'''simple docstring'''
from __future__ import annotations
from statistics import mean
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ):
lowerCAmelCase = [0] * no_of_processes
lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i]
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase = []
lowerCAmelCase = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase = 0
lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ):
lowerCAmelCase = [0] * no_of_processes
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__snake_case =4
__snake_case =[2, 5, 3, 7]
__snake_case =[0, 0, 0, 0]
__snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__snake_case =calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
1
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def a_ ( lowerCamelCase : Namespace ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
__snake_case ="""
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
"""
class UpperCAmelCase_ ( __lowercase ):
@staticmethod
def __UpperCAmelCase ( UpperCAmelCase__ : ArgumentParser ) -> Optional[int]:
lowerCAmelCase = parser.add_parser(
'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , )
train_parser.add_argument('--model_type' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config' , type=UpperCAmelCase__ , default='' , help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , )
train_parser.set_defaults(func=UpperCAmelCase__ )
def __init__( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , *UpperCAmelCase__ : List[str] , ) -> Optional[Any]:
lowerCAmelCase = logging.get_logger('transformers-cli/converting' )
self._logger.info(F'''Loading model {model_type}''' )
lowerCAmelCase = model_type
lowerCAmelCase = tf_checkpoint
lowerCAmelCase = pytorch_dump_output
lowerCAmelCase = config
lowerCAmelCase = finetuning_task_name
def __UpperCAmelCase ( self : List[str] ) -> Dict:
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
if "ckpt" in self._tf_checkpoint.lower():
lowerCAmelCase = self._tf_checkpoint
lowerCAmelCase = ''
else:
lowerCAmelCase = self._tf_checkpoint
lowerCAmelCase = ''
convert_transfo_xl_checkpoint_to_pytorch(
UpperCAmelCase__ , self._config , self._pytorch_dump_output , UpperCAmelCase__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(UpperCAmelCase__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__snake_case =get_logger()
__snake_case =None
class UpperCAmelCase_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ):
def __init__( self : Optional[int] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : Dict ) -> int:
super().__init__(features=UpperCAmelCase__ )
import jax
from jaxlib.xla_client import Device
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise ValueError(
F'''Expected {device} to be a `str` not {type(UpperCAmelCase__ )}, as `jaxlib.xla_extension.Device` '''
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
lowerCAmelCase = device if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
lowerCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F'''Device with string identifier {self.device} not listed among the available '''
F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
F'''device: {str(jax.devices()[0] )}.''' )
lowerCAmelCase = str(jax.devices()[0] )
lowerCAmelCase = jnp_array_kwargs
@staticmethod
def __UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(UpperCAmelCase__ ): device for device in jax.devices()}
def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[Any]:
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and column:
if all(
isinstance(UpperCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(UpperCAmelCase__ , axis=0 )
return column
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]:
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase__ , (str, bytes, type(UpperCAmelCase__ )) ):
return value
elif isinstance(UpperCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
lowerCAmelCase = {}
if isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
lowerCAmelCase = {'dtype': jnp.intaa}
else:
lowerCAmelCase = {'dtype': jnp.intaa}
elif isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
lowerCAmelCase = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowerCAmelCase = np.asarray(UpperCAmelCase__ )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
lowerCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(UpperCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> str:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(UpperCAmelCase__ , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(UpperCAmelCase__ , '__array__' ) and not isinstance(UpperCAmelCase__ , jax.Array ):
lowerCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCAmelCase__ , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] )
elif isinstance(UpperCAmelCase__ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] )
return self._tensorize(UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : dict ) -> str:
return map_nested(self._recursive_tensorize , UpperCAmelCase__ , map_list=UpperCAmelCase__ )
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : pa.Table ) -> Mapping:
lowerCAmelCase = self.numpy_arrow_extractor().extract_row(UpperCAmelCase__ )
lowerCAmelCase = self.python_features_decoder.decode_row(UpperCAmelCase__ )
return self.recursive_tensorize(UpperCAmelCase__ )
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> "jax.Array":
lowerCAmelCase = self.numpy_arrow_extractor().extract_column(UpperCAmelCase__ )
lowerCAmelCase = self.python_features_decoder.decode_column(UpperCAmelCase__ , pa_table.column_names[0] )
lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ )
lowerCAmelCase = self._consolidate(UpperCAmelCase__ )
return column
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : pa.Table ) -> Mapping:
lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase__ )
lowerCAmelCase = self.python_features_decoder.decode_batch(UpperCAmelCase__ )
lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ )
for column_name in batch:
lowerCAmelCase = self._consolidate(batch[column_name] )
return batch
4
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
1
'''simple docstring'''
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__snake_case =200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__snake_case =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__snake_case =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_000))
def a_ ( lowerCamelCase : str , lowerCamelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(lowerCamelCase ) if g == main_target[position]] )
return (item, float(lowerCamelCase ))
def a_ ( lowerCamelCase : str , lowerCamelCase : str ):
lowerCAmelCase = random.randint(0 , len(lowerCamelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def a_ ( lowerCamelCase : str , lowerCamelCase : list[str] ):
lowerCAmelCase = list(lowerCamelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(lowerCamelCase )
return "".join(lowerCamelCase )
def a_ ( lowerCamelCase : tuple[str, float] , lowerCamelCase : list[tuple[str, float]] , lowerCamelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(lowerCamelCase ):
lowerCAmelCase = population_score[random.randint(0 , lowerCamelCase )][0]
lowerCAmelCase , lowerCAmelCase = crossover(parent_a[0] , lowerCamelCase )
# Append new string to the population list.
pop.append(mutate(lowerCamelCase , lowerCamelCase ) )
pop.append(mutate(lowerCamelCase , lowerCamelCase ) )
return pop
def a_ ( lowerCamelCase : str , lowerCamelCase : list[str] , lowerCamelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowerCamelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowerCamelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(lowerCamelCase ):
population.append(''.join([random.choice(lowerCamelCase ) for i in range(len(lowerCamelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase , lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCamelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(lowerCamelCase , lowerCamelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'''\nGeneration: {generation}'''
f'''\nTotal Population:{total_population}'''
f'''\nBest score: {population_score[0][1]}'''
f'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCamelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(lowerCamelCase )) for item, score in population_score
]
# This is selection
for i in range(lowerCamelCase ):
population.extend(select(population_score[int(lowerCamelCase )] , lowerCamelCase , lowerCamelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCamelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__snake_case =(
"""This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"""
)
__snake_case =list(
""" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"""
"""nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"""
)
__snake_case , __snake_case , __snake_case =basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
4
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCAmelCase_ :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None:
lowerCAmelCase , lowerCAmelCase = row, column
lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )]
def __str__( self : List[str] ) -> str:
lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
lowerCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) )
lowerCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(UpperCAmelCase__ : list[float] ) -> str:
nonlocal string_format_identifier
lowerCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
return str(self )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool:
if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any:
assert self.validate_indicies(UpperCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None:
assert self.validate_indicies(UpperCAmelCase__ )
lowerCAmelCase = value
def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : int ) -> Matrix:
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = -self[r, c]
return result
def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix:
return self + (-another)
def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix:
if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] * another
return result
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
lowerCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})'''
raise TypeError(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix:
lowerCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c]
return result
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCAmelCase = v.transpose()
lowerCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a_ ( ):
# a^(-1)
lowerCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCAmelCase = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' )
def a_ ( ):
import doctest
doctest.testmod()
testa()
4
1
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : str , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any ) -> None:
warnings.warn(
'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use DeformableDetrImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
'''simple docstring'''
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None:
lowerCAmelCase = len(UpperCAmelCase__ )
lowerCAmelCase = [0] * len_array
if len_array > 0:
lowerCAmelCase = array[0]
for i in range(1 , UpperCAmelCase__ ):
lowerCAmelCase = self.prefix_sum[i - 1] + array[i]
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool:
lowerCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase__ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case =logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCamelCase : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowercase , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = v.to_dict()
return d
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
1
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case ={
"""configuration_efficientnet""": [
"""EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientNetConfig""",
"""EfficientNetOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =["""EfficientNetImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientNetForImageClassification""",
"""EfficientNetModel""",
"""EfficientNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : str , lowerCamelCase : str ):
lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained(
lowerCamelCase , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
lowerCAmelCase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename='pytorch_model.bin' ) )
lowerCAmelCase = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
lowerCAmelCase = tensor_value
lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase )
model.save_pretrained(lowerCamelCase )
# convert tokenizer
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
tokenizer.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint-repo""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
__snake_case =parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
4
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class UpperCAmelCase_ ( __lowercase ):
def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple:
return self[-1] == other[-1]
def a_ ( lowerCamelCase : list ):
lowerCAmelCase = []
# sort into stacks
for element in collection:
lowerCAmelCase = Stack([element] )
lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase )
if i != len(lowerCamelCase ):
stacks[i].append(lowerCamelCase )
else:
stacks.append(lowerCamelCase )
# use a heap-based merge to merge stack efficiently
lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
4
1
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
__snake_case =3
def a_ ( lowerCamelCase : int ):
print('Generating primitive root of p' )
while True:
lowerCAmelCase = random.randrange(3 , lowerCamelCase )
if pow(lowerCamelCase , 2 , lowerCamelCase ) == 1:
continue
if pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) == 1:
continue
return g
def a_ ( lowerCamelCase : int ):
print('Generating prime p...' )
lowerCAmelCase = rabin_miller.generate_large_prime(lowerCamelCase ) # select large prime number.
lowerCAmelCase = primitive_root(lowerCamelCase ) # one primitive root on modulo p.
lowerCAmelCase = random.randrange(3 , lowerCamelCase ) # private_key -> have to be greater than 2 for safety.
lowerCAmelCase = cryptomath.find_mod_inverse(pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , lowerCamelCase )
lowerCAmelCase = (key_size, e_a, e_a, p)
lowerCAmelCase = (key_size, d)
return public_key, private_key
def a_ ( lowerCamelCase : str , lowerCamelCase : int ):
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print('\nWARNING:' )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'Use a different name or delete these files and re-run this program.' )
sys.exit()
lowerCAmelCase , lowerCAmelCase = generate_key(lowerCamelCase )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' , 'w' ) as fo:
fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' , 'w' ) as fo:
fo.write(f'''{private_key[0]},{private_key[1]}''' )
def a_ ( ):
print('Making key files...' )
make_key_files('elgamal' , 2048 )
print('Key files generation successful' )
if __name__ == "__main__":
main()
4
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__snake_case ="""\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
__snake_case ="""\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
__snake_case ="""
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : Tuple ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int:
lowerCAmelCase = compute_bleu(
reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ )
((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
4
1
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : int ):
if isinstance(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = np.full((len(lowerCamelCase ), sequence_length, 2) , lowerCamelCase )
else:
lowerCAmelCase = np.full((len(lowerCamelCase ), sequence_length) , lowerCamelCase )
for i, tensor in enumerate(lowerCamelCase ):
if padding_side == "right":
if isinstance(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = tensor[:sequence_length]
else:
lowerCAmelCase = tensor[:sequence_length]
else:
if isinstance(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = tensor[:sequence_length]
else:
lowerCAmelCase = tensor[:sequence_length]
return out_tensor.tolist()
def a_ ( lowerCamelCase : Optional[int] ):
lowerCAmelCase = ord(lowerCamelCase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
lowerCAmelCase = unicodedata.category(lowerCamelCase )
if cat.startswith('P' ):
return True
return False
@dataclass
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
lowerCamelCase : int = -100
lowerCamelCase : str = "pt"
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Any ) -> List[Any]:
import torch
lowerCAmelCase = 'label' if 'label' in features[0].keys() else 'labels'
lowerCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
lowerCAmelCase = self.tokenizer.pad(
UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , )
if labels is None:
return batch
lowerCAmelCase = torch.tensor(batch['entity_ids'] ).shape[1]
lowerCAmelCase = self.tokenizer.padding_side
if padding_side == "right":
lowerCAmelCase = [
list(UpperCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) for label in labels
]
else:
lowerCAmelCase = [
[self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) + list(UpperCAmelCase__ ) for label in labels
]
lowerCAmelCase = [feature['ner_tags'] for feature in features]
lowerCAmelCase = padding_tensor(UpperCAmelCase__ , -1 , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = [feature['original_entity_spans'] for feature in features]
lowerCAmelCase = padding_tensor(UpperCAmelCase__ , (-1, -1) , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = {k: torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) for k, v in batch.items()}
return batch
4
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
__snake_case ="""\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
__snake_case ="""\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
__snake_case ="""
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ):
return float((preds == labels).mean() )
def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ):
lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ):
lowerCAmelCase = {}
for id_pred, label in zip(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}'''
lowerCAmelCase = id_pred['prediction']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowerCAmelCase = [(pred, label)]
lowerCAmelCase , lowerCAmelCase = [], []
for question, preds_labels in question_map.items():
lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase )
lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' )
fas.append(lowerCamelCase )
lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) )
ems.append(lowerCamelCase )
lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) )
lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , )
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"prediction_text": datasets.Value('string' ),
},
"references": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"answers": datasets.Sequence(datasets.Value('string' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('int64' ),
"paragraph": datasets.Value('int64' ),
"question": datasets.Value('int64' ),
},
"prediction": datasets.Value('int64' ),
},
"references": datasets.Value('int64' ),
}
else:
return {
"predictions": datasets.Value('int64' ),
"references": datasets.Value('int64' ),
}
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )}
elif self.config_name == "cb":
return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' )
elif self.config_name == "record":
lowerCAmelCase = [
{
'qas': [
{'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]}
for ref in references
]
}
]
lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions}
return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
__snake_case =datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig ):
lowerCamelCase : int = 10_000
lowerCamelCase : Optional[List[str]] = None
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ):
lowerCamelCase : List[str] = ParquetConfig
def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
return datasets.DatasetInfo(features=self.config.features )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Tuple:
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__ , (str, list, tuple) ):
lowerCAmelCase = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCAmelCase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(UpperCAmelCase__ ):
with open(UpperCAmelCase__ , 'rb' ) as f:
lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase__ ) )
break
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'files': files} ) )
return splits
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> pa.Table:
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase = table_cast(UpperCAmelCase__ , self.info.features.arrow_schema )
return pa_table
def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> Dict:
lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' )
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
with open(UpperCAmelCase__ , 'rb' ) as f:
lowerCAmelCase = pq.ParquetFile(UpperCAmelCase__ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
lowerCAmelCase = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F'''{file_idx}_{batch_idx}''', self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}''' )
raise
4
'''simple docstring'''
import os
__snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
def a_ ( lowerCamelCase : str ):
lowerCAmelCase = 0
lowerCAmelCase = 0
while index < len(lowerCamelCase ) - 1:
lowerCAmelCase = SYMBOLS[numerals[index]]
lowerCAmelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def a_ ( lowerCamelCase : int ):
lowerCAmelCase = ''
lowerCAmelCase = num // 1000
numerals += m_count * "M"
num %= 1000
lowerCAmelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
lowerCAmelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def a_ ( lowerCamelCase : str = "/p089_roman.txt" ):
lowerCAmelCase = 0
with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea:
lowerCAmelCase = filea.readlines()
for line in lines:
lowerCAmelCase = line.strip()
lowerCAmelCase = parse_roman_numerals(lowerCamelCase )
lowerCAmelCase = generate_roman_numerals(lowerCamelCase )
savings += len(lowerCamelCase ) - len(lowerCamelCase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
4
1
'''simple docstring'''
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] ) -> str:
# we need a list not a string, so do something to change the type
lowerCAmelCase = arr.split(',' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
lowerCAmelCase = [int(self.array[0] )] * len(self.array )
lowerCAmelCase = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
lowerCAmelCase = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
lowerCAmelCase = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__snake_case =input("""please input some numbers:""")
__snake_case =SubArray(whole_array)
__snake_case =array.solve_sub_array()
print(("""the results is:""", re))
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : List[Any] = (
'''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'''
'''It takes two arguments named `image` which should be the original image, and `label` which should be a text '''
'''describing the elements what should be identified in the segmentation mask. The tool returns the mask.'''
)
lowerCamelCase : Any = '''CIDAS/clipseg-rd64-refined'''
lowerCamelCase : Dict = '''image_segmenter'''
lowerCamelCase : Tuple = CLIPSegForImageSegmentation
lowerCamelCase : Union[str, Any] = ['''image''', '''text''']
lowerCamelCase : List[Any] = ['''image''']
def __init__( self : Any , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]:
requires_backends(self , ['vision'] )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : "Image" , UpperCAmelCase__ : str ) -> Optional[Any]:
return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase__ , return_tensors='pt' )
def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Dict ) -> Tuple:
with torch.no_grad():
lowerCAmelCase = self.model(**UpperCAmelCase__ ).logits
return logits
def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Tuple ) -> Any:
lowerCAmelCase = outputs.cpu().detach().numpy()
lowerCAmelCase = 0
lowerCAmelCase = 1
return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
4
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case =logging.get_logger(__name__)
__snake_case ={
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
__snake_case ={
"""vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""},
"""merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""},
"""tokenizer_config_file""": {
"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"""
},
}
__snake_case ={"""facebook/blenderbot-3B""": 128}
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
lowerCamelCase : List[Any] = BlenderbotTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int:
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = 'post_processor'
lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
if tokenizer_component_instance:
lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase = tuple(state['sep'] )
if "cls" in state:
lowerCAmelCase = tuple(state['cls'] )
lowerCAmelCase = False
if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = add_prefix_space
lowerCAmelCase = True
if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets:
lowerCAmelCase = trim_offsets
lowerCAmelCase = True
if changes_to_apply:
lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) )
lowerCAmelCase = component_class(**UpperCAmelCase__ )
setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple:
lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value
lowerCAmelCase = value
def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any:
return token_ids_a + [self.eos_token_id]
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]:
lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase__ )
lowerCAmelCase = ' '.join(UpperCAmelCase__ )
lowerCAmelCase = self.encode(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > self.model_max_length:
lowerCAmelCase = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ):
lowerCAmelCase = [0] * no_of_processes
lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i]
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase = []
lowerCAmelCase = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase = 0
lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ):
lowerCAmelCase = [0] * no_of_processes
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__snake_case =4
__snake_case =[2, 5, 3, 7]
__snake_case =[0, 0, 0, 0]
__snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__snake_case =calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
1
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=False ):
lowerCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'deit.embeddings.cls_token'),
('dist_token', 'deit.embeddings.distillation_token'),
('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'deit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
('norm.weight', 'deit.layernorm.weight'),
('norm.bias', 'deit.layernorm.bias'),
('head.weight', 'cls_classifier.weight'),
('head.bias', 'cls_classifier.bias'),
('head_dist.weight', 'distillation_classifier.weight'),
('head_dist.bias', 'distillation_classifier.bias'),
] )
return rename_keys
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=False ):
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase = ''
else:
lowerCAmelCase = 'deit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
lowerCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase = in_proj_bias[: config.hidden_size]
lowerCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase = in_proj_bias[-config.hidden_size :]
def a_ ( lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : str ):
lowerCAmelCase = dct.pop(lowerCamelCase )
lowerCAmelCase = val
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : Dict ):
lowerCAmelCase = DeiTConfig()
# all deit models have fine-tuned heads
lowerCAmelCase = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
lowerCAmelCase = 1000
lowerCAmelCase = 'huggingface/label-files'
lowerCAmelCase = 'imagenet-1k-id2label.json'
lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase = {int(lowerCamelCase ): v for k, v in idalabel.items()}
lowerCAmelCase = idalabel
lowerCAmelCase = {v: k for k, v in idalabel.items()}
lowerCAmelCase = int(deit_name[-6:-4] )
lowerCAmelCase = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith('tiny' ):
lowerCAmelCase = 192
lowerCAmelCase = 768
lowerCAmelCase = 12
lowerCAmelCase = 3
elif deit_name[9:].startswith('small' ):
lowerCAmelCase = 384
lowerCAmelCase = 1536
lowerCAmelCase = 12
lowerCAmelCase = 6
if deit_name[9:].startswith('base' ):
pass
elif deit_name[4:].startswith('large' ):
lowerCAmelCase = 1024
lowerCAmelCase = 4096
lowerCAmelCase = 24
lowerCAmelCase = 16
# load original model from timm
lowerCAmelCase = timm.create_model(lowerCamelCase , pretrained=lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase = timm_model.state_dict()
lowerCAmelCase = create_rename_keys(lowerCamelCase , lowerCamelCase )
for src, dest in rename_keys:
rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase )
read_in_q_k_v(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# load HuggingFace model
lowerCAmelCase = DeiTForImageClassificationWithTeacher(lowerCamelCase ).eval()
model.load_state_dict(lowerCamelCase )
# Check outputs on an image, prepared by DeiTImageProcessor
lowerCAmelCase = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
lowerCAmelCase = DeiTImageProcessor(size=lowerCamelCase , crop_size=config.image_size )
lowerCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' )
lowerCAmelCase = encoding['pixel_values']
lowerCAmelCase = model(lowerCamelCase )
lowerCAmelCase = timm_model(lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowerCamelCase , outputs.logits , atol=1e-3 )
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--deit_name""",
default="""vit_deit_base_distilled_patch16_224""",
type=str,
help="""Name of the DeiT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
__snake_case =parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : Tuple ) -> Optional[int]:
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ )
lowerCAmelCase = -1
lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ )
lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase = TextStreamer(UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase = cs.out[:-1]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Any ) -> Any:
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ )
lowerCAmelCase = -1
lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ )
lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase = TextIteratorStreamer(UpperCAmelCase__ )
lowerCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer}
lowerCAmelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ )
thread.start()
lowerCAmelCase = ''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Dict ) -> str:
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ )
lowerCAmelCase = -1
lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
lowerCAmelCase = model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ )
lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase = TextStreamer(UpperCAmelCase__ , skip_prompt=UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=1_0 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase = cs.out[:-1]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase = AutoTokenizer.from_pretrained('distilgpt2' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCAmelCase__ )
lowerCAmelCase = -1
lowerCAmelCase = torch.ones((1, 5) , device=UpperCAmelCase__ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase = TextStreamer(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=1 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='pt' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase__ )
lowerCAmelCase = -1
lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
lowerCAmelCase = TextIteratorStreamer(UpperCAmelCase__ , timeout=0.001 )
lowerCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 1_0, 'do_sample': False, 'streamer': streamer}
lowerCAmelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCAmelCase__ ):
lowerCAmelCase = ''
for new_text in streamer:
streamer_text += new_text
4
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
1
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__snake_case ="""src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
__snake_case =direct_transformers_import(PATH_TO_TRANSFORMERS)
__snake_case =transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__snake_case =re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
__snake_case ={
"""DecisionTransformerConfig""",
"""EncoderDecoderConfig""",
"""MusicgenConfig""",
"""RagConfig""",
"""SpeechEncoderDecoderConfig""",
"""TimmBackboneConfig""",
"""VisionEncoderDecoderConfig""",
"""VisionTextDualEncoderConfig""",
"""LlamaConfig""",
}
def a_ ( lowerCamelCase : int ):
lowerCAmelCase = None
# source code of `config_class`
lowerCAmelCase = inspect.getsource(lowerCamelCase )
lowerCAmelCase = _re_checkpoint.findall(lowerCamelCase )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('/' ):
lowerCAmelCase = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
lowerCAmelCase = f'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
lowerCAmelCase = ckpt_name
break
return checkpoint
def a_ ( ):
lowerCAmelCase = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
lowerCAmelCase = get_checkpoint_from_config_class(lowerCamelCase )
lowerCAmelCase = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = '\n'.join(sorted(lowerCamelCase ) )
raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
4
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCAmelCase_ :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None:
lowerCAmelCase , lowerCAmelCase = row, column
lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )]
def __str__( self : List[str] ) -> str:
lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
lowerCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) )
lowerCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(UpperCAmelCase__ : list[float] ) -> str:
nonlocal string_format_identifier
lowerCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
return str(self )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool:
if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any:
assert self.validate_indicies(UpperCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None:
assert self.validate_indicies(UpperCAmelCase__ )
lowerCAmelCase = value
def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : int ) -> Matrix:
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = -self[r, c]
return result
def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix:
return self + (-another)
def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix:
if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] * another
return result
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
lowerCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})'''
raise TypeError(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix:
lowerCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c]
return result
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCAmelCase = v.transpose()
lowerCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a_ ( ):
# a^(-1)
lowerCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCAmelCase = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' )
def a_ ( ):
import doctest
doctest.testmod()
testa()
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self : str ) -> List[str]:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
@slow
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
1
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : int ) -> List[str]:
lowerCAmelCase = inspect.getfile(accelerate.test_utils )
lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
lowerCAmelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __UpperCAmelCase ( self : Any ) -> List[Any]:
print(F'''Found {torch.cuda.device_count()} devices.''' )
lowerCAmelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
print(F'''Found {torch.cuda.device_count()} devices.''' )
lowerCAmelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(F'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
lowerCAmelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCAmelCase ( self : str ) -> Optional[int]:
print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
lowerCAmelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
if __name__ == "__main__":
__snake_case =Accelerator()
__snake_case =(accelerator.state.process_index + 2, 10)
__snake_case =torch.randint(0, 10, shape).to(accelerator.device)
__snake_case =""""""
__snake_case =accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__snake_case =accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__snake_case =accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
4
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def a_ ( lowerCamelCase : Dict ):
lowerCAmelCase = {}
lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids']
lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] )
return output
__snake_case =HfArgumentParser(PretokenizationArguments)
__snake_case =parser.parse_args()
if args.num_workers is None:
__snake_case =multiprocessing.cpu_count()
__snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir)
__snake_case =time.time()
__snake_case =load_dataset(args.dataset_name, split="""train""")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
__snake_case =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
1
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
def __init__( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : MutableSequence[float] ) -> None:
if len(UpperCAmelCase__ ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
lowerCAmelCase = list(UpperCAmelCase__ )
lowerCAmelCase = degree
def __add__( self : Any , UpperCAmelCase__ : Polynomial ) -> Polynomial:
if self.degree > polynomial_a.degree:
lowerCAmelCase = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , UpperCAmelCase__ )
else:
lowerCAmelCase = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , UpperCAmelCase__ )
def __sub__( self : str , UpperCAmelCase__ : Polynomial ) -> Polynomial:
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : int ) -> Polynomial:
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : int , UpperCAmelCase__ : Polynomial ) -> Polynomial:
lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : int | float ) -> int | float:
lowerCAmelCase = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : List[Any] ) -> str:
lowerCAmelCase = ''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCAmelCase__ )
return polynomial
def __repr__( self : str ) -> str:
return self.__str__()
def __UpperCAmelCase ( self : Optional[Any] ) -> Polynomial:
lowerCAmelCase = [0] * self.degree
for i in range(self.degree ):
lowerCAmelCase = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int | float = 0 ) -> Polynomial:
lowerCAmelCase = [0] * (self.degree + 2)
lowerCAmelCase = constant
for i in range(self.degree + 1 ):
lowerCAmelCase = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , UpperCAmelCase__ )
def __eq__( self : List[str] , UpperCAmelCase__ : object ) -> bool:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : int , UpperCAmelCase__ : object ) -> bool:
return not self.__eq__(UpperCAmelCase__ )
4
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case =logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCamelCase : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowercase , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = v.to_dict()
return d
4
1
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class UpperCAmelCase_ ( __lowercase ):
def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple:
return self[-1] == other[-1]
def a_ ( lowerCamelCase : list ):
lowerCAmelCase = []
# sort into stacks
for element in collection:
lowerCAmelCase = Stack([element] )
lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase )
if i != len(lowerCamelCase ):
stacks[i].append(lowerCamelCase )
else:
stacks.append(lowerCamelCase )
# use a heap-based merge to merge stack efficiently
lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
4
'''simple docstring'''
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__snake_case =logging.get_logger("""transformers.models.encodec""")
__snake_case ={
"""quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""",
"""quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""",
"""quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""",
"""quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""",
}
__snake_case ={
"""encoder.model.0.conv.conv""": """encoder.layers.0.conv""",
"""encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""",
"""encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""",
"""encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""",
"""encoder.model.3.conv.conv""": """encoder.layers.3.conv""",
"""encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""",
"""encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""",
"""encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""",
"""encoder.model.6.conv.conv""": """encoder.layers.6.conv""",
"""encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""",
"""encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""",
"""encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""",
"""encoder.model.9.conv.conv""": """encoder.layers.9.conv""",
"""encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""",
"""encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""",
"""encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""",
"""encoder.model.12.conv.conv""": """encoder.layers.12.conv""",
"""encoder.model.13.lstm""": """encoder.layers.13.lstm""",
"""encoder.model.15.conv.conv""": """encoder.layers.15.conv""",
}
__snake_case ={
"""encoder.model.0.conv.norm""": """encoder.layers.0.norm""",
"""encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""",
"""encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""",
"""encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""",
"""encoder.model.3.conv.norm""": """encoder.layers.3.norm""",
"""encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""",
"""encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""",
"""encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""",
"""encoder.model.6.conv.norm""": """encoder.layers.6.norm""",
"""encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""",
"""encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""",
"""encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""",
"""encoder.model.9.conv.norm""": """encoder.layers.9.norm""",
"""encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""",
"""encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""",
"""encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""",
"""encoder.model.12.conv.norm""": """encoder.layers.12.norm""",
"""encoder.model.15.conv.norm""": """encoder.layers.15.norm""",
}
__snake_case ={
"""decoder.model.0.conv.conv""": """decoder.layers.0.conv""",
"""decoder.model.1.lstm""": """decoder.layers.1.lstm""",
"""decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""",
"""decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""",
"""decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""",
"""decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""",
"""decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""",
"""decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""",
"""decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""",
"""decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""",
"""decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""",
"""decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""",
"""decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""",
"""decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""",
"""decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""",
"""decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""",
"""decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""",
"""decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""",
"""decoder.model.15.conv.conv""": """decoder.layers.15.conv""",
}
__snake_case ={
"""decoder.model.0.conv.norm""": """decoder.layers.0.norm""",
"""decoder.model.3.convtr.norm""": """decoder.layers.3.norm""",
"""decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""",
"""decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""",
"""decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""",
"""decoder.model.6.convtr.norm""": """decoder.layers.6.norm""",
"""decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""",
"""decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""",
"""decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""",
"""decoder.model.9.convtr.norm""": """decoder.layers.9.norm""",
"""decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""",
"""decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""",
"""decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""",
"""decoder.model.12.convtr.norm""": """decoder.layers.12.norm""",
"""decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""",
"""decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""",
"""decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""",
"""decoder.model.15.conv.norm""": """decoder.layers.15.norm""",
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__snake_case =[]
__snake_case =[]
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ):
for attribute in key.split('.' ):
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase )
if weight_type is not None:
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape
else:
lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
elif weight_type == "running_mean":
lowerCAmelCase = value
elif weight_type == "running_var":
lowerCAmelCase = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ):
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ):
lowerCAmelCase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase = MAPPING_48K
else:
raise ValueError(f'''Unsupported model: {model_name}''' )
for name, value in orig_dict.items():
if should_ignore(lowerCamelCase , lowerCamelCase ):
logger.info(f'''{name} was ignored''' )
continue
lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
lowerCAmelCase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith('embed' ) and name.endswith('embed_avg' ):
continue
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2]
lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase )
if "weight_g" in name:
lowerCAmelCase = 'weight_g'
elif "weight_v" in name:
lowerCAmelCase = 'weight_v'
elif "weight_ih_l0" in name:
lowerCAmelCase = 'weight_ih_l0'
elif "weight_hh_l0" in name:
lowerCAmelCase = 'weight_hh_l0'
elif "bias_ih_l0" in name:
lowerCAmelCase = 'bias_ih_l0'
elif "bias_hh_l0" in name:
lowerCAmelCase = 'bias_hh_l0'
elif "weight_ih_l1" in name:
lowerCAmelCase = 'weight_ih_l1'
elif "weight_hh_l1" in name:
lowerCAmelCase = 'weight_hh_l1'
elif "bias_ih_l1" in name:
lowerCAmelCase = 'bias_ih_l1'
elif "bias_hh_l1" in name:
lowerCAmelCase = 'bias_hh_l1'
elif "bias" in name:
lowerCAmelCase = 'bias'
elif "weight" in name:
lowerCAmelCase = 'weight'
elif "running_mean" in name:
lowerCAmelCase = 'running_mean'
elif "running_var" in name:
lowerCAmelCase = 'running_var'
elif "num_batches_tracked" in name:
lowerCAmelCase = 'num_batches_tracked'
else:
lowerCAmelCase = None
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
continue
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
@torch.no_grad()
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ):
if config_path is not None:
lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase )
else:
lowerCAmelCase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase = [8, 5, 4, 4]
lowerCAmelCase = [2.2]
lowerCAmelCase = 64
lowerCAmelCase = 32000
lowerCAmelCase = 2048
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
elif model_name == "encodec_48khz":
lowerCAmelCase = [8, 5, 4, 2]
lowerCAmelCase = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase = 48000
lowerCAmelCase = 2
lowerCAmelCase = False
lowerCAmelCase = 'time_group_norm'
lowerCAmelCase = True
lowerCAmelCase = 1.0
lowerCAmelCase = 0.01
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = EncodecModel(lowerCamelCase )
lowerCAmelCase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowerCamelCase )
lowerCAmelCase = torch.load(lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase = original_checkpoint['best_state']
recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase )
model.save_pretrained(lowerCamelCase )
if repo_id:
print('Pushing to the hub...' )
feature_extractor.push_to_hub(lowerCamelCase )
model.push_to_hub(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--model""",
default="""encodec_24khz""",
type=str,
help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
__snake_case =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
1
'''simple docstring'''
from collections.abc import Sequence
def a_ ( lowerCamelCase : Sequence[float] , lowerCamelCase : bool = False ):
if not arr:
return 0
lowerCAmelCase = 0 if allow_empty_subarrays else float('-inf' )
lowerCAmelCase = 0.0
for num in arr:
lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowerCAmelCase = max(lowerCamelCase , lowerCamelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
__snake_case =[-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
'''simple docstring'''
def a_ ( lowerCamelCase : str , lowerCamelCase : str ):
lowerCAmelCase = len(lowerCamelCase )
lowerCAmelCase = []
for i in range(len(lowerCamelCase ) - pat_len + 1 ):
lowerCAmelCase = True
for j in range(lowerCamelCase ):
if s[i + j] != pattern[j]:
lowerCAmelCase = False
break
if match_found:
position.append(lowerCamelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search("""ABCDEFG""", """DE""") == [3]
print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
4
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class UpperCAmelCase_ ( __lowercase ):
def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple:
return self[-1] == other[-1]
def a_ ( lowerCamelCase : list ):
lowerCAmelCase = []
# sort into stacks
for element in collection:
lowerCAmelCase = Stack([element] )
lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase )
if i != len(lowerCamelCase ):
stacks[i].append(lowerCamelCase )
else:
stacks.append(lowerCamelCase )
# use a heap-based merge to merge stack efficiently
lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
4
1
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Tuple = (PNDMScheduler,)
lowerCamelCase : Optional[int] = (('''num_inference_steps''', 50),)
def __UpperCAmelCase ( self : int , **UpperCAmelCase__ : List[str] ) -> Dict:
lowerCAmelCase = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**UpperCAmelCase__ )
return config
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Any=0 , **UpperCAmelCase__ : List[Any] ) -> Tuple:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**UpperCAmelCase__ )
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(UpperCAmelCase__ )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(UpperCAmelCase__ )
lowerCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase__ )
new_scheduler.set_timesteps(UpperCAmelCase__ )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
pass
def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int]=0 , **UpperCAmelCase__ : Tuple ) -> List[str]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(UpperCAmelCase__ )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(UpperCAmelCase__ )
lowerCAmelCase = scheduler_class.from_pretrained(UpperCAmelCase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(UpperCAmelCase__ )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = new_scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = new_scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __UpperCAmelCase ( self : Dict , **UpperCAmelCase__ : Tuple ) -> str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**UpperCAmelCase__ )
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
lowerCAmelCase = 1_0
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(UpperCAmelCase__ )
for i, t in enumerate(scheduler.prk_timesteps ):
lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample
return sample
def __UpperCAmelCase ( self : Tuple ) -> List[Any]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , UpperCAmelCase__ )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(UpperCAmelCase__ , 'set_timesteps' ):
scheduler.set_timesteps(UpperCAmelCase__ )
elif num_inference_steps is not None and not hasattr(UpperCAmelCase__ , 'set_timesteps' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , 0 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
lowerCAmelCase = scheduler.step_plms(UpperCAmelCase__ , 1 , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __UpperCAmelCase ( self : int ) -> Tuple:
for timesteps in [1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase__ )
def __UpperCAmelCase ( self : Dict ) -> Optional[int]:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=UpperCAmelCase__ )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(steps_offset=1 )
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(1_0 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , )
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ )
def __UpperCAmelCase ( self : Dict ) -> Tuple:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[Any] ) -> int:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase__ )
def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
for t in [1, 5, 1_0]:
self.check_over_forward(time_step=UpperCAmelCase__ )
def __UpperCAmelCase ( self : str ) -> str:
for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ):
self.check_over_forward(num_inference_steps=UpperCAmelCase__ )
def __UpperCAmelCase ( self : Tuple ) -> str:
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
lowerCAmelCase = 2_7
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(UpperCAmelCase__ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
lowerCAmelCase = scheduler.step_prk(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
with self.assertRaises(UpperCAmelCase__ ):
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**UpperCAmelCase__ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) )
lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 198.1_318 ) < 1E-2
assert abs(result_mean.item() - 0.2_580 ) < 1E-3
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
lowerCAmelCase = self.full_loop(prediction_type='v_prediction' )
lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) )
lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 67.3_986 ) < 1E-2
assert abs(result_mean.item() - 0.0_878 ) < 1E-3
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
# We specify different beta, so that the first alpha is 0.99
lowerCAmelCase = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 )
lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) )
lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 230.0_399 ) < 1E-2
assert abs(result_mean.item() - 0.2_995 ) < 1E-3
def __UpperCAmelCase ( self : Any ) -> Optional[Any]:
# We specify different beta, so that the first alpha is 0.99
lowerCAmelCase = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 )
lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) )
lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 186.9_482 ) < 1E-2
assert abs(result_mean.item() - 0.2_434 ) < 1E-3
4
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__snake_case ="""\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
__snake_case ="""\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
__snake_case ="""
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : Tuple ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int:
lowerCAmelCase = compute_bleu(
reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ )
((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ):
lowerCAmelCase = [0] * no_of_processes
lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i]
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase = []
lowerCAmelCase = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase = 0
lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ):
lowerCAmelCase = [0] * no_of_processes
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__snake_case =4
__snake_case =[2, 5, 3, 7]
__snake_case =[0, 0, 0, 0]
__snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__snake_case =calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
1
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class UpperCAmelCase_ ( unittest.TestCase ):
@parameterized.expand([(None,), ('foo.json',)] )
def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> Tuple:
lowerCAmelCase = GenerationConfig(
do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase__ , config_name=UpperCAmelCase__ )
lowerCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase__ , config_name=UpperCAmelCase__ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase__ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
lowerCAmelCase = AutoConfig.from_pretrained('gpt2' )
lowerCAmelCase = GenerationConfig.from_model_config(UpperCAmelCase__ )
lowerCAmelCase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def __UpperCAmelCase ( self : str ) -> Dict:
lowerCAmelCase = GenerationConfig()
lowerCAmelCase = {
'max_new_tokens': 1_0_2_4,
'foo': 'bar',
}
lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ )
lowerCAmelCase = generation_config.update(**UpperCAmelCase__ )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase__ , {'foo': 'bar'} )
def __UpperCAmelCase ( self : int ) -> Any:
lowerCAmelCase = GenerationConfig()
lowerCAmelCase = 'bar'
with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase__ )
lowerCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , 'bar' )
lowerCAmelCase = GenerationConfig.from_model_config(UpperCAmelCase__ )
assert not hasattr(UpperCAmelCase__ , 'foo' ) # no new kwargs should be initialized if from config
def __UpperCAmelCase ( self : int ) -> int:
lowerCAmelCase = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase__ )
self.assertEqual(default_config.num_beams , 1 )
lowerCAmelCase = GenerationConfig(
do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase__ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase__ )
lowerCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase__ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase__ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class UpperCAmelCase_ ( unittest.TestCase ):
@classmethod
def __UpperCAmelCase ( cls : Dict ) -> List[str]:
lowerCAmelCase = TOKEN
HfFolder.save_token(UpperCAmelCase__ )
@classmethod
def __UpperCAmelCase ( cls : str ) -> str:
try:
delete_repo(token=cls._token , repo_id='test-generation-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' )
except HTTPError:
pass
def __UpperCAmelCase ( self : int ) -> List[Any]:
lowerCAmelCase = GenerationConfig(
do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('test-generation-config' , use_auth_token=self._token )
lowerCAmelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-generation-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase__ , repo_id='test-generation-config' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token )
lowerCAmelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : Dict ) -> Optional[int]:
lowerCAmelCase = GenerationConfig(
do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token )
lowerCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase__ , repo_id='valid_org/test-generation-config-org' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token )
lowerCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__snake_case =logging.get_logger(__name__)
@add_end_docstrings(__lowercase )
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Tuple , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int] ) -> int:
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict=None ) -> Tuple:
lowerCAmelCase = {}
lowerCAmelCase = {}
if prompt is not None:
lowerCAmelCase = prompt
if generate_kwargs is not None:
lowerCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowerCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
lowerCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : Tuple ) -> Any:
return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]=None ) -> Dict:
lowerCAmelCase = load_image(UpperCAmelCase__ )
if prompt is not None:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise ValueError(
F'''Received an invalid text input, got - {type(UpperCAmelCase__ )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
lowerCAmelCase = self.model.config.model_type
if model_type == "git":
lowerCAmelCase = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework )
lowerCAmelCase = self.tokenizer(text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids
lowerCAmelCase = [self.tokenizer.cls_token_id] + input_ids
lowerCAmelCase = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
lowerCAmelCase = self.image_processor(images=UpperCAmelCase__ , header_text=UpperCAmelCase__ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowerCAmelCase = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework )
lowerCAmelCase = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework )
model_inputs.update(UpperCAmelCase__ )
else:
raise ValueError(F'''Model type {model_type} does not support conditional text generation''' )
else:
lowerCAmelCase = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowerCAmelCase = None
return model_inputs
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]=None ) -> str:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , UpperCAmelCase__ )
and all(x is None for x in model_inputs['input_ids'] )
):
lowerCAmelCase = None
if generate_kwargs is None:
lowerCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowerCAmelCase = model_inputs.pop(self.model.main_input_name )
lowerCAmelCase = self.model.generate(UpperCAmelCase__ , **UpperCAmelCase__ , **UpperCAmelCase__ )
return model_outputs
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Optional[int]:
lowerCAmelCase = []
for output_ids in model_outputs:
lowerCAmelCase = {
'generated_text': self.tokenizer.decode(
UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , )
}
records.append(UpperCAmelCase__ )
return records
4
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
1
'''simple docstring'''
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__snake_case =logging.get_logger("""transformers.models.encodec""")
__snake_case ={
"""quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""",
"""quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""",
"""quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""",
"""quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""",
}
__snake_case ={
"""encoder.model.0.conv.conv""": """encoder.layers.0.conv""",
"""encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""",
"""encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""",
"""encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""",
"""encoder.model.3.conv.conv""": """encoder.layers.3.conv""",
"""encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""",
"""encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""",
"""encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""",
"""encoder.model.6.conv.conv""": """encoder.layers.6.conv""",
"""encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""",
"""encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""",
"""encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""",
"""encoder.model.9.conv.conv""": """encoder.layers.9.conv""",
"""encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""",
"""encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""",
"""encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""",
"""encoder.model.12.conv.conv""": """encoder.layers.12.conv""",
"""encoder.model.13.lstm""": """encoder.layers.13.lstm""",
"""encoder.model.15.conv.conv""": """encoder.layers.15.conv""",
}
__snake_case ={
"""encoder.model.0.conv.norm""": """encoder.layers.0.norm""",
"""encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""",
"""encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""",
"""encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""",
"""encoder.model.3.conv.norm""": """encoder.layers.3.norm""",
"""encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""",
"""encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""",
"""encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""",
"""encoder.model.6.conv.norm""": """encoder.layers.6.norm""",
"""encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""",
"""encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""",
"""encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""",
"""encoder.model.9.conv.norm""": """encoder.layers.9.norm""",
"""encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""",
"""encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""",
"""encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""",
"""encoder.model.12.conv.norm""": """encoder.layers.12.norm""",
"""encoder.model.15.conv.norm""": """encoder.layers.15.norm""",
}
__snake_case ={
"""decoder.model.0.conv.conv""": """decoder.layers.0.conv""",
"""decoder.model.1.lstm""": """decoder.layers.1.lstm""",
"""decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""",
"""decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""",
"""decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""",
"""decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""",
"""decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""",
"""decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""",
"""decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""",
"""decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""",
"""decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""",
"""decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""",
"""decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""",
"""decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""",
"""decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""",
"""decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""",
"""decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""",
"""decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""",
"""decoder.model.15.conv.conv""": """decoder.layers.15.conv""",
}
__snake_case ={
"""decoder.model.0.conv.norm""": """decoder.layers.0.norm""",
"""decoder.model.3.convtr.norm""": """decoder.layers.3.norm""",
"""decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""",
"""decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""",
"""decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""",
"""decoder.model.6.convtr.norm""": """decoder.layers.6.norm""",
"""decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""",
"""decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""",
"""decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""",
"""decoder.model.9.convtr.norm""": """decoder.layers.9.norm""",
"""decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""",
"""decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""",
"""decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""",
"""decoder.model.12.convtr.norm""": """decoder.layers.12.norm""",
"""decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""",
"""decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""",
"""decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""",
"""decoder.model.15.conv.norm""": """decoder.layers.15.norm""",
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__snake_case =[]
__snake_case =[]
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ):
for attribute in key.split('.' ):
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase )
if weight_type is not None:
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape
else:
lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
elif weight_type == "running_mean":
lowerCAmelCase = value
elif weight_type == "running_var":
lowerCAmelCase = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ):
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ):
lowerCAmelCase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase = MAPPING_48K
else:
raise ValueError(f'''Unsupported model: {model_name}''' )
for name, value in orig_dict.items():
if should_ignore(lowerCamelCase , lowerCamelCase ):
logger.info(f'''{name} was ignored''' )
continue
lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
lowerCAmelCase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith('embed' ) and name.endswith('embed_avg' ):
continue
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2]
lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase )
if "weight_g" in name:
lowerCAmelCase = 'weight_g'
elif "weight_v" in name:
lowerCAmelCase = 'weight_v'
elif "weight_ih_l0" in name:
lowerCAmelCase = 'weight_ih_l0'
elif "weight_hh_l0" in name:
lowerCAmelCase = 'weight_hh_l0'
elif "bias_ih_l0" in name:
lowerCAmelCase = 'bias_ih_l0'
elif "bias_hh_l0" in name:
lowerCAmelCase = 'bias_hh_l0'
elif "weight_ih_l1" in name:
lowerCAmelCase = 'weight_ih_l1'
elif "weight_hh_l1" in name:
lowerCAmelCase = 'weight_hh_l1'
elif "bias_ih_l1" in name:
lowerCAmelCase = 'bias_ih_l1'
elif "bias_hh_l1" in name:
lowerCAmelCase = 'bias_hh_l1'
elif "bias" in name:
lowerCAmelCase = 'bias'
elif "weight" in name:
lowerCAmelCase = 'weight'
elif "running_mean" in name:
lowerCAmelCase = 'running_mean'
elif "running_var" in name:
lowerCAmelCase = 'running_var'
elif "num_batches_tracked" in name:
lowerCAmelCase = 'num_batches_tracked'
else:
lowerCAmelCase = None
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
continue
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
@torch.no_grad()
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ):
if config_path is not None:
lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase )
else:
lowerCAmelCase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase = [8, 5, 4, 4]
lowerCAmelCase = [2.2]
lowerCAmelCase = 64
lowerCAmelCase = 32000
lowerCAmelCase = 2048
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
elif model_name == "encodec_48khz":
lowerCAmelCase = [8, 5, 4, 2]
lowerCAmelCase = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase = 48000
lowerCAmelCase = 2
lowerCAmelCase = False
lowerCAmelCase = 'time_group_norm'
lowerCAmelCase = True
lowerCAmelCase = 1.0
lowerCAmelCase = 0.01
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = EncodecModel(lowerCamelCase )
lowerCAmelCase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowerCamelCase )
lowerCAmelCase = torch.load(lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase = original_checkpoint['best_state']
recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase )
model.save_pretrained(lowerCamelCase )
if repo_id:
print('Pushing to the hub...' )
feature_extractor.push_to_hub(lowerCamelCase )
model.push_to_hub(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--model""",
default="""encodec_24khz""",
type=str,
help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
__snake_case =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
4
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCAmelCase_ :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None:
lowerCAmelCase , lowerCAmelCase = row, column
lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )]
def __str__( self : List[str] ) -> str:
lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
lowerCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) )
lowerCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(UpperCAmelCase__ : list[float] ) -> str:
nonlocal string_format_identifier
lowerCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
return str(self )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool:
if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any:
assert self.validate_indicies(UpperCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None:
assert self.validate_indicies(UpperCAmelCase__ )
lowerCAmelCase = value
def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : int ) -> Matrix:
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = -self[r, c]
return result
def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix:
return self + (-another)
def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix:
if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] * another
return result
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
lowerCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})'''
raise TypeError(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix:
lowerCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c]
return result
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCAmelCase = v.transpose()
lowerCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a_ ( ):
# a^(-1)
lowerCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCAmelCase = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' )
def a_ ( ):
import doctest
doctest.testmod()
testa()
4
1
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
'''simple docstring'''
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None:
lowerCAmelCase = len(UpperCAmelCase__ )
lowerCAmelCase = [0] * len_array
if len_array > 0:
lowerCAmelCase = array[0]
for i in range(1 , UpperCAmelCase__ ):
lowerCAmelCase = self.prefix_sum[i - 1] + array[i]
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool:
lowerCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase__ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
4
1
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case ={
"""configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""],
"""processing_git""": ["""GitProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""GIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GitForCausalLM""",
"""GitModel""",
"""GitPreTrainedModel""",
"""GitVisionModel""",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring'''
def a_ ( lowerCamelCase : Optional[Any] ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def a_ ( lowerCamelCase : dict[int, list[int]] ):
lowerCAmelCase = 0
lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph
lowerCAmelCase = [0] * n
lowerCAmelCase = [False] * n
def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ):
lowerCAmelCase = True
lowerCAmelCase = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ )
lowerCAmelCase = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
lowerCAmelCase = min(low[at] , low[to] )
lowerCAmelCase = []
for i in range(lowerCamelCase ):
if not visited[i]:
dfs(lowerCamelCase , -1 , lowerCamelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
4
1
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
__snake_case =get_tests_dir("""fixtures""")
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
# A mock response for an HTTP head request to emulate server down
lowerCAmelCase = mock.Mock()
lowerCAmelCase = 5_0_0
lowerCAmelCase = {}
lowerCAmelCase = HTTPError
lowerCAmelCase = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request' , return_value=UpperCAmelCase__ ) as mock_head:
lowerCAmelCase = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCAmelCase ( self : Dict ) -> List[str]:
# This test is for deprecated behavior and can be removed in v5
lowerCAmelCase = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
with self.assertRaises(UpperCAmelCase__ ):
# config is in subfolder, the following should not work without specifying the subfolder
lowerCAmelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
lowerCAmelCase = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' )
self.assertIsNotNone(UpperCAmelCase__ )
@is_staging_test
class UpperCAmelCase_ ( unittest.TestCase ):
@classmethod
def __UpperCAmelCase ( cls : List[str] ) -> Union[str, Any]:
lowerCAmelCase = TOKEN
HfFolder.save_token(UpperCAmelCase__ )
@classmethod
def __UpperCAmelCase ( cls : Union[str, Any] ) -> Any:
try:
delete_repo(token=cls._token , repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def __UpperCAmelCase ( self : Optional[Any] ) -> str:
lowerCAmelCase = ViTImageProcessor.from_pretrained(UpperCAmelCase__ )
image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token )
lowerCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
UpperCAmelCase__ , repo_id='test-image-processor' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token )
lowerCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : int ) -> str:
lowerCAmelCase = ViTImageProcessor.from_pretrained(UpperCAmelCase__ )
image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token )
lowerCAmelCase = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
UpperCAmelCase__ , repo_id='valid_org/test-image-processor-org' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token )
lowerCAmelCase = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
CustomImageProcessor.register_for_auto_class()
lowerCAmelCase = CustomImageProcessor.from_pretrained(UpperCAmelCase__ )
image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , )
lowerCAmelCase = AutoImageProcessor.from_pretrained(
F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=UpperCAmelCase__ )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
4
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Any ):
lowerCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' )
if "norm" in key:
lowerCAmelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase = key[key.find('block' ) + len('block' )]
lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' )
if "attn.q" in key:
lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' )
if "bot_conv" in key:
lowerCAmelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
lowerCAmelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
lowerCAmelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
lowerCAmelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
lowerCAmelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' )
lowerCAmelCase = value
return new_state_dict
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase = kv_bias[config.hidden_sizes[i] :]
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return image
@torch.no_grad()
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ):
lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
lowerCAmelCase = GLPNImageProcessor()
# prepare image
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) )
# rename keys
lowerCAmelCase = rename_keys(lowerCamelCase )
# key and value matrices need special treatment
read_in_k_v(lowerCamelCase , lowerCamelCase )
# create HuggingFace model and load state dict
lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# forward pass
lowerCAmelCase = model(lowerCamelCase )
lowerCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
lowerCAmelCase = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
lowerCAmelCase = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
__snake_case =parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
1
'''simple docstring'''
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : int ):
lowerCAmelCase = k_size // 2
lowerCAmelCase , lowerCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
lowerCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase ) + square(lowerCamelCase )) / (2 * square(lowerCamelCase )) )
return g
def a_ ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : List[str] ):
lowerCAmelCase , lowerCAmelCase = image.shape[0], image.shape[1]
# dst image height and width
lowerCAmelCase = height - k_size + 1
lowerCAmelCase = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
lowerCAmelCase = zeros((dst_height * dst_width, k_size * k_size) )
lowerCAmelCase = 0
for i, j in product(range(lowerCamelCase ) , range(lowerCamelCase ) ):
lowerCAmelCase = ravel(image[i : i + k_size, j : j + k_size] )
lowerCAmelCase = window
row += 1
# turn the kernel into shape(k*k, 1)
lowerCAmelCase = gen_gaussian_kernel(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = ravel(lowerCamelCase )
# reshape and get the dst image
lowerCAmelCase = dot(lowerCamelCase , lowerCamelCase ).reshape(lowerCamelCase , lowerCamelCase ).astype(lowerCamelCase )
return dst
if __name__ == "__main__":
# read original image
__snake_case =imread(R"""../image_data/lena.jpg""")
# turn image in gray scale value
__snake_case =cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
__snake_case =gaussian_filter(gray, 3, sigma=1)
__snake_case =gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow("""gaussian filter with 3x3 mask""", gaussianaxa)
imshow("""gaussian filter with 5x5 mask""", gaussianaxa)
waitKey()
4
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self : str ) -> List[str]:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
@slow
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
1
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ):
# load base model
lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase = load_file(lowerCamelCase )
lowerCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase = pipeline.text_encoder
else:
lowerCAmelCase = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase = pipeline.unet
# find the target layer
lowerCAmelCase = layer_infos.pop(0 )
while len(lowerCamelCase ) > -1:
try:
lowerCAmelCase = curr_layer.__getattr__(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = layer_infos.pop(0 )
elif len(lowerCamelCase ) == 0:
break
except Exception:
if len(lowerCamelCase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase = layer_infos.pop(0 )
lowerCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(lowerCamelCase )
else:
pair_keys.append(lowerCamelCase )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowerCamelCase , lowerCamelCase ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowerCamelCase , lowerCamelCase )
# update visited list
for item in pair_keys:
visited.append(lowerCamelCase )
return pipeline
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.7_5, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
__snake_case =parser.parse_args()
__snake_case =args.base_model_path
__snake_case =args.checkpoint_path
__snake_case =args.dump_path
__snake_case =args.lora_prefix_unet
__snake_case =args.lora_prefix_text_encoder
__snake_case =args.alpha
__snake_case =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__snake_case =pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
4
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def a_ ( lowerCamelCase : Dict ):
lowerCAmelCase = {}
lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids']
lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] )
return output
__snake_case =HfArgumentParser(PretokenizationArguments)
__snake_case =parser.parse_args()
if args.num_workers is None:
__snake_case =multiprocessing.cpu_count()
__snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir)
__snake_case =time.time()
__snake_case =load_dataset(args.dataset_name, split="""train""")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
__snake_case =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
1
'''simple docstring'''
from __future__ import annotations
from typing import Any
def a_ ( lowerCamelCase : list ):
if not postfix_notation:
return 0
lowerCAmelCase = {'+', '-', '*', '/'}
lowerCAmelCase = []
for token in postfix_notation:
if token in operations:
lowerCAmelCase , lowerCAmelCase = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(lowerCamelCase ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
4
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case =logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCamelCase : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowercase , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = v.to_dict()
return d
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
1
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Any ):
lowerCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' )
if "norm" in key:
lowerCAmelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase = key[key.find('block' ) + len('block' )]
lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' )
if "attn.q" in key:
lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' )
if "bot_conv" in key:
lowerCAmelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
lowerCAmelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
lowerCAmelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
lowerCAmelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
lowerCAmelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' )
lowerCAmelCase = value
return new_state_dict
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase = kv_bias[config.hidden_sizes[i] :]
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return image
@torch.no_grad()
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ):
lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
lowerCAmelCase = GLPNImageProcessor()
# prepare image
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) )
# rename keys
lowerCAmelCase = rename_keys(lowerCamelCase )
# key and value matrices need special treatment
read_in_k_v(lowerCamelCase , lowerCamelCase )
# create HuggingFace model and load state dict
lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# forward pass
lowerCAmelCase = model(lowerCamelCase )
lowerCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
lowerCAmelCase = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
lowerCAmelCase = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
__snake_case =parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__snake_case ="""\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
__snake_case ="""\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
__snake_case ="""
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : Tuple ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int:
lowerCAmelCase = compute_bleu(
reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ )
((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
4
1
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : bytes ) -> None:
lowerCAmelCase = data
# Initialize hash values
lowerCAmelCase = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
lowerCAmelCase = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
lowerCAmelCase = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __UpperCAmelCase ( UpperCAmelCase__ : bytes ) -> bytes:
lowerCAmelCase = b'\x80' + (b'\x00' * (6_3 - (len(UpperCAmelCase__ ) + 8) % 6_4))
lowerCAmelCase = struct.pack('>Q' , (len(UpperCAmelCase__ ) * 8) )
return data + padding + big_endian_integer
def __UpperCAmelCase ( self : Tuple ) -> None:
# Convert into blocks of 64 bytes
lowerCAmelCase = [
self.preprocessed_data[x : x + 6_4]
for x in range(0 , len(self.preprocessed_data ) , 6_4 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCAmelCase = list(struct.unpack('>16L' , UpperCAmelCase__ ) )
# add 48 0-ed integers
words += [0] * 4_8
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.hashes
for index in range(0 , 6_4 ):
if index > 1_5:
# modify the zero-ed indexes at the end of the array
lowerCAmelCase = (
self.ror(words[index - 1_5] , 7 )
^ self.ror(words[index - 1_5] , 1_8 )
^ (words[index - 1_5] >> 3)
)
lowerCAmelCase = (
self.ror(words[index - 2] , 1_7 )
^ self.ror(words[index - 2] , 1_9 )
^ (words[index - 2] >> 1_0)
)
lowerCAmelCase = (
words[index - 1_6] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
lowerCAmelCase = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 1_1 ) ^ self.ror(UpperCAmelCase__ , 2_5 )
lowerCAmelCase = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
lowerCAmelCase = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
lowerCAmelCase = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 1_3 ) ^ self.ror(UpperCAmelCase__ , 2_2 )
lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c)
lowerCAmelCase = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
lowerCAmelCase = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCAmelCase = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
lowerCAmelCase = ''.join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] )
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
return 0XF_F_F_F_F_F_F_F & (value << (3_2 - rotations)) | (value >> rotations)
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : List[Any] ) -> None:
import hashlib
lowerCAmelCase = bytes('Test String' , 'utf-8' )
self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() )
def a_ ( ):
import doctest
doctest.testmod()
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
lowerCAmelCase = f.read()
else:
lowerCAmelCase = bytes(lowerCamelCase , 'utf-8' )
print(SHAaaa(lowerCamelCase ).hash )
if __name__ == "__main__":
main()
4
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
__snake_case ="""\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
__snake_case ="""\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
__snake_case ="""
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ):
return float((preds == labels).mean() )
def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ):
lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ):
lowerCAmelCase = {}
for id_pred, label in zip(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}'''
lowerCAmelCase = id_pred['prediction']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowerCAmelCase = [(pred, label)]
lowerCAmelCase , lowerCAmelCase = [], []
for question, preds_labels in question_map.items():
lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase )
lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' )
fas.append(lowerCamelCase )
lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) )
ems.append(lowerCamelCase )
lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) )
lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , )
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"prediction_text": datasets.Value('string' ),
},
"references": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"answers": datasets.Sequence(datasets.Value('string' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('int64' ),
"paragraph": datasets.Value('int64' ),
"question": datasets.Value('int64' ),
},
"prediction": datasets.Value('int64' ),
},
"references": datasets.Value('int64' ),
}
else:
return {
"predictions": datasets.Value('int64' ),
"references": datasets.Value('int64' ),
}
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )}
elif self.config_name == "cb":
return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' )
elif self.config_name == "record":
lowerCAmelCase = [
{
'qas': [
{'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]}
for ref in references
]
}
]
lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions}
return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case =logging.get_logger(__name__)
__snake_case ={
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
__snake_case ={
"""vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""},
"""merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""},
"""tokenizer_config_file""": {
"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"""
},
}
__snake_case ={"""facebook/blenderbot-3B""": 128}
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
lowerCamelCase : List[Any] = BlenderbotTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int:
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = 'post_processor'
lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
if tokenizer_component_instance:
lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase = tuple(state['sep'] )
if "cls" in state:
lowerCAmelCase = tuple(state['cls'] )
lowerCAmelCase = False
if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = add_prefix_space
lowerCAmelCase = True
if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets:
lowerCAmelCase = trim_offsets
lowerCAmelCase = True
if changes_to_apply:
lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) )
lowerCAmelCase = component_class(**UpperCAmelCase__ )
setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple:
lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value
lowerCAmelCase = value
def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any:
return token_ids_a + [self.eos_token_id]
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]:
lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase__ )
lowerCAmelCase = ' '.join(UpperCAmelCase__ )
lowerCAmelCase = self.encode(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > self.model_max_length:
lowerCAmelCase = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ):
lowerCAmelCase = [0] * no_of_processes
lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i]
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase = []
lowerCAmelCase = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase = 0
lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ):
lowerCAmelCase = [0] * no_of_processes
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__snake_case =4
__snake_case =[2, 5, 3, 7]
__snake_case =[0, 0, 0, 0]
__snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__snake_case =calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
'''simple docstring'''
def a_ ( lowerCamelCase : Dict ):
lowerCAmelCase = len(lowerCamelCase )
while cur > 1:
# Find the maximum number in arr
lowerCAmelCase = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
lowerCAmelCase = arr[mi::-1] + arr[mi + 1 : len(lowerCamelCase )]
# Reverse whole list
lowerCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(lowerCamelCase )]
cur -= 1
return arr
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(pancake_sort(unsorted))
4
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
1
'''simple docstring'''
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__snake_case =datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig ):
lowerCamelCase : Optional[datasets.Features] = None
lowerCamelCase : str = "utf-8"
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[str] = None
lowerCamelCase : bool = True # deprecated
lowerCamelCase : Optional[int] = None # deprecated
lowerCamelCase : int = 10 << 20 # 10MB
lowerCamelCase : Optional[bool] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ):
lowerCamelCase : int = JsonConfig
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' )
lowerCAmelCase = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' )
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' )
return datasets.DatasetInfo(features=self.config.features )
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Any:
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__ , (str, list, tuple) ):
lowerCAmelCase = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = [files]
lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCAmelCase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = [files]
lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'files': files} ) )
return splits
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : pa.Table ) -> pa.Table:
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
lowerCAmelCase = self.config.features.arrow_schema.field(UpperCAmelCase__ ).type
lowerCAmelCase = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__ ) , type=UpperCAmelCase__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema )
return pa_table
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> Any:
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
lowerCAmelCase = json.load(UpperCAmelCase__ )
# We keep only the field we are interested in
lowerCAmelCase = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple) ):
lowerCAmelCase = set().union(*[row.keys() for row in dataset] )
lowerCAmelCase = {col: [row.get(UpperCAmelCase__ ) for row in dataset] for col in keys}
else:
lowerCAmelCase = dataset
lowerCAmelCase = pa.Table.from_pydict(UpperCAmelCase__ )
yield file_idx, self._cast_table(UpperCAmelCase__ )
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , 'rb' ) as f:
lowerCAmelCase = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
lowerCAmelCase = max(self.config.chunksize // 3_2 , 1_6 << 1_0 )
lowerCAmelCase = (
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
lowerCAmelCase = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
lowerCAmelCase = batch.decode(self.config.encoding , errors=UpperCAmelCase__ ).encode('utf-8' )
try:
while True:
try:
lowerCAmelCase = paj.read_json(
io.BytesIO(UpperCAmelCase__ ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid )
and "straddling" not in str(UpperCAmelCase__ )
or block_size > len(UpperCAmelCase__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'''Batch of {len(UpperCAmelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
lowerCAmelCase = json.load(UpperCAmelCase__ )
except json.JSONDecodeError:
logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # list is the only sequence type supported in JSON
try:
lowerCAmelCase = set().union(*[row.keys() for row in dataset] )
lowerCAmelCase = {col: [row.get(UpperCAmelCase__ ) for row in dataset] for col in keys}
lowerCAmelCase = pa.Table.from_pydict(UpperCAmelCase__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}''' )
raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(UpperCAmelCase__ )
break
else:
logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}''' )
raise ValueError(
F'''Not able to read records in the JSON file at {file}. '''
F'''You should probably indicate the field of the JSON file containing your records. '''
F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
batch_idx += 1
4
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCAmelCase_ :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None:
lowerCAmelCase , lowerCAmelCase = row, column
lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )]
def __str__( self : List[str] ) -> str:
lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
lowerCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) )
lowerCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(UpperCAmelCase__ : list[float] ) -> str:
nonlocal string_format_identifier
lowerCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
return str(self )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool:
if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any:
assert self.validate_indicies(UpperCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None:
assert self.validate_indicies(UpperCAmelCase__ )
lowerCAmelCase = value
def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : int ) -> Matrix:
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = -self[r, c]
return result
def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix:
return self + (-another)
def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix:
if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] * another
return result
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
lowerCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})'''
raise TypeError(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix:
lowerCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c]
return result
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCAmelCase = v.transpose()
lowerCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a_ ( ):
# a^(-1)
lowerCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCAmelCase = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' )
def a_ ( ):
import doctest
doctest.testmod()
testa()
4
1
'''simple docstring'''
__snake_case ={
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def a_ ( lowerCamelCase : dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] ):
lowerCAmelCase = set()
# keep track of all the paths to be checked
lowerCAmelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
lowerCAmelCase = queue.pop(0 )
# get the last node from the path
lowerCAmelCase = path[-1]
if node not in explored:
lowerCAmelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
lowerCAmelCase = list(lowerCamelCase )
new_path.append(lowerCamelCase )
queue.append(lowerCamelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(lowerCamelCase )
# in case there's no path between the 2 nodes
return []
def a_ ( lowerCamelCase : dict , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
lowerCAmelCase = [start]
lowerCAmelCase = set(lowerCamelCase )
# Keep tab on distances from `start` node.
lowerCAmelCase = {start: 0, target: -1}
while queue:
lowerCAmelCase = queue.pop(0 )
if node == target:
lowerCAmelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(lowerCamelCase )
queue.append(lowerCamelCase )
lowerCAmelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
4
'''simple docstring'''
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None:
lowerCAmelCase = len(UpperCAmelCase__ )
lowerCAmelCase = [0] * len_array
if len_array > 0:
lowerCAmelCase = array[0]
for i in range(1 , UpperCAmelCase__ ):
lowerCAmelCase = self.prefix_sum[i - 1] + array[i]
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool:
lowerCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase__ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
4
1
'''simple docstring'''
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
__snake_case =get_logger(__name__)
__snake_case =R"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class UpperCAmelCase_ :
@add_start_docstrings(UpperCAmelCase__ )
def __call__( self : Dict , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class UpperCAmelCase_ :
@add_start_docstrings(UpperCAmelCase__ )
def __call__( self : str , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class UpperCAmelCase_ ( __lowercase ):
@add_start_docstrings(UpperCAmelCase__ )
def __call__( self : int , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int , **UpperCAmelCase__ : Tuple ) -> jnp.ndarray:
for processor in self:
lowerCAmelCase = inspect.signature(processor.__call__ ).parameters
if len(UpperCAmelCase__ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
F'''{processor.__class__} are passed to the logits processor.''' )
lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ )
else:
lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , UpperCAmelCase__ : float ) -> int:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not (temperature > 0):
raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' )
lowerCAmelCase = temperature
def __call__( self : Any , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase = scores / self.temperature
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : List[str] , UpperCAmelCase__ : float , UpperCAmelCase__ : float = -float('Inf' ) , UpperCAmelCase__ : int = 1 ) -> Optional[int]:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (min_tokens_to_keep < 1):
raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
lowerCAmelCase = top_p
lowerCAmelCase = filter_value
lowerCAmelCase = min_tokens_to_keep
def __call__( self : str , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase , lowerCAmelCase = lax.top_k(UpperCAmelCase__ , scores.shape[-1] )
lowerCAmelCase = jnp.full_like(UpperCAmelCase__ , self.filter_value )
lowerCAmelCase = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ).cumsum(axis=-1 )
lowerCAmelCase = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
lowerCAmelCase = jnp.roll(UpperCAmelCase__ , 1 )
score_mask |= score_mask.at[:, 0].set(UpperCAmelCase__ )
# min tokens to keep
lowerCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase__ )
lowerCAmelCase = jnp.where(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jax.lax.sort_key_val(UpperCAmelCase__ , UpperCAmelCase__ )[-1]
return next_scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : float = -float('Inf' ) , UpperCAmelCase__ : int = 1 ) -> Any:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or top_k <= 0:
raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
lowerCAmelCase = max(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = filter_value
def __call__( self : int , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase , lowerCAmelCase = scores.shape
lowerCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value )
lowerCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check
lowerCAmelCase , lowerCAmelCase = lax.top_k(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jnp.broadcast_to((jnp.arange(UpperCAmelCase__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
lowerCAmelCase = topk_scores.flatten()
lowerCAmelCase = topk_indices.flatten() + shift
lowerCAmelCase = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase__ )
lowerCAmelCase = next_scores_flat.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
return next_scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Optional[int] , UpperCAmelCase__ : int ) -> str:
lowerCAmelCase = bos_token_id
def __call__( self : Dict , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase = jnp.full(scores.shape , -float('inf' ) )
lowerCAmelCase = 1 - jnp.bool_(cur_len - 1 )
lowerCAmelCase = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase__ )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> List[Any]:
lowerCAmelCase = max_length
lowerCAmelCase = eos_token_id
def __call__( self : str , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase = jnp.full(scores.shape , -float('inf' ) )
lowerCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 )
lowerCAmelCase = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase__ )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or min_length < 0:
raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or eos_token_id < 0:
raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
lowerCAmelCase = min_length
lowerCAmelCase = eos_token_id
def __call__( self : Union[str, Any] , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
lowerCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
lowerCAmelCase = jnp.where(UpperCAmelCase__ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , UpperCAmelCase__ )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[str]:
lowerCAmelCase = list(UpperCAmelCase__ )
lowerCAmelCase = begin_index
def __call__( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> List[Any]:
lowerCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index )
lowerCAmelCase = jnp.where(UpperCAmelCase__ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , UpperCAmelCase__ )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : List[Any] , UpperCAmelCase__ : list ) -> List[str]:
lowerCAmelCase = list(UpperCAmelCase__ )
def __call__( self : Optional[int] , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
lowerCAmelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> List[str]:
lowerCAmelCase = dict(UpperCAmelCase__ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
lowerCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
lowerCAmelCase = force_token_array.at[index].set(UpperCAmelCase__ )
lowerCAmelCase = jnp.intaa(UpperCAmelCase__ )
def __call__( self : Union[str, Any] , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : jnp.ndarray , UpperCAmelCase__ : int ) -> jnp.ndarray:
def _force_token(UpperCAmelCase__ : Optional[int] ):
lowerCAmelCase = scores.shape[0]
lowerCAmelCase = self.force_token_array[generation_idx]
lowerCAmelCase = jnp.ones_like(UpperCAmelCase__ , dtype=scores.dtype ) * -float('inf' )
lowerCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
lowerCAmelCase = lax.dynamic_update_slice(UpperCAmelCase__ , UpperCAmelCase__ , (0, current_token) )
return new_scores
lowerCAmelCase = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase__ ) , lambda: scores , ) , )
return scores
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ) -> List[str]:
lowerCAmelCase = generate_config.eos_token_id
lowerCAmelCase = generate_config.no_timestamps_token_id
lowerCAmelCase = generate_config.no_timestamps_token_id + 1
lowerCAmelCase = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(UpperCAmelCase__ , 'max_initial_timestamp_index' ):
lowerCAmelCase = generate_config.max_initial_timestamp_index
else:
lowerCAmelCase = model_config.vocab_size
if self.max_initial_timestamp_index is None:
lowerCAmelCase = model_config.vocab_size
def __call__( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]:
# suppress <|notimestamps|> which is handled by without_timestamps
lowerCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ):
lowerCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase__ , )
lowerCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase__ , UpperCAmelCase__ , )
return jnp.where(
UpperCAmelCase__ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , UpperCAmelCase__ , )
lowerCAmelCase = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jnp.where(cur_len == self.begin_index , UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase__ , )
lowerCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index
lowerCAmelCase = jnp.where(
UpperCAmelCase__ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , UpperCAmelCase__ , )
# if sum of probability over timestamps is above any other token, sample timestamp
lowerCAmelCase = jax.nn.log_softmax(UpperCAmelCase__ , axis=-1 )
def handle_cumulative_probs(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ):
lowerCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
lowerCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , UpperCAmelCase__ , )
lowerCAmelCase = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ )
return scores
4
'''simple docstring'''
def a_ ( lowerCamelCase : Optional[Any] ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def a_ ( lowerCamelCase : dict[int, list[int]] ):
lowerCAmelCase = 0
lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph
lowerCAmelCase = [0] * n
lowerCAmelCase = [False] * n
def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ):
lowerCAmelCase = True
lowerCAmelCase = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ )
lowerCAmelCase = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
lowerCAmelCase = min(low[at] , low[to] )
lowerCAmelCase = []
for i in range(lowerCamelCase ):
if not visited[i]:
dfs(lowerCamelCase , -1 , lowerCamelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
4
1
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case =16
__snake_case =32
def a_ ( lowerCamelCase : Accelerator , lowerCamelCase : DatasetDict , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int = 16 ):
lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' )
lowerCAmelCase = DatasetDict(
{
'train': dataset['train'].select(lowerCamelCase ),
'validation': dataset['train'].select(lowerCamelCase ),
'test': dataset['validation'],
} )
def tokenize_function(lowerCamelCase : str ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase , max_length=lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase = datasets.map(
lowerCamelCase , batched=lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(lowerCamelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase = 8
else:
lowerCAmelCase = None
return tokenizer.pad(
lowerCamelCase , padding='longest' , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors='pt' , )
# Instantiate dataloaders.
lowerCAmelCase = DataLoader(
tokenized_datasets['train'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
lowerCAmelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
lowerCAmelCase = DataLoader(
tokenized_datasets['test'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
return train_dataloader, eval_dataloader, test_dataloader
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] ):
# New Code #
lowerCAmelCase = []
# Download the dataset
lowerCAmelCase = load_dataset('glue' , 'mrpc' )
# Create our splits
lowerCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase = config['lr']
lowerCAmelCase = int(config['num_epochs'] )
lowerCAmelCase = int(config['seed'] )
lowerCAmelCase = int(config['batch_size'] )
lowerCAmelCase = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(lowerCamelCase )
# New Code #
# Create our folds:
lowerCAmelCase = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] )
lowerCAmelCase = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase ):
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_fold_dataloaders(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase = AdamW(params=model.parameters() , lr=lowerCamelCase )
# Instantiate scheduler
lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Now we train the model
for epoch in range(lowerCamelCase ):
model.train()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.loss
lowerCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.logits.argmax(dim=-1 )
lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCamelCase , references=lowerCamelCase , )
lowerCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase )
# New Code #
# We also run predictions on the test set at the very end
lowerCAmelCase = []
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.logits
lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowerCamelCase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
lowerCAmelCase = torch.cat(lowerCamelCase , dim=0 )
lowerCAmelCase = torch.stack(lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
lowerCAmelCase = metric.compute(predictions=lowerCamelCase , references=lowerCamelCase )
accelerator.print('Average test metrics from all folds:' , lowerCamelCase )
def a_ ( ):
lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=lowerCamelCase , default=lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
# New Code #
parser.add_argument('--num_folds' , type=lowerCamelCase , default=3 , help='The number of splits to perform across the dataset' )
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCamelCase , lowerCamelCase )
if __name__ == "__main__":
main()
4
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Any ):
lowerCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' )
if "norm" in key:
lowerCAmelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase = key[key.find('block' ) + len('block' )]
lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' )
if "attn.q" in key:
lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' )
if "bot_conv" in key:
lowerCAmelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
lowerCAmelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
lowerCAmelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
lowerCAmelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
lowerCAmelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' )
lowerCAmelCase = value
return new_state_dict
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase = kv_bias[config.hidden_sizes[i] :]
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return image
@torch.no_grad()
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ):
lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
lowerCAmelCase = GLPNImageProcessor()
# prepare image
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) )
# rename keys
lowerCAmelCase = rename_keys(lowerCamelCase )
# key and value matrices need special treatment
read_in_k_v(lowerCamelCase , lowerCamelCase )
# create HuggingFace model and load state dict
lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# forward pass
lowerCAmelCase = model(lowerCamelCase )
lowerCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
lowerCAmelCase = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
lowerCAmelCase = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
__snake_case =parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
1
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case =logging.get_logger(__name__)
__snake_case ={
"""Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""",
"""Salesforce/blip-vqa-capfit-large""": (
"""https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-base""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-large""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"""
),
"""Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""",
"""Salesforce/blip-itm-large-flikr""": (
"""https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Dict = '''blip_text_model'''
def __init__( self : Tuple , UpperCAmelCase__ : Optional[int]=3_0_5_2_4 , UpperCAmelCase__ : List[Any]=7_6_8 , UpperCAmelCase__ : Tuple=7_6_8 , UpperCAmelCase__ : Optional[Any]=3_0_7_2 , UpperCAmelCase__ : Union[str, Any]=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Dict=8 , UpperCAmelCase__ : List[str]=5_1_2 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Dict=1E-12 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Tuple=3_0_5_2_2 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : str=1_0_2 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : List[str] , ) -> Union[str, Any]:
super().__init__(
pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , sep_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = encoder_hidden_size
lowerCAmelCase = intermediate_size
lowerCAmelCase = projection_dim
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = hidden_act
lowerCAmelCase = initializer_range
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = is_decoder
lowerCAmelCase = use_cache
@classmethod
def __UpperCAmelCase ( cls : int , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(UpperCAmelCase__ )
lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ )
# get the text config dict if we are loading from BlipConfig
if config_dict.get('model_type' ) == "blip":
lowerCAmelCase = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Optional[int] = '''blip_vision_model'''
def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple=7_6_8 , UpperCAmelCase__ : Optional[Any]=3_0_7_2 , UpperCAmelCase__ : Optional[Any]=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_2 , UpperCAmelCase__ : List[str]=1_2 , UpperCAmelCase__ : int=3_8_4 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=1E-10 , **UpperCAmelCase__ : Optional[int] , ) -> int:
super().__init__(**UpperCAmelCase__ )
lowerCAmelCase = hidden_size
lowerCAmelCase = intermediate_size
lowerCAmelCase = projection_dim
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = patch_size
lowerCAmelCase = image_size
lowerCAmelCase = initializer_range
lowerCAmelCase = attention_dropout
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = hidden_act
@classmethod
def __UpperCAmelCase ( cls : str , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(UpperCAmelCase__ )
lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get('model_type' ) == "blip":
lowerCAmelCase = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Dict = '''blip'''
lowerCamelCase : Tuple = True
def __init__( self : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : str=2.6_592 , UpperCAmelCase__ : str=2_5_6 , **UpperCAmelCase__ : List[Any] , ) -> Dict:
super().__init__(**UpperCAmelCase__ )
if text_config is None:
lowerCAmelCase = {}
logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' )
if vision_config is None:
lowerCAmelCase = {}
logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' )
lowerCAmelCase = BlipTextConfig(**UpperCAmelCase__ )
lowerCAmelCase = BlipVisionConfig(**UpperCAmelCase__ )
lowerCAmelCase = self.vision_config.hidden_size
lowerCAmelCase = projection_dim
lowerCAmelCase = logit_scale_init_value
lowerCAmelCase = 1.0
lowerCAmelCase = 0.02
lowerCAmelCase = image_text_hidden_size
@classmethod
def __UpperCAmelCase ( cls : Dict , UpperCAmelCase__ : BlipTextConfig , UpperCAmelCase__ : BlipVisionConfig , **UpperCAmelCase__ : str ) -> Optional[Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.text_config.to_dict()
lowerCAmelCase = self.vision_config.to_dict()
lowerCAmelCase = self.__class__.model_type
return output
4
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self : str ) -> List[str]:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
@slow
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
1
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case ={"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =["""PLBartTokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PLBartForCausalLM""",
"""PLBartForConditionalGeneration""",
"""PLBartForSequenceClassification""",
"""PLBartModel""",
"""PLBartPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
4
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def a_ ( lowerCamelCase : Dict ):
lowerCAmelCase = {}
lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids']
lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] )
return output
__snake_case =HfArgumentParser(PretokenizationArguments)
__snake_case =parser.parse_args()
if args.num_workers is None:
__snake_case =multiprocessing.cpu_count()
__snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir)
__snake_case =time.time()
__snake_case =load_dataset(args.dataset_name, split="""train""")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
__snake_case =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
1
'''simple docstring'''
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def a_ ( lowerCamelCase : int = 8 ):
lowerCAmelCase = ascii_letters + digits + punctuation
return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) )
def a_ ( lowerCamelCase : str , lowerCamelCase : int ):
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(lowerCamelCase )
lowerCAmelCase = i // 3
lowerCAmelCase = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
lowerCAmelCase = (
chars_incl
+ random(lowerCamelCase , quotient + remainder )
+ random(lowerCamelCase , lowerCamelCase )
+ random(lowerCamelCase , lowerCamelCase )
)
lowerCAmelCase = list(lowerCamelCase )
shuffle(lowerCamelCase )
return "".join(lowerCamelCase )
# random is a generalised function for letters, characters and numbers
def a_ ( lowerCamelCase : str , lowerCamelCase : int ):
return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) )
def a_ ( lowerCamelCase : str , lowerCamelCase : Tuple ):
pass # Put your code here...
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ):
pass # Put your code here...
def a_ ( lowerCamelCase : int , lowerCamelCase : Dict ):
pass # Put your code here...
def a_ ( lowerCamelCase : str , lowerCamelCase : int = 8 ):
if len(lowerCamelCase ) < min_length:
# Your Password must be at least 8 characters long
return False
lowerCAmelCase = any(char in ascii_uppercase for char in password )
lowerCAmelCase = any(char in ascii_lowercase for char in password )
lowerCAmelCase = any(char in digits for char in password )
lowerCAmelCase = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def a_ ( ):
lowerCAmelCase = int(input('Please indicate the max length of your password: ' ).strip() )
lowerCAmelCase = input(
'Please indicate the characters that must be in your password: ' ).strip()
print('Password generated:' , password_generator(lowerCamelCase ) )
print(
'Alternative Password generated:' , alternative_password_generator(lowerCamelCase , lowerCamelCase ) , )
print('[If you are thinking of using this passsword, You better save it.]' )
if __name__ == "__main__":
main()
4
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case =logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCamelCase : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowercase , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = v.to_dict()
return d
4
1
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
__snake_case ={
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
__snake_case =[
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a_ ( lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : str ):
for attribute in key.split('.' ):
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase )
if weight_type is not None:
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape
else:
lowerCAmelCase = hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Any ):
lowerCAmelCase = []
lowerCAmelCase = fairseq_model.state_dict()
lowerCAmelCase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
lowerCAmelCase = None
for name, value in fairseq_dict.items():
lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , )
lowerCAmelCase = True
elif name.split('.' )[0] == "proj":
lowerCAmelCase = fairseq_model.proj
lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2]
lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase )
if "weight_g" in name:
lowerCAmelCase = 'weight_g'
elif "weight_v" in name:
lowerCAmelCase = 'weight_v'
elif "bias" in name:
lowerCAmelCase = 'bias'
elif "weight" in name:
lowerCAmelCase = 'weight'
else:
lowerCAmelCase = None
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
continue
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
return proj_weight
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ):
lowerCAmelCase = full_name.split('conv_layers.' )[-1]
lowerCAmelCase = name.split('.' )
lowerCAmelCase = int(items[0] )
lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowerCAmelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowerCAmelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowerCAmelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowerCAmelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowerCamelCase )
def a_ ( lowerCamelCase : List[str] ):
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase )
lowerCAmelCase = emb.weight.data
return lin_layer
def a_ ( lowerCamelCase : Optional[int] ):
with open(lowerCamelCase , 'r' , encoding='utf-8' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = [line.split(' ' )[0] for line in lines]
lowerCAmelCase = len(lowerCamelCase )
lowerCAmelCase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(lowerCamelCase , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def a_ ( lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , ):
lowerCAmelCase = WavaVecaConfig.from_pretrained(lowerCamelCase )
lowerCAmelCase = SpeechaTextaConfig.from_pretrained(
lowerCamelCase , vocab_size=lowerCamelCase , decoder_layers=lowerCamelCase , do_stable_layer_norm=lowerCamelCase )
lowerCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
lowerCAmelCase = model[0].eval()
# set weights for wav2vec2 encoder
lowerCAmelCase = WavaVecaModel(lowerCamelCase )
lowerCAmelCase = recursively_load_weights_wavaveca(model.encoder , lowerCamelCase )
lowerCAmelCase = SpeechaTextaForCausalLM(lowerCamelCase )
lowerCAmelCase , lowerCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase )
# set output linear layer
unexpected_keys.remove('embed_out' )
lowerCAmelCase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
lowerCAmelCase = SpeechEncoderDecoderModel(encoder=lowerCamelCase , decoder=lowerCamelCase )
lowerCAmelCase = False
# add projection layer
lowerCAmelCase = nn.Parameter(projection_layer.weight )
lowerCAmelCase = nn.Parameter(projection_layer.bias )
lowerCAmelCase = create_vocab_dict(lowerCamelCase )
with open(os.path.join(lowerCamelCase , 'vocab.json' ) , 'w' ) as fp:
json.dump(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = SpeechaTextaTokenizer(os.path.join(lowerCamelCase , 'vocab.json' ) )
tokenizer.save_pretrained(lowerCamelCase )
lowerCAmelCase = hf_wavavec.config.to_dict()
lowerCAmelCase = tokenizer.pad_token_id
lowerCAmelCase = tokenizer.bos_token_id
lowerCAmelCase = tokenizer.eos_token_id
lowerCAmelCase = 'speech_to_text_2'
lowerCAmelCase = 'wav2vec2'
lowerCAmelCase = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase )
hf_wavavec.save_pretrained(lowerCamelCase )
feature_extractor.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=10_224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
__snake_case =parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
4
'''simple docstring'''
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__snake_case =logging.get_logger("""transformers.models.encodec""")
__snake_case ={
"""quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""",
"""quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""",
"""quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""",
"""quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""",
}
__snake_case ={
"""encoder.model.0.conv.conv""": """encoder.layers.0.conv""",
"""encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""",
"""encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""",
"""encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""",
"""encoder.model.3.conv.conv""": """encoder.layers.3.conv""",
"""encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""",
"""encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""",
"""encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""",
"""encoder.model.6.conv.conv""": """encoder.layers.6.conv""",
"""encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""",
"""encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""",
"""encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""",
"""encoder.model.9.conv.conv""": """encoder.layers.9.conv""",
"""encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""",
"""encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""",
"""encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""",
"""encoder.model.12.conv.conv""": """encoder.layers.12.conv""",
"""encoder.model.13.lstm""": """encoder.layers.13.lstm""",
"""encoder.model.15.conv.conv""": """encoder.layers.15.conv""",
}
__snake_case ={
"""encoder.model.0.conv.norm""": """encoder.layers.0.norm""",
"""encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""",
"""encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""",
"""encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""",
"""encoder.model.3.conv.norm""": """encoder.layers.3.norm""",
"""encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""",
"""encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""",
"""encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""",
"""encoder.model.6.conv.norm""": """encoder.layers.6.norm""",
"""encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""",
"""encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""",
"""encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""",
"""encoder.model.9.conv.norm""": """encoder.layers.9.norm""",
"""encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""",
"""encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""",
"""encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""",
"""encoder.model.12.conv.norm""": """encoder.layers.12.norm""",
"""encoder.model.15.conv.norm""": """encoder.layers.15.norm""",
}
__snake_case ={
"""decoder.model.0.conv.conv""": """decoder.layers.0.conv""",
"""decoder.model.1.lstm""": """decoder.layers.1.lstm""",
"""decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""",
"""decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""",
"""decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""",
"""decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""",
"""decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""",
"""decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""",
"""decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""",
"""decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""",
"""decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""",
"""decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""",
"""decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""",
"""decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""",
"""decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""",
"""decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""",
"""decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""",
"""decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""",
"""decoder.model.15.conv.conv""": """decoder.layers.15.conv""",
}
__snake_case ={
"""decoder.model.0.conv.norm""": """decoder.layers.0.norm""",
"""decoder.model.3.convtr.norm""": """decoder.layers.3.norm""",
"""decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""",
"""decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""",
"""decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""",
"""decoder.model.6.convtr.norm""": """decoder.layers.6.norm""",
"""decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""",
"""decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""",
"""decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""",
"""decoder.model.9.convtr.norm""": """decoder.layers.9.norm""",
"""decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""",
"""decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""",
"""decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""",
"""decoder.model.12.convtr.norm""": """decoder.layers.12.norm""",
"""decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""",
"""decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""",
"""decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""",
"""decoder.model.15.conv.norm""": """decoder.layers.15.norm""",
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__snake_case =[]
__snake_case =[]
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ):
for attribute in key.split('.' ):
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase )
if weight_type is not None:
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape
else:
lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
elif weight_type == "running_mean":
lowerCAmelCase = value
elif weight_type == "running_var":
lowerCAmelCase = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ):
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ):
lowerCAmelCase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase = MAPPING_48K
else:
raise ValueError(f'''Unsupported model: {model_name}''' )
for name, value in orig_dict.items():
if should_ignore(lowerCamelCase , lowerCamelCase ):
logger.info(f'''{name} was ignored''' )
continue
lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
lowerCAmelCase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith('embed' ) and name.endswith('embed_avg' ):
continue
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2]
lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase )
if "weight_g" in name:
lowerCAmelCase = 'weight_g'
elif "weight_v" in name:
lowerCAmelCase = 'weight_v'
elif "weight_ih_l0" in name:
lowerCAmelCase = 'weight_ih_l0'
elif "weight_hh_l0" in name:
lowerCAmelCase = 'weight_hh_l0'
elif "bias_ih_l0" in name:
lowerCAmelCase = 'bias_ih_l0'
elif "bias_hh_l0" in name:
lowerCAmelCase = 'bias_hh_l0'
elif "weight_ih_l1" in name:
lowerCAmelCase = 'weight_ih_l1'
elif "weight_hh_l1" in name:
lowerCAmelCase = 'weight_hh_l1'
elif "bias_ih_l1" in name:
lowerCAmelCase = 'bias_ih_l1'
elif "bias_hh_l1" in name:
lowerCAmelCase = 'bias_hh_l1'
elif "bias" in name:
lowerCAmelCase = 'bias'
elif "weight" in name:
lowerCAmelCase = 'weight'
elif "running_mean" in name:
lowerCAmelCase = 'running_mean'
elif "running_var" in name:
lowerCAmelCase = 'running_var'
elif "num_batches_tracked" in name:
lowerCAmelCase = 'num_batches_tracked'
else:
lowerCAmelCase = None
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
continue
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
@torch.no_grad()
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ):
if config_path is not None:
lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase )
else:
lowerCAmelCase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase = [8, 5, 4, 4]
lowerCAmelCase = [2.2]
lowerCAmelCase = 64
lowerCAmelCase = 32000
lowerCAmelCase = 2048
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
elif model_name == "encodec_48khz":
lowerCAmelCase = [8, 5, 4, 2]
lowerCAmelCase = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase = 48000
lowerCAmelCase = 2
lowerCAmelCase = False
lowerCAmelCase = 'time_group_norm'
lowerCAmelCase = True
lowerCAmelCase = 1.0
lowerCAmelCase = 0.01
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = EncodecModel(lowerCamelCase )
lowerCAmelCase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowerCamelCase )
lowerCAmelCase = torch.load(lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase = original_checkpoint['best_state']
recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase )
model.save_pretrained(lowerCamelCase )
if repo_id:
print('Pushing to the hub...' )
feature_extractor.push_to_hub(lowerCamelCase )
model.push_to_hub(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--model""",
default="""encodec_24khz""",
type=str,
help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
__snake_case =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
4
1
'''simple docstring'''
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case =16
__snake_case =32
def a_ ( lowerCamelCase : Accelerator , lowerCamelCase : int = 16 ):
lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' )
lowerCAmelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(lowerCamelCase : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase , max_length=lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase = datasets.map(
lowerCamelCase , batched=lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(lowerCamelCase : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase = 8
else:
lowerCAmelCase = None
return tokenizer.pad(
lowerCamelCase , padding='longest' , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors='pt' , )
# Instantiate dataloaders.
lowerCAmelCase = DataLoader(
tokenized_datasets['train'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=lowerCamelCase )
lowerCAmelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=(accelerator.mixed_precision == 'fp8') , )
return train_dataloader, eval_dataloader
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ):
# Initialize accelerator
lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase = config['lr']
lowerCAmelCase = int(config['num_epochs'] )
lowerCAmelCase = int(config['seed'] )
lowerCAmelCase = int(config['batch_size'] )
lowerCAmelCase = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(lowerCamelCase )
lowerCAmelCase , lowerCAmelCase = get_dataloaders(lowerCamelCase , lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase = AdamW(params=model.parameters() , lr=lowerCamelCase )
# Instantiate scheduler
lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Now we train the model
for epoch in range(lowerCamelCase ):
model.train()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.loss
lowerCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
lowerCAmelCase = outputs.logits.argmax(dim=-1 )
lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCamelCase , references=lowerCamelCase , )
lowerCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase )
def a_ ( ):
lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=lowerCamelCase , default=lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCamelCase , lowerCamelCase )
if __name__ == "__main__":
main()
4
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
1
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__snake_case =logging.get_logger(__name__)
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Tuple = ['''pixel_values''']
def __init__( self : List[Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : str=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> None:
lowerCAmelCase = do_resize
lowerCAmelCase = do_rescale
lowerCAmelCase = size_divisor
lowerCAmelCase = resample
super().__init__(**UpperCAmelCase__ )
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : int ) -> np.ndarray:
lowerCAmelCase , lowerCAmelCase = get_image_size(UpperCAmelCase__ )
# Rounds the height and width down to the closest multiple of size_divisor
lowerCAmelCase = height // size_divisor * size_divisor
lowerCAmelCase = width // size_divisor * size_divisor
lowerCAmelCase = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
return image
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray:
return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : List[Any] , ) -> BatchFeature:
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor
lowerCAmelCase = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('size_divisor is required for resizing' )
lowerCAmelCase = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError('Invalid image(s)' )
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(UpperCAmelCase__ ) for img in images]
if do_resize:
lowerCAmelCase = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(UpperCAmelCase__ , scale=1 / 2_5_5 ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : bool = True , snake_case_ : float = math.inf , snake_case_ : float = -math.inf , snake_case_ : float = math.inf , snake_case_ : float = -math.inf , snake_case_ : bool = False , snake_case_ : float = 1_00 , snake_case_ : float = 0.01 , snake_case_ : float = 1 , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = False
UpperCAmelCase_ = search_prob
UpperCAmelCase_ = start_temperate
UpperCAmelCase_ = []
UpperCAmelCase_ = 0
UpperCAmelCase_ = None
while not search_end:
UpperCAmelCase_ = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase_ = current_state
scores.append(snake_case_ )
iterations += 1
UpperCAmelCase_ = None
UpperCAmelCase_ = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase_ = random.randint(0 , len(snake_case_ ) - 1 ) # picking a random neighbor
UpperCAmelCase_ = neighbors.pop(snake_case_ )
UpperCAmelCase_ = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase_ = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase_ = picked_neighbor
else:
UpperCAmelCase_ = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase_ = picked_neighbor
UpperCAmelCase_ = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase_ = True
else:
UpperCAmelCase_ = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(snake_case_ ) , snake_case_ )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int ) -> int:
'''simple docstring'''
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE_: List[Any] =SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_: Optional[Any] =simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE_: Tuple =SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_: List[str] =simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return (3 * x**2) - (6 * y)
SCREAMING_SNAKE_CASE_: str =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_: Tuple =simulated_annealing(prob, find_max=False, visualization=True)
print(
'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"{local_min.score()}"
)
SCREAMING_SNAKE_CASE_: List[str] =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_: Tuple =simulated_annealing(prob, find_max=True, visualization=True)
print(
'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
f"{local_min.score()}"
)
1
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class UpperCAmelCase_ ( __lowercase ):
def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple:
return self[-1] == other[-1]
def a_ ( lowerCamelCase : list ):
lowerCAmelCase = []
# sort into stacks
for element in collection:
lowerCAmelCase = Stack([element] )
lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase )
if i != len(lowerCamelCase ):
stacks[i].append(lowerCamelCase )
else:
stacks.append(lowerCamelCase )
# use a heap-based merge to merge stack efficiently
lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
4
0
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[Any]:
"""simple docstring"""
lowercase__ = OmegaConf.load(A )
lowercase__ = torch.load(A , map_location='''cpu''' )['''model''']
lowercase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowercase__ = {}
lowercase__ = '''first_stage_model.'''
for key in keys:
if key.startswith(A ):
lowercase__ = state_dict[key]
# extract state_dict for UNetLDM
lowercase__ = {}
lowercase__ = '''model.diffusion_model.'''
for key in keys:
if key.startswith(A ):
lowercase__ = state_dict[key]
lowercase__ = config.model.params.first_stage_config.params
lowercase__ = config.model.params.unet_config.params
lowercase__ = VQModel(**A ).eval()
vqvae.load_state_dict(A )
lowercase__ = UNetLDMModel(**A ).eval()
unet.load_state_dict(A )
lowercase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , )
lowercase__ = LDMPipeline(A , A , A )
pipeline.save_pretrained(A )
if __name__ == "__main__":
lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
lowerCamelCase : Dict = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
2
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__snake_case ="""\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
__snake_case ="""\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
__snake_case ="""
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : Tuple ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int:
lowerCAmelCase = compute_bleu(
reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ )
((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
4
0
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
3
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
__snake_case ="""\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
__snake_case ="""\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
__snake_case ="""
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ):
return float((preds == labels).mean() )
def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ):
lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ):
lowerCAmelCase = {}
for id_pred, label in zip(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}'''
lowerCAmelCase = id_pred['prediction']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowerCAmelCase = [(pred, label)]
lowerCAmelCase , lowerCAmelCase = [], []
for question, preds_labels in question_map.items():
lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase )
lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' )
fas.append(lowerCamelCase )
lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) )
ems.append(lowerCamelCase )
lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) )
lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase )
lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , )
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"prediction_text": datasets.Value('string' ),
},
"references": {
"idx": {
"passage": datasets.Value('int64' ),
"query": datasets.Value('int64' ),
},
"answers": datasets.Sequence(datasets.Value('string' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('int64' ),
"paragraph": datasets.Value('int64' ),
"question": datasets.Value('int64' ),
},
"prediction": datasets.Value('int64' ),
},
"references": datasets.Value('int64' ),
}
else:
return {
"predictions": datasets.Value('int64' ),
"references": datasets.Value('int64' ),
}
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any:
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )}
elif self.config_name == "cb":
return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' )
elif self.config_name == "record":
lowerCAmelCase = [
{
'qas': [
{'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]}
for ref in references
]
}
]
lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions}
return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
'''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion'''
)
UpperCAmelCase__ = None
UpperCAmelCase__ = {
'''7B''': 1_1008,
'''13B''': 1_3824,
'''30B''': 1_7920,
'''65B''': 2_2016,
'''70B''': 2_8672,
}
UpperCAmelCase__ = {
'''7B''': 1,
'''7Bf''': 1,
'''13B''': 2,
'''13Bf''': 2,
'''30B''': 4,
'''65B''': 8,
'''70B''': 8,
'''70Bf''': 8,
}
def UpperCAmelCase_ ( __snake_case , __snake_case=1 , __snake_case=256 ) -> Optional[int]:
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def UpperCAmelCase_ ( __snake_case ) -> str:
"""simple docstring"""
with open(__snake_case , '''r''' ) as f:
return json.load(__snake_case )
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]:
"""simple docstring"""
with open(__snake_case , '''w''' ) as f:
json.dump(__snake_case , __snake_case )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]:
"""simple docstring"""
os.makedirs(__snake_case , exist_ok=__snake_case )
_lowercase =os.path.join(__snake_case , '''tmp''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
_lowercase =read_json(os.path.join(__snake_case , '''params.json''' ) )
_lowercase =NUM_SHARDS[model_size]
_lowercase =params['''n_layers''']
_lowercase =params['''n_heads''']
_lowercase =n_heads // num_shards
_lowercase =params['''dim''']
_lowercase =dim // n_heads
_lowercase =1_00_00.0
_lowercase =1.0 / (base ** (torch.arange(0 , __snake_case , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowercase =params['''n_kv_heads'''] # for GQA / MQA
_lowercase =n_heads_per_shard // num_key_value_heads
_lowercase =dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowercase =n_heads
_lowercase =n_heads_per_shard
_lowercase =dim
# permute for sliced rotary
def permute(__snake_case , __snake_case=n_heads , __snake_case=dim , __snake_case=dim ):
return w.view(__snake_case , dima // n_heads // 2 , 2 , __snake_case ).transpose(1 , 2 ).reshape(__snake_case , __snake_case )
print(F"Fetching all parameters from the checkpoint at {input_base_path}." )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowercase =torch.load(os.path.join(__snake_case , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
_lowercase =[
torch.load(os.path.join(__snake_case , F"consolidated.{i:02d}.pth" ) , map_location='''cpu''' )
for i in range(__snake_case )
]
_lowercase =0
_lowercase ={'''weight_map''': {}}
for layer_i in range(__snake_case ):
_lowercase =F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
_lowercase ={
F"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
loaded[F"layers.{layer_i}.attention.wq.weight"] ),
F"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
loaded[F"layers.{layer_i}.attention.wk.weight"] ),
F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"],
F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"],
F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"],
F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"],
F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"],
F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"],
F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowercase ={
F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
F"layers.{layer_i}.attention_norm.weight"
].clone(),
F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
F"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
_lowercase =permute(
torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(__snake_case , __snake_case , __snake_case )
for i in range(__snake_case )
] , dim=0 , ).reshape(__snake_case , __snake_case ) )
_lowercase =permute(
torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wk.weight"].view(
__snake_case , __snake_case , __snake_case )
for i in range(__snake_case )
] , dim=0 , ).reshape(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case , )
_lowercase =torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wv.weight"].view(
__snake_case , __snake_case , __snake_case )
for i in range(__snake_case )
] , dim=0 , ).reshape(__snake_case , __snake_case )
_lowercase =torch.cat(
[loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(__snake_case )] , dim=1 )
_lowercase =torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(__snake_case )] , dim=0 )
_lowercase =torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(__snake_case )] , dim=1 )
_lowercase =torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(__snake_case )] , dim=0 )
_lowercase =inv_freq
for k, v in state_dict.items():
_lowercase =filename
param_count += v.numel()
torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) )
_lowercase =F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
_lowercase ={
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
_lowercase ={
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(__snake_case )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(__snake_case )] , dim=0 ),
}
for k, v in state_dict.items():
_lowercase =filename
param_count += v.numel()
torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) )
# Write configs
_lowercase ={'''total_size''': param_count * 2}
write_json(__snake_case , os.path.join(__snake_case , '''pytorch_model.bin.index.json''' ) )
_lowercase =params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
_lowercase =params['''multiple_of'''] if '''multiple_of''' in params else 256
_lowercase =LlamaConfig(
hidden_size=__snake_case , intermediate_size=compute_intermediate_size(__snake_case , __snake_case , __snake_case ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=__snake_case , )
config.save_pretrained(__snake_case )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
_lowercase =LlamaForCausalLM.from_pretrained(__snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=__snake_case )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(__snake_case , safe_serialization=__snake_case )
shutil.rmtree(__snake_case )
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]:
"""simple docstring"""
_lowercase =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." )
_lowercase =tokenizer_class(__snake_case )
tokenizer.save_pretrained(__snake_case )
def UpperCAmelCase_ ( ) -> Tuple:
"""simple docstring"""
_lowercase =argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=__snake_case , help='''Whether or not to save using `safetensors`.''' )
_lowercase =parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowercase =os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , __snake_case )
if __name__ == "__main__":
main()
def __lowerCAmelCase ( a__ ) -> str:
return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] )
def __lowerCAmelCase ( a__ ) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(a__ ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(a__ ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
6
'''simple docstring'''
import os
__snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
def a_ ( lowerCamelCase : str ):
lowerCAmelCase = 0
lowerCAmelCase = 0
while index < len(lowerCamelCase ) - 1:
lowerCAmelCase = SYMBOLS[numerals[index]]
lowerCAmelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def a_ ( lowerCamelCase : int ):
lowerCAmelCase = ''
lowerCAmelCase = num // 1000
numerals += m_count * "M"
num %= 1000
lowerCAmelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
lowerCAmelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def a_ ( lowerCamelCase : str = "/p089_roman.txt" ):
lowerCAmelCase = 0
with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea:
lowerCAmelCase = filea.readlines()
for line in lines:
lowerCAmelCase = line.strip()
lowerCAmelCase = parse_roman_numerals(lowerCamelCase )
lowerCAmelCase = generate_roman_numerals(lowerCamelCase )
savings += len(lowerCamelCase ) - len(lowerCamelCase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
4
0
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(_UpperCAmelCase ) , 'Tatoeba directory does not exist.' )
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = tempfile.mkdtemp()
return TatoebaConverter(save_dir=lowercase_ )
@slow
def snake_case__ ( self : List[str] )-> Optional[int]:
'''simple docstring'''
self.resolver.convert_models(['heb-eng'] )
@slow
def snake_case__ ( self : int )-> Optional[int]:
'''simple docstring'''
A__ , A__ = self.resolver.write_model_card('opus-mt-he-en',dry_run=lowercase_ )
assert mmeta["long_pair"] == "heb-eng"
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _UpperCamelCase ( lowercase__ ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
__lowerCAmelCase : Optional[Any] ='\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class _lowercase ( A__ ):
'''simple docstring'''
@staticmethod
def __magic_name__( lowerCAmelCase__ :ArgumentParser ) -> Any:
__SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Model\'s type.''' )
train_parser.add_argument(
'''--tf_checkpoint''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''TensorFlow checkpoint path or folder.''' )
train_parser.add_argument(
'''--pytorch_dump_output''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to the PyTorch saved model output.''' )
train_parser.add_argument('''--config''' , type=lowerCAmelCase__ , default='''''' , help='''Configuration file path or folder.''' )
train_parser.add_argument(
'''--finetuning_task_name''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=lowerCAmelCase__ )
def __init__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , *lowerCAmelCase__ :List[Any] , ) -> Dict:
__SCREAMING_SNAKE_CASE : str = logging.get_logger('''transformers-cli/converting''' )
self._logger.info(f'''Loading model {model_type}''' )
__SCREAMING_SNAKE_CASE : Optional[int] = model_type
__SCREAMING_SNAKE_CASE : str = tf_checkpoint
__SCREAMING_SNAKE_CASE : Optional[int] = pytorch_dump_output
__SCREAMING_SNAKE_CASE : str = config
__SCREAMING_SNAKE_CASE : Optional[int] = finetuning_task_name
def __magic_name__( self :int ) -> List[str]:
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
if "ckpt" in self._tf_checkpoint.lower():
__SCREAMING_SNAKE_CASE : Dict = self._tf_checkpoint
__SCREAMING_SNAKE_CASE : int = ''''''
else:
__SCREAMING_SNAKE_CASE : int = self._tf_checkpoint
__SCREAMING_SNAKE_CASE : List[Any] = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
lowerCAmelCase__ , self._config , self._pytorch_dump_output , lowerCAmelCase__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCAmelCase__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
9
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case =logging.get_logger(__name__)
__snake_case ={
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
__snake_case ={
"""vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""},
"""merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""},
"""tokenizer_config_file""": {
"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"""
},
}
__snake_case ={"""facebook/blenderbot-3B""": 128}
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
lowerCamelCase : List[Any] = BlenderbotTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int:
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = 'post_processor'
lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
if tokenizer_component_instance:
lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase = tuple(state['sep'] )
if "cls" in state:
lowerCAmelCase = tuple(state['cls'] )
lowerCAmelCase = False
if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = add_prefix_space
lowerCAmelCase = True
if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets:
lowerCAmelCase = trim_offsets
lowerCAmelCase = True
if changes_to_apply:
lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) )
lowerCAmelCase = component_class(**UpperCAmelCase__ )
setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple:
lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value
lowerCAmelCase = value
def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding:
lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any:
return token_ids_a + [self.eos_token_id]
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]:
lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(UpperCAmelCase__ )
lowerCAmelCase = ' '.join(UpperCAmelCase__ )
lowerCAmelCase = self.encode(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > self.model_max_length:
lowerCAmelCase = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
4
0
from __future__ import annotations
__A = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[list[list[int]], list[list[int]]]:
"""simple docstring"""
lowerCamelCase__: List[str] =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the reference grid
lowerCamelCase__: Optional[int] =1
lowerCamelCase__: int =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the action grid
lowerCamelCase__: Dict =init[0]
lowerCamelCase__: Dict =init[1]
lowerCamelCase__: List[str] =0
lowerCamelCase__: int =g + heuristic[x][y] # cost from starting cell to destination cell
lowerCamelCase__: Optional[int] =[[f, g, x, y]]
lowerCamelCase__: Tuple =False # flag that is set when search is complete
lowerCamelCase__: Union[str, Any] =False # flag set if we can't find expand
while not found and not resign:
if len(__a ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowerCamelCase__: int =cell.pop()
lowerCamelCase__: List[str] =next_cell[2]
lowerCamelCase__: List[Any] =next_cell[3]
lowerCamelCase__: Dict =next_cell[1]
if x == goal[0] and y == goal[1]:
lowerCamelCase__: Union[str, Any] =True
else:
for i in range(len(__a ) ): # to try out different valid actions
lowerCamelCase__: Any =x + DIRECTIONS[i][0]
lowerCamelCase__: List[Any] =y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowerCamelCase__: Optional[int] =g + cost
lowerCamelCase__: Optional[int] =ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowerCamelCase__: int =1
lowerCamelCase__: Any =i
lowerCamelCase__: Tuple =[]
lowerCamelCase__: Any =goal[0]
lowerCamelCase__: Union[str, Any] =goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowerCamelCase__: Any =x - DIRECTIONS[action[x][y]][0]
lowerCamelCase__: int =y - DIRECTIONS[action[x][y]][1]
lowerCamelCase__: Any =xa
lowerCamelCase__: int =ya
invpath.append([x, y] )
lowerCamelCase__: str =[]
for i in range(len(__a ) ):
path.append(invpath[len(__a ) - 1 - i] )
return path, action
if __name__ == "__main__":
__A = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__A = [0, 0]
# all coordinates are given in format [y,x]
__A = [len(grid) - 1, len(grid[0]) - 1]
__A = 1
# the cost map which pushes the path closer to the goal
__A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__A = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__A = 99
__A , __A = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
10
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ):
lowerCAmelCase = [0] * no_of_processes
lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i]
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase = []
lowerCAmelCase = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase = 0
lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ):
lowerCAmelCase = [0] * no_of_processes
for i in range(lowerCamelCase ):
lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__snake_case =4
__snake_case =[2, 5, 3, 7]
__snake_case =[0, 0, 0, 0]
__snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__snake_case =calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('T')
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (position - 1) // 2
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (2 * position) + 1
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (2 * position) + 2
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
def __init__( self) -> None:
_A : list[tuple[T, int]] = []
_A : dict[T, int] = {}
_A : int = 0
def __len__( self) -> int:
return self.elements
def __repr__( self) -> str:
return str(self.heap)
def _lowerCamelCase ( self) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
_A : int = self.elements
self.elements += 1
self._bubble_up(__lowerCamelCase)
def _lowerCamelCase ( self) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1)
_A , _A : Optional[Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_A , _A : str = self.heap[0]
self._bubble_down(__lowerCamelCase)
return elem
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Update the weight of the given key
_A : Optional[Any] = self.position_map[elem]
_A : Any = (elem, weight)
if position > 0:
_A : Any = get_parent_position(__lowerCamelCase)
_A , _A : Tuple = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__lowerCamelCase)
else:
self._bubble_down(__lowerCamelCase)
else:
self._bubble_down(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
_A : Optional[int] = self.position_map[elem]
if curr_pos == 0:
return None
_A : Optional[Any] = get_parent_position(__lowerCamelCase)
_A , _A : Any = self.heap[curr_pos]
_A , _A : str = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_up(__lowerCamelCase)
return None
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
_A : Any = self.position_map[elem]
_A , _A : Optional[int] = self.heap[curr_pos]
_A : Optional[int] = get_child_left_position(__lowerCamelCase)
_A : List[str] = get_child_right_position(__lowerCamelCase)
if child_left_position < self.elements and child_right_position < self.elements:
_A , _A : str = self.heap[child_left_position]
_A , _A : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
if child_left_position < self.elements:
_A , _A : int = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
else:
return None
if child_right_position < self.elements:
_A , _A : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
return None
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Swap the nodes at the given positions
_A : str = self.heap[nodea_pos][0]
_A : List[Any] = self.heap[nodea_pos][0]
_A , _A : Dict = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_A : Tuple = nodea_pos
_A : int = nodea_pos
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
def __init__( self) -> None:
_A : dict[T, dict[T, int]] = {}
_A : int = 0
def __repr__( self) -> str:
return str(self.connections)
def __len__( self) -> int:
return self.nodes
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
_A : Optional[int] = {}
self.nodes += 1
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(__lowerCamelCase)
self.add_node(__lowerCamelCase)
_A : Optional[int] = weight
_A : str = weight
def _UpperCAmelCase (UpperCamelCase__ : GraphUndirectedWeighted[T] , ):
_A : dict[T, int] = {node: maxsize for node in graph.connections}
_A : dict[T, T | None] = {node: None for node in graph.connections}
_A : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(UpperCamelCase__ , UpperCamelCase__ )
if priority_queue.is_empty():
return dist, parent
# initialization
_A : List[str] = priority_queue.extract_min()
_A : Tuple = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_A : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase__ , dist[neighbour] )
_A : int = node
# running prim's algorithm
while not priority_queue.is_empty():
_A : Optional[Any] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_A : Optional[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase__ , dist[neighbour] )
_A : Any = node
return dist, parent
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
UpperCAmelCase_ = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def lowerCamelCase__ ( A__ : List[str] , A__ : Any , A__ : Optional[int] ):
'''simple docstring'''
return max(metric_fn(A__ , A__ ) for gt in ground_truths )
def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int] , A__ : List[str] ):
'''simple docstring'''
__lowerCamelCase = [line.strip() for line in open(A__ , """r""" ).readlines()]
__lowerCamelCase = []
if args.gold_data_mode == "qa":
__lowerCamelCase = pd.read_csv(A__ , sep="""\t""" , header=A__ )
for answer_list in data[1]:
__lowerCamelCase = ast.literal_eval(A__ )
answers.append(A__ )
else:
__lowerCamelCase = [line.strip() for line in open(A__ , """r""" ).readlines()]
__lowerCamelCase = [[reference] for reference in references]
__lowerCamelCase = __lowerCamelCase = __lowerCamelCase = 0
for prediction, ground_truths in zip(A__ , A__ ):
total += 1
em += metric_max_over_ground_truths(A__ , A__ , A__ )
fa += metric_max_over_ground_truths(A__ , A__ , A__ )
__lowerCamelCase = 100.0 * em / total
__lowerCamelCase = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = args.k
__lowerCamelCase = [line.strip() for line in open(A__ , """r""" ).readlines()]
__lowerCamelCase = [line.strip() for line in open(A__ , """r""" ).readlines()]
__lowerCamelCase = __lowerCamelCase = 0
for hypo, reference in zip(A__ , A__ ):
__lowerCamelCase = set(hypo.split("""\t""" )[:k] )
__lowerCamelCase = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
__lowerCamelCase = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def lowerCamelCase__ ( A__ : int , A__ : Union[str, Any] , A__ : str ):
'''simple docstring'''
def strip_title(A__ : int ):
if title.startswith("""\"""" ):
__lowerCamelCase = title[1:]
if title.endswith("""\"""" ):
__lowerCamelCase = title[:-1]
return title
__lowerCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
A__ , return_tensors="""pt""" , padding=A__ , truncation=A__ , )["""input_ids"""].to(args.device )
__lowerCamelCase = rag_model.rag.question_encoder(A__ )
__lowerCamelCase = question_enc_outputs[0]
__lowerCamelCase = rag_model.retriever(
A__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
__lowerCamelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
__lowerCamelCase = []
for docs in all_docs:
__lowerCamelCase = [strip_title(A__ ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(A__ ) )
return provenance_strings
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : List[Any] ):
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
A__ , return_tensors="""pt""" , padding=A__ , truncation=A__ )
__lowerCamelCase = inputs_dict.input_ids.to(args.device )
__lowerCamelCase = inputs_dict.attention_mask.to(args.device )
__lowerCamelCase = rag_model.generate( # rag_model overwrites generate
A__ , attention_mask=A__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
__lowerCamelCase = rag_model.retriever.generator_tokenizer.batch_decode(A__ , skip_special_tokens=A__ )
if args.print_predictions:
for q, a in zip(A__ , A__ ):
logger.info("""Q: {} - A: {}""".format(A__ , A__ ) )
return answers
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=A__ , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=A__ , choices=["""exact""", """compressed""", """legacy"""] , type=A__ , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=A__ , type=A__ , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=A__ , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=A__ , type=A__ , required=A__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=A__ , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=A__ , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=A__ , type=A__ , required=A__ , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=A__ , type=A__ , required=A__ , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=A__ , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=A__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=A__ , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=A__ , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=A__ , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=50 , type=A__ , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def lowerCamelCase__ ( A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = {}
if args.model_type is None:
__lowerCamelCase = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
__lowerCamelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
__lowerCamelCase = args.n_docs
if args.index_name is not None:
__lowerCamelCase = args.index_name
if args.index_path is not None:
__lowerCamelCase = args.index_path
else:
__lowerCamelCase = BartForConditionalGeneration
__lowerCamelCase = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , A__ )
__lowerCamelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
__lowerCamelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(A__ , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(A__ ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
__lowerCamelCase = RagRetriever.from_pretrained(A__ , **A__ )
__lowerCamelCase = model_class.from_pretrained(A__ , retriever=A__ , **A__ )
model.retriever.init_retrieval()
else:
__lowerCamelCase = model_class.from_pretrained(A__ , **A__ )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
__lowerCamelCase = []
for line in tqdm(A__ ):
questions.append(line.strip() )
if len(A__ ) == args.eval_batch_size:
__lowerCamelCase = evaluate_batch_fn(A__ , A__ , A__ )
preds_file.write("""\n""".join(A__ ) + """\n""" )
preds_file.flush()
__lowerCamelCase = []
if len(A__ ) > 0:
__lowerCamelCase = evaluate_batch_fn(A__ , A__ , A__ )
preds_file.write("""\n""".join(A__ ) )
preds_file.flush()
score_fn(A__ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
UpperCAmelCase_ = get_args()
main(args)
12
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ):
# Format the message.
if name is None:
lowerCAmelCase = None
else:
lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
lowerCAmelCase = fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , ':' , val.size() )
else:
print(lowerCamelCase , ':' , lowerCamelCase )
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
lowerCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 2 )
lowerCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCAmelCase = param.view(*lowerCamelCase )
lowerCAmelCase = param.transpose(0 , 1 ).contiguous()
lowerCAmelCase = param.view(*lowerCamelCase )
return param
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ):
# The converted output model.
lowerCAmelCase = {}
# old versions did not store training args
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCAmelCase = ds_args.padded_vocab_size
lowerCAmelCase = ds_args.max_position_embeddings
lowerCAmelCase = ds_args.hidden_size
lowerCAmelCase = ds_args.num_layers
lowerCAmelCase = ds_args.num_attention_heads
lowerCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCAmelCase = config.n_head
# The hidden_size per head.
lowerCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCAmelCase = input_state_dict['checkpoint_version']
else:
lowerCAmelCase = 0.0
# The model.
lowerCAmelCase = input_state_dict['model']
# The language model.
lowerCAmelCase = model['language_model']
# The embeddings.
lowerCAmelCase = lm['embedding']
# The word embeddings.
lowerCAmelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
lowerCAmelCase = word_embeddings[: config.vocab_size, :]
lowerCAmelCase = word_embeddings
# The position embeddings.
lowerCAmelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
lowerCAmelCase = pos_embeddings
# The transformer.
lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
lowerCAmelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCAmelCase = layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCAmelCase = int(m.group(1 ) )
# The name of the operation.
lowerCAmelCase = m.group(2 )
# Is it a weight or a bias?
lowerCAmelCase = m.group(3 )
# The name of the layer.
lowerCAmelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
lowerCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCAmelCase = masked_bias
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
lowerCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCAmelCase = megatron_to_transformers[op_name]
lowerCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCAmelCase = transformer['final_layernorm.weight']
lowerCAmelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def a_ ( ):
# Create the argument parser.
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , )
lowerCAmelCase = parser.parse_args()
# Extract the basename.
lowerCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )
else:
lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCAmelCase = 'gelu_fast'
elif ds_args.openai_gelu:
lowerCAmelCase = 'gelu_new'
else:
lowerCAmelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
lowerCAmelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
lowerCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCAmelCase = GPTaConfig.from_json_file(args.config_file )
lowerCAmelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCAmelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
lowerCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
lowerCAmelCase = 'gpt2'
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase )
lowerCAmelCase = type(lowerCamelCase ).__name__
lowerCAmelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
4
0
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict):
SCREAMING_SNAKE_CASE_: Any = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small")
SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("google/mt5-small")
SCREAMING_SNAKE_CASE_: int = tokenizer("Hello there" , return_tensors="tf").input_ids
SCREAMING_SNAKE_CASE_: Any = tokenizer("Hi I am" , return_tensors="tf").input_ids
SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__).loss
SCREAMING_SNAKE_CASE_: str = -tf.math.reduce_mean(lowerCAmelCase__).numpy()
SCREAMING_SNAKE_CASE_: Tuple = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2E-4)
13
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCAmelCase_ :
def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None:
lowerCAmelCase , lowerCAmelCase = row, column
lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )]
def __str__( self : List[str] ) -> str:
lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
lowerCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) )
lowerCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(UpperCAmelCase__ : list[float] ) -> str:
nonlocal string_format_identifier
lowerCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
return str(self )
def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool:
if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any:
assert self.validate_indicies(UpperCAmelCase__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None:
assert self.validate_indicies(UpperCAmelCase__ )
lowerCAmelCase = value
def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == another.row and self.column == another.column
# Add
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : int ) -> Matrix:
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = -self[r, c]
return result
def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix:
return self + (-another)
def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix:
if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication
lowerCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c] * another
return result
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication
assert self.column == another.row
lowerCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})'''
raise TypeError(UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix:
lowerCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
lowerCAmelCase = self[r, c]
return result
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any:
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
lowerCAmelCase = v.transpose()
lowerCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a_ ( ):
# a^(-1)
lowerCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
lowerCAmelCase = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3
lowerCAmelCase = Matrix(3 , 1 , 0 )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' )
def a_ ( ):
import doctest
doctest.testmod()
testa()
4
0
from __future__ import annotations
from fractions import Fraction
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
"""simple docstring"""
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[str]:
"""simple docstring"""
A__ = []
A__ = 11
A__ = int('''1''' + '''0''' * digit_len )
for num in range(lowercase_ , lowercase_ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowercase_ , lowercase_ ):
solutions.append(f"""{num}/{den}""" )
den += 1
num += 1
A__ = 10
return solutions
def SCREAMING_SNAKE_CASE ( lowercase_ = 2 ) -> int:
"""simple docstring"""
A__ = 1.0
for fraction in fraction_list(lowercase_ ):
A__ = Fraction(lowercase_ )
result *= frac.denominator / frac.numerator
return int(lowercase_ )
if __name__ == "__main__":
print(solution())
14
'''simple docstring'''
class UpperCAmelCase_ :
def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None:
lowerCAmelCase = len(UpperCAmelCase__ )
lowerCAmelCase = [0] * len_array
if len_array > 0:
lowerCAmelCase = array[0]
for i in range(1 , UpperCAmelCase__ ):
lowerCAmelCase = self.prefix_sum[i - 1] + array[i]
def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool:
lowerCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase__ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
4
0
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
SCREAMING_SNAKE_CASE :Dict = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
SCREAMING_SNAKE_CASE :List[Any] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
SCREAMING_SNAKE_CASE :Dict = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
SCREAMING_SNAKE_CASE :Union[str, Any] = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
SCREAMING_SNAKE_CASE :List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Value("string" ),
} ) ,homepage="https://github.com/openai/human-eval" ,codebase_urls=["https://github.com/openai/human-eval"] ,reference_urls=["https://github.com/openai/human-eval"] ,license=_LICENSE ,)
def UpperCamelCase_ ( self : str ,A : int ,A : Union[str, Any] ,A : Optional[int]=[1, 10, 1_00] ,A : Union[str, Any]=4 ,A : Dict=3.0 ):
if os.getenv("HF_ALLOW_CODE_EVAL" ,0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("This metric is currently not supported on Windows." )
with ThreadPoolExecutor(max_workers=A ) as executor:
__A = []
__A = Counter()
__A = 0
__A = defaultdict(A )
for task_id, (candidates, test_case) in enumerate(zip(A ,A ) ):
for candidate in candidates:
__A = candidate + "\n" + test_case
__A = (test_program, timeout, task_id, completion_id[task_id])
__A = executor.submit(A ,*A )
futures.append(A )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(A ):
__A = future.result()
results[result["task_id"]].append((result["completion_id"], result) )
__A , __A = [], []
for result in results.values():
result.sort()
__A = [r[1]["passed"] for r in result]
total.append(len(A ) )
correct.append(sum(A ) )
__A = np.array(A )
__A = np.array(A )
__A = k
__A = {f'''pass@{k}''': estimate_pass_at_k(A ,A ,A ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
def estimator(a_ , a_ , a_ ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(a_ , a_ ):
__A = itertools.repeat(a_ , len(a_ ) )
else:
assert len(a_ ) == len(a_ )
__A = iter(a_ )
return np.array([estimator(int(a_ ) , int(a_ ) , a_ ) for n, c in zip(a_ , a_ )] )
15
'''simple docstring'''
def a_ ( lowerCamelCase : Optional[Any] ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def a_ ( lowerCamelCase : dict[int, list[int]] ):
lowerCAmelCase = 0
lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph
lowerCAmelCase = [0] * n
lowerCAmelCase = [False] * n
def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ):
lowerCAmelCase = True
lowerCAmelCase = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ )
lowerCAmelCase = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
lowerCAmelCase = min(low[at] , low[to] )
lowerCAmelCase = []
for i in range(lowerCamelCase ):
if not visited[i]:
dfs(lowerCamelCase , -1 , lowerCamelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
4
0
"""simple docstring"""
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
if "model" in orig_key:
lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' )
if "norm1" in orig_key:
lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' )
if "norm2" in orig_key:
lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' )
if "norm" in orig_key:
lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' )
if "transformer" in orig_key:
lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1]
lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" )
if "mha.attn" in orig_key:
lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' )
if "mha" in orig_key:
lowercase__ : str = orig_key.replace('''mha''' , '''attention''' )
if "W_q" in orig_key:
lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' )
if "W_k" in orig_key:
lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' )
if "W_v" in orig_key:
lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' )
if "ff1" in orig_key:
lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' )
if "ff2" in orig_key:
lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' )
if "ff" in orig_key:
lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' )
if "mlm_class" in orig_key:
lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' )
if "mlm" in orig_key:
lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' )
if "cls" not in orig_key:
lowercase__ : Optional[Any] = '''yoso.''' + orig_key
return orig_key
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
lowercase__ : Tuple = val
lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias''']
lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2
return orig_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict''']
lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase )
lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase )
lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase )
print(model.load_state_dict(__lowerCamelCase ) )
model.eval()
model.save_pretrained(__lowerCamelCase )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The json file for YOSO model config.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase_ = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
def a_ ( lowerCamelCase : Any ):
lowerCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' )
if "norm" in key:
lowerCAmelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase = key[key.find('block' ) + len('block' )]
lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' )
if "attn.q" in key:
lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' )
if "bot_conv" in key:
lowerCAmelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
lowerCAmelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
lowerCAmelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
lowerCAmelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
lowerCAmelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' )
lowerCAmelCase = value
return new_state_dict
def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase = kv_bias[config.hidden_sizes[i] :]
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return image
@torch.no_grad()
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ):
lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
lowerCAmelCase = GLPNImageProcessor()
# prepare image
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) )
# rename keys
lowerCAmelCase = rename_keys(lowerCamelCase )
# key and value matrices need special treatment
read_in_k_v(lowerCamelCase , lowerCamelCase )
# create HuggingFace model and load state dict
lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase )
model.load_state_dict(lowerCamelCase )
model.eval()
# forward pass
lowerCAmelCase = model(lowerCamelCase )
lowerCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
lowerCAmelCase = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
lowerCAmelCase = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
__snake_case =parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray]
__UpperCAmelCase : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version('>=', '0.0.12')
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : np.ndarray
__UpperCAmelCase : List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
17
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self : str ) -> List[str]:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
@slow
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach()
self.assertEqual(output.shape , UpperCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
def _snake_case ( lowerCAmelCase : int = 3 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 1_0_0_0_0_0_0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE_ : List[str] = 1
for current_denominator in range(1 , limit + 1 ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
SCREAMING_SNAKE_CASE_ : List[str] = current_numerator
SCREAMING_SNAKE_CASE_ : int = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_00_00_00))
18
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def a_ ( lowerCamelCase : Dict ):
lowerCAmelCase = {}
lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids']
lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] )
return output
__snake_case =HfArgumentParser(PretokenizationArguments)
__snake_case =parser.parse_args()
if args.num_workers is None:
__snake_case =multiprocessing.cpu_count()
__snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir)
__snake_case =time.time()
__snake_case =load_dataset(args.dataset_name, split="""train""")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
__snake_case =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
__snake_case =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_( self ) -> str:
lowerCamelCase_ = 10
def SCREAMING_SNAKE_CASE_( self ) -> str:
lowerCamelCase_ = [1, 2, 3, 4]
lowerCamelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> Dict:
lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> int:
lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]:
lowerCamelCase_ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase )
self.assertEqual(lowercase , [] )
def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]:
lowerCamelCase_ = ""
lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase )
self.assertEqual(lowercase , [] )
self.assertEqual(lowercase , [] )
def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]:
lowerCamelCase_ = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase )
lowerCamelCase_ = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(lowercase , lowercase )
lowerCamelCase_ = ["It was the best of times."]
self.assertEqual(lowercase , lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]:
lowerCamelCase_ = torch.tensor([1, 2, 3, 4] )
lowerCamelCase_ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]:
lowerCamelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
lowerCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE_( self ) -> Tuple:
lowerCamelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
lowerCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE_( self ) -> Any:
lowerCamelCase_ = 101
lowerCamelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
lowerCamelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
lowerCamelCase_ = compute_token_type_ids(lowercase , lowercase )
np.testing.assert_array_equal(lowercase , lowercase )
19
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case =logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCamelCase : bool = field(
default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[int] = field(
default=__lowercase , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowercase , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = v.to_dict()
return d
4
0
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float:
def get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str:
lowercase : Tuple = []
lowercase : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
lowercase : Dict = int(max(0 , i - limit ) )
lowercase : Dict = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(SCREAMING_SNAKE_CASE__ )
lowercase : Any = f"{_stra[0:_stra.index(SCREAMING_SNAKE_CASE__ )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE__ ) + 1:]}"
return "".join(SCREAMING_SNAKE_CASE__ )
# matching characters
lowercase : Optional[Any] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowercase : List[Any] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowercase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ )
# transposition
lowercase : List[Any] = (
len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if ca != ca] ) // 2
)
if not match_count:
lowercase : str = 0.0
else:
lowercase : Union[str, Any] = (
1
/ 3
* (
match_count / len(SCREAMING_SNAKE_CASE__ )
+ match_count / len(SCREAMING_SNAKE_CASE__ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
lowercase : Union[str, Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("""hello""", """world"""))
20
'''simple docstring'''
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__snake_case =logging.get_logger("""transformers.models.encodec""")
__snake_case ={
"""quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""",
"""quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""",
"""quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""",
"""quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""",
}
__snake_case ={
"""encoder.model.0.conv.conv""": """encoder.layers.0.conv""",
"""encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""",
"""encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""",
"""encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""",
"""encoder.model.3.conv.conv""": """encoder.layers.3.conv""",
"""encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""",
"""encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""",
"""encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""",
"""encoder.model.6.conv.conv""": """encoder.layers.6.conv""",
"""encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""",
"""encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""",
"""encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""",
"""encoder.model.9.conv.conv""": """encoder.layers.9.conv""",
"""encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""",
"""encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""",
"""encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""",
"""encoder.model.12.conv.conv""": """encoder.layers.12.conv""",
"""encoder.model.13.lstm""": """encoder.layers.13.lstm""",
"""encoder.model.15.conv.conv""": """encoder.layers.15.conv""",
}
__snake_case ={
"""encoder.model.0.conv.norm""": """encoder.layers.0.norm""",
"""encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""",
"""encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""",
"""encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""",
"""encoder.model.3.conv.norm""": """encoder.layers.3.norm""",
"""encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""",
"""encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""",
"""encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""",
"""encoder.model.6.conv.norm""": """encoder.layers.6.norm""",
"""encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""",
"""encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""",
"""encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""",
"""encoder.model.9.conv.norm""": """encoder.layers.9.norm""",
"""encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""",
"""encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""",
"""encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""",
"""encoder.model.12.conv.norm""": """encoder.layers.12.norm""",
"""encoder.model.15.conv.norm""": """encoder.layers.15.norm""",
}
__snake_case ={
"""decoder.model.0.conv.conv""": """decoder.layers.0.conv""",
"""decoder.model.1.lstm""": """decoder.layers.1.lstm""",
"""decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""",
"""decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""",
"""decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""",
"""decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""",
"""decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""",
"""decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""",
"""decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""",
"""decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""",
"""decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""",
"""decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""",
"""decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""",
"""decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""",
"""decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""",
"""decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""",
"""decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""",
"""decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""",
"""decoder.model.15.conv.conv""": """decoder.layers.15.conv""",
}
__snake_case ={
"""decoder.model.0.conv.norm""": """decoder.layers.0.norm""",
"""decoder.model.3.convtr.norm""": """decoder.layers.3.norm""",
"""decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""",
"""decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""",
"""decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""",
"""decoder.model.6.convtr.norm""": """decoder.layers.6.norm""",
"""decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""",
"""decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""",
"""decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""",
"""decoder.model.9.convtr.norm""": """decoder.layers.9.norm""",
"""decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""",
"""decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""",
"""decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""",
"""decoder.model.12.convtr.norm""": """decoder.layers.12.norm""",
"""decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""",
"""decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""",
"""decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""",
"""decoder.model.15.conv.norm""": """decoder.layers.15.norm""",
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__snake_case ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__snake_case =[]
__snake_case =[]
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ):
for attribute in key.split('.' ):
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase )
if weight_type is not None:
lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape
else:
lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
elif weight_type == "running_mean":
lowerCAmelCase = value
elif weight_type == "running_var":
lowerCAmelCase = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ):
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ):
lowerCAmelCase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase = MAPPING_48K
else:
raise ValueError(f'''Unsupported model: {model_name}''' )
for name, value in orig_dict.items():
if should_ignore(lowerCamelCase , lowerCamelCase ):
logger.info(f'''{name} was ignored''' )
continue
lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase , lowerCAmelCase = key.split('.*.' )
if prefix in name and suffix in name:
lowerCAmelCase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith('embed' ) and name.endswith('embed_avg' ):
continue
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2]
lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase )
if "weight_g" in name:
lowerCAmelCase = 'weight_g'
elif "weight_v" in name:
lowerCAmelCase = 'weight_v'
elif "weight_ih_l0" in name:
lowerCAmelCase = 'weight_ih_l0'
elif "weight_hh_l0" in name:
lowerCAmelCase = 'weight_hh_l0'
elif "bias_ih_l0" in name:
lowerCAmelCase = 'bias_ih_l0'
elif "bias_hh_l0" in name:
lowerCAmelCase = 'bias_hh_l0'
elif "weight_ih_l1" in name:
lowerCAmelCase = 'weight_ih_l1'
elif "weight_hh_l1" in name:
lowerCAmelCase = 'weight_hh_l1'
elif "bias_ih_l1" in name:
lowerCAmelCase = 'bias_ih_l1'
elif "bias_hh_l1" in name:
lowerCAmelCase = 'bias_hh_l1'
elif "bias" in name:
lowerCAmelCase = 'bias'
elif "weight" in name:
lowerCAmelCase = 'weight'
elif "running_mean" in name:
lowerCAmelCase = 'running_mean'
elif "running_var" in name:
lowerCAmelCase = 'running_var'
elif "num_batches_tracked" in name:
lowerCAmelCase = 'num_batches_tracked'
else:
lowerCAmelCase = None
set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
continue
if not is_used:
unused_weights.append(lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
@torch.no_grad()
def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ):
if config_path is not None:
lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase )
else:
lowerCAmelCase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase = [8, 5, 4, 4]
lowerCAmelCase = [2.2]
lowerCAmelCase = 64
lowerCAmelCase = 32000
lowerCAmelCase = 2048
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
elif model_name == "encodec_48khz":
lowerCAmelCase = [8, 5, 4, 2]
lowerCAmelCase = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase = 48000
lowerCAmelCase = 2
lowerCAmelCase = False
lowerCAmelCase = 'time_group_norm'
lowerCAmelCase = True
lowerCAmelCase = 1.0
lowerCAmelCase = 0.01
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = EncodecModel(lowerCamelCase )
lowerCAmelCase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowerCamelCase )
lowerCAmelCase = torch.load(lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase = original_checkpoint['best_state']
recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase )
model.save_pretrained(lowerCamelCase )
if repo_id:
print('Pushing to the hub...' )
feature_extractor.push_to_hub(lowerCamelCase )
model.push_to_hub(lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--model""",
default="""encodec_24khz""",
type=str,
help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
__snake_case =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
4
0
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.