\t\t\t\t\t\t=\t\t\t\t['''image''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''text''']\n def __init__( self\t\t: Optional[Any] , *__a\t\t: List[Any] , **__a\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n requires_backends(self , ['vision'] )\n super().__init__(*__a , **__a )\n def A_ ( self\t\t: Optional[Any] , __a\t\t: \"Image\" ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.pre_processor(images=__a , return_tensors='pt' )\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Union[str, Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.model.generate(**__a )\n\n\n\n\n\n def A_ ( self\t\t: Any , __a\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.pre_processor.batch_decode(__a , skip_special_tokens=__a )[0].strip()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nimport os\nimport shutil\nimport tempfile\nimport unittest\n\nimport numpy as np\n\nfrom transformers import BertTokenizerFast\nfrom transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer\nfrom transformers.testing_utils import require_tokenizers, require_vision\nfrom transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor\n\n\n\n@require_tokenizers\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: int ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = tempfile.mkdtemp()\n\n # fmt: off\n __snake_case\t\t\t\t: List[str]\t\t = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']\n # fmt: on\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n\n __snake_case\t\t\t\t: List[str]\t\t = {\n 'do_resize': True,\n 'size': {'height': 18, 'width': 18},\n 'do_normalize': True,\n 'image_mean': [0.5, 0.5, 0.5],\n 'image_std': [0.5, 0.5, 0.5],\n }\n __snake_case\t\t\t\t: Optional[Any]\t\t = os.path.join(self.tmpdirname , __a )\n with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:\n json.dump(__a , __a )\n def A_ ( self\t\t: Optional[int] , **__a\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return BertTokenizer.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: int , **__a\t\t: Dict ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(self.tmpdirname )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]\n\n __snake_case\t\t\t\t: List[str]\t\t = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]\n\n return image_inputs\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n processor.save_pretrained(self.tmpdirname )\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = VisionTextDualEncoderProcessor(\n tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )\n processor.save_pretrained(self.tmpdirname )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor(do_normalize=__a , padding_value=1.0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor.from_pretrained(\n self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: str\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(__a , return_tensors='np' )\n __snake_case\t\t\t\t: List[str]\t\t = processor(images=__a , return_tensors='np' )\n\n for key in input_feat_extract.keys():\n self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = 'lower newer'\n\n __snake_case\t\t\t\t: Dict\t\t = processor(text=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer(__a )\n\n for key in encoded_tok.keys():\n self.assertListEqual(encoded_tok[key] , encoded_processor[key] )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: int\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )\n\n # test if it raises when no input is passed\n with self.assertRaises(__a ):\n processor()\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Any\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]\n\n __snake_case\t\t\t\t: int\t\t = processor.batch_decode(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.batch_decode(__a )\n\n self.assertListEqual(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Dict\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Tuple\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":141,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\n\nimport requests\nimport torch\nfrom PIL import Image\n\nfrom transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> Any:\n if \"cls_token\" in name:\n __snake_case\t\t\t\t: int\t\t = name.replace('cls_token'\t\t\t\t,'vit.embeddings.cls_token'\t\t\t\t\t\t\t)\n if \"mask_token\" in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('mask_token'\t\t\t\t,'decoder.mask_token'\t\t\t\t\t\t\t)\n if \"decoder_pos_embed\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('decoder_pos_embed'\t\t\t\t,'decoder.decoder_pos_embed'\t\t\t\t\t\t\t)\n if \"pos_embed\" in name and \"decoder\" not in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('pos_embed'\t\t\t\t,'vit.embeddings.position_embeddings'\t\t\t\t\t\t\t)\n if \"patch_embed.proj\" in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('patch_embed.proj'\t\t\t\t,'vit.embeddings.patch_embeddings.projection'\t\t\t\t\t\t\t)\n if \"patch_embed.norm\" in name:\n __snake_case\t\t\t\t: List[str]\t\t = name.replace('patch_embed.norm'\t\t\t\t,'vit.embeddings.norm'\t\t\t\t\t\t\t)\n if \"decoder_blocks\" in name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = name.replace('decoder_blocks'\t\t\t\t,'decoder.decoder_layers'\t\t\t\t\t\t\t)\n if \"blocks\" in name:\n __snake_case\t\t\t\t: Any\t\t = name.replace('blocks'\t\t\t\t,'vit.encoder.layer'\t\t\t\t\t\t\t)\n if \"attn.proj\" in name:\n __snake_case\t\t\t\t: Optional[int]\t\t = name.replace('attn.proj'\t\t\t\t,'attention.output.dense'\t\t\t\t\t\t\t)\n if \"attn\" in name:\n __snake_case\t\t\t\t: str\t\t = name.replace('attn'\t\t\t\t,'attention.self'\t\t\t\t\t\t\t)\n if \"norm1\" in name:\n __snake_case\t\t\t\t: int\t\t = name.replace('norm1'\t\t\t\t,'layernorm_before'\t\t\t\t\t\t\t)\n if \"norm2\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('norm2'\t\t\t\t,'layernorm_after'\t\t\t\t\t\t\t)\n if \"mlp.fc1\" in name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = name.replace('mlp.fc1'\t\t\t\t,'intermediate.dense'\t\t\t\t\t\t\t)\n if \"mlp.fc2\" in name:\n __snake_case\t\t\t\t: List[str]\t\t = name.replace('mlp.fc2'\t\t\t\t,'output.dense'\t\t\t\t\t\t\t)\n if \"decoder_embed\" in name:\n __snake_case\t\t\t\t: Optional[Any]\t\t = name.replace('decoder_embed'\t\t\t\t,'decoder.decoder_embed'\t\t\t\t\t\t\t)\n if \"decoder_norm\" in name:\n __snake_case\t\t\t\t: str\t\t = name.replace('decoder_norm'\t\t\t\t,'decoder.decoder_norm'\t\t\t\t\t\t\t)\n if \"decoder_pred\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('decoder_pred'\t\t\t\t,'decoder.decoder_pred'\t\t\t\t\t\t\t)\n if \"norm.weight\" in name and \"decoder\" not in name:\n __snake_case\t\t\t\t: Optional[Any]\t\t = name.replace('norm.weight'\t\t\t\t,'vit.layernorm.weight'\t\t\t\t\t\t\t)\n if \"norm.bias\" in name and \"decoder\" not in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('norm.bias'\t\t\t\t,'vit.layernorm.bias'\t\t\t\t\t\t\t)\n\n return name\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Optional[int]:\n for key in orig_state_dict.copy().keys():\n __snake_case\t\t\t\t: int\t\t = orig_state_dict.pop(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if \"qkv\" in key:\n __snake_case\t\t\t\t: List[str]\t\t = key.split('.'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = int(key_split[1]\t\t\t\t\t\t\t)\n if \"decoder_blocks\" in key:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = config.decoder_hidden_size\n __snake_case\t\t\t\t: List[Any]\t\t = 'decoder.decoder_layers.'\n if \"weight\" in key:\n __snake_case\t\t\t\t: Optional[Any]\t\t = val[:dim, :]\n __snake_case\t\t\t\t: Dict\t\t = val[dim : dim * 2, :]\n __snake_case\t\t\t\t: str\t\t = val[-dim:, :]\n elif \"bias\" in key:\n __snake_case\t\t\t\t: List[Any]\t\t = val[:dim]\n __snake_case\t\t\t\t: Optional[int]\t\t = val[dim : dim * 2]\n __snake_case\t\t\t\t: List[Any]\t\t = val[-dim:]\n else:\n __snake_case\t\t\t\t: str\t\t = config.hidden_size\n __snake_case\t\t\t\t: Tuple\t\t = 'vit.encoder.layer.'\n if \"weight\" in key:\n __snake_case\t\t\t\t: int\t\t = val[:dim, :]\n __snake_case\t\t\t\t: Optional[int]\t\t = val[dim : dim * 2, :]\n __snake_case\t\t\t\t: List[Any]\t\t = val[-dim:, :]\n elif \"bias\" in key:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = val[:dim]\n __snake_case\t\t\t\t: int\t\t = val[dim : dim * 2]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = val[-dim:]\n\n else:\n __snake_case\t\t\t\t: str\t\t = val\n\n return orig_state_dict\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : Dict\t\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = ViTMAEConfig()\n if \"large\" in checkpoint_url:\n __snake_case\t\t\t\t: Optional[int]\t\t = 10_24\n __snake_case\t\t\t\t: List[Any]\t\t = 40_96\n __snake_case\t\t\t\t: Tuple\t\t = 24\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 16\n elif \"huge\" in checkpoint_url:\n __snake_case\t\t\t\t: Optional[int]\t\t = 14\n __snake_case\t\t\t\t: Tuple\t\t = 12_80\n __snake_case\t\t\t\t: Tuple\t\t = 51_20\n __snake_case\t\t\t\t: Tuple\t\t = 32\n __snake_case\t\t\t\t: Optional[int]\t\t = 16\n\n __snake_case\t\t\t\t: Tuple\t\t = ViTMAEForPreTraining(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = torch.hub.load_state_dict_from_url(_UpperCAmelCase\t\t\t\t,map_location='cpu'\t\t\t\t\t\t\t)['model']\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ViTMAEImageProcessor(size=config.image_size\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = convert_state_dict(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.eval()\n\n __snake_case\t\t\t\t: Any\t\t = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Image.open(requests.get(_UpperCAmelCase\t\t\t\t,stream=_UpperCAmelCase\t\t\t\t\t\t\t).raw\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = ViTMAEImageProcessor(size=config.image_size\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = image_processor(images=_UpperCAmelCase\t\t\t\t,return_tensors='pt'\t\t\t\t\t\t\t)\n\n # forward pass\n torch.manual_seed(2\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[Any]\t\t = model(**_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = outputs.logits\n\n if \"large\" in checkpoint_url:\n __snake_case\t\t\t\t: Tuple\t\t = torch.tensor(\n [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]]\t\t\t\t\t\t\t)\n elif \"huge\" in checkpoint_url:\n __snake_case\t\t\t\t: List[Any]\t\t = torch.tensor(\n [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]]\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.tensor(\n [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]]\t\t\t\t\t\t\t)\n\n # verify logits\n assert torch.allclose(logits[0, :3, :3]\t\t\t\t,_UpperCAmelCase\t\t\t\t,atol=1E-4\t\t\t\t\t\t\t)\n\n print(f'''Saving model to {pytorch_dump_folder_path}'''\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n print(f'''Saving image processor to {pytorch_dump_folder_path}'''\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Tuple =\t\t\targparse.ArgumentParser()\n # Required parameters\n parser.add_argument(\n '''--checkpoint_url''',\n default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''',\n type=str,\n help='''URL of the checkpoint you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n\n A__ : str =\t\t\tparser.parse_args()\n convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom collections import OrderedDict\n\nimport torch\nfrom huggingface_hub import cached_download, hf_hub_url\n\nfrom transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: str\t\t = []\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',\n f'''stage{idx}.patch_embed.proj.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',\n f'''stage{idx}.patch_embed.proj.bias''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',\n f'''stage{idx}.patch_embed.norm.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',\n f'''stage{idx}.patch_embed.norm.bias''',\n )\t\t\t\t\t\t\t)\n return embed\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Tuple\t\t = []\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''')\t\t\t\t\t\t\t)\n return attention_weights\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token')\t\t\t\t\t\t\t)\n return token\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Any\t\t = []\n head.append(('layernorm.weight', 'norm.weight')\t\t\t\t\t\t\t)\n head.append(('layernorm.bias', 'norm.bias')\t\t\t\t\t\t\t)\n head.append(('classifier.weight', 'head.weight')\t\t\t\t\t\t\t)\n head.append(('classifier.bias', 'head.bias')\t\t\t\t\t\t\t)\n return head\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = 'imagenet-1k-id2label.json'\n __snake_case\t\t\t\t: Dict\t\t = 10_00\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'huggingface/label-files'\n __snake_case\t\t\t\t: str\t\t = num_labels\n __snake_case\t\t\t\t: str\t\t = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = idalabel\n __snake_case\t\t\t\t: str\t\t = {v: k for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Dict\t\t = CvtConfig(num_labels=_UpperCAmelCase\t\t\t\t,idalabel=_UpperCAmelCase\t\t\t\t,labelaid=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # For depth size 13 (13 = 1+2+10)\n if cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"13\":\n __snake_case\t\t\t\t: Tuple\t\t = [1, 2, 10]\n\n # For depth size 21 (21 = 1+4+16)\n elif cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"21\":\n __snake_case\t\t\t\t: str\t\t = [1, 4, 16]\n\n # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)\n else:\n __snake_case\t\t\t\t: Dict\t\t = [2, 2, 20]\n __snake_case\t\t\t\t: Any\t\t = [3, 12, 16]\n __snake_case\t\t\t\t: Tuple\t\t = [1_92, 7_68, 10_24]\n\n __snake_case\t\t\t\t: str\t\t = CvtForImageClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = image_size\n __snake_case\t\t\t\t: int\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = OrderedDict()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n\n for idx in range(len(config.depth\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n if config.cls_token[idx]:\n __snake_case\t\t\t\t: Optional[Any]\t\t = list_of_state_dict + cls_token(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = list_of_state_dict + embeddings(_UpperCAmelCase\t\t\t\t\t\t\t)\n for cnt in range(config.depth[idx]\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = list_of_state_dict + attention(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = list_of_state_dict + final()\n for gg in list_of_state_dict:\n print(_UpperCAmelCase\t\t\t\t\t\t\t)\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = original_weights[list_of_state_dict[i][1]]\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al\n\nif __name__ == \"__main__\":\n A__ : Dict =\t\t\targparse.ArgumentParser()\n parser.add_argument(\n '''--cvt_model''',\n default='''cvt-w24''',\n type=str,\n help='''Name of the cvt model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--image_size''',\n default=3_8_4,\n type=int,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--cvt_file_name''',\n default=R'''cvtmodels\\CvT-w24-384x384-IN-22k.pth''',\n type=str,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n\n A__ : Tuple =\t\t\tparser.parse_args()\n convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":142,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom math import ceil, sqrt\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 1_00_00_00\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 0\n\n for outer_width in range(3\t\t\t\t,(limit // 4) + 2\t\t\t\t\t\t\t):\n if outer_width**2 > limit:\n __snake_case\t\t\t\t: Tuple\t\t = max(ceil(sqrt(outer_width**2 - limit\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,1\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: Any\t\t = 1\n if (outer_width - hole_width_lower_bound) % 2:\n hole_width_lower_bound += 1\n\n answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1\n\n return answer\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{solution() = }\"\"\")\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : List[Any] =\t\t\tlist[list[int]]\n\n# assigning initial values to the grid\nA__ : Matrix =\t\t\t[\n [3, 0, 6, 5, 0, 8, 4, 0, 0],\n [5, 2, 0, 0, 0, 0, 0, 0, 0],\n [0, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n# a grid with no solution\nA__ : Matrix =\t\t\t[\n [5, 0, 6, 5, 0, 8, 4, 0, 3],\n [5, 2, 0, 0, 0, 0, 0, 0, 2],\n [1, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n for i in range(9\t\t\t\t\t\t\t):\n if grid[row][i] == n or grid[i][column] == n:\n return False\n\n for i in range(3\t\t\t\t\t\t\t):\n for j in range(3\t\t\t\t\t\t\t):\n if grid[(row - row % 3) + i][(column - column % 3) + j] == n:\n return False\n\n return True\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> tuple[int, int] | None:\n for i in range(9\t\t\t\t\t\t\t):\n for j in range(9\t\t\t\t\t\t\t):\n if grid[i][j] == 0:\n return i, j\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> Matrix | None:\n if location := find_empty_location(_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = location\n else:\n # If the location is ``None``, then the grid is solved.\n return grid\n\n for digit in range(1\t\t\t\t,10\t\t\t\t\t\t\t):\n if is_safe(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Union[str, Any]\t\t = digit\n\n if sudoku(_UpperCAmelCase\t\t\t\t\t\t\t) is not None:\n return grid\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> None:\n for row in grid:\n for cell in row:\n print(_UpperCAmelCase\t\t\t\t,end=' '\t\t\t\t\t\t\t)\n print()\n\n\nif __name__ == \"__main__\":\n # make a copy of grid so that you can compare with the unmodified grid\n for example_grid in (initial_grid, no_solution):\n print('''\\nExample grid:\\n''' + '''=''' * 2_0)\n print_solution(example_grid)\n print('''\\nExample grid solution:''')\n A__ : List[str] =\t\t\tsudoku(example_grid)\n if solution is not None:\n print_solution(solution)\n else:\n print('''Cannot find a solution.''')\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":143,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 10_00\t\t\t\t\t\t\t) -> int:\n __snake_case , __snake_case\t\t\t\t: Union[str, Any]\t\t = 1, 1\n __snake_case\t\t\t\t: Dict\t\t = []\n for i in range(1\t\t\t\t,n + 1\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = prev_numerator + 2 * prev_denominator\n __snake_case\t\t\t\t: int\t\t = prev_numerator + prev_denominator\n if len(str(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) > len(str(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n result.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = numerator\n __snake_case\t\t\t\t: Union[str, Any]\t\t = denominator\n\n return len(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{solution() = }\"\"\")\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nimport numpy as np\nimport torch\nfrom torch import nn\nfrom transformers import (\n CLIPImageProcessor,\n CLIPTextConfig,\n CLIPTextModelWithProjection,\n CLIPTokenizer,\n CLIPVisionConfig,\n CLIPVisionModelWithProjection,\n)\n\nfrom diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler\nfrom diffusers.utils import torch_device\nfrom diffusers.utils.testing_utils import enable_full_determinism, skip_mps\n\nfrom ..test_pipelines_common import PipelineTesterMixin\n\n\nenable_full_determinism()\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tKandinskyVaaPriorPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''', '''negative_prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''generator''',\n '''num_inference_steps''',\n '''latents''',\n '''negative_prompt''',\n '''guidance_scale''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Dict ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Any ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim\n @property\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 100\n @property\n def A_ ( self\t\t: Tuple ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Any\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 12,\n 'embedding_dim': self.text_embedder_hidden_size,\n 'num_layers': 1,\n }\n\n __snake_case\t\t\t\t: List[Any]\t\t = PriorTransformer(**__a )\n # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0\n __snake_case\t\t\t\t: Any\t\t = nn.Parameter(torch.ones(model.clip_std.shape ) )\n return model\n @property\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionConfig(\n hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionModelWithProjection(__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPImageProcessor(\n crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , )\n\n return image_processor\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_encoder\n __snake_case\t\t\t\t: str\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_processor\n\n __snake_case\t\t\t\t: Any\t\t = UnCLIPScheduler(\n variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , )\n\n __snake_case\t\t\t\t: str\t\t = {\n 'prior': prior,\n 'image_encoder': image_encoder,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'scheduler': scheduler,\n 'image_processor': image_processor,\n }\n\n return components\n def A_ ( self\t\t: List[Any] , __a\t\t: Optional[Any] , __a\t\t: Tuple=0 ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: List[str]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'guidance_scale': 4.0,\n 'num_inference_steps': 2,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = 'cpu'\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: List[str]\t\t = output.image_embeds\n\n __snake_case\t\t\t\t: str\t\t = pipe(\n **self.get_dummy_inputs(__a ) , return_dict=__a , )[0]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = image[0, -10:]\n __snake_case\t\t\t\t: Any\t\t = image_from_tuple[0, -10:]\n\n assert image.shape == (1, 32)\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.array(\n [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2\n @skip_mps\n def A_ ( self\t\t: Tuple ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Dict\t\t = True\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n\n self._test_inference_batch_single_identical(\n test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n\n\n @skip_mps\n def A_ ( self\t\t: str ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Optional[Any]\t\t = False\n\n self._test_attention_slicing_forward_pass(\n test_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":144,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import (\n OptionalDependencyNotAvailable,\n _LazyModule,\n is_tf_available,\n is_torch_available,\n is_vision_available,\n)\n\n\nA__ : List[Any] =\t\t\t{\n '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''],\n}\n\ntry:\n if not is_vision_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[Any] =\t\t\t['''MobileViTFeatureExtractor''']\n A__ : Optional[int] =\t\t\t['''MobileViTImageProcessor''']\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Any =\t\t\t[\n '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''MobileViTForImageClassification''',\n '''MobileViTForSemanticSegmentation''',\n '''MobileViTModel''',\n '''MobileViTPreTrainedModel''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[int] =\t\t\t[\n '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFMobileViTForImageClassification''',\n '''TFMobileViTForSemanticSegmentation''',\n '''TFMobileViTModel''',\n '''TFMobileViTPreTrainedModel''',\n ]\n\nif TYPE_CHECKING:\n from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig\n\n try:\n if not is_vision_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .feature_extraction_mobilevit import MobileViTFeatureExtractor\n from .image_processing_mobilevit import MobileViTImageProcessor\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_mobilevit import (\n MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n MobileViTForImageClassification,\n MobileViTForSemanticSegmentation,\n MobileViTModel,\n MobileViTPreTrainedModel,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_mobilevit import (\n TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFMobileViTForImageClassification,\n TFMobileViTForSemanticSegmentation,\n TFMobileViTModel,\n TFMobileViTPreTrainedModel,\n )\n\n\nelse:\n import sys\n\n A__ : Dict =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom math import factorial\n\nA__ : dict[str, int] =\t\t\t{str(digit): factorial(digit) for digit in range(1_0)}\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameter number must be int'\t\t\t\t\t\t\t)\n\n if number < 0:\n raise ValueError('Parameter number must be greater than or equal to 0'\t\t\t\t\t\t\t)\n\n # Converts number in string to iterate on its digits and adds its factorial.\n return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 60\t\t\t\t,_UpperCAmelCase : int = 1_00_00_00\t\t\t\t\t\t\t) -> int:\n\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) or not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameters chain_length and number_limit must be int'\t\t\t\t\t\t\t)\n\n if chain_length <= 0 or number_limit <= 0:\n raise ValueError(\n 'Parameters chain_length and number_limit must be greater than 0'\t\t\t\t\t\t\t)\n\n # the counter for the chains with the exact desired length\n __snake_case\t\t\t\t: List[str]\t\t = 0\n # the cached sizes of the previous chains\n __snake_case\t\t\t\t: dict[int, int]\t\t = {}\n\n for start_chain_element in range(1\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n # The temporary set will contain the elements of the chain\n __snake_case\t\t\t\t: Optional[int]\t\t = set()\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n\n # Stop computing the chain when you find a cached size, a repeating item or the\n # length is greater then the desired one.\n __snake_case\t\t\t\t: str\t\t = start_chain_element\n while (\n chain_element not in chain_sets_lengths\n and chain_element not in chain_set\n and chain_set_length <= chain_length\n ):\n chain_set.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n chain_set_length += 1\n __snake_case\t\t\t\t: Tuple\t\t = digit_factorial_sum(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if chain_element in chain_sets_lengths:\n chain_set_length += chain_sets_lengths[chain_element]\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = chain_set_length\n\n # If chain contains the exact amount of elements increase the counter\n if chain_set_length == chain_length:\n chains_counter += 1\n\n return chains_counter\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n print(F\"\"\"{solution()}\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":145,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nfrom transformers import PegasusConfig, PegasusTokenizer, is_flax_available\nfrom transformers.testing_utils import require_flax, slow\n\nfrom ...test_configuration_common import ConfigTester\nfrom ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor\n\n\nif is_flax_available():\n import os\n\n # The slow tests are often failing with OOM error on GPU\n # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed\n # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html\n A__ : Dict =\t\t\t'''platform'''\n import jax\n import jax.numpy as jnp\n import numpy as np\n\n from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel\n\n\n\n@require_flax\nclass \t\t\t\tsnake_case__\t\t:\n A__\t\t\t\t\t\t\t=\t\t\t\tPegasusConfig\n A__\t\t\t\t\t\t\t=\t\t\t\t{}\n A__\t\t\t\t\t\t\t=\t\t\t\t'''gelu'''\n def __init__( self\t\t: Any , __a\t\t: Dict , __a\t\t: Tuple=13 , __a\t\t: Optional[int]=7 , __a\t\t: str=True , __a\t\t: str=False , __a\t\t: Any=99 , __a\t\t: Tuple=32 , __a\t\t: str=5 , __a\t\t: int=4 , __a\t\t: Optional[int]=37 , __a\t\t: Tuple=0.1 , __a\t\t: str=0.1 , __a\t\t: Optional[int]=20 , __a\t\t: Optional[int]=2 , __a\t\t: Union[str, Any]=1 , __a\t\t: Optional[int]=0 , ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = parent\n __snake_case\t\t\t\t: List[str]\t\t = batch_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = seq_length\n __snake_case\t\t\t\t: List[str]\t\t = is_training\n __snake_case\t\t\t\t: List[Any]\t\t = use_labels\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = hidden_size\n __snake_case\t\t\t\t: List[Any]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: str\t\t = num_attention_heads\n __snake_case\t\t\t\t: Dict\t\t = intermediate_size\n\n __snake_case\t\t\t\t: str\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: Dict\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: List[Any]\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[str]\t\t = eos_token_id\n __snake_case\t\t\t\t: Any\t\t = pad_token_id\n __snake_case\t\t\t\t: str\t\t = bos_token_id\n def A_ ( self\t\t: Tuple ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )\n __snake_case\t\t\t\t: List[str]\t\t = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )\n __snake_case\t\t\t\t: Any\t\t = np.concatenate([input_ids, eos_tensor] , axis=1 )\n\n __snake_case\t\t\t\t: List[str]\t\t = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )\n\n __snake_case\t\t\t\t: List[Any]\t\t = self.config_cls(\n vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )\n __snake_case\t\t\t\t: Optional[Any]\t\t = prepare_pegasus_inputs_dict(__a , __a , __a )\n return config, inputs_dict\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: int , __a\t\t: int ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = 20\n __snake_case\t\t\t\t: int\t\t = model_class_name(__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = model.encode(inputs_dict['input_ids'] )\n\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = (\n inputs_dict['decoder_input_ids'],\n inputs_dict['decoder_attention_mask'],\n )\n\n __snake_case\t\t\t\t: List[str]\t\t = model.init_cache(decoder_input_ids.shape[0] , __a , __a )\n __snake_case\t\t\t\t: List[Any]\t\t = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )\n\n __snake_case\t\t\t\t: int\t\t = jnp.broadcast_to(\n jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )\n __snake_case\t\t\t\t: Dict\t\t = model.decode(\n decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )\n\n __snake_case\t\t\t\t: Dict\t\t = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )\n __snake_case\t\t\t\t: Optional[int]\t\t = model.decode(\n decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , )\n\n __snake_case\t\t\t\t: List[str]\t\t = model.decode(__a , __a )\n\n __snake_case\t\t\t\t: Any\t\t = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )\n self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )\n\n\n\n\n\n def A_ ( self\t\t: Any , __a\t\t: Any , __a\t\t: List[str] , __a\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = 20\n __snake_case\t\t\t\t: List[str]\t\t = model_class_name(__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = model.encode(inputs_dict['input_ids'] )\n\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = (\n inputs_dict['decoder_input_ids'],\n inputs_dict['decoder_attention_mask'],\n )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = jnp.concatenate(\n [\n decoder_attention_mask,\n jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),\n ] , axis=-1 , )\n\n __snake_case\t\t\t\t: Dict\t\t = model.init_cache(decoder_input_ids.shape[0] , __a , __a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = jnp.broadcast_to(\n jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )\n\n __snake_case\t\t\t\t: List[Any]\t\t = model.decode(\n decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )\n __snake_case\t\t\t\t: Optional[Any]\t\t = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = model.decode(\n decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = model.decode(__a , __a , decoder_attention_mask=__a )\n\n __snake_case\t\t\t\t: Any\t\t = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )\n self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : str=None\t\t\t\t,_UpperCAmelCase : Optional[int]=None\t\t\t\t,) -> Optional[int]:\n if attention_mask is None:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.not_equal(_UpperCAmelCase\t\t\t\t,config.pad_token_id\t\t\t\t\t\t\t).astype(np.inta\t\t\t\t\t\t\t)\n if decoder_attention_mask is None:\n __snake_case\t\t\t\t: List[str]\t\t = np.concatenate(\n [\n np.ones(decoder_input_ids[:, :1].shape\t\t\t\t,dtype=np.inta\t\t\t\t\t\t\t),\n np.not_equal(decoder_input_ids[:, 1:]\t\t\t\t,config.pad_token_id\t\t\t\t\t\t\t).astype(np.inta\t\t\t\t\t\t\t),\n ]\t\t\t\t,axis=-1\t\t\t\t,)\n return {\n \"input_ids\": input_ids,\n \"decoder_input_ids\": decoder_input_ids,\n \"attention_mask\": attention_mask,\n \"decoder_attention_mask\": decoder_attention_mask,\n }\n\n\n\n\n\n@require_flax\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n (\n FlaxPegasusForConditionalGeneration,\n FlaxPegasusModel,\n )\n if is_flax_available()\n else ()\n )\n A__\t\t\t\t\t\t\t=\t\t\t\t(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()\n A__\t\t\t\t\t\t\t=\t\t\t\tTrue\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = FlaxPegasusModelTester(self )\n __snake_case\t\t\t\t: List[str]\t\t = ConfigTester(self , config_class=__a )\n def A_ ( self\t\t: List[Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.config_tester.run_common_tests()\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n for model_class in self.all_model_classes:\n self.model_tester.check_use_cache_forward(__a , __a , __a )\n def A_ ( self\t\t: Tuple ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: Union[str, Any]\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n for model_class in self.all_model_classes:\n self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a )\n def A_ ( self\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n\n for model_class in self.all_model_classes:\n with self.subTest(model_class.__name__ ):\n __snake_case\t\t\t\t: Dict\t\t = self._prepare_for_class(__a , __a )\n __snake_case\t\t\t\t: List[str]\t\t = model_class(__a )\n\n @jax.jit\n def encode_jitted(__a\t\t: Union[str, Any] , __a\t\t: Optional[Any]=None , **__a\t\t: Any ):\n return model.encode(input_ids=__a , attention_mask=__a )\n\n with self.subTest('JIT Enabled' ):\n __snake_case\t\t\t\t: int\t\t = encode_jitted(**__a ).to_tuple()\n\n with self.subTest('JIT Disabled' ):\n with jax.disable_jit():\n __snake_case\t\t\t\t: Dict\t\t = encode_jitted(**__a ).to_tuple()\n\n self.assertEqual(len(__a ) , len(__a ) )\n for jitted_output, output in zip(__a , __a ):\n self.assertEqual(jitted_output.shape , output.shape )\n def A_ ( self\t\t: Optional[int] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n\n for model_class in self.all_model_classes:\n with self.subTest(model_class.__name__ ):\n __snake_case\t\t\t\t: Optional[int]\t\t = model_class(__a )\n __snake_case\t\t\t\t: Tuple\t\t = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = {\n 'decoder_input_ids': inputs_dict['decoder_input_ids'],\n 'decoder_attention_mask': inputs_dict['decoder_attention_mask'],\n 'encoder_outputs': encoder_outputs,\n }\n\n @jax.jit\n def decode_jitted(__a\t\t: List[str] , __a\t\t: Dict , __a\t\t: int ):\n return model.decode(\n decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , )\n\n with self.subTest('JIT Enabled' ):\n __snake_case\t\t\t\t: Tuple\t\t = decode_jitted(**__a ).to_tuple()\n\n with self.subTest('JIT Disabled' ):\n with jax.disable_jit():\n __snake_case\t\t\t\t: str\t\t = decode_jitted(**__a ).to_tuple()\n\n self.assertEqual(len(__a ) , len(__a ) )\n for jitted_output, output in zip(__a , __a ):\n self.assertEqual(jitted_output.shape , output.shape )\n @slow\n def A_ ( self\t\t: Dict ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n for model_class_name in self.all_model_classes:\n __snake_case\t\t\t\t: int\t\t = model_class_name.from_pretrained('google/pegasus-large' , from_pt=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = np.ones((1, 1) )\n __snake_case\t\t\t\t: Dict\t\t = model(__a )\n self.assertIsNotNone(__a )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: str ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )\n __snake_case\t\t\t\t: List[str]\t\t = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )\n\n __snake_case\t\t\t\t: str\t\t = [\n ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',\n ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \\'Oh I think you\\'re nominated\\'\", said Dappy.\"And I was like \\'Oh yeah, which one?\\' And now we\\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\\'t be too disappointed if they didn\\'t win this time around.\"At the end of the day we\\'re grateful to be where we are in our careers.\"If it don\\'t happen then it don\\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\\' All These Things That I\\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ',\n ]\n\n __snake_case\t\t\t\t: Optional[int]\t\t = [\n 'California\\'s largest electricity provider has turned off power to hundreds of thousands of customers.',\n 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\\'s Mobo Awards.',\n ]\n\n __snake_case\t\t\t\t: Dict\t\t = tokenizer(__a , return_tensors='np' , truncation=__a , max_length=512 , padding=__a )\n __snake_case\t\t\t\t: Any\t\t = model.generate(**__a , num_beams=2 ).sequences\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer.batch_decode(__a , skip_special_tokens=__a )\n assert tgt_text == decoded\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 1_00\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Any\t\t = n * (n + 1) * (2 * n + 1) / 6\n __snake_case\t\t\t\t: Union[str, Any]\t\t = (n * (n + 1) / 2) ** 2\n return int(square_of_sum - sum_of_squares\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{solution() = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":146,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nfrom scipy.special import comb # type: ignore\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: int , __a\t\t: list[tuple[float, float]] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = list_of_points\n # Degree determines the flexibility of the curve.\n # Degree = 1 will produce a straight line.\n __snake_case\t\t\t\t: Union[str, Any]\t\t = len(__a ) - 1\n def A_ ( self\t\t: str , __a\t\t: float ) -> list[float]:\n\n\n\n\n\n\n\n '''simple docstring'''\n assert 0 <= t <= 1, \"Time t must be between 0 and 1.\"\n __snake_case\t\t\t\t: list[float]\t\t = []\n for i in range(len(self.list_of_points ) ):\n # basis function for each i\n output_values.append(\n comb(self.degree , __a ) * ((1 - t) ** (self.degree - i)) * (t**i) )\n # the basis must sum up to 1 for it to produce a valid Bezier curve.\n assert round(sum(__a ) , 5 ) == 1\n return output_values\n def A_ ( self\t\t: List[Any] , __a\t\t: float ) -> tuple[float, float]:\n\n\n\n\n\n\n\n '''simple docstring'''\n assert 0 <= t <= 1, \"Time t must be between 0 and 1.\"\n\n __snake_case\t\t\t\t: List[Any]\t\t = self.basis_function(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = 0.0\n __snake_case\t\t\t\t: List[Any]\t\t = 0.0\n for i in range(len(self.list_of_points ) ):\n # For all points, sum up the product of i-th basis function and i-th point.\n x += basis_function[i] * self.list_of_points[i][0]\n y += basis_function[i] * self.list_of_points[i][1]\n return (x, y)\n\n\n\n\n\n def A_ ( self\t\t: Any , __a\t\t: float = 0.0_1 ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n from matplotlib import pyplot as plt # type: ignore\n\n __snake_case\t\t\t\t: list[float]\t\t = [] # x coordinates of points to plot\n __snake_case\t\t\t\t: list[float]\t\t = [] # y coordinates of points to plot\n\n __snake_case\t\t\t\t: Dict\t\t = 0.0\n while t <= 1:\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.bezier_curve_function(__a )\n to_plot_x.append(value[0] )\n to_plot_y.append(value[1] )\n t += step_size\n\n __snake_case\t\t\t\t: List[Any]\t\t = [i[0] for i in self.list_of_points]\n __snake_case\t\t\t\t: Optional[int]\t\t = [i[1] for i in self.list_of_points]\n\n plt.plot(\n __a , __a , color='blue' , label='Curve of Degree ' + str(self.degree ) , )\n plt.scatter(__a , __a , color='red' , label='Control Points' )\n plt.legend()\n plt.show()\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1\n BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2\n BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available\n\n\nA__ : int =\t\t\t{\n '''configuration_groupvit''': [\n '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''GroupViTConfig''',\n '''GroupViTOnnxConfig''',\n '''GroupViTTextConfig''',\n '''GroupViTVisionConfig''',\n ],\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Tuple =\t\t\t[\n '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''GroupViTModel''',\n '''GroupViTPreTrainedModel''',\n '''GroupViTTextModel''',\n '''GroupViTVisionModel''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[int] =\t\t\t[\n '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFGroupViTModel''',\n '''TFGroupViTPreTrainedModel''',\n '''TFGroupViTTextModel''',\n '''TFGroupViTVisionModel''',\n ]\n\nif TYPE_CHECKING:\n from .configuration_groupvit import (\n GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,\n GroupViTConfig,\n GroupViTOnnxConfig,\n GroupViTTextConfig,\n GroupViTVisionConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_groupvit import (\n GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n GroupViTModel,\n GroupViTPreTrainedModel,\n GroupViTTextModel,\n GroupViTVisionModel,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_groupvit import (\n TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFGroupViTModel,\n TFGroupViTPreTrainedModel,\n TFGroupViTTextModel,\n TFGroupViTVisionModel,\n )\n\nelse:\n import sys\n\n A__ : List[str] =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":147,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : str =\t\t\t'''Muhammad Umer Farooq'''\nA__ : int =\t\t\t'''MIT'''\nA__ : Optional[int] =\t\t\t'''1.0.0'''\nA__ : List[Any] =\t\t\t'''Muhammad Umer Farooq'''\nA__ : Optional[Any] =\t\t\t'''contact@muhammadumerfarooq.me'''\nA__ : Optional[Any] =\t\t\t'''Alpha'''\n\nimport re\nfrom html.parser import HTMLParser\nfrom urllib import parse\n\nimport requests\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Union[str, Any] , __a\t\t: str ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__()\n __snake_case\t\t\t\t: list[str]\t\t = []\n __snake_case\t\t\t\t: Dict\t\t = domain\n\n\n\n\n\n def A_ ( self\t\t: Dict , __a\t\t: str , __a\t\t: list[tuple[str, str | None]] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Only parse the 'anchor' tag.\n if tag == \"a\":\n # Check the list of defined attributes.\n for name, value in attrs:\n # If href is defined, and not empty nor # print it.\n if name == \"href\" and value != \"#\" and value != \"\":\n # If not already in urls.\n if value not in self.urls:\n __snake_case\t\t\t\t: Optional[Any]\t\t = parse.urljoin(self.domain , __a )\n self.urls.append(__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return \".\".join(get_sub_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t).split('.'\t\t\t\t\t\t\t)[-2:]\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return parse.urlparse(_UpperCAmelCase\t\t\t\t\t\t\t).netloc\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"https://github.com\"\t\t\t\t\t\t\t) -> list[str]:\n __snake_case\t\t\t\t: List[Any]\t\t = get_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Initialize the parser\n __snake_case\t\t\t\t: Tuple\t\t = Parser(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n try:\n # Open URL\n __snake_case\t\t\t\t: Any\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # pass the raw HTML to the parser to get links\n parser.feed(r.text\t\t\t\t\t\t\t)\n\n # Get links and loop through\n __snake_case\t\t\t\t: Dict\t\t = set()\n for link in parser.urls:\n # open URL.\n # read = requests.get(link)\n try:\n __snake_case\t\t\t\t: List[Any]\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Get the valid email.\n __snake_case\t\t\t\t: Optional[Any]\t\t = re.findall('[a-zA-Z0-9]+@' + domain\t\t\t\t,read.text\t\t\t\t\t\t\t)\n # If not in list then append it.\n for email in emails:\n valid_emails.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n except ValueError:\n pass\n except ValueError:\n raise SystemExit(1\t\t\t\t\t\t\t)\n\n # Finally return a sorted list of email addresses with no duplicates.\n return sorted(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Tuple =\t\t\temails_from_url('''https://github.com''')\n print(F\"\"\"{len(emails)} emails found:\"\"\")\n print('''\\n'''.join(sorted(emails)))\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport gc\nimport unittest\n\nimport numpy as np\nimport torch\nfrom transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer\n\nfrom diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline\nfrom diffusers.pipelines.shap_e import ShapERenderer\nfrom diffusers.utils import load_numpy, slow\nfrom diffusers.utils.testing_utils import require_torch_gpu, torch_device\n\nfrom ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tShapEPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''num_inference_steps''',\n '''generator''',\n '''latents''',\n '''guidance_scale''',\n '''frame_size''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Optional[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Tuple ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 8\n @property\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[int]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Dict\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 16,\n 'embedding_dim': self.time_input_dim,\n 'num_embeddings': 32,\n 'embedding_proj_dim': self.text_embedder_hidden_size,\n 'time_embed_dim': self.time_embed_dim,\n 'num_layers': 1,\n 'clip_embed_dim': self.time_input_dim * 2,\n 'additional_embeddings': 0,\n 'time_embed_act_fn': 'gelu',\n 'norm_in_type': 'layer',\n 'encoder_hid_proj_type': None,\n 'added_emb_type': None,\n }\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = PriorTransformer(**__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Tuple\t\t = {\n 'param_shapes': (\n (self.renderer_dim, 93),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n ),\n 'd_latent': self.time_input_dim,\n 'd_hidden': self.renderer_dim,\n 'n_output': 12,\n 'background': (\n 0.1,\n 0.1,\n 0.1,\n ),\n }\n __snake_case\t\t\t\t: Optional[int]\t\t = ShapERenderer(**__a )\n return model\n def A_ ( self\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.dummy_renderer\n\n __snake_case\t\t\t\t: List[Any]\t\t = HeunDiscreteScheduler(\n beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , )\n __snake_case\t\t\t\t: int\t\t = {\n 'prior': prior,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'renderer': renderer,\n 'scheduler': scheduler,\n }\n\n return components\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: int=0 ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'num_inference_steps': 1,\n 'frame_size': 32,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = 'cpu'\n\n __snake_case\t\t\t\t: Dict\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: int\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: str\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: Dict\t\t = output.images[0]\n __snake_case\t\t\t\t: int\t\t = image[0, -3:, -3:, -1]\n\n assert image.shape == (20, 32, 32, 3)\n\n __snake_case\t\t\t\t: str\t\t = np.array(\n [\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n ] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches\n self._test_inference_batch_consistent(batch_sizes=[1, 2] )\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: str\t\t = True\n\n self._test_inference_batch_single_identical(\n batch_size=2 , test_max_difference=__a , relax_max_difference=__a , )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_dummy_components()\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Dict\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: int\t\t = 1\n __snake_case\t\t\t\t: Tuple\t\t = 2\n\n __snake_case\t\t\t\t: Tuple\t\t = self.get_dummy_inputs(__a )\n\n for key in inputs.keys():\n if key in self.batch_params:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = batch_size * [inputs[key]]\n\n __snake_case\t\t\t\t: str\t\t = pipe(**__a , num_images_per_prompt=__a )[0]\n\n assert images.shape[0] == batch_size * num_images_per_prompt\n\n\n\n@slow\n@require_torch_gpu\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n # clean up the VRAM after each test\n super().tearDown()\n gc.collect()\n torch.cuda.empty_cache()\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = load_numpy(\n 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'\n '/shap_e/test_shap_e_np_out.npy' )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ShapEPipeline.from_pretrained('openai/shap-e' )\n __snake_case\t\t\t\t: Any\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.Generator(device=__a ).manual_seed(0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pipe(\n 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]\n\n assert images.shape == (20, 64, 64, 3)\n\n assert_mean_pixel_difference(__a , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":148,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : Any =\t\t\tlogging.get_logger(__name__)\n\nA__ : List[Any] =\t\t\t{\n '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''',\n # See all GLPN models at https://huggingface.co/models?filter=glpn\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''glpn'''\n def __init__( self\t\t: Tuple , __a\t\t: int=3 , __a\t\t: Union[str, Any]=4 , __a\t\t: List[Any]=[2, 2, 2, 2] , __a\t\t: Dict=[8, 4, 2, 1] , __a\t\t: str=[32, 64, 160, 256] , __a\t\t: Optional[Any]=[7, 3, 3, 3] , __a\t\t: Optional[int]=[4, 2, 2, 2] , __a\t\t: int=[1, 2, 5, 8] , __a\t\t: Any=[4, 4, 4, 4] , __a\t\t: Dict=\"gelu\" , __a\t\t: List[Any]=0.0 , __a\t\t: Any=0.0 , __a\t\t: Optional[Any]=0.0_2 , __a\t\t: Optional[Any]=0.1 , __a\t\t: Union[str, Any]=1e-6 , __a\t\t: str=64 , __a\t\t: List[str]=10 , __a\t\t: Dict=-1 , **__a\t\t: Union[str, Any] , ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(**__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = num_channels\n __snake_case\t\t\t\t: Tuple\t\t = num_encoder_blocks\n __snake_case\t\t\t\t: Optional[Any]\t\t = depths\n __snake_case\t\t\t\t: Any\t\t = sr_ratios\n __snake_case\t\t\t\t: int\t\t = hidden_sizes\n __snake_case\t\t\t\t: Any\t\t = patch_sizes\n __snake_case\t\t\t\t: Optional[int]\t\t = strides\n __snake_case\t\t\t\t: Dict\t\t = mlp_ratios\n __snake_case\t\t\t\t: int\t\t = num_attention_heads\n __snake_case\t\t\t\t: List[Any]\t\t = hidden_act\n __snake_case\t\t\t\t: Optional[int]\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: Any\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: Optional[int]\t\t = initializer_range\n __snake_case\t\t\t\t: Union[str, Any]\t\t = drop_path_rate\n __snake_case\t\t\t\t: Any\t\t = layer_norm_eps\n __snake_case\t\t\t\t: Any\t\t = decoder_hidden_size\n __snake_case\t\t\t\t: str\t\t = max_depth\n __snake_case\t\t\t\t: List[Any]\t\t = head_in_index\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nimport time\n\nimport numpy as np\n\nA__ : str =\t\t\t[8, 5, 9, 7]\nA__ : List[str] =\t\t\t[\n [2, 0, 1, 1],\n [0, 1, 2, 1],\n [4, 0, 0, 3],\n [0, 2, 1, 0],\n [1, 0, 3, 0],\n]\nA__ : Dict =\t\t\t[\n [3, 2, 1, 4],\n [0, 2, 5, 2],\n [5, 1, 0, 5],\n [1, 5, 3, 0],\n [3, 0, 3, 3],\n]\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Union[str, Any] , __a\t\t: list[int] , __a\t\t: list[list[int]] , __a\t\t: list[list[int]] , ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = claim_vector\n __snake_case\t\t\t\t: Optional[int]\t\t = allocated_resources_table\n __snake_case\t\t\t\t: List[str]\t\t = maximum_claim_table\n def A_ ( self\t\t: str ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n sum(p_item[i] for p_item in self.__allocated_resources_table )\n for i in range(len(self.__allocated_resources_table[0] ) )\n ]\n def A_ ( self\t\t: int ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return np.array(self.__claim_vector ) - np.array(\n self.__processes_resource_summation() )\n def A_ ( self\t\t: int ) -> list[list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )\n for i, allocated_resource in enumerate(self.__allocated_resources_table )\n ]\n def A_ ( self\t\t: str ) -> dict[int, list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return {self.__need().index(__a ): i for i in self.__need()}\n def A_ ( self\t\t: Union[str, Any] , **__a\t\t: int ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.__need()\n __snake_case\t\t\t\t: List[Any]\t\t = self.__allocated_resources_table\n __snake_case\t\t\t\t: Optional[int]\t\t = self.__available_resources()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.__need_index_manager()\n for kw, val in kwargs.items():\n if kw and val is True:\n self.__pretty_data()\n print('_' * 50 + '\\n' )\n while need_list:\n __snake_case\t\t\t\t: Tuple\t\t = False\n for each_need in need_list:\n __snake_case\t\t\t\t: Any\t\t = True\n for index, need in enumerate(__a ):\n if need > available_resources[index]:\n __snake_case\t\t\t\t: List[str]\t\t = False\n break\n if execution:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n # get the original index of the process from ind_ctrl db\n for original_need_index, need_clone in need_index_manager.items():\n if each_need == need_clone:\n __snake_case\t\t\t\t: str\t\t = original_need_index\n print(f'''Process {process_number + 1} is executing.''' )\n # remove the process run from stack\n need_list.remove(__a )\n # update available/freed resources stack\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.array(__a ) + np.array(\n alloc_resources_table[process_number] )\n print(\n 'Updated available resource stack for processes: '\n + ' '.join([str(__a ) for x in available_resources] ) )\n break\n if safe:\n print('The process is in a safe state.\\n' )\n else:\n print('System in unsafe state. Aborting...\\n' )\n break\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n print(' ' * 9 + 'Allocated Resource Table' )\n for item in self.__allocated_resources_table:\n print(\n f'''P{self.__allocated_resources_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(' ' * 9 + 'System Resource Table' )\n for item in self.__maximum_claim_table:\n print(\n f'''P{self.__maximum_claim_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(\n 'Current Usage by Active Processes: '\n + ' '.join(str(__a ) for x in self.__claim_vector ) )\n print(\n 'Initial Available Resources: '\n + ' '.join(str(__a ) for x in self.__available_resources() ) )\n time.sleep(1 )\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":149,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\nfrom typing import Callable, List, Optional, Union\n\nimport numpy as np\nimport PIL\nimport torch\nfrom PIL import Image\nfrom transformers import CLIPTextModel, CLIPTokenizer\n\nfrom diffusers.models import AutoencoderKL, UNetaDConditionModel\nfrom diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline\nfrom diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : Union[str, Any]=[]\t\t\t\t\t\t\t) -> str:\n __snake_case\t\t\t\t: Any\t\t = size[0] - overlap_pixels * 2\n __snake_case\t\t\t\t: List[str]\t\t = size[1] - overlap_pixels * 2\n for letter in [\"l\", \"r\"]:\n if letter in remove_borders:\n size_x += overlap_pixels\n for letter in [\"t\", \"b\"]:\n if letter in remove_borders:\n size_y += overlap_pixels\n __snake_case\t\t\t\t: Any\t\t = np.ones((size_y, size_x)\t\t\t\t,dtype=np.uinta\t\t\t\t\t\t\t) * 2_55\n __snake_case\t\t\t\t: Optional[Any]\t\t = np.pad(_UpperCAmelCase\t\t\t\t,mode='linear_ramp'\t\t\t\t,pad_width=_UpperCAmelCase\t\t\t\t,end_values=0\t\t\t\t\t\t\t)\n\n if \"l\" in remove_borders:\n __snake_case\t\t\t\t: Dict\t\t = mask[:, overlap_pixels : mask.shape[1]]\n if \"r\" in remove_borders:\n __snake_case\t\t\t\t: Tuple\t\t = mask[:, 0 : mask.shape[1] - overlap_pixels]\n if \"t\" in remove_borders:\n __snake_case\t\t\t\t: Any\t\t = mask[overlap_pixels : mask.shape[0], :]\n if \"b\" in remove_borders:\n __snake_case\t\t\t\t: Tuple\t\t = mask[0 : mask.shape[0] - overlap_pixels, :]\n return mask\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : Dict\t\t\t\t\t\t\t) -> Union[str, Any]:\n return max(_UpperCAmelCase\t\t\t\t,min(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : [int]\t\t\t\t,_UpperCAmelCase : [int]\t\t\t\t,_UpperCAmelCase : [int]\t\t\t\t\t\t\t) -> Optional[Any]:\n return (\n clamp(rect[0]\t\t\t\t,min[0]\t\t\t\t,max[0]\t\t\t\t\t\t\t),\n clamp(rect[1]\t\t\t\t,min[1]\t\t\t\t,max[1]\t\t\t\t\t\t\t),\n clamp(rect[2]\t\t\t\t,min[0]\t\t\t\t,max[0]\t\t\t\t\t\t\t),\n clamp(rect[3]\t\t\t\t,min[1]\t\t\t\t,max[1]\t\t\t\t\t\t\t),\n )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : [int]\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : [int]\t\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: List[Any]\t\t = list(_UpperCAmelCase\t\t\t\t\t\t\t)\n rect[0] -= overlap\n rect[1] -= overlap\n rect[2] += overlap\n rect[3] += overlap\n __snake_case\t\t\t\t: Tuple\t\t = clamp_rect(_UpperCAmelCase\t\t\t\t,[0, 0]\t\t\t\t,[image_size[0], image_size[1]]\t\t\t\t\t\t\t)\n return rect\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Image.new('RGB'\t\t\t\t,(tile.size[0] + original_slice, tile.size[1])\t\t\t\t\t\t\t)\n result.paste(\n original_image.resize((tile.size[0], tile.size[1])\t\t\t\t,Image.BICUBIC\t\t\t\t\t\t\t).crop(\n (slice_x, 0, slice_x + original_slice, tile.size[1])\t\t\t\t\t\t\t)\t\t\t\t,(0, 0)\t\t\t\t,)\n result.paste(_UpperCAmelCase\t\t\t\t,(original_slice, 0)\t\t\t\t\t\t\t)\n return result\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Tuple\t\t = (original_image_slice * 4, 0, tile.size[0], tile.size[1])\n __snake_case\t\t\t\t: Dict\t\t = tile.crop(_UpperCAmelCase\t\t\t\t\t\t\t)\n return tile\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t,_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = n % d\n return n - divisor\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Any , __a\t\t: AutoencoderKL , __a\t\t: CLIPTextModel , __a\t\t: CLIPTokenizer , __a\t\t: UNetaDConditionModel , __a\t\t: DDPMScheduler , __a\t\t: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a\t\t: int = 350 , ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , low_res_scheduler=__a , scheduler=__a , max_noise_level=__a , )\n def A_ ( self\t\t: int , __a\t\t: Optional[int] , __a\t\t: str , __a\t\t: Any , __a\t\t: Optional[int] , __a\t\t: Optional[int] , __a\t\t: Tuple , __a\t\t: List[str] , **__a\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Dict\t\t = (\n min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),\n min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),\n min(image.size[0] , (x + 1) * tile_size ),\n min(image.size[1] , (y + 1) * tile_size ),\n )\n __snake_case\t\t\t\t: Tuple\t\t = add_overlap_rect(__a , __a , image.size )\n __snake_case\t\t\t\t: Optional[Any]\t\t = image.crop(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]\n __snake_case\t\t\t\t: Optional[int]\t\t = translated_slice_x - (original_image_slice / 2)\n __snake_case\t\t\t\t: Tuple\t\t = max(0 , __a )\n __snake_case\t\t\t\t: Optional[int]\t\t = squeeze_tile(__a , __a , __a , __a )\n __snake_case\t\t\t\t: Optional[int]\t\t = to_input.size\n __snake_case\t\t\t\t: Optional[Any]\t\t = to_input.resize((tile_size, tile_size) , Image.BICUBIC )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = super(__a , self ).__call__(image=__a , **__a ).images[0]\n __snake_case\t\t\t\t: List[Any]\t\t = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )\n __snake_case\t\t\t\t: Optional[int]\t\t = unsqueeze_tile(__a , __a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )\n __snake_case\t\t\t\t: Dict\t\t = []\n if x == 0:\n remove_borders.append('l' )\n elif crop_rect[2] == image.size[0]:\n remove_borders.append('r' )\n if y == 0:\n remove_borders.append('t' )\n elif crop_rect[3] == image.size[1]:\n remove_borders.append('b' )\n __snake_case\t\t\t\t: Optional[Any]\t\t = Image.fromarray(\n make_transparency_mask(\n (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__a ) , mode='L' , )\n final_image.paste(\n __a , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __a )\n\n\n\n\n\n @torch.no_grad()\n def __call__( self\t\t: List[Any] , __a\t\t: Union[str, List[str]] , __a\t\t: Union[PIL.Image.Image, List[PIL.Image.Image]] , __a\t\t: int = 75 , __a\t\t: float = 9.0 , __a\t\t: int = 50 , __a\t\t: Optional[Union[str, List[str]]] = None , __a\t\t: Optional[int] = 1 , __a\t\t: float = 0.0 , __a\t\t: Optional[torch.Generator] = None , __a\t\t: Optional[torch.FloatTensor] = None , __a\t\t: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a\t\t: int = 1 , __a\t\t: int = 128 , __a\t\t: int = 32 , __a\t\t: int = 32 , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) )\n __snake_case\t\t\t\t: List[str]\t\t = math.ceil(image.size[0] / tile_size )\n __snake_case\t\t\t\t: List[str]\t\t = math.ceil(image.size[1] / tile_size )\n __snake_case\t\t\t\t: int\t\t = tcx * tcy\n __snake_case\t\t\t\t: int\t\t = 0\n for y in range(__a ):\n for x in range(__a ):\n self._process_tile(\n __a , __a , __a , __a , __a , __a , __a , prompt=__a , num_inference_steps=__a , guidance_scale=__a , noise_level=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , )\n current_count += 1\n if callback is not None:\n callback({'progress': current_count / total_tile_count, 'image': final_image} )\n return final_image\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> int:\n # Run a demo\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'stabilityai/stable-diffusion-x4-upscaler'\n __snake_case\t\t\t\t: str\t\t = StableDiffusionTiledUpscalePipeline.from_pretrained(_UpperCAmelCase\t\t\t\t,revision='fp16'\t\t\t\t,torch_dtype=torch.floataa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = pipe.to('cuda'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = Image.open('../../docs/source/imgs/diffusers_library.jpg'\t\t\t\t\t\t\t)\n\n def callback(_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t):\n print(f'''progress: {obj[\"progress\"]:.4f}'''\t\t\t\t\t\t\t)\n obj[\"image\"].save('diffusers_library_progress.jpg'\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Tuple\t\t = pipe(image=_UpperCAmelCase\t\t\t\t,prompt='Black font, white background, vector'\t\t\t\t,noise_level=40\t\t\t\t,callback=_UpperCAmelCase\t\t\t\t\t\t\t)\n final_image.save('diffusers_library.jpg'\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n main()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nfrom typing import List, Optional, Tuple\n\nfrom tokenizers import normalizers\n\nfrom ...tokenization_utils_fast import PreTrainedTokenizerFast\nfrom .tokenization_electra import ElectraTokenizer\n\n\nA__ : Union[str, Any] =\t\t\t{'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}\n\nA__ : List[Any] =\t\t\t{\n '''vocab_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''',\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'''\n ),\n },\n '''tokenizer_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-generator''': (\n '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'''\n ),\n },\n}\n\nA__ : List[Any] =\t\t\t{\n '''google/electra-small-generator''': 5_1_2,\n '''google/electra-base-generator''': 5_1_2,\n '''google/electra-large-generator''': 5_1_2,\n '''google/electra-small-discriminator''': 5_1_2,\n '''google/electra-base-discriminator''': 5_1_2,\n '''google/electra-large-discriminator''': 5_1_2,\n}\n\nA__ : Optional[Any] =\t\t\t{\n '''google/electra-small-generator''': {'''do_lower_case''': True},\n '''google/electra-base-generator''': {'''do_lower_case''': True},\n '''google/electra-large-generator''': {'''do_lower_case''': True},\n '''google/electra-small-discriminator''': {'''do_lower_case''': True},\n '''google/electra-base-discriminator''': {'''do_lower_case''': True},\n '''google/electra-large-discriminator''': {'''do_lower_case''': True},\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_INIT_CONFIGURATION\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\tElectraTokenizer\n def __init__( self\t\t: int , __a\t\t: List[Any]=None , __a\t\t: int=None , __a\t\t: List[str]=True , __a\t\t: Any=\"[UNK]\" , __a\t\t: Any=\"[SEP]\" , __a\t\t: Union[str, Any]=\"[PAD]\" , __a\t\t: Dict=\"[CLS]\" , __a\t\t: List[Any]=\"[MASK]\" , __a\t\t: str=True , __a\t\t: Optional[int]=None , **__a\t\t: Optional[int] , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , )\n\n __snake_case\t\t\t\t: Tuple\t\t = json.loads(self.backend_tokenizer.normalizer.__getstate__() )\n if (\n normalizer_state.get('lowercase' , __a ) != do_lower_case\n or normalizer_state.get('strip_accents' , __a ) != strip_accents\n or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars\n ):\n __snake_case\t\t\t\t: List[Any]\t\t = getattr(__a , normalizer_state.pop('type' ) )\n __snake_case\t\t\t\t: str\t\t = do_lower_case\n __snake_case\t\t\t\t: Optional[int]\t\t = strip_accents\n __snake_case\t\t\t\t: Any\t\t = tokenize_chinese_chars\n __snake_case\t\t\t\t: Union[str, Any]\t\t = normalizer_class(**__a )\n\n __snake_case\t\t\t\t: Any\t\t = do_lower_case\n def A_ ( self\t\t: Any , __a\t\t: List[str] , __a\t\t: Optional[Any]=None ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = [self.cls_token_id] + token_ids_a + [self.sep_token_id]\n\n if token_ids_a:\n output += token_ids_a + [self.sep_token_id]\n\n return output\n def A_ ( self\t\t: List[Any] , __a\t\t: List[int] , __a\t\t: Optional[List[int]] = None ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = [self.sep_token_id]\n __snake_case\t\t\t\t: List[Any]\t\t = [self.cls_token_id]\n if token_ids_a is None:\n return len(cls + token_ids_a + sep ) * [0]\n return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self._tokenizer.model.save(__a , name=__a )\n return tuple(__a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":150,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nimport os\nimport shutil\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport pytest\n\nfrom transformers import MgpstrTokenizer\nfrom transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES\nfrom transformers.testing_utils import require_torch, require_vision\nfrom transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available\n\n\nif is_torch_available():\n import torch\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import MgpstrProcessor, ViTImageProcessor\n\n\n\n@require_torch\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tViTImageProcessor if is_vision_available() else None\n @property\n def A_ ( self\t\t: Tuple ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.image_processor_tester.prepare_image_processor_dict()\n def A_ ( self\t\t: Tuple ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = (3, 32, 128)\n __snake_case\t\t\t\t: Tuple\t\t = tempfile.mkdtemp()\n\n # fmt: off\n __snake_case\t\t\t\t: Optional[int]\t\t = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']\n # fmt: on\n __snake_case\t\t\t\t: Optional[int]\t\t = dict(zip(__a , range(len(__a ) ) ) )\n\n __snake_case\t\t\t\t: int\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:\n fp.write(json.dumps(__a ) + '\\n' )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'do_normalize': False,\n 'do_resize': True,\n 'image_processor_type': 'ViTImageProcessor',\n 'resample': 3,\n 'size': {'height': 32, 'width': 128},\n }\n __snake_case\t\t\t\t: Dict\t\t = os.path.join(self.tmpdirname , __a )\n with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:\n json.dump(__a , __a )\n def A_ ( self\t\t: str , **__a\t\t: Any ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: Optional[int] , **__a\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(self.tmpdirname )\n def A_ ( self\t\t: int ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )\n\n __snake_case\t\t\t\t: Dict\t\t = Image.fromarray(np.moveaxis(__a , 0 , -1 ) )\n\n return image_input\n def A_ ( self\t\t: Optional[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Optional[int]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n processor.save_pretrained(self.tmpdirname )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__a )\n\n self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )\n self.assertIsInstance(processor.char_tokenizer , __a )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Optional[int]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n processor.save_pretrained(self.tmpdirname )\n\n __snake_case\t\t\t\t: str\t\t = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )\n __snake_case\t\t\t\t: str\t\t = self.get_image_processor(do_normalize=__a , padding_value=1.0 )\n\n __snake_case\t\t\t\t: Any\t\t = MgpstrProcessor.from_pretrained(\n self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 )\n\n self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )\n self.assertIsInstance(processor.char_tokenizer , __a )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Any\t\t = image_processor(__a , return_tensors='np' )\n __snake_case\t\t\t\t: Optional[int]\t\t = processor(images=__a , return_tensors='np' )\n\n for key in input_image_proc.keys():\n self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )\n def A_ ( self\t\t: int ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: int\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Tuple\t\t = 'test'\n\n __snake_case\t\t\t\t: Tuple\t\t = processor(text=__a )\n\n __snake_case\t\t\t\t: Tuple\t\t = tokenizer(__a )\n for key in encoded_tok.keys():\n self.assertListEqual(encoded_tok[key] , encoded_processor[key] )\n def A_ ( self\t\t: int ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Optional[int]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Dict\t\t = 'test'\n __snake_case\t\t\t\t: Tuple\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] )\n\n # test if it raises when no input is passed\n with pytest.raises(__a ):\n processor()\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Tuple\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Any\t\t = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]\n\n __snake_case\t\t\t\t: List[Any]\t\t = processor.char_decode(__a )\n __snake_case\t\t\t\t: Any\t\t = tokenizer.batch_decode(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = [seq.replace(' ' , '' ) for seq in decoded_tok]\n\n self.assertListEqual(__a , __a )\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = None\n __snake_case\t\t\t\t: List[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )\n\n\n\n\n\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Optional[int]\t\t = MgpstrProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: str\t\t = torch.randn(1 , 27 , 38 )\n __snake_case\t\t\t\t: int\t\t = torch.randn(1 , 27 , 50257 )\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.randn(1 , 27 , 30522 )\n\n __snake_case\t\t\t\t: Tuple\t\t = processor.batch_decode([char_input, bpe_input, wp_input] )\n\n self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = n ** (1 / 3)\n return (val * val * val) == n\n\n\nif __name__ == \"__main__\":\n print(perfect_cube(2_7))\n print(perfect_cube(4))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":151,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport tempfile\nfrom functools import partial\nfrom unittest import TestCase\nfrom unittest.mock import patch\n\nimport numpy as np\nimport pytest\n\nfrom datasets.arrow_dataset import Dataset\nfrom datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex\n\nfrom .utils import require_elasticsearch, require_faiss\n\n\nA__ : Tuple =\t\t\tpytest.mark.integration\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} )\n return dset\n def A_ ( self\t\t: Union[str, Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n __snake_case\t\t\t\t: Dict\t\t = dset.map(\n lambda __a , __a : {\"vecs\": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n dset.drop_index('vecs' )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n dset.save_faiss_index('vecs' , tmp_file.name )\n dset.load_faiss_index('vecs2' , tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: Union[str, Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )\n dset.drop_index('vecs' )\n self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: Any\t\t = {'acknowledged': True}\n mocked_bulk.return_value([(True, None)] * 30 )\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Elasticsearch()\n\n dset.add_elasticsearch_index('filename' , es_client=__a )\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('filename' , 'my_name-train_29' )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n\n # add vectors\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsNotNone(index.faiss_index )\n self.assertEqual(index.faiss_index.ntotal , 5 )\n index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )\n self.assertEqual(index.faiss_index.ntotal , 10 )\n\n # single query\n __snake_case\t\t\t\t: Dict\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: List[str]\t\t = 1\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n # batched queries\n __snake_case\t\t\t\t: List[str]\t\t = np.eye(5 , dtype=np.floataa )[::-1]\n __snake_case , __snake_case\t\t\t\t: Dict\t\t = index.search_batch(__a )\n self.assertRaises(__a , index.search_batch , queries[0] )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: List[Any]\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([4, 3, 2, 1, 0] , __a )\n def A_ ( self\t\t: int ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(string_factory='Flat' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n __snake_case\t\t\t\t: List[str]\t\t = FaissIndex(string_factory='LSH' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexLSH )\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Dict\t\t = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Tuple\t\t = faiss.IndexFlat(5 )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex(custom_index=__a )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n\n\n\n\n\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n index.save(tmp_file.name )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex.load(tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search(__a )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n\n\n\n\n@require_faiss\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT\t\t\t\t\t\t\t)\n index.add_vectors(np.eye(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Dict\t\t = 'index.faiss'\n __snake_case\t\t\t\t: Any\t\t = f'''mock://{index_name}'''\n index.save(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = FaissIndex.load(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = np.zeros(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: Tuple\t\t = index.search(_UpperCAmelCase\t\t\t\t\t\t\t)\n assert scores[0] > 0\n assert indices[0] == 1\n\n\n\n\n\n@require_elasticsearch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: int\t\t = Elasticsearch()\n __snake_case\t\t\t\t: Dict\t\t = {'acknowledged': True}\n __snake_case\t\t\t\t: List[Any]\t\t = ElasticSearchIndex(es_client=__a )\n mocked_bulk.return_value([(True, None)] * 3 )\n index.add_documents(['foo', 'bar', 'foobar'] )\n\n # single query\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'foo'\n __snake_case\t\t\t\t: int\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # single query with timeout\n __snake_case\t\t\t\t: Dict\t\t = 'foo'\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: Optional[Any]\t\t = index.search(__a , request_timeout=30 )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # batched queries\n __snake_case\t\t\t\t: List[Any]\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: str\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: Any\t\t = index.search_batch(__a )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Tuple\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n # batched queries with timeout\n __snake_case\t\t\t\t: Tuple\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: List[Any]\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search_batch(__a , request_timeout=30 )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Dict\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport tempfile\nfrom functools import partial\nfrom unittest import TestCase\nfrom unittest.mock import patch\n\nimport numpy as np\nimport pytest\n\nfrom datasets.arrow_dataset import Dataset\nfrom datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex\n\nfrom .utils import require_elasticsearch, require_faiss\n\n\nA__ : Tuple =\t\t\tpytest.mark.integration\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} )\n return dset\n def A_ ( self\t\t: Union[str, Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n __snake_case\t\t\t\t: Dict\t\t = dset.map(\n lambda __a , __a : {\"vecs\": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n dset.drop_index('vecs' )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n dset.save_faiss_index('vecs' , tmp_file.name )\n dset.load_faiss_index('vecs2' , tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: Union[str, Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )\n dset.drop_index('vecs' )\n self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: Any\t\t = {'acknowledged': True}\n mocked_bulk.return_value([(True, None)] * 30 )\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Elasticsearch()\n\n dset.add_elasticsearch_index('filename' , es_client=__a )\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('filename' , 'my_name-train_29' )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n\n # add vectors\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsNotNone(index.faiss_index )\n self.assertEqual(index.faiss_index.ntotal , 5 )\n index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )\n self.assertEqual(index.faiss_index.ntotal , 10 )\n\n # single query\n __snake_case\t\t\t\t: Dict\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: List[str]\t\t = 1\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n # batched queries\n __snake_case\t\t\t\t: List[str]\t\t = np.eye(5 , dtype=np.floataa )[::-1]\n __snake_case , __snake_case\t\t\t\t: Dict\t\t = index.search_batch(__a )\n self.assertRaises(__a , index.search_batch , queries[0] )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: List[Any]\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([4, 3, 2, 1, 0] , __a )\n def A_ ( self\t\t: int ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(string_factory='Flat' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n __snake_case\t\t\t\t: List[str]\t\t = FaissIndex(string_factory='LSH' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexLSH )\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Dict\t\t = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Tuple\t\t = faiss.IndexFlat(5 )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex(custom_index=__a )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n\n\n\n\n\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n index.save(tmp_file.name )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex.load(tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search(__a )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n\n\n\n\n@require_faiss\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT\t\t\t\t\t\t\t)\n index.add_vectors(np.eye(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Dict\t\t = 'index.faiss'\n __snake_case\t\t\t\t: Any\t\t = f'''mock://{index_name}'''\n index.save(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = FaissIndex.load(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = np.zeros(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: Tuple\t\t = index.search(_UpperCAmelCase\t\t\t\t\t\t\t)\n assert scores[0] > 0\n assert indices[0] == 1\n\n\n\n\n\n@require_elasticsearch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: int\t\t = Elasticsearch()\n __snake_case\t\t\t\t: Dict\t\t = {'acknowledged': True}\n __snake_case\t\t\t\t: List[Any]\t\t = ElasticSearchIndex(es_client=__a )\n mocked_bulk.return_value([(True, None)] * 3 )\n index.add_documents(['foo', 'bar', 'foobar'] )\n\n # single query\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'foo'\n __snake_case\t\t\t\t: int\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # single query with timeout\n __snake_case\t\t\t\t: Dict\t\t = 'foo'\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: Optional[Any]\t\t = index.search(__a , request_timeout=30 )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # batched queries\n __snake_case\t\t\t\t: List[Any]\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: str\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: Any\t\t = index.search_batch(__a )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Tuple\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n # batched queries with timeout\n __snake_case\t\t\t\t: Tuple\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: List[Any]\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search_batch(__a , request_timeout=30 )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Dict\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport inspect\nimport tempfile\nfrom collections import OrderedDict, UserDict\nfrom collections.abc import MutableMapping\nfrom contextlib import ExitStack, contextmanager\nfrom dataclasses import fields\nfrom enum import Enum\nfrom typing import Any, ContextManager, List, Tuple\n\nimport numpy as np\n\nfrom .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy\n\n\nif is_flax_available():\n import jax.numpy as jnp\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __get__( self\t\t: Optional[Any] , __a\t\t: List[str] , __a\t\t: List[Any]=None ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # See docs.python.org/3/howto/descriptor.html#properties\n if obj is None:\n return self\n if self.fget is None:\n raise AttributeError('unreadable attribute' )\n __snake_case\t\t\t\t: Tuple\t\t = '__cached_' + self.fget.__name__\n __snake_case\t\t\t\t: int\t\t = getattr(__a , __a , __a )\n if cached is None:\n __snake_case\t\t\t\t: Optional[int]\t\t = self.fget(__a )\n setattr(__a , __a , __a )\n return cached\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> List[Any]:\n __snake_case\t\t\t\t: int\t\t = val.lower()\n if val in {\"y\", \"yes\", \"t\", \"true\", \"on\", \"1\"}:\n return 1\n if val in {\"n\", \"no\", \"f\", \"false\", \"off\", \"0\"}:\n return 0\n raise ValueError(f'''invalid truth value {val!r}'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> str:\n if is_torch_fx_proxy(_UpperCAmelCase\t\t\t\t\t\t\t):\n return True\n if is_torch_available():\n import torch\n\n if isinstance(_UpperCAmelCase\t\t\t\t,torch.Tensor\t\t\t\t\t\t\t):\n return True\n if is_tf_available():\n import tensorflow as tf\n\n if isinstance(_UpperCAmelCase\t\t\t\t,tf.Tensor\t\t\t\t\t\t\t):\n return True\n\n if is_flax_available():\n import jax.numpy as jnp\n from jax.core import Tracer\n\n if isinstance(_UpperCAmelCase\t\t\t\t,(jnp.ndarray, Tracer)\t\t\t\t\t\t\t):\n return True\n\n return isinstance(_UpperCAmelCase\t\t\t\t,np.ndarray\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> List[Any]:\n return isinstance(_UpperCAmelCase\t\t\t\t,np.ndarray\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Optional[int]:\n return _is_numpy(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> List[Any]:\n import torch\n\n return isinstance(_UpperCAmelCase\t\t\t\t,torch.Tensor\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> List[Any]:\n return False if not is_torch_available() else _is_torch(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Optional[Any]:\n import torch\n\n return isinstance(_UpperCAmelCase\t\t\t\t,torch.device\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Dict:\n return False if not is_torch_available() else _is_torch_device(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Any:\n import torch\n\n if isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n if hasattr(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: int\t\t = getattr(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n return False\n return isinstance(_UpperCAmelCase\t\t\t\t,torch.dtype\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n return False if not is_torch_available() else _is_torch_dtype(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Tuple:\n import tensorflow as tf\n\n return isinstance(_UpperCAmelCase\t\t\t\t,tf.Tensor\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t\t\t\t) -> str:\n return False if not is_tf_available() else _is_tensorflow(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Any:\n import tensorflow as tf\n\n # the `is_symbolic_tensor` predicate is only available starting with TF 2.14\n if hasattr(_UpperCAmelCase\t\t\t\t,'is_symbolic_tensor'\t\t\t\t\t\t\t):\n return tf.is_symbolic_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n return type(_UpperCAmelCase\t\t\t\t\t\t\t) == tf.Tensor\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Union[str, Any]:\n return False if not is_tf_available() else _is_tf_symbolic_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import jax.numpy as jnp # noqa: F811\n\n return isinstance(_UpperCAmelCase\t\t\t\t,jnp.ndarray\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Optional[Any]:\n return False if not is_flax_available() else _is_jax(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> List[Any]:\n if isinstance(_UpperCAmelCase\t\t\t\t,(dict, UserDict)\t\t\t\t\t\t\t):\n return {k: to_py_obj(_UpperCAmelCase\t\t\t\t\t\t\t) for k, v in obj.items()}\n elif isinstance(_UpperCAmelCase\t\t\t\t,(list, tuple)\t\t\t\t\t\t\t):\n return [to_py_obj(_UpperCAmelCase\t\t\t\t\t\t\t) for o in obj]\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return obj.numpy().tolist()\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return obj.detach().cpu().tolist()\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.asarray(_UpperCAmelCase\t\t\t\t\t\t\t).tolist()\n elif isinstance(_UpperCAmelCase\t\t\t\t,(np.ndarray, np.number)\t\t\t\t\t\t\t): # tolist also works on 0d np arrays\n return obj.tolist()\n else:\n return obj\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Any:\n if isinstance(_UpperCAmelCase\t\t\t\t,(dict, UserDict)\t\t\t\t\t\t\t):\n return {k: to_numpy(_UpperCAmelCase\t\t\t\t\t\t\t) for k, v in obj.items()}\n elif isinstance(_UpperCAmelCase\t\t\t\t,(list, tuple)\t\t\t\t\t\t\t):\n return np.array(_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return obj.numpy()\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return obj.detach().cpu().numpy()\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.asarray(_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n return obj\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = fields(self )\n\n # Safety and consistency checks\n if not len(__a ):\n raise ValueError(f'''{self.__class__.__name__} has no fields.''' )\n if not all(field.default is None for field in class_fields[1:] ):\n raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' )\n\n __snake_case\t\t\t\t: Dict\t\t = getattr(self , class_fields[0].name )\n __snake_case\t\t\t\t: Any\t\t = all(getattr(self , field.name ) is None for field in class_fields[1:] )\n\n if other_fields_are_none and not is_tensor(__a ):\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: Optional[int]\t\t = first_field.items()\n __snake_case\t\t\t\t: List[Any]\t\t = True\n else:\n try:\n __snake_case\t\t\t\t: Optional[int]\t\t = iter(__a )\n __snake_case\t\t\t\t: List[str]\t\t = True\n except TypeError:\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n\n # if we provided an iterator as first field and the iterator is a (key, value) iterator\n # set the associated fields\n if first_field_iterator:\n for idx, element in enumerate(__a ):\n if (\n not isinstance(__a , (list, tuple) )\n or not len(__a ) == 2\n or not isinstance(element[0] , __a )\n ):\n if idx == 0:\n # If we do not have an iterator of key/values, set it as attribute\n __snake_case\t\t\t\t: Union[str, Any]\t\t = first_field\n else:\n # If we have a mixed iterator, raise an error\n raise ValueError(\n f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )\n break\n setattr(self , element[0] , element[1] )\n if element[1] is not None:\n __snake_case\t\t\t\t: Optional[int]\t\t = element[1]\n elif first_field is not None:\n __snake_case\t\t\t\t: Optional[int]\t\t = first_field\n else:\n for field in class_fields:\n __snake_case\t\t\t\t: Optional[Any]\t\t = getattr(self , field.name )\n if v is not None:\n __snake_case\t\t\t\t: List[str]\t\t = v\n def __delitem__( self\t\t: List[str] , *__a\t\t: Dict , **__a\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )\n def A_ ( self\t\t: Optional[int] , *__a\t\t: List[Any] , **__a\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )\n def A_ ( self\t\t: Union[str, Any] , *__a\t\t: Dict , **__a\t\t: Any ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )\n def A_ ( self\t\t: Dict , *__a\t\t: str , **__a\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )\n def __getitem__( self\t\t: str , __a\t\t: Any ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: List[Any]\t\t = dict(self.items() )\n return inner_dict[k]\n else:\n return self.to_tuple()[k]\n def __setattr__( self\t\t: List[Any] , __a\t\t: Union[str, Any] , __a\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n if name in self.keys() and value is not None:\n # Don't call self.__setitem__ to avoid recursion errors\n super().__setitem__(__a , __a )\n super().__setattr__(__a , __a )\n def __setitem__( self\t\t: List[Any] , __a\t\t: Optional[Any] , __a\t\t: Any ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Will raise a KeyException if needed\n super().__setitem__(__a , __a )\n # Don't call self.__setattr__ to avoid recursion errors\n super().__setattr__(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: Dict ) -> Tuple[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return tuple(self[k] for k in self.keys() )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @classmethod\n def A_ ( cls\t\t: List[str] , __a\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n raise ValueError(\n f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''longest'''\n A__\t\t\t\t\t\t\t=\t\t\t\t'''max_length'''\n A__\t\t\t\t\t\t\t=\t\t\t\t'''do_not_pad'''\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''pt'''\n A__\t\t\t\t\t\t\t=\t\t\t\t'''tf'''\n A__\t\t\t\t\t\t\t=\t\t\t\t'''np'''\n A__\t\t\t\t\t\t\t=\t\t\t\t'''jax'''\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Union[str, Any] , __a\t\t: List[ContextManager] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = context_managers\n __snake_case\t\t\t\t: Optional[int]\t\t = ExitStack()\n def __enter__( self\t\t: List[str] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n for context_manager in self.context_managers:\n self.stack.enter_context(__a )\n\n\n\n\n\n def __exit__( self\t\t: Tuple , *__a\t\t: Any , **__a\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.stack.__exit__(*__a , **__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Any\t\t = infer_framework(_UpperCAmelCase\t\t\t\t\t\t\t)\n if framework == \"tf\":\n __snake_case\t\t\t\t: Optional[int]\t\t = inspect.signature(model_class.call\t\t\t\t\t\t\t) # TensorFlow models\n elif framework == \"pt\":\n __snake_case\t\t\t\t: Any\t\t = inspect.signature(model_class.forward\t\t\t\t\t\t\t) # PyTorch models\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = inspect.signature(model_class.__call__\t\t\t\t\t\t\t) # Flax models\n\n for p in signature.parameters:\n if p == \"return_loss\" and signature.parameters[p].default is True:\n return True\n\n return False\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: str\t\t = model_class.__name__\n __snake_case\t\t\t\t: str\t\t = infer_framework(_UpperCAmelCase\t\t\t\t\t\t\t)\n if framework == \"tf\":\n __snake_case\t\t\t\t: Optional[Any]\t\t = inspect.signature(model_class.call\t\t\t\t\t\t\t) # TensorFlow models\n elif framework == \"pt\":\n __snake_case\t\t\t\t: List[str]\t\t = inspect.signature(model_class.forward\t\t\t\t\t\t\t) # PyTorch models\n else:\n __snake_case\t\t\t\t: Dict\t\t = inspect.signature(model_class.__call__\t\t\t\t\t\t\t) # Flax models\n\n if \"QuestionAnswering\" in model_name:\n return [p for p in signature.parameters if \"label\" in p or p in (\"start_positions\", \"end_positions\")]\n else:\n return [p for p in signature.parameters if \"label\" in p]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : MutableMapping\t\t\t\t,_UpperCAmelCase : str = \"\"\t\t\t\t,_UpperCAmelCase : str = \".\"\t\t\t\t\t\t\t) -> int:\n\n def _flatten_dict(_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : str=\"\"\t\t\t\t,_UpperCAmelCase : Dict=\".\"\t\t\t\t\t\t\t):\n for k, v in d.items():\n __snake_case\t\t\t\t: str\t\t = str(_UpperCAmelCase\t\t\t\t\t\t\t) + delimiter + str(_UpperCAmelCase\t\t\t\t\t\t\t) if parent_key else k\n if v and isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n yield from flatten_dict(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,delimiter=_UpperCAmelCase\t\t\t\t\t\t\t).items()\n else:\n yield key, v\n\n return dict(_flatten_dict(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\n@contextmanager\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t,_UpperCAmelCase : bool = False\t\t\t\t\t\t\t) -> List[Any]:\n if use_temp_dir:\n with tempfile.TemporaryDirectory() as tmp_dir:\n yield tmp_dir\n else:\n yield working_dir\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : Tuple=None\t\t\t\t\t\t\t) -> Any:\n if is_numpy_array(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.transpose(_UpperCAmelCase\t\t\t\t,axes=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.T if axes is None else array.permute(*_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n import tensorflow as tf\n\n return tf.transpose(_UpperCAmelCase\t\t\t\t,perm=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return jnp.transpose(_UpperCAmelCase\t\t\t\t,axes=_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''Type not supported for transpose: {type(_UpperCAmelCase\t\t\t\t\t\t\t)}.'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> int:\n if is_numpy_array(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.reshape(*_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n import tensorflow as tf\n\n return tf.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return jnp.reshape(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''Type not supported for reshape: {type(_UpperCAmelCase\t\t\t\t\t\t\t)}.'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : int=None\t\t\t\t\t\t\t) -> Optional[int]:\n if is_numpy_array(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.squeeze(_UpperCAmelCase\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.squeeze() if axis is None else array.squeeze(dim=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n import tensorflow as tf\n\n return tf.squeeze(_UpperCAmelCase\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return jnp.squeeze(_UpperCAmelCase\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''Type not supported for squeeze: {type(_UpperCAmelCase\t\t\t\t\t\t\t)}.'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> Any:\n if is_numpy_array(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.expand_dims(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.unsqueeze(dim=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n import tensorflow as tf\n\n return tf.expand_dims(_UpperCAmelCase\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return jnp.expand_dims(_UpperCAmelCase\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''Type not supported for expand_dims: {type(_UpperCAmelCase\t\t\t\t\t\t\t)}.'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Dict:\n if is_numpy_array(_UpperCAmelCase\t\t\t\t\t\t\t):\n return np.size(_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_torch_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.numel()\n elif is_tf_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n import tensorflow as tf\n\n return tf.size(_UpperCAmelCase\t\t\t\t\t\t\t)\n elif is_jax_tensor(_UpperCAmelCase\t\t\t\t\t\t\t):\n return array.size\n else:\n raise ValueError(f'''Type not supported for expand_dims: {type(_UpperCAmelCase\t\t\t\t\t\t\t)}.'''\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> Dict:\n for key, value in auto_map.items():\n if isinstance(_UpperCAmelCase\t\t\t\t,(tuple, list)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = [f'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value]\n elif value is not None and \"--\" not in value:\n __snake_case\t\t\t\t: List[Any]\t\t = f'''{repo_id}--{value}'''\n\n return auto_map\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n for base_class in inspect.getmro(_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = base_class.__module__\n __snake_case\t\t\t\t: Optional[int]\t\t = base_class.__name__\n if module.startswith('tensorflow'\t\t\t\t\t\t\t) or module.startswith('keras'\t\t\t\t\t\t\t) or name == \"TFPreTrainedModel\":\n return \"tf\"\n elif module.startswith('torch'\t\t\t\t\t\t\t) or name == \"PreTrainedModel\":\n return \"pt\"\n elif module.startswith('flax'\t\t\t\t\t\t\t) or module.startswith('jax'\t\t\t\t\t\t\t) or name == \"FlaxPreTrainedModel\":\n return \"flax\"\n else:\n raise TypeError(f'''Could not infer framework from class {model_class}.'''\t\t\t\t\t\t\t)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Mapping\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...onnx import OnnxSeqaSeqConfigWithPast\nfrom ...utils import logging\n\n\nA__ : List[Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : Tuple =\t\t\t{\n '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''',\n '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''',\n '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''',\n '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''',\n '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''',\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''t5'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}\n def __init__( self\t\t: str , __a\t\t: Dict=32128 , __a\t\t: Dict=512 , __a\t\t: Union[str, Any]=64 , __a\t\t: str=2048 , __a\t\t: Union[str, Any]=6 , __a\t\t: Any=None , __a\t\t: Any=8 , __a\t\t: List[Any]=32 , __a\t\t: Any=128 , __a\t\t: Tuple=0.1 , __a\t\t: str=1e-6 , __a\t\t: Dict=1.0 , __a\t\t: Tuple=\"relu\" , __a\t\t: Dict=True , __a\t\t: Union[str, Any]=True , __a\t\t: Any=0 , __a\t\t: Dict=1 , **__a\t\t: Union[str, Any] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: str\t\t = d_model\n __snake_case\t\t\t\t: str\t\t = d_kv\n __snake_case\t\t\t\t: List[Any]\t\t = d_ff\n __snake_case\t\t\t\t: List[str]\t\t = num_layers\n __snake_case\t\t\t\t: Tuple\t\t = (\n num_decoder_layers if num_decoder_layers is not None else self.num_layers\n ) # default = symmetry\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_heads\n __snake_case\t\t\t\t: Tuple\t\t = relative_attention_num_buckets\n __snake_case\t\t\t\t: Optional[int]\t\t = relative_attention_max_distance\n __snake_case\t\t\t\t: Optional[Any]\t\t = dropout_rate\n __snake_case\t\t\t\t: str\t\t = layer_norm_epsilon\n __snake_case\t\t\t\t: List[str]\t\t = initializer_factor\n __snake_case\t\t\t\t: int\t\t = feed_forward_proj\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_cache\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.feed_forward_proj.split('-' )\n __snake_case\t\t\t\t: Dict\t\t = act_info[-1]\n __snake_case\t\t\t\t: List[str]\t\t = act_info[0] == 'gated'\n\n if len(__a ) > 1 and act_info[0] != \"gated\" or len(__a ) > 2:\n raise ValueError(\n f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''\n 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '\n '\\'gated-gelu\\' or \\'relu\\'' )\n\n # for backwards compatibility\n if feed_forward_proj == \"gated-gelu\":\n __snake_case\t\t\t\t: Dict\t\t = 'gelu_new'\n\n super().__init__(\n pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @property\n def A_ ( self\t\t: str ) -> Mapping[str, Mapping[int, str]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'input_ids': {0: 'batch', 1: 'encoder_sequence'},\n 'attention_mask': {0: 'batch', 1: 'encoder_sequence'},\n }\n if self.use_past:\n __snake_case\t\t\t\t: Tuple\t\t = 'past_encoder_sequence + sequence'\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch'}\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch', 1: 'past_decoder_sequence + sequence'}\n else:\n __snake_case\t\t\t\t: Tuple\t\t = {0: 'batch', 1: 'decoder_sequence'}\n __snake_case\t\t\t\t: int\t\t = {0: 'batch', 1: 'decoder_sequence'}\n\n if self.use_past:\n self.fill_with_past_key_values_(__a , direction='inputs' )\n\n return common_inputs\n\n\n\n\n\n @property\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 13\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":153,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Any, Dict, List, Union\n\nfrom ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends\nfrom .base import PIPELINE_INIT_ARGS, ChunkPipeline\n\n\nif is_vision_available():\n from PIL import Image\n\n from ..image_utils import load_image\n\nif is_torch_available():\n import torch\n\n from transformers.modeling_outputs import BaseModelOutput\n\n from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING\n\nA__ : Optional[int] =\t\t\tlogging.get_logger(__name__)\n\n\n\n@add_end_docstrings(SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t)\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Dict , **__a\t\t: Dict ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(**__a )\n\n if self.framework == \"tf\":\n raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )\n\n requires_backends(self , 'vision' )\n self.check_model_type(__a )\n def __call__( self\t\t: Dict , __a\t\t: Union[str, \"Image.Image\", List[Dict[str, Any]]] , __a\t\t: Union[str, List[str]] = None , **__a\t\t: Any , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n if \"text_queries\" in kwargs:\n __snake_case\t\t\t\t: Tuple\t\t = kwargs.pop('text_queries' )\n\n if isinstance(__a , (str, Image.Image) ):\n __snake_case\t\t\t\t: List[str]\t\t = {'image': image, 'candidate_labels': candidate_labels}\n else:\n __snake_case\t\t\t\t: Optional[int]\t\t = image\n __snake_case\t\t\t\t: Union[str, Any]\t\t = super().__call__(__a , **__a )\n return results\n def A_ ( self\t\t: List[str] , **__a\t\t: int ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = {}\n if \"threshold\" in kwargs:\n __snake_case\t\t\t\t: int\t\t = kwargs['threshold']\n if \"top_k\" in kwargs:\n __snake_case\t\t\t\t: int\t\t = kwargs['top_k']\n return {}, {}, postprocess_params\n def A_ ( self\t\t: List[str] , __a\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = load_image(inputs['image'] )\n __snake_case\t\t\t\t: Optional[int]\t\t = inputs['candidate_labels']\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: Dict\t\t = candidate_labels.split(',' )\n\n __snake_case\t\t\t\t: Tuple\t\t = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )\n for i, candidate_label in enumerate(__a ):\n __snake_case\t\t\t\t: str\t\t = self.tokenizer(__a , return_tensors=self.framework )\n __snake_case\t\t\t\t: Tuple\t\t = self.image_processor(__a , return_tensors=self.framework )\n yield {\n \"is_last\": i == len(__a ) - 1,\n \"target_size\": target_size,\n \"candidate_label\": candidate_label,\n **text_inputs,\n **image_features,\n }\n def A_ ( self\t\t: Optional[Any] , __a\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = model_inputs.pop('target_size' )\n __snake_case\t\t\t\t: Tuple\t\t = model_inputs.pop('candidate_label' )\n __snake_case\t\t\t\t: List[Any]\t\t = model_inputs.pop('is_last' )\n\n __snake_case\t\t\t\t: Any\t\t = self.model(**__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs}\n return model_outputs\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Optional[Any] , __a\t\t: List[Any]=0.1 , __a\t\t: Dict=None ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = []\n for model_output in model_outputs:\n __snake_case\t\t\t\t: Optional[Any]\t\t = model_output['candidate_label']\n __snake_case\t\t\t\t: List[str]\t\t = BaseModelOutput(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = self.image_processor.post_process_object_detection(\n outputs=__a , threshold=__a , target_sizes=model_output['target_size'] )[0]\n\n for index in outputs[\"scores\"].nonzero():\n __snake_case\t\t\t\t: Dict\t\t = outputs['scores'][index].item()\n __snake_case\t\t\t\t: List[Any]\t\t = self._get_bounding_box(outputs['boxes'][index][0] )\n\n __snake_case\t\t\t\t: Any\t\t = {'score': score, 'label': label, 'box': box}\n results.append(__a )\n\n __snake_case\t\t\t\t: str\t\t = sorted(__a , key=lambda __a : x[\"score\"] , reverse=__a )\n if top_k:\n __snake_case\t\t\t\t: Any\t\t = results[:top_k]\n\n return results\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] , __a\t\t: \"torch.Tensor\" ) -> Dict[str, int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if self.framework != \"pt\":\n raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' )\n __snake_case , __snake_case , __snake_case , __snake_case\t\t\t\t: Dict\t\t = box.int().tolist()\n __snake_case\t\t\t\t: str\t\t = {\n 'xmin': xmin,\n 'ymin': ymin,\n 'xmax': xmax,\n 'ymax': ymax,\n }\n return bbox\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : Tuple =\t\t\tlogging.get_logger(__name__)\n\nA__ : Optional[int] =\t\t\t{}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''llama'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n def __init__( self\t\t: Any , __a\t\t: List[str]=32000 , __a\t\t: Union[str, Any]=4096 , __a\t\t: Optional[Any]=11008 , __a\t\t: Any=32 , __a\t\t: str=32 , __a\t\t: Optional[int]=None , __a\t\t: Dict=\"silu\" , __a\t\t: Dict=2048 , __a\t\t: List[str]=0.0_2 , __a\t\t: Union[str, Any]=1e-6 , __a\t\t: Dict=True , __a\t\t: List[str]=0 , __a\t\t: Tuple=1 , __a\t\t: Tuple=2 , __a\t\t: Optional[Any]=1 , __a\t\t: Any=False , __a\t\t: Tuple=None , **__a\t\t: List[Any] , ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[Any]\t\t = hidden_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = intermediate_size\n __snake_case\t\t\t\t: Optional[int]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: List[Any]\t\t = num_attention_heads\n\n # for backward compatibility\n if num_key_value_heads is None:\n __snake_case\t\t\t\t: Optional[int]\t\t = num_attention_heads\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = num_key_value_heads\n __snake_case\t\t\t\t: int\t\t = hidden_act\n __snake_case\t\t\t\t: Any\t\t = initializer_range\n __snake_case\t\t\t\t: Any\t\t = rms_norm_eps\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pretraining_tp\n __snake_case\t\t\t\t: Optional[int]\t\t = use_cache\n __snake_case\t\t\t\t: Any\t\t = rope_scaling\n self._rope_scaling_validation()\n\n super().__init__(\n pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , )\n\n\n\n\n\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if self.rope_scaling is None:\n return\n\n if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2:\n raise ValueError(\n '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '\n f'''got {self.rope_scaling}''' )\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.rope_scaling.get('type' , __a )\n __snake_case\t\t\t\t: Tuple\t\t = self.rope_scaling.get('factor' , __a )\n if rope_scaling_type is None or rope_scaling_type not in [\"linear\", \"dynamic\"]:\n raise ValueError(\n f'''`rope_scaling`\\'s name field must be one of [\\'linear\\', \\'dynamic\\'], got {rope_scaling_type}''' )\n if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0:\n raise ValueError(f'''`rope_scaling`\\'s factor field must be an float > 1, got {rope_scaling_factor}''' )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":154,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nA__ : Optional[Any] =\t\t\ttuple[float, float, float]\nA__ : str =\t\t\ttuple[float, float, float]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Pointad\t\t\t\t,_UpperCAmelCase : Pointad\t\t\t\t\t\t\t) -> Vectorad:\n __snake_case\t\t\t\t: List[Any]\t\t = end_pointa[0] - end_pointa[0]\n __snake_case\t\t\t\t: str\t\t = end_pointa[1] - end_pointa[1]\n __snake_case\t\t\t\t: Optional[int]\t\t = end_pointa[2] - end_pointa[2]\n return (x, y, z)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Vectorad\t\t\t\t,_UpperCAmelCase : Vectorad\t\t\t\t\t\t\t) -> Vectorad:\n __snake_case\t\t\t\t: Dict\t\t = ab[1] * ac[2] - ab[2] * ac[1] # *i\n __snake_case\t\t\t\t: int\t\t = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j\n __snake_case\t\t\t\t: Any\t\t = ab[0] * ac[1] - ab[1] * ac[0] # *k\n return (x, y, z)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Vectorad\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n return tuple(round(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) for x in vector\t\t\t\t\t\t\t) == (0, 0, 0)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Pointad\t\t\t\t,_UpperCAmelCase : Pointad\t\t\t\t,_UpperCAmelCase : Pointad\t\t\t\t,_UpperCAmelCase : int = 10\t\t\t\t\t\t\t) -> bool:\n __snake_case\t\t\t\t: Any\t\t = create_vector(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = create_vector(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n return is_zero_vector(get_ad_vectors_cross(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : str =\t\t\t'''Muhammad Umer Farooq'''\nA__ : int =\t\t\t'''MIT'''\nA__ : Optional[int] =\t\t\t'''1.0.0'''\nA__ : List[Any] =\t\t\t'''Muhammad Umer Farooq'''\nA__ : Optional[Any] =\t\t\t'''contact@muhammadumerfarooq.me'''\nA__ : Optional[Any] =\t\t\t'''Alpha'''\n\nimport re\nfrom html.parser import HTMLParser\nfrom urllib import parse\n\nimport requests\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Union[str, Any] , __a\t\t: str ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__()\n __snake_case\t\t\t\t: list[str]\t\t = []\n __snake_case\t\t\t\t: Dict\t\t = domain\n\n\n\n\n\n def A_ ( self\t\t: Dict , __a\t\t: str , __a\t\t: list[tuple[str, str | None]] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Only parse the 'anchor' tag.\n if tag == \"a\":\n # Check the list of defined attributes.\n for name, value in attrs:\n # If href is defined, and not empty nor # print it.\n if name == \"href\" and value != \"#\" and value != \"\":\n # If not already in urls.\n if value not in self.urls:\n __snake_case\t\t\t\t: Optional[Any]\t\t = parse.urljoin(self.domain , __a )\n self.urls.append(__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return \".\".join(get_sub_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t).split('.'\t\t\t\t\t\t\t)[-2:]\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return parse.urlparse(_UpperCAmelCase\t\t\t\t\t\t\t).netloc\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"https://github.com\"\t\t\t\t\t\t\t) -> list[str]:\n __snake_case\t\t\t\t: List[Any]\t\t = get_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Initialize the parser\n __snake_case\t\t\t\t: Tuple\t\t = Parser(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n try:\n # Open URL\n __snake_case\t\t\t\t: Any\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # pass the raw HTML to the parser to get links\n parser.feed(r.text\t\t\t\t\t\t\t)\n\n # Get links and loop through\n __snake_case\t\t\t\t: Dict\t\t = set()\n for link in parser.urls:\n # open URL.\n # read = requests.get(link)\n try:\n __snake_case\t\t\t\t: List[Any]\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Get the valid email.\n __snake_case\t\t\t\t: Optional[Any]\t\t = re.findall('[a-zA-Z0-9]+@' + domain\t\t\t\t,read.text\t\t\t\t\t\t\t)\n # If not in list then append it.\n for email in emails:\n valid_emails.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n except ValueError:\n pass\n except ValueError:\n raise SystemExit(1\t\t\t\t\t\t\t)\n\n # Finally return a sorted list of email addresses with no duplicates.\n return sorted(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Tuple =\t\t\temails_from_url('''https://github.com''')\n print(F\"\"\"{len(emails)} emails found:\"\"\")\n print('''\\n'''.join(sorted(emails)))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":155,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\n\nimport tensorflow as tf\nfrom packaging import version\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Optional[Any]\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: str\t\t = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0\t\t\t\t\t\t\t)\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\t\t\t\t\t\t\t))\n\n return x * cdf\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: Dict\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = tf.cast(math.pi\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[str]\t\t = tf.cast(0.0_4_4_7_1_5\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi\t\t\t\t\t\t\t) * (x + coeff * tf.pow(_UpperCAmelCase\t\t\t\t,3\t\t\t\t\t\t\t))\t\t\t\t\t\t\t))\n\n return x * cdf\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Any\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return x * tf.tanh(tf.math.softplus(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Optional[Any]\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = tf.cast(0.0_4_4_7_1_5\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[str]\t\t = tf.cast(0.7_9_7_8_8_4_5_6_0_8\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\n\n return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x)\t\t\t\t\t\t\t))\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: List[Any]\t\t = tf.convert_to_tensor(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: str\t\t = tf.cast(1.7_0_2\t\t\t\t,x.dtype\t\t\t\t\t\t\t)\n return x * tf.math.sigmoid(coeff * x\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n return tf.clip_by_value(_gelu(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t,-10\t\t\t\t,10\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : str=-1\t\t\t\t\t\t\t) -> Dict:\n __snake_case , __snake_case\t\t\t\t: Dict\t\t = tf.split(_UpperCAmelCase\t\t\t\t,2\t\t\t\t,axis=_UpperCAmelCase\t\t\t\t\t\t\t)\n return a * tf.math.sigmoid(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif version.parse(tf.version.VERSION) >= version.parse('''2.4'''):\n\n\n\n\n\n def a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> Dict:\n return tf.keras.activations.gelu(_UpperCAmelCase\t\t\t\t,approximate=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n A__ : List[Any] =\t\t\ttf.keras.activations.gelu\n\n\n\n\n\n A__ : str =\t\t\tapproximate_gelu_wrap\nelse:\n A__ : List[str] =\t\t\t_gelu\n A__ : List[str] =\t\t\t_gelu_new\n\n\nA__ : str =\t\t\t{\n '''gelu''': gelu,\n '''gelu_10''': gelu_aa,\n '''gelu_fast''': gelu_fast,\n '''gelu_new''': gelu_new,\n '''glu''': glu,\n '''mish''': mish,\n '''quick_gelu''': quick_gelu,\n '''relu''': tf.keras.activations.relu,\n '''sigmoid''': tf.keras.activations.sigmoid,\n '''silu''': tf.keras.activations.swish,\n '''swish''': tf.keras.activations.swish,\n '''tanh''': tf.keras.activations.tanh,\n}\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n if activation_string in ACTaFN:\n return ACTaFN[activation_string]\n else:\n raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys()\t\t\t\t\t\t\t)}'''\t\t\t\t\t\t\t)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nimport logging\nimport os\nimport shutil\nimport sys\nimport tempfile\nimport unittest\nfrom unittest import mock\n\nimport torch\nfrom accelerate.utils import write_basic_config\n\nfrom transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device\nfrom transformers.utils import is_apex_available\n\n\nlogging.basicConfig(level=logging.DEBUG)\n\nA__ : Dict =\t\t\tlogging.getLogger()\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[Any]\t\t = argparse.ArgumentParser()\n parser.add_argument('-f'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = parser.parse_args()\n return args.f\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = {}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = os.path.join(_UpperCAmelCase\t\t\t\t,'all_results.json'\t\t\t\t\t\t\t)\n if os.path.exists(_UpperCAmelCase\t\t\t\t\t\t\t):\n with open(_UpperCAmelCase\t\t\t\t,'r'\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: List[str]\t\t = json.load(_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''can\\'t find {path}'''\t\t\t\t\t\t\t)\n return results\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.cuda.is_available() and torch_device == 'cuda'\n return is_using_cuda and is_apex_available()\n\n\nA__ : str =\t\t\tlogging.StreamHandler(sys.stdout)\nlogger.addHandler(stream_handler)\n\n\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @classmethod\n def A_ ( cls\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU\n __snake_case\t\t\t\t: Optional[int]\t\t = tempfile.mkdtemp()\n __snake_case\t\t\t\t: Dict\t\t = os.path.join(cls.tmpdir , 'default_config.yml' )\n write_basic_config(save_location=cls.configPath )\n __snake_case\t\t\t\t: List[Any]\t\t = ['accelerate', 'launch', '--config_file', cls.configPath]\n @classmethod\n def A_ ( cls\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(cls.tmpdir )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[Any]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: List[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if torch.cuda.device_count() > 1:\n # Skipping because there are not enough batches to train the model + would need a drop_last to work.\n return\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 100 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 42 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu\n __snake_case\t\t\t\t: Any\t\t = 7 if get_gpu_count() > 1 else 2\n\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertLess(result['train_loss'] , 0.5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) )\n @unittest.skip(reason='Fix me @muellerzr' )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Tuple\t\t = f'''\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.\n self.assertGreaterEqual(result['eval_f1'] , 28 )\n self.assertGreaterEqual(result['eval_exact'] , 28 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Any\t\t = f'''\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.8 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: int\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_rouge1'] , 10 )\n self.assertGreaterEqual(result['eval_rouge2'] , 2 )\n self.assertGreaterEqual(result['eval_rougeL'] , 7 )\n self.assertGreaterEqual(result['eval_rougeLsum'] , 7 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_bleu'] , 30 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) )\n @slow\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = logging.StreamHandler(sys.stdout )\n logger.addHandler(__a )\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 )\n\n\n\n\n\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Optional[int]\t\t = get_results(__a )\n # The base model scores a 25%\n self.assertGreaterEqual(result['eval_accuracy'] , 0.6 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":156,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import (\n OptionalDependencyNotAvailable,\n _LazyModule,\n is_sentencepiece_available,\n is_speech_available,\n is_tf_available,\n is_torch_available,\n)\n\n\nA__ : List[Any] =\t\t\t{\n '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''],\n '''processing_speech_to_text''': ['''Speech2TextProcessor'''],\n}\n\ntry:\n if not is_sentencepiece_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : List[Any] =\t\t\t['''Speech2TextTokenizer''']\n\ntry:\n if not is_speech_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : List[Any] =\t\t\t['''Speech2TextFeatureExtractor''']\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[Any] =\t\t\t[\n '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFSpeech2TextForConditionalGeneration''',\n '''TFSpeech2TextModel''',\n '''TFSpeech2TextPreTrainedModel''',\n ]\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Dict =\t\t\t[\n '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''Speech2TextForConditionalGeneration''',\n '''Speech2TextModel''',\n '''Speech2TextPreTrainedModel''',\n ]\n\n\nif TYPE_CHECKING:\n from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig\n from .processing_speech_to_text import SpeechaTextProcessor\n\n try:\n if not is_sentencepiece_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .tokenization_speech_to_text import SpeechaTextTokenizer\n\n try:\n if not is_speech_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_speech_to_text import (\n TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFSpeechaTextForConditionalGeneration,\n TFSpeechaTextModel,\n TFSpeechaTextPreTrainedModel,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_speech_to_text import (\n SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,\n SpeechaTextForConditionalGeneration,\n SpeechaTextModel,\n SpeechaTextPreTrainedModel,\n )\n\nelse:\n import sys\n\n A__ : Dict =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n __snake_case\t\t\t\t: Optional[Any]\t\t = [True] * n\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n __snake_case\t\t\t\t: Dict\t\t = False\n __snake_case\t\t\t\t: List[Any]\t\t = True\n\n for i in range(3\t\t\t\t,int(n**0.5 + 1\t\t\t\t\t\t\t)\t\t\t\t,2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = i * 2\n while index < n:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n __snake_case\t\t\t\t: int\t\t = index + i\n\n __snake_case\t\t\t\t: Dict\t\t = [2]\n\n for i in range(3\t\t\t\t,_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t):\n if is_prime[i]:\n primes.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return primes\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 99_99_66_66_33_33\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: List[Any]\t\t = math.floor(math.sqrt(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) + 1_00\n __snake_case\t\t\t\t: Tuple\t\t = prime_sieve(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index]\n\n while (last_prime**2) <= limit:\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index + 1]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = last_prime**2\n __snake_case\t\t\t\t: Dict\t\t = next_prime**2\n\n # Get numbers divisible by lps(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = lower_bound + last_prime\n while upper_bound > current <= limit:\n matches_sum += current\n current += last_prime\n\n # Reset the upper_bound\n while (upper_bound - next_prime) > limit:\n upper_bound -= next_prime\n\n # Add the numbers divisible by ups(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = upper_bound - next_prime\n while current > lower_bound:\n matches_sum += current\n current -= next_prime\n\n # Remove the numbers divisible by both ups and lps\n __snake_case\t\t\t\t: List[str]\t\t = 0\n while upper_bound > current <= limit:\n if current <= lower_bound:\n # Increment the current number\n current += last_prime * next_prime\n continue\n\n if current > limit:\n break\n\n # Remove twice since it was added by both ups and lps\n matches_sum -= current * 2\n\n # Increment the current number\n current += last_prime * next_prime\n\n # Setup for next pair\n __snake_case\t\t\t\t: Dict\t\t = next_prime\n prime_index += 1\n\n return matches_sum\n\n\nif __name__ == \"__main__\":\n print(solution())\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":157,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nfrom datetime import datetime as dt\n\nfrom github import Github\n\n\nA__ : Union[str, Any] =\t\t\t[\n '''good first issue''',\n '''feature request''',\n '''wip''',\n]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: List[str]\t\t = Github(os.environ['GITHUB_TOKEN']\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = g.get_repo('huggingface/accelerate'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = repo.get_issues(state='open'\t\t\t\t\t\t\t)\n\n for issue in open_issues:\n __snake_case\t\t\t\t: Tuple\t\t = sorted([comment for comment in issue.get_comments()]\t\t\t\t,key=lambda _UpperCAmelCase\t\t\t\t\t\t\t: i.created_at\t\t\t\t,reverse=_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = comments[0] if len(_UpperCAmelCase\t\t\t\t\t\t\t) > 0 else None\n __snake_case\t\t\t\t: Dict\t\t = dt.utcnow()\n __snake_case\t\t\t\t: Dict\t\t = (current_time - issue.updated_at).days\n __snake_case\t\t\t\t: str\t\t = (current_time - issue.created_at).days\n if (\n last_comment is not None\n and last_comment.user.login == \"github-actions[bot]\"\n and days_since_updated > 7\n and days_since_creation >= 30\n and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()\t\t\t\t\t\t\t)\n ):\n # Close issue since it has been 7 days of inactivity since bot mention.\n issue.edit(state='closed'\t\t\t\t\t\t\t)\n elif (\n days_since_updated > 23\n and days_since_creation >= 30\n and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()\t\t\t\t\t\t\t)\n ):\n # Add stale comment\n issue.create_comment(\n 'This issue has been automatically marked as stale because it has not had '\n 'recent activity. If you think this still needs to be addressed '\n 'please comment on this thread.\\n\\nPlease note that issues that do not follow the '\n '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '\n 'are likely to be ignored.'\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n main()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : float\t\t\t\t,_UpperCAmelCase : float\t\t\t\t\t\t\t) -> float:\n return price * (1 + tax_rate)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{price_plus_tax(1_0_0, 0.25) = }\"\"\")\n print(F\"\"\"{price_plus_tax(1_25.50, 0.05) = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":158,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom pathlib import Path\n\nimport torch\nimport torchaudio\nfrom datasets import load_dataset\nfrom huggingface_hub import hf_hub_download\n\nfrom transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification\nfrom transformers.utils import logging\n\n\nlogging.set_verbosity_info()\nA__ : Tuple =\t\t\tlogging.get_logger(__name__)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Any:\n __snake_case\t\t\t\t: str\t\t = ASTConfig()\n\n if \"10-10\" in model_name:\n pass\n elif \"speech-commands\" in model_name:\n __snake_case\t\t\t\t: str\t\t = 1_28\n elif \"12-12\" in model_name:\n __snake_case\t\t\t\t: str\t\t = 12\n __snake_case\t\t\t\t: List[str]\t\t = 12\n elif \"14-14\" in model_name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 14\n __snake_case\t\t\t\t: Dict\t\t = 14\n elif \"16-16\" in model_name:\n __snake_case\t\t\t\t: int\t\t = 16\n __snake_case\t\t\t\t: List[Any]\t\t = 16\n else:\n raise ValueError('Model not supported'\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'huggingface/label-files'\n if \"speech-commands\" in model_name:\n __snake_case\t\t\t\t: Optional[int]\t\t = 35\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'speech-commands-v2-id2label.json'\n else:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 5_27\n __snake_case\t\t\t\t: Tuple\t\t = 'audioset-id2label.json'\n\n __snake_case\t\t\t\t: Optional[int]\t\t = json.load(open(hf_hub_download(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n __snake_case\t\t\t\t: Tuple\t\t = idalabel\n __snake_case\t\t\t\t: int\t\t = {v: k for k, v in idalabel.items()}\n\n return config\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> List[str]:\n if \"module.v\" in name:\n __snake_case\t\t\t\t: str\t\t = name.replace('module.v'\t\t\t\t,'audio_spectrogram_transformer'\t\t\t\t\t\t\t)\n if \"cls_token\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('cls_token'\t\t\t\t,'embeddings.cls_token'\t\t\t\t\t\t\t)\n if \"dist_token\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('dist_token'\t\t\t\t,'embeddings.distillation_token'\t\t\t\t\t\t\t)\n if \"pos_embed\" in name:\n __snake_case\t\t\t\t: Optional[int]\t\t = name.replace('pos_embed'\t\t\t\t,'embeddings.position_embeddings'\t\t\t\t\t\t\t)\n if \"patch_embed.proj\" in name:\n __snake_case\t\t\t\t: List[Any]\t\t = name.replace('patch_embed.proj'\t\t\t\t,'embeddings.patch_embeddings.projection'\t\t\t\t\t\t\t)\n # transformer blocks\n if \"blocks\" in name:\n __snake_case\t\t\t\t: Dict\t\t = name.replace('blocks'\t\t\t\t,'encoder.layer'\t\t\t\t\t\t\t)\n if \"attn.proj\" in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('attn.proj'\t\t\t\t,'attention.output.dense'\t\t\t\t\t\t\t)\n if \"attn\" in name:\n __snake_case\t\t\t\t: Dict\t\t = name.replace('attn'\t\t\t\t,'attention.self'\t\t\t\t\t\t\t)\n if \"norm1\" in name:\n __snake_case\t\t\t\t: Dict\t\t = name.replace('norm1'\t\t\t\t,'layernorm_before'\t\t\t\t\t\t\t)\n if \"norm2\" in name:\n __snake_case\t\t\t\t: List[str]\t\t = name.replace('norm2'\t\t\t\t,'layernorm_after'\t\t\t\t\t\t\t)\n if \"mlp.fc1\" in name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = name.replace('mlp.fc1'\t\t\t\t,'intermediate.dense'\t\t\t\t\t\t\t)\n if \"mlp.fc2\" in name:\n __snake_case\t\t\t\t: Optional[int]\t\t = name.replace('mlp.fc2'\t\t\t\t,'output.dense'\t\t\t\t\t\t\t)\n # final layernorm\n if \"audio_spectrogram_transformer.norm\" in name:\n __snake_case\t\t\t\t: int\t\t = name.replace('audio_spectrogram_transformer.norm'\t\t\t\t,'audio_spectrogram_transformer.layernorm'\t\t\t\t\t\t\t)\n # classifier head\n if \"module.mlp_head.0\" in name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = name.replace('module.mlp_head.0'\t\t\t\t,'classifier.layernorm'\t\t\t\t\t\t\t)\n if \"module.mlp_head.1\" in name:\n __snake_case\t\t\t\t: Tuple\t\t = name.replace('module.mlp_head.1'\t\t\t\t,'classifier.dense'\t\t\t\t\t\t\t)\n\n return name\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t\t\t\t) -> int:\n for key in orig_state_dict.copy().keys():\n __snake_case\t\t\t\t: int\t\t = orig_state_dict.pop(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if \"qkv\" in key:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = key.split('.'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = int(key_split[3]\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = config.hidden_size\n if \"weight\" in key:\n __snake_case\t\t\t\t: Optional[Any]\t\t = val[:dim, :]\n __snake_case\t\t\t\t: Optional[int]\t\t = val[dim : dim * 2, :]\n __snake_case\t\t\t\t: Any\t\t = val[-dim:, :]\n else:\n __snake_case\t\t\t\t: int\t\t = val[:dim]\n __snake_case\t\t\t\t: Optional[Any]\t\t = val[dim : dim * 2]\n __snake_case\t\t\t\t: str\t\t = val[-dim:]\n else:\n __snake_case\t\t\t\t: int\t\t = val\n\n return orig_state_dict\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Dict\t\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: List[Any]\t\t = [\n 'module.v.head.weight',\n 'module.v.head.bias',\n 'module.v.head_dist.weight',\n 'module.v.head_dist.bias',\n ]\n for k in ignore_keys:\n state_dict.pop(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\n@torch.no_grad()\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Dict=False\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Dict\t\t = get_audio_spectrogram_transformer_config(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'ast-finetuned-audioset-10-10-0.4593': (\n 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'\n ),\n 'ast-finetuned-audioset-10-10-0.450': (\n 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'\n ),\n 'ast-finetuned-audioset-10-10-0.448': (\n 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'\n ),\n 'ast-finetuned-audioset-10-10-0.448-v2': (\n 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'\n ),\n 'ast-finetuned-audioset-12-12-0.447': (\n 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'\n ),\n 'ast-finetuned-audioset-14-14-0.443': (\n 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'\n ),\n 'ast-finetuned-audioset-16-16-0.442': (\n 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'\n ),\n 'ast-finetuned-speech-commands-v2': (\n 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'\n ),\n }\n\n # load original state_dict\n __snake_case\t\t\t\t: Any\t\t = model_name_to_url[model_name]\n __snake_case\t\t\t\t: Dict\t\t = torch.hub.load_state_dict_from_url(_UpperCAmelCase\t\t\t\t,map_location='cpu'\t\t\t\t\t\t\t)\n # remove some keys\n remove_keys(_UpperCAmelCase\t\t\t\t\t\t\t)\n # rename some keys\n __snake_case\t\t\t\t: List[Any]\t\t = convert_state_dict(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # load 🤗 model\n __snake_case\t\t\t\t: Any\t\t = ASTForAudioClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.eval()\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # verify outputs on dummy input\n # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62\n __snake_case\t\t\t\t: Dict\t\t = -4.2_6_7_7_3_9_3 if 'speech-commands' not in model_name else -6.8_4_5_9_7_8\n __snake_case\t\t\t\t: Dict\t\t = 4.5_6_8_9_9_7_4 if 'speech-commands' not in model_name else 5.5_6_5_4_5_2_6\n __snake_case\t\t\t\t: Tuple\t\t = 10_24 if 'speech-commands' not in model_name else 1_28\n __snake_case\t\t\t\t: Tuple\t\t = ASTFeatureExtractor(mean=_UpperCAmelCase\t\t\t\t,std=_UpperCAmelCase\t\t\t\t,max_length=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if \"speech-commands\" in model_name:\n __snake_case\t\t\t\t: int\t\t = load_dataset('speech_commands'\t\t\t\t,'v0.02'\t\t\t\t,split='validation'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = dataset[0]['audio']['array']\n else:\n __snake_case\t\t\t\t: List[str]\t\t = hf_hub_download(\n repo_id='nielsr/audio-spectogram-transformer-checkpoint'\t\t\t\t,filename='sample_audio.flac'\t\t\t\t,repo_type='dataset'\t\t\t\t,)\n\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = torchaudio.load(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = waveform.squeeze().numpy()\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = feature_extractor(_UpperCAmelCase\t\t\t\t,sampling_rate=1_60_00\t\t\t\t,return_tensors='pt'\t\t\t\t\t\t\t)\n\n # forward pass\n __snake_case\t\t\t\t: Any\t\t = model(**_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: str\t\t = outputs.logits\n\n if model_name == \"ast-finetuned-audioset-10-10-0.4593\":\n __snake_case\t\t\t\t: Tuple\t\t = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-10-10-0.450\":\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-10-10-0.448\":\n __snake_case\t\t\t\t: Dict\t\t = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-10-10-0.448-v2\":\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-12-12-0.447\":\n __snake_case\t\t\t\t: List[Any]\t\t = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-14-14-0.443\":\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-audioset-16-16-0.442\":\n __snake_case\t\t\t\t: List[Any]\t\t = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0]\t\t\t\t\t\t\t)\n elif model_name == \"ast-finetuned-speech-commands-v2\":\n __snake_case\t\t\t\t: Dict\t\t = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4]\t\t\t\t\t\t\t)\n else:\n raise ValueError('Unknown model name'\t\t\t\t\t\t\t)\n if not torch.allclose(logits[0, :3]\t\t\t\t,_UpperCAmelCase\t\t\t\t,atol=1E-4\t\t\t\t\t\t\t):\n raise ValueError('Logits don\\'t match'\t\t\t\t\t\t\t)\n print('Looks ok!'\t\t\t\t\t\t\t)\n\n if pytorch_dump_folder_path is not None:\n Path(_UpperCAmelCase\t\t\t\t\t\t\t).mkdir(exist_ok=_UpperCAmelCase\t\t\t\t\t\t\t)\n print(f'''Saving model {model_name} to {pytorch_dump_folder_path}'''\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n print(f'''Saving feature extractor to {pytorch_dump_folder_path}'''\t\t\t\t\t\t\t)\n feature_extractor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if push_to_hub:\n print('Pushing model and feature extractor to the hub...'\t\t\t\t\t\t\t)\n model.push_to_hub(f'''MIT/{model_name}'''\t\t\t\t\t\t\t)\n feature_extractor.push_to_hub(f'''MIT/{model_name}'''\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : int =\t\t\targparse.ArgumentParser()\n # Required parameters\n parser.add_argument(\n '''--model_name''',\n default='''ast-finetuned-audioset-10-10-0.4593''',\n type=str,\n help='''Name of the Audio Spectrogram Transformer model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n parser.add_argument(\n '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''\n )\n\n A__ : Dict =\t\t\tparser.parse_args()\n convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom tempfile import TemporaryDirectory\nfrom unittest import TestCase\nfrom unittest.mock import MagicMock, patch\n\nfrom transformers import AutoModel, TFAutoModel\nfrom transformers.onnx import FeaturesManager\nfrom transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch\n\n\n\n@require_torch\n@require_tf\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = SMALL_MODEL_IDENTIFIER\n __snake_case\t\t\t\t: str\t\t = 'pt'\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'tf'\n def A_ ( self\t\t: Dict , __a\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = AutoModel.from_pretrained(self.test_model )\n model_pt.save_pretrained(__a )\n def A_ ( self\t\t: Any , __a\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = TFAutoModel.from_pretrained(self.test_model , from_pt=__a )\n model_tf.save_pretrained(__a )\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = 'mock_framework'\n\n # Framework provided - return whatever the user provides\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model , __a )\n self.assertEqual(__a , __a )\n\n # Local checkpoint and framework provided - return provided framework\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_pt )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_tf )\n\n # Invalid local checkpoint\n with TemporaryDirectory() as local_invalid_ckpt:\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Optional[int]\t\t = FeaturesManager.determine_framework(__a )\n\n\n\n\n\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ):\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # PyTorch not in environment -> use TensorFlow\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_tf )\n\n # Both in environment -> use PyTorch\n __snake_case\t\t\t\t: Optional[Any]\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # Both not in environment -> raise error\n __snake_case\t\t\t\t: str\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(self.test_model )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":159,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nimport numpy as np\n\nfrom transformers.testing_utils import require_torch, require_vision\nfrom transformers.utils import is_torch_available, is_vision_available\n\nfrom ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs\n\n\nif is_torch_available():\n import torch\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import ViTImageProcessor\n\n\n\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def __init__( self\t\t: Optional[Any] , __a\t\t: str , __a\t\t: int=13 , __a\t\t: List[str]=3 , __a\t\t: int=224 , __a\t\t: str=30 , __a\t\t: Tuple=400 , __a\t\t: int=True , __a\t\t: Any=None , __a\t\t: List[str]=True , __a\t\t: Optional[Any]=[0.5, 0.5, 0.5] , __a\t\t: List[Any]=[0.5, 0.5, 0.5] , ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = size if size is not None else {'height': 18, 'width': 18}\n __snake_case\t\t\t\t: List[Any]\t\t = parent\n __snake_case\t\t\t\t: Optional[Any]\t\t = batch_size\n __snake_case\t\t\t\t: str\t\t = num_channels\n __snake_case\t\t\t\t: List[Any]\t\t = image_size\n __snake_case\t\t\t\t: Optional[Any]\t\t = min_resolution\n __snake_case\t\t\t\t: Optional[Any]\t\t = max_resolution\n __snake_case\t\t\t\t: Dict\t\t = do_resize\n __snake_case\t\t\t\t: Union[str, Any]\t\t = size\n __snake_case\t\t\t\t: List[Any]\t\t = do_normalize\n __snake_case\t\t\t\t: List[str]\t\t = image_mean\n __snake_case\t\t\t\t: Any\t\t = image_std\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return {\n \"image_mean\": self.image_mean,\n \"image_std\": self.image_std,\n \"do_normalize\": self.do_normalize,\n \"do_resize\": self.do_resize,\n \"size\": self.size,\n }\n\n\n\n@require_torch\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tViTImageProcessor if is_vision_available() else None\n def A_ ( self\t\t: Optional[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = EfficientFormerImageProcessorTester(self )\n @property\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.image_proc_tester.prepare_image_processor_dict()\n def A_ ( self\t\t: Tuple ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.image_processing_class(**self.image_processor_dict )\n self.assertTrue(hasattr(__a , 'image_mean' ) )\n self.assertTrue(hasattr(__a , 'image_std' ) )\n self.assertTrue(hasattr(__a , 'do_normalize' ) )\n self.assertTrue(hasattr(__a , 'do_resize' ) )\n self.assertTrue(hasattr(__a , 'size' ) )\n def A_ ( self\t\t: Optional[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Initialize image_processor\n __snake_case\t\t\t\t: Any\t\t = self.image_processing_class(**self.image_processor_dict )\n # create random PIL images\n __snake_case\t\t\t\t: Union[str, Any]\t\t = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a )\n for image in image_inputs:\n self.assertIsInstance(__a , Image.Image )\n\n # Test not batched input\n __snake_case\t\t\t\t: int\t\t = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n 1,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n\n # Test batched\n __snake_case\t\t\t\t: int\t\t = image_processor(__a , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n self.image_proc_tester.batch_size,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Initialize image_processor\n __snake_case\t\t\t\t: int\t\t = self.image_processing_class(**self.image_processor_dict )\n # create random numpy tensors\n __snake_case\t\t\t\t: List[str]\t\t = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a , numpify=__a )\n for image in image_inputs:\n self.assertIsInstance(__a , np.ndarray )\n\n # Test not batched input\n __snake_case\t\t\t\t: Optional[Any]\t\t = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n 1,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n\n # Test batched\n __snake_case\t\t\t\t: Union[str, Any]\t\t = image_processor(__a , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n self.image_proc_tester.batch_size,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n\n\n\n\n\n def A_ ( self\t\t: int ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Initialize image_processor\n __snake_case\t\t\t\t: int\t\t = self.image_processing_class(**self.image_processor_dict )\n # create random PyTorch tensors\n __snake_case\t\t\t\t: Any\t\t = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a , torchify=__a )\n for image in image_inputs:\n self.assertIsInstance(__a , torch.Tensor )\n\n # Test not batched input\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n 1,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n\n # Test batched\n __snake_case\t\t\t\t: str\t\t = image_processor(__a , return_tensors='pt' ).pixel_values\n self.assertEqual(\n encoded_images.shape , (\n self.image_proc_tester.batch_size,\n self.image_proc_tester.num_channels,\n self.image_proc_tester.size['height'],\n self.image_proc_tester.size['width'],\n ) , )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport unittest\n\nfrom transformers import BatchEncoding\nfrom transformers.models.bert.tokenization_bert import (\n BasicTokenizer,\n WordpieceTokenizer,\n _is_control,\n _is_punctuation,\n _is_whitespace,\n)\nfrom transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer\nfrom transformers.testing_utils import require_torch, slow\n\nfrom ...test_tokenization_common import TokenizerTesterMixin\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tProphetNetTokenizer\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: Optional[int] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().setUp()\n\n __snake_case\t\t\t\t: Dict\t\t = [\n '[UNK]',\n '[CLS]',\n '[SEP]',\n '[PAD]',\n '[MASK]',\n 'want',\n '##want',\n '##ed',\n 'wa',\n 'un',\n 'runn',\n '##ing',\n ',',\n 'low',\n 'lowest',\n ]\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n def A_ ( self\t\t: int , __a\t\t: Union[str, Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = 'UNwant\\u00E9d,running'\n __snake_case\t\t\t\t: List[str]\t\t = 'unwanted, running'\n return input_text, output_text\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.tokenizer_class(self.vocab_file )\n\n __snake_case\t\t\t\t: List[str]\t\t = tokenizer.tokenize('UNwant\\u00E9d,running' )\n self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] )\n self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = BasicTokenizer()\n\n self.assertListEqual(tokenizer.tokenize('ah\\u535A\\u63A8zz' ) , ['ah', '\\u535A', '\\u63A8', 'zz'] )\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['h\\u00E9llo'] )\n def A_ ( self\t\t: int ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Optional[int] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )\n def A_ ( self\t\t: Optional[int] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']\n\n __snake_case\t\t\t\t: List[Any]\t\t = {}\n for i, token in enumerate(__a ):\n __snake_case\t\t\t\t: List[str]\t\t = i\n __snake_case\t\t\t\t: Any\t\t = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' )\n\n self.assertListEqual(tokenizer.tokenize('' ) , [] )\n\n self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )\n\n self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )\n @require_torch\n def A_ ( self\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: int\t\t = ['A long paragraph for summarization.', 'Another paragraph for summarization.']\n __snake_case\t\t\t\t: str\t\t = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = tokenizer(__a , padding=__a , return_tensors='pt' )\n self.assertIsInstance(__a , __a )\n __snake_case\t\t\t\t: int\t\t = list(batch.input_ids.numpy()[0] )\n self.assertListEqual(__a , __a )\n\n self.assertEqual((2, 9) , batch.input_ids.shape )\n self.assertEqual((2, 9) , batch.attention_mask.shape )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_whitespace(' ' ) )\n self.assertTrue(_is_whitespace('\\t' ) )\n self.assertTrue(_is_whitespace('\\r' ) )\n self.assertTrue(_is_whitespace('\\n' ) )\n self.assertTrue(_is_whitespace('\\u00A0' ) )\n\n self.assertFalse(_is_whitespace('A' ) )\n self.assertFalse(_is_whitespace('-' ) )\n def A_ ( self\t\t: Dict ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_control('\\u0005' ) )\n\n self.assertFalse(_is_control('A' ) )\n self.assertFalse(_is_control(' ' ) )\n self.assertFalse(_is_control('\\t' ) )\n self.assertFalse(_is_control('\\r' ) )\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_punctuation('-' ) )\n self.assertTrue(_is_punctuation('$' ) )\n self.assertTrue(_is_punctuation('`' ) )\n self.assertTrue(_is_punctuation('.' ) )\n\n self.assertFalse(_is_punctuation('A' ) )\n self.assertFalse(_is_punctuation(' ' ) )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('sequence builders' , add_special_tokens=__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a , __a )\n\n assert encoded_sentence == text + [102]\n assert encoded_pair == text + [102] + text_a + [102]\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":160,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n __snake_case\t\t\t\t: Optional[Any]\t\t = [True] * n\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n __snake_case\t\t\t\t: Dict\t\t = False\n __snake_case\t\t\t\t: List[Any]\t\t = True\n\n for i in range(3\t\t\t\t,int(n**0.5 + 1\t\t\t\t\t\t\t)\t\t\t\t,2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = i * 2\n while index < n:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n __snake_case\t\t\t\t: int\t\t = index + i\n\n __snake_case\t\t\t\t: Dict\t\t = [2]\n\n for i in range(3\t\t\t\t,_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t):\n if is_prime[i]:\n primes.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return primes\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 99_99_66_66_33_33\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: List[Any]\t\t = math.floor(math.sqrt(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) + 1_00\n __snake_case\t\t\t\t: Tuple\t\t = prime_sieve(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index]\n\n while (last_prime**2) <= limit:\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index + 1]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = last_prime**2\n __snake_case\t\t\t\t: Dict\t\t = next_prime**2\n\n # Get numbers divisible by lps(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = lower_bound + last_prime\n while upper_bound > current <= limit:\n matches_sum += current\n current += last_prime\n\n # Reset the upper_bound\n while (upper_bound - next_prime) > limit:\n upper_bound -= next_prime\n\n # Add the numbers divisible by ups(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = upper_bound - next_prime\n while current > lower_bound:\n matches_sum += current\n current -= next_prime\n\n # Remove the numbers divisible by both ups and lps\n __snake_case\t\t\t\t: List[str]\t\t = 0\n while upper_bound > current <= limit:\n if current <= lower_bound:\n # Increment the current number\n current += last_prime * next_prime\n continue\n\n if current > limit:\n break\n\n # Remove twice since it was added by both ups and lps\n matches_sum -= current * 2\n\n # Increment the current number\n current += last_prime * next_prime\n\n # Setup for next pair\n __snake_case\t\t\t\t: Dict\t\t = next_prime\n prime_index += 1\n\n return matches_sum\n\n\nif __name__ == \"__main__\":\n print(solution())\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available\n\n\nA__ : Optional[Any] =\t\t\t{\n '''configuration_nllb_moe''': [\n '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''NllbMoeConfig''',\n ]\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Dict =\t\t\t[\n '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''NllbMoeForConditionalGeneration''',\n '''NllbMoeModel''',\n '''NllbMoePreTrainedModel''',\n '''NllbMoeTop2Router''',\n '''NllbMoeSparseMLP''',\n ]\n\n\nif TYPE_CHECKING:\n from .configuration_nllb_moe import (\n NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,\n NllbMoeConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_nllb_moe import (\n NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,\n NllbMoeForConditionalGeneration,\n NllbMoeModel,\n NllbMoePreTrainedModel,\n NllbMoeSparseMLP,\n NllbMoeTopaRouter,\n )\n\n\nelse:\n import sys\n\n A__ : str =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":161,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom collections import OrderedDict\n\nimport torch\nfrom huggingface_hub import cached_download, hf_hub_url\n\nfrom transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: str\t\t = []\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',\n f'''stage{idx}.patch_embed.proj.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',\n f'''stage{idx}.patch_embed.proj.bias''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',\n f'''stage{idx}.patch_embed.norm.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',\n f'''stage{idx}.patch_embed.norm.bias''',\n )\t\t\t\t\t\t\t)\n return embed\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Tuple\t\t = []\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''')\t\t\t\t\t\t\t)\n return attention_weights\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token')\t\t\t\t\t\t\t)\n return token\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Any\t\t = []\n head.append(('layernorm.weight', 'norm.weight')\t\t\t\t\t\t\t)\n head.append(('layernorm.bias', 'norm.bias')\t\t\t\t\t\t\t)\n head.append(('classifier.weight', 'head.weight')\t\t\t\t\t\t\t)\n head.append(('classifier.bias', 'head.bias')\t\t\t\t\t\t\t)\n return head\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = 'imagenet-1k-id2label.json'\n __snake_case\t\t\t\t: Dict\t\t = 10_00\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'huggingface/label-files'\n __snake_case\t\t\t\t: str\t\t = num_labels\n __snake_case\t\t\t\t: str\t\t = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = idalabel\n __snake_case\t\t\t\t: str\t\t = {v: k for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Dict\t\t = CvtConfig(num_labels=_UpperCAmelCase\t\t\t\t,idalabel=_UpperCAmelCase\t\t\t\t,labelaid=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # For depth size 13 (13 = 1+2+10)\n if cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"13\":\n __snake_case\t\t\t\t: Tuple\t\t = [1, 2, 10]\n\n # For depth size 21 (21 = 1+4+16)\n elif cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"21\":\n __snake_case\t\t\t\t: str\t\t = [1, 4, 16]\n\n # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)\n else:\n __snake_case\t\t\t\t: Dict\t\t = [2, 2, 20]\n __snake_case\t\t\t\t: Any\t\t = [3, 12, 16]\n __snake_case\t\t\t\t: Tuple\t\t = [1_92, 7_68, 10_24]\n\n __snake_case\t\t\t\t: str\t\t = CvtForImageClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = image_size\n __snake_case\t\t\t\t: int\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = OrderedDict()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n\n for idx in range(len(config.depth\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n if config.cls_token[idx]:\n __snake_case\t\t\t\t: Optional[Any]\t\t = list_of_state_dict + cls_token(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = list_of_state_dict + embeddings(_UpperCAmelCase\t\t\t\t\t\t\t)\n for cnt in range(config.depth[idx]\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = list_of_state_dict + attention(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = list_of_state_dict + final()\n for gg in list_of_state_dict:\n print(_UpperCAmelCase\t\t\t\t\t\t\t)\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = original_weights[list_of_state_dict[i][1]]\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al\n\nif __name__ == \"__main__\":\n A__ : Dict =\t\t\targparse.ArgumentParser()\n parser.add_argument(\n '''--cvt_model''',\n default='''cvt-w24''',\n type=str,\n help='''Name of the cvt model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--image_size''',\n default=3_8_4,\n type=int,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--cvt_file_name''',\n default=R'''cvtmodels\\CvT-w24-384x384-IN-22k.pth''',\n type=str,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n\n A__ : Tuple =\t\t\tparser.parse_args()\n convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # bit count represents no. of bits in the gray code\n if bit_count < 0:\n raise ValueError('The given input must be positive'\t\t\t\t\t\t\t)\n\n # get the generated string sequence\n __snake_case\t\t\t\t: Optional[Any]\t\t = gray_code_sequence_string(_UpperCAmelCase\t\t\t\t\t\t\t)\n #\n # convert them to integers\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = int(sequence[i]\t\t\t\t,2\t\t\t\t\t\t\t)\n\n return sequence\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # The approach is a recursive one\n # Base case achieved when either n = 0 or n=1\n if bit_count == 0:\n return [\"0\"]\n\n if bit_count == 1:\n return [\"0\", \"1\"]\n\n __snake_case\t\t\t\t: Dict\t\t = 1 << bit_count # defines the length of the sequence\n # 1<< n is equivalent to 2^n\n\n # recursive answer will generate answer for n-1 bits\n __snake_case\t\t\t\t: Dict\t\t = gray_code_sequence_string(bit_count - 1\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = []\n\n # append 0 to first half of the smaller sequence generated\n for i in range(seq_len // 2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: str\t\t = '0' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # append 1 to second half ... start from the end of the list\n for i in reversed(range(seq_len // 2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = '1' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return sequence\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":162,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 10_00\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Tuple\t\t = 2**power\n __snake_case\t\t\t\t: List[str]\t\t = str(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = list(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n for i in list_num:\n sum_of_num += int(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return sum_of_num\n\n\nif __name__ == \"__main__\":\n A__ : List[Any] =\t\t\tint(input('''Enter the power of 2: ''').strip())\n print('''2 ^ ''', power, ''' = ''', 2**power)\n A__ : Dict =\t\t\tsolution(power)\n print('''Sum of the digits is: ''', result)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nimport os\nimport shutil\nimport tempfile\nimport unittest\n\nimport numpy as np\n\nfrom transformers import BertTokenizerFast\nfrom transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer\nfrom transformers.testing_utils import require_tokenizers, require_vision\nfrom transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor\n\n\n\n@require_tokenizers\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: int ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = tempfile.mkdtemp()\n\n # fmt: off\n __snake_case\t\t\t\t: List[str]\t\t = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']\n # fmt: on\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n\n __snake_case\t\t\t\t: List[str]\t\t = {\n 'do_resize': True,\n 'size': {'height': 18, 'width': 18},\n 'do_normalize': True,\n 'image_mean': [0.5, 0.5, 0.5],\n 'image_std': [0.5, 0.5, 0.5],\n }\n __snake_case\t\t\t\t: Optional[Any]\t\t = os.path.join(self.tmpdirname , __a )\n with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:\n json.dump(__a , __a )\n def A_ ( self\t\t: Optional[int] , **__a\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return BertTokenizer.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: int , **__a\t\t: Dict ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(self.tmpdirname )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]\n\n __snake_case\t\t\t\t: List[str]\t\t = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]\n\n return image_inputs\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n processor.save_pretrained(self.tmpdirname )\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = VisionTextDualEncoderProcessor(\n tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )\n processor.save_pretrained(self.tmpdirname )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor(do_normalize=__a , padding_value=1.0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor.from_pretrained(\n self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: str\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(__a , return_tensors='np' )\n __snake_case\t\t\t\t: List[str]\t\t = processor(images=__a , return_tensors='np' )\n\n for key in input_feat_extract.keys():\n self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = 'lower newer'\n\n __snake_case\t\t\t\t: Dict\t\t = processor(text=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer(__a )\n\n for key in encoded_tok.keys():\n self.assertListEqual(encoded_tok[key] , encoded_processor[key] )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: int\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )\n\n # test if it raises when no input is passed\n with self.assertRaises(__a ):\n processor()\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Any\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]\n\n __snake_case\t\t\t\t: int\t\t = processor.batch_decode(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.batch_decode(__a )\n\n self.assertListEqual(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Dict\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Tuple\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":163,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ....configuration_utils import PretrainedConfig\nfrom ....utils import logging\n\n\nA__ : Union[str, Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : int =\t\t\t{\n '''Visual-Attention-Network/van-base''': (\n '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'''\n ),\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''van'''\n def __init__( self\t\t: Any , __a\t\t: int=224 , __a\t\t: Union[str, Any]=3 , __a\t\t: Union[str, Any]=[7, 3, 3, 3] , __a\t\t: Any=[4, 2, 2, 2] , __a\t\t: Union[str, Any]=[64, 128, 320, 512] , __a\t\t: List[str]=[3, 3, 12, 3] , __a\t\t: Optional[int]=[8, 8, 4, 4] , __a\t\t: Dict=\"gelu\" , __a\t\t: Dict=0.0_2 , __a\t\t: Union[str, Any]=1e-6 , __a\t\t: Union[str, Any]=1e-2 , __a\t\t: List[str]=0.0 , __a\t\t: Optional[Any]=0.0 , **__a\t\t: List[str] , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(**__a )\n __snake_case\t\t\t\t: str\t\t = image_size\n __snake_case\t\t\t\t: str\t\t = num_channels\n __snake_case\t\t\t\t: Optional[Any]\t\t = patch_sizes\n __snake_case\t\t\t\t: Dict\t\t = strides\n __snake_case\t\t\t\t: Tuple\t\t = hidden_sizes\n __snake_case\t\t\t\t: List[str]\t\t = depths\n __snake_case\t\t\t\t: List[Any]\t\t = mlp_ratios\n __snake_case\t\t\t\t: Tuple\t\t = hidden_act\n __snake_case\t\t\t\t: Union[str, Any]\t\t = initializer_range\n __snake_case\t\t\t\t: str\t\t = layer_norm_eps\n __snake_case\t\t\t\t: List[str]\t\t = layer_scale_init_value\n __snake_case\t\t\t\t: Optional[int]\t\t = drop_path_rate\n __snake_case\t\t\t\t: Union[str, Any]\t\t = dropout_rate\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom collections import OrderedDict\n\nimport torch\nfrom huggingface_hub import cached_download, hf_hub_url\n\nfrom transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: str\t\t = []\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',\n f'''stage{idx}.patch_embed.proj.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',\n f'''stage{idx}.patch_embed.proj.bias''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',\n f'''stage{idx}.patch_embed.norm.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',\n f'''stage{idx}.patch_embed.norm.bias''',\n )\t\t\t\t\t\t\t)\n return embed\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Tuple\t\t = []\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''')\t\t\t\t\t\t\t)\n return attention_weights\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token')\t\t\t\t\t\t\t)\n return token\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Any\t\t = []\n head.append(('layernorm.weight', 'norm.weight')\t\t\t\t\t\t\t)\n head.append(('layernorm.bias', 'norm.bias')\t\t\t\t\t\t\t)\n head.append(('classifier.weight', 'head.weight')\t\t\t\t\t\t\t)\n head.append(('classifier.bias', 'head.bias')\t\t\t\t\t\t\t)\n return head\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = 'imagenet-1k-id2label.json'\n __snake_case\t\t\t\t: Dict\t\t = 10_00\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'huggingface/label-files'\n __snake_case\t\t\t\t: str\t\t = num_labels\n __snake_case\t\t\t\t: str\t\t = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = idalabel\n __snake_case\t\t\t\t: str\t\t = {v: k for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Dict\t\t = CvtConfig(num_labels=_UpperCAmelCase\t\t\t\t,idalabel=_UpperCAmelCase\t\t\t\t,labelaid=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # For depth size 13 (13 = 1+2+10)\n if cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"13\":\n __snake_case\t\t\t\t: Tuple\t\t = [1, 2, 10]\n\n # For depth size 21 (21 = 1+4+16)\n elif cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"21\":\n __snake_case\t\t\t\t: str\t\t = [1, 4, 16]\n\n # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)\n else:\n __snake_case\t\t\t\t: Dict\t\t = [2, 2, 20]\n __snake_case\t\t\t\t: Any\t\t = [3, 12, 16]\n __snake_case\t\t\t\t: Tuple\t\t = [1_92, 7_68, 10_24]\n\n __snake_case\t\t\t\t: str\t\t = CvtForImageClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = image_size\n __snake_case\t\t\t\t: int\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = OrderedDict()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n\n for idx in range(len(config.depth\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n if config.cls_token[idx]:\n __snake_case\t\t\t\t: Optional[Any]\t\t = list_of_state_dict + cls_token(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = list_of_state_dict + embeddings(_UpperCAmelCase\t\t\t\t\t\t\t)\n for cnt in range(config.depth[idx]\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = list_of_state_dict + attention(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = list_of_state_dict + final()\n for gg in list_of_state_dict:\n print(_UpperCAmelCase\t\t\t\t\t\t\t)\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = original_weights[list_of_state_dict[i][1]]\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al\n\nif __name__ == \"__main__\":\n A__ : Dict =\t\t\targparse.ArgumentParser()\n parser.add_argument(\n '''--cvt_model''',\n default='''cvt-w24''',\n type=str,\n help='''Name of the cvt model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--image_size''',\n default=3_8_4,\n type=int,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--cvt_file_name''',\n default=R'''cvtmodels\\CvT-w24-384x384-IN-22k.pth''',\n type=str,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n\n A__ : Tuple =\t\t\tparser.parse_args()\n convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":164,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nfrom math import pow, sqrt\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : float\t\t\t\t,_UpperCAmelCase : float\t\t\t\t,_UpperCAmelCase : float\t\t\t\t\t\t\t) -> dict[str, float]:\n if (resistance, reactance, impedance).count(0\t\t\t\t\t\t\t) != 1:\n raise ValueError('One and only one argument must be 0'\t\t\t\t\t\t\t)\n if resistance == 0:\n return {\"resistance\": sqrt(pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t) - pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)}\n elif reactance == 0:\n return {\"reactance\": sqrt(pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t) - pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)}\n elif impedance == 0:\n return {\"impedance\": sqrt(pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t) + pow(_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)}\n else:\n raise ValueError('Exactly one argument must be 0'\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : List[Any] =\t\t\tlist[list[int]]\n\n# assigning initial values to the grid\nA__ : Matrix =\t\t\t[\n [3, 0, 6, 5, 0, 8, 4, 0, 0],\n [5, 2, 0, 0, 0, 0, 0, 0, 0],\n [0, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n# a grid with no solution\nA__ : Matrix =\t\t\t[\n [5, 0, 6, 5, 0, 8, 4, 0, 3],\n [5, 2, 0, 0, 0, 0, 0, 0, 2],\n [1, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n for i in range(9\t\t\t\t\t\t\t):\n if grid[row][i] == n or grid[i][column] == n:\n return False\n\n for i in range(3\t\t\t\t\t\t\t):\n for j in range(3\t\t\t\t\t\t\t):\n if grid[(row - row % 3) + i][(column - column % 3) + j] == n:\n return False\n\n return True\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> tuple[int, int] | None:\n for i in range(9\t\t\t\t\t\t\t):\n for j in range(9\t\t\t\t\t\t\t):\n if grid[i][j] == 0:\n return i, j\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> Matrix | None:\n if location := find_empty_location(_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = location\n else:\n # If the location is ``None``, then the grid is solved.\n return grid\n\n for digit in range(1\t\t\t\t,10\t\t\t\t\t\t\t):\n if is_safe(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Union[str, Any]\t\t = digit\n\n if sudoku(_UpperCAmelCase\t\t\t\t\t\t\t) is not None:\n return grid\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> None:\n for row in grid:\n for cell in row:\n print(_UpperCAmelCase\t\t\t\t,end=' '\t\t\t\t\t\t\t)\n print()\n\n\nif __name__ == \"__main__\":\n # make a copy of grid so that you can compare with the unmodified grid\n for example_grid in (initial_grid, no_solution):\n print('''\\nExample grid:\\n''' + '''=''' * 2_0)\n print_solution(example_grid)\n print('''\\nExample grid solution:''')\n A__ : List[str] =\t\t\tsudoku(example_grid)\n if solution is not None:\n print_solution(solution)\n else:\n print('''Cannot find a solution.''')\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":165,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nfrom pathlib import Path\n\nimport torch\nfrom packaging import version\nfrom torch.onnx import export\n\nfrom diffusers import AutoencoderKL\n\n\nA__ : Union[str, Any] =\t\t\tversion.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : tuple\t\t\t\t,_UpperCAmelCase : Path\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Dict\t\t\t\t,_UpperCAmelCase : str=False\t\t\t\t,) -> Dict:\n output_path.parent.mkdir(parents=_UpperCAmelCase\t\t\t\t,exist_ok=_UpperCAmelCase\t\t\t\t\t\t\t)\n # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,\n # so we check the torch version for backwards compatibility\n if is_torch_less_than_1_11:\n export(\n _UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,f=output_path.as_posix()\t\t\t\t,input_names=_UpperCAmelCase\t\t\t\t,output_names=_UpperCAmelCase\t\t\t\t,dynamic_axes=_UpperCAmelCase\t\t\t\t,do_constant_folding=_UpperCAmelCase\t\t\t\t,use_external_data_format=_UpperCAmelCase\t\t\t\t,enable_onnx_checker=_UpperCAmelCase\t\t\t\t,opset_version=_UpperCAmelCase\t\t\t\t,)\n else:\n export(\n _UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,f=output_path.as_posix()\t\t\t\t,input_names=_UpperCAmelCase\t\t\t\t,output_names=_UpperCAmelCase\t\t\t\t,dynamic_axes=_UpperCAmelCase\t\t\t\t,do_constant_folding=_UpperCAmelCase\t\t\t\t,opset_version=_UpperCAmelCase\t\t\t\t,)\n\n\n\n\n\n@torch.no_grad()\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : bool = False\t\t\t\t\t\t\t) -> List[Any]:\n __snake_case\t\t\t\t: List[Any]\t\t = torch.floataa if fpaa else torch.floataa\n if fpaa and torch.cuda.is_available():\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'cuda'\n elif fpaa and not torch.cuda.is_available():\n raise ValueError('`float16` model export is only supported on GPUs with CUDA'\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: List[str]\t\t = 'cpu'\n __snake_case\t\t\t\t: List[Any]\t\t = Path(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # VAE DECODER\n __snake_case\t\t\t\t: Optional[int]\t\t = AutoencoderKL.from_pretrained(model_path + '/vae'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = vae_decoder.config.latent_channels\n # forward only through the decoder part\n __snake_case\t\t\t\t: str\t\t = vae_decoder.decode\n onnx_export(\n _UpperCAmelCase\t\t\t\t,model_args=(\n torch.randn(1\t\t\t\t,_UpperCAmelCase\t\t\t\t,25\t\t\t\t,25\t\t\t\t\t\t\t).to(device=_UpperCAmelCase\t\t\t\t,dtype=_UpperCAmelCase\t\t\t\t\t\t\t),\n False,\n )\t\t\t\t,output_path=output_path / 'vae_decoder' / 'model.onnx'\t\t\t\t,ordered_input_names=['latent_sample', 'return_dict']\t\t\t\t,output_names=['sample']\t\t\t\t,dynamic_axes={\n 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},\n }\t\t\t\t,opset=_UpperCAmelCase\t\t\t\t,)\n del vae_decoder\n\n\nif __name__ == \"__main__\":\n A__ : Optional[Any] =\t\t\targparse.ArgumentParser()\n\n parser.add_argument(\n '''--model_path''',\n type=str,\n required=True,\n help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',\n )\n\n parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')\n parser.add_argument(\n '''--opset''',\n default=1_4,\n type=int,\n help='''The version of the ONNX operator set to use.''',\n )\n parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')\n\n A__ : int =\t\t\tparser.parse_args()\n print(args.output_path)\n convert_models(args.model_path, args.output_path, args.opset, args.fpaa)\n print('''SD: Done: ONNX''')\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nimport numpy as np\nimport torch\nfrom torch import nn\nfrom transformers import (\n CLIPImageProcessor,\n CLIPTextConfig,\n CLIPTextModelWithProjection,\n CLIPTokenizer,\n CLIPVisionConfig,\n CLIPVisionModelWithProjection,\n)\n\nfrom diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler\nfrom diffusers.utils import torch_device\nfrom diffusers.utils.testing_utils import enable_full_determinism, skip_mps\n\nfrom ..test_pipelines_common import PipelineTesterMixin\n\n\nenable_full_determinism()\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tKandinskyVaaPriorPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''', '''negative_prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''generator''',\n '''num_inference_steps''',\n '''latents''',\n '''negative_prompt''',\n '''guidance_scale''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Dict ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Any ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim\n @property\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 100\n @property\n def A_ ( self\t\t: Tuple ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Any\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 12,\n 'embedding_dim': self.text_embedder_hidden_size,\n 'num_layers': 1,\n }\n\n __snake_case\t\t\t\t: List[Any]\t\t = PriorTransformer(**__a )\n # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0\n __snake_case\t\t\t\t: Any\t\t = nn.Parameter(torch.ones(model.clip_std.shape ) )\n return model\n @property\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionConfig(\n hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionModelWithProjection(__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPImageProcessor(\n crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , )\n\n return image_processor\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_encoder\n __snake_case\t\t\t\t: str\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_processor\n\n __snake_case\t\t\t\t: Any\t\t = UnCLIPScheduler(\n variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , )\n\n __snake_case\t\t\t\t: str\t\t = {\n 'prior': prior,\n 'image_encoder': image_encoder,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'scheduler': scheduler,\n 'image_processor': image_processor,\n }\n\n return components\n def A_ ( self\t\t: List[Any] , __a\t\t: Optional[Any] , __a\t\t: Tuple=0 ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: List[str]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'guidance_scale': 4.0,\n 'num_inference_steps': 2,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = 'cpu'\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: List[str]\t\t = output.image_embeds\n\n __snake_case\t\t\t\t: str\t\t = pipe(\n **self.get_dummy_inputs(__a ) , return_dict=__a , )[0]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = image[0, -10:]\n __snake_case\t\t\t\t: Any\t\t = image_from_tuple[0, -10:]\n\n assert image.shape == (1, 32)\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.array(\n [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2\n @skip_mps\n def A_ ( self\t\t: Tuple ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Dict\t\t = True\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n\n self._test_inference_batch_single_identical(\n test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n\n\n @skip_mps\n def A_ ( self\t\t: str ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Optional[Any]\t\t = False\n\n self._test_attention_slicing_forward_pass(\n test_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":166,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nfrom transformers import XLMConfig, is_torch_available\nfrom transformers.testing_utils import require_torch, slow, torch_device\n\nfrom ...generation.test_utils import GenerationTesterMixin\nfrom ...test_configuration_common import ConfigTester\nfrom ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask\nfrom ...test_pipeline_mixin import PipelineTesterMixin\n\n\nif is_torch_available():\n import torch\n\n from transformers import (\n XLMForMultipleChoice,\n XLMForQuestionAnswering,\n XLMForQuestionAnsweringSimple,\n XLMForSequenceClassification,\n XLMForTokenClassification,\n XLMModel,\n XLMWithLMHeadModel,\n )\n from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Tuple , __a\t\t: int , __a\t\t: Optional[Any]=13 , __a\t\t: Optional[Any]=7 , __a\t\t: Dict=True , __a\t\t: Optional[Any]=True , __a\t\t: Any=True , __a\t\t: Optional[int]=True , __a\t\t: Tuple=True , __a\t\t: Any=False , __a\t\t: int=False , __a\t\t: Dict=False , __a\t\t: Optional[int]=2 , __a\t\t: Optional[Any]=99 , __a\t\t: Tuple=0 , __a\t\t: str=32 , __a\t\t: List[Any]=5 , __a\t\t: List[Any]=4 , __a\t\t: Optional[int]=0.1 , __a\t\t: List[str]=0.1 , __a\t\t: Dict=512 , __a\t\t: str=2 , __a\t\t: List[str]=0.0_2 , __a\t\t: Any=2 , __a\t\t: str=4 , __a\t\t: int=\"last\" , __a\t\t: Any=True , __a\t\t: Optional[int]=None , __a\t\t: Tuple=0 , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = parent\n __snake_case\t\t\t\t: Any\t\t = batch_size\n __snake_case\t\t\t\t: Optional[Any]\t\t = seq_length\n __snake_case\t\t\t\t: List[str]\t\t = is_training\n __snake_case\t\t\t\t: Tuple\t\t = use_input_lengths\n __snake_case\t\t\t\t: List[Any]\t\t = use_token_type_ids\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_labels\n __snake_case\t\t\t\t: List[Any]\t\t = gelu_activation\n __snake_case\t\t\t\t: List[Any]\t\t = sinusoidal_embeddings\n __snake_case\t\t\t\t: Any\t\t = causal\n __snake_case\t\t\t\t: str\t\t = asm\n __snake_case\t\t\t\t: int\t\t = n_langs\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: Tuple\t\t = n_special\n __snake_case\t\t\t\t: Optional[Any]\t\t = hidden_size\n __snake_case\t\t\t\t: str\t\t = num_hidden_layers\n __snake_case\t\t\t\t: List[str]\t\t = num_attention_heads\n __snake_case\t\t\t\t: Any\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: Optional[Any]\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: Union[str, Any]\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[str]\t\t = type_sequence_label_size\n __snake_case\t\t\t\t: Optional[Any]\t\t = initializer_range\n __snake_case\t\t\t\t: Dict\t\t = num_labels\n __snake_case\t\t\t\t: Dict\t\t = num_choices\n __snake_case\t\t\t\t: Dict\t\t = summary_type\n __snake_case\t\t\t\t: Dict\t\t = use_proj\n __snake_case\t\t\t\t: List[str]\t\t = scope\n __snake_case\t\t\t\t: Optional[int]\t\t = bos_token_id\n def A_ ( self\t\t: List[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )\n __snake_case\t\t\t\t: Optional[int]\t\t = random_attention_mask([self.batch_size, self.seq_length] )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = None\n if self.use_input_lengths:\n __snake_case\t\t\t\t: Dict\t\t = (\n ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2\n ) # small variation of seq_length\n\n __snake_case\t\t\t\t: int\t\t = None\n if self.use_token_type_ids:\n __snake_case\t\t\t\t: Optional[Any]\t\t = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )\n\n __snake_case\t\t\t\t: List[Any]\t\t = None\n __snake_case\t\t\t\t: str\t\t = None\n __snake_case\t\t\t\t: Optional[int]\t\t = None\n if self.use_labels:\n __snake_case\t\t\t\t: Dict\t\t = ids_tensor([self.batch_size] , self.type_sequence_label_size )\n __snake_case\t\t\t\t: Any\t\t = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ids_tensor([self.batch_size] , 2 ).float()\n __snake_case\t\t\t\t: List[str]\t\t = ids_tensor([self.batch_size] , self.num_choices )\n\n __snake_case\t\t\t\t: str\t\t = self.get_config()\n\n return (\n config,\n input_ids,\n token_type_ids,\n input_lengths,\n sequence_labels,\n token_labels,\n is_impossible_labels,\n choice_labels,\n input_mask,\n )\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return XLMConfig(\n vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )\n def A_ ( self\t\t: Optional[Any] , __a\t\t: Dict , __a\t\t: Tuple , __a\t\t: str , __a\t\t: Dict , __a\t\t: Optional[Any] , __a\t\t: str , __a\t\t: List[Any] , __a\t\t: int , __a\t\t: Tuple , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = XLMModel(config=__a )\n model.to(__a )\n model.eval()\n __snake_case\t\t\t\t: Optional[int]\t\t = model(__a , lengths=__a , langs=__a )\n __snake_case\t\t\t\t: Dict\t\t = model(__a , langs=__a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = model(__a )\n self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )\n def A_ ( self\t\t: Any , __a\t\t: List[Any] , __a\t\t: List[str] , __a\t\t: Optional[Any] , __a\t\t: str , __a\t\t: int , __a\t\t: Union[str, Any] , __a\t\t: str , __a\t\t: Dict , __a\t\t: str , ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = XLMWithLMHeadModel(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = model(__a , token_type_ids=__a , labels=__a )\n self.parent.assertEqual(result.loss.shape , () )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )\n def A_ ( self\t\t: List[str] , __a\t\t: str , __a\t\t: Tuple , __a\t\t: Optional[int] , __a\t\t: Any , __a\t\t: Optional[Any] , __a\t\t: Union[str, Any] , __a\t\t: Union[str, Any] , __a\t\t: int , __a\t\t: List[str] , ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = XLMForQuestionAnsweringSimple(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: Tuple\t\t = model(__a )\n\n __snake_case\t\t\t\t: List[str]\t\t = model(__a , start_positions=__a , end_positions=__a )\n __snake_case\t\t\t\t: Any\t\t = outputs\n self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )\n self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )\n def A_ ( self\t\t: str , __a\t\t: List[Any] , __a\t\t: Optional[Any] , __a\t\t: Any , __a\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: Any , __a\t\t: str , __a\t\t: Tuple , __a\t\t: int , ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = XLMForQuestionAnswering(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: Tuple\t\t = model(__a )\n\n __snake_case\t\t\t\t: Tuple\t\t = model(\n __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , )\n\n __snake_case\t\t\t\t: Tuple\t\t = model(\n __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , )\n\n ((__snake_case) , )\t\t\t\t: Optional[int]\t\t = result_with_labels.to_tuple()\n\n __snake_case\t\t\t\t: Tuple\t\t = model(__a , start_positions=__a , end_positions=__a )\n\n ((__snake_case) , )\t\t\t\t: Optional[Any]\t\t = result_with_labels.to_tuple()\n\n self.parent.assertEqual(result_with_labels.loss.shape , () )\n self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )\n self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )\n self.parent.assertEqual(\n result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )\n self.parent.assertEqual(\n result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )\n self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Union[str, Any] , __a\t\t: List[str] , __a\t\t: int , __a\t\t: Tuple , __a\t\t: Any , __a\t\t: List[Any] , __a\t\t: Tuple , __a\t\t: List[str] , __a\t\t: Tuple , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = XLMForSequenceClassification(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: Dict\t\t = model(__a )\n __snake_case\t\t\t\t: Dict\t\t = model(__a , labels=__a )\n self.parent.assertEqual(result.loss.shape , () )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )\n def A_ ( self\t\t: Dict , __a\t\t: List[str] , __a\t\t: Any , __a\t\t: List[str] , __a\t\t: Dict , __a\t\t: str , __a\t\t: Tuple , __a\t\t: Optional[Any] , __a\t\t: List[Any] , __a\t\t: Union[str, Any] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.num_labels\n __snake_case\t\t\t\t: Any\t\t = XLMForTokenClassification(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: Tuple\t\t = model(__a , attention_mask=__a , labels=__a )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )\n def A_ ( self\t\t: List[str] , __a\t\t: Optional[Any] , __a\t\t: Tuple , __a\t\t: Dict , __a\t\t: Optional[Any] , __a\t\t: Any , __a\t\t: List[Any] , __a\t\t: str , __a\t\t: Optional[Any] , __a\t\t: Optional[int] , ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.num_choices\n __snake_case\t\t\t\t: str\t\t = XLMForMultipleChoice(config=__a )\n model.to(__a )\n model.eval()\n __snake_case\t\t\t\t: Optional[int]\t\t = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()\n __snake_case\t\t\t\t: Optional[int]\t\t = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()\n __snake_case\t\t\t\t: str\t\t = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()\n __snake_case\t\t\t\t: Dict\t\t = model(\n __a , attention_mask=__a , token_type_ids=__a , labels=__a , )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )\n\n\n\n\n\n def A_ ( self\t\t: int ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.prepare_config_and_inputs()\n (\n (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , \n )\t\t\t\t: Optional[Any]\t\t = config_and_inputs\n __snake_case\t\t\t\t: Optional[int]\t\t = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}\n return config, inputs_dict\n\n\n\n@require_torch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n (\n XLMModel,\n XLMWithLMHeadModel,\n XLMForQuestionAnswering,\n XLMForSequenceClassification,\n XLMForQuestionAnsweringSimple,\n XLMForTokenClassification,\n XLMForMultipleChoice,\n )\n if is_torch_available()\n else ()\n )\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n (XLMWithLMHeadModel,) if is_torch_available() else ()\n ) # TODO (PVP): Check other models whether language generation is also applicable\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n {\n '''feature-extraction''': XLMModel,\n '''fill-mask''': XLMWithLMHeadModel,\n '''question-answering''': XLMForQuestionAnsweringSimple,\n '''text-classification''': XLMForSequenceClassification,\n '''text-generation''': XLMWithLMHeadModel,\n '''token-classification''': XLMForTokenClassification,\n '''zero-shot''': XLMForSequenceClassification,\n }\n if is_torch_available()\n else {}\n )\n def A_ ( self\t\t: Optional[int] , __a\t\t: Tuple , __a\t\t: Optional[int] , __a\t\t: List[str] , __a\t\t: List[Any] , __a\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if (\n pipeline_test_casse_name == \"QAPipelineTests\"\n and tokenizer_name is not None\n and not tokenizer_name.endswith('Fast' )\n ):\n # `QAPipelineTests` fails for a few models when the slower tokenizer are used.\n # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)\n # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer\n return True\n\n return False\n def A_ ( self\t\t: List[Any] , __a\t\t: Any , __a\t\t: Optional[Any] , __a\t\t: Any=False ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = super()._prepare_for_class(__a , __a , return_labels=__a )\n\n if return_labels:\n if model_class.__name__ == \"XLMForQuestionAnswering\":\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.zeros(\n self.model_tester.batch_size , dtype=torch.long , device=__a )\n __snake_case\t\t\t\t: Tuple\t\t = torch.zeros(\n self.model_tester.batch_size , dtype=torch.long , device=__a )\n\n return inputs_dict\n def A_ ( self\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = XLMModelTester(self )\n __snake_case\t\t\t\t: List[str]\t\t = ConfigTester(self , config_class=__a , emb_dim=37 )\n def A_ ( self\t\t: Tuple ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.config_tester.run_common_tests()\n def A_ ( self\t\t: int ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_model(*__a )\n def A_ ( self\t\t: Optional[int] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_lm_head(*__a )\n def A_ ( self\t\t: Dict ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_simple_qa(*__a )\n def A_ ( self\t\t: Optional[int] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_qa(*__a )\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_sequence_classif(*__a )\n def A_ ( self\t\t: Optional[int] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_token_classif(*__a )\n def A_ ( self\t\t: Optional[int] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_xlm_for_multiple_choice(*__a )\n def A_ ( self\t\t: int , __a\t\t: Union[str, Any] , __a\t\t: int , __a\t\t: int , __a\t\t: Optional[Any] , __a\t\t: Any , __a\t\t: Optional[Any]=False , __a\t\t: Union[str, Any]=1 ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertIsInstance(__a , __a )\n self.assertListEqual(\n [isinstance(__a , __a ) for iter_attentions in attentions] , [True] * len(__a ) )\n self.assertEqual(len(__a ) , (max_length - min_length) * num_beam_groups )\n\n for idx, iter_attentions in enumerate(__a ):\n # adds PAD dummy token\n __snake_case\t\t\t\t: Tuple\t\t = min_length + idx + 1\n __snake_case\t\t\t\t: Optional[Any]\t\t = min_length + idx + 1\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = (\n batch_size * num_beam_groups,\n config.num_attention_heads,\n tgt_len,\n src_len,\n )\n # check attn size\n self.assertListEqual(\n [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__a ) )\n def A_ ( self\t\t: Optional[Any] , __a\t\t: List[str] , __a\t\t: Dict , __a\t\t: Optional[Any] , __a\t\t: List[str] , __a\t\t: List[str] , __a\t\t: List[str]=False , __a\t\t: Any=1 ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertIsInstance(__a , __a )\n self.assertListEqual(\n [isinstance(__a , __a ) for iter_hidden_states in hidden_states] , [True] * len(__a ) , )\n self.assertEqual(len(__a ) , (max_length - min_length) * num_beam_groups )\n\n for idx, iter_hidden_states in enumerate(__a ):\n # adds PAD dummy token\n __snake_case\t\t\t\t: Optional[Any]\t\t = min_length + idx + 1\n __snake_case\t\t\t\t: List[Any]\t\t = (batch_size * num_beam_groups, seq_len, config.hidden_size)\n # check hidden size\n self.assertListEqual(\n [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__a ) , )\n pass\n\n\n\n\n\n @slow\n def A_ ( self\t\t: str ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\n __snake_case\t\t\t\t: Tuple\t\t = XLMModel.from_pretrained(__a )\n self.assertIsNotNone(__a )\n\n\n\n@require_torch\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n @slow\n def A_ ( self\t\t: List[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' )\n model.to(__a )\n __snake_case\t\t\t\t: List[str]\t\t = torch.tensor([[14, 447]] , dtype=torch.long , device=__a ) # the president\n __snake_case\t\t\t\t: List[str]\t\t = [\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n 14,\n 447,\n ] # the president the president the president the president the president the president the president the president the president the president\n # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference\n __snake_case\t\t\t\t: int\t\t = model.generate(__a , do_sample=__a )\n self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom math import factorial\n\nA__ : dict[str, int] =\t\t\t{str(digit): factorial(digit) for digit in range(1_0)}\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameter number must be int'\t\t\t\t\t\t\t)\n\n if number < 0:\n raise ValueError('Parameter number must be greater than or equal to 0'\t\t\t\t\t\t\t)\n\n # Converts number in string to iterate on its digits and adds its factorial.\n return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 60\t\t\t\t,_UpperCAmelCase : int = 1_00_00_00\t\t\t\t\t\t\t) -> int:\n\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) or not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameters chain_length and number_limit must be int'\t\t\t\t\t\t\t)\n\n if chain_length <= 0 or number_limit <= 0:\n raise ValueError(\n 'Parameters chain_length and number_limit must be greater than 0'\t\t\t\t\t\t\t)\n\n # the counter for the chains with the exact desired length\n __snake_case\t\t\t\t: List[str]\t\t = 0\n # the cached sizes of the previous chains\n __snake_case\t\t\t\t: dict[int, int]\t\t = {}\n\n for start_chain_element in range(1\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n # The temporary set will contain the elements of the chain\n __snake_case\t\t\t\t: Optional[int]\t\t = set()\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n\n # Stop computing the chain when you find a cached size, a repeating item or the\n # length is greater then the desired one.\n __snake_case\t\t\t\t: str\t\t = start_chain_element\n while (\n chain_element not in chain_sets_lengths\n and chain_element not in chain_set\n and chain_set_length <= chain_length\n ):\n chain_set.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n chain_set_length += 1\n __snake_case\t\t\t\t: Tuple\t\t = digit_factorial_sum(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if chain_element in chain_sets_lengths:\n chain_set_length += chain_sets_lengths[chain_element]\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = chain_set_length\n\n # If chain contains the exact amount of elements increase the counter\n if chain_set_length == chain_length:\n chains_counter += 1\n\n return chains_counter\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n print(F\"\"\"{solution()}\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":167,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nimport inspect\nimport unittest\nfrom typing import List, Tuple\n\nfrom transformers import RegNetConfig\nfrom transformers.testing_utils import require_tf, require_vision, slow\nfrom transformers.utils import cached_property, is_tf_available, is_vision_available\n\nfrom ...test_configuration_common import ConfigTester\nfrom ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor\nfrom ...test_pipeline_mixin import PipelineTesterMixin\n\n\nif is_tf_available():\n import tensorflow as tf\n\n from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import AutoImageProcessor\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: str , __a\t\t: Optional[int] , __a\t\t: str=3 , __a\t\t: Optional[int]=32 , __a\t\t: Optional[Any]=3 , __a\t\t: Optional[int]=10 , __a\t\t: List[Any]=[10, 20, 30, 40] , __a\t\t: Dict=[1, 1, 2, 1] , __a\t\t: Tuple=True , __a\t\t: Union[str, Any]=True , __a\t\t: Dict=\"relu\" , __a\t\t: Any=3 , __a\t\t: str=None , ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = parent\n __snake_case\t\t\t\t: Union[str, Any]\t\t = batch_size\n __snake_case\t\t\t\t: List[str]\t\t = image_size\n __snake_case\t\t\t\t: Tuple\t\t = num_channels\n __snake_case\t\t\t\t: Any\t\t = embeddings_size\n __snake_case\t\t\t\t: List[Any]\t\t = hidden_sizes\n __snake_case\t\t\t\t: str\t\t = depths\n __snake_case\t\t\t\t: int\t\t = is_training\n __snake_case\t\t\t\t: List[str]\t\t = use_labels\n __snake_case\t\t\t\t: Tuple\t\t = hidden_act\n __snake_case\t\t\t\t: Any\t\t = num_labels\n __snake_case\t\t\t\t: List[str]\t\t = scope\n __snake_case\t\t\t\t: Dict\t\t = len(__a )\n def A_ ( self\t\t: int ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )\n\n __snake_case\t\t\t\t: str\t\t = None\n if self.use_labels:\n __snake_case\t\t\t\t: Optional[int]\t\t = ids_tensor([self.batch_size] , self.num_labels )\n\n __snake_case\t\t\t\t: Tuple\t\t = self.get_config()\n return config, pixel_values, labels\n def A_ ( self\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n return RegNetConfig(\n num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )\n def A_ ( self\t\t: Optional[Any] , __a\t\t: Any , __a\t\t: Union[str, Any] , __a\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = TFRegNetModel(config=__a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = model(__a , training=__a )\n # expected last hidden states: B, C, H // 32, W // 32\n self.parent.assertEqual(\n result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )\n def A_ ( self\t\t: List[str] , __a\t\t: Dict , __a\t\t: Union[str, Any] , __a\t\t: Optional[Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.num_labels\n __snake_case\t\t\t\t: List[Any]\t\t = TFRegNetForImageClassification(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = model(__a , labels=__a , training=__a )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )\n\n\n\n\n\n def A_ ( self\t\t: int ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.prepare_config_and_inputs()\n __snake_case , __snake_case , __snake_case\t\t\t\t: Any\t\t = config_and_inputs\n __snake_case\t\t\t\t: Any\t\t = {'pixel_values': pixel_values}\n return config, inputs_dict\n\n\n\n@require_tf\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}\n if is_tf_available()\n else {}\n )\n\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: List[str] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = TFRegNetModelTester(self )\n __snake_case\t\t\t\t: Optional[Any]\t\t = ConfigTester(self , config_class=__a , has_text_modality=__a )\n def A_ ( self\t\t: Optional[int] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n return\n @unittest.skip(reason='RegNet does not use inputs_embeds' )\n def A_ ( self\t\t: List[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n @unittest.skipIf(\n not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )\n @slow\n def A_ ( self\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().test_keras_fit()\n @unittest.skip(reason='RegNet does not support input and output embeddings' )\n def A_ ( self\t\t: str ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n\n for model_class in self.all_model_classes:\n __snake_case\t\t\t\t: Tuple\t\t = model_class(__a )\n __snake_case\t\t\t\t: List[str]\t\t = inspect.signature(model.call )\n # signature.parameters is an OrderedDict => so arg_names order is deterministic\n __snake_case\t\t\t\t: Optional[int]\t\t = [*signature.parameters.keys()]\n\n __snake_case\t\t\t\t: Any\t\t = ['pixel_values']\n self.assertListEqual(arg_names[:1] , __a )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_model(*__a )\n def A_ ( self\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n def check_hidden_states_output(__a\t\t: List[str] , __a\t\t: List[Any] , __a\t\t: Optional[Any] ):\n __snake_case\t\t\t\t: List[Any]\t\t = model_class(__a )\n __snake_case\t\t\t\t: int\t\t = model(**self._prepare_for_class(__a , __a ) , training=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states\n\n __snake_case\t\t\t\t: List[Any]\t\t = self.model_tester.num_stages\n self.assertEqual(len(__a ) , expected_num_stages + 1 )\n\n # RegNet's feature maps are of shape (batch_size, num_channels, height, width)\n self.assertListEqual(\n list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )\n\n __snake_case , __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n __snake_case\t\t\t\t: Optional[int]\t\t = ['basic', 'bottleneck']\n for model_class in self.all_model_classes:\n for layer_type in layers_type:\n __snake_case\t\t\t\t: List[str]\t\t = layer_type\n __snake_case\t\t\t\t: Optional[Any]\t\t = True\n check_hidden_states_output(__a , __a , __a )\n\n # check that output_hidden_states also work using config\n del inputs_dict[\"output_hidden_states\"]\n __snake_case\t\t\t\t: str\t\t = True\n\n check_hidden_states_output(__a , __a , __a )\n def A_ ( self\t\t: Tuple ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case , __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs_for_common()\n\n def check_equivalence(__a\t\t: Optional[int] , __a\t\t: Tuple , __a\t\t: Union[str, Any] , __a\t\t: List[Any]={} ):\n __snake_case\t\t\t\t: Optional[Any]\t\t = model(__a , return_dict=__a , **__a )\n __snake_case\t\t\t\t: Tuple\t\t = model(__a , return_dict=__a , **__a ).to_tuple()\n\n def recursive_check(__a\t\t: Tuple , __a\t\t: Optional[int] ):\n if isinstance(__a , (List, Tuple) ):\n for tuple_iterable_value, dict_iterable_value in zip(__a , __a ):\n recursive_check(__a , __a )\n elif tuple_object is None:\n return\n else:\n self.assertTrue(\n all(tf.equal(__a , __a ) ) , msg=(\n 'Tuple and dict output are not equal. Difference:'\n f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''\n ) , )\n\n recursive_check(__a , __a )\n\n for model_class in self.all_model_classes:\n __snake_case\t\t\t\t: List[str]\t\t = model_class(__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = self._prepare_for_class(__a , __a )\n __snake_case\t\t\t\t: str\t\t = self._prepare_for_class(__a , __a )\n check_equivalence(__a , __a , __a )\n\n __snake_case\t\t\t\t: List[str]\t\t = self._prepare_for_class(__a , __a , return_labels=__a )\n __snake_case\t\t\t\t: Tuple\t\t = self._prepare_for_class(__a , __a , return_labels=__a )\n check_equivalence(__a , __a , __a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self._prepare_for_class(__a , __a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self._prepare_for_class(__a , __a )\n check_equivalence(__a , __a , __a , {'output_hidden_states': True} )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self._prepare_for_class(__a , __a , return_labels=__a )\n __snake_case\t\t\t\t: Any\t\t = self._prepare_for_class(__a , __a , return_labels=__a )\n check_equivalence(__a , __a , __a , {'output_hidden_states': True} )\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_for_image_classification(*__a )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\n __snake_case\t\t\t\t: Tuple\t\t = TFRegNetModel.from_pretrained(__a )\n self.assertIsNotNone(__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[int]:\n __snake_case\t\t\t\t: Any\t\t = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png'\t\t\t\t\t\t\t)\n return image\n\n\n\n\n\n@require_tf\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n @cached_property\n def A_ ( self\t\t: List[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return (\n AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )\n if is_vision_available()\n else None\n )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: Optional[Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )\n\n __snake_case\t\t\t\t: str\t\t = self.default_image_processor\n __snake_case\t\t\t\t: Union[str, Any]\t\t = prepare_img()\n __snake_case\t\t\t\t: str\t\t = image_processor(images=__a , return_tensors='tf' )\n\n # forward pass\n __snake_case\t\t\t\t: Optional[int]\t\t = model(**__a , training=__a )\n\n # verify the logits\n __snake_case\t\t\t\t: List[str]\t\t = tf.TensorShape((1, 1000) )\n self.assertEqual(outputs.logits.shape , __a )\n\n __snake_case\t\t\t\t: List[str]\t\t = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )\n\n tf.debugging.assert_near(outputs.logits[0, :3] , __a , atol=1e-4 )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 1_00\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Any\t\t = n * (n + 1) * (2 * n + 1) / 6\n __snake_case\t\t\t\t: Union[str, Any]\t\t = (n * (n + 1) / 2) ** 2\n return int(square_of_sum - sum_of_squares\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{solution() = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":168,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport numpy as np\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : np.ndarray\t\t\t\t,_UpperCAmelCase : np.ndarray\t\t\t\t,_UpperCAmelCase : float = 1E-12\t\t\t\t,_UpperCAmelCase : int = 1_00\t\t\t\t,) -> tuple[float, np.ndarray]:\n assert np.shape(_UpperCAmelCase\t\t\t\t\t\t\t)[0] == np.shape(_UpperCAmelCase\t\t\t\t\t\t\t)[1]\n # Ensure proper dimensionality.\n assert np.shape(_UpperCAmelCase\t\t\t\t\t\t\t)[0] == np.shape(_UpperCAmelCase\t\t\t\t\t\t\t)[0]\n # Ensure inputs are either both complex or both real\n assert np.iscomplexobj(_UpperCAmelCase\t\t\t\t\t\t\t) == np.iscomplexobj(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Dict\t\t = np.iscomplexobj(_UpperCAmelCase\t\t\t\t\t\t\t)\n if is_complex:\n # Ensure complex input_matrix is Hermitian\n assert np.array_equal(_UpperCAmelCase\t\t\t\t,input_matrix.conj().T\t\t\t\t\t\t\t)\n\n # Set convergence to False. Will define convergence when we exceed max_iterations\n # or when we have small changes from one iteration to next.\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n __snake_case\t\t\t\t: Dict\t\t = 0\n __snake_case\t\t\t\t: Any\t\t = 0\n __snake_case\t\t\t\t: List[str]\t\t = 1E12\n\n while not convergence:\n # Multiple matrix by the vector.\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.dot(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n # Normalize the resulting output vector.\n __snake_case\t\t\t\t: int\t\t = w / np.linalg.norm(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Find rayleigh quotient\n # (faster than usual b/c we know vector is normalized already)\n __snake_case\t\t\t\t: Dict\t\t = vector.conj().T if is_complex else vector.T\n __snake_case\t\t\t\t: Optional[Any]\t\t = np.dot(_UpperCAmelCase\t\t\t\t,np.dot(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n # Check convergence.\n __snake_case\t\t\t\t: Any\t\t = np.abs(lambda_ - lambda_previous\t\t\t\t\t\t\t) / lambda_\n iterations += 1\n\n if error <= error_tol or iterations >= max_iterations:\n __snake_case\t\t\t\t: str\t\t = True\n\n __snake_case\t\t\t\t: List[Any]\t\t = lambda_\n\n if is_complex:\n __snake_case\t\t\t\t: List[Any]\t\t = np.real(lambda_\t\t\t\t\t\t\t)\n\n return lambda_, vector\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> None:\n __snake_case\t\t\t\t: Optional[int]\t\t = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = np.array([41, 4, 20]\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: str\t\t = real_input_matrix.astype(np.complexaaa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = np.triu(1J * complex_input_matrix\t\t\t\t,1\t\t\t\t\t\t\t)\n complex_input_matrix += imag_matrix\n complex_input_matrix += -1 * imag_matrix.T\n __snake_case\t\t\t\t: int\t\t = np.array([41, 4, 20]\t\t\t\t\t\t\t).astype(np.complexaaa\t\t\t\t\t\t\t)\n\n for problem_type in [\"real\", \"complex\"]:\n if problem_type == \"real\":\n __snake_case\t\t\t\t: List[Any]\t\t = real_input_matrix\n __snake_case\t\t\t\t: Optional[int]\t\t = real_vector\n elif problem_type == \"complex\":\n __snake_case\t\t\t\t: Dict\t\t = complex_input_matrix\n __snake_case\t\t\t\t: Dict\t\t = complex_vector\n\n # Our implementation.\n __snake_case , __snake_case\t\t\t\t: Any\t\t = power_iteration(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Numpy implementation.\n\n # Get eigenvalues and eigenvectors using built-in numpy\n # eigh (eigh used for symmetric or hermetian matrices).\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = np.linalg.eigh(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Last eigenvalue is the maximum one.\n __snake_case\t\t\t\t: str\t\t = eigen_values[-1]\n # Last column in this matrix is eigenvector corresponding to largest eigenvalue.\n __snake_case\t\t\t\t: str\t\t = eigen_vectors[:, -1]\n\n # Check our implementation and numpy gives close answers.\n assert np.abs(eigen_value - eigen_value_max\t\t\t\t\t\t\t) <= 1E-6\n # Take absolute values element wise of each eigenvector.\n # as they are only unique to a minus sign.\n assert np.linalg.norm(np.abs(_UpperCAmelCase\t\t\t\t\t\t\t) - np.abs(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) <= 1E-6\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n test_power_iteration()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available\n\n\nA__ : int =\t\t\t{\n '''configuration_groupvit''': [\n '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''GroupViTConfig''',\n '''GroupViTOnnxConfig''',\n '''GroupViTTextConfig''',\n '''GroupViTVisionConfig''',\n ],\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Tuple =\t\t\t[\n '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''GroupViTModel''',\n '''GroupViTPreTrainedModel''',\n '''GroupViTTextModel''',\n '''GroupViTVisionModel''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[int] =\t\t\t[\n '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFGroupViTModel''',\n '''TFGroupViTPreTrainedModel''',\n '''TFGroupViTTextModel''',\n '''TFGroupViTVisionModel''',\n ]\n\nif TYPE_CHECKING:\n from .configuration_groupvit import (\n GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,\n GroupViTConfig,\n GroupViTOnnxConfig,\n GroupViTTextConfig,\n GroupViTVisionConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_groupvit import (\n GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n GroupViTModel,\n GroupViTPreTrainedModel,\n GroupViTTextModel,\n GroupViTVisionModel,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_groupvit import (\n TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFGroupViTModel,\n TFGroupViTPreTrainedModel,\n TFGroupViTTextModel,\n TFGroupViTVisionModel,\n )\n\nelse:\n import sys\n\n A__ : List[str] =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":169,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport fire\n\nfrom utils import calculate_rouge, save_json\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : str=None\t\t\t\t,**_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n __snake_case\t\t\t\t: List[str]\t\t = [x.strip() for x in open(_UpperCAmelCase\t\t\t\t\t\t\t).readlines()]\n __snake_case\t\t\t\t: List[str]\t\t = [x.strip() for x in open(_UpperCAmelCase\t\t\t\t\t\t\t).readlines()][: len(_UpperCAmelCase\t\t\t\t\t\t\t)]\n __snake_case\t\t\t\t: List[Any]\t\t = calculate_rouge(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,**_UpperCAmelCase\t\t\t\t\t\t\t)\n if save_path is not None:\n save_json(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,indent=_UpperCAmelCase\t\t\t\t\t\t\t)\n return metrics # these print nicely\n\n\nif __name__ == \"__main__\":\n fire.Fire(calculate_rouge_path)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport gc\nimport unittest\n\nimport numpy as np\nimport torch\nfrom transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer\n\nfrom diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline\nfrom diffusers.pipelines.shap_e import ShapERenderer\nfrom diffusers.utils import load_numpy, slow\nfrom diffusers.utils.testing_utils import require_torch_gpu, torch_device\n\nfrom ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tShapEPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''num_inference_steps''',\n '''generator''',\n '''latents''',\n '''guidance_scale''',\n '''frame_size''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Optional[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Tuple ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 8\n @property\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[int]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Dict\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 16,\n 'embedding_dim': self.time_input_dim,\n 'num_embeddings': 32,\n 'embedding_proj_dim': self.text_embedder_hidden_size,\n 'time_embed_dim': self.time_embed_dim,\n 'num_layers': 1,\n 'clip_embed_dim': self.time_input_dim * 2,\n 'additional_embeddings': 0,\n 'time_embed_act_fn': 'gelu',\n 'norm_in_type': 'layer',\n 'encoder_hid_proj_type': None,\n 'added_emb_type': None,\n }\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = PriorTransformer(**__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Tuple\t\t = {\n 'param_shapes': (\n (self.renderer_dim, 93),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n ),\n 'd_latent': self.time_input_dim,\n 'd_hidden': self.renderer_dim,\n 'n_output': 12,\n 'background': (\n 0.1,\n 0.1,\n 0.1,\n ),\n }\n __snake_case\t\t\t\t: Optional[int]\t\t = ShapERenderer(**__a )\n return model\n def A_ ( self\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.dummy_renderer\n\n __snake_case\t\t\t\t: List[Any]\t\t = HeunDiscreteScheduler(\n beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , )\n __snake_case\t\t\t\t: int\t\t = {\n 'prior': prior,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'renderer': renderer,\n 'scheduler': scheduler,\n }\n\n return components\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: int=0 ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'num_inference_steps': 1,\n 'frame_size': 32,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = 'cpu'\n\n __snake_case\t\t\t\t: Dict\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: int\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: str\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: Dict\t\t = output.images[0]\n __snake_case\t\t\t\t: int\t\t = image[0, -3:, -3:, -1]\n\n assert image.shape == (20, 32, 32, 3)\n\n __snake_case\t\t\t\t: str\t\t = np.array(\n [\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n ] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches\n self._test_inference_batch_consistent(batch_sizes=[1, 2] )\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: str\t\t = True\n\n self._test_inference_batch_single_identical(\n batch_size=2 , test_max_difference=__a , relax_max_difference=__a , )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_dummy_components()\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Dict\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: int\t\t = 1\n __snake_case\t\t\t\t: Tuple\t\t = 2\n\n __snake_case\t\t\t\t: Tuple\t\t = self.get_dummy_inputs(__a )\n\n for key in inputs.keys():\n if key in self.batch_params:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = batch_size * [inputs[key]]\n\n __snake_case\t\t\t\t: str\t\t = pipe(**__a , num_images_per_prompt=__a )[0]\n\n assert images.shape[0] == batch_size * num_images_per_prompt\n\n\n\n@slow\n@require_torch_gpu\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n # clean up the VRAM after each test\n super().tearDown()\n gc.collect()\n torch.cuda.empty_cache()\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = load_numpy(\n 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'\n '/shap_e/test_shap_e_np_out.npy' )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ShapEPipeline.from_pretrained('openai/shap-e' )\n __snake_case\t\t\t\t: Any\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.Generator(device=__a ).manual_seed(0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pipe(\n 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]\n\n assert images.shape == (20, 64, 64, 3)\n\n assert_mean_pixel_difference(__a , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":170,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n return int((input_a, input_a).count(0\t\t\t\t\t\t\t) != 0\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> None:\n assert nand_gate(0\t\t\t\t,0\t\t\t\t\t\t\t) == 1\n assert nand_gate(0\t\t\t\t,1\t\t\t\t\t\t\t) == 1\n assert nand_gate(1\t\t\t\t,0\t\t\t\t\t\t\t) == 1\n assert nand_gate(1\t\t\t\t,1\t\t\t\t\t\t\t) == 0\n\n\nif __name__ == \"__main__\":\n print(nand_gate(0, 0))\n print(nand_gate(0, 1))\n print(nand_gate(1, 0))\n print(nand_gate(1, 1))\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nimport time\n\nimport numpy as np\n\nA__ : str =\t\t\t[8, 5, 9, 7]\nA__ : List[str] =\t\t\t[\n [2, 0, 1, 1],\n [0, 1, 2, 1],\n [4, 0, 0, 3],\n [0, 2, 1, 0],\n [1, 0, 3, 0],\n]\nA__ : Dict =\t\t\t[\n [3, 2, 1, 4],\n [0, 2, 5, 2],\n [5, 1, 0, 5],\n [1, 5, 3, 0],\n [3, 0, 3, 3],\n]\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: Union[str, Any] , __a\t\t: list[int] , __a\t\t: list[list[int]] , __a\t\t: list[list[int]] , ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = claim_vector\n __snake_case\t\t\t\t: Optional[int]\t\t = allocated_resources_table\n __snake_case\t\t\t\t: List[str]\t\t = maximum_claim_table\n def A_ ( self\t\t: str ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n sum(p_item[i] for p_item in self.__allocated_resources_table )\n for i in range(len(self.__allocated_resources_table[0] ) )\n ]\n def A_ ( self\t\t: int ) -> list[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return np.array(self.__claim_vector ) - np.array(\n self.__processes_resource_summation() )\n def A_ ( self\t\t: int ) -> list[list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return [\n list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) )\n for i, allocated_resource in enumerate(self.__allocated_resources_table )\n ]\n def A_ ( self\t\t: str ) -> dict[int, list[int]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return {self.__need().index(__a ): i for i in self.__need()}\n def A_ ( self\t\t: Union[str, Any] , **__a\t\t: int ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.__need()\n __snake_case\t\t\t\t: List[Any]\t\t = self.__allocated_resources_table\n __snake_case\t\t\t\t: Optional[int]\t\t = self.__available_resources()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.__need_index_manager()\n for kw, val in kwargs.items():\n if kw and val is True:\n self.__pretty_data()\n print('_' * 50 + '\\n' )\n while need_list:\n __snake_case\t\t\t\t: Tuple\t\t = False\n for each_need in need_list:\n __snake_case\t\t\t\t: Any\t\t = True\n for index, need in enumerate(__a ):\n if need > available_resources[index]:\n __snake_case\t\t\t\t: List[str]\t\t = False\n break\n if execution:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n # get the original index of the process from ind_ctrl db\n for original_need_index, need_clone in need_index_manager.items():\n if each_need == need_clone:\n __snake_case\t\t\t\t: str\t\t = original_need_index\n print(f'''Process {process_number + 1} is executing.''' )\n # remove the process run from stack\n need_list.remove(__a )\n # update available/freed resources stack\n __snake_case\t\t\t\t: Union[str, Any]\t\t = np.array(__a ) + np.array(\n alloc_resources_table[process_number] )\n print(\n 'Updated available resource stack for processes: '\n + ' '.join([str(__a ) for x in available_resources] ) )\n break\n if safe:\n print('The process is in a safe state.\\n' )\n else:\n print('System in unsafe state. Aborting...\\n' )\n break\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n print(' ' * 9 + 'Allocated Resource Table' )\n for item in self.__allocated_resources_table:\n print(\n f'''P{self.__allocated_resources_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(' ' * 9 + 'System Resource Table' )\n for item in self.__maximum_claim_table:\n print(\n f'''P{self.__maximum_claim_table.index(__a ) + 1}'''\n + ' '.join(f'''{it:>8}''' for it in item )\n + '\\n' )\n print(\n 'Current Usage by Active Processes: '\n + ' '.join(str(__a ) for x in self.__claim_vector ) )\n print(\n 'Initial Available Resources: '\n + ' '.join(str(__a ) for x in self.__available_resources() ) )\n time.sleep(1 )\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":171,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Optional, Tuple, Union\n\nimport flax\nimport flax.linen as nn\nimport jax\nimport jax.numpy as jnp\nfrom flax.core.frozen_dict import FrozenDict\n\nfrom ..configuration_utils import ConfigMixin, flax_register_to_config\nfrom ..utils import BaseOutput\nfrom .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps\nfrom .modeling_flax_utils import FlaxModelMixin\nfrom .unet_ad_blocks_flax import (\n FlaxCrossAttnDownBlockaD,\n FlaxDownBlockaD,\n FlaxUNetMidBlockaDCrossAttn,\n)\n\n\n\n@flax.struct.dataclass\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t42\n A__\t\t\t\t\t\t\t=\t\t\t\t42\n\n\n\nclass \t\t\t\tsnake_case__\t\t( nn.Module\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t42\n A__\t\t\t\t\t\t\t=\t\t\t\t(16, 32, 96, 256)\n A__\t\t\t\t\t\t\t=\t\t\t\tjnp.floataa\n def A_ ( self\t\t: Union[str, Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = nn.Conv(\n self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )\n\n __snake_case\t\t\t\t: Tuple\t\t = []\n for i in range(len(self.block_out_channels ) - 1 ):\n __snake_case\t\t\t\t: str\t\t = self.block_out_channels[i]\n __snake_case\t\t\t\t: Any\t\t = self.block_out_channels[i + 1]\n __snake_case\t\t\t\t: Optional[int]\t\t = nn.Conv(\n __a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )\n blocks.append(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = nn.Conv(\n __a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )\n blocks.append(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = blocks\n\n __snake_case\t\t\t\t: List[str]\t\t = nn.Conv(\n self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )\n\n\n\n\n\n def __call__( self\t\t: Any , __a\t\t: int ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.conv_in(__a )\n __snake_case\t\t\t\t: Dict\t\t = nn.silu(__a )\n\n for block in self.blocks:\n __snake_case\t\t\t\t: List[Any]\t\t = block(__a )\n __snake_case\t\t\t\t: str\t\t = nn.silu(__a )\n\n __snake_case\t\t\t\t: List[str]\t\t = self.conv_out(__a )\n\n return embedding\n\n\n\n@flax_register_to_config\nclass \t\t\t\tsnake_case__\t\t( nn.Module , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t32\n A__\t\t\t\t\t\t\t=\t\t\t\t4\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n \"CrossAttnDownBlock2D\",\n \"CrossAttnDownBlock2D\",\n \"CrossAttnDownBlock2D\",\n \"DownBlock2D\",\n )\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\t(320, 640, 1_280, 1_280)\n A__\t\t\t\t\t\t\t=\t\t\t\t2\n A__\t\t\t\t\t\t\t=\t\t\t\t8\n A__\t\t\t\t\t\t\t=\t\t\t\tNone\n A__\t\t\t\t\t\t\t=\t\t\t\t1_280\n A__\t\t\t\t\t\t\t=\t\t\t\t0.0\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tjnp.floataa\n A__\t\t\t\t\t\t\t=\t\t\t\tTrue\n A__\t\t\t\t\t\t\t=\t\t\t\t0\n A__\t\t\t\t\t\t\t=\t\t\t\t\"rgb\"\n A__\t\t\t\t\t\t\t=\t\t\t\t(16, 32, 96, 256)\n def A_ ( self\t\t: Optional[Any] , __a\t\t: jax.random.KeyArray ) -> FrozenDict:\n\n\n\n\n\n\n\n '''simple docstring'''\n # init input tensors\n __snake_case\t\t\t\t: Dict\t\t = (1, self.in_channels, self.sample_size, self.sample_size)\n __snake_case\t\t\t\t: Union[str, Any]\t\t = jnp.zeros(__a , dtype=jnp.floataa )\n __snake_case\t\t\t\t: Optional[int]\t\t = jnp.ones((1,) , dtype=jnp.intaa )\n __snake_case\t\t\t\t: List[str]\t\t = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )\n __snake_case\t\t\t\t: Any\t\t = (1, 3, self.sample_size * 8, self.sample_size * 8)\n __snake_case\t\t\t\t: int\t\t = jnp.zeros(__a , dtype=jnp.floataa )\n\n __snake_case , __snake_case\t\t\t\t: Optional[Any]\t\t = jax.random.split(__a )\n __snake_case\t\t\t\t: Dict\t\t = {'params': params_rng, 'dropout': dropout_rng}\n\n return self.init(__a , __a , __a , __a , __a )[\"params\"]\n def A_ ( self\t\t: Tuple ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.block_out_channels\n __snake_case\t\t\t\t: List[Any]\t\t = block_out_channels[0] * 4\n\n # If `num_attention_heads` is not defined (which is the case for most models)\n # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.\n # The reason for this behavior is to correct for incorrectly named variables that were introduced\n # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131\n # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking\n # which is why we correct for the naming here.\n __snake_case\t\t\t\t: int\t\t = self.num_attention_heads or self.attention_head_dim\n\n # input\n __snake_case\t\t\t\t: int\t\t = nn.Conv(\n block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )\n\n # time\n __snake_case\t\t\t\t: Optional[Any]\t\t = FlaxTimesteps(\n block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = FlaxTimestepEmbedding(__a , dtype=self.dtype )\n\n __snake_case\t\t\t\t: Any\t\t = FlaxControlNetConditioningEmbedding(\n conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )\n\n __snake_case\t\t\t\t: int\t\t = self.only_cross_attention\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: Optional[Any]\t\t = (only_cross_attention,) * len(self.down_block_types )\n\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: Any\t\t = (num_attention_heads,) * len(self.down_block_types )\n\n # down\n __snake_case\t\t\t\t: List[str]\t\t = []\n __snake_case\t\t\t\t: Tuple\t\t = []\n\n __snake_case\t\t\t\t: Tuple\t\t = block_out_channels[0]\n\n __snake_case\t\t\t\t: Dict\t\t = nn.Conv(\n __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )\n controlnet_down_blocks.append(__a )\n\n for i, down_block_type in enumerate(self.down_block_types ):\n __snake_case\t\t\t\t: int\t\t = output_channel\n __snake_case\t\t\t\t: Union[str, Any]\t\t = block_out_channels[i]\n __snake_case\t\t\t\t: str\t\t = i == len(__a ) - 1\n\n if down_block_type == \"CrossAttnDownBlock2D\":\n __snake_case\t\t\t\t: Union[str, Any]\t\t = FlaxCrossAttnDownBlockaD(\n in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )\n else:\n __snake_case\t\t\t\t: Tuple\t\t = FlaxDownBlockaD(\n in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )\n\n down_blocks.append(__a )\n\n for _ in range(self.layers_per_block ):\n __snake_case\t\t\t\t: Tuple\t\t = nn.Conv(\n __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )\n controlnet_down_blocks.append(__a )\n\n if not is_final_block:\n __snake_case\t\t\t\t: int\t\t = nn.Conv(\n __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )\n controlnet_down_blocks.append(__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = down_blocks\n __snake_case\t\t\t\t: Any\t\t = controlnet_down_blocks\n\n # mid\n __snake_case\t\t\t\t: Optional[int]\t\t = block_out_channels[-1]\n __snake_case\t\t\t\t: List[str]\t\t = FlaxUNetMidBlockaDCrossAttn(\n in_channels=__a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )\n\n __snake_case\t\t\t\t: List[Any]\t\t = nn.Conv(\n __a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )\n\n\n\n\n\n def __call__( self\t\t: str , __a\t\t: Tuple , __a\t\t: Any , __a\t\t: Optional[Any] , __a\t\t: List[Any] , __a\t\t: float = 1.0 , __a\t\t: bool = True , __a\t\t: bool = False , ) -> Union[FlaxControlNetOutput, Tuple]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.controlnet_conditioning_channel_order\n if channel_order == \"bgr\":\n __snake_case\t\t\t\t: Tuple\t\t = jnp.flip(__a , axis=1 )\n\n # 1. time\n if not isinstance(__a , jnp.ndarray ):\n __snake_case\t\t\t\t: List[str]\t\t = jnp.array([timesteps] , dtype=jnp.intaa )\n elif isinstance(__a , jnp.ndarray ) and len(timesteps.shape ) == 0:\n __snake_case\t\t\t\t: Any\t\t = timesteps.astype(dtype=jnp.floataa )\n __snake_case\t\t\t\t: List[Any]\t\t = jnp.expand_dims(__a , 0 )\n\n __snake_case\t\t\t\t: Dict\t\t = self.time_proj(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = self.time_embedding(__a )\n\n # 2. pre-process\n __snake_case\t\t\t\t: Dict\t\t = jnp.transpose(__a , (0, 2, 3, 1) )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.conv_in(__a )\n\n __snake_case\t\t\t\t: str\t\t = jnp.transpose(__a , (0, 2, 3, 1) )\n __snake_case\t\t\t\t: List[str]\t\t = self.controlnet_cond_embedding(__a )\n sample += controlnet_cond\n\n # 3. down\n __snake_case\t\t\t\t: Union[str, Any]\t\t = (sample,)\n for down_block in self.down_blocks:\n if isinstance(__a , __a ):\n __snake_case , __snake_case\t\t\t\t: Union[str, Any]\t\t = down_block(__a , __a , __a , deterministic=not train )\n else:\n __snake_case , __snake_case\t\t\t\t: Tuple\t\t = down_block(__a , __a , deterministic=not train )\n down_block_res_samples += res_samples\n\n # 4. mid\n __snake_case\t\t\t\t: List[str]\t\t = self.mid_block(__a , __a , __a , deterministic=not train )\n\n # 5. contronet blocks\n __snake_case\t\t\t\t: Optional[Any]\t\t = ()\n for down_block_res_sample, controlnet_block in zip(__a , self.controlnet_down_blocks ):\n __snake_case\t\t\t\t: str\t\t = controlnet_block(__a )\n controlnet_down_block_res_samples += (down_block_res_sample,)\n\n __snake_case\t\t\t\t: Any\t\t = controlnet_down_block_res_samples\n\n __snake_case\t\t\t\t: Any\t\t = self.controlnet_mid_block(__a )\n\n # 6. scaling\n __snake_case\t\t\t\t: Union[str, Any]\t\t = [sample * conditioning_scale for sample in down_block_res_samples]\n mid_block_res_sample *= conditioning_scale\n\n if not return_dict:\n return (down_block_res_samples, mid_block_res_sample)\n\n return FlaxControlNetOutput(\n down_block_res_samples=__a , mid_block_res_sample=__a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nfrom typing import List, Optional, Tuple\n\nfrom tokenizers import normalizers\n\nfrom ...tokenization_utils_fast import PreTrainedTokenizerFast\nfrom .tokenization_electra import ElectraTokenizer\n\n\nA__ : Union[str, Any] =\t\t\t{'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}\n\nA__ : List[Any] =\t\t\t{\n '''vocab_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''',\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'''\n ),\n },\n '''tokenizer_file''': {\n '''google/electra-small-generator''': (\n '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-generator''': (\n '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-generator''': (\n '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-small-discriminator''': (\n '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-base-discriminator''': (\n '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'''\n ),\n '''google/electra-large-discriminator''': (\n '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'''\n ),\n },\n}\n\nA__ : List[Any] =\t\t\t{\n '''google/electra-small-generator''': 5_1_2,\n '''google/electra-base-generator''': 5_1_2,\n '''google/electra-large-generator''': 5_1_2,\n '''google/electra-small-discriminator''': 5_1_2,\n '''google/electra-base-discriminator''': 5_1_2,\n '''google/electra-large-discriminator''': 5_1_2,\n}\n\nA__ : Optional[Any] =\t\t\t{\n '''google/electra-small-generator''': {'''do_lower_case''': True},\n '''google/electra-base-generator''': {'''do_lower_case''': True},\n '''google/electra-large-generator''': {'''do_lower_case''': True},\n '''google/electra-small-discriminator''': {'''do_lower_case''': True},\n '''google/electra-base-discriminator''': {'''do_lower_case''': True},\n '''google/electra-large-discriminator''': {'''do_lower_case''': True},\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_INIT_CONFIGURATION\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\tElectraTokenizer\n def __init__( self\t\t: int , __a\t\t: List[Any]=None , __a\t\t: int=None , __a\t\t: List[str]=True , __a\t\t: Any=\"[UNK]\" , __a\t\t: Any=\"[SEP]\" , __a\t\t: Union[str, Any]=\"[PAD]\" , __a\t\t: Dict=\"[CLS]\" , __a\t\t: List[Any]=\"[MASK]\" , __a\t\t: str=True , __a\t\t: Optional[int]=None , **__a\t\t: Optional[int] , ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , )\n\n __snake_case\t\t\t\t: Tuple\t\t = json.loads(self.backend_tokenizer.normalizer.__getstate__() )\n if (\n normalizer_state.get('lowercase' , __a ) != do_lower_case\n or normalizer_state.get('strip_accents' , __a ) != strip_accents\n or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars\n ):\n __snake_case\t\t\t\t: List[Any]\t\t = getattr(__a , normalizer_state.pop('type' ) )\n __snake_case\t\t\t\t: str\t\t = do_lower_case\n __snake_case\t\t\t\t: Optional[int]\t\t = strip_accents\n __snake_case\t\t\t\t: Any\t\t = tokenize_chinese_chars\n __snake_case\t\t\t\t: Union[str, Any]\t\t = normalizer_class(**__a )\n\n __snake_case\t\t\t\t: Any\t\t = do_lower_case\n def A_ ( self\t\t: Any , __a\t\t: List[str] , __a\t\t: Optional[Any]=None ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = [self.cls_token_id] + token_ids_a + [self.sep_token_id]\n\n if token_ids_a:\n output += token_ids_a + [self.sep_token_id]\n\n return output\n def A_ ( self\t\t: List[Any] , __a\t\t: List[int] , __a\t\t: Optional[List[int]] = None ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = [self.sep_token_id]\n __snake_case\t\t\t\t: List[Any]\t\t = [self.cls_token_id]\n if token_ids_a is None:\n return len(cls + token_ids_a + sep ) * [0]\n return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self._tokenizer.model.save(__a , name=__a )\n return tuple(__a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":172,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # bit count represents no. of bits in the gray code\n if bit_count < 0:\n raise ValueError('The given input must be positive'\t\t\t\t\t\t\t)\n\n # get the generated string sequence\n __snake_case\t\t\t\t: Optional[Any]\t\t = gray_code_sequence_string(_UpperCAmelCase\t\t\t\t\t\t\t)\n #\n # convert them to integers\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = int(sequence[i]\t\t\t\t,2\t\t\t\t\t\t\t)\n\n return sequence\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # The approach is a recursive one\n # Base case achieved when either n = 0 or n=1\n if bit_count == 0:\n return [\"0\"]\n\n if bit_count == 1:\n return [\"0\", \"1\"]\n\n __snake_case\t\t\t\t: Dict\t\t = 1 << bit_count # defines the length of the sequence\n # 1<< n is equivalent to 2^n\n\n # recursive answer will generate answer for n-1 bits\n __snake_case\t\t\t\t: Dict\t\t = gray_code_sequence_string(bit_count - 1\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = []\n\n # append 0 to first half of the smaller sequence generated\n for i in range(seq_len // 2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: str\t\t = '0' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # append 1 to second half ... start from the end of the list\n for i in reversed(range(seq_len // 2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = '1' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return sequence\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = n ** (1 / 3)\n return (val * val * val) == n\n\n\nif __name__ == \"__main__\":\n print(perfect_cube(2_7))\n print(perfect_cube(4))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":173,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\n\n\nA__ : Tuple =\t\t\t{\n '''google/tapas-base-finetuned-sqa''': (\n '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''\n ),\n '''google/tapas-base-finetuned-wtq''': (\n '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''\n ),\n '''google/tapas-base-finetuned-wikisql-supervised''': (\n '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''\n ),\n '''google/tapas-base-finetuned-tabfact''': (\n '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''\n ),\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''tapas'''\n def __init__( self\t\t: Optional[int] , __a\t\t: List[Any]=30522 , __a\t\t: int=768 , __a\t\t: int=12 , __a\t\t: Tuple=12 , __a\t\t: List[Any]=3072 , __a\t\t: str=\"gelu\" , __a\t\t: Union[str, Any]=0.1 , __a\t\t: Union[str, Any]=0.1 , __a\t\t: Union[str, Any]=1024 , __a\t\t: int=[3, 256, 256, 2, 256, 256, 10] , __a\t\t: Dict=0.0_2 , __a\t\t: int=1e-12 , __a\t\t: str=0 , __a\t\t: Dict=1_0.0 , __a\t\t: Tuple=0 , __a\t\t: Dict=1.0 , __a\t\t: str=None , __a\t\t: List[Any]=1.0 , __a\t\t: Union[str, Any]=False , __a\t\t: Any=None , __a\t\t: Optional[Any]=1.0 , __a\t\t: Dict=1.0 , __a\t\t: Dict=False , __a\t\t: List[str]=False , __a\t\t: List[Any]=\"ratio\" , __a\t\t: Tuple=None , __a\t\t: str=None , __a\t\t: Dict=64 , __a\t\t: str=32 , __a\t\t: List[Any]=False , __a\t\t: int=True , __a\t\t: List[str]=False , __a\t\t: Any=False , __a\t\t: Dict=True , __a\t\t: Dict=False , __a\t\t: int=None , __a\t\t: Optional[int]=None , **__a\t\t: List[Any] , ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(pad_token_id=__a , **__a )\n\n # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)\n __snake_case\t\t\t\t: Optional[int]\t\t = vocab_size\n __snake_case\t\t\t\t: str\t\t = hidden_size\n __snake_case\t\t\t\t: Optional[int]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_attention_heads\n __snake_case\t\t\t\t: Any\t\t = hidden_act\n __snake_case\t\t\t\t: str\t\t = intermediate_size\n __snake_case\t\t\t\t: Tuple\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: List[str]\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: Dict\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[str]\t\t = type_vocab_sizes\n __snake_case\t\t\t\t: str\t\t = initializer_range\n __snake_case\t\t\t\t: Tuple\t\t = layer_norm_eps\n\n # Fine-tuning task hyperparameters\n __snake_case\t\t\t\t: Optional[Any]\t\t = positive_label_weight\n __snake_case\t\t\t\t: Dict\t\t = num_aggregation_labels\n __snake_case\t\t\t\t: Optional[int]\t\t = aggregation_loss_weight\n __snake_case\t\t\t\t: List[str]\t\t = use_answer_as_supervision\n __snake_case\t\t\t\t: int\t\t = answer_loss_importance\n __snake_case\t\t\t\t: List[Any]\t\t = use_normalized_answer_loss\n __snake_case\t\t\t\t: Tuple\t\t = huber_loss_delta\n __snake_case\t\t\t\t: Union[str, Any]\t\t = temperature\n __snake_case\t\t\t\t: Optional[Any]\t\t = aggregation_temperature\n __snake_case\t\t\t\t: Tuple\t\t = use_gumbel_for_cells\n __snake_case\t\t\t\t: List[str]\t\t = use_gumbel_for_aggregation\n __snake_case\t\t\t\t: str\t\t = average_approximation_function\n __snake_case\t\t\t\t: Optional[int]\t\t = cell_selection_preference\n __snake_case\t\t\t\t: Union[str, Any]\t\t = answer_loss_cutoff\n __snake_case\t\t\t\t: Dict\t\t = max_num_rows\n __snake_case\t\t\t\t: int\t\t = max_num_columns\n __snake_case\t\t\t\t: Optional[Any]\t\t = average_logits_per_cell\n __snake_case\t\t\t\t: Any\t\t = select_one_column\n __snake_case\t\t\t\t: Any\t\t = allow_empty_column_selection\n __snake_case\t\t\t\t: str\t\t = init_cell_selection_weights_to_zero\n __snake_case\t\t\t\t: Union[str, Any]\t\t = reset_position_index_per_cell\n __snake_case\t\t\t\t: Optional[Any]\t\t = disable_per_token_loss\n\n # Aggregation hyperparameters\n __snake_case\t\t\t\t: Any\t\t = aggregation_labels\n __snake_case\t\t\t\t: int\t\t = no_aggregation_label_index\n\n if isinstance(self.aggregation_labels , __a ):\n __snake_case\t\t\t\t: int\t\t = {int(__a ): v for k, v in aggregation_labels.items()}\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport tempfile\nfrom functools import partial\nfrom unittest import TestCase\nfrom unittest.mock import patch\n\nimport numpy as np\nimport pytest\n\nfrom datasets.arrow_dataset import Dataset\nfrom datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex\n\nfrom .utils import require_elasticsearch, require_faiss\n\n\nA__ : Tuple =\t\t\tpytest.mark.integration\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} )\n return dset\n def A_ ( self\t\t: Union[str, Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n __snake_case\t\t\t\t: Dict\t\t = dset.map(\n lambda __a , __a : {\"vecs\": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n dset.drop_index('vecs' )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )\n __snake_case , __snake_case\t\t\t\t: Any\t\t = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: List[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n dset.save_faiss_index('vecs' , tmp_file.name )\n dset.load_faiss_index('vecs2' , tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n def A_ ( self\t\t: Union[str, Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n dset.add_faiss_index_from_external_arrays(\n external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )\n dset.drop_index('vecs' )\n self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n __snake_case\t\t\t\t: Dataset\t\t = self._create_dummy_dataset()\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: Any\t\t = {'acknowledged': True}\n mocked_bulk.return_value([(True, None)] * 30 )\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = Elasticsearch()\n\n dset.add_elasticsearch_index('filename' , es_client=__a )\n __snake_case , __snake_case\t\t\t\t: str\t\t = dset.get_nearest_examples('filename' , 'my_name-train_29' )\n self.assertEqual(examples['filename'][0] , 'my_name-train_29' )\n\n\n\n@require_faiss\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n\n # add vectors\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsNotNone(index.faiss_index )\n self.assertEqual(index.faiss_index.ntotal , 5 )\n index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )\n self.assertEqual(index.faiss_index.ntotal , 10 )\n\n # single query\n __snake_case\t\t\t\t: Dict\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: List[str]\t\t = 1\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n # batched queries\n __snake_case\t\t\t\t: List[str]\t\t = np.eye(5 , dtype=np.floataa )[::-1]\n __snake_case , __snake_case\t\t\t\t: Dict\t\t = index.search_batch(__a )\n self.assertRaises(__a , index.search_batch , queries[0] )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: List[Any]\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([4, 3, 2, 1, 0] , __a )\n def A_ ( self\t\t: int ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(string_factory='Flat' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n __snake_case\t\t\t\t: List[str]\t\t = FaissIndex(string_factory='LSH' )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexLSH )\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Dict\t\t = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Tuple\t\t = faiss.IndexFlat(5 )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex(custom_index=__a )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n self.assertIsInstance(index.faiss_index , faiss.IndexFlat )\n\n\n\n\n\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n import faiss\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )\n index.add_vectors(np.eye(5 , dtype=np.floataa ) )\n\n # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to\n # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.\n # see https://bugs.python.org/issue14243 and\n # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515\n with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file:\n index.save(tmp_file.name )\n __snake_case\t\t\t\t: List[Any]\t\t = FaissIndex.load(tmp_file.name )\n os.unlink(tmp_file.name )\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.zeros(5 , dtype=np.floataa )\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search(__a )\n self.assertGreater(scores[0] , 0 )\n self.assertEqual(indices[0] , 1 )\n\n\n\n\n\n@require_faiss\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> Optional[int]:\n import faiss\n\n __snake_case\t\t\t\t: int\t\t = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT\t\t\t\t\t\t\t)\n index.add_vectors(np.eye(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Dict\t\t = 'index.faiss'\n __snake_case\t\t\t\t: Any\t\t = f'''mock://{index_name}'''\n index.save(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = FaissIndex.load(_UpperCAmelCase\t\t\t\t,storage_options=mockfs.storage_options\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = np.zeros(5\t\t\t\t,dtype=np.floataa\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = 1\n __snake_case , __snake_case\t\t\t\t: Tuple\t\t = index.search(_UpperCAmelCase\t\t\t\t\t\t\t)\n assert scores[0] > 0\n assert indices[0] == 1\n\n\n\n\n\n@require_elasticsearch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n from elasticsearch import Elasticsearch\n\n with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(\n 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:\n __snake_case\t\t\t\t: int\t\t = Elasticsearch()\n __snake_case\t\t\t\t: Dict\t\t = {'acknowledged': True}\n __snake_case\t\t\t\t: List[Any]\t\t = ElasticSearchIndex(es_client=__a )\n mocked_bulk.return_value([(True, None)] * 3 )\n index.add_documents(['foo', 'bar', 'foobar'] )\n\n # single query\n __snake_case\t\t\t\t: Optional[Any]\t\t = 'foo'\n __snake_case\t\t\t\t: int\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: List[Any]\t\t = index.search(__a )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # single query with timeout\n __snake_case\t\t\t\t: Dict\t\t = 'foo'\n __snake_case\t\t\t\t: Dict\t\t = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}\n __snake_case , __snake_case\t\t\t\t: Optional[Any]\t\t = index.search(__a , request_timeout=30 )\n self.assertEqual(scores[0] , 1 )\n self.assertEqual(indices[0] , 0 )\n\n # batched queries\n __snake_case\t\t\t\t: List[Any]\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: str\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: Any\t\t = index.search_batch(__a )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Tuple\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n # batched queries with timeout\n __snake_case\t\t\t\t: Tuple\t\t = ['foo', 'bar', 'foobar']\n __snake_case\t\t\t\t: List[Any]\t\t = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}\n __snake_case , __snake_case\t\t\t\t: int\t\t = index.search_batch(__a , request_timeout=30 )\n __snake_case\t\t\t\t: Any\t\t = [scores[0] for scores in total_scores]\n __snake_case\t\t\t\t: Dict\t\t = [indices[0] for indices in total_indices]\n self.assertGreater(np.min(__a ) , 0 )\n self.assertListEqual([1, 1, 1] , __a )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":174,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n if num < 0:\n return False\n\n __snake_case\t\t\t\t: int\t\t = num\n __snake_case\t\t\t\t: int\t\t = 0\n while num > 0:\n __snake_case\t\t\t\t: str\t\t = rev_num * 10 + (num % 10)\n num //= 10\n\n return num_copy == rev_num\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Mapping\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...onnx import OnnxSeqaSeqConfigWithPast\nfrom ...utils import logging\n\n\nA__ : List[Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : Tuple =\t\t\t{\n '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''',\n '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''',\n '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''',\n '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''',\n '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''',\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''t5'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}\n def __init__( self\t\t: str , __a\t\t: Dict=32128 , __a\t\t: Dict=512 , __a\t\t: Union[str, Any]=64 , __a\t\t: str=2048 , __a\t\t: Union[str, Any]=6 , __a\t\t: Any=None , __a\t\t: Any=8 , __a\t\t: List[Any]=32 , __a\t\t: Any=128 , __a\t\t: Tuple=0.1 , __a\t\t: str=1e-6 , __a\t\t: Dict=1.0 , __a\t\t: Tuple=\"relu\" , __a\t\t: Dict=True , __a\t\t: Union[str, Any]=True , __a\t\t: Any=0 , __a\t\t: Dict=1 , **__a\t\t: Union[str, Any] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: str\t\t = d_model\n __snake_case\t\t\t\t: str\t\t = d_kv\n __snake_case\t\t\t\t: List[Any]\t\t = d_ff\n __snake_case\t\t\t\t: List[str]\t\t = num_layers\n __snake_case\t\t\t\t: Tuple\t\t = (\n num_decoder_layers if num_decoder_layers is not None else self.num_layers\n ) # default = symmetry\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_heads\n __snake_case\t\t\t\t: Tuple\t\t = relative_attention_num_buckets\n __snake_case\t\t\t\t: Optional[int]\t\t = relative_attention_max_distance\n __snake_case\t\t\t\t: Optional[Any]\t\t = dropout_rate\n __snake_case\t\t\t\t: str\t\t = layer_norm_epsilon\n __snake_case\t\t\t\t: List[str]\t\t = initializer_factor\n __snake_case\t\t\t\t: int\t\t = feed_forward_proj\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_cache\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.feed_forward_proj.split('-' )\n __snake_case\t\t\t\t: Dict\t\t = act_info[-1]\n __snake_case\t\t\t\t: List[str]\t\t = act_info[0] == 'gated'\n\n if len(__a ) > 1 and act_info[0] != \"gated\" or len(__a ) > 2:\n raise ValueError(\n f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''\n 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '\n '\\'gated-gelu\\' or \\'relu\\'' )\n\n # for backwards compatibility\n if feed_forward_proj == \"gated-gelu\":\n __snake_case\t\t\t\t: Dict\t\t = 'gelu_new'\n\n super().__init__(\n pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @property\n def A_ ( self\t\t: str ) -> Mapping[str, Mapping[int, str]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'input_ids': {0: 'batch', 1: 'encoder_sequence'},\n 'attention_mask': {0: 'batch', 1: 'encoder_sequence'},\n }\n if self.use_past:\n __snake_case\t\t\t\t: Tuple\t\t = 'past_encoder_sequence + sequence'\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch'}\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch', 1: 'past_decoder_sequence + sequence'}\n else:\n __snake_case\t\t\t\t: Tuple\t\t = {0: 'batch', 1: 'decoder_sequence'}\n __snake_case\t\t\t\t: int\t\t = {0: 'batch', 1: 'decoder_sequence'}\n\n if self.use_past:\n self.fill_with_past_key_values_(__a , direction='inputs' )\n\n return common_inputs\n\n\n\n\n\n @property\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 13\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":175,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import Mapping\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...onnx import OnnxSeqaSeqConfigWithPast\nfrom ...utils import logging\n\n\nA__ : List[Any] =\t\t\tlogging.get_logger(__name__)\n\nA__ : Tuple =\t\t\t{\n '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''',\n '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''',\n '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''',\n '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''',\n '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''',\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''t5'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}\n def __init__( self\t\t: str , __a\t\t: Dict=32128 , __a\t\t: Dict=512 , __a\t\t: Union[str, Any]=64 , __a\t\t: str=2048 , __a\t\t: Union[str, Any]=6 , __a\t\t: Any=None , __a\t\t: Any=8 , __a\t\t: List[Any]=32 , __a\t\t: Any=128 , __a\t\t: Tuple=0.1 , __a\t\t: str=1e-6 , __a\t\t: Dict=1.0 , __a\t\t: Tuple=\"relu\" , __a\t\t: Dict=True , __a\t\t: Union[str, Any]=True , __a\t\t: Any=0 , __a\t\t: Dict=1 , **__a\t\t: Union[str, Any] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = vocab_size\n __snake_case\t\t\t\t: str\t\t = d_model\n __snake_case\t\t\t\t: str\t\t = d_kv\n __snake_case\t\t\t\t: List[Any]\t\t = d_ff\n __snake_case\t\t\t\t: List[str]\t\t = num_layers\n __snake_case\t\t\t\t: Tuple\t\t = (\n num_decoder_layers if num_decoder_layers is not None else self.num_layers\n ) # default = symmetry\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_heads\n __snake_case\t\t\t\t: Tuple\t\t = relative_attention_num_buckets\n __snake_case\t\t\t\t: Optional[int]\t\t = relative_attention_max_distance\n __snake_case\t\t\t\t: Optional[Any]\t\t = dropout_rate\n __snake_case\t\t\t\t: str\t\t = layer_norm_epsilon\n __snake_case\t\t\t\t: List[str]\t\t = initializer_factor\n __snake_case\t\t\t\t: int\t\t = feed_forward_proj\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_cache\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.feed_forward_proj.split('-' )\n __snake_case\t\t\t\t: Dict\t\t = act_info[-1]\n __snake_case\t\t\t\t: List[str]\t\t = act_info[0] == 'gated'\n\n if len(__a ) > 1 and act_info[0] != \"gated\" or len(__a ) > 2:\n raise ValueError(\n f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''\n 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '\n '\\'gated-gelu\\' or \\'relu\\'' )\n\n # for backwards compatibility\n if feed_forward_proj == \"gated-gelu\":\n __snake_case\t\t\t\t: Dict\t\t = 'gelu_new'\n\n super().__init__(\n pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @property\n def A_ ( self\t\t: str ) -> Mapping[str, Mapping[int, str]]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {\n 'input_ids': {0: 'batch', 1: 'encoder_sequence'},\n 'attention_mask': {0: 'batch', 1: 'encoder_sequence'},\n }\n if self.use_past:\n __snake_case\t\t\t\t: Tuple\t\t = 'past_encoder_sequence + sequence'\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch'}\n __snake_case\t\t\t\t: Dict\t\t = {0: 'batch', 1: 'past_decoder_sequence + sequence'}\n else:\n __snake_case\t\t\t\t: Tuple\t\t = {0: 'batch', 1: 'decoder_sequence'}\n __snake_case\t\t\t\t: int\t\t = {0: 'batch', 1: 'decoder_sequence'}\n\n if self.use_past:\n self.fill_with_past_key_values_(__a , direction='inputs' )\n\n return common_inputs\n\n\n\n\n\n @property\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 13\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : Tuple =\t\t\tlogging.get_logger(__name__)\n\nA__ : Optional[int] =\t\t\t{}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''llama'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n def __init__( self\t\t: Any , __a\t\t: List[str]=32000 , __a\t\t: Union[str, Any]=4096 , __a\t\t: Optional[Any]=11008 , __a\t\t: Any=32 , __a\t\t: str=32 , __a\t\t: Optional[int]=None , __a\t\t: Dict=\"silu\" , __a\t\t: Dict=2048 , __a\t\t: List[str]=0.0_2 , __a\t\t: Union[str, Any]=1e-6 , __a\t\t: Dict=True , __a\t\t: List[str]=0 , __a\t\t: Tuple=1 , __a\t\t: Tuple=2 , __a\t\t: Optional[Any]=1 , __a\t\t: Any=False , __a\t\t: Tuple=None , **__a\t\t: List[Any] , ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = max_position_embeddings\n __snake_case\t\t\t\t: List[Any]\t\t = hidden_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = intermediate_size\n __snake_case\t\t\t\t: Optional[int]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: List[Any]\t\t = num_attention_heads\n\n # for backward compatibility\n if num_key_value_heads is None:\n __snake_case\t\t\t\t: Optional[int]\t\t = num_attention_heads\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = num_key_value_heads\n __snake_case\t\t\t\t: int\t\t = hidden_act\n __snake_case\t\t\t\t: Any\t\t = initializer_range\n __snake_case\t\t\t\t: Any\t\t = rms_norm_eps\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pretraining_tp\n __snake_case\t\t\t\t: Optional[int]\t\t = use_cache\n __snake_case\t\t\t\t: Any\t\t = rope_scaling\n self._rope_scaling_validation()\n\n super().__init__(\n pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , )\n\n\n\n\n\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if self.rope_scaling is None:\n return\n\n if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2:\n raise ValueError(\n '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '\n f'''got {self.rope_scaling}''' )\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.rope_scaling.get('type' , __a )\n __snake_case\t\t\t\t: Tuple\t\t = self.rope_scaling.get('factor' , __a )\n if rope_scaling_type is None or rope_scaling_type not in [\"linear\", \"dynamic\"]:\n raise ValueError(\n f'''`rope_scaling`\\'s name field must be one of [\\'linear\\', \\'dynamic\\'], got {rope_scaling_type}''' )\n if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0:\n raise ValueError(f'''`rope_scaling`\\'s factor field must be an float > 1, got {rope_scaling_factor}''' )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":176,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport re\nimport unicodedata\nfrom shutil import copyfile\nfrom typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union\n\nimport sentencepiece as spm\n\nfrom ...tokenization_utils import PreTrainedTokenizer\nfrom ...utils import is_torch_available, logging\n\n\nif is_torch_available():\n import torch\n\n\nif TYPE_CHECKING:\n from transformers.pipelines.conversational import Conversation\n\n\nA__ : Optional[int] =\t\t\tlogging.get_logger(__name__)\nA__ : Any =\t\t\t{'''vocab_file''': '''spiece.model'''}\n\nA__ : str =\t\t\t{\n '''vocab_file''': {\n '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''',\n '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''',\n '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''',\n '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''',\n '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''',\n }\n}\n\nA__ : Tuple =\t\t\t{\n '''AI-Sweden/gpt-sw3-126m''': 2_0_4_8,\n '''AI-Sweden/gpt-sw3-350m''': 2_0_4_8,\n '''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8,\n '''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8,\n '''AI-Sweden/gpt-sw3-20b''': 2_0_4_8,\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\t['''input_ids''', '''attention_mask''']\n def __init__( self\t\t: Dict , __a\t\t: int , __a\t\t: List[str]=False , __a\t\t: int=False , __a\t\t: Union[str, Any]=False , __a\t\t: Union[str, Any]=None , __a\t\t: str=None , __a\t\t: Tuple=None , __a\t\t: Dict=None , __a\t\t: Optional[Dict[str, Any]] = None , **__a\t\t: Union[str, Any] , ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = {} if sp_model_kwargs is None else sp_model_kwargs\n\n __snake_case\t\t\t\t: Dict\t\t = kwargs.get('name_or_path' )\n if name_or_path is None:\n logger.warning(\n 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'\n ' you are testing the model, this can safely be ignored' )\n __snake_case\t\t\t\t: Tuple\t\t = 'None'\n\n # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing\n __snake_case\t\t\t\t: str\t\t = '<|endoftext|>' if eos_token is None else eos_token\n __snake_case\t\t\t\t: Any\t\t = ' No community queries yet The top public SQL queries from the community will appear here once available.' if bos_token is None else bos_token\n\n super().__init__(\n do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )\n\n __snake_case\t\t\t\t: Tuple\t\t = do_lower_case\n __snake_case\t\t\t\t: Union[str, Any]\t\t = remove_space\n __snake_case\t\t\t\t: List[Any]\t\t = keep_accents\n __snake_case\t\t\t\t: Optional[Any]\t\t = vocab_file\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = spm.SentencePieceProcessor(**self.sp_model_kwargs )\n self.sp_model.Load(__a )\n\n # Used for whitespace normalization in input texts\n # fmt : off\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', ''}\n # fmt : on\n\n # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing\n __snake_case\t\t\t\t: List[Any]\t\t = re.compile(\n f'''[{\"\".join(map(__a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' )\n def __getstate__( self\t\t: Dict ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.__dict__.copy()\n __snake_case\t\t\t\t: List[Any]\t\t = None\n return state\n def __setstate__( self\t\t: Dict , __a\t\t: List[Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = d\n\n # for backward compatibility\n if not hasattr(self , 'sp_model_kwargs' ):\n __snake_case\t\t\t\t: str\t\t = {}\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = spm.SentencePieceProcessor(**self.sp_model_kwargs )\n self.sp_model.Load(self.vocab_file )\n @property\n # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size\n def A_ ( self\t\t: int ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return len(self.sp_model )\n def A_ ( self\t\t: List[Any] , __a\t\t: str ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.non_printing_characters_re.sub('' , __a )\n\n # Normalize whitespaces\n __snake_case\t\t\t\t: Optional[int]\t\t = ''.join([char if char not in self.whitespaces else ' ' for char in text] )\n\n # NFC Unicode normalization\n __snake_case\t\t\t\t: Any\t\t = unicodedata.normalize('NFC' , __a )\n return text\n def A_ ( self\t\t: Dict , __a\t\t: str , **__a\t\t: Dict ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = self.preprocess_text(__a )\n return self.sp_model.encode(__a , out_type=__a )\n def A_ ( self\t\t: List[str] , __a\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.sp_model.PieceToId(__a )\n def A_ ( self\t\t: List[str] , __a\t\t: int ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.sp_model.IdToPiece(__a )\n @staticmethod\n def A_ ( __a\t\t: str ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return out_string\n def A_ ( self\t\t: str , __a\t\t: List[str] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = []\n __snake_case\t\t\t\t: Optional[Any]\t\t = ''\n __snake_case\t\t\t\t: Any\t\t = False\n for token in tokens:\n # make sure that special tokens are not decoded using sentencepiece model\n if token in self.all_special_tokens:\n # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document\n if not prev_is_special:\n out_string += \" \"\n\n out_string += self.sp_model.decode(__a ) + token\n __snake_case\t\t\t\t: Tuple\t\t = True\n __snake_case\t\t\t\t: List[str]\t\t = []\n else:\n current_sub_tokens.append(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n out_string += self.sp_model.decode(__a )\n\n return out_string\n def A_ ( self\t\t: List[Any] ) -> Dict[str, int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )}\n vocab.update(self.added_tokens_encoder )\n return vocab\n def A_ ( self\t\t: str , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if not os.path.isdir(__a ):\n logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )\n return\n __snake_case\t\t\t\t: int\t\t = os.path.join(\n __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )\n\n if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ):\n copyfile(self.vocab_file , __a )\n elif not os.path.isfile(self.vocab_file ):\n with open(__a , 'wb' ) as fi:\n __snake_case\t\t\t\t: List[Any]\t\t = self.sp_model.serialized_model_proto()\n fi.write(__a )\n\n return (out_vocab_file,)\n def A_ ( self\t\t: str , __a\t\t: Union[str, List[str]] , __a\t\t: Union[str, bool] = False ) -> Union[List[int], List[List[int]], \"torch.Tensor\"]:\n\n\n\n\n\n\n\n '''simple docstring'''\n\n if isinstance(__a , __a ):\n __snake_case\t\t\t\t: Dict\t\t = self.preprocess_text(__a )\n __snake_case\t\t\t\t: Tuple\t\t = self.sp_model.encode(__a )\n else:\n __snake_case\t\t\t\t: Tuple\t\t = [self.preprocess_text(__a ) for t in text]\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.sp_model.encode(__a )\n\n if return_tensors is True or return_tensors == \"pt\":\n __snake_case\t\t\t\t: Any\t\t = torch.tensor(__a )\n\n return token_ids\n def A_ ( self\t\t: List[Any] , __a\t\t: Union[int, List[int]] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.sp_model.decode(__a )\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] , __a\t\t: \"Conversation\" ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]\n __snake_case\t\t\t\t: Optional[int]\t\t = (\n f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(__a ) + f'''{self.bos_token}Bot:'''\n )\n return self.encode(text=__a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : str =\t\t\t'''Muhammad Umer Farooq'''\nA__ : int =\t\t\t'''MIT'''\nA__ : Optional[int] =\t\t\t'''1.0.0'''\nA__ : List[Any] =\t\t\t'''Muhammad Umer Farooq'''\nA__ : Optional[Any] =\t\t\t'''contact@muhammadumerfarooq.me'''\nA__ : Optional[Any] =\t\t\t'''Alpha'''\n\nimport re\nfrom html.parser import HTMLParser\nfrom urllib import parse\n\nimport requests\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Union[str, Any] , __a\t\t: str ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__()\n __snake_case\t\t\t\t: list[str]\t\t = []\n __snake_case\t\t\t\t: Dict\t\t = domain\n\n\n\n\n\n def A_ ( self\t\t: Dict , __a\t\t: str , __a\t\t: list[tuple[str, str | None]] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Only parse the 'anchor' tag.\n if tag == \"a\":\n # Check the list of defined attributes.\n for name, value in attrs:\n # If href is defined, and not empty nor # print it.\n if name == \"href\" and value != \"#\" and value != \"\":\n # If not already in urls.\n if value not in self.urls:\n __snake_case\t\t\t\t: Optional[Any]\t\t = parse.urljoin(self.domain , __a )\n self.urls.append(__a )\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return \".\".join(get_sub_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t).split('.'\t\t\t\t\t\t\t)[-2:]\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str\t\t\t\t\t\t\t) -> str:\n return parse.urlparse(_UpperCAmelCase\t\t\t\t\t\t\t).netloc\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"https://github.com\"\t\t\t\t\t\t\t) -> list[str]:\n __snake_case\t\t\t\t: List[Any]\t\t = get_domain_name(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # Initialize the parser\n __snake_case\t\t\t\t: Tuple\t\t = Parser(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n try:\n # Open URL\n __snake_case\t\t\t\t: Any\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # pass the raw HTML to the parser to get links\n parser.feed(r.text\t\t\t\t\t\t\t)\n\n # Get links and loop through\n __snake_case\t\t\t\t: Dict\t\t = set()\n for link in parser.urls:\n # open URL.\n # read = requests.get(link)\n try:\n __snake_case\t\t\t\t: List[Any]\t\t = requests.get(_UpperCAmelCase\t\t\t\t\t\t\t)\n # Get the valid email.\n __snake_case\t\t\t\t: Optional[Any]\t\t = re.findall('[a-zA-Z0-9]+@' + domain\t\t\t\t,read.text\t\t\t\t\t\t\t)\n # If not in list then append it.\n for email in emails:\n valid_emails.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n except ValueError:\n pass\n except ValueError:\n raise SystemExit(1\t\t\t\t\t\t\t)\n\n # Finally return a sorted list of email addresses with no duplicates.\n return sorted(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Tuple =\t\t\temails_from_url('''https://github.com''')\n print(F\"\"\"{len(emails)} emails found:\"\"\")\n print('''\\n'''.join(sorted(emails)))\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":177,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: List[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = {}\n def A_ ( self\t\t: Optional[int] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n print(self.vertex )\n for i in self.vertex:\n print(__a , ' -> ' , ' -> '.join([str(__a ) for j in self.vertex[i]] ) )\n def A_ ( self\t\t: Tuple , __a\t\t: int , __a\t\t: int ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # check if vertex is already present,\n if from_vertex in self.vertex:\n self.vertex[from_vertex].append(__a )\n else:\n # else make a new vertex\n __snake_case\t\t\t\t: str\t\t = [to_vertex]\n def A_ ( self\t\t: List[str] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # visited array for storing already visited nodes\n __snake_case\t\t\t\t: Dict\t\t = [False] * len(self.vertex )\n\n # call the recursive helper function\n for i in range(len(self.vertex ) ):\n if not visited[i]:\n self.dfs_recursive(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: str , __a\t\t: int , __a\t\t: list ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n # mark start vertex as visited\n __snake_case\t\t\t\t: Optional[Any]\t\t = True\n\n print(__a , end=' ' )\n\n # Recur for all the vertices that are adjacent to this node\n for i in self.vertex:\n if not visited[i]:\n self.dfs_recursive(__a , __a )\n\n\nif __name__ == \"__main__\":\n A__ : Union[str, Any] =\t\t\tGraph()\n g.add_edge(0, 1)\n g.add_edge(0, 2)\n g.add_edge(1, 2)\n g.add_edge(2, 0)\n g.add_edge(2, 3)\n g.add_edge(3, 3)\n\n g.print_graph()\n print('''DFS:''')\n g.dfs()\n\n # OUTPUT:\n # 0 -> 1 -> 2\n # 1 -> 2\n # 2 -> 0 -> 3\n # 3 -> 3\n # DFS:\n # 0 1 2 3\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nimport logging\nimport os\nimport shutil\nimport sys\nimport tempfile\nimport unittest\nfrom unittest import mock\n\nimport torch\nfrom accelerate.utils import write_basic_config\n\nfrom transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device\nfrom transformers.utils import is_apex_available\n\n\nlogging.basicConfig(level=logging.DEBUG)\n\nA__ : Dict =\t\t\tlogging.getLogger()\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[Any]\t\t = argparse.ArgumentParser()\n parser.add_argument('-f'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Any\t\t = parser.parse_args()\n return args.f\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[Any]:\n __snake_case\t\t\t\t: Tuple\t\t = {}\n __snake_case\t\t\t\t: Union[str, Any]\t\t = os.path.join(_UpperCAmelCase\t\t\t\t,'all_results.json'\t\t\t\t\t\t\t)\n if os.path.exists(_UpperCAmelCase\t\t\t\t\t\t\t):\n with open(_UpperCAmelCase\t\t\t\t,'r'\t\t\t\t\t\t\t) as f:\n __snake_case\t\t\t\t: List[str]\t\t = json.load(_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n raise ValueError(f'''can\\'t find {path}'''\t\t\t\t\t\t\t)\n return results\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Union[str, Any]:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.cuda.is_available() and torch_device == 'cuda'\n return is_using_cuda and is_apex_available()\n\n\nA__ : str =\t\t\tlogging.StreamHandler(sys.stdout)\nlogger.addHandler(stream_handler)\n\n\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n @classmethod\n def A_ ( cls\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU\n __snake_case\t\t\t\t: Optional[int]\t\t = tempfile.mkdtemp()\n __snake_case\t\t\t\t: Dict\t\t = os.path.join(cls.tmpdir , 'default_config.yml' )\n write_basic_config(save_location=cls.configPath )\n __snake_case\t\t\t\t: List[Any]\t\t = ['accelerate', 'launch', '--config_file', cls.configPath]\n @classmethod\n def A_ ( cls\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(cls.tmpdir )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[Any]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: List[Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n if torch.cuda.device_count() > 1:\n # Skipping because there are not enough batches to train the model + would need a drop_last to work.\n return\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 100 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertLess(result['perplexity'] , 42 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu\n __snake_case\t\t\t\t: Any\t\t = 7 if get_gpu_count() > 1 else 2\n\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 )\n self.assertLess(result['train_loss'] , 0.5 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) )\n @unittest.skip(reason='Fix me @muellerzr' )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Tuple\t\t = f'''\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.\n self.assertGreaterEqual(result['eval_f1'] , 28 )\n self.assertGreaterEqual(result['eval_exact'] , 28 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) )\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Any\t\t = f'''\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: str\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_accuracy'] , 0.8 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: List[str]\t\t = f'''\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: int\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_rouge1'] , 10 )\n self.assertGreaterEqual(result['eval_rouge2'] , 2 )\n self.assertGreaterEqual(result['eval_rougeL'] , 7 )\n self.assertGreaterEqual(result['eval_rougeLsum'] , 7 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) )\n @slow\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: str\t\t = f'''\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Dict\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_bleu'] , 30 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) )\n @slow\n def A_ ( self\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = logging.StreamHandler(sys.stdout )\n logger.addHandler(__a )\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: int\t\t = f'''\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '''.split()\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: List[str]\t\t = get_results(__a )\n self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 )\n\n\n\n\n\n @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_auto_remove_tmp_dir()\n __snake_case\t\t\t\t: Dict\t\t = f'''\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '''.split()\n\n if is_cuda_and_apex_available():\n testargs.append('--fp16' )\n\n run_command(self._launch_args + testargs )\n __snake_case\t\t\t\t: Optional[int]\t\t = get_results(__a )\n # The base model scores a 25%\n self.assertGreaterEqual(result['eval_accuracy'] , 0.6 )\n self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) )\n self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":178,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport warnings\n\nfrom ...utils import logging\nfrom .image_processing_perceiver import PerceiverImageProcessor\n\n\nA__ : Optional[Any] =\t\t\tlogging.get_logger(__name__)\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def __init__( self\t\t: Union[str, Any] , *__a\t\t: Optional[Any] , **__a\t\t: List[str] ) -> None:\n\n\n\n\n\n\n\n '''simple docstring'''\n warnings.warn(\n 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'\n ' Please use PerceiverImageProcessor instead.' , __a , )\n super().__init__(*__a , **__a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport math\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n __snake_case\t\t\t\t: Optional[Any]\t\t = [True] * n\n __snake_case\t\t\t\t: Optional[int]\t\t = False\n __snake_case\t\t\t\t: Dict\t\t = False\n __snake_case\t\t\t\t: List[Any]\t\t = True\n\n for i in range(3\t\t\t\t,int(n**0.5 + 1\t\t\t\t\t\t\t)\t\t\t\t,2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = i * 2\n while index < n:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n __snake_case\t\t\t\t: int\t\t = index + i\n\n __snake_case\t\t\t\t: Dict\t\t = [2]\n\n for i in range(3\t\t\t\t,_UpperCAmelCase\t\t\t\t,2\t\t\t\t\t\t\t):\n if is_prime[i]:\n primes.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return primes\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 99_99_66_66_33_33\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: List[Any]\t\t = math.floor(math.sqrt(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t) + 1_00\n __snake_case\t\t\t\t: Tuple\t\t = prime_sieve(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index]\n\n while (last_prime**2) <= limit:\n __snake_case\t\t\t\t: Optional[int]\t\t = primes[prime_index + 1]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = last_prime**2\n __snake_case\t\t\t\t: Dict\t\t = next_prime**2\n\n # Get numbers divisible by lps(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = lower_bound + last_prime\n while upper_bound > current <= limit:\n matches_sum += current\n current += last_prime\n\n # Reset the upper_bound\n while (upper_bound - next_prime) > limit:\n upper_bound -= next_prime\n\n # Add the numbers divisible by ups(current)\n __snake_case\t\t\t\t: Optional[Any]\t\t = upper_bound - next_prime\n while current > lower_bound:\n matches_sum += current\n current -= next_prime\n\n # Remove the numbers divisible by both ups and lps\n __snake_case\t\t\t\t: List[str]\t\t = 0\n while upper_bound > current <= limit:\n if current <= lower_bound:\n # Increment the current number\n current += last_prime * next_prime\n continue\n\n if current > limit:\n break\n\n # Remove twice since it was added by both ups and lps\n matches_sum -= current * 2\n\n # Increment the current number\n current += last_prime * next_prime\n\n # Setup for next pair\n __snake_case\t\t\t\t: Dict\t\t = next_prime\n prime_index += 1\n\n return matches_sum\n\n\nif __name__ == \"__main__\":\n print(solution())\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":179,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import (\n OptionalDependencyNotAvailable,\n _LazyModule,\n is_flax_available,\n is_sentencepiece_available,\n is_tf_available,\n is_tokenizers_available,\n is_torch_available,\n)\n\n\nif is_sentencepiece_available():\n from ..ta.tokenization_ta import TaTokenizer\nelse:\n from ...utils.dummy_sentencepiece_objects import TaTokenizer\n\nA__ : Dict =\t\t\tTaTokenizer\n\nif is_tokenizers_available():\n from ..ta.tokenization_ta_fast import TaTokenizerFast\nelse:\n from ...utils.dummy_tokenizers_objects import TaTokenizerFast\n\nA__ : Optional[Any] =\t\t\tTaTokenizerFast\n\nA__ : Tuple =\t\t\t{'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : List[str] =\t\t\t[\n '''MT5EncoderModel''',\n '''MT5ForConditionalGeneration''',\n '''MT5ForQuestionAnswering''',\n '''MT5Model''',\n '''MT5PreTrainedModel''',\n '''MT5Stack''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[Any] =\t\t\t['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model''']\n\ntry:\n if not is_flax_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[Any] =\t\t\t['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model''']\n\n\nif TYPE_CHECKING:\n from .configuration_mta import MTaConfig, MTaOnnxConfig\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_mta import (\n MTaEncoderModel,\n MTaForConditionalGeneration,\n MTaForQuestionAnswering,\n MTaModel,\n MTaPreTrainedModel,\n MTaStack,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel\n\n try:\n if not is_flax_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel\n\nelse:\n import sys\n\n A__ : Tuple =\t\t\t_LazyModule(\n __name__,\n globals()['''__file__'''],\n _import_structure,\n extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast},\n module_spec=__spec__,\n )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : float\t\t\t\t,_UpperCAmelCase : float\t\t\t\t\t\t\t) -> float:\n return price * (1 + tax_rate)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{price_plus_tax(1_0_0, 0.25) = }\"\"\")\n print(F\"\"\"{price_plus_tax(1_25.50, 0.05) = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":180,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport inspect\nimport warnings\nfrom typing import Any, Dict, Optional, Union\n\nfrom packaging import version\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t*_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Optional[Union[Dict, Any]] = None\t\t\t\t,_UpperCAmelCase : str=True\t\t\t\t,_UpperCAmelCase : str=2\t\t\t\t\t\t\t) -> Optional[int]:\n from .. import __version__\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = take_from\n __snake_case\t\t\t\t: List[str]\t\t = ()\n if not isinstance(args[0]\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = (args,)\n\n for attribute, version_name, message in args:\n if version.parse(version.parse(_UpperCAmelCase\t\t\t\t\t\t\t).base_version\t\t\t\t\t\t\t) >= version.parse(_UpperCAmelCase\t\t\t\t\t\t\t):\n raise ValueError(\n f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\\''''\n f''' version {__version__} is >= {version_name}'''\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = None\n if isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and attribute in deprecated_kwargs:\n values += (deprecated_kwargs.pop(_UpperCAmelCase\t\t\t\t\t\t\t),)\n __snake_case\t\t\t\t: str\t\t = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''\n elif hasattr(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n values += (getattr(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t),)\n __snake_case\t\t\t\t: Optional[int]\t\t = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''\n elif deprecated_kwargs is None:\n __snake_case\t\t\t\t: Optional[Any]\t\t = f'''`{attribute}` is deprecated and will be removed in version {version_name}.'''\n\n if warning is not None:\n __snake_case\t\t\t\t: List[str]\t\t = warning + ' ' if standard_warn else ''\n warnings.warn(warning + message\t\t\t\t,_UpperCAmelCase\t\t\t\t,stacklevel=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) and len(_UpperCAmelCase\t\t\t\t\t\t\t) > 0:\n __snake_case\t\t\t\t: Optional[int]\t\t = inspect.getouterframes(inspect.currentframe()\t\t\t\t\t\t\t)[1]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = call_frame.filename\n __snake_case\t\t\t\t: Any\t\t = call_frame.lineno\n __snake_case\t\t\t\t: Tuple\t\t = call_frame.function\n __snake_case , __snake_case\t\t\t\t: Any\t\t = next(iter(deprecated_kwargs.items()\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`'''\t\t\t\t\t\t\t)\n\n if len(_UpperCAmelCase\t\t\t\t\t\t\t) == 0:\n return\n elif len(_UpperCAmelCase\t\t\t\t\t\t\t) == 1:\n return values[0]\n return values\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom tempfile import TemporaryDirectory\nfrom unittest import TestCase\nfrom unittest.mock import MagicMock, patch\n\nfrom transformers import AutoModel, TFAutoModel\nfrom transformers.onnx import FeaturesManager\nfrom transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch\n\n\n\n@require_torch\n@require_tf\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = SMALL_MODEL_IDENTIFIER\n __snake_case\t\t\t\t: str\t\t = 'pt'\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'tf'\n def A_ ( self\t\t: Dict , __a\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = AutoModel.from_pretrained(self.test_model )\n model_pt.save_pretrained(__a )\n def A_ ( self\t\t: Any , __a\t\t: Optional[Any] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = TFAutoModel.from_pretrained(self.test_model , from_pt=__a )\n model_tf.save_pretrained(__a )\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = 'mock_framework'\n\n # Framework provided - return whatever the user provides\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model , __a )\n self.assertEqual(__a , __a )\n\n # Local checkpoint and framework provided - return provided framework\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a , __a )\n self.assertEqual(__a , __a )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n # PyTorch checkpoint\n with TemporaryDirectory() as local_pt_ckpt:\n self._setup_pt_ckpt(__a )\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_pt )\n\n # TensorFlow checkpoint\n with TemporaryDirectory() as local_tf_ckpt:\n self._setup_tf_ckpt(__a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = FeaturesManager.determine_framework(__a )\n self.assertEqual(__a , self.framework_tf )\n\n # Invalid local checkpoint\n with TemporaryDirectory() as local_invalid_ckpt:\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Optional[int]\t\t = FeaturesManager.determine_framework(__a )\n\n\n\n\n\n def A_ ( self\t\t: Any ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ):\n __snake_case\t\t\t\t: int\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # PyTorch not in environment -> use TensorFlow\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_tf )\n\n # Both in environment -> use PyTorch\n __snake_case\t\t\t\t: Optional[Any]\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: Tuple\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n __snake_case\t\t\t\t: Dict\t\t = FeaturesManager.determine_framework(self.test_model )\n self.assertEqual(__a , self.framework_pt )\n\n # Both not in environment -> raise error\n __snake_case\t\t\t\t: str\t\t = MagicMock(return_value=__a )\n __snake_case\t\t\t\t: List[Any]\t\t = MagicMock(return_value=__a )\n with patch('transformers.onnx.features.is_tf_available' , __a ), patch(\n 'transformers.onnx.features.is_torch_available' , __a ):\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: Tuple\t\t = FeaturesManager.determine_framework(self.test_model )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":181,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport gc\nimport unittest\n\nfrom transformers import CTRLConfig, is_torch_available\nfrom transformers.testing_utils import require_torch, slow, torch_device\n\nfrom ...generation.test_utils import GenerationTesterMixin\nfrom ...test_configuration_common import ConfigTester\nfrom ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask\nfrom ...test_pipeline_mixin import PipelineTesterMixin\n\n\nif is_torch_available():\n import torch\n\n from transformers import (\n CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,\n CTRLForSequenceClassification,\n CTRLLMHeadModel,\n CTRLModel,\n )\n\n\n\nclass \t\t\t\tsnake_case__\t\t:\n def __init__( self\t\t: List[str] , __a\t\t: Optional[int] , __a\t\t: int=14 , __a\t\t: Dict=7 , __a\t\t: Any=True , __a\t\t: str=True , __a\t\t: Union[str, Any]=True , __a\t\t: Optional[Any]=True , __a\t\t: Tuple=True , __a\t\t: int=99 , __a\t\t: int=32 , __a\t\t: List[str]=5 , __a\t\t: int=4 , __a\t\t: Optional[Any]=37 , __a\t\t: Any=\"gelu\" , __a\t\t: Optional[int]=0.1 , __a\t\t: str=0.1 , __a\t\t: Tuple=512 , __a\t\t: Tuple=16 , __a\t\t: List[str]=2 , __a\t\t: Optional[int]=0.0_2 , __a\t\t: Tuple=3 , __a\t\t: Union[str, Any]=4 , __a\t\t: Dict=None , ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = parent\n __snake_case\t\t\t\t: str\t\t = batch_size\n __snake_case\t\t\t\t: List[Any]\t\t = seq_length\n __snake_case\t\t\t\t: Dict\t\t = is_training\n __snake_case\t\t\t\t: Optional[Any]\t\t = use_token_type_ids\n __snake_case\t\t\t\t: Optional[int]\t\t = use_input_mask\n __snake_case\t\t\t\t: Optional[int]\t\t = use_labels\n __snake_case\t\t\t\t: Dict\t\t = use_mc_token_ids\n __snake_case\t\t\t\t: List[Any]\t\t = vocab_size\n __snake_case\t\t\t\t: List[str]\t\t = hidden_size\n __snake_case\t\t\t\t: List[str]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: Optional[Any]\t\t = num_attention_heads\n __snake_case\t\t\t\t: Any\t\t = intermediate_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = hidden_act\n __snake_case\t\t\t\t: Optional[Any]\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: Optional[Any]\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: int\t\t = max_position_embeddings\n __snake_case\t\t\t\t: str\t\t = type_vocab_size\n __snake_case\t\t\t\t: List[Any]\t\t = type_sequence_label_size\n __snake_case\t\t\t\t: Optional[Any]\t\t = initializer_range\n __snake_case\t\t\t\t: int\t\t = num_labels\n __snake_case\t\t\t\t: Dict\t\t = num_choices\n __snake_case\t\t\t\t: int\t\t = scope\n __snake_case\t\t\t\t: Optional[int]\t\t = self.vocab_size - 1\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = None\n if self.use_input_mask:\n __snake_case\t\t\t\t: Dict\t\t = random_attention_mask([self.batch_size, self.seq_length] )\n\n __snake_case\t\t\t\t: Any\t\t = None\n if self.use_token_type_ids:\n __snake_case\t\t\t\t: Optional[Any]\t\t = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )\n\n __snake_case\t\t\t\t: List[Any]\t\t = None\n if self.use_mc_token_ids:\n __snake_case\t\t\t\t: Dict\t\t = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = None\n __snake_case\t\t\t\t: Tuple\t\t = None\n __snake_case\t\t\t\t: List[Any]\t\t = None\n if self.use_labels:\n __snake_case\t\t\t\t: List[Any]\t\t = ids_tensor([self.batch_size] , self.type_sequence_label_size )\n __snake_case\t\t\t\t: Tuple\t\t = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )\n __snake_case\t\t\t\t: List[str]\t\t = ids_tensor([self.batch_size] , self.num_choices )\n\n __snake_case\t\t\t\t: int\t\t = self.get_config()\n\n __snake_case\t\t\t\t: str\t\t = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )\n\n return (\n config,\n input_ids,\n input_mask,\n head_mask,\n token_type_ids,\n mc_token_ids,\n sequence_labels,\n token_labels,\n choice_labels,\n )\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return CTRLConfig(\n vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )\n def A_ ( self\t\t: Any , __a\t\t: int , __a\t\t: Dict , __a\t\t: Union[str, Any] , __a\t\t: List[Any] , __a\t\t: Optional[Any] , *__a\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = CTRLModel(config=__a )\n model.to(__a )\n model.eval()\n\n model(__a , token_type_ids=__a , head_mask=__a )\n model(__a , token_type_ids=__a )\n __snake_case\t\t\t\t: Tuple\t\t = model(__a )\n self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )\n self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )\n def A_ ( self\t\t: Any , __a\t\t: List[Any] , __a\t\t: str , __a\t\t: Tuple , __a\t\t: Optional[Any] , __a\t\t: List[Any] , *__a\t\t: List[str] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = CTRLLMHeadModel(__a )\n model.to(__a )\n model.eval()\n\n __snake_case\t\t\t\t: List[Any]\t\t = model(__a , token_type_ids=__a , labels=__a )\n self.parent.assertEqual(result.loss.shape , () )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = self.prepare_config_and_inputs()\n\n (\n (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , (\n __snake_case\n ) , \n )\t\t\t\t: List[str]\t\t = config_and_inputs\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask}\n\n return config, inputs_dict\n\n\n\n\n\n def A_ ( self\t\t: int , __a\t\t: int , __a\t\t: Optional[Any] , __a\t\t: Optional[Any] , __a\t\t: List[str] , *__a\t\t: List[Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = self.num_labels\n __snake_case\t\t\t\t: Union[str, Any]\t\t = CTRLForSequenceClassification(__a )\n model.to(__a )\n model.eval()\n __snake_case\t\t\t\t: List[Any]\t\t = ids_tensor([self.batch_size] , self.type_sequence_label_size )\n __snake_case\t\t\t\t: Optional[Any]\t\t = model(__a , token_type_ids=__a , labels=__a )\n self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )\n\n\n\n@require_torch\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t(CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()\n A__\t\t\t\t\t\t\t=\t\t\t\t(CTRLLMHeadModel,) if is_torch_available() else ()\n A__\t\t\t\t\t\t\t=\t\t\t\t(\n {\n '''feature-extraction''': CTRLModel,\n '''text-classification''': CTRLForSequenceClassification,\n '''text-generation''': CTRLLMHeadModel,\n '''zero-shot''': CTRLForSequenceClassification,\n }\n if is_torch_available()\n else {}\n )\n A__\t\t\t\t\t\t\t=\t\t\t\tTrue\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Optional[Any] , __a\t\t: List[str] , __a\t\t: int , __a\t\t: int , __a\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if pipeline_test_casse_name == \"ZeroShotClassificationPipelineTests\":\n # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.\n # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny\n # config could not be created.\n return True\n\n return False\n def A_ ( self\t\t: Optional[int] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = CTRLModelTester(self )\n __snake_case\t\t\t\t: Tuple\t\t = ConfigTester(self , config_class=__a , n_embd=37 )\n def A_ ( self\t\t: Union[str, Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().tearDown()\n # clean-up as much as possible GPU memory occupied by PyTorch\n gc.collect()\n torch.cuda.empty_cache()\n def A_ ( self\t\t: List[str] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.config_tester.run_common_tests()\n def A_ ( self\t\t: Dict ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_ctrl_model(*__a )\n def A_ ( self\t\t: List[str] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.model_tester.prepare_config_and_inputs()\n self.model_tester.create_and_check_lm_head_model(*__a )\n @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )\n def A_ ( self\t\t: Optional[int] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n @slow\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\n __snake_case\t\t\t\t: Tuple\t\t = CTRLModel.from_pretrained(__a )\n self.assertIsNotNone(__a )\n\n\n\n\n\n @unittest.skip('The model doesn\\'t support left padding' ) # and it's not used enough to be worth fixing :)\n def A_ ( self\t\t: Any ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n\n\n\n@require_torch\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().tearDown()\n # clean-up as much as possible GPU memory occupied by PyTorch\n gc.collect()\n torch.cuda.empty_cache()\n\n\n\n\n\n @slow\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = CTRLLMHeadModel.from_pretrained('ctrl' )\n model.to(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.tensor(\n [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is\n __snake_case\t\t\t\t: Optional[int]\t\t = [\n 11859,\n 0,\n 1611,\n 8,\n 5,\n 150,\n 26449,\n 2,\n 19,\n 348,\n 469,\n 3,\n 2595,\n 48,\n 20740,\n 246533,\n 246533,\n 19,\n 30,\n 5,\n ] # Legal the president is a good guy and I don't want to lose my job. \\n \\n I have a\n\n __snake_case\t\t\t\t: Any\t\t = model.generate(__a , do_sample=__a )\n self.assertListEqual(output_ids[0].tolist() , __a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\nimport unittest\n\nfrom transformers import BatchEncoding\nfrom transformers.models.bert.tokenization_bert import (\n BasicTokenizer,\n WordpieceTokenizer,\n _is_control,\n _is_punctuation,\n _is_whitespace,\n)\nfrom transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer\nfrom transformers.testing_utils import require_torch, slow\n\nfrom ...test_tokenization_common import TokenizerTesterMixin\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tProphetNetTokenizer\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n def A_ ( self\t\t: Optional[int] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().setUp()\n\n __snake_case\t\t\t\t: Dict\t\t = [\n '[UNK]',\n '[CLS]',\n '[SEP]',\n '[PAD]',\n '[MASK]',\n 'want',\n '##want',\n '##ed',\n 'wa',\n 'un',\n 'runn',\n '##ing',\n ',',\n 'low',\n 'lowest',\n ]\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n def A_ ( self\t\t: int , __a\t\t: Union[str, Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = 'UNwant\\u00E9d,running'\n __snake_case\t\t\t\t: List[str]\t\t = 'unwanted, running'\n return input_text, output_text\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.tokenizer_class(self.vocab_file )\n\n __snake_case\t\t\t\t: List[str]\t\t = tokenizer.tokenize('UNwant\\u00E9d,running' )\n self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] )\n self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = BasicTokenizer()\n\n self.assertListEqual(tokenizer.tokenize('ah\\u535A\\u63A8zz' ) , ['ah', '\\u535A', '\\u63A8', 'zz'] )\n def A_ ( self\t\t: Union[str, Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['h\\u00E9llo'] )\n def A_ ( self\t\t: int ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: Optional[int] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )\n self.assertListEqual(tokenizer.tokenize('H\\u00E9llo' ) , ['hello'] )\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = BasicTokenizer(do_lower_case=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Union[str, Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = BasicTokenizer(do_lower_case=__a , strip_accents=__a )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHäLLo!how \\n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )\n def A_ ( self\t\t: Optional[int] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] )\n\n self.assertListEqual(\n tokenizer.tokenize(' \\tHeLLo!how \\n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )\n def A_ ( self\t\t: Optional[int] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']\n\n __snake_case\t\t\t\t: List[Any]\t\t = {}\n for i, token in enumerate(__a ):\n __snake_case\t\t\t\t: List[str]\t\t = i\n __snake_case\t\t\t\t: Any\t\t = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' )\n\n self.assertListEqual(tokenizer.tokenize('' ) , [] )\n\n self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )\n\n self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )\n @require_torch\n def A_ ( self\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: int\t\t = ['A long paragraph for summarization.', 'Another paragraph for summarization.']\n __snake_case\t\t\t\t: str\t\t = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = tokenizer(__a , padding=__a , return_tensors='pt' )\n self.assertIsInstance(__a , __a )\n __snake_case\t\t\t\t: int\t\t = list(batch.input_ids.numpy()[0] )\n self.assertListEqual(__a , __a )\n\n self.assertEqual((2, 9) , batch.input_ids.shape )\n self.assertEqual((2, 9) , batch.attention_mask.shape )\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_whitespace(' ' ) )\n self.assertTrue(_is_whitespace('\\t' ) )\n self.assertTrue(_is_whitespace('\\r' ) )\n self.assertTrue(_is_whitespace('\\n' ) )\n self.assertTrue(_is_whitespace('\\u00A0' ) )\n\n self.assertFalse(_is_whitespace('A' ) )\n self.assertFalse(_is_whitespace('-' ) )\n def A_ ( self\t\t: Dict ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_control('\\u0005' ) )\n\n self.assertFalse(_is_control('A' ) )\n self.assertFalse(_is_control(' ' ) )\n self.assertFalse(_is_control('\\t' ) )\n self.assertFalse(_is_control('\\r' ) )\n def A_ ( self\t\t: List[Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n self.assertTrue(_is_punctuation('-' ) )\n self.assertTrue(_is_punctuation('$' ) )\n self.assertTrue(_is_punctuation('`' ) )\n self.assertTrue(_is_punctuation('.' ) )\n\n self.assertFalse(_is_punctuation('A' ) )\n self.assertFalse(_is_punctuation(' ' ) )\n\n\n\n\n\n @slow\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('sequence builders' , add_special_tokens=__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer.build_inputs_with_special_tokens(__a , __a )\n\n assert encoded_sentence == text + [102]\n assert encoded_pair == text + [102] + text_a + [102]\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":182,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nfrom typing import TYPE_CHECKING, List, Optional, Tuple\n\nfrom tokenizers import pre_tokenizers\n\nfrom ...tokenization_utils_base import BatchEncoding\nfrom ...tokenization_utils_fast import PreTrainedTokenizerFast\nfrom ...utils import logging\nfrom .tokenization_gpta import GPTaTokenizer\n\n\nif TYPE_CHECKING:\n from transformers.pipelines.conversational import Conversation\n\n\nA__ : str =\t\t\tlogging.get_logger(__name__)\n\nA__ : List[str] =\t\t\t{'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}\n\nA__ : Tuple =\t\t\t{\n '''vocab_file''': {\n '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''',\n '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''',\n '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''',\n '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''',\n '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''',\n },\n '''merges_file''': {\n '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''',\n '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''',\n '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''',\n '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''',\n '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''',\n },\n '''tokenizer_file''': {\n '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''',\n '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''',\n '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''',\n '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''',\n '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''',\n },\n}\n\nA__ : List[Any] =\t\t\t{\n '''gpt2''': 1_0_2_4,\n '''gpt2-medium''': 1_0_2_4,\n '''gpt2-large''': 1_0_2_4,\n '''gpt2-xl''': 1_0_2_4,\n '''distilgpt2''': 1_0_2_4,\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tVOCAB_FILES_NAMES\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_VOCAB_FILES_MAP\n A__\t\t\t\t\t\t\t=\t\t\t\tPRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\n A__\t\t\t\t\t\t\t=\t\t\t\t['''input_ids''', '''attention_mask''']\n A__\t\t\t\t\t\t\t=\t\t\t\tGPTaTokenizer\n def __init__( self\t\t: List[str] , __a\t\t: int=None , __a\t\t: Union[str, Any]=None , __a\t\t: List[str]=None , __a\t\t: Union[str, Any]=\"<|endoftext|>\" , __a\t\t: Optional[int]=\"<|endoftext|>\" , __a\t\t: List[Any]=\"<|endoftext|>\" , __a\t\t: Dict=False , **__a\t\t: List[str] , ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(\n __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , )\n\n __snake_case\t\t\t\t: int\t\t = kwargs.pop('add_bos_token' , __a )\n\n __snake_case\t\t\t\t: Any\t\t = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )\n if pre_tok_state.get('add_prefix_space' , __a ) != add_prefix_space:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = getattr(__a , pre_tok_state.pop('type' ) )\n __snake_case\t\t\t\t: Optional[int]\t\t = add_prefix_space\n __snake_case\t\t\t\t: int\t\t = pre_tok_class(**__a )\n\n __snake_case\t\t\t\t: int\t\t = add_prefix_space\n def A_ ( self\t\t: Dict , *__a\t\t: Dict , **__a\t\t: int ) -> BatchEncoding:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = kwargs.get('is_split_into_words' , __a )\n assert self.add_prefix_space or not is_split_into_words, (\n f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''\n \"to use it with pretokenized inputs.\"\n )\n\n return super()._batch_encode_plus(*__a , **__a )\n def A_ ( self\t\t: List[Any] , *__a\t\t: str , **__a\t\t: Optional[int] ) -> BatchEncoding:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = kwargs.get('is_split_into_words' , __a )\n\n assert self.add_prefix_space or not is_split_into_words, (\n f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''\n \"to use it with pretokenized inputs.\"\n )\n\n return super()._encode_plus(*__a , **__a )\n def A_ ( self\t\t: Dict , __a\t\t: str , __a\t\t: Optional[str] = None ) -> Tuple[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self._tokenizer.model.save(__a , name=__a )\n return tuple(__a )\n\n\n\n\n\n def A_ ( self\t\t: Dict , __a\t\t: \"Conversation\" ) -> List[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = []\n for is_user, text in conversation.iter_texts():\n input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )\n\n if len(__a ) > self.model_max_length:\n __snake_case\t\t\t\t: Tuple\t\t = input_ids[-self.model_max_length :]\n return input_ids\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available\n\n\nA__ : Optional[Any] =\t\t\t{\n '''configuration_nllb_moe''': [\n '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''NllbMoeConfig''',\n ]\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Dict =\t\t\t[\n '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''NllbMoeForConditionalGeneration''',\n '''NllbMoeModel''',\n '''NllbMoePreTrainedModel''',\n '''NllbMoeTop2Router''',\n '''NllbMoeSparseMLP''',\n ]\n\n\nif TYPE_CHECKING:\n from .configuration_nllb_moe import (\n NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,\n NllbMoeConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_nllb_moe import (\n NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,\n NllbMoeForConditionalGeneration,\n NllbMoeModel,\n NllbMoePreTrainedModel,\n NllbMoeSparseMLP,\n NllbMoeTopaRouter,\n )\n\n\nelse:\n import sys\n\n A__ : str =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":183,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : int =\t\t\tlogging.get_logger(__name__)\n\nA__ : int =\t\t\t{\n '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''',\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''timesformer'''\n def __init__( self\t\t: List[str] , __a\t\t: List[Any]=224 , __a\t\t: Union[str, Any]=16 , __a\t\t: str=3 , __a\t\t: int=8 , __a\t\t: List[Any]=768 , __a\t\t: Dict=12 , __a\t\t: Optional[int]=12 , __a\t\t: Optional[int]=3072 , __a\t\t: Dict=\"gelu\" , __a\t\t: Any=0.0 , __a\t\t: List[str]=0.0 , __a\t\t: Union[str, Any]=0.0_2 , __a\t\t: Tuple=1e-6 , __a\t\t: Union[str, Any]=True , __a\t\t: Optional[Any]=\"divided_space_time\" , __a\t\t: Any=0 , **__a\t\t: int , ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().__init__(**__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = image_size\n __snake_case\t\t\t\t: Optional[int]\t\t = patch_size\n __snake_case\t\t\t\t: int\t\t = num_channels\n __snake_case\t\t\t\t: int\t\t = num_frames\n\n __snake_case\t\t\t\t: Any\t\t = hidden_size\n __snake_case\t\t\t\t: Union[str, Any]\t\t = num_hidden_layers\n __snake_case\t\t\t\t: List[str]\t\t = num_attention_heads\n __snake_case\t\t\t\t: Dict\t\t = intermediate_size\n __snake_case\t\t\t\t: Optional[Any]\t\t = hidden_act\n __snake_case\t\t\t\t: Union[str, Any]\t\t = hidden_dropout_prob\n __snake_case\t\t\t\t: List[str]\t\t = attention_probs_dropout_prob\n __snake_case\t\t\t\t: int\t\t = initializer_range\n __snake_case\t\t\t\t: Any\t\t = layer_norm_eps\n __snake_case\t\t\t\t: Optional[int]\t\t = qkv_bias\n\n __snake_case\t\t\t\t: Optional[int]\t\t = attention_type\n __snake_case\t\t\t\t: Optional[int]\t\t = drop_path_rate\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # bit count represents no. of bits in the gray code\n if bit_count < 0:\n raise ValueError('The given input must be positive'\t\t\t\t\t\t\t)\n\n # get the generated string sequence\n __snake_case\t\t\t\t: Optional[Any]\t\t = gray_code_sequence_string(_UpperCAmelCase\t\t\t\t\t\t\t)\n #\n # convert them to integers\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[Any]\t\t = int(sequence[i]\t\t\t\t,2\t\t\t\t\t\t\t)\n\n return sequence\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> list:\n\n # The approach is a recursive one\n # Base case achieved when either n = 0 or n=1\n if bit_count == 0:\n return [\"0\"]\n\n if bit_count == 1:\n return [\"0\", \"1\"]\n\n __snake_case\t\t\t\t: Dict\t\t = 1 << bit_count # defines the length of the sequence\n # 1<< n is equivalent to 2^n\n\n # recursive answer will generate answer for n-1 bits\n __snake_case\t\t\t\t: Dict\t\t = gray_code_sequence_string(bit_count - 1\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: Any\t\t = []\n\n # append 0 to first half of the smaller sequence generated\n for i in range(seq_len // 2\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: str\t\t = '0' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # append 1 to second half ... start from the end of the list\n for i in reversed(range(seq_len // 2\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = '1' + smaller_sequence[i]\n sequence.append(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n return sequence\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":184,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport os\n\n\n# All paths are set with the intent you should run this script from the root of the repo with the command\n# python utils/check_doctest_list.py\nA__ : Optional[Any] =\t\t\t'''.'''\n\n\nif __name__ == \"__main__\":\n A__ : Optional[Any] =\t\t\tos.path.join(REPO_PATH, '''utils/documentation_tests.txt''')\n A__ : int =\t\t\t[]\n A__ : str =\t\t\t[]\n with open(doctest_file_path) as fp:\n for line in fp:\n A__ : Union[str, Any] =\t\t\tline.strip()\n A__ : Optional[Any] =\t\t\tos.path.join(REPO_PATH, line)\n if not (os.path.isfile(path) or os.path.isdir(path)):\n non_existent_paths.append(line)\n all_paths.append(path)\n if len(non_existent_paths) > 0:\n A__ : Union[str, Any] =\t\t\t'''\\n'''.join(non_existent_paths)\n raise ValueError(F\"\"\"`utils/documentation_tests.txt` contains non-existent paths:\\n{non_existent_paths}\"\"\")\n if all_paths != sorted(all_paths):\n raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport json\nimport os\nimport shutil\nimport tempfile\nimport unittest\n\nimport numpy as np\n\nfrom transformers import BertTokenizerFast\nfrom transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer\nfrom transformers.testing_utils import require_tokenizers, require_vision\nfrom transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available\n\n\nif is_vision_available():\n from PIL import Image\n\n from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor\n\n\n\n@require_tokenizers\n@require_vision\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: int ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = tempfile.mkdtemp()\n\n # fmt: off\n __snake_case\t\t\t\t: List[str]\t\t = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']\n # fmt: on\n __snake_case\t\t\t\t: Any\t\t = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )\n with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:\n vocab_writer.write(''.join([x + '\\n' for x in vocab_tokens] ) )\n\n __snake_case\t\t\t\t: List[str]\t\t = {\n 'do_resize': True,\n 'size': {'height': 18, 'width': 18},\n 'do_normalize': True,\n 'image_mean': [0.5, 0.5, 0.5],\n 'image_std': [0.5, 0.5, 0.5],\n }\n __snake_case\t\t\t\t: Optional[Any]\t\t = os.path.join(self.tmpdirname , __a )\n with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:\n json.dump(__a , __a )\n def A_ ( self\t\t: Optional[int] , **__a\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return BertTokenizer.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: int , **__a\t\t: Dict ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a )\n def A_ ( self\t\t: Optional[int] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n shutil.rmtree(self.tmpdirname )\n def A_ ( self\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]\n\n __snake_case\t\t\t\t: List[str]\t\t = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs]\n\n return image_inputs\n def A_ ( self\t\t: List[str] ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n processor.save_pretrained(self.tmpdirname )\n __snake_case\t\t\t\t: Any\t\t = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = VisionTextDualEncoderProcessor(\n tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )\n processor.save_pretrained(self.tmpdirname )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor(do_normalize=__a , padding_value=1.0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor.from_pretrained(\n self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 )\n\n self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )\n self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )\n\n self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )\n self.assertIsInstance(processor.image_processor , __a )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: str\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(__a , return_tensors='np' )\n __snake_case\t\t\t\t: List[str]\t\t = processor(images=__a , return_tensors='np' )\n\n for key in input_feat_extract.keys():\n self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )\n def A_ ( self\t\t: Optional[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: int\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = 'lower newer'\n\n __snake_case\t\t\t\t: Dict\t\t = processor(text=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = tokenizer(__a )\n\n for key in encoded_tok.keys():\n self.assertListEqual(encoded_tok[key] , encoded_processor[key] )\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: int\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )\n\n # test if it raises when no input is passed\n with self.assertRaises(__a ):\n processor()\n def A_ ( self\t\t: Tuple ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Any\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: int\t\t = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]\n\n __snake_case\t\t\t\t: int\t\t = processor.batch_decode(__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = tokenizer.batch_decode(__a )\n\n self.assertListEqual(__a , __a )\n\n\n\n\n\n def A_ ( self\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.get_image_processor()\n __snake_case\t\t\t\t: Dict\t\t = self.get_tokenizer()\n\n __snake_case\t\t\t\t: Dict\t\t = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'lower newer'\n __snake_case\t\t\t\t: Tuple\t\t = self.prepare_image_inputs()\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = processor(text=__a , images=__a )\n\n self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":185,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom collections import OrderedDict\nfrom pathlib import Path\n\nimport requests\nimport torch\nfrom huggingface_hub import hf_hub_download\nfrom PIL import Image\n\nfrom transformers import (\n SegformerConfig,\n SegformerForImageClassification,\n SegformerForSemanticSegmentation,\n SegformerImageProcessor,\n)\nfrom transformers.utils import logging\n\n\nlogging.set_verbosity_info()\nA__ : Optional[int] =\t\t\tlogging.get_logger(__name__)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[int]\t\t\t\t,_UpperCAmelCase : List[str]=False\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Dict\t\t = OrderedDict()\n for key, value in state_dict.items():\n if encoder_only and not key.startswith('head'\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = 'segformer.encoder.' + key\n if key.startswith('backbone'\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[Any]\t\t = key.replace('backbone'\t\t\t\t,'segformer.encoder'\t\t\t\t\t\t\t)\n if \"patch_embed\" in key:\n # replace for example patch_embed1 by patch_embeddings.0\n __snake_case\t\t\t\t: Union[str, Any]\t\t = key[key.find('patch_embed'\t\t\t\t\t\t\t) + len('patch_embed'\t\t\t\t\t\t\t)]\n __snake_case\t\t\t\t: Optional[int]\t\t = key.replace(f'''patch_embed{idx}'''\t\t\t\t,f'''patch_embeddings.{int(_UpperCAmelCase\t\t\t\t\t\t\t)-1}'''\t\t\t\t\t\t\t)\n if \"norm\" in key:\n __snake_case\t\t\t\t: List[str]\t\t = key.replace('norm'\t\t\t\t,'layer_norm'\t\t\t\t\t\t\t)\n if \"segformer.encoder.layer_norm\" in key:\n # replace for example layer_norm1 by layer_norm.0\n __snake_case\t\t\t\t: Tuple\t\t = key[key.find('segformer.encoder.layer_norm'\t\t\t\t\t\t\t) + len('segformer.encoder.layer_norm'\t\t\t\t\t\t\t)]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = key.replace(f'''layer_norm{idx}'''\t\t\t\t,f'''layer_norm.{int(_UpperCAmelCase\t\t\t\t\t\t\t)-1}'''\t\t\t\t\t\t\t)\n if \"layer_norm1\" in key:\n __snake_case\t\t\t\t: str\t\t = key.replace('layer_norm1'\t\t\t\t,'layer_norm_1'\t\t\t\t\t\t\t)\n if \"layer_norm2\" in key:\n __snake_case\t\t\t\t: int\t\t = key.replace('layer_norm2'\t\t\t\t,'layer_norm_2'\t\t\t\t\t\t\t)\n if \"block\" in key:\n # replace for example block1 by block.0\n __snake_case\t\t\t\t: Dict\t\t = key[key.find('block'\t\t\t\t\t\t\t) + len('block'\t\t\t\t\t\t\t)]\n __snake_case\t\t\t\t: List[str]\t\t = key.replace(f'''block{idx}'''\t\t\t\t,f'''block.{int(_UpperCAmelCase\t\t\t\t\t\t\t)-1}'''\t\t\t\t\t\t\t)\n if \"attn.q\" in key:\n __snake_case\t\t\t\t: Dict\t\t = key.replace('attn.q'\t\t\t\t,'attention.self.query'\t\t\t\t\t\t\t)\n if \"attn.proj\" in key:\n __snake_case\t\t\t\t: List[str]\t\t = key.replace('attn.proj'\t\t\t\t,'attention.output.dense'\t\t\t\t\t\t\t)\n if \"attn\" in key:\n __snake_case\t\t\t\t: int\t\t = key.replace('attn'\t\t\t\t,'attention.self'\t\t\t\t\t\t\t)\n if \"fc1\" in key:\n __snake_case\t\t\t\t: Optional[Any]\t\t = key.replace('fc1'\t\t\t\t,'dense1'\t\t\t\t\t\t\t)\n if \"fc2\" in key:\n __snake_case\t\t\t\t: int\t\t = key.replace('fc2'\t\t\t\t,'dense2'\t\t\t\t\t\t\t)\n if \"linear_pred\" in key:\n __snake_case\t\t\t\t: Optional[Any]\t\t = key.replace('linear_pred'\t\t\t\t,'classifier'\t\t\t\t\t\t\t)\n if \"linear_fuse\" in key:\n __snake_case\t\t\t\t: Any\t\t = key.replace('linear_fuse.conv'\t\t\t\t,'linear_fuse'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[str]\t\t = key.replace('linear_fuse.bn'\t\t\t\t,'batch_norm'\t\t\t\t\t\t\t)\n if \"linear_c\" in key:\n # replace for example linear_c4 by linear_c.3\n __snake_case\t\t\t\t: int\t\t = key[key.find('linear_c'\t\t\t\t\t\t\t) + len('linear_c'\t\t\t\t\t\t\t)]\n __snake_case\t\t\t\t: List[str]\t\t = key.replace(f'''linear_c{idx}'''\t\t\t\t,f'''linear_c.{int(_UpperCAmelCase\t\t\t\t\t\t\t)-1}'''\t\t\t\t\t\t\t)\n if key.startswith('head'\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Any\t\t = key.replace('head'\t\t\t\t,'classifier'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[str]\t\t = value\n\n return new_state_dict\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Optional[Any]\t\t\t\t,_UpperCAmelCase : List[str]\t\t\t\t\t\t\t) -> List[Any]:\n # for each of the encoder blocks:\n for i in range(config.num_encoder_blocks\t\t\t\t\t\t\t):\n for j in range(config.depths[i]\t\t\t\t\t\t\t):\n # read in weights + bias of keys and values (which is a single matrix in the original implementation)\n __snake_case\t\t\t\t: List[Any]\t\t = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight'''\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias'''\t\t\t\t\t\t\t)\n # next, add keys and values (in that order) to the state dict\n __snake_case\t\t\t\t: int\t\t = kv_weight[\n : config.hidden_sizes[i], :\n ]\n __snake_case\t\t\t\t: List[str]\t\t = kv_bias[: config.hidden_sizes[i]]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = kv_weight[\n config.hidden_sizes[i] :, :\n ]\n __snake_case\t\t\t\t: Optional[Any]\t\t = kv_bias[\n config.hidden_sizes[i] :\n ]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> str:\n __snake_case\t\t\t\t: int\t\t = 'http://images.cocodataset.org/val2017/000000039769.jpg'\n __snake_case\t\t\t\t: Optional[int]\t\t = Image.open(requests.get(_UpperCAmelCase\t\t\t\t,stream=_UpperCAmelCase\t\t\t\t\t\t\t).raw\t\t\t\t\t\t\t)\n\n return image\n\n\n\n\n\n@torch.no_grad()\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : str\t\t\t\t,_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: List[Any]\t\t = SegformerConfig()\n __snake_case\t\t\t\t: Optional[Any]\t\t = False\n\n # set attributes based on model_name\n __snake_case\t\t\t\t: int\t\t = 'huggingface/label-files'\n if \"segformer\" in model_name:\n __snake_case\t\t\t\t: Tuple\t\t = model_name[len('segformer.'\t\t\t\t\t\t\t) : len('segformer.'\t\t\t\t\t\t\t) + 2]\n if \"ade\" in model_name:\n __snake_case\t\t\t\t: Optional[Any]\t\t = 1_50\n __snake_case\t\t\t\t: Optional[int]\t\t = 'ade20k-id2label.json'\n __snake_case\t\t\t\t: Optional[Any]\t\t = (1, 1_50, 1_28, 1_28)\n elif \"city\" in model_name:\n __snake_case\t\t\t\t: Any\t\t = 19\n __snake_case\t\t\t\t: List[Any]\t\t = 'cityscapes-id2label.json'\n __snake_case\t\t\t\t: Tuple\t\t = (1, 19, 1_28, 1_28)\n else:\n raise ValueError(f'''Model {model_name} not supported'''\t\t\t\t\t\t\t)\n elif \"mit\" in model_name:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n __snake_case\t\t\t\t: int\t\t = model_name[4:6]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 10_00\n __snake_case\t\t\t\t: str\t\t = 'imagenet-1k-id2label.json'\n __snake_case\t\t\t\t: Any\t\t = (1, 10_00)\n else:\n raise ValueError(f'''Model {model_name} not supported'''\t\t\t\t\t\t\t)\n\n # set config attributes\n __snake_case\t\t\t\t: List[Any]\t\t = json.load(open(hf_hub_download(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Optional[int]\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n __snake_case\t\t\t\t: Dict\t\t = idalabel\n __snake_case\t\t\t\t: List[Any]\t\t = {v: k for k, v in idalabel.items()}\n if size == \"b0\":\n pass\n elif size == \"b1\":\n __snake_case\t\t\t\t: List[Any]\t\t = [64, 1_28, 3_20, 5_12]\n __snake_case\t\t\t\t: str\t\t = 2_56\n elif size == \"b2\":\n __snake_case\t\t\t\t: int\t\t = [64, 1_28, 3_20, 5_12]\n __snake_case\t\t\t\t: str\t\t = 7_68\n __snake_case\t\t\t\t: Optional[int]\t\t = [3, 4, 6, 3]\n elif size == \"b3\":\n __snake_case\t\t\t\t: Any\t\t = [64, 1_28, 3_20, 5_12]\n __snake_case\t\t\t\t: int\t\t = 7_68\n __snake_case\t\t\t\t: Tuple\t\t = [3, 4, 18, 3]\n elif size == \"b4\":\n __snake_case\t\t\t\t: Any\t\t = [64, 1_28, 3_20, 5_12]\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 7_68\n __snake_case\t\t\t\t: Union[str, Any]\t\t = [3, 8, 27, 3]\n elif size == \"b5\":\n __snake_case\t\t\t\t: Any\t\t = [64, 1_28, 3_20, 5_12]\n __snake_case\t\t\t\t: int\t\t = 7_68\n __snake_case\t\t\t\t: List[str]\t\t = [3, 6, 40, 3]\n else:\n raise ValueError(f'''Size {size} not supported'''\t\t\t\t\t\t\t)\n\n # load image processor (only resize + normalize)\n __snake_case\t\t\t\t: Optional[Any]\t\t = SegformerImageProcessor(\n image_scale=(5_12, 5_12)\t\t\t\t,keep_ratio=_UpperCAmelCase\t\t\t\t,align=_UpperCAmelCase\t\t\t\t,do_random_crop=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # prepare image\n __snake_case\t\t\t\t: Dict\t\t = prepare_img()\n __snake_case\t\t\t\t: List[str]\t\t = image_processor(images=_UpperCAmelCase\t\t\t\t,return_tensors='pt'\t\t\t\t\t\t\t).pixel_values\n\n logger.info(f'''Converting model {model_name}...'''\t\t\t\t\t\t\t)\n\n # load original state dict\n if encoder_only:\n __snake_case\t\t\t\t: List[Any]\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)['state_dict']\n\n # rename keys\n __snake_case\t\t\t\t: Optional[int]\t\t = rename_keys(_UpperCAmelCase\t\t\t\t,encoder_only=_UpperCAmelCase\t\t\t\t\t\t\t)\n if not encoder_only:\n del state_dict[\"decode_head.conv_seg.weight\"]\n del state_dict[\"decode_head.conv_seg.bias\"]\n\n # key and value matrices need special treatment\n read_in_k_v(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # create HuggingFace model and load state dict\n if encoder_only:\n __snake_case\t\t\t\t: Dict\t\t = False\n __snake_case\t\t\t\t: Union[str, Any]\t\t = SegformerForImageClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: Dict\t\t = SegformerForSemanticSegmentation(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.eval()\n\n # forward pass\n __snake_case\t\t\t\t: List[str]\t\t = model(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = outputs.logits\n\n # set expected_slice based on model name\n # ADE20k checkpoints\n if model_name == \"segformer.b0.512x512.ade.160k\":\n __snake_case\t\t\t\t: Tuple\t\t = torch.tensor(\n [\n [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],\n [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],\n [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b1.512x512.ade.160k\":\n __snake_case\t\t\t\t: str\t\t = torch.tensor(\n [\n [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],\n [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],\n [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b2.512x512.ade.160k\":\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.tensor(\n [\n [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],\n [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],\n [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b3.512x512.ade.160k\":\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.tensor(\n [\n [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],\n [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],\n [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b4.512x512.ade.160k\":\n __snake_case\t\t\t\t: Dict\t\t = torch.tensor(\n [\n [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],\n [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],\n [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b5.640x640.ade.160k\":\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.tensor(\n [\n [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],\n [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],\n [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],\n ]\t\t\t\t\t\t\t)\n # Cityscapes checkpoints\n elif model_name == \"segformer.b0.1024x1024.city.160k\":\n __snake_case\t\t\t\t: List[str]\t\t = torch.tensor(\n [\n [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],\n [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],\n [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b0.512x1024.city.160k\":\n __snake_case\t\t\t\t: int\t\t = torch.tensor(\n [\n [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],\n [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],\n [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b0.640x1280.city.160k\":\n __snake_case\t\t\t\t: int\t\t = torch.tensor(\n [\n [\n [-1.1372E01, -1.2787E01, -1.3477E01],\n [-1.2536E01, -1.4194E01, -1.4409E01],\n [-1.3217E01, -1.4888E01, -1.5327E01],\n ],\n [\n [-1.4791E01, -1.7122E01, -1.8277E01],\n [-1.7163E01, -1.9192E01, -1.9533E01],\n [-1.7897E01, -1.9991E01, -2.0315E01],\n ],\n [\n [7.6723E-01, 4.1921E-01, -7.7878E-02],\n [4.7772E-01, 9.5557E-03, -2.8082E-01],\n [3.6032E-01, -2.4826E-01, -5.1168E-01],\n ],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b0.768x768.city.160k\":\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.tensor(\n [\n [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],\n [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],\n [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b1.1024x1024.city.160k\":\n __snake_case\t\t\t\t: Tuple\t\t = torch.tensor(\n [\n [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],\n [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],\n [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b2.1024x1024.city.160k\":\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.tensor(\n [\n [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],\n [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],\n [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b3.1024x1024.city.160k\":\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.tensor(\n [\n [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],\n [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],\n [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b4.1024x1024.city.160k\":\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.tensor(\n [\n [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],\n [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],\n [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],\n ]\t\t\t\t\t\t\t)\n elif model_name == \"segformer.b5.1024x1024.city.160k\":\n __snake_case\t\t\t\t: int\t\t = torch.tensor(\n [\n [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],\n [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],\n [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],\n ]\t\t\t\t\t\t\t)\n else:\n __snake_case\t\t\t\t: Any\t\t = logits.argmax(-1\t\t\t\t\t\t\t).item()\n print('Predicted class:'\t\t\t\t,model.config.idalabel[predicted_class_idx]\t\t\t\t\t\t\t)\n\n # verify logits\n if not encoder_only:\n assert logits.shape == expected_shape\n assert torch.allclose(logits[0, :3, :3, :3]\t\t\t\t,_UpperCAmelCase\t\t\t\t,atol=1E-2\t\t\t\t\t\t\t)\n\n # finally, save model and image processor\n logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...'''\t\t\t\t\t\t\t)\n Path(_UpperCAmelCase\t\t\t\t\t\t\t).mkdir(exist_ok=_UpperCAmelCase\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n A__ : Union[str, Any] =\t\t\targparse.ArgumentParser()\n\n parser.add_argument(\n '''--model_name''',\n default='''segformer.b0.512x512.ade.160k''',\n type=str,\n help='''Name of the model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''\n )\n A__ : Optional[int] =\t\t\tparser.parse_args()\n convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport argparse\nimport json\nfrom collections import OrderedDict\n\nimport torch\nfrom huggingface_hub import cached_download, hf_hub_url\n\nfrom transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : List[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: str\t\t = []\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',\n f'''stage{idx}.patch_embed.proj.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',\n f'''stage{idx}.patch_embed.proj.bias''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',\n f'''stage{idx}.patch_embed.norm.weight''',\n )\t\t\t\t\t\t\t)\n embed.append(\n (\n f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',\n f'''stage{idx}.patch_embed.norm.bias''',\n )\t\t\t\t\t\t\t)\n return embed\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : Optional[int]\t\t\t\t\t\t\t) -> List[str]:\n __snake_case\t\t\t\t: Tuple\t\t = []\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',\n f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (\n f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',\n f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',\n )\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''')\t\t\t\t\t\t\t)\n attention_weights.append(\n (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''')\t\t\t\t\t\t\t)\n return attention_weights\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t\t\t\t) -> Dict:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token')\t\t\t\t\t\t\t)\n return token\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> Optional[Any]:\n __snake_case\t\t\t\t: Any\t\t = []\n head.append(('layernorm.weight', 'norm.weight')\t\t\t\t\t\t\t)\n head.append(('layernorm.bias', 'norm.bias')\t\t\t\t\t\t\t)\n head.append(('classifier.weight', 'head.weight')\t\t\t\t\t\t\t)\n head.append(('classifier.bias', 'head.bias')\t\t\t\t\t\t\t)\n return head\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Union[str, Any]\t\t\t\t,_UpperCAmelCase : Any\t\t\t\t,_UpperCAmelCase : Tuple\t\t\t\t,_UpperCAmelCase : Optional[Any]\t\t\t\t\t\t\t) -> Tuple:\n __snake_case\t\t\t\t: List[str]\t\t = 'imagenet-1k-id2label.json'\n __snake_case\t\t\t\t: Dict\t\t = 10_00\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'huggingface/label-files'\n __snake_case\t\t\t\t: str\t\t = num_labels\n __snake_case\t\t\t\t: str\t\t = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,repo_type='dataset'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\t\t\t\t,'r'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = {int(_UpperCAmelCase\t\t\t\t\t\t\t): v for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = idalabel\n __snake_case\t\t\t\t: str\t\t = {v: k for k, v in idalabel.items()}\n\n __snake_case\t\t\t\t: Dict\t\t = CvtConfig(num_labels=_UpperCAmelCase\t\t\t\t,idalabel=_UpperCAmelCase\t\t\t\t,labelaid=_UpperCAmelCase\t\t\t\t\t\t\t)\n\n # For depth size 13 (13 = 1+2+10)\n if cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"13\":\n __snake_case\t\t\t\t: Tuple\t\t = [1, 2, 10]\n\n # For depth size 21 (21 = 1+4+16)\n elif cvt_model.rsplit('/'\t\t\t\t,1\t\t\t\t\t\t\t)[-1][4:6] == \"21\":\n __snake_case\t\t\t\t: str\t\t = [1, 4, 16]\n\n # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)\n else:\n __snake_case\t\t\t\t: Dict\t\t = [2, 2, 20]\n __snake_case\t\t\t\t: Any\t\t = [3, 12, 16]\n __snake_case\t\t\t\t: Tuple\t\t = [1_92, 7_68, 10_24]\n\n __snake_case\t\t\t\t: str\t\t = CvtForImageClassification(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: List[Any]\t\t = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k'\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: int\t\t = image_size\n __snake_case\t\t\t\t: int\t\t = torch.load(_UpperCAmelCase\t\t\t\t,map_location=torch.device('cpu'\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: List[Any]\t\t = OrderedDict()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = []\n\n for idx in range(len(config.depth\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n if config.cls_token[idx]:\n __snake_case\t\t\t\t: Optional[Any]\t\t = list_of_state_dict + cls_token(_UpperCAmelCase\t\t\t\t\t\t\t)\n __snake_case\t\t\t\t: Tuple\t\t = list_of_state_dict + embeddings(_UpperCAmelCase\t\t\t\t\t\t\t)\n for cnt in range(config.depth[idx]\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Optional[int]\t\t = list_of_state_dict + attention(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t)\n\n __snake_case\t\t\t\t: str\t\t = list_of_state_dict + final()\n for gg in list_of_state_dict:\n print(_UpperCAmelCase\t\t\t\t\t\t\t)\n for i in range(len(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: List[str]\t\t = original_weights[list_of_state_dict[i][1]]\n\n model.load_state_dict(_UpperCAmelCase\t\t\t\t\t\t\t)\n model.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n image_processor.save_pretrained(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al\n\nif __name__ == \"__main__\":\n A__ : Dict =\t\t\targparse.ArgumentParser()\n parser.add_argument(\n '''--cvt_model''',\n default='''cvt-w24''',\n type=str,\n help='''Name of the cvt model you\\'d like to convert.''',\n )\n parser.add_argument(\n '''--image_size''',\n default=3_8_4,\n type=int,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--cvt_file_name''',\n default=R'''cvtmodels\\CvT-w24-384x384-IN-22k.pth''',\n type=str,\n help='''Input Image Size''',\n )\n parser.add_argument(\n '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''\n )\n\n A__ : Tuple =\t\t\tparser.parse_args()\n convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":186,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport gc\nimport unittest\n\nimport numpy as np\nimport torch\nfrom transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer\n\nfrom diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline\nfrom diffusers.pipelines.shap_e import ShapERenderer\nfrom diffusers.utils import load_numpy, slow\nfrom diffusers.utils.testing_utils import require_torch_gpu, torch_device\n\nfrom ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tShapEPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''num_inference_steps''',\n '''generator''',\n '''latents''',\n '''guidance_scale''',\n '''frame_size''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Optional[Any] ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Tuple ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Tuple ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 8\n @property\n def A_ ( self\t\t: Optional[Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: List[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[int]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Dict\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 16,\n 'embedding_dim': self.time_input_dim,\n 'num_embeddings': 32,\n 'embedding_proj_dim': self.text_embedder_hidden_size,\n 'time_embed_dim': self.time_embed_dim,\n 'num_layers': 1,\n 'clip_embed_dim': self.time_input_dim * 2,\n 'additional_embeddings': 0,\n 'time_embed_act_fn': 'gelu',\n 'norm_in_type': 'layer',\n 'encoder_hid_proj_type': None,\n 'added_emb_type': None,\n }\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = PriorTransformer(**__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Tuple\t\t = {\n 'param_shapes': (\n (self.renderer_dim, 93),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n (self.renderer_dim, 8),\n ),\n 'd_latent': self.time_input_dim,\n 'd_hidden': self.renderer_dim,\n 'n_output': 12,\n 'background': (\n 0.1,\n 0.1,\n 0.1,\n ),\n }\n __snake_case\t\t\t\t: Optional[int]\t\t = ShapERenderer(**__a )\n return model\n def A_ ( self\t\t: Tuple ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.dummy_renderer\n\n __snake_case\t\t\t\t: List[Any]\t\t = HeunDiscreteScheduler(\n beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , )\n __snake_case\t\t\t\t: int\t\t = {\n 'prior': prior,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'renderer': renderer,\n 'scheduler': scheduler,\n }\n\n return components\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: Dict , __a\t\t: int=0 ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'num_inference_steps': 1,\n 'frame_size': 32,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = 'cpu'\n\n __snake_case\t\t\t\t: Dict\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: int\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: str\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: Dict\t\t = output.images[0]\n __snake_case\t\t\t\t: int\t\t = image[0, -3:, -3:, -1]\n\n assert image.shape == (20, 32, 32, 3)\n\n __snake_case\t\t\t\t: str\t\t = np.array(\n [\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n 0.0_0_0_3_9_2_1_6,\n ] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n def A_ ( self\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches\n self._test_inference_batch_consistent(batch_sizes=[1, 2] )\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: str\t\t = True\n\n self._test_inference_batch_single_identical(\n batch_size=2 , test_max_difference=__a , relax_max_difference=__a , )\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = self.get_dummy_components()\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Dict\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: int\t\t = 1\n __snake_case\t\t\t\t: Tuple\t\t = 2\n\n __snake_case\t\t\t\t: Tuple\t\t = self.get_dummy_inputs(__a )\n\n for key in inputs.keys():\n if key in self.batch_params:\n __snake_case\t\t\t\t: Union[str, Any]\t\t = batch_size * [inputs[key]]\n\n __snake_case\t\t\t\t: str\t\t = pipe(**__a , num_images_per_prompt=__a )[0]\n\n assert images.shape[0] == batch_size * num_images_per_prompt\n\n\n\n@slow\n@require_torch_gpu\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n # clean up the VRAM after each test\n super().tearDown()\n gc.collect()\n torch.cuda.empty_cache()\n\n\n\n\n\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = load_numpy(\n 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'\n '/shap_e/test_shap_e_np_out.npy' )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ShapEPipeline.from_pretrained('openai/shap-e' )\n __snake_case\t\t\t\t: Any\t\t = pipe.to(__a )\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = torch.Generator(device=__a ).manual_seed(0 )\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pipe(\n 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]\n\n assert images.shape == (20, 64, 64, 3)\n\n assert_mean_pixel_difference(__a , __a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom __future__ import annotations\n\nA__ : List[Any] =\t\t\tlist[list[int]]\n\n# assigning initial values to the grid\nA__ : Matrix =\t\t\t[\n [3, 0, 6, 5, 0, 8, 4, 0, 0],\n [5, 2, 0, 0, 0, 0, 0, 0, 0],\n [0, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n# a grid with no solution\nA__ : Matrix =\t\t\t[\n [5, 0, 6, 5, 0, 8, 4, 0, 3],\n [5, 2, 0, 0, 0, 0, 0, 0, 2],\n [1, 8, 7, 0, 0, 0, 0, 3, 1],\n [0, 0, 3, 0, 1, 0, 0, 8, 0],\n [9, 0, 0, 8, 6, 3, 0, 0, 5],\n [0, 5, 0, 0, 9, 0, 6, 0, 0],\n [1, 3, 0, 0, 0, 0, 2, 5, 0],\n [0, 0, 0, 0, 0, 0, 0, 7, 4],\n [0, 0, 5, 2, 0, 6, 3, 0, 0],\n]\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t,_UpperCAmelCase : int\t\t\t\t\t\t\t) -> bool:\n for i in range(9\t\t\t\t\t\t\t):\n if grid[row][i] == n or grid[i][column] == n:\n return False\n\n for i in range(3\t\t\t\t\t\t\t):\n for j in range(3\t\t\t\t\t\t\t):\n if grid[(row - row % 3) + i][(column - column % 3) + j] == n:\n return False\n\n return True\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> tuple[int, int] | None:\n for i in range(9\t\t\t\t\t\t\t):\n for j in range(9\t\t\t\t\t\t\t):\n if grid[i][j] == 0:\n return i, j\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> Matrix | None:\n if location := find_empty_location(_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case , __snake_case\t\t\t\t: Optional[int]\t\t = location\n else:\n # If the location is ``None``, then the grid is solved.\n return grid\n\n for digit in range(1\t\t\t\t,10\t\t\t\t\t\t\t):\n if is_safe(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n __snake_case\t\t\t\t: Union[str, Any]\t\t = digit\n\n if sudoku(_UpperCAmelCase\t\t\t\t\t\t\t) is not None:\n return grid\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = 0\n\n return None\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : Matrix\t\t\t\t\t\t\t) -> None:\n for row in grid:\n for cell in row:\n print(_UpperCAmelCase\t\t\t\t,end=' '\t\t\t\t\t\t\t)\n print()\n\n\nif __name__ == \"__main__\":\n # make a copy of grid so that you can compare with the unmodified grid\n for example_grid in (initial_grid, no_solution):\n print('''\\nExample grid:\\n''' + '''=''' * 2_0)\n print_solution(example_grid)\n print('''\\nExample grid solution:''')\n A__ : List[str] =\t\t\tsudoku(example_grid)\n if solution is not None:\n print_solution(solution)\n else:\n print('''Cannot find a solution.''')\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":187,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport tempfile\n\nimport torch\n\nfrom diffusers import PNDMScheduler\n\nfrom .test_schedulers import SchedulerCommonTest\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t(PNDMScheduler,)\n A__\t\t\t\t\t\t\t=\t\t\t\t(('''num_inference_steps''', 50),)\n def A_ ( self\t\t: Any , **__a\t\t: Any ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = {\n 'num_train_timesteps': 1000,\n 'beta_start': 0.0_0_0_1,\n 'beta_end': 0.0_2,\n 'beta_schedule': 'linear',\n }\n\n config.update(**__a )\n return config\n def A_ ( self\t\t: List[str] , __a\t\t: Dict=0 , **__a\t\t: str ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = dict(self.forward_default_kwargs )\n __snake_case\t\t\t\t: List[Any]\t\t = kwargs.pop('num_inference_steps' , __a )\n __snake_case\t\t\t\t: Dict\t\t = self.dummy_sample\n __snake_case\t\t\t\t: Any\t\t = 0.1 * sample\n __snake_case\t\t\t\t: str\t\t = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]\n\n for scheduler_class in self.scheduler_classes:\n __snake_case\t\t\t\t: str\t\t = self.get_scheduler_config(**__a )\n __snake_case\t\t\t\t: List[str]\t\t = scheduler_class(**__a )\n scheduler.set_timesteps(__a )\n # copy over dummy past residuals\n __snake_case\t\t\t\t: Dict\t\t = dummy_past_residuals[:]\n\n with tempfile.TemporaryDirectory() as tmpdirname:\n scheduler.save_config(__a )\n __snake_case\t\t\t\t: Optional[int]\t\t = scheduler_class.from_pretrained(__a )\n new_scheduler.set_timesteps(__a )\n # copy over dummy past residuals\n __snake_case\t\t\t\t: Optional[int]\t\t = dummy_past_residuals[:]\n\n __snake_case\t\t\t\t: Optional[int]\t\t = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: Optional[Any]\t\t = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample\n\n assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, \"Scheduler outputs are not identical\"\n\n __snake_case\t\t\t\t: Dict\t\t = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: Dict\t\t = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample\n\n assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, \"Scheduler outputs are not identical\"\n def A_ ( self\t\t: List[str] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n pass\n def A_ ( self\t\t: Any , __a\t\t: int=0 , **__a\t\t: List[Any] ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Any\t\t = dict(self.forward_default_kwargs )\n __snake_case\t\t\t\t: Any\t\t = kwargs.pop('num_inference_steps' , __a )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = self.dummy_sample\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 0.1 * sample\n __snake_case\t\t\t\t: Any\t\t = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]\n\n for scheduler_class in self.scheduler_classes:\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_scheduler_config()\n __snake_case\t\t\t\t: int\t\t = scheduler_class(**__a )\n scheduler.set_timesteps(__a )\n\n # copy over dummy past residuals (must be after setting timesteps)\n __snake_case\t\t\t\t: Tuple\t\t = dummy_past_residuals[:]\n\n with tempfile.TemporaryDirectory() as tmpdirname:\n scheduler.save_config(__a )\n __snake_case\t\t\t\t: int\t\t = scheduler_class.from_pretrained(__a )\n # copy over dummy past residuals\n new_scheduler.set_timesteps(__a )\n\n # copy over dummy past residual (must be after setting timesteps)\n __snake_case\t\t\t\t: str\t\t = dummy_past_residuals[:]\n\n __snake_case\t\t\t\t: Dict\t\t = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: List[str]\t\t = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample\n\n assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, \"Scheduler outputs are not identical\"\n\n __snake_case\t\t\t\t: List[Any]\t\t = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: List[str]\t\t = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample\n\n assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, \"Scheduler outputs are not identical\"\n def A_ ( self\t\t: Tuple , **__a\t\t: int ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = self.scheduler_classes[0]\n __snake_case\t\t\t\t: Tuple\t\t = self.get_scheduler_config(**__a )\n __snake_case\t\t\t\t: Any\t\t = scheduler_class(**__a )\n\n __snake_case\t\t\t\t: int\t\t = 10\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_model()\n __snake_case\t\t\t\t: Any\t\t = self.dummy_sample_deter\n scheduler.set_timesteps(__a )\n\n for i, t in enumerate(scheduler.prk_timesteps ):\n __snake_case\t\t\t\t: List[str]\t\t = model(__a , __a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = scheduler.step_prk(__a , __a , __a ).prev_sample\n\n for i, t in enumerate(scheduler.plms_timesteps ):\n __snake_case\t\t\t\t: Dict\t\t = model(__a , __a )\n __snake_case\t\t\t\t: List[Any]\t\t = scheduler.step_plms(__a , __a , __a ).prev_sample\n\n return sample\n def A_ ( self\t\t: int ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: int\t\t = dict(self.forward_default_kwargs )\n\n __snake_case\t\t\t\t: Any\t\t = kwargs.pop('num_inference_steps' , __a )\n\n for scheduler_class in self.scheduler_classes:\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_scheduler_config()\n __snake_case\t\t\t\t: Tuple\t\t = scheduler_class(**__a )\n\n __snake_case\t\t\t\t: List[Any]\t\t = self.dummy_sample\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 0.1 * sample\n\n if num_inference_steps is not None and hasattr(__a , 'set_timesteps' ):\n scheduler.set_timesteps(__a )\n elif num_inference_steps is not None and not hasattr(__a , 'set_timesteps' ):\n __snake_case\t\t\t\t: Dict\t\t = num_inference_steps\n\n # copy over dummy past residuals (must be done after set_timesteps)\n __snake_case\t\t\t\t: str\t\t = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]\n __snake_case\t\t\t\t: Optional[Any]\t\t = dummy_past_residuals[:]\n\n __snake_case\t\t\t\t: Optional[int]\t\t = scheduler.step_prk(__a , 0 , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: Union[str, Any]\t\t = scheduler.step_prk(__a , 1 , __a , **__a ).prev_sample\n\n self.assertEqual(output_a.shape , sample.shape )\n self.assertEqual(output_a.shape , output_a.shape )\n\n __snake_case\t\t\t\t: List[Any]\t\t = scheduler.step_plms(__a , 0 , __a , **__a ).prev_sample\n __snake_case\t\t\t\t: List[str]\t\t = scheduler.step_plms(__a , 1 , __a , **__a ).prev_sample\n\n self.assertEqual(output_a.shape , sample.shape )\n self.assertEqual(output_a.shape , output_a.shape )\n def A_ ( self\t\t: str ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n for timesteps in [100, 1000]:\n self.check_over_configs(num_train_timesteps=__a )\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n for steps_offset in [0, 1]:\n self.check_over_configs(steps_offset=__a )\n\n __snake_case\t\t\t\t: str\t\t = self.scheduler_classes[0]\n __snake_case\t\t\t\t: List[Any]\t\t = self.get_scheduler_config(steps_offset=1 )\n __snake_case\t\t\t\t: int\t\t = scheduler_class(**__a )\n scheduler.set_timesteps(10 )\n assert torch.equal(\n scheduler.timesteps , torch.LongTensor(\n [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )\n def A_ ( self\t\t: int ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ):\n self.check_over_configs(beta_start=__a , beta_end=__a )\n def A_ ( self\t\t: Dict ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n for schedule in [\"linear\", \"squaredcos_cap_v2\"]:\n self.check_over_configs(beta_schedule=__a )\n def A_ ( self\t\t: Optional[int] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n for prediction_type in [\"epsilon\", \"v_prediction\"]:\n self.check_over_configs(prediction_type=__a )\n def A_ ( self\t\t: Tuple ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n for t in [1, 5, 10]:\n self.check_over_forward(time_step=__a )\n def A_ ( self\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):\n self.check_over_forward(num_inference_steps=__a )\n def A_ ( self\t\t: Union[str, Any] ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3\n __snake_case\t\t\t\t: Dict\t\t = 27\n\n for scheduler_class in self.scheduler_classes:\n __snake_case\t\t\t\t: int\t\t = self.dummy_sample\n __snake_case\t\t\t\t: str\t\t = 0.1 * sample\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = self.get_scheduler_config()\n __snake_case\t\t\t\t: Union[str, Any]\t\t = scheduler_class(**__a )\n\n scheduler.set_timesteps(__a )\n\n # before power of 3 fix, would error on first step, so we only need to do two\n for i, t in enumerate(scheduler.prk_timesteps[:2] ):\n __snake_case\t\t\t\t: int\t\t = scheduler.step_prk(__a , __a , __a ).prev_sample\n def A_ ( self\t\t: Tuple ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n with self.assertRaises(__a ):\n __snake_case\t\t\t\t: int\t\t = self.scheduler_classes[0]\n __snake_case\t\t\t\t: int\t\t = self.get_scheduler_config()\n __snake_case\t\t\t\t: List[Any]\t\t = scheduler_class(**__a )\n\n scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample\n def A_ ( self\t\t: Dict ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.full_loop()\n __snake_case\t\t\t\t: int\t\t = torch.sum(torch.abs(__a ) )\n __snake_case\t\t\t\t: List[str]\t\t = torch.mean(torch.abs(__a ) )\n\n assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2\n assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3\n def A_ ( self\t\t: List[str] ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = self.full_loop(prediction_type='v_prediction' )\n __snake_case\t\t\t\t: int\t\t = torch.sum(torch.abs(__a ) )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch.mean(torch.abs(__a ) )\n\n assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2\n assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3\n def A_ ( self\t\t: Dict ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n # We specify different beta, so that the first alpha is 0.99\n __snake_case\t\t\t\t: Any\t\t = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 )\n __snake_case\t\t\t\t: int\t\t = torch.sum(torch.abs(__a ) )\n __snake_case\t\t\t\t: Optional[Any]\t\t = torch.mean(torch.abs(__a ) )\n\n assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2\n assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3\n\n\n\n\n\n def A_ ( self\t\t: int ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n # We specify different beta, so that the first alpha is 0.99\n __snake_case\t\t\t\t: str\t\t = self.full_loop(set_alpha_to_one=__a , beta_start=0.0_1 )\n __snake_case\t\t\t\t: List[Any]\t\t = torch.sum(torch.abs(__a ) )\n __snake_case\t\t\t\t: Any\t\t = torch.mean(torch.abs(__a ) )\n\n assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2\n assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nimport numpy as np\nimport torch\nfrom torch import nn\nfrom transformers import (\n CLIPImageProcessor,\n CLIPTextConfig,\n CLIPTextModelWithProjection,\n CLIPTokenizer,\n CLIPVisionConfig,\n CLIPVisionModelWithProjection,\n)\n\nfrom diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler\nfrom diffusers.utils import torch_device\nfrom diffusers.utils.testing_utils import enable_full_determinism, skip_mps\n\nfrom ..test_pipelines_common import PipelineTesterMixin\n\n\nenable_full_determinism()\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tKandinskyVaaPriorPipeline\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t['''prompt''', '''negative_prompt''']\n A__\t\t\t\t\t\t\t=\t\t\t\t[\n '''num_images_per_prompt''',\n '''generator''',\n '''num_inference_steps''',\n '''latents''',\n '''negative_prompt''',\n '''guidance_scale''',\n '''output_type''',\n '''return_dict''',\n ]\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n @property\n def A_ ( self\t\t: Dict ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: Any ) -> str:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 32\n @property\n def A_ ( self\t\t: str ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim\n @property\n def A_ ( self\t\t: str ) -> int:\n\n\n\n\n\n\n\n '''simple docstring'''\n return self.time_input_dim * 4\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n return 100\n @property\n def A_ ( self\t\t: Tuple ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )\n return tokenizer\n @property\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = CLIPTextConfig(\n bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )\n return CLIPTextModelWithProjection(__a )\n @property\n def A_ ( self\t\t: Union[str, Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n\n __snake_case\t\t\t\t: Any\t\t = {\n 'num_attention_heads': 2,\n 'attention_head_dim': 12,\n 'embedding_dim': self.text_embedder_hidden_size,\n 'num_layers': 1,\n }\n\n __snake_case\t\t\t\t: List[Any]\t\t = PriorTransformer(**__a )\n # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0\n __snake_case\t\t\t\t: Any\t\t = nn.Parameter(torch.ones(model.clip_std.shape ) )\n return model\n @property\n def A_ ( self\t\t: List[str] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n torch.manual_seed(0 )\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionConfig(\n hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = CLIPVisionModelWithProjection(__a )\n return model\n @property\n def A_ ( self\t\t: Dict ) -> List[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = CLIPImageProcessor(\n crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , )\n\n return image_processor\n def A_ ( self\t\t: Dict ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Tuple\t\t = self.dummy_prior\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_encoder\n __snake_case\t\t\t\t: str\t\t = self.dummy_text_encoder\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_tokenizer\n __snake_case\t\t\t\t: List[str]\t\t = self.dummy_image_processor\n\n __snake_case\t\t\t\t: Any\t\t = UnCLIPScheduler(\n variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , )\n\n __snake_case\t\t\t\t: str\t\t = {\n 'prior': prior,\n 'image_encoder': image_encoder,\n 'text_encoder': text_encoder,\n 'tokenizer': tokenizer,\n 'scheduler': scheduler,\n 'image_processor': image_processor,\n }\n\n return components\n def A_ ( self\t\t: List[Any] , __a\t\t: Optional[Any] , __a\t\t: Tuple=0 ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n if str(__a ).startswith('mps' ):\n __snake_case\t\t\t\t: List[str]\t\t = torch.manual_seed(__a )\n else:\n __snake_case\t\t\t\t: List[str]\t\t = torch.Generator(device=__a ).manual_seed(__a )\n __snake_case\t\t\t\t: List[Any]\t\t = {\n 'prompt': 'horse',\n 'generator': generator,\n 'guidance_scale': 4.0,\n 'num_inference_steps': 2,\n 'output_type': 'np',\n }\n return inputs\n def A_ ( self\t\t: str ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: str\t\t = 'cpu'\n\n __snake_case\t\t\t\t: List[str]\t\t = self.get_dummy_components()\n\n __snake_case\t\t\t\t: Tuple\t\t = self.pipeline_class(**__a )\n __snake_case\t\t\t\t: Optional[Any]\t\t = pipe.to(__a )\n\n pipe.set_progress_bar_config(disable=__a )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = pipe(**self.get_dummy_inputs(__a ) )\n __snake_case\t\t\t\t: List[str]\t\t = output.image_embeds\n\n __snake_case\t\t\t\t: str\t\t = pipe(\n **self.get_dummy_inputs(__a ) , return_dict=__a , )[0]\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = image[0, -10:]\n __snake_case\t\t\t\t: Any\t\t = image_from_tuple[0, -10:]\n\n assert image.shape == (1, 32)\n\n __snake_case\t\t\t\t: List[Any]\t\t = np.array(\n [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )\n\n assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2\n assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2\n @skip_mps\n def A_ ( self\t\t: Tuple ) -> Optional[int]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Dict\t\t = True\n __snake_case\t\t\t\t: Union[str, Any]\t\t = False\n\n self._test_inference_batch_single_identical(\n test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n\n\n @skip_mps\n def A_ ( self\t\t: str ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Dict\t\t = torch_device == 'cpu'\n __snake_case\t\t\t\t: Optional[Any]\t\t = False\n\n self._test_attention_slicing_forward_pass(\n test_max_difference=__a , test_mean_pixel_difference=__a , )\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":188,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport unittest\n\nfrom transformers import (\n MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,\n TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,\n Pipeline,\n ZeroShotClassificationPipeline,\n pipeline,\n)\nfrom transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow\n\nfrom .test_pipelines_common import ANY\n\n\n# These 2 model types require different inputs than those of the usual text models.\nA__ : Optional[int] =\t\t\t{'''LayoutLMv2Config''', '''LayoutLMv3Config'''}\n\n\n\n@is_pipeline_test\nclass \t\t\t\tsnake_case__\t\t( unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tMODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING\n A__\t\t\t\t\t\t\t=\t\t\t\tTF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING\n\n if model_mapping is not None:\n A__\t\t\t\t\t\t\t=\t\t\t\t{config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}\n if tf_model_mapping is not None:\n A__\t\t\t\t\t\t\t=\t\t\t\t{\n config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP\n }\n def A_ ( self\t\t: Union[str, Any] , __a\t\t: str , __a\t\t: Optional[Any] , __a\t\t: Optional[Any] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = ZeroShotClassificationPipeline(\n model=__a , tokenizer=__a , candidate_labels=['polics', 'health'] )\n return classifier, [\"Who are you voting for in 2020?\", \"My stomach hurts.\"]\n def A_ ( self\t\t: List[Any] , __a\t\t: Union[str, Any] , __a\t\t: Optional[int] ) -> Optional[Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[Any]\t\t = classifier('Who are you voting for in 2020?' , candidate_labels='politics' )\n self.assertEqual(__a , {'sequence': ANY(__a ), 'labels': [ANY(__a )], 'scores': [ANY(__a )]} )\n\n # No kwarg\n __snake_case\t\t\t\t: List[str]\t\t = classifier('Who are you voting for in 2020?' , ['politics'] )\n self.assertEqual(__a , {'sequence': ANY(__a ), 'labels': [ANY(__a )], 'scores': [ANY(__a )]} )\n\n __snake_case\t\t\t\t: int\t\t = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )\n self.assertEqual(__a , {'sequence': ANY(__a ), 'labels': [ANY(__a )], 'scores': [ANY(__a )]} )\n\n __snake_case\t\t\t\t: Dict\t\t = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )\n self.assertEqual(\n __a , {'sequence': ANY(__a ), 'labels': [ANY(__a ), ANY(__a )], 'scores': [ANY(__a ), ANY(__a )]} )\n self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )\n self.assertEqual(\n __a , {'sequence': ANY(__a ), 'labels': [ANY(__a ), ANY(__a )], 'scores': [ANY(__a ), ANY(__a )]} )\n self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )\n\n __snake_case\t\t\t\t: Tuple\t\t = classifier(\n 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )\n self.assertEqual(__a , {'sequence': ANY(__a ), 'labels': [ANY(__a )], 'scores': [ANY(__a )]} )\n\n # https://github.com/huggingface/transformers/issues/13846\n __snake_case\t\t\t\t: List[Any]\t\t = classifier(['I am happy'] , ['positive', 'negative'] )\n self.assertEqual(\n __a , [\n {'sequence': ANY(__a ), 'labels': [ANY(__a ), ANY(__a )], 'scores': [ANY(__a ), ANY(__a )]}\n for i in range(1 )\n ] , )\n __snake_case\t\t\t\t: Union[str, Any]\t\t = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )\n self.assertEqual(\n __a , [\n {'sequence': ANY(__a ), 'labels': [ANY(__a ), ANY(__a )], 'scores': [ANY(__a ), ANY(__a )]}\n for i in range(2 )\n ] , )\n\n with self.assertRaises(__a ):\n classifier('' , candidate_labels='politics' )\n\n with self.assertRaises(__a ):\n classifier(__a , candidate_labels='politics' )\n\n with self.assertRaises(__a ):\n classifier('Who are you voting for in 2020?' , candidate_labels='' )\n\n with self.assertRaises(__a ):\n classifier('Who are you voting for in 2020?' , candidate_labels=__a )\n\n with self.assertRaises(__a ):\n classifier(\n 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )\n\n with self.assertRaises(__a ):\n classifier(\n 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__a , )\n\n self.run_entailment_id(__a )\n def A_ ( self\t\t: int , __a\t\t: Pipeline ) -> Dict:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = zero_shot_classifier.model.config\n __snake_case\t\t\t\t: Union[str, Any]\t\t = config.labelaid\n __snake_case\t\t\t\t: int\t\t = zero_shot_classifier.entailment_id\n\n __snake_case\t\t\t\t: str\t\t = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}\n self.assertEqual(zero_shot_classifier.entailment_id , -1 )\n\n __snake_case\t\t\t\t: int\t\t = {'entailment': 0, 'neutral': 1, 'contradiction': 2}\n self.assertEqual(zero_shot_classifier.entailment_id , 0 )\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = {'ENTAIL': 0, 'NON-ENTAIL': 1}\n self.assertEqual(zero_shot_classifier.entailment_id , 0 )\n\n __snake_case\t\t\t\t: Optional[int]\t\t = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}\n self.assertEqual(zero_shot_classifier.entailment_id , 2 )\n\n __snake_case\t\t\t\t: str\t\t = original_labelaid\n self.assertEqual(__a , zero_shot_classifier.entailment_id )\n @require_torch\n def A_ ( self\t\t: Union[str, Any] ) -> List[str]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = pipeline(\n 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )\n # There was a regression in 4.10 for this\n # Adding a test so we don't make the mistake again.\n # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499\n zero_shot_classifier(\n 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] )\n @require_torch\n def A_ ( self\t\t: List[Any] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[int]\t\t = pipeline(\n 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )\n __snake_case\t\t\t\t: str\t\t = zero_shot_classifier(\n 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )\n\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': 'Who are you voting for in 2020?',\n 'labels': ['science', 'public health', 'politics'],\n 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],\n } , )\n @require_tf\n def A_ ( self\t\t: Any ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = pipeline(\n 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )\n __snake_case\t\t\t\t: str\t\t = zero_shot_classifier(\n 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )\n\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': 'Who are you voting for in 2020?',\n 'labels': ['science', 'public health', 'politics'],\n 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],\n } , )\n @slow\n @require_torch\n def A_ ( self\t\t: List[str] ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: List[str]\t\t = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )\n __snake_case\t\t\t\t: List[str]\t\t = zero_shot_classifier(\n 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )\n\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': 'Who are you voting for in 2020?',\n 'labels': ['politics', 'public health', 'science'],\n 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],\n } , )\n __snake_case\t\t\t\t: str\t\t = zero_shot_classifier(\n 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'\n ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'\n ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'\n ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'\n ' machine translation tasks show these models to be superior in quality while being more parallelizable'\n ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'\n ' English-to-German translation task, improving over the existing best results, including ensembles by'\n ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'\n ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'\n ' fraction of the training costs of the best models from the literature. We show that the Transformer'\n ' generalizes well to other tasks by applying it successfully to English constituency parsing both with'\n ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__a , )\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': (\n 'The dominant sequence transduction models are based on complex recurrent or convolutional neural'\n ' networks in an encoder-decoder configuration. The best performing models also connect the'\n ' encoder and decoder through an attention mechanism. We propose a new simple network'\n ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'\n ' and convolutions entirely. Experiments on two machine translation tasks show these models to be'\n ' superior in quality while being more parallelizable and requiring significantly less time to'\n ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'\n ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'\n ' English-to-French translation task, our model establishes a new single-model state-of-the-art'\n ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'\n ' costs of the best models from the literature. We show that the Transformer generalizes well to'\n ' other tasks by applying it successfully to English constituency parsing both with large and'\n ' limited training data.'\n ),\n 'labels': ['translation', 'machine learning', 'vision', 'statistics'],\n 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],\n } , )\n\n\n\n\n\n @slow\n @require_tf\n def A_ ( self\t\t: str ) -> Any:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Union[str, Any]\t\t = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )\n __snake_case\t\t\t\t: Tuple\t\t = zero_shot_classifier(\n 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )\n\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': 'Who are you voting for in 2020?',\n 'labels': ['politics', 'public health', 'science'],\n 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],\n } , )\n __snake_case\t\t\t\t: int\t\t = zero_shot_classifier(\n 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'\n ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'\n ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'\n ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'\n ' machine translation tasks show these models to be superior in quality while being more parallelizable'\n ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'\n ' English-to-German translation task, improving over the existing best results, including ensembles by'\n ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'\n ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'\n ' fraction of the training costs of the best models from the literature. We show that the Transformer'\n ' generalizes well to other tasks by applying it successfully to English constituency parsing both with'\n ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__a , )\n self.assertEqual(\n nested_simplify(__a ) , {\n 'sequence': (\n 'The dominant sequence transduction models are based on complex recurrent or convolutional neural'\n ' networks in an encoder-decoder configuration. The best performing models also connect the'\n ' encoder and decoder through an attention mechanism. We propose a new simple network'\n ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'\n ' and convolutions entirely. Experiments on two machine translation tasks show these models to be'\n ' superior in quality while being more parallelizable and requiring significantly less time to'\n ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'\n ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'\n ' English-to-French translation task, our model establishes a new single-model state-of-the-art'\n ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'\n ' costs of the best models from the literature. We show that the Transformer generalizes well to'\n ' other tasks by applying it successfully to English constituency parsing both with large and'\n ' limited training data.'\n ),\n 'labels': ['translation', 'machine learning', 'vision', 'statistics'],\n 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],\n } , )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom math import factorial\n\nA__ : dict[str, int] =\t\t\t{str(digit): factorial(digit) for digit in range(1_0)}\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int\t\t\t\t\t\t\t) -> int:\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameter number must be int'\t\t\t\t\t\t\t)\n\n if number < 0:\n raise ValueError('Parameter number must be greater than or equal to 0'\t\t\t\t\t\t\t)\n\n # Converts number in string to iterate on its digits and adds its factorial.\n return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 60\t\t\t\t,_UpperCAmelCase : int = 1_00_00_00\t\t\t\t\t\t\t) -> int:\n\n if not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t) or not isinstance(_UpperCAmelCase\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n raise TypeError('Parameters chain_length and number_limit must be int'\t\t\t\t\t\t\t)\n\n if chain_length <= 0 or number_limit <= 0:\n raise ValueError(\n 'Parameters chain_length and number_limit must be greater than 0'\t\t\t\t\t\t\t)\n\n # the counter for the chains with the exact desired length\n __snake_case\t\t\t\t: List[str]\t\t = 0\n # the cached sizes of the previous chains\n __snake_case\t\t\t\t: dict[int, int]\t\t = {}\n\n for start_chain_element in range(1\t\t\t\t,_UpperCAmelCase\t\t\t\t\t\t\t):\n # The temporary set will contain the elements of the chain\n __snake_case\t\t\t\t: Optional[int]\t\t = set()\n __snake_case\t\t\t\t: List[Any]\t\t = 0\n\n # Stop computing the chain when you find a cached size, a repeating item or the\n # length is greater then the desired one.\n __snake_case\t\t\t\t: str\t\t = start_chain_element\n while (\n chain_element not in chain_sets_lengths\n and chain_element not in chain_set\n and chain_set_length <= chain_length\n ):\n chain_set.add(_UpperCAmelCase\t\t\t\t\t\t\t)\n chain_set_length += 1\n __snake_case\t\t\t\t: Tuple\t\t = digit_factorial_sum(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n if chain_element in chain_sets_lengths:\n chain_set_length += chain_sets_lengths[chain_element]\n\n __snake_case\t\t\t\t: Optional[Any]\t\t = chain_set_length\n\n # If chain contains the exact amount of elements increase the counter\n if chain_set_length == chain_length:\n chains_counter += 1\n\n return chains_counter\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n print(F\"\"\"{solution()}\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":189,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom ...configuration_utils import PretrainedConfig\nfrom ...utils import logging\n\n\nA__ : Any =\t\t\tlogging.get_logger(__name__)\n\nA__ : Optional[int] =\t\t\t{\n '''edbeeching/decision-transformer-gym-hopper-medium''': (\n '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''\n ),\n # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer\n}\n\n\n\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\t'''decision_transformer'''\n A__\t\t\t\t\t\t\t=\t\t\t\t['''past_key_values''']\n A__\t\t\t\t\t\t\t=\t\t\t\t{\n '''max_position_embeddings''': '''n_positions''',\n '''num_attention_heads''': '''n_head''',\n '''num_hidden_layers''': '''n_layer''',\n }\n def __init__( self\t\t: str , __a\t\t: Union[str, Any]=17 , __a\t\t: Dict=4 , __a\t\t: str=128 , __a\t\t: Tuple=4096 , __a\t\t: str=True , __a\t\t: List[str]=1 , __a\t\t: Optional[Any]=1024 , __a\t\t: Any=3 , __a\t\t: List[str]=1 , __a\t\t: str=None , __a\t\t: Union[str, Any]=\"relu\" , __a\t\t: Optional[Any]=0.1 , __a\t\t: str=0.1 , __a\t\t: List[str]=0.1 , __a\t\t: Any=1e-5 , __a\t\t: Dict=0.0_2 , __a\t\t: str=True , __a\t\t: str=True , __a\t\t: List[str]=50256 , __a\t\t: Any=50256 , __a\t\t: str=False , __a\t\t: List[str]=False , **__a\t\t: List[str] , ) -> Union[str, Any]:\n\n\n\n\n\n\n\n '''simple docstring'''\n __snake_case\t\t\t\t: Optional[Any]\t\t = state_dim\n __snake_case\t\t\t\t: Dict\t\t = act_dim\n __snake_case\t\t\t\t: Optional[int]\t\t = hidden_size\n __snake_case\t\t\t\t: int\t\t = max_ep_len\n __snake_case\t\t\t\t: Tuple\t\t = action_tanh\n __snake_case\t\t\t\t: str\t\t = vocab_size\n __snake_case\t\t\t\t: Tuple\t\t = n_positions\n __snake_case\t\t\t\t: Optional[Any]\t\t = n_layer\n __snake_case\t\t\t\t: int\t\t = n_head\n __snake_case\t\t\t\t: List[str]\t\t = n_inner\n __snake_case\t\t\t\t: List[Any]\t\t = activation_function\n __snake_case\t\t\t\t: Optional[Any]\t\t = resid_pdrop\n __snake_case\t\t\t\t: List[str]\t\t = embd_pdrop\n __snake_case\t\t\t\t: List[Any]\t\t = attn_pdrop\n __snake_case\t\t\t\t: Any\t\t = layer_norm_epsilon\n __snake_case\t\t\t\t: Union[str, Any]\t\t = initializer_range\n __snake_case\t\t\t\t: List[str]\t\t = scale_attn_weights\n __snake_case\t\t\t\t: str\t\t = use_cache\n __snake_case\t\t\t\t: List[Any]\t\t = scale_attn_by_inverse_layer_idx\n __snake_case\t\t\t\t: Optional[int]\t\t = reorder_and_upcast_attn\n\n __snake_case\t\t\t\t: Dict\t\t = bos_token_id\n __snake_case\t\t\t\t: Tuple\t\t = eos_token_id\n\n super().__init__(bos_token_id=__a , eos_token_id=__a , **__a )\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : int = 1_00\t\t\t\t\t\t\t) -> int:\n __snake_case\t\t\t\t: Any\t\t = n * (n + 1) * (2 * n + 1) / 6\n __snake_case\t\t\t\t: Union[str, Any]\t\t = (n * (n + 1) / 2) ** 2\n return int(square_of_sum - sum_of_squares\t\t\t\t\t\t\t)\n\n\nif __name__ == \"__main__\":\n print(F\"\"\"{solution() = }\"\"\")\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":190,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"The quick brown fox jumps over the lazy dog\"\t\t\t\t,) -> bool:\n __snake_case\t\t\t\t: Optional[Any]\t\t = set()\n\n # Replace all the whitespace in our sentence\n __snake_case\t\t\t\t: int\t\t = input_str.replace(' '\t\t\t\t,''\t\t\t\t\t\t\t)\n for alpha in input_str:\n if \"a\" <= alpha.lower() <= \"z\":\n frequency.add(alpha.lower()\t\t\t\t\t\t\t)\n return len(_UpperCAmelCase\t\t\t\t\t\t\t) == 26\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"The quick brown fox jumps over the lazy dog\"\t\t\t\t,) -> bool:\n __snake_case\t\t\t\t: int\t\t = [False] * 26\n for char in input_str:\n if char.islower():\n __snake_case\t\t\t\t: Optional[int]\t\t = True\n elif char.isupper():\n __snake_case\t\t\t\t: Union[str, Any]\t\t = True\n return all(_UpperCAmelCase\t\t\t\t\t\t\t)\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t_UpperCAmelCase : str = \"The quick brown fox jumps over the lazy dog\"\t\t\t\t,) -> bool:\n return len({char for char in input_str.lower() if char.isalpha()}\t\t\t\t\t\t\t) == 26\n\n\n\n\n\ndef a_ (\t\t\t\t\t\t) -> None:\n from timeit import timeit\n\n __snake_case\t\t\t\t: Union[str, Any]\t\t = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'\n print(timeit('is_pangram()'\t\t\t\t,setup=_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n print(timeit('is_pangram_faster()'\t\t\t\t,setup=_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n print(timeit('is_pangram_fastest()'\t\t\t\t,setup=_UpperCAmelCase\t\t\t\t\t\t\t)\t\t\t\t\t\t\t)\n # 5.348480500048026, 2.6477354579837993, 1.8470395830227062\n # 5.036091582966037, 2.644472333951853, 1.8869528750656173\n\n\nif __name__ == \"__main__\":\n import doctest\n\n doctest.testmod()\n benchmark()\n\n\n\n"},"code_codestyle":{"kind":"number","value":0,"string":"0"},"style_context":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nfrom typing import TYPE_CHECKING\n\nfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available\n\n\nA__ : int =\t\t\t{\n '''configuration_groupvit''': [\n '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',\n '''GroupViTConfig''',\n '''GroupViTOnnxConfig''',\n '''GroupViTTextConfig''',\n '''GroupViTVisionConfig''',\n ],\n}\n\ntry:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Tuple =\t\t\t[\n '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''GroupViTModel''',\n '''GroupViTPreTrainedModel''',\n '''GroupViTTextModel''',\n '''GroupViTVisionModel''',\n ]\n\ntry:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\nexcept OptionalDependencyNotAvailable:\n pass\nelse:\n A__ : Optional[int] =\t\t\t[\n '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',\n '''TFGroupViTModel''',\n '''TFGroupViTPreTrainedModel''',\n '''TFGroupViTTextModel''',\n '''TFGroupViTVisionModel''',\n ]\n\nif TYPE_CHECKING:\n from .configuration_groupvit import (\n GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,\n GroupViTConfig,\n GroupViTOnnxConfig,\n GroupViTTextConfig,\n GroupViTVisionConfig,\n )\n\n try:\n if not is_torch_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_groupvit import (\n GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n GroupViTModel,\n GroupViTPreTrainedModel,\n GroupViTTextModel,\n GroupViTVisionModel,\n )\n\n try:\n if not is_tf_available():\n raise OptionalDependencyNotAvailable()\n except OptionalDependencyNotAvailable:\n pass\n else:\n from .modeling_tf_groupvit import (\n TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\n TFGroupViTModel,\n TFGroupViTPreTrainedModel,\n TFGroupViTTextModel,\n TFGroupViTVisionModel,\n )\n\nelse:\n import sys\n\n A__ : List[str] =\t\t\t_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)\n\n\n\n"},"style_context_codestyle":{"kind":"number","value":0,"string":"0"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":191,"cells":{"code":{"kind":"string","value":"\n\n\n\n'''simple docstring'''\n\n\n\n\n\nimport tempfile\nimport unittest\nfrom pathlib import Path\nfrom shutil import copyfile\n\nfrom transformers import BatchEncoding, MarianTokenizer\nfrom transformers.testing_utils import get_tests_dir, require_sentencepiece, slow\nfrom transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available\n\n\nif is_sentencepiece_available():\n from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json\n\nfrom ...test_tokenization_common import TokenizerTesterMixin\n\n\nA__ : Any =\t\t\tget_tests_dir('''fixtures/test_sentencepiece.model''')\n\nA__ : Dict =\t\t\t{'''target_lang''': '''fi''', '''source_lang''': '''en'''}\nA__ : Any =\t\t\t'''>>zh<<'''\nA__ : List[Any] =\t\t\t'''Helsinki-NLP/'''\n\nif is_torch_available():\n A__ : Union[str, Any] =\t\t\t'''pt'''\nelif is_tf_available():\n A__ : Union[str, Any] =\t\t\t'''tf'''\nelse:\n A__ : str =\t\t\t'''jax'''\n\n\n\n@require_sentencepiece\nclass \t\t\t\tsnake_case__\t\t( SCREAMING_SNAKE_CASE_ , unittest.TestCase\t\t\t\t\t\t\t):\n A__\t\t\t\t\t\t\t=\t\t\t\tMarianTokenizer\n A__\t\t\t\t\t\t\t=\t\t\t\tFalse\n A__\t\t\t\t\t\t\t=\t\t\t\tTrue\n def A_ ( self\t\t: Any ) -> Tuple:\n\n\n\n\n\n\n\n '''simple docstring'''\n super().setUp()\n __snake_case\t\t\t\t: List[str]\t\t = ['', '