infinityofspace/python_codestyles-random-500 · Datasets at Fast360
{
// 获取包含Hugging Face文本的span元素
const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap');
spans.forEach(span => {
if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) {
span.textContent = 'AI快站';
}
});
});
// 替换logo图片的alt属性
document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => {
if (img.alt.match(/Hugging\s*Face/i)) {
img.alt = 'AI快站 logo';
}
});
}
// 替换导航栏中的链接
function replaceNavigationLinks() {
// 已替换标记,防止重复运行
if (window._navLinksReplaced) {
return;
}
// 已经替换过的链接集合,防止重复替换
const replacedLinks = new Set();
// 只在导航栏区域查找和替换链接
const headerArea = document.querySelector('header') || document.querySelector('nav');
if (!headerArea) {
return;
}
// 在导航区域内查找链接
const navLinks = headerArea.querySelectorAll('a');
navLinks.forEach(link => {
// 如果已经替换过,跳过
if (replacedLinks.has(link)) return;
const linkText = link.textContent.trim();
const linkHref = link.getAttribute('href') || '';
// 替换Spaces链接 - 仅替换一次
if (
(linkHref.includes('/spaces') || linkHref === '/spaces' ||
linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) &&
linkText !== 'OCR模型免费转Markdown' &&
linkText !== 'OCR模型免费转Markdown'
) {
link.textContent = 'OCR模型免费转Markdown';
link.href = 'https://fast360.xyz';
link.setAttribute('target', '_blank');
link.setAttribute('rel', 'noopener noreferrer');
replacedLinks.add(link);
}
// 删除Posts链接
else if (
(linkHref.includes('/posts') || linkHref === '/posts' ||
linkText === 'Posts' || linkText.match(/^s*Postss*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
// 替换Docs链接 - 仅替换一次
else if (
(linkHref.includes('/docs') || linkHref === '/docs' ||
linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) &&
linkText !== '模型下载攻略'
) {
link.textContent = '模型下载攻略';
link.href = '/';
replacedLinks.add(link);
}
// 删除Enterprise链接
else if (
(linkHref.includes('/enterprise') || linkHref === '/enterprise' ||
linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
});
// 查找可能嵌套的Spaces和Posts文本
const textNodes = [];
function findTextNodes(element) {
if (element.nodeType === Node.TEXT_NODE) {
const text = element.textContent.trim();
if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') {
textNodes.push(element);
}
} else {
for (const child of element.childNodes) {
findTextNodes(child);
}
}
}
// 只在导航区域内查找文本节点
findTextNodes(headerArea);
// 替换找到的文本节点
textNodes.forEach(node => {
const text = node.textContent.trim();
if (text === 'Spaces') {
node.textContent = node.textContent.replace(/Spaces/g, 'OCR模型免费转Markdown');
} else if (text === 'Posts') {
// 删除Posts文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
} else if (text === 'Enterprise') {
// 删除Enterprise文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
}
});
// 标记已替换完成
window._navLinksReplaced = true;
}
// 替换代码区域中的域名
function replaceCodeDomains() {
// 特别处理span.hljs-string和span.njs-string元素
document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换hljs-string类的span中的域名(移除多余的转义符号)
document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换pre和code标签中包含git clone命令的域名
document.querySelectorAll('pre, code').forEach(element => {
if (element.textContent && element.textContent.includes('git clone')) {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 处理特定的命令行示例
document.querySelectorAll('pre, code').forEach(element => {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
// 针对git clone命令的专门处理
if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 特别处理模型下载页面上的代码片段
document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => {
const content = container.innerHTML;
if (content && content.includes('huggingface.co')) {
container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 特别处理模型仓库克隆对话框中的代码片段
try {
// 查找包含"Clone this model repository"标题的对话框
const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]');
if (cloneDialog) {
// 查找对话框中所有的代码片段和命令示例
const codeElements = cloneDialog.querySelectorAll('pre, code, span');
codeElements.forEach(element => {
if (element.textContent && element.textContent.includes('huggingface.co')) {
if (element.innerHTML.includes('huggingface.co')) {
element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
}
// 更精确地定位克隆命令中的域名
document.querySelectorAll('[data-target]').forEach(container => {
const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string');
codeBlocks.forEach(block => {
if (block.textContent && block.textContent.includes('huggingface.co')) {
if (block.innerHTML.includes('huggingface.co')) {
block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
});
} catch (e) {
// 错误处理但不打印日志
}
}
// 当DOM加载完成后执行替换
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', () => {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
});
} else {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
}
// 增加一个MutationObserver来处理可能的动态元素加载
const observer = new MutationObserver(mutations => {
// 检查是否导航区域有变化
const hasNavChanges = mutations.some(mutation => {
// 检查是否存在header或nav元素变化
return Array.from(mutation.addedNodes).some(node => {
if (node.nodeType === Node.ELEMENT_NODE) {
// 检查是否是导航元素或其子元素
if (node.tagName === 'HEADER' || node.tagName === 'NAV' ||
node.querySelector('header, nav')) {
return true;
}
// 检查是否在导航元素内部
let parent = node.parentElement;
while (parent) {
if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') {
return true;
}
parent = parent.parentElement;
}
}
return false;
});
});
// 只在导航区域有变化时执行替换
if (hasNavChanges) {
// 重置替换状态,允许再次替换
window._navLinksReplaced = false;
replaceHeaderBranding();
replaceNavigationLinks();
}
});
// 开始观察document.body的变化,包括子节点
if (document.body) {
observer.observe(document.body, { childList: true, subtree: true });
} else {
document.addEventListener('DOMContentLoaded', () => {
observer.observe(document.body, { childList: true, subtree: true });
});
}
})();
\n \"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return filename\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r {'col_1': '0', 'col_2': 0, 'col_3': 0.0},\r {'col_1': '1', 'col_2': 1, 'col_3': 1.0},\r {'col_1': '2', 'col_2': 2, 'col_3': 2.0},\r {'col_1': '3', 'col_2': 3, 'col_3': 3.0},\r]\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r {'col_1': '4', 'col_2': 4, 'col_3': 4.0},\r {'col_1': '5', 'col_2': 5, 'col_3': 5.0},\r]\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'col_1': ['0', '1', '2', '3'],\r 'col_2': [0, 1, 2, 3],\r 'col_3': [0.0, 1.0, 2.0, 3.0],\r}\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r {'col_3': 0.0, 'col_1': '0', 'col_2': 0},\r {'col_3': 1.0, 'col_1': '1', 'col_2': 1},\r]\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r {'col_1': 's0', 'col_2': 0, 'col_3': 0.0},\r {'col_1': 's1', 'col_2': 1, 'col_3': 1.0},\r {'col_1': 's2', 'col_2': 2, 'col_3': 2.0},\r {'col_1': 's3', 'col_2': 3, 'col_3': 3.0},\r]\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r return DATA_DICT_OF_LISTS\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdatasets.Dataset.from_dict(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.arrow\"\"\"\t\t\t\t)\r dataset.map(cache_file_name=SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.sqlite\"\"\"\t\t\t\t)\r with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t) as con:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcon.cursor()\r cur.execute(\"\"\"CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)\"\"\"\t\t\t\t)\r for item in DATA:\r cur.execute(\"\"\"INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)\"\"\"\t\t\t\t, tuple(item.values()\t\t\t\t)\t\t\t\t)\r con.commit()\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.csv\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, newline=\"\"\"\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcsv.DictWriter(SCREAMING_SNAKE_CASE__\t\t\t\t, fieldnames=[\"\"\"col_1\"\"\", \"\"\"col_2\"\"\", \"\"\"col_3\"\"\"]\t\t\t\t)\r writer.writeheader()\r for item in DATA:\r writer.writerow(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset2.csv\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, newline=\"\"\"\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcsv.DictWriter(SCREAMING_SNAKE_CASE__\t\t\t\t, fieldnames=[\"\"\"col_1\"\"\", \"\"\"col_2\"\"\", \"\"\"col_3\"\"\"]\t\t\t\t)\r writer.writeheader()\r for item in DATA:\r writer.writerow(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r import bza\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.csv.bz2\"\"\"\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"rb\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tf.read()\r # data = bytes(FILE_CONTENT, \"utf-8\")\r with bza.open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"wb\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.csv.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.csv.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(csv_path.replace(\"\"\".csv\"\"\"\t\t\t\t, \"\"\".CSV\"\"\"\t\t\t\t)\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(csva_path.replace(\"\"\".csv\"\"\"\t\t\t\t, \"\"\".CSV\"\"\"\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_with_dir.csv.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.parquet\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpa.schema(\r {\r \"\"\"col_1\"\"\": pa.string(),\r \"\"\"col_2\"\"\": pa.intaa(),\r \"\"\"col_3\"\"\": pa.floataa(),\r }\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"wb\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpq.ParquetWriter(SCREAMING_SNAKE_CASE__\t\t\t\t, schema=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)] for k in DATA[0]}\t\t\t\t, schema=SCREAMING_SNAKE_CASE__\t\t\t\t)\r writer.write_table(SCREAMING_SNAKE_CASE__\t\t\t\t)\r writer.close()\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.json\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"data\"\"\": DATA}\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r json.dump(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.json\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"data\"\"\": DATA_DICT_OF_LISTS}\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r json.dump(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.jsonl\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in DATA:\r f.write(json.dumps(SCREAMING_SNAKE_CASE__\t\t\t\t) + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset2.jsonl\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in DATA:\r f.write(json.dumps(SCREAMING_SNAKE_CASE__\t\t\t\t) + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_312.jsonl\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in DATA_312:\r f.write(json.dumps(SCREAMING_SNAKE_CASE__\t\t\t\t) + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset-str.jsonl\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in DATA_STR:\r f.write(json.dumps(SCREAMING_SNAKE_CASE__\t\t\t\t) + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r import gzip\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.txt.gz\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"rb\"\"\"\t\t\t\t) as orig_file:\r with gzip.open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"wb\"\"\"\t\t\t\t) as zipped_file:\r zipped_file.writelines(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r import gzip\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.jsonl.gz\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"rb\"\"\"\t\t\t\t) as orig_file:\r with gzip.open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"wb\"\"\"\t\t\t\t) as zipped_file:\r zipped_file.writelines(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.jsonl.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_nested.jsonl.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"nested\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_with_dir.jsonl.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.jsonl.tar\"\"\"\r with tarfile.TarFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.add(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r f.add(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_nested.jsonl.tar\"\"\"\r with tarfile.TarFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.add(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"nested\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"0\"\"\", \"\"\"1\"\"\", \"\"\"2\"\"\", \"\"\"3\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.txt\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in data:\r f.write(item + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"0\"\"\", \"\"\"1\"\"\", \"\"\"2\"\"\", \"\"\"3\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset2.txt\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in data:\r f.write(item + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"0\"\"\", \"\"\"1\"\"\", \"\"\"2\"\"\", \"\"\"3\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.abc\"\"\"\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r for item in data:\r f.write(item + \"\"\"\\n\"\"\"\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.text.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_with_dir.text.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.join(\"\"\"main_dir\"\"\"\t\t\t\t, os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.ext.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(\"\"\"unsupported.ext\"\"\"\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(\"\"\"unsupported_2.ext\"\"\"\t\t\t\t)\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\\n\"\"\".join([\"\"\"First\"\"\", \"\"\"Second\\u2029with Unicode new line\"\"\", \"\"\"Third\"\"\"]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(tmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset_with_unicode_new_lines.txt\"\"\"\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, encoding=\"\"\"utf-8\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return path\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r return os.path.join(\"\"\"tests\"\"\"\t\t\t\t, \"\"\"features\"\"\"\t\t\t\t, \"\"\"data\"\"\"\t\t\t\t, \"\"\"test_image_rgb.jpg\"\"\"\t\t\t\t)\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r return os.path.join(\"\"\"tests\"\"\"\t\t\t\t, \"\"\"features\"\"\"\t\t\t\t, \"\"\"data\"\"\"\t\t\t\t, \"\"\"test_audio_44100.wav\"\"\"\t\t\t\t)\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data\"\"\"\t\t\t\t) / \"\"\"dataset.img.zip\"\"\"\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r f.write(SCREAMING_SNAKE_CASE__\t\t\t\t, arcname=os.path.basename(SCREAMING_SNAKE_CASE__\t\t\t\t).replace(\"\"\".jpg\"\"\"\t\t\t\t, \"\"\"2.jpg\"\"\"\t\t\t\t)\t\t\t\t)\r return path\r\r\r\r\r\r\r\r@pytest.fixture(scope=\"\"\"session\"\"\"\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttmp_path_factory.mktemp(\"\"\"data_dir\"\"\"\t\t\t\t)\r\r (data_dir / \"subdir\").mkdir()\r with open(data_dir / \"\"\"subdir\"\"\" / \"\"\"train.txt\"\"\"\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(\"\"\"foo\\n\"\"\" * 10\t\t\t\t)\r with open(data_dir / \"\"\"subdir\"\"\" / \"\"\"test.txt\"\"\"\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(\"\"\"bar\\n\"\"\" * 10\t\t\t\t)\r # hidden file\r with open(data_dir / \"\"\"subdir\"\"\" / \"\"\".test.txt\"\"\"\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(\"\"\"bar\\n\"\"\" * 10\t\t\t\t)\r\r # hidden directory\r (data_dir / \".subdir\").mkdir()\r with open(data_dir / \"\"\".subdir\"\"\" / \"\"\"train.txt\"\"\"\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(\"\"\"foo\\n\"\"\" * 10\t\t\t\t)\r with open(data_dir / \"\"\".subdir\"\"\" / \"\"\"test.txt\"\"\"\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r f.write(\"\"\"bar\\n\"\"\" * 10\t\t\t\t)\r\r return data_dir\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rimport unicodedata\rfrom shutil import copyfile\rfrom typing import Any, Dict, List, Optional, Tuple\r\rimport sentencepiece as spm\r\rfrom ...tokenization_utils import AddedToken, PreTrainedTokenizer\rfrom ...utils import SPIECE_UNDERLINE, logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{'vocab_file': 'spiece.model'}\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'vocab_file': {\r 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',\r }\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=[\"\", \"\"] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Dict[str, Any]] = None ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAddedToken(_UpperCAmelCase ,\t\t\t\t\t\tlstrip=_UpperCAmelCase ,\t\t\t\t\t\trstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) else mask_token\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{} if sp_model_kwargs is None else sp_model_kwargs\r\r super().__init__(\r do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tremove_space=_UpperCAmelCase ,\t\t\t\t\t\tkeep_accents=_UpperCAmelCase ,\t\t\t\t\t\tbos_token=_UpperCAmelCase ,\t\t\t\t\t\teos_token=_UpperCAmelCase ,\t\t\t\t\t\tunk_token=_UpperCAmelCase ,\t\t\t\t\t\tsep_token=_UpperCAmelCase ,\t\t\t\t\t\tpad_token=_UpperCAmelCase ,\t\t\t\t\t\tcls_token=_UpperCAmelCase ,\t\t\t\t\t\tmask_token=_UpperCAmelCase ,\t\t\t\t\t\tadditional_special_tokens=_UpperCAmelCase ,\t\t\t\t\t\tsp_model_kwargs=self.sp_model_kwargs ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t3\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdo_lower_case\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tremove_space\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkeep_accents\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_file\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.Load(_UpperCAmelCase )\r\r try:\r import jieba\r except ModuleNotFoundError as error:\r raise error.__class__(\r \"\"\"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. \"\"\"\r \"\"\"See https://pypi.org/project/jieba/ for installation.\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tjieba\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr.maketrans(\"\"\" \\n\"\"\" ,\t\t\t\t\t\t\"\"\"\\u2582\\u2583\"\"\" )\r\r\r @property\r # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return len(self.sp_model )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}\r vocab.update(self.added_tokens_encoder )\r return vocab\r\r\r def __getstate__( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.__dict__.copy()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r return state\r\r\r def __setstate__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\td\r\r # for backward compatibility\r if not hasattr(self ,\t\t\t\t\t\t\"\"\"sp_model_kwargs\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.Load(self.vocab_file )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.remove_space:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\" \"\"\".join(inputs.strip().split() )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.replace(\"\"\"``\"\"\" ,\t\t\t\t\t\t\"\"\"\\\"\"\"\" ).replace(\"\"\"''\"\"\" ,\t\t\t\t\t\t\"\"\"\\\"\"\"\" )\r\r if not self.keep_accents:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunicodedata.normalize(\"\"\"NFKD\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )\r if self.do_lower_case:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.lower()\r\r return outputs\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.preprocess_text(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.encode(_UpperCAmelCase ,\t\t\t\t\t\tout_type=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for piece in pieces:\r if len(_UpperCAmelCase ) > 1 and piece[-1] == str(\"\"\",\"\"\" ) and piece[-2].isdigit():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"\"\"\" ) )\r if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:\r if len(cur_pieces[0] ) == 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcur_pieces[1:]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcur_pieces[0][1:]\r cur_pieces.append(piece[-1] )\r new_pieces.extend(_UpperCAmelCase )\r else:\r new_pieces.append(_UpperCAmelCase )\r\r return new_pieces\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.sp_model.PieceToId(_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.sp_model.IdToPiece(_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join(_UpperCAmelCase ).replace(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\" \"\"\" ).strip()\r return out_string\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.cls_token_id]\r if token_ids_a is None:\r return token_ids_a + sep + cls\r return token_ids_a + sep + token_ids_a + sep + cls\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if already_has_special_tokens:\r return super().get_special_tokens_mask(\r token_ids_a=_UpperCAmelCase ,\t\t\t\t\t\ttoken_ids_a=_UpperCAmelCase ,\t\t\t\t\t\talready_has_special_tokens=_UpperCAmelCase )\r\r if token_ids_a is not None:\r return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]\r return ([0] * len(_UpperCAmelCase )) + [1, 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[2]\r\r if token_ids_a is None:\r return len(token_ids_a + sep ) * [0] + cls_segment_id\r return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[str] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not os.path.isdir(_UpperCAmelCase ):\r logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )\r return\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(\r _UpperCAmelCase ,\t\t\t\t\t\t(filename_prefix + \"\"\"-\"\"\" if filename_prefix else \"\"\"\"\"\") + VOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r\r if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):\r copyfile(self.vocab_file ,\t\t\t\t\t\t_UpperCAmelCase )\r elif not os.path.isfile(self.vocab_file ):\r with open(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"wb\"\"\" ) as fi:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.serialized_model_proto()\r fi.write(_UpperCAmelCase )\r\r return (out_vocab_file,)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsuper()._decode(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttext.replace(\"\"\" \"\"\" ,\t\t\t\t\t\t\"\"\"\"\"\" ).replace(\"\"\"\\u2582\"\"\" ,\t\t\t\t\t\t\"\"\" \"\"\" ).replace(\"\"\"\\u2583\"\"\" ,\t\t\t\t\t\t\"\"\"\\n\"\"\" )\r return text\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152307,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom __future__ import annotations\r\rimport unittest\r\rfrom transformers import MobileBertConfig, is_tf_available\rfrom transformers.models.auto import get_values\rfrom transformers.testing_utils import require_tf, slow\r\rfrom ...test_configuration_common import ConfigTester\rfrom ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask\rfrom ...test_pipeline_mixin import PipelineTesterMixin\r\r\rif is_tf_available():\r import tensorflow as tf\r\r from transformers import (\r TF_MODEL_FOR_PRETRAINING_MAPPING,\r TFMobileBertForMaskedLM,\r TFMobileBertForMultipleChoice,\r TFMobileBertForNextSentencePrediction,\r TFMobileBertForPreTraining,\r TFMobileBertForQuestionAnswering,\r TFMobileBertForSequenceClassification,\r TFMobileBertForTokenClassification,\r TFMobileBertModel,\r )\r\r@require_tf\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Tuple = (\r (\r TFMobileBertModel,\r TFMobileBertForMaskedLM,\r TFMobileBertForNextSentencePrediction,\r TFMobileBertForPreTraining,\r TFMobileBertForQuestionAnswering,\r TFMobileBertForSequenceClassification,\r TFMobileBertForTokenClassification,\r TFMobileBertForMultipleChoice,\r )\r if is_tf_available()\r else ()\r )\r lowerCAmelCase_ : Optional[int] = (\r {\r \"\"\"feature-extraction\"\"\": TFMobileBertModel,\r \"\"\"fill-mask\"\"\": TFMobileBertForMaskedLM,\r \"\"\"question-answering\"\"\": TFMobileBertForQuestionAnswering,\r \"\"\"text-classification\"\"\": TFMobileBertForSequenceClassification,\r \"\"\"token-classification\"\"\": TFMobileBertForTokenClassification,\r \"\"\"zero-shot\"\"\": TFMobileBertForSequenceClassification,\r }\r if is_tf_available()\r else {}\r )\r lowerCAmelCase_ : Any = False\r lowerCAmelCase_ : List[Any] = False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsuper()._prepare_for_class(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\treturn_labels=_UpperCAmelCase )\r\r if return_labels:\r if model_class in get_values(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.zeros(self.model_tester.batch_size ,\t\t\t\t\t\tdtype=tf.intaa )\r\r return inputs_dict\r\r class lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=13 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=7 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=99 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=37 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=\"gelu\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=5_12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=3 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=None ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparent\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tseq_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tis_training\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_input_mask\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_token_type_ids\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tintermediate_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_act\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_position_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_vocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_sequence_label_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_choices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscope\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tembedding_size\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.vocab_size )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_input_mask:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trandom_attention_mask([self.batch_size, self.seq_length] )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_token_type_ids:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.type_vocab_size )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_labels:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\tself.type_sequence_label_size )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.num_labels )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\tself.num_choices )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tMobileBertConfig(\r vocab_size=self.vocab_size ,\t\t\t\t\t\thidden_size=self.hidden_size ,\t\t\t\t\t\tnum_hidden_layers=self.num_hidden_layers ,\t\t\t\t\t\tnum_attention_heads=self.num_attention_heads ,\t\t\t\t\t\tintermediate_size=self.intermediate_size ,\t\t\t\t\t\thidden_act=self.hidden_act ,\t\t\t\t\t\thidden_dropout_prob=self.hidden_dropout_prob ,\t\t\t\t\t\tattention_probs_dropout_prob=self.attention_probs_dropout_prob ,\t\t\t\t\t\tmax_position_embeddings=self.max_position_embeddings ,\t\t\t\t\t\ttype_vocab_size=self.type_vocab_size ,\t\t\t\t\t\tinitializer_range=self.initializer_range ,\t\t\t\t\t\tembedding_size=self.embedding_size ,\t\t\t\t\t\t)\r\r return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertModel(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[input_ids, input_mask]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r\r self.parent.assertEqual(\r result.last_hidden_state.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.hidden_size) )\r self.parent.assertEqual(result.pooler_output.shape ,\t\t\t\t\t\t(self.batch_size, self.hidden_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForMaskedLM(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.vocab_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForNextSentencePrediction(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, 2) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForPreTraining(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(\r result.prediction_logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.vocab_size) )\r self.parent.assertEqual(result.seq_relationship_logits.shape ,\t\t\t\t\t\t(self.batch_size, 2) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.num_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForSequenceClassification(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.num_labels) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.num_choices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForMultipleChoice(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.tile(tf.expand_dims(_UpperCAmelCase ,\t\t\t\t\t\t1 ) ,\t\t\t\t\t\t(1, self.num_choices, 1) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.tile(tf.expand_dims(_UpperCAmelCase ,\t\t\t\t\t\t1 ) ,\t\t\t\t\t\t(1, self.num_choices, 1) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.tile(tf.expand_dims(_UpperCAmelCase ,\t\t\t\t\t\t1 ) ,\t\t\t\t\t\t(1, self.num_choices, 1) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"input_ids\"\"\": multiple_choice_inputs_ids,\r \"\"\"attention_mask\"\"\": multiple_choice_input_mask,\r \"\"\"token_type_ids\"\"\": multiple_choice_token_type_ids,\r }\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.num_choices) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.num_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForTokenClassification(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.num_labels) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForQuestionAnswering(config=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"attention_mask\"\"\": input_mask, \"\"\"token_type_ids\"\"\": token_type_ids}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.start_logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length) )\r self.parent.assertEqual(result.end_logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length) )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_config_and_inputs()\r (\r (\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t\r )\t\t\t\t\t\t\t\t=\t\t\tconfig_and_inputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"input_ids\"\"\": input_ids, \"\"\"token_type_ids\"\"\": token_type_ids, \"\"\"attention_mask\"\"\": input_mask}\r return config, inputs_dict\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertModelTest.TFMobileBertModelTester(self )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConfigTester(self ,\t\t\t\t\t\tconfig_class=_UpperCAmelCase ,\t\t\t\t\t\thidden_size=37 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.config_tester.run_common_tests()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase )\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for model_name in [\"google/mobilebert-uncased\"]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertModel.from_pretrained(_UpperCAmelCase )\r self.assertIsNotNone(_UpperCAmelCase )\r\r@require_tf\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFMobileBertForPreTraining.from_pretrained(\"\"\"google/mobilebert-uncased\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.constant([[0, 1, 2, 3, 4, 5]] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )[0]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[1, 6, 3_05_22]\r self.assertEqual(output.shape ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.constant(\r [\r [\r [-4.591_9547, -9.24_8295, -9.64_5256],\r [-6.730_6175, -6.44_0284, -6.605_2837],\r [-7.274_3506, -6.784_7915, -6.02_4673],\r ]\r ] )\r tf.debugging.assert_near(output[:, :3, :3] ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tatol=1E-4 )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport logging\rimport os\r\rimport datasets\rimport tensorflow as tf\r\rfrom transformers import AutoTokenizer\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.getLogger(__name__)\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\targparse.ArgumentParser(\r description=\"\"\"Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.\"\"\"\t\t\t\t)\r parser.add_argument(\r \"\"\"--dataset_name\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"wikitext\"\"\"\t\t\t\t, help=\"\"\"Name of the training. Explore datasets at: hf.co/datasets.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--dataset_config\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"wikitext-103-raw-v1\"\"\"\t\t\t\t, help=\"\"\"Configuration name of the dataset.\"\"\"\t\t\t\t)\r parser.add_argument(\r \"\"\"--tokenizer_name_or_path\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"sayakpaul/unigram-tokenizer-wikitext\"\"\"\t\t\t\t, help=\"\"\"Tokenizer identifier. Can be a local filepath or a Hub identifier.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--shard_size\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=1000\t\t\t\t, help=\"\"\"Number of entries to go in a single shard.\"\"\"\t\t\t\t, )\r parser.add_argument(\"\"\"--split\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"train\"\"\"\t\t\t\t, choices=[\"\"\"train\"\"\", \"\"\"test\"\"\", \"\"\"validation\"\"\"]\t\t\t\t)\r parser.add_argument(\r \"\"\"--limit\"\"\"\t\t\t\t, default=SCREAMING_SNAKE_CASE__\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, help=\"\"\"Limit the number of shards (used for debugging).\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--max_length\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=512\t\t\t\t, help=\"\"\"Maximum sequence length. For training on TPUs, it helps to have a maximum\"\"\"\r \"\"\" sequence length that is a multiple of 8.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--output_dir\"\"\"\t\t\t\t, default=\"\"\"tf-tpu\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, help=\"\"\"Output directory where the TFRecord shards will be saved. If the\"\"\"\r \"\"\" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord\"\"\"\r \"\"\" shards will be directly saved to a Google Cloud Storage bucket.\"\"\"\t\t\t\t, )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparser.parse_args()\r return args\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def fn(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r return tokenizer(examples[\"\"\"text\"\"\"]\t\t\t\t)\r\r return fn\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for i in range(len(tokenized_data[\"\"\"input_ids\"\"\"]\t\t\t\t)\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"input_ids\"\"\": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data[\"\"\"input_ids\"\"\"][i]\t\t\t\t)\t\t\t\t),\r \"\"\"attention_mask\"\"\": tf.train.Feature(\r intaa_list=tf.train.IntaaList(value=tokenized_data[\"\"\"attention_mask\"\"\"][i]\t\t\t\t)\t\t\t\t),\r }\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.train.Features(feature=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.train.Example(features=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\texample.SerializeToString()\r records.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return records\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdatasets.load_dataset(args.dataset_name\t\t\t\t, args.dataset_config\t\t\t\t, split=args.split\t\t\t\t)\r\r if args.limit is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, args.limit\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset.select(range(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r print(F'''Limiting the dataset to {args.limit} entries.'''\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(args.tokenizer_name_or_path\t\t\t\t)\r\r # Handle output directory creation.\r # For serializing into a Google Cloud Storage Bucket, one needs to first\r # create a bucket.\r if \"gs\" not in args.output_dir:\r if not os.path.exists(args.output_dir\t\t\t\t):\r os.makedirs(args.output_dir\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(args.output_dir\t\t\t\t, args.split\t\t\t\t)\r if not os.path.exists(SCREAMING_SNAKE_CASE__\t\t\t\t):\r os.makedirs(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(args.output_dir\t\t\t\t, args.split\t\t\t\t)\r\r # Tokenize the whole dataset at once.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenize_function(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset.map(SCREAMING_SNAKE_CASE__\t\t\t\t, batched=SCREAMING_SNAKE_CASE__\t\t\t\t, num_proc=4\t\t\t\t, remove_columns=[\"\"\"text\"\"\"]\t\t\t\t)\r\r # We need to concatenate all our texts together, and then split the result\r # into chunks of a fixed size, which we will call block_size. To do this, we\r # will use the map method again, with the option batched=True. When we use batched=True,\r # the function we pass to map() will be passed multiple inputs at once, allowing us\r # to group them into more or fewer examples than we had in the input.\r # This allows us to create our new fixed-length samples. The advantage of this\r # method is that we don't lose a whole lot of content from the dataset compared to the\r # case where we simply tokenize with a pre-defined max_length.\r\r def group_texts(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r # Concatenate all texts.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{k: sum(examples[k]\t\t\t\t, []\t\t\t\t) for k in examples.keys()}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(concatenated_examples[list(examples.keys()\t\t\t\t)[0]]\t\t\t\t)\r # We drop the small remainder, though you could add padding instead if the model supports it\r # In this, as in all things, we advise you to follow your heart 🫀\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(total_length // args.max_length) * args.max_length\r # Split by chunks of max_len.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r k: [t[i : i + args.max_length] for i in range(0\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, args.max_length\t\t\t\t)]\r for k, t in concatenated_examples.items()\r }\r return result\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset_tokenized.map(SCREAMING_SNAKE_CASE__\t\t\t\t, batched=SCREAMING_SNAKE_CASE__\t\t\t\t, batch_size=1000\t\t\t\t, num_proc=4\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for shard in range(0\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, args.shard_size\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgrouped_dataset[shard : shard + args.shard_size]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(dataset_snapshot[\"\"\"input_ids\"\"\"]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, F'''dataset-{shard_count}-{records_containing}.tfrecord'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_serialized_examples(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__\t\t\t\t) as out_file:\r for i in range(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tserialized_examples[i]\r out_file.write(SCREAMING_SNAKE_CASE__\t\t\t\t)\r print(\"\"\"Wrote file {} containing {} records\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r shard_count += 1\r total_records += records_containing\r\r with open(F'''split-{args.split}-records-count.txt'''\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r print(F'''Total {args.split} records: {total_records}'''\t\t\t\t, file=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_args()\r main(args)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152308,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r raise ValueError(\"\"\"iterations must be defined as integers\"\"\"\t\t\t\t)\r if not isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) or not number >= 1:\r raise ValueError(\r \"\"\"starting number must be\n and integer and be more than 0\"\"\"\t\t\t\t)\r if not iterations >= 1:\r raise ValueError(\"\"\"Iterations must be done more than 0 times to play FizzBuzz\"\"\"\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\"\r while number <= iterations:\r if number % 3 == 0:\r out += \"Fizz\"\r if number % 5 == 0:\r out += \"Buzz\"\r if 0 not in (number % 3, number % 5):\r out += str(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # print(out)\r number += 1\r out += \" \"\r return out\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport numpy as np\rimport torch\rfrom torch.nn import CrossEntropyLoss\rfrom transformers import AutoModelForCausalLM, AutoTokenizer\r\rimport datasets\rfrom datasets import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\\n\\nFor more information, see https://huggingface.co/docs/transformers/perplexity\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nArgs:\\n model_id (str): model used for calculating Perplexity\\n NOTE: Perplexity can only be calculated for causal language models.\\n This includes models such as gpt2, causal variations of bert,\\n causal versions of t5, and more (the full list can be found\\n in the AutoModelForCausalLM documentation here:\\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\\n\\n input_texts (list of str): input text, each separate text snippet\\n is one list entry.\\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\\n add_start_token (bool): whether to add the start token to the texts,\\n so the perplexity can include the probability of the first word. Defaults to True.\\n device (str): device to run on, defaults to \\'cuda\\' when available\\nReturns:\\n perplexity: dictionary containing the perplexity scores for the texts\\n in the input list, as well as the mean perplexity. If one of the input texts is\\n longer than the max input length of the model, then it is truncated to the\\n max length for the perplexity computation.\\nExamples:\\n Example 1:\\n >>> perplexity = datasets.load_metric(\"perplexity\")\\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\\n >>> results = perplexity.compute(model_id=\\'gpt2\\',\\n ... add_start_token=False,\\n ... input_texts=input_texts) # doctest:+ELLIPSIS\\n >>> print(list(results.keys()))\\n [\\'perplexities\\', \\'mean_perplexity\\']\\n >>> print(round(results[\"mean_perplexity\"], 2))\\n 78.22\\n >>> print(round(results[\"perplexities\"][0], 2))\\n 11.11\\n\\n Example 2:\\n >>> perplexity = datasets.load_metric(\"perplexity\")\\n >>> input_texts = datasets.load_dataset(\"wikitext\",\\n ... \"wikitext-2-raw-v1\",\\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\\n [...]\\n >>> input_texts = [s for s in input_texts if s!=\\'\\']\\n >>> results = perplexity.compute(model_id=\\'gpt2\\',\\n ... input_texts=input_texts) # doctest:+ELLIPSIS\\n >>> print(list(results.keys()))\\n [\\'perplexities\\', \\'mean_perplexity\\']\\n >>> print(round(results[\"mean_perplexity\"], 2))\\n 60.35\\n >>> print(round(results[\"perplexities\"][0], 2))\\n 81.12\\n'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"input_texts\"\"\": datasets.Value(\"\"\"string\"\"\" ),\r } ) ,\t\t\t\t\t\treference_urls=[\"\"\"https://huggingface.co/docs/transformers/perplexity\"\"\"] ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint = 16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if device is not None:\r assert device in [\"gpu\", \"cpu\", \"cuda\"], \"device should be either gpu or cpu.\"\r if device == \"gpu\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"cuda\"\"\"\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"cuda\"\"\" if torch.cuda.is_available() else \"\"\"cpu\"\"\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoModelForCausalLM.from_pretrained(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.to(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(_UpperCAmelCase )\r\r # if batch_size > 1 (which generally leads to padding being required), and\r # if there is not an already assigned pad_token, assign an existing\r # special token to also be the padding token\r if tokenizer.pad_token is None and batch_size > 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(tokenizer.special_tokens_map_extended.values() )\r # check that the model already has at least one special token defined\r assert (\r len(_UpperCAmelCase ) > 0\r ), \"If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1.\"\r # assign one of the special tokens to also be the pad token\r tokenizer.add_special_tokens({\"\"\"pad_token\"\"\": existing_special_tokens[0]} )\r\r if add_start_token:\r # leave room for token to be added:\r assert (\r tokenizer.bos_token is not None\r ), \"Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.config.max_length - 1\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.config.max_length\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer(\r _UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase ,\t\t\t\t\t\tpadding=_UpperCAmelCase ,\t\t\t\t\t\ttruncation=_UpperCAmelCase ,\t\t\t\t\t\tmax_length=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" ,\t\t\t\t\t\treturn_attention_mask=_UpperCAmelCase ,\t\t\t\t\t\t).to(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencodings[\"\"\"input_ids\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencodings[\"\"\"attention_mask\"\"\"]\r\r # check that each input is long enough:\r if add_start_token:\r assert torch.all(torch.ge(attn_masks.sum(1 ) ,\t\t\t\t\t\t1 ) ), \"Each input text must be at least one token long.\"\r else:\r assert torch.all(\r torch.ge(attn_masks.sum(1 ) ,\t\t\t\t\t\t2 ) ), \"When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings.\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCrossEntropyLoss(reduction=\"\"\"none\"\"\" )\r\r for start_index in logging.tqdm(range(0 ,\t\t\t\t\t\tlen(_UpperCAmelCase ) ,\t\t\t\t\t\t_UpperCAmelCase ) ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(start_index + batch_size ,\t\t\t\t\t\tlen(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoded_texts[start_index:end_index]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattn_masks[start_index:end_index]\r\r if add_start_token:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([bos_tokens_tensor, encoded_batch] ,\t\t\t\t\t\tdim=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat(\r [torch.ones(bos_tokens_tensor.size() ,\t\t\t\t\t\tdtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] ,\t\t\t\t\t\tdim=1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoded_batch\r\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ).logits\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tout_logits[..., :-1, :].contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlabels[..., 1:].contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattn_mask[..., 1:].contiguous()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.expa(\r (loss_fct(shift_logits.transpose(1 ,\t\t\t\t\t\t2 ) ,\t\t\t\t\t\t_UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )\r / shift_attention_mask_batch.sum(1 ) )\r\r ppls += perplexity_batch.tolist()\r\r return {\"perplexities\": ppls, \"mean_perplexity\": np.mean(_UpperCAmelCase )}\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152309,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom typing import TYPE_CHECKING\r\rfrom ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'configuration_groupvit': [\r 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',\r 'GroupViTConfig',\r 'GroupViTOnnxConfig',\r 'GroupViTTextConfig',\r 'GroupViTVisionConfig',\r ],\r}\r\rtry:\r if not is_torch_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',\r 'GroupViTModel',\r 'GroupViTPreTrainedModel',\r 'GroupViTTextModel',\r 'GroupViTVisionModel',\r ]\r\rtry:\r if not is_tf_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',\r 'TFGroupViTModel',\r 'TFGroupViTPreTrainedModel',\r 'TFGroupViTTextModel',\r 'TFGroupViTVisionModel',\r ]\r\rif TYPE_CHECKING:\r from .configuration_groupvit import (\r GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,\r GroupViTConfig,\r GroupViTOnnxConfig,\r GroupViTTextConfig,\r GroupViTVisionConfig,\r )\r\r try:\r if not is_torch_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .modeling_groupvit import (\r GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\r GroupViTModel,\r GroupViTPreTrainedModel,\r GroupViTTextModel,\r GroupViTVisionModel,\r )\r\r try:\r if not is_tf_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .modeling_tf_groupvit import (\r TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,\r TFGroupViTModel,\r TFGroupViTPreTrainedModel,\r TFGroupViTTextModel,\r TFGroupViTVisionModel,\r )\r\relse:\r import sys\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 1000000\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[i - 1 for i in range(limit + 1\t\t\t\t)]\r\r for i in range(2\t\t\t\t, limit + 1\t\t\t\t):\r if phi[i] == i - 1:\r for j in range(2 * i\t\t\t\t, limit + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r phi[j] -= phi[j] // i\r\r return sum(phi[2 : limit + 1]\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r print(solution())\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152310,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport tempfile\rimport unittest\r\rfrom transformers import TaConfig, is_torch_available\rfrom transformers.testing_utils import (\r require_sentencepiece,\r require_tokenizers,\r require_torch,\r slow,\r torch_device,\r)\r\rfrom ...generation.test_utils import GenerationTesterMixin\rfrom ...test_modeling_common import ModelTesterMixin, ids_tensor\rfrom ...test_pipeline_mixin import PipelineTesterMixin\r\r\rif is_torch_available():\r import torch\r\r from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=99 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=13 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=7 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=9 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=5 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=37 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=8 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=0.002 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=None ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparent\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_seq_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_seq_length\r # For common tests\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.decoder_seq_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tis_training\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_attention_mask\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\td_ff\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trelative_attention_num_buckets\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdropout_rate\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_factor\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\teos_token_id\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpad_token_id\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_start_token_id\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_layers\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return TaConfig.from_pretrained(\"\"\"google/umt5-base\"\"\" )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=None ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if attention_mask is None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinput_ids.ne(config.pad_token_id )\r if decoder_attention_mask is None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_input_ids.ne(config.pad_token_id )\r if head_mask is None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.ones(config.num_hidden_layers ,\t\t\t\t\t\tconfig.num_attention_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r if decoder_head_mask is None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.ones(config.num_decoder_layers ,\t\t\t\t\t\tconfig.num_attention_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r if cross_attn_head_mask is None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.ones(\r config.num_decoder_layers ,\t\t\t\t\t\tconfig.num_attention_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r return {\r \"input_ids\": input_ids,\r \"decoder_input_ids\": decoder_input_ids,\r \"attention_mask\": attention_mask,\r \"decoder_attention_mask\": decoder_attention_mask,\r \"head_mask\": head_mask,\r \"decoder_head_mask\": decoder_head_mask,\r \"cross_attn_head_mask\": cross_attn_head_mask,\r }\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.encoder_seq_length] ,\t\t\t\t\t\tself.vocab_size )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.decoder_seq_length] ,\t\t\t\t\t\tself.vocab_size )\r\r # we need to clamp the input ids here to avoid having pad token in between\r # this is because for NllbMoe the position_ids are prepared such that\r # all pad tokens have pos id = 2 and rest are between 2..seq_length\r # and the seq_length here is seq_length - num_pad_tokens\r # but when using past, there is no way of knowing if the past input ids had\r # pad tokens in them, which results in incorrect seq_lenth and which in turn results in\r # position_ids being off by num_pad_tokens in past input\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinput_ids.clamp(self.pad_token_id + 1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_input_ids.clamp(self.pad_token_id + 1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconfig.num_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_inputs_dict(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r return config, input_dict\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_config_and_inputs()\r return config, inputs_dict\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return TaConfig(\r vocab_size=1_66 ,\t\t\t\t\t\td_model=self.hidden_size ,\t\t\t\t\t\td_ff=self.d_ff ,\t\t\t\t\t\td_kv=self.hidden_size // self.num_attention_heads ,\t\t\t\t\t\tnum_layers=self.num_hidden_layers ,\t\t\t\t\t\tnum_decoder_layers=self.decoder_layers ,\t\t\t\t\t\tnum_heads=self.num_attention_heads ,\t\t\t\t\t\trelative_attention_num_buckets=self.relative_attention_num_buckets ,\t\t\t\t\t\tdropout_rate=self.dropout_rate ,\t\t\t\t\t\tinitializer_factor=self.initializer_factor ,\t\t\t\t\t\teos_token_id=self.eos_token_id ,\t\t\t\t\t\tbos_token_id=self.pad_token_id ,\t\t\t\t\t\tpad_token_id=self.pad_token_id ,\t\t\t\t\t\tdecoder_start_token_id=self.decoder_start_token_id ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return TaConfig(\r vocab_size=self.vocab_size ,\t\t\t\t\t\td_model=self.hidden_size ,\t\t\t\t\t\td_ff=self.d_ff ,\t\t\t\t\t\td_kv=self.hidden_size // self.num_attention_heads ,\t\t\t\t\t\tnum_layers=self.num_hidden_layers ,\t\t\t\t\t\tnum_decoder_layers=self.decoder_layers ,\t\t\t\t\t\tnum_heads=self.num_attention_heads ,\t\t\t\t\t\trelative_attention_num_buckets=self.relative_attention_num_buckets ,\t\t\t\t\t\tdropout_rate=self.dropout_rate ,\t\t\t\t\t\tinitializer_factor=self.initializer_factor ,\t\t\t\t\t\teos_token_id=self.eos_token_id ,\t\t\t\t\t\tbos_token_id=self.pad_token_id ,\t\t\t\t\t\tpad_token_id=self.pad_token_id ,\t\t\t\t\t\tdecoder_start_token_id=self.decoder_start_token_id ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaModel(config=_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(\r input_ids=_UpperCAmelCase ,\t\t\t\t\t\tdecoder_input_ids=_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ,\t\t\t\t\t\tdecoder_attention_mask=_UpperCAmelCase ,\t\t\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(input_ids=_UpperCAmelCase ,\t\t\t\t\t\tdecoder_input_ids=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tresult.last_hidden_state\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tresult.past_key_values\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tresult.encoder_last_hidden_state\r\r self.parent.assertEqual(encoder_output.size() ,\t\t\t\t\t\t(self.batch_size, self.encoder_seq_length, self.hidden_size) )\r self.parent.assertEqual(decoder_output.size() ,\t\t\t\t\t\t(self.batch_size, self.decoder_seq_length, self.hidden_size) )\r # There should be `num_layers` key value embeddings stored in decoder_past\r self.parent.assertEqual(len(_UpperCAmelCase ) ,\t\t\t\t\t\tconfig.num_layers )\r # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple\r self.parent.assertEqual(len(decoder_past[0] ) ,\t\t\t\t\t\t4 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval()\r # first forward pass\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tuse_cache=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tuse_cache=_UpperCAmelCase )\r\r self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) )\r self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.to_tuple()\r\r # create hypothetical next token and extent to next_input_ids\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor((self.batch_size, 1) ,\t\t\t\t\t\tconfig.vocab_size )\r\r # append to next input_ids and\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([input_ids, next_tokens] ,\t\t\t\t\t\tdim=-1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )[\"\"\"last_hidden_state\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tpast_key_values=_UpperCAmelCase )[\"\"\"last_hidden_state\"\"\"]\r\r # select random slice\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor((1,) ,\t\t\t\t\t\toutput_from_past.shape[-1] ).item()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutput_from_no_past[:, -1, random_slice_idx].detach()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutput_from_past[:, 0, random_slice_idx].detach()\r\r # test that outputs are equal for slice\r self.parent.assertTrue(torch.allclose(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tatol=1E-3 ) )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).half().eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(**_UpperCAmelCase )[\"\"\"last_hidden_state\"\"\"]\r self.parent.assertFalse(torch.isnan(_UpperCAmelCase ).any().item() )\r\r@require_torch\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : List[str] = (\r (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()\r )\r lowerCAmelCase_ : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()\r lowerCAmelCase_ : Any = (\r {\r \"\"\"conversational\"\"\": UMTaForConditionalGeneration,\r \"\"\"feature-extraction\"\"\": UMTaModel,\r \"\"\"summarization\"\"\": UMTaForConditionalGeneration,\r \"\"\"text2text-generation\"\"\": UMTaForConditionalGeneration,\r \"\"\"translation\"\"\": UMTaForConditionalGeneration,\r \"\"\"question-answering\"\"\": UMTaForQuestionAnswering,\r }\r if is_torch_available()\r else {}\r )\r lowerCAmelCase_ : List[Any] = True\r lowerCAmelCase_ : str = False\r lowerCAmelCase_ : Any = False\r lowerCAmelCase_ : Union[str, Any] = True\r lowerCAmelCase_ : Optional[int] = True\r # The small UMT5 model needs higher percentages for CPU/MP tests\r lowerCAmelCase_ : List[Any] = [0.8, 0.9]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaModelTester(self )\r\r\r @unittest.skip(\"\"\"Test has a segmentation fault on torch 1.8.0\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaModel(config_and_inputs[0] ).to(_UpperCAmelCase )\r with tempfile.TemporaryDirectory() as tmpdirname:\r torch.onnx.export(\r _UpperCAmelCase ,\t\t\t\t\t\t(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,\t\t\t\t\t\tf'''{tmpdirname}/t5_test.onnx''' ,\t\t\t\t\t\texport_params=_UpperCAmelCase ,\t\t\t\t\t\topset_version=9 ,\t\t\t\t\t\tinput_names=[\"\"\"input_ids\"\"\", \"\"\"decoder_input_ids\"\"\"] ,\t\t\t\t\t\t)\r\r\r @unittest.skipIf(torch_device == \"\"\"cpu\"\"\" ,\t\t\t\t\t\t\"\"\"Cant do half precision\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_model_fpaa_forward(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"encoder_attentions\"\"\", \"\"\"decoder_attentions\"\"\", \"\"\"cross_attentions\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconfig_and_inputs[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaForConditionalGeneration(_UpperCAmelCase ).eval()\r model.to(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"head_mask\"\"\": torch.zeros(config.num_layers ,\t\t\t\t\t\tconfig.num_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase ),\r \"\"\"decoder_head_mask\"\"\": torch.zeros(config.num_decoder_layers ,\t\t\t\t\t\tconfig.num_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase ),\r \"\"\"cross_attn_head_mask\"\"\": torch.zeros(config.num_decoder_layers ,\t\t\t\t\t\tconfig.num_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase ),\r }\r\r for attn_name, (name, mask) in zip(_UpperCAmelCase ,\t\t\t\t\t\thead_masking.items() ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{name: mask}\r # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified\r if name == \"head_mask\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.ones(\r config.num_decoder_layers ,\t\t\t\t\t\tconfig.num_heads ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.generate(\r config_and_inputs[1][\"\"\"input_ids\"\"\"] ,\t\t\t\t\t\tnum_beams=1 ,\t\t\t\t\t\tmax_length=3 ,\t\t\t\t\t\toutput_attentions=_UpperCAmelCase ,\t\t\t\t\t\treturn_dict_in_generate=_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r # We check the state of decoder_attentions and cross_attentions just from the last step\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tout[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]\r self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,\t\t\t\t\t\t0.0 )\r\r\r\r @unittest.skip(\"\"\"Does not work on the tiny model as we keep hitting edge cases.\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r@require_torch\r@require_sentencepiece\r@require_tokenizers\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @slow\r @unittest.skip(\r \"\"\"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUMTaForConditionalGeneration.from_pretrained(\"\"\"google/umt5-small\"\"\" ,\t\t\t\t\t\treturn_dict=_UpperCAmelCase ).to(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(\"\"\"google/umt5-small\"\"\" ,\t\t\t\t\t\tuse_fast=_UpperCAmelCase ,\t\t\t\t\t\tlegacy=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"Bonjour monsieur bien .\"\"\",\r \"\"\"No se como puedo .\"\"\",\r \"\"\"This is the reason why we them.\"\"\",\r \"\"\"The walks in , seats\"\"\",\r \"\"\"A walks into a bar and orders a with pinch of .\"\"\",\r ]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer(_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" ,\t\t\t\t\t\tpadding=_UpperCAmelCase ).input_ids\r # fmt: off\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor(\r [\r [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],\r [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],\r [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],\r [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],\r [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],\r ] )\r # fmt: on\r torch.testing.assert_allclose(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.generate(input_ids.to(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\" et [eod] .. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 ajšietostolleuxajšie\"\"\",\r \"\"\"..,<0x0A>...spech <0x0A> \"\"\",\r \"\"\" are not going to be a part of the world. We are not going to be a part of and<0x0A>.\"\"\",\r \"\"\" door, the door 피해[/\"\"\",\r \"\"\"nyone who drink a alcohol A A. This I\"\"\",\r ]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.batch_decode(_UpperCAmelCase )\r self.assertEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom typing import List, Union\r\rfrom ..utils import (\r add_end_docstrings,\r is_tf_available,\r is_torch_available,\r is_vision_available,\r logging,\r requires_backends,\r)\rfrom .base import PIPELINE_INIT_ARGS, Pipeline\r\r\rif is_vision_available():\r from PIL import Image\r\r from ..image_utils import load_image\r\rif is_tf_available():\r import tensorflow as tf\r\r from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r from ..tf_utils import stable_softmax\r\rif is_torch_available():\r from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\r@add_end_docstrings(lowerCamelCase_ )\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r requires_backends(self ,\t\t\t\t\t\t\"\"\"vision\"\"\" )\r self.check_model_type(\r TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r if self.framework == \"\"\"tf\"\"\"\r else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r if top_k is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttop_k\r return {}, {}, postprocess_params\r\r\r def __call__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, List[str], \"Image.Image\", List[\"Image.Image\"]] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return super().__call__(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tload_image(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.image_processor(images=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=self.framework )\r return model_inputs\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model(**_UpperCAmelCase )\r return model_outputs\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=5 ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if top_k > self.model.config.num_labels:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model.config.num_labels\r\r if self.framework == \"pt\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_outputs.logits.softmax(-1 )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprobs.topk(_UpperCAmelCase )\r elif self.framework == \"tf\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstable_softmax(model_outputs.logits ,\t\t\t\t\t\taxis=-1 )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.math.top_k(_UpperCAmelCase ,\t\t\t\t\t\tk=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttopk.values.numpy(), topk.indices.numpy()\r else:\r raise ValueError(f'''Unsupported framework: {self.framework}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscores.tolist()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids.tolist()\r return [{\"score\": score, \"label\": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )]\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152311,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 1000000\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[i - 1 for i in range(limit + 1\t\t\t\t)]\r\r for i in range(2\t\t\t\t, limit + 1\t\t\t\t):\r if phi[i] == i - 1:\r for j in range(2 * i\t\t\t\t, limit + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r phi[j] -= phi[j] // i\r\r return sum(phi[2 : limit + 1]\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r print(solution())\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom math import factorial\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 20\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,\r # 2, 3,...\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tn // 2\r\r return int(factorial(SCREAMING_SNAKE_CASE__\t\t\t\t) / (factorial(SCREAMING_SNAKE_CASE__\t\t\t\t) * factorial(n - k\t\t\t\t))\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r import sys\r\r if len(sys.argv) == 1:\r print(solution(2_0))\r else:\r try:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tint(sys.argv[1])\r print(solution(n))\r except ValueError:\r print('Invalid entry - please enter a number.')\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152312,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport json\rimport math\rimport os\rimport time\rimport traceback\rimport zipfile\rfrom collections import Counter\r\rimport requests\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if token is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"Accept\"\"\": \"\"\"application/vnd.github+json\"\"\", \"\"\"Authorization\"\"\": F'''Bearer {token}'''}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(SCREAMING_SNAKE_CASE__\t\t\t\t, headers=SCREAMING_SNAKE_CASE__\t\t\t\t).json()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r try:\r job_links.update({job[\"\"\"name\"\"\"]: job[\"\"\"html_url\"\"\"] for job in result[\"\"\"jobs\"\"\"]}\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmath.ceil((result[\"\"\"total_count\"\"\"] - 100) / 100\t\t\t\t)\r\r for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(url + F'''&page={i + 2}'''\t\t\t\t, headers=SCREAMING_SNAKE_CASE__\t\t\t\t).json()\r job_links.update({job[\"\"\"name\"\"\"]: job[\"\"\"html_url\"\"\"] for job in result[\"\"\"jobs\"\"\"]}\t\t\t\t)\r\r return job_links\r except Exception:\r print(F'''Unknown error, could not fetch links:\\n{traceback.format_exc()}'''\t\t\t\t)\r\r return {}\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if token is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"Accept\"\"\": \"\"\"application/vnd.github+json\"\"\", \"\"\"Authorization\"\"\": F'''Bearer {token}'''}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(SCREAMING_SNAKE_CASE__\t\t\t\t, headers=SCREAMING_SNAKE_CASE__\t\t\t\t).json()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r try:\r artifacts.update({artifact[\"\"\"name\"\"\"]: artifact[\"\"\"archive_download_url\"\"\"] for artifact in result[\"\"\"artifacts\"\"\"]}\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmath.ceil((result[\"\"\"total_count\"\"\"] - 100) / 100\t\t\t\t)\r\r for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(url + F'''&page={i + 2}'''\t\t\t\t, headers=SCREAMING_SNAKE_CASE__\t\t\t\t).json()\r artifacts.update({artifact[\"\"\"name\"\"\"]: artifact[\"\"\"archive_download_url\"\"\"] for artifact in result[\"\"\"artifacts\"\"\"]}\t\t\t\t)\r\r return artifacts\r except Exception:\r print(F'''Unknown error, could not fetch links:\\n{traceback.format_exc()}'''\t\t\t\t)\r\r return {}\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if token is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"Accept\"\"\": \"\"\"application/vnd.github+json\"\"\", \"\"\"Authorization\"\"\": F'''Bearer {token}'''}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(SCREAMING_SNAKE_CASE__\t\t\t\t, headers=SCREAMING_SNAKE_CASE__\t\t\t\t, allow_redirects=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tresult.headers[\"\"\"Location\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.get(SCREAMING_SNAKE_CASE__\t\t\t\t, allow_redirects=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, F'''{artifact_name}.zip'''\t\t\t\t)\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"wb\"\"\"\t\t\t\t) as fp:\r fp.write(response.content\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r with zipfile.ZipFile(SCREAMING_SNAKE_CASE__\t\t\t\t) as z:\r for filename in z.namelist():\r if not os.path.isdir(SCREAMING_SNAKE_CASE__\t\t\t\t):\r # read the file\r if filename in [\"failures_line.txt\", \"summary_short.txt\", \"job_name.txt\"]:\r with z.open(SCREAMING_SNAKE_CASE__\t\t\t\t) as f:\r for line in f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.decode(\"\"\"UTF-8\"\"\"\t\t\t\t).strip()\r if filename == \"failures_line.txt\":\r try:\r # `error_line` is the place where `error` occurs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline[: line.index(\"\"\": \"\"\"\t\t\t\t)]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline[line.index(\"\"\": \"\"\"\t\t\t\t) + len(\"\"\": \"\"\"\t\t\t\t) :]\r errors.append([error_line, error]\t\t\t\t)\r except Exception:\r # skip un-related lines\r pass\r elif filename == \"summary_short.txt\" and line.startswith(\"\"\"FAILED \"\"\"\t\t\t\t):\r # `test` is the test method that failed\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline[len(\"\"\"FAILED \"\"\"\t\t\t\t) :]\r failed_tests.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r elif filename == \"job_name.txt\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline\r\r if len(SCREAMING_SNAKE_CASE__\t\t\t\t) != len(SCREAMING_SNAKE_CASE__\t\t\t\t):\r raise ValueError(\r F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__\t\t\t\t)} for `errors` '''\r F'''and {len(SCREAMING_SNAKE_CASE__\t\t\t\t)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''\r \"\"\" problem.\"\"\"\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if job_name and job_links:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tjob_links.get(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # A list with elements of the form (line of error, error, failed test)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)]\r\r return result\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[os.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) for p in os.listdir(SCREAMING_SNAKE_CASE__\t\t\t\t) if p.endswith(\"\"\".zip\"\"\"\t\t\t\t)]\r for p in paths:\r errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__\t\t\t\t, job_links=SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r return errors\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCounter()\r counter.update([x[1] for x in logs]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcounter.most_common()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r for error, count in counts:\r if error_filter is None or error not in error_filter:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"count\"\"\": count, \"\"\"failed_tests\"\"\": [(x[2], x[0]) for x in logs if x[1] == error]}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(sorted(r.items()\t\t\t\t, key=lambda SCREAMING_SNAKE_CASE__\t\t\t\t: item[1][\"count\"]\t\t\t\t, reverse=SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttest.split(\"\"\"::\"\"\"\t\t\t\t)[0]\r if test.startswith(\"\"\"tests/models/\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttest.split(\"\"\"/\"\"\"\t\t\t\t)[2]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r return test\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[(x[0], x[1], get_model(x[2]\t\t\t\t)) for x in logs]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[x for x in logs if x[2] is not None]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{x[2] for x in logs}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r for test in tests:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCounter()\r # count by errors in `test`\r counter.update([x[1] for x in logs if x[2] == test]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcounter.most_common()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{error: count for error, count in counts if (error_filter is None or error not in error_filter)}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsum(error_counts.values()\t\t\t\t)\r if n_errors > 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"count\"\"\": n_errors, \"\"\"errors\"\"\": error_counts}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(sorted(r.items()\t\t\t\t, key=lambda SCREAMING_SNAKE_CASE__\t\t\t\t: item[1][\"count\"]\t\t\t\t, reverse=SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"| no. | error | status |\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"|-:|:-|:-|\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[header, sep]\r for error in reduced_by_error:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\treduced_by_error[error][\"\"\"count\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''| {count} | {error[:100]} | |'''\r lines.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return \"\\n\".join(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"| model | no. of errors | major error | count |\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"|-:|-:|-:|-:|\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[header, sep]\r for model in reduced_by_model:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\treduced_by_model[model][\"\"\"count\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(reduced_by_model[model][\"\"\"errors\"\"\"].items()\t\t\t\t)[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''| {model} | {count} | {error[:60]} | {_count} |'''\r lines.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return \"\\n\".join(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser()\r # Required parameters\r parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')\r parser.add_argument(\r '--output_dir',\r type=str,\r required=True,\r help='Where to store the downloaded artifacts and other result files.',\r )\r parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r\r os.makedirs(args.output_dir, exist_ok=True)\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tget_job_links(args.workflow_run_id, token=args.token)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\r # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.\r # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.\r if _job_links:\r for k, v in _job_links.items():\r # This is how GitHub actions combine job names.\r if \" / \" in k:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tk.find(' / ')\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tk[index + len(' / ') :]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tv\r with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:\r json.dump(job_links, fp, ensure_ascii=False, indent=4)\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tget_artifacts_links(args.workflow_run_id, token=args.token)\r with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:\r json.dump(artifacts, fp, ensure_ascii=False, indent=4)\r\r for idx, (name, url) in enumerate(artifacts.items()):\r download_artifact(name, url, args.output_dir, args.token)\r # Be gentle to GitHub\r time.sleep(1)\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tget_all_errors(args.output_dir, job_links=job_links)\r\r # `e[1]` is the error\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tCounter()\r counter.update([e[1] for e in errors])\r\r # print the top 30 most common test errors\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tcounter.most_common(3_0)\r for item in most_common:\r print(item)\r\r with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:\r json.dump(errors, fp, ensure_ascii=False, indent=4)\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\treduce_by_error(errors)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\treduce_by_model(errors)\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tmake_github_table(reduced_by_error)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tmake_github_table_per_model(reduced_by_model)\r\r with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:\r fp.write(sa)\r with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:\r fp.write(sa)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport json\rimport os\rimport unittest\r\rfrom transformers import MgpstrTokenizer\rfrom transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES\rfrom transformers.testing_utils import require_tokenizers\r\rfrom ...test_tokenization_common import TokenizerTesterMixin\r\r@require_tokenizers\rclass lowerCAmelCase_ ( lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : int = MgpstrTokenizer\r lowerCAmelCase_ : List[str] = False\r lowerCAmelCase_ : Optional[int] = {}\r lowerCAmelCase_ : Any = False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().setUp()\r\r # fmt: off\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"[GO]\"\"\", \"\"\"[s]\"\"\", \"\"\"0\"\"\", \"\"\"1\"\"\", \"\"\"2\"\"\", \"\"\"3\"\"\", \"\"\"4\"\"\", \"\"\"5\"\"\", \"\"\"6\"\"\", \"\"\"7\"\"\", \"\"\"8\"\"\", \"\"\"9\"\"\", \"\"\"a\"\"\", \"\"\"b\"\"\", \"\"\"c\"\"\", \"\"\"d\"\"\", \"\"\"e\"\"\", \"\"\"f\"\"\", \"\"\"g\"\"\", \"\"\"h\"\"\", \"\"\"i\"\"\", \"\"\"j\"\"\", \"\"\"k\"\"\", \"\"\"l\"\"\", \"\"\"m\"\"\", \"\"\"n\"\"\", \"\"\"o\"\"\", \"\"\"p\"\"\", \"\"\"q\"\"\", \"\"\"r\"\"\", \"\"\"s\"\"\", \"\"\"t\"\"\", \"\"\"u\"\"\", \"\"\"v\"\"\", \"\"\"w\"\"\", \"\"\"x\"\"\", \"\"\"y\"\"\", \"\"\"z\"\"\"]\r # fmt: on\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(zip(_UpperCAmelCase ,\t\t\t\t\t\trange(len(_UpperCAmelCase ) ) ) )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(self.tmpdirname ,\t\t\t\t\t\tVOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r with open(self.vocab_file ,\t\t\t\t\t\t\"\"\"w\"\"\" ,\t\t\t\t\t\tencoding=\"\"\"utf-8\"\"\" ) as fp:\r fp.write(json.dumps(_UpperCAmelCase ) + \"\"\"\\n\"\"\" )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return MgpstrTokenizer.from_pretrained(self.tmpdirname ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tester\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tester\"\"\"\r return input_text, output_text\r\r\r @unittest.skip(\"\"\"MGP-STR always lower cases letters.\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizers(do_lower_case=_UpperCAmelCase )\r for tokenizer in tokenizers:\r with self.subTest(f'''{tokenizer.__class__.__name__}''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"[SPECIAL_TOKEN]\"\"\"\r\r tokenizer.add_special_tokens({\"\"\"cls_token\"\"\": special_token} )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode([special_token] ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertEqual(len(_UpperCAmelCase ) ,\t\t\t\t\t\t1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.decode(_UpperCAmelCase ,\t\t\t\t\t\tskip_special_tokens=_UpperCAmelCase )\r self.assertTrue(special_token not in decoded )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizers()\r for tokenizer in tokenizers:\r with self.subTest(f'''{tokenizer.__class__.__name__}''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_input_output_texts(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.tokenize(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.convert_tokens_to_ids(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.convert_ids_to_tokens(_UpperCAmelCase )\r self.assertNotEqual(len(_UpperCAmelCase ) ,\t\t\t\t\t\t0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.decode(_UpperCAmelCase )\r self.assertIsInstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r self.assertEqual(text_a.replace(\"\"\" \"\"\" ,\t\t\t\t\t\t\"\"\"\"\"\" ) ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r @unittest.skip(\"\"\"MGP-STR tokenizer only handles one sequence.\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r\r @unittest.skip(\"\"\"inputs cannot be pretokenized in MgpstrTokenizer\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152313,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\r# tests directory-specific settings - this file is run automatically\r# by pytest before any tests are run\r\rimport sys\rimport warnings\rfrom os.path import abspath, dirname, join\r\r\r# allow having multiple repository checkouts and not needing to remember to rerun\r# 'pip install -e .[dev]' when switching between checkouts and running tests.\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tabspath(join(dirname(dirname(__file__)), 'src'))\rsys.path.insert(1, git_repo_path)\r\r# silence FutureWarning warnings in tests since often we can't act on them until\r# they become normal warnings - i.e. the tests still need to test the current functionality\rwarnings.simplefilter(action='ignore', category=FutureWarning)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r from diffusers.utils.testing_utils import pytest_addoption_shared\r\r pytest_addoption_shared(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r from diffusers.utils.testing_utils import pytest_terminal_summary_main\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tterminalreporter.config.getoption(\"\"\"--make-reports\"\"\"\t\t\t\t)\r if make_reports:\r pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__\t\t\t\t, id=SCREAMING_SNAKE_CASE__\t\t\t\t)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom abc import ABC, abstractmethod\rfrom typing import List, Optional\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.test()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r while not completed:\r if counter == 1:\r self.reset()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.advance()\r if not self.does_advance(_UpperCAmelCase ):\r raise Exception(\r \"\"\"Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.\"\"\" )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.update(_UpperCAmelCase )\r counter += 1\r\r if counter > 1_00_00:\r raise Exception(\"\"\"update() does not fulfill the constraint.\"\"\" )\r\r if self.remaining() != 0:\r raise Exception(\"\"\"Custom Constraint is not defined correctly.\"\"\" )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super(_UpperCAmelCase ,\t\t\t\t\t\tself ).__init__()\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:\r raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )\r if any((not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):\r raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttoken_ids\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(self.token_ids )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t-1 # the index of the currently fulfilled step\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.completed:\r return None\r return self.token_ids[self.fulfilled_idx + 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r if self.completed:\r return False\r\r return token_id == self.token_ids[self.fulfilled_idx + 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r if self.does_advance(_UpperCAmelCase ):\r self.fulfilled_idx += 1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r if self.fulfilled_idx == (self.seqlen - 1):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompleted\r else:\r # failed to make progress.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r self.reset()\r return stepped, completed, reset\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.seqlen - (self.fulfilled_idx + 1)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPhrasalConstraint(self.token_ids )\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.seqlen\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.fulfilled_idx\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.completed\r\r return new_constraint\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[List[int]] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax([len(_UpperCAmelCase ) for one in nested_token_ids] )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r for token_ids in nested_token_ids:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\troot\r for tidx, token_id in enumerate(_UpperCAmelCase ):\r if token_id not in level:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlevel[token_id]\r\r if no_subsets and self.has_subsets(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(\r \"\"\"Each list in `nested_token_ids` can't be a complete subset of another list, but is\"\"\"\r f''' {nested_token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\troot\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie\r\r for current_token in current_seq:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstart[current_token]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(start.keys() )\r\r return next_tokens\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.next_tokens(_UpperCAmelCase )\r\r return len(_UpperCAmelCase ) == 0\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(root.values() )\r if len(_UpperCAmelCase ) == 0:\r return 1\r else:\r return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.count_leaves(_UpperCAmelCase )\r return len(_UpperCAmelCase ) != leaf_count\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[List[int]] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super(_UpperCAmelCase ,\t\t\t\t\t\tself ).__init__()\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:\r raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )\r if any(not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) for token_ids in nested_token_ids ):\r raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )\r if any(\r any((not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or token_id < 0) for token_id in token_ids )\r for token_ids in nested_token_ids ):\r raise ValueError(\r f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDisjunctiveTrie(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnested_token_ids\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.max_height\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.next_tokens(self.current_seq )\r\r if len(_UpperCAmelCase ) == 0:\r return None\r else:\r return token_list\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.next_tokens(self.current_seq )\r\r return token_id in next_tokens\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r if self.does_advance(_UpperCAmelCase ):\r self.current_seq.append(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r self.reset()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.reached_leaf(self.current_seq )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompleted\r\r return stepped, completed, reset\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.completed:\r # since this can be completed without reaching max height\r return 0\r else:\r return self.seqlen - len(self.current_seq )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDisjunctiveConstraint(self.token_ids )\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.seqlen\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.current_seq\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.completed\r\r return new_constraint\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Constraint] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconstraints\r\r # max # of steps required to fulfill a given constraint\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax([c.seqlen for c in constraints] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r self.init_state()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r if self.inprogress_constraint:\r # extra points for having a constraint mid-fulfilled\r add += self.max_seqlen - self.inprogress_constraint.remaining()\r\r return (len(self.complete_constraints ) * self.max_seqlen) + add\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r if self.inprogress_constraint is None:\r for constraint in self.pending_constraints: # \"pending\" == \"unfulfilled yet\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconstraint.advance()\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.append(_UpperCAmelCase )\r elif isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.extend(_UpperCAmelCase )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.advance()\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.append(_UpperCAmelCase )\r elif isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.extend(_UpperCAmelCase )\r\r if len(_UpperCAmelCase ) == 0:\r return None\r else:\r return token_list\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.init_state()\r\r if token_ids is not None:\r for token in token_ids:\r # completes or steps **one** constraint\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.add(_UpperCAmelCase )\r\r # the entire list of constraints are fulfilled\r if self.completed:\r break\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse, False\r\r if self.completed:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r return complete, stepped\r\r if self.inprogress_constraint is not None:\r # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current\r # job, simply update the state\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.update(_UpperCAmelCase )\r if reset:\r # 1. If the next token breaks the progress, then we must restart.\r # e.g. constraint = \"I love pies\" and sequence so far is \"I love\" but `token_id` == \"books\".\r\r # But that doesn't mean we self.init_state(), since we only reset the state for this particular\r # constraint, not the full list of constraints.\r\r self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if complete:\r # 2. If the next token completes the constraint, move it to completed list, set\r # inprogress to None. If there are no pending constraints either, then this full list of constraints\r # is complete.\r\r self.complete_constraints.append(self.inprogress_constraint )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if len(self.pending_constraints ) == 0:\r # we're done!\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r\r else:\r # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list\r # of constraints?\r\r for cidx, pending_constraint in enumerate(self.pending_constraints ):\r if pending_constraint.does_advance(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpending_constraint.update(_UpperCAmelCase )\r\r if not stepped:\r raise Exception(\r \"\"\"`constraint.update(token_id)` is not yielding incremental progress, \"\"\"\r \"\"\"even though `constraint.does_advance(token_id)` is true.\"\"\" )\r\r if complete:\r self.complete_constraints.append(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if not complete and stepped:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpending_constraint\r\r if complete or stepped:\r # If we made any progress at all, then it's at least not a \"pending constraint\".\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]\r )\r\r if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:\r # If there's no longer any pending after this and no inprogress either, then we must be\r # complete.\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r\r break # prevent accidentally stepping through multiple constraints with just one token.\r\r return complete, stepped\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=True ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConstraintListState(self.constraints ) # we actually never though self.constraints objects\r # throughout this process. So it's at initialization state.\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints\r ]\r if self.inprogress_constraint is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.copy(stateful=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[constraint.copy() for constraint in self.pending_constraints]\r\r return new_state\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152314,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom pathlib import Path\r\rimport cva\rimport numpy as np\rfrom matplotlib import pyplot as plt\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tnp.ndarray\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tnp.ndarray\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tnp.ndarray\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcva.getAffineTransform(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return cva.warpAffine(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, (rows, cols)\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r # read original image\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tcva.imread(\r str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg')\r )\r # turn image in gray scale value\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tcva.cvtColor(image, cva.COLOR_BGR2GRAY)\r # get image shape\r UpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_\t\t\t\t =\t\t\t\t\tgray_img.shape\r\r # set different points to rotate image\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa)\r\r # add all rotated images in a list\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r gray_img,\r get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),\r get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),\r get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),\r ]\r\r # plot different image rotations\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tplt.figure(1)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3']\r for i, image in enumerate(images):\r plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray')\r plt.title(titles[i])\r plt.axis('off')\r plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)\r plt.show()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport doctest\rimport logging\rimport os\rimport unittest\rfrom pathlib import Path\rfrom typing import List, Union\r\rimport transformers\rfrom transformers.testing_utils import require_tf, require_torch, slow\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.getLogger()\r\r@unittest.skip(\"\"\"Temporarily disable the doc tests.\"\"\" )\r@require_torch\r@require_tf\r@slow\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tPath ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[List[str], None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, List[str], None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = True ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) )]\r\r if identifier is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if identifier in file]\r\r if n_identifier is not None:\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r for n_ in n_identifier:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if n_ not in file]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if n_identifier not in file]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tignore_files or []\r ignore_files.append(\"\"\"__init__.py\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if file not in ignore_files]\r\r for file in files:\r # Open all files\r print(\"\"\"Testing\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r\r if only_modules:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfile.split(\"\"\".\"\"\" )[0]\r try:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdoctest.DocTestSuite(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.TextTestRunner().run(_UpperCAmelCase )\r self.assertIs(len(result.failures ) ,\t\t\t\t\t\t0 )\r except AttributeError:\r logger.info(f'''{module_identifier} is not a module.''' )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdoctest.testfile(str(\"\"\"..\"\"\" / directory / file ) ,\t\t\t\t\t\toptionflags=doctest.ELLIPSIS )\r self.assertIs(result.failed ,\t\t\t\t\t\t0 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"modeling\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"modeling_ctrl.py\"\"\",\r \"\"\"modeling_tf_ctrl.py\"\"\",\r ]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase ,\t\t\t\t\t\tignore_files=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tokenization\"\"\"\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"configuration\"\"\"\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"configuration\"\"\", \"\"\"modeling\"\"\", \"\"\"tokenization\"\"\"]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tn_identifier=_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"docs/source\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"favicon.ico\"\"\"]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tignore_files=_UpperCAmelCase ,\t\t\t\t\t\tonly_modules=_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152315,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[0, 2, 4, 6, 8]\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[1, 3, 5, 7, 9]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if remaining_length == 0:\r if digits[0] == 0 or digits[-1] == 0:\r return 0\r\r for i in range(length // 2 - 1\t\t\t\t, -1\t\t\t\t, -1\t\t\t\t):\r remainder += digits[i] + digits[length - i - 1]\r\r if remainder % 2 == 0:\r return 0\r\r remainder //= 10\r\r return 1\r\r if remaining_length == 1:\r if remainder % 2 == 0:\r return 0\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for digit in range(10\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdigit\r result += reversible_numbers(\r 0\t\t\t\t, (remainder + 2 * digit) // 10\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return result\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for digita in range(10\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdigita\r\r if (remainder + digita) % 2 == 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tODD_DIGITS\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tEVEN_DIGITS\r\r for digita in other_parity_digits:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdigita\r result += reversible_numbers(\r remaining_length - 2\t\t\t\t, (remainder + digita + digita) // 10\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, )\r return result\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 9\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for length in range(1\t\t\t\t, max_power + 1\t\t\t\t):\r result += reversible_numbers(SCREAMING_SNAKE_CASE__\t\t\t\t, 0\t\t\t\t, [0] * length\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return result\r\r\rif __name__ == \"__main__\":\r print(f\"{solution() = }\")\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom datasets.utils.patching import _PatchedModuleObj, patch_submodule\r\rfrom . import _test_patching\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r import os as original_os\r from os import path as original_path\r from os import rename as original_rename\r from os.path import dirname as original_dirname\r from os.path import join as original_join\r\r assert _test_patching.os is original_os\r assert _test_patching.path is original_path\r assert _test_patching.join is original_join\r\r assert _test_patching.renamed_os is original_os\r assert _test_patching.renamed_path is original_path\r assert _test_patching.renamed_join is original_join\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r # Every way to access os.path.join must be patched, and the rest must stay untouched\r\r # check os.path.join\r assert isinstance(_test_patching.os\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert isinstance(_test_patching.os.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.os.path.join is mock\r\r # check path.join\r assert isinstance(_test_patching.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.path.join is mock\r\r # check join\r assert _test_patching.join is mock\r\r # check that the other attributes are untouched\r assert _test_patching.os.rename is original_rename\r assert _test_patching.path.dirname is original_dirname\r assert _test_patching.os.path.dirname is original_dirname\r\r # Even renamed modules or objects must be patched\r\r # check renamed_os.path.join\r assert isinstance(_test_patching.renamed_os\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert isinstance(_test_patching.renamed_os.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.renamed_os.path.join is mock\r\r # check renamed_path.join\r assert isinstance(_test_patching.renamed_path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.renamed_path.join is mock\r\r # check renamed_join\r assert _test_patching.renamed_join is mock\r\r # check that the other attributes are untouched\r assert _test_patching.renamed_os.rename is original_rename\r assert _test_patching.renamed_path.dirname is original_dirname\r assert _test_patching.renamed_os.path.dirname is original_dirname\r\r # check that everthing is back to normal when the patch is over\r\r assert _test_patching.os is original_os\r assert _test_patching.path is original_path\r assert _test_patching.join is original_join\r\r assert _test_patching.renamed_os is original_os\r assert _test_patching.renamed_path is original_path\r assert _test_patching.renamed_join is original_join\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r assert _test_patching.open is open\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_builtin_mock__\"\"\"\r # _test_patching has \"open\" in its globals\r assert _test_patching.open is open\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"open\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.open is mock\r\r # check that everthing is back to normal when the patch is over\r\r assert _test_patching.open is open\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_missing_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"pandas.read_csv\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_missing_builtin_mock__\"\"\"\r # _test_patching doesn't have \"len\" in its globals\r assert getattr(_test_patching\t\t\t\t, \"\"\"len\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) is None\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"len\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.len is mock\r assert _test_patching.len is len\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_start_and_stop_mock__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpatch_submodule(_test_patching\t\t\t\t, \"\"\"open\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r assert _test_patching.open is open\r patch.start()\r assert _test_patching.open is mock\r patch.stop()\r assert _test_patching.open is open\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r from os import rename as original_rename\r from os.path import dirname as original_dirname\r from os.path import join as original_join\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_join__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_dirname__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_rename__\"\"\"\r assert _test_patching.os.path.join is original_join\r assert _test_patching.os.path.dirname is original_dirname\r assert _test_patching.os.rename is original_rename\r\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.rename\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.dirname\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.os.path.join is mock_join\r assert _test_patching.os.path.dirname is mock_dirname\r assert _test_patching.os.rename is mock_rename\r\r # try another order\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.rename\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.dirname\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.os.path.join is mock_join\r assert _test_patching.os.path.dirname is mock_dirname\r assert _test_patching.os.rename is mock_rename\r\r assert _test_patching.os.path.join is original_join\r assert _test_patching.os.path.dirname is original_dirname\r assert _test_patching.os.rename is original_rename\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_doesnt_exist_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"__module_that_doesn_exist__.__attribute_that_doesn_exist__\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.__attribute_that_doesn_exist__\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152316,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\r# Copyright 2023 The HuggingFace Inc. team. All rights reserved.\r#\r# Licensed under the Apache License, Version 2.0 (the \"License\");\r# you may not use this file except in compliance with the License.\r# You may obtain a copy of the License at\r#\r# http://www.apache.org/licenses/LICENSE-2.0\r#\r# Unless required by applicable law or agreed to in writing, software\r# distributed under the License is distributed on an \"AS IS\" BASIS,\r# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\r# See the License for the specific language governing permissions and\r# limitations under the License.\rimport torch\r\rfrom ..models.auto import AutoModelForSequenceClassification, AutoTokenizer\rfrom .base import PipelineTool\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Any = \"\"\"facebook/bart-large-mnli\"\"\"\r lowerCAmelCase_ : str = (\r \"\"\"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which \"\"\"\r \"\"\"should be the text to classify, and `labels`, which should be the list of labels to use for classification. \"\"\"\r \"\"\"It returns the most likely label in the list of provided `labels` for the input text.\"\"\"\r )\r lowerCAmelCase_ : Dict = \"\"\"text_classifier\"\"\"\r lowerCAmelCase_ : Optional[int] = AutoTokenizer\r lowerCAmelCase_ : List[str] = AutoModelForSequenceClassification\r\r lowerCAmelCase_ : Optional[Any] = [\"\"\"text\"\"\", [\"\"\"text\"\"\"]]\r lowerCAmelCase_ : Dict = [\"\"\"text\"\"\"]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().setup()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model.config\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t-1\r for idx, label in config.idalabel.items():\r if label.lower().startswith(\"\"\"entail\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(_UpperCAmelCase )\r if self.entailment_id == -1:\r raise ValueError(\"\"\"Could not determine the entailment ID from the model config, please pass it at init.\"\"\" )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlabels\r return self.pre_processor(\r [text] * len(_UpperCAmelCase ) ,\t\t\t\t\t\t[f'''This example is {label}''' for label in labels] ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" ,\t\t\t\t\t\tpadding=\"\"\"max_length\"\"\" ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.logits\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.argmax(logits[:, 2] ).item()\r return self._labels[label_id]\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom timeit import timeit\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'MALAYALAM': True,\r 'String': False,\r 'rotor': True,\r 'level': True,\r 'A': True,\r 'BB': True,\r 'ABC': False,\r 'amanaplanacanalpanama': True, # \"a man a plan a canal panama\"\r}\r# Ensure our test data is valid\rassert all((key == key[::-1]) is value for key, value in test_data.items())\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t) - 1\r while start_i < end_i:\r if s[start_i] == s[end_i]:\r start_i += 1\r end_i -= 1\r else:\r return False\r return True\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t) // 2\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # We need to traverse till half of the length of string\r # as we can get access of the i'th last element from\r # i'th index.\r # eg: [0,1,2,3,4,5] => 4th index can be accessed\r # with the help of 1st index (i==n-i-1)\r # where n is length of string\r return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if len(SCREAMING_SNAKE_CASE__\t\t\t\t) <= 2:\r return True\r if s[0] == s[len(SCREAMING_SNAKE_CASE__\t\t\t\t) - 1]:\r return is_palindrome_recursive(s[1:-1]\t\t\t\t)\r else:\r return False\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return s == s[::-1]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''all({name}(key) is value for key, value in test_data.items())'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''from __main__ import test_data, {name}'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t500000\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttimeit(stmt=SCREAMING_SNAKE_CASE__\t\t\t\t, setup=SCREAMING_SNAKE_CASE__\t\t\t\t, number=SCREAMING_SNAKE_CASE__\t\t\t\t)\r print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds'''\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r for key, value in test_data.items():\r assert is_palindrome(key) is is_palindrome_recursive(key)\r assert is_palindrome(key) is is_palindrome_slice(key)\r print(f\"{key:21} {value}\")\r print('a man a plan a canal panama')\r\r # finished 500,000 runs in 0.46793 seconds\r benchmark_function('is_palindrome_slice')\r # finished 500,000 runs in 0.85234 seconds\r benchmark_function('is_palindrome')\r # finished 500,000 runs in 1.32028 seconds\r benchmark_function('is_palindrome_recursive')\r # finished 500,000 runs in 2.08679 seconds\r benchmark_function('is_palindrome_traversal')\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152317,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r _enforce_args(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if n == 0:\r return 0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloat(\"\"\"-inf\"\"\"\t\t\t\t)\r for i in range(1\t\t\t\t, n + 1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(\r SCREAMING_SNAKE_CASE__\t\t\t\t, prices[i - 1] + naive_cut_rod_recursive(n - i\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r return max_revue\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r _enforce_args(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[float(\"\"\"-inf\"\"\"\t\t\t\t) for _ in range(n + 1\t\t\t\t)]\r return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if max_rev[n] >= 0:\r return max_rev[n]\r elif n == 0:\r return 0\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloat(\"\"\"-inf\"\"\"\t\t\t\t)\r for i in range(1\t\t\t\t, n + 1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(\r SCREAMING_SNAKE_CASE__\t\t\t\t, prices[i - 1] + _top_down_cut_rod_recursive(n - i\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_revenue\r\r return max_rev[n]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r _enforce_args(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of\r # length 0.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[float(\"\"\"-inf\"\"\"\t\t\t\t) for _ in range(n + 1\t\t\t\t)]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r\r for i in range(1\t\t\t\t, n + 1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_rev[i]\r for j in range(1\t\t\t\t, i + 1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(SCREAMING_SNAKE_CASE__\t\t\t\t, prices[j - 1] + max_rev[i - j]\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_revenue_i\r\r return max_rev[n]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if n < 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''n must be greater than or equal to 0. Got n = {n}'''\r raise ValueError(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if n > len(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r \"\"\"Each integral piece of rod must have a corresponding price. \"\"\"\r F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE__\t\t\t\t)}'''\r )\r raise ValueError(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[6, 10, 12, 15, 20, 23]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # the best revenue comes from cutting the rod into 6 pieces, each\r # of length 1 resulting in a revenue of 6 * 6 = 36.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t36\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttop_down_cut_rod(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbottom_up_cut_rod(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnaive_cut_rod_recursive(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r assert expected_max_revenue == max_rev_top_down\r assert max_rev_top_down == max_rev_bottom_up\r assert max_rev_bottom_up == max_rev_naive\r\r\rif __name__ == \"__main__\":\r main()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport datasets\r\rfrom .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n@INPROCEEDINGS{Papineni02bleu:a,\\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\\n booktitle = {},\\n year = {2002},\\n pages = {311--318}\\n}\\n@inproceedings{lin-och-2004-orange,\\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\\n author = \"Lin, Chin-Yew and\\n Och, Franz Josef\",\\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\\n month = \"aug 23{--}aug 27\",\\n year = \"2004\",\\n address = \"Geneva, Switzerland\",\\n publisher = \"COLING\",\\n url = \"https://www.aclweb.org/anthology/C04-1072\",\\n pages = \"501--507\",\\n}\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\\nQuality is considered to be the correspondence between a machine\\'s output and that of a human: \"the closer a machine translation is to a professional human translation,\\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\\nremains one of the most popular automated and inexpensive metrics.\\n\\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\\'s overall quality. Intelligibility or grammatical correctness\\nare not taken into account[citation needed].\\n\\nBLEU\\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\\nreference translations will increase the BLEU score.\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nComputes BLEU score of translated segments against one or more references.\\nArgs:\\n predictions: list of translations to score.\\n Each translation should be tokenized into a list of tokens.\\n references: list of lists of references for each translation.\\n Each reference should be tokenized into a list of tokens.\\n max_order: Maximum n-gram order to use when computing BLEU score.\\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\\nReturns:\\n \\'bleu\\': bleu score,\\n \\'precisions\\': geometric mean of n-gram precisions,\\n \\'brevity_penalty\\': brevity penalty,\\n \\'length_ratio\\': ratio of lengths,\\n \\'translation_length\\': translation_length,\\n \\'reference_length\\': reference_length\\nExamples:\\n\\n >>> predictions = [\\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\\n ... ]\\n >>> references = [\\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\\n ... ]\\n >>> bleu = datasets.load_metric(\"bleu\")\\n >>> results = bleu.compute(predictions=predictions, references=references)\\n >>> print(results[\"bleu\"])\\n 1.0\\n'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"predictions\"\"\": datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"token\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ),\r \"\"\"references\"\"\": datasets.Sequence(\r datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"token\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"references\"\"\" ),\r } ) ,\t\t\t\t\t\tcodebase_urls=[\"\"\"https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py\"\"\"] ,\t\t\t\t\t\treference_urls=[\r \"\"\"https://en.wikipedia.org/wiki/BLEU\"\"\",\r \"\"\"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213\"\"\",\r ] ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompute_bleu(\r reference_corpus=_UpperCAmelCase ,\t\t\t\t\t\ttranslation_corpus=_UpperCAmelCase ,\t\t\t\t\t\tmax_order=_UpperCAmelCase ,\t\t\t\t\t\tsmooth=_UpperCAmelCase )\r ((UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__))\t\t\t\t\t\t\t\t=\t\t\tscore\r return {\r \"bleu\": bleu,\r \"precisions\": precisions,\r \"brevity_penalty\": bp,\r \"length_ratio\": ratio,\r \"translation_length\": translation_length,\r \"reference_length\": reference_length,\r }\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152318,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport fire\r\rfrom utils import calculate_rouge, save_json\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=None\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[x.strip() for x in open(SCREAMING_SNAKE_CASE__\t\t\t\t).readlines()]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[x.strip() for x in open(SCREAMING_SNAKE_CASE__\t\t\t\t).readlines()][: len(SCREAMING_SNAKE_CASE__\t\t\t\t)]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcalculate_rouge(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t)\r if save_path is not None:\r save_json(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, indent=SCREAMING_SNAKE_CASE__\t\t\t\t)\r return metrics # these print nicely\r\r\rif __name__ == \"__main__\":\r fire.Fire(calculate_rouge_path)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom dataclasses import dataclass\rfrom typing import List, Optional, Union\r\rimport numpy as np\rimport torch\r\rfrom ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available\r\r@dataclass\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]\r\r\rtry:\r if not (is_transformers_available() and is_torch_available()):\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r from ...utils.dummy_torch_and_transformers_objects import * # noqa F403\relse:\r from .pipeline_text_to_video_synth import TextToVideoSDPipeline\r from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401\r from .pipeline_text_to_video_zero import TextToVideoZeroPipeline\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152319,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport inspect\rimport unittest\r\rfrom transformers import ViTHybridConfig\rfrom transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device\rfrom transformers.utils import cached_property, is_torch_available, is_vision_available\r\rfrom ...test_configuration_common import ConfigTester\rfrom ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor\rfrom ...test_pipeline_mixin import PipelineTesterMixin\r\r\rif is_torch_available():\r import torch\r from torch import nn\r\r from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel\r from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST\r\r\rif is_vision_available():\r from PIL import Image\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=13 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=64 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=3 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=5 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=37 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=\"gelu\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=10 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=[1, 16, 4, 4] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=None ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparent\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_channels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tis_training\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tintermediate_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_act\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_sequence_label_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscope\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbackbone_featmap_shape\r\r # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)\r # the number of patches is based on the feature map of the backbone, which by default uses an output stride\r # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(self.image_size // 32) ** 2\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_patches + 1\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_labels:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\tself.type_sequence_label_size )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_config()\r\r return config, pixel_values, labels\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"global_padding\"\"\": \"\"\"same\"\"\",\r \"\"\"layer_type\"\"\": \"\"\"bottleneck\"\"\",\r \"\"\"depths\"\"\": [3, 4, 9],\r \"\"\"out_features\"\"\": [\"\"\"stage1\"\"\", \"\"\"stage2\"\"\", \"\"\"stage3\"\"\"],\r \"\"\"embedding_dynamic_padding\"\"\": True,\r \"\"\"hidden_sizes\"\"\": [4, 8, 16, 32],\r \"\"\"num_groups\"\"\": 2,\r }\r\r return ViTHybridConfig(\r image_size=self.image_size ,\t\t\t\t\t\tpatch_size=self.patch_size ,\t\t\t\t\t\tnum_channels=self.num_channels ,\t\t\t\t\t\thidden_size=self.hidden_size ,\t\t\t\t\t\tnum_hidden_layers=self.num_hidden_layers ,\t\t\t\t\t\tnum_attention_heads=self.num_attention_heads ,\t\t\t\t\t\tintermediate_size=self.intermediate_size ,\t\t\t\t\t\thidden_act=self.hidden_act ,\t\t\t\t\t\thidden_dropout_prob=self.hidden_dropout_prob ,\t\t\t\t\t\tattention_probs_dropout_prob=self.attention_probs_dropout_prob ,\t\t\t\t\t\tis_decoder=_UpperCAmelCase ,\t\t\t\t\t\tinitializer_range=self.initializer_range ,\t\t\t\t\t\tbackbone_featmap_shape=self.backbone_featmap_shape ,\t\t\t\t\t\tbackbone_config=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridModel(config=_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.last_hidden_state.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.hidden_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.type_sequence_label_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridForImageClassification(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tlabels=_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.type_sequence_label_size) )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_config_and_inputs()\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconfig_and_inputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"pixel_values\"\"\": pixel_values}\r return config, inputs_dict\r\r@require_torch\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()\r lowerCAmelCase_ : Optional[int] = (\r {\"\"\"feature-extraction\"\"\": ViTHybridModel, \"\"\"image-classification\"\"\": ViTHybridForImageClassification}\r if is_torch_available()\r else {}\r )\r lowerCAmelCase_ : Union[str, Any] = False\r lowerCAmelCase_ : Any = False\r lowerCAmelCase_ : Optional[int] = False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridModelTester(self )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConfigTester(self ,\t\t\t\t\t\tconfig_class=_UpperCAmelCase ,\t\t\t\t\t\thas_text_modality=_UpperCAmelCase ,\t\t\t\t\t\thidden_size=37 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.config_tester.run_common_tests()\r\r\r @unittest.skip(reason=\"\"\"ViT does not use inputs_embeds\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs_for_common()\r\r for model_class in self.all_model_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_class(_UpperCAmelCase )\r self.assertIsInstance(model.get_input_embeddings() ,\t\t\t\t\t\t(nn.Module) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.get_output_embeddings()\r self.assertTrue(x is None or isinstance(_UpperCAmelCase ,\t\t\t\t\t\tnn.Linear ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs_for_common()\r\r for model_class in self.all_model_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_class(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinspect.signature(model.forward )\r # signature.parameters is an OrderedDict => so arg_names order is deterministic\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[*signature.parameters.keys()]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"pixel_values\"\"\"]\r self.assertListEqual(arg_names[:1] ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_model(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs_for_common()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t_config_zero_init(_UpperCAmelCase )\r for model_class in self.all_model_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_class(config=_UpperCAmelCase )\r # Skip the check for the backbone\r for name, module in model.named_modules():\r if module.__class__.__name__ == \"ViTHybridPatchEmbeddings\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[f'''{name}.{key}''' for key in module.state_dict().keys()]\r break\r\r for name, param in model.named_parameters():\r if param.requires_grad:\r if name in backbone_params:\r continue\r self.assertIn(\r ((param.data.mean() * 1E9).round() / 1E9).item() ,\t\t\t\t\t\t[0.0, 1.0] ,\t\t\t\t\t\tmsg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,\t\t\t\t\t\t)\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridModel.from_pretrained(_UpperCAmelCase )\r self.assertIsNotNone(_UpperCAmelCase )\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tImage.open(\"\"\"./tests/fixtures/tests_samples/COCO/000000039769.png\"\"\"\t\t\t\t)\r return image\r\r\r\r\r\r\r\r@require_torch\r@require_vision\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @cached_property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return (\r ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )\r if is_vision_available()\r else None\r )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(\r _UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.default_image_processor\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprepare_img()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_processor(images=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" ).to(_UpperCAmelCase )\r\r # forward pass\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(**_UpperCAmelCase )\r\r # verify the logits\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.Size((1, 10_00) )\r self.assertEqual(outputs.logits.shape ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor([-1.9090, -0.4993, -0.2389] ).to(_UpperCAmelCase )\r\r self.assertTrue(torch.allclose(outputs.logits[0, :3] ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tatol=1E-4 ) )\r\r\r\r @slow\r @require_accelerate\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridImageProcessor.from_pretrained(\"\"\"google/vit-hybrid-base-bit-384\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tViTHybridForImageClassification.from_pretrained(\"\"\"google/vit-hybrid-base-bit-384\"\"\" ,\t\t\t\t\t\tdevice_map=\"\"\"auto\"\"\" )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprepare_img()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_processor(images=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.logits\r # model predicts one of the 1000 ImageNet classes\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlogits.argmax(-1 ).item()\r\r self.assertTrue(model.config.idalabel[predicted_class_idx] ,\t\t\t\t\t\t\"\"\"tabby, tabby cat\"\"\" )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport torch\rimport torch.nn as nn\rfrom transformers.modeling_utils import ModuleUtilsMixin\rfrom transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm\r\rfrom ...configuration_utils import ConfigMixin, register_to_config\rfrom ...models import ModelMixin\r\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @register_to_config\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tfloat ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = False ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Embedding(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Embedding(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Dropout(p=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaConfig(\r vocab_size=_UpperCAmelCase ,\t\t\t\t\t\td_model=_UpperCAmelCase ,\t\t\t\t\t\tnum_heads=_UpperCAmelCase ,\t\t\t\t\t\td_kv=_UpperCAmelCase ,\t\t\t\t\t\td_ff=_UpperCAmelCase ,\t\t\t\t\t\tdropout_rate=_UpperCAmelCase ,\t\t\t\t\t\tfeed_forward_proj=_UpperCAmelCase ,\t\t\t\t\t\tis_decoder=_UpperCAmelCase ,\t\t\t\t\t\tis_encoder_decoder=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.ModuleList()\r for lyr_num in range(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaBlock(_UpperCAmelCase )\r self.encoders.append(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaLayerNorm(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Dropout(p=_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.token_embedder(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_input_tokens.shape[1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.arange(_UpperCAmelCase ,\t\t\t\t\t\tdevice=encoder_input_tokens.device )\r x += self.position_encoding(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dropout_pre(_UpperCAmelCase )\r\r # inverted the attention mask\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_input_tokens.size()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_extended_attention_mask(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r for lyr in self.encoders:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlyr(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.layer_norm(_UpperCAmelCase )\r\r return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152320,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom typing import Callable, Optional, Union\r\rfrom ...configuration_utils import PretrainedConfig\rfrom ...utils import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'microsoft/xprophetnet-large-wiki100-cased': (\r 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'\r ),\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Dict = \"\"\"xlm-prophetnet\"\"\"\r lowerCAmelCase_ : Any = [\"\"\"past_key_values\"\"\"]\r lowerCAmelCase_ : List[str] = {\r \"\"\"num_attention_heads\"\"\": \"\"\"num_encoder_attention_heads\"\"\",\r }\r\r\r def __init__( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[float] = 0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Union[str, Callable]] = \"gelu\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 3_05_22 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 10_24 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 40_96 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 40_96 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[float] = 0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[float] = 0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 5_12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[float] = 0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[bool] = True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[bool] = True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 1_28 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[bool] = False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[float] = 0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[bool] = True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] = 2 ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_ffn_dim\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_encoder_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_encoder_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecoder_ffn_dim\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_decoder_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_decoder_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_position_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinit_std # Normal(0, this parameter)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tactivation_function\r\r # parameters for xlmprophetnet\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tngram\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_buckets\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trelative_max_distance\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdisable_ngram_loss\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\teps\r\r # 3 Types of Dropout\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_dropout\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tactivation_dropout\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdropout\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_cache\r\r super().__init__(\r pad_token_id=_UpperCAmelCase ,\t\t\t\t\t\tbos_token_id=_UpperCAmelCase ,\t\t\t\t\t\teos_token_id=_UpperCAmelCase ,\t\t\t\t\t\tis_encoder_decoder=_UpperCAmelCase ,\t\t\t\t\t\tadd_cross_attention=_UpperCAmelCase ,\t\t\t\t\t\tdecoder_start_token_id=_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r\r\r @property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.num_encoder_layers + self.num_decoder_layers\r\r\r\r @num_hidden_layers.setter\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r \"\"\"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and\"\"\"\r \"\"\" `num_decoder_layers`.\"\"\" )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport json\rimport os\r\rimport fairseq\rimport torch\rfrom fairseq.data import Dictionary\r\rfrom transformers import (\r WavaVecaConfig,\r WavaVecaCTCTokenizer,\r WavaVecaFeatureExtractor,\r WavaVecaForCTC,\r WavaVecaForPreTraining,\r WavaVecaProcessor,\r logging,\r)\rfrom transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification\r\r\rlogging.set_verbosity_info()\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'post_extract_proj': 'feature_projection.projection',\r 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',\r 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',\r 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',\r 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',\r 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',\r 'self_attn_layer_norm': 'encoder.layers.*.layer_norm',\r 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',\r 'fc2': 'encoder.layers.*.feed_forward.output_dense',\r 'final_layer_norm': 'encoder.layers.*.final_layer_norm',\r 'encoder.layer_norm': 'encoder.layer_norm',\r 'adapter_layer': 'encoder.layers.*.adapter_layer',\r 'w2v_model.layer_norm': 'feature_projection.layer_norm',\r 'quantizer.weight_proj': 'quantizer.weight_proj',\r 'quantizer.vars': 'quantizer.codevectors',\r 'project_q': 'project_q',\r 'final_proj': 'project_hid',\r 'w2v_encoder.proj': 'lm_head',\r 'mask_emb': 'masked_spec_embed',\r 'pooling_layer.linear': 'projector',\r 'pooling_layer.projection': 'classifier',\r}\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'lm_head',\r 'quantizer.weight_proj',\r 'quantizer.codevectors',\r 'project_q',\r 'project_hid',\r 'projector',\r 'classifier',\r]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"r\"\"\"\t\t\t\t) as file:\r for line_number, line in enumerate(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.strip()\r if line:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.split()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline_number\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\twords[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r return result\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r for attribute in key.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r for param_key in PARAM_MAPPING.keys():\r if full_name.endswith(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPARAM_MAPPING[full_name.split(\"\"\".\"\"\"\t\t\t\t)[-1]]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"param\"\"\"\r\r if weight_type is not None and weight_type != \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t).shape\r elif weight_type is not None and weight_type == \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_pointer\r for attribute in hf_param_name.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tshape_pointer.shape\r\r # let's reduce dimension\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue[0]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_pointer.shape\r\r if hf_shape != value.shape:\r raise ValueError(\r F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''\r F''' {value.shape} for {full_name}'''\t\t\t\t)\r\r if weight_type == \"weight\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"weight_g\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"weight_v\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"bias\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"param\":\r for attribute in hf_param_name.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r\r logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.'''\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r for param_key in PARAM_MAPPING.keys():\r if full_name.endswith(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPARAM_MAPPING[full_name.split(\"\"\".\"\"\"\t\t\t\t)[-1]]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"param\"\"\"\r\r if weight_type is not None and weight_type != \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\".\"\"\".join([key, weight_type]\t\t\t\t)\r elif weight_type is not None and weight_type == \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\".\"\"\".join([key, hf_param_name]\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkey\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue if \"\"\"lm_head\"\"\" in full_key else value[0]\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'W_a': 'linear_1.weight',\r 'W_b': 'linear_2.weight',\r 'b_a': 'linear_1.bias',\r 'b_b': 'linear_2.bias',\r 'ln_W': 'norm.weight',\r 'ln_b': 'norm.bias',\r}\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r for key, mapped_key in MAPPING.items():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"wav2vec2.\"\"\" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key\r if key in name or key.split(\"\"\"w2v_model.\"\"\"\t\t\t\t)[-1] == name.split(\"\"\".\"\"\"\t\t\t\t)[0]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r if \"*\" in mapped_key:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tname.split(SCREAMING_SNAKE_CASE__\t\t\t\t)[0].split(\"\"\".\"\"\"\t\t\t\t)[-2]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmapped_key.replace(\"\"\"*\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if \"weight_g\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight_g\"\"\"\r elif \"weight_v\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight_v\"\"\"\r elif \"bias\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"bias\"\"\"\r elif \"weight\" in name:\r # TODO: don't match quantizer.weight_proj\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight\"\"\"\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if hf_dict is not None:\r rename_dict(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r set_recursively(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return is_used\r return is_used\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq_model.state_dict()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_model.wavaveca.feature_extractor\r\r for name, value in fairseq_dict.items():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r if \"conv_layers\" in name:\r load_conv_layer(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, hf_model.config.feat_extract_norm == \"\"\"group\"\"\"\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tload_wavaveca_layer(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if not is_used:\r unused_weights.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r logger.warning(F'''Unused weights: {unused_weights}'''\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfull_name.split(\"\"\"conv_layers.\"\"\"\t\t\t\t)[-1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tname.split(\"\"\".\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(items[0]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(items[1]\t\t\t\t)\r\r if type_id == 0:\r if \"bias\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif \"weight\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):\r if \"bias\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif \"weight\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r else:\r unused_weights.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r@torch.no_grad()\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]=True\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if config_path is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaConfig()\r\r if is_seq_class:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tread_txt_into_dict(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tidalabel\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaFeatureExtractor(\r feature_size=1\t\t\t\t, sampling_rate=16000\t\t\t\t, padding_value=0\t\t\t\t, do_normalize=SCREAMING_SNAKE_CASE__\t\t\t\t, return_attention_mask=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r elif is_finetuned:\r if dict_path:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDictionary.load(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # important change bos & pad token id since CTC symbol is and\r # not as in fairseq\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.pad_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.bos_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.eos_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(target_dict.symbols\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"vocab.json\"\"\"\t\t\t\t)\r if not os.path.isdir(SCREAMING_SNAKE_CASE__\t\t\t\t):\r logger.error(\"\"\"--pytorch_dump_folder_path ({}) should be a directory\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return\r os.makedirs(SCREAMING_SNAKE_CASE__\t\t\t\t, exist_ok=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.indices\r\r # fairseq has the and switched\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, encoding=\"\"\"utf-8\"\"\"\t\t\t\t) as vocab_handle:\r json.dump(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaCTCTokenizer(\r SCREAMING_SNAKE_CASE__\t\t\t\t, unk_token=target_dict.unk_word\t\t\t\t, pad_token=target_dict.pad_word\t\t\t\t, bos_token=target_dict.bos_word\t\t\t\t, eos_token=target_dict.eos_word\t\t\t\t, word_delimiter_token=\"\"\"|\"\"\"\t\t\t\t, do_lower_case=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue if config.feat_extract_norm == \"\"\"layer\"\"\" else False\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaFeatureExtractor(\r feature_size=1\t\t\t\t, sampling_rate=16000\t\t\t\t, padding_value=0\t\t\t\t, do_normalize=SCREAMING_SNAKE_CASE__\t\t\t\t, return_attention_mask=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__\t\t\t\t, tokenizer=SCREAMING_SNAKE_CASE__\t\t\t\t)\r processor.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForCTC(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForPreTraining(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if is_finetuned or is_seq_class:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.checkpoint_utils.load_model_ensemble_and_task(\r [checkpoint_path]\t\t\t\t, arg_overrides={\"\"\"data\"\"\": \"\"\"/\"\"\".join(dict_path.split(\"\"\"/\"\"\"\t\t\t\t)[:-1]\t\t\t\t)}\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\targparse.Namespace(task=\"\"\"audio_pretraining\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]\t\t\t\t, task=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel[0].eval()\r\r recursively_load_weights(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, not is_finetuned\t\t\t\t)\r\r hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser()\r parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')\r parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')\r parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')\r parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')\r parser.add_argument(\r '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'\r )\r parser.add_argument(\r '--is_seq_class',\r action='store_true',\r help='Whether the model to convert is a fine-tuned sequence classification model or not',\r )\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnot args.not_finetuned and not args.is_seq_class\r convert_wavaveca_checkpoint(\r args.checkpoint_path,\r args.pytorch_dump_folder_path,\r args.config_path,\r args.dict_path,\r is_finetuned,\r args.is_seq_class,\r )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152321,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport unittest\rfrom pathlib import Path\rfrom tempfile import TemporaryDirectory\r\rfrom transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available\rfrom transformers.models.gpta.tokenization_gpta import GPTaTokenizer\rfrom transformers.testing_utils import require_keras_nlp, require_tf, slow\r\r\rif is_tf_available():\r import tensorflow as tf\r\rif is_keras_nlp_available():\r from transformers.models.gpta import TFGPTaTokenizer\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t['gpt2']\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'gpt2'\r\rif is_tf_available():\r\r class lowerCAmelCase_ ( tf.Module ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoConfig.from_pretrained(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFGPTaLMHeadModel.from_config(_UpperCAmelCase )\r\r\r\r @tf.function(input_signature=(tf.TensorSpec((None,) ,\t\t\t\t\t\ttf.string ,\t\t\t\t\t\tname=\"\"\"text\"\"\" ),) )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.tokenizer(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenized[\"\"\"input_ids\"\"\"].to_tensor()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.cast(input_ids_dense > 0 ,\t\t\t\t\t\ttf.intaa )\r # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model(input_ids=_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase )[\"\"\"logits\"\"\"]\r\r return outputs\r\r@require_tf\r@require_keras_nlp\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().setUp()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[GPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[TFGPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]\r assert len(self.tokenizers ) == len(self.tf_tokenizers )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"This is a straightforward English test sentence.\"\"\",\r \"\"\"This one has some weird characters\\rto\\nsee\\r\\nif those\\u00E9break things.\"\"\",\r \"\"\"Now we're going to add some Chinese: 一 二 三 一二三\"\"\",\r \"\"\"And some much more rare Chinese: 齉 堃 齉堃\"\"\",\r \"\"\"Je vais aussi écrire en français pour tester les accents\"\"\",\r \"\"\"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ\"\"\",\r ]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(zip(self.test_sentences ,\t\t\t\t\t\tself.test_sentences[::-1] ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tokenizer, tf_tokenizer in zip(self.tokenizers ,\t\t\t\t\t\tself.tf_tokenizers ):\r for test_inputs in self.test_sentences:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer([test_inputs] ,\t\t\t\t\t\treturn_tensors=\"\"\"tf\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_tokenizer([test_inputs] )\r\r for key in python_outputs.keys():\r # convert them to numpy to avoid messing with ragged tensors\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpython_outputs[key].numpy()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_outputs[key].numpy()\r\r self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )\r self.assertTrue(tf.reduce_all(tf.cast(_UpperCAmelCase ,\t\t\t\t\t\ttf.intaa ) == tf_outputs_values ) )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tf_tokenizer in self.tf_tokenizers:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.function(_UpperCAmelCase )\r for test_inputs in self.test_sentences:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.constant(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompiled_tokenizer(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_tokenizer(_UpperCAmelCase )\r\r for key in eager_outputs.keys():\r self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tf_tokenizer in self.tf_tokenizers:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tModelToSave(tokenizer=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.convert_to_tensor([self.test_sentences[0]] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.serving(_UpperCAmelCase ) # Build model with some sample inputs\r with TemporaryDirectory() as tempdir:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(_UpperCAmelCase ) / \"\"\"saved.model\"\"\"\r tf.saved_model.save(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tsignatures={\"\"\"serving_default\"\"\": model.serving} )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.saved_model.load(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tloaded_model.signatures[\"\"\"serving_default\"\"\"](_UpperCAmelCase )[\"\"\"output_0\"\"\"]\r # We may see small differences because the loaded model is compiled, so we need an epsilon for the test\r self.assertTrue(tf.reduce_all(out == loaded_output ) )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tf_tokenizer in self.tf_tokenizers:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.convert_to_tensor([self.test_sentences[0]] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_tokenizer(_UpperCAmelCase ) # Build model with some sample inputs\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_tokenizer.get_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTFGPTaTokenizer.from_config(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_from_config(_UpperCAmelCase )\r\r for key in from_config_output.keys():\r self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tf_tokenizer in self.tf_tokenizers:\r # for the test to run\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t12_31_23\r\r for max_length in [3, 5, 10_24]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.convert_to_tensor([self.test_sentences[0]] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf_tokenizer(_UpperCAmelCase ,\t\t\t\t\t\tmax_length=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tout[\"\"\"input_ids\"\"\"].numpy().shape[1]\r\r assert out_length == max_length\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport itertools\rimport os\rfrom collections import Counter, defaultdict\rfrom concurrent.futures import ThreadPoolExecutor, as_completed\r\rimport numpy as np\r\rimport datasets\r\rfrom .execute import check_correctness\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n@misc{chen2021evaluating,\\n title={Evaluating Large Language Models Trained on Code},\\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\\\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\\\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\\\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\\\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\\\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\\\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\\\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\\\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\\\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\\\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\\\nand William Saunders and Christopher Hesse and Andrew N. Carr \\\\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\\\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\\\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\\\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\\n year={2021},\\n eprint={2107.03374},\\n archivePrefix={arXiv},\\n primaryClass={cs.LG}\\n}\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\\n(https://arxiv.org/abs/2107.03374).\\n'\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nCalculates how good are predictions given some references, using certain scores\\nArgs:\\n predictions: list of candidates to evaluate. Each candidates should be a list\\n of strings with several code candidates to solve the problem.\\n references: a list with a test for each prediction. Each test should evaluate the\\n correctness of a code candidate.\\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\\n timeout:\\nReturns:\\n pass_at_k: dict with pass rates for each k\\n results: dict with granular results of each unittest\\nExamples:\\n >>> code_eval = datasets.load_metric(\"code_eval\")\\n >>> test_cases = [\"assert add(2,3)==5\"]\\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\\n >>> print(pass_at_k)\\n {\\'pass@1\\': 0.5, \\'pass@2\\': 1.0}\\n'\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\n################################################################################\\n !!!WARNING!!!\\n################################################################################\\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\\nAlthough it is highly unlikely that model-generated code will do something\\novertly malicious in response to this test suite, model-generated code may act\\ndestructively due to a lack of model capability or alignment.\\nUsers are strongly encouraged to sandbox this evaluation suite so that it\\ndoes not perform destructive actions on their host or network. For more\\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\\n\\nOnce you have read this disclaimer and taken appropriate precautions,\\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\\nwith:\\n\\n>>> import os\\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\\n\\n################################################################################\\\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'The MIT License\\n\\nCopyright (c) OpenAI (https://openai.com)\\n\\nPermission is hereby granted, free of charge, to any person obtaining a copy\\nof this software and associated documentation files (the \"Software\"), to deal\\nin the Software without restriction, including without limitation the rights\\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\\ncopies of the Software, and to permit persons to whom the Software is\\nfurnished to do so, subject to the following conditions:\\n\\nThe above copyright notice and this permission notice shall be included in\\nall copies or substantial portions of the Software.\\n\\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\\nTHE SOFTWARE.'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r # This is the description that will appear on the metrics page.\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"predictions\"\"\": datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ) ),\r \"\"\"references\"\"\": datasets.Value(\"\"\"string\"\"\" ),\r } ) ,\t\t\t\t\t\thomepage=\"\"\"https://github.com/openai/human-eval\"\"\" ,\t\t\t\t\t\tcodebase_urls=[\"\"\"https://github.com/openai/human-eval\"\"\"] ,\t\t\t\t\t\treference_urls=[\"\"\"https://github.com/openai/human-eval\"\"\"] ,\t\t\t\t\t\tlicense=_LICENSE ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=[1, 10, 1_00] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=3.0 ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if os.getenv(\"\"\"HF_ALLOW_CODE_EVAL\"\"\" ,\t\t\t\t\t\t0 ) != \"1\":\r raise ValueError(_WARNING )\r\r if os.name == \"nt\":\r raise NotImplementedError(\"\"\"This metric is currently not supported on Windows.\"\"\" )\r\r with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCounter()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdefaultdict(_UpperCAmelCase )\r\r for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) ):\r for candidate in candidates:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcandidate + \"\"\"\\n\"\"\" + test_case\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(test_program, timeout, task_id, completion_id[task_id])\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\texecutor.submit(_UpperCAmelCase ,\t\t\t\t\t\t*_UpperCAmelCase )\r futures.append(_UpperCAmelCase )\r completion_id[task_id] += 1\r n_samples += 1\r\r for future in as_completed(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfuture.result()\r results[result[\"task_id\"]].append((result[\"\"\"completion_id\"\"\"], result) )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[], []\r for result in results.values():\r result.sort()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[r[1][\"\"\"passed\"\"\"] for r in result]\r total.append(len(_UpperCAmelCase ) )\r correct.append(sum(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tk\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).mean() for k in ks if (total >= k).all()}\r\r return pass_at_k, results\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def estimator(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t) -> float:\r if n - c < k:\r return 1.0\r return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1\t\t\t\t, n + 1\t\t\t\t)\t\t\t\t)\r\r if isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\titertools.repeat(SCREAMING_SNAKE_CASE__\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r else:\r assert len(SCREAMING_SNAKE_CASE__\t\t\t\t) == len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\titer(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return np.array([estimator(int(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, int(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) for n, c in zip(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)]\t\t\t\t)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152322,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom random import randint, random\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tbool = False\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tbool = False\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 5\t\t\t\t, ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[[-1] * number_of_cells] # Create a highway without any car\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(SCREAMING_SNAKE_CASE__\t\t\t\t, 0\t\t\t\t)\r while i < number_of_cells:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r randint(0\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) if random_speed else initial_speed\r ) # Place the cars\r i += (\r randint(1\t\t\t\t, max_speed * 2\t\t\t\t) if random_frequency else frequency\r ) # Arbitrary number, may need tuning\r return highway\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thighway_now[car_index + 1 :]\r for cell in range(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t): # May need a better name for this\r if cells[cell] != -1: # If the cell is not empty then\r return distance # we have the distance we wanted\r distance += 1\r # Here if the car is near the end of the highway\r return distance + get_distance(SCREAMING_SNAKE_CASE__\t\t\t\t, -1\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t)\r # Beforce calculations, the highway is empty\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[-1] * number_of_cells\r\r for car_index in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r if highway_now[car_index] != -1:\r # Add 1 to the current speed of the car and cap the speed\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(highway_now[car_index] + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r # Number of empty cell before the next car\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_distance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) - 1\r # We can't have the car causing an accident\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(next_highway[car_index]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if random() < probability:\r # Randomly, a driver will slow down\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(next_highway[car_index] - 1\t\t\t\t, 0\t\t\t\t)\r return next_highway\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(highway[0]\t\t\t\t)\r\r for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate(highway[i]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[-1] * number_of_cells\r\r for car_index in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnext_speeds_calculated[car_index]\r if speed != -1:\r # Change the position based on the speed (with % to create the loop)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(car_index + speed) % number_of_cells\r # Commit the change of position\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspeed\r highway.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return highway\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport math\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r assert isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) and (\r number >= 0\r ), \"'number' must been an int and positive\"\r\r if 1 < number < 4:\r # 2 and 3 are primes\r return True\r elif number < 2 or not number % 2:\r # Negatives, 0, 1 and all even numbers are not primes\r return False\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trange(3\t\t\t\t, int(math.sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t) + 1\t\t\t\t)\t\t\t\t, 2\t\t\t\t)\r return not any(not number % i for i in odd_numbers\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=1\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfactor * value\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r\r while not is_prime(SCREAMING_SNAKE_CASE__\t\t\t\t):\r value += 1 if not (\"desc\" in kwargs and kwargs[\"desc\"] is True) else -1\r\r if value == first_value_val:\r return next_prime(value + 1\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t)\r return value\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152323,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport inspect\rfrom typing import List, Optional, Tuple, Union\r\rimport torch\r\rfrom ...models import UNetaDModel, VQModel\rfrom ...schedulers import DDIMScheduler\rfrom ...utils import randn_tensor\rfrom ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tVQModel ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUNetaDModel ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDDIMScheduler ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__()\r self.register_modules(vqvae=_UpperCAmelCase ,\t\t\t\t\t\tunet=_UpperCAmelCase ,\t\t\t\t\t\tscheduler=_UpperCAmelCase )\r\r\r\r @torch.no_grad()\r def __call__( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint = 1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Union[torch.Generator, List[torch.Generator]]] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tfloat = 0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint = 50 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[str] = \"pil\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = True ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trandn_tensor(\r (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,\t\t\t\t\t\tgenerator=_UpperCAmelCase ,\t\t\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlatents.to(self.device )\r\r # scale the initial noise by the standard deviation required by the scheduler\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlatents * self.scheduler.init_noise_sigma\r\r self.scheduler.set_timesteps(_UpperCAmelCase )\r\r # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"eta\"\"\" in set(inspect.signature(self.scheduler.step ).parameters.keys() )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r if accepts_eta:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\teta\r\r for t in self.progress_bar(self.scheduler.timesteps ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler.scale_model_input(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r # predict the noise residual\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.unet(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).sample\r # compute the previous noisy sample x_t -> x_t-1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler.step(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r # decode the image latents with the VAE\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.vqvae.decode(_UpperCAmelCase ).sample\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(image / 2 + 0.5).clamp(0 ,\t\t\t\t\t\t1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage.cpu().permute(0 ,\t\t\t\t\t\t2 ,\t\t\t\t\t\t3 ,\t\t\t\t\t\t1 ).numpy()\r if output_type == \"pil\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.numpy_to_pil(_UpperCAmelCase )\r\r if not return_dict:\r return (image,)\r\r return ImagePipelineOutput(images=_UpperCAmelCase )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport string\rfrom math import logaa\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdocument.translate(\r str.maketrans(\"\"\"\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t, string.punctuation\t\t\t\t)\t\t\t\t).replace(\"\"\"\\n\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdocument_without_punctuation.split(\"\"\" \"\"\"\t\t\t\t) # word tokenization\r return len([word for word in tokenize_document if word.lower() == term.lower()]\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcorpus.lower().translate(\r str.maketrans(\"\"\"\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t, string.punctuation\t\t\t\t)\t\t\t\t) # strip all punctuation and replace it with ''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcorpus_without_punctuation.split(\"\"\"\\n\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tterm.lower()\r return (len([doc for doc in docs if term in doc]\t\t\t\t), len(SCREAMING_SNAKE_CASE__\t\t\t\t))\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if smoothing:\r if n == 0:\r raise ValueError(\"\"\"log10(0) is undefined.\"\"\"\t\t\t\t)\r return round(1 + logaa(n / (1 + df)\t\t\t\t)\t\t\t\t, 3\t\t\t\t)\r\r if df == 0:\r raise ZeroDivisionError(\"\"\"df must be > 0\"\"\"\t\t\t\t)\r elif n == 0:\r raise ValueError(\"\"\"log10(0) is undefined.\"\"\"\t\t\t\t)\r return round(logaa(n / df\t\t\t\t)\t\t\t\t, 3\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return round(tf * idf\t\t\t\t, 3\t\t\t\t)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152324,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom typing import TYPE_CHECKING\r\rfrom ...utils import (\r OptionalDependencyNotAvailable,\r _LazyModule,\r is_flax_available,\r is_tf_available,\r is_tokenizers_available,\r is_torch_available,\r)\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'configuration_blenderbot': [\r 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',\r 'BlenderbotConfig',\r 'BlenderbotOnnxConfig',\r ],\r 'tokenization_blenderbot': ['BlenderbotTokenizer'],\r}\r\rtry:\r if not is_tokenizers_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t['BlenderbotTokenizerFast']\r\rtry:\r if not is_torch_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',\r 'BlenderbotForCausalLM',\r 'BlenderbotForConditionalGeneration',\r 'BlenderbotModel',\r 'BlenderbotPreTrainedModel',\r ]\r\r\rtry:\r if not is_tf_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'TFBlenderbotForConditionalGeneration',\r 'TFBlenderbotModel',\r 'TFBlenderbotPreTrainedModel',\r ]\r\r\rtry:\r if not is_flax_available():\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r pass\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'FlaxBlenderbotForConditionalGeneration',\r 'FlaxBlenderbotModel',\r 'FlaxBlenderbotPreTrainedModel',\r ]\r\r\rif TYPE_CHECKING:\r from .configuration_blenderbot import (\r BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,\r BlenderbotConfig,\r BlenderbotOnnxConfig,\r )\r from .tokenization_blenderbot import BlenderbotTokenizer\r\r try:\r if not is_tokenizers_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .tokenization_blenderbot_fast import BlenderbotTokenizerFast\r\r try:\r if not is_torch_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .modeling_blenderbot import (\r BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,\r BlenderbotForCausalLM,\r BlenderbotForConditionalGeneration,\r BlenderbotModel,\r BlenderbotPreTrainedModel,\r )\r\r try:\r if not is_tf_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .modeling_tf_blenderbot import (\r TFBlenderbotForConditionalGeneration,\r TFBlenderbotModel,\r TFBlenderbotPreTrainedModel,\r )\r\r try:\r if not is_flax_available():\r raise OptionalDependencyNotAvailable()\r except OptionalDependencyNotAvailable:\r pass\r else:\r from .modeling_flax_blenderbot import (\r FlaxBlenderbotForConditionalGeneration,\r FlaxBlenderbotModel,\r FlaxBlenderbotPreTrainedModel,\r )\r\relse:\r import sys\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\r\rimport torch\r\rfrom transformers import BertForMaskedLM\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser(\r description=(\r 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'\r ' Distillation'\r )\r )\r parser.add_argument('--model_type', default='bert', choices=['bert'])\r parser.add_argument('--model_name', default='bert-base-uncased', type=str)\r parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)\r parser.add_argument('--vocab_transform', action='store_true')\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r\r if args.model_type == \"bert\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tBertForMaskedLM.from_pretrained(args.model_name)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t'bert'\r else:\r raise ValueError('args.model_type should be \"bert\".')\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tmodel.state_dict()\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\r\r for w in [\"word_embeddings\", \"position_embeddings\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"{prefix}.embeddings.{w}.weight\"]\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"{prefix}.embeddings.LayerNorm.{w}\"]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t0\r for teacher_idx in [0, 2, 4, 7, 9, 1_1]:\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}\"\r ]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}\"\r ]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}\"\r ]\r std_idx += 1\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict['cls.predictions.decoder.weight']\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict['cls.predictions.bias']\r if args.vocab_transform:\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"cls.predictions.transform.dense.{w}\"]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"cls.predictions.transform.LayerNorm.{w}\"]\r\r print(f\"N layers selected for distillation: {std_idx}\")\r print(f\"Number of params transferred for distillation: {len(compressed_sd.keys())}\")\r\r print(f\"Save transferred checkpoint to {args.dump_checkpoint}.\")\r torch.save(compressed_sd, args.dump_checkpoint)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152325,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom collections import Counter\r\rimport numpy as np\rfrom sklearn import datasets\rfrom sklearn.model_selection import train_test_split\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tdatasets.load_iris()\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array(data['data'])\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tnp.array(data['target'])\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tdata['target_names']\r\rUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_\t\t\t\t =\t\t\t\t\ttrain_test_split(X, y)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE__\t\t\t\t) - np.array(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny=5\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tzip(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r # List of distances of all points from the point to be classified\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for data_point in data:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\teuclidean_distance(data_point[0]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r distances.append((distance, data_point[1])\t\t\t\t)\r # Choosing 'k' points with the least distances.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[i[1] for i in sorted(SCREAMING_SNAKE_CASE__\t\t\t\t)[:k]]\r # Most commonly occurring class among them\r # is the class into which the point is classified\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCounter(SCREAMING_SNAKE_CASE__\t\t\t\t).most_common(1\t\t\t\t)[0][0]\r return classes[result]\r\r\rif __name__ == \"__main__\":\r print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport tempfile\r\rimport torch\r\rfrom diffusers import PNDMScheduler\r\rfrom .test_schedulers import SchedulerCommonTest\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)\r lowerCAmelCase_ : Optional[int] = ((\"\"\"num_inference_steps\"\"\", 50),)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"num_train_timesteps\"\"\": 10_00,\r \"\"\"beta_start\"\"\": 0.0001,\r \"\"\"beta_end\"\"\": 0.02,\r \"\"\"beta_schedule\"\"\": \"\"\"linear\"\"\",\r }\r\r config.update(**_UpperCAmelCase )\r return config\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0 ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(_UpperCAmelCase )\r # copy over dummy past residuals\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r with tempfile.TemporaryDirectory() as tmpdirname:\r scheduler.save_config(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class.from_pretrained(_UpperCAmelCase )\r new_scheduler.set_timesteps(_UpperCAmelCase )\r # copy over dummy past residuals\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0 ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(_UpperCAmelCase )\r\r # copy over dummy past residuals (must be after setting timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r with tempfile.TemporaryDirectory() as tmpdirname:\r scheduler.save_config(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class.from_pretrained(_UpperCAmelCase )\r # copy over dummy past residuals\r new_scheduler.set_timesteps(_UpperCAmelCase )\r\r # copy over dummy past residual (must be after setting timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t10\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_model()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample_deter\r scheduler.set_timesteps(_UpperCAmelCase )\r\r for i, t in enumerate(scheduler.prk_timesteps ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r for i, t in enumerate(scheduler.plms_timesteps ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r return sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r\r if num_inference_steps is not None and hasattr(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"set_timesteps\"\"\" ):\r scheduler.set_timesteps(_UpperCAmelCase )\r elif num_inference_steps is not None and not hasattr(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"set_timesteps\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_inference_steps\r\r # copy over dummy past residuals (must be done after set_timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t0 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r self.assertEqual(output_a.shape ,\t\t\t\t\t\tsample.shape )\r self.assertEqual(output_a.shape ,\t\t\t\t\t\toutput_a.shape )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t0 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r self.assertEqual(output_a.shape ,\t\t\t\t\t\tsample.shape )\r self.assertEqual(output_a.shape ,\t\t\t\t\t\toutput_a.shape )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for timesteps in [1_00, 10_00]:\r self.check_over_configs(num_train_timesteps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for steps_offset in [0, 1]:\r self.check_over_configs(steps_offset=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(steps_offset=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(10 )\r assert torch.equal(\r scheduler.timesteps ,\t\t\t\t\t\ttorch.LongTensor(\r [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for beta_start, beta_end in zip([0.0001, 0.001] ,\t\t\t\t\t\t[0.002, 0.02] ):\r self.check_over_configs(beta_start=_UpperCAmelCase ,\t\t\t\t\t\tbeta_end=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for schedule in [\"linear\", \"squaredcos_cap_v2\"]:\r self.check_over_configs(beta_schedule=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for prediction_type in [\"epsilon\", \"v_prediction\"]:\r self.check_over_configs(prediction_type=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for t in [1, 5, 10]:\r self.check_over_forward(time_step=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for t, num_inference_steps in zip([1, 5, 10] ,\t\t\t\t\t\t[10, 50, 1_00] ):\r self.check_over_forward(num_inference_steps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t27\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r scheduler.set_timesteps(_UpperCAmelCase )\r\r # before power of 3 fix, would error on first step, so we only need to do two\r for i, t in enumerate(scheduler.prk_timesteps[:2] ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r with self.assertRaises(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r scheduler.step_plms(self.dummy_sample ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tself.dummy_sample ).prev_sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 198.1318 ) < 1E-2\r assert abs(result_mean.item() - 0.2580 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(prediction_type=\"\"\"v_prediction\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 67.3986 ) < 1E-2\r assert abs(result_mean.item() - 0.0878 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(set_alpha_to_one=_UpperCAmelCase ,\t\t\t\t\t\tbeta_start=0.01 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 230.0399 ) < 1E-2\r assert abs(result_mean.item() - 0.2995 ) < 1E-3\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(set_alpha_to_one=_UpperCAmelCase ,\t\t\t\t\t\tbeta_start=0.01 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 186.9482 ) < 1E-2\r assert abs(result_mean.item() - 0.2434 ) < 1E-3\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152326,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 0\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlength or len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r for i in range(length - 1\t\t\t\t):\r if list_data[i] > list_data[i + 1]:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist_data[i + 1], list_data[i]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r\r return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__\t\t\t\t, length - 1\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom ...configuration_utils import PretrainedConfig\rfrom ...utils import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'google/vivit-b-16x2-kinetics400': (\r 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'\r ),\r # See all Vivit models at https://huggingface.co/models?filter=vivit\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Optional[int] = \"\"\"vivit\"\"\"\r\r\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=2_24 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=[2, 16, 16] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=3 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=7_68 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=30_72 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=\"gelu_fast\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=1E-06 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tintermediate_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_act\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlayer_norm_eps\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_frames\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttubelet_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_channels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tqkv_bias\r\r super().__init__(**_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152327,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport inspect\rimport unittest\r\rfrom transformers import DecisionTransformerConfig, is_torch_available\rfrom transformers.testing_utils import require_torch, slow, torch_device\r\rfrom ...generation.test_utils import GenerationTesterMixin\rfrom ...test_configuration_common import ConfigTester\rfrom ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask\rfrom ...test_pipeline_mixin import PipelineTesterMixin\r\r\rif is_torch_available():\r import torch\r\r from transformers import DecisionTransformerModel\r from transformers.models.decision_transformer.modeling_decision_transformer import (\r DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,\r )\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=13 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=7 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=6 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=17 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=23 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=11 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=True ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparent\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tseq_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tact_dim\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstate_dim\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tis_training\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloats_tensor((self.batch_size, self.seq_length, self.state_dim) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloats_tensor((self.batch_size, self.seq_length, self.act_dim) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloats_tensor((self.batch_size, self.seq_length, 1) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfloats_tensor((self.batch_size, self.seq_length, 1) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor((self.batch_size, self.seq_length) ,\t\t\t\t\t\tvocab_size=10_00 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trandom_attention_mask((self.batch_size, self.seq_length) )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_config()\r\r return (\r config,\r states,\r actions,\r rewards,\r returns_to_go,\r timesteps,\r attention_mask,\r )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return DecisionTransformerConfig(\r batch_size=self.batch_size ,\t\t\t\t\t\tseq_length=self.seq_length ,\t\t\t\t\t\tact_dim=self.act_dim ,\t\t\t\t\t\tstate_dim=self.state_dim ,\t\t\t\t\t\thidden_size=self.hidden_size ,\t\t\t\t\t\tmax_length=self.max_length ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDecisionTransformerModel(config=_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r self.parent.assertEqual(result.state_preds.shape ,\t\t\t\t\t\tstates.shape )\r self.parent.assertEqual(result.action_preds.shape ,\t\t\t\t\t\tactions.shape )\r self.parent.assertEqual(result.return_preds.shape ,\t\t\t\t\t\treturns_to_go.shape )\r self.parent.assertEqual(\r result.last_hidden_state.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_config_and_inputs()\r (\r (\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t\r )\t\t\t\t\t\t\t\t=\t\t\tconfig_and_inputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"states\"\"\": states,\r \"\"\"actions\"\"\": actions,\r \"\"\"rewards\"\"\": rewards,\r \"\"\"returns_to_go\"\"\": returns_to_go,\r \"\"\"timesteps\"\"\": timesteps,\r \"\"\"attention_mask\"\"\": attention_mask,\r }\r return config, inputs_dict\r\r@require_torch\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : List[Any] = (DecisionTransformerModel,) if is_torch_available() else ()\r lowerCAmelCase_ : Optional[int] = ()\r lowerCAmelCase_ : Optional[int] = {\"\"\"feature-extraction\"\"\": DecisionTransformerModel} if is_torch_available() else {}\r\r # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids\r lowerCAmelCase_ : Optional[int] = False\r\r # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features\r lowerCAmelCase_ : Tuple = False\r lowerCAmelCase_ : Optional[Any] = False\r lowerCAmelCase_ : Dict = False\r lowerCAmelCase_ : List[Any] = False\r lowerCAmelCase_ : Tuple = False\r lowerCAmelCase_ : int = False\r lowerCAmelCase_ : Tuple = False\r lowerCAmelCase_ : List[Any] = False\r lowerCAmelCase_ : Union[str, Any] = False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDecisionTransformerModelTester(self )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConfigTester(self ,\t\t\t\t\t\tconfig_class=_UpperCAmelCase ,\t\t\t\t\t\thidden_size=37 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.config_tester.run_common_tests()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_model(*_UpperCAmelCase )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDecisionTransformerModel.from_pretrained(_UpperCAmelCase )\r self.assertIsNotNone(_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs_for_common()\r\r for model_class in self.all_model_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_class(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinspect.signature(model.forward )\r # signature.parameters is an OrderedDict => so arg_names order is deterministic\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[*signature.parameters.keys()]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"states\"\"\",\r \"\"\"actions\"\"\",\r \"\"\"rewards\"\"\",\r \"\"\"returns_to_go\"\"\",\r \"\"\"timesteps\"\"\",\r \"\"\"attention_mask\"\"\",\r ]\r\r self.assertListEqual(arg_names[: len(_UpperCAmelCase )] ,\t\t\t\t\t\t_UpperCAmelCase )\r\r@require_torch\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t2 # number of steps of autoregressive prediction we will perform\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t10 # defined by the RL environment, may be normalized\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDecisionTransformerModel.from_pretrained(\"\"\"edbeeching/decision-transformer-gym-hopper-expert\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.to(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.config\r torch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.randn(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tconfig.state_dim ).to(device=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.floataa ) # env.reset()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor(\r [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor(_UpperCAmelCase ,\t\t\t\t\t\tdevice=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.floataa ).reshape(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstate\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.zeros(1 ,\t\t\t\t\t\t0 ,\t\t\t\t\t\tconfig.act_dim ,\t\t\t\t\t\tdevice=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.floataa )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.zeros(1 ,\t\t\t\t\t\t0 ,\t\t\t\t\t\tdevice=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.floataa )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor(0 ,\t\t\t\t\t\tdevice=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.long ).reshape(1 ,\t\t\t\t\t\t1 )\r\r for step in range(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([actions, torch.zeros(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tconfig.act_dim ,\t\t\t\t\t\tdevice=_UpperCAmelCase )] ,\t\t\t\t\t\tdim=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([rewards, torch.zeros(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tdevice=_UpperCAmelCase )] ,\t\t\t\t\t\tdim=1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.ones(1 ,\t\t\t\t\t\tstates.shape[1] ).to(dtype=torch.long ,\t\t\t\t\t\tdevice=states.device )\r\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(\r states=_UpperCAmelCase ,\t\t\t\t\t\tactions=_UpperCAmelCase ,\t\t\t\t\t\trewards=_UpperCAmelCase ,\t\t\t\t\t\treturns_to_go=_UpperCAmelCase ,\t\t\t\t\t\ttimesteps=_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ,\t\t\t\t\t\treturn_dict=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r self.assertEqual(action_pred.shape ,\t\t\t\t\t\tactions.shape )\r self.assertTrue(torch.allclose(action_pred[0, -1] ,\t\t\t\t\t\texpected_outputs[step] ,\t\t\t\t\t\tatol=1E-4 ) )\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t( # env.step(action)\r torch.randn(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tconfig.state_dim ).to(device=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.floataa ),\r 1.0,\r False,\r {},\r )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\taction_pred[0, -1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([states, state] ,\t\t\t\t\t\tdim=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\treturns_to_go[0, -1] - reward\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([returns_to_go, pred_return.reshape(1 ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t1 )] ,\t\t\t\t\t\tdim=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat(\r [timesteps, torch.ones((1, 1) ,\t\t\t\t\t\tdevice=_UpperCAmelCase ,\t\t\t\t\t\tdtype=torch.long ) * (step + 1)] ,\t\t\t\t\t\tdim=1 )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport warnings\r\rfrom ...utils import logging\rfrom .image_processing_deit import DeiTImageProcessor\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r warnings.warn(\r \"\"\"The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please\"\"\"\r \"\"\" use DeiTImageProcessor instead.\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t)\r super().__init__(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152328,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rimport unittest\r\rfrom transformers import BertTokenizerFast\rfrom transformers.models.bert.tokenization_bert import (\r VOCAB_FILES_NAMES,\r BasicTokenizer,\r BertTokenizer,\r WordpieceTokenizer,\r _is_control,\r _is_punctuation,\r _is_whitespace,\r)\rfrom transformers.testing_utils import require_tokenizers, slow\r\rfrom ...test_tokenization_common import TokenizerTesterMixin, filter_non_english\r\r@require_tokenizers\rclass lowerCAmelCase_ ( lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : List[str] = BertTokenizer\r lowerCAmelCase_ : Tuple = BertTokenizerFast\r lowerCAmelCase_ : Tuple = True\r lowerCAmelCase_ : Optional[int] = True\r lowerCAmelCase_ : str = filter_non_english\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().setUp()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"[UNK]\"\"\",\r \"\"\"[CLS]\"\"\",\r \"\"\"[SEP]\"\"\",\r \"\"\"[PAD]\"\"\",\r \"\"\"[MASK]\"\"\",\r \"\"\"want\"\"\",\r \"\"\"##want\"\"\",\r \"\"\"##ed\"\"\",\r \"\"\"wa\"\"\",\r \"\"\"un\"\"\",\r \"\"\"runn\"\"\",\r \"\"\"##ing\"\"\",\r \"\"\",\"\"\",\r \"\"\"low\"\"\",\r \"\"\"lowest\"\"\",\r ]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(self.tmpdirname ,\t\t\t\t\t\tVOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r with open(self.vocab_file ,\t\t\t\t\t\t\"\"\"w\"\"\" ,\t\t\t\t\t\tencoding=\"\"\"utf-8\"\"\" ) as vocab_writer:\r vocab_writer.write(\"\"\"\"\"\".join([x + \"\"\"\\n\"\"\" for x in vocab_tokens] ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"UNwant\\u00E9d,running\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"unwanted, running\"\"\"\r return input_text, output_text\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.tokenizer_class(self.vocab_file )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.tokenize(\"\"\"UNwant\\u00E9d,running\"\"\" )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t[\"\"\"un\"\"\", \"\"\"##want\"\"\", \"\"\"##ed\"\"\", \"\"\",\"\"\", \"\"\"runn\"\"\", \"\"\"##ing\"\"\"] )\r self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,\t\t\t\t\t\t[9, 6, 7, 12, 10, 11] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not self.test_rust_tokenizer:\r return\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizer()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_rust_tokenizer()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"UNwant\\u00E9d,running\"\"\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.tokenize(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.tokenize(_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_rust_tokenizer()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.encode(_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r # With lower casing\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizer(do_lower_case=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_rust_tokenizer(do_lower_case=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"UNwant\\u00E9d,running\"\"\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.tokenize(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.tokenize(_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_rust_tokenizer()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trust_tokenizer.encode(_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer()\r\r self.assertListEqual(tokenizer.tokenize(\"\"\"ah\\u535A\\u63A8zz\"\"\" ) ,\t\t\t\t\t\t[\"\"\"ah\"\"\", \"\"\"\\u535A\"\"\", \"\"\"\\u63A8\"\"\", \"\"\"zz\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHeLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"hello\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"are\"\"\", \"\"\"you\"\"\", \"\"\"?\"\"\"] )\r self.assertListEqual(tokenizer.tokenize(\"\"\"H\\u00E9llo\"\"\" ) ,\t\t\t\t\t\t[\"\"\"hello\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tstrip_accents=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHäLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"hällo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"are\"\"\", \"\"\"you\"\"\", \"\"\"?\"\"\"] )\r self.assertListEqual(tokenizer.tokenize(\"\"\"H\\u00E9llo\"\"\" ) ,\t\t\t\t\t\t[\"\"\"h\\u00E9llo\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tstrip_accents=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHäLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"hallo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"are\"\"\", \"\"\"you\"\"\", \"\"\"?\"\"\"] )\r self.assertListEqual(tokenizer.tokenize(\"\"\"H\\u00E9llo\"\"\" ) ,\t\t\t\t\t\t[\"\"\"hello\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHäLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"hallo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"are\"\"\", \"\"\"you\"\"\", \"\"\"?\"\"\"] )\r self.assertListEqual(tokenizer.tokenize(\"\"\"H\\u00E9llo\"\"\" ) ,\t\t\t\t\t\t[\"\"\"hello\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHeLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"HeLLo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"Are\"\"\", \"\"\"yoU\"\"\", \"\"\"?\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tstrip_accents=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHäLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"HäLLo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"Are\"\"\", \"\"\"yoU\"\"\", \"\"\"?\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tstrip_accents=_UpperCAmelCase )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHäLLo!how \\n Are yoU? \"\"\" ) ,\t\t\t\t\t\t[\"\"\"HaLLo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"Are\"\"\", \"\"\"yoU\"\"\", \"\"\"?\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer(do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tnever_split=[\"\"\"[UNK]\"\"\"] )\r\r self.assertListEqual(\r tokenizer.tokenize(\"\"\" \\tHeLLo!how \\n Are yoU? [UNK]\"\"\" ) ,\t\t\t\t\t\t[\"\"\"HeLLo\"\"\", \"\"\"!\"\"\", \"\"\"how\"\"\", \"\"\"Are\"\"\", \"\"\"yoU\"\"\", \"\"\"?\"\"\", \"\"\"[UNK]\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBasicTokenizer()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"a\\n'll !!to?'d of, can't.\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"a\"\"\", \"\"\"'\"\"\", \"\"\"ll\"\"\", \"\"\"!\"\"\", \"\"\"!\"\"\", \"\"\"to\"\"\", \"\"\"?\"\"\", \"\"\"'\"\"\", \"\"\"d\"\"\", \"\"\"of\"\"\", \"\"\",\"\"\", \"\"\"can\"\"\", \"\"\"'\"\"\", \"\"\"t\"\"\", \"\"\".\"\"\"]\r self.assertListEqual(tokenizer.tokenize(_UpperCAmelCase ) ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"[UNK]\"\"\", \"\"\"[CLS]\"\"\", \"\"\"[SEP]\"\"\", \"\"\"want\"\"\", \"\"\"##want\"\"\", \"\"\"##ed\"\"\", \"\"\"wa\"\"\", \"\"\"un\"\"\", \"\"\"runn\"\"\", \"\"\"##ing\"\"\"]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r for i, token in enumerate(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ti\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWordpieceTokenizer(vocab=_UpperCAmelCase ,\t\t\t\t\t\tunk_token=\"\"\"[UNK]\"\"\" )\r\r self.assertListEqual(tokenizer.tokenize(\"\"\"\"\"\" ) ,\t\t\t\t\t\t[] )\r\r self.assertListEqual(tokenizer.tokenize(\"\"\"unwanted running\"\"\" ) ,\t\t\t\t\t\t[\"\"\"un\"\"\", \"\"\"##want\"\"\", \"\"\"##ed\"\"\", \"\"\"runn\"\"\", \"\"\"##ing\"\"\"] )\r\r self.assertListEqual(tokenizer.tokenize(\"\"\"unwantedX running\"\"\" ) ,\t\t\t\t\t\t[\"\"\"[UNK]\"\"\", \"\"\"runn\"\"\", \"\"\"##ing\"\"\"] )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.assertTrue(_is_whitespace(\"\"\" \"\"\" ) )\r self.assertTrue(_is_whitespace(\"\"\"\\t\"\"\" ) )\r self.assertTrue(_is_whitespace(\"\"\"\\r\"\"\" ) )\r self.assertTrue(_is_whitespace(\"\"\"\\n\"\"\" ) )\r self.assertTrue(_is_whitespace(\"\"\"\\u00A0\"\"\" ) )\r\r self.assertFalse(_is_whitespace(\"\"\"A\"\"\" ) )\r self.assertFalse(_is_whitespace(\"\"\"-\"\"\" ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.assertTrue(_is_control(\"\"\"\\u0005\"\"\" ) )\r\r self.assertFalse(_is_control(\"\"\"A\"\"\" ) )\r self.assertFalse(_is_control(\"\"\" \"\"\" ) )\r self.assertFalse(_is_control(\"\"\"\\t\"\"\" ) )\r self.assertFalse(_is_control(\"\"\"\\r\"\"\" ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.assertTrue(_is_punctuation(\"\"\"-\"\"\" ) )\r self.assertTrue(_is_punctuation(\"\"\"$\"\"\" ) )\r self.assertTrue(_is_punctuation(\"\"\"`\"\"\" ) )\r self.assertTrue(_is_punctuation(\"\"\".\"\"\" ) )\r\r self.assertFalse(_is_punctuation(\"\"\"A\"\"\" ) )\r self.assertFalse(_is_punctuation(\"\"\" \"\"\" ) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizer()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_rust_tokenizer()\r\r # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340\r self.assertListEqual([tokenizer.tokenize(_UpperCAmelCase ) for t in [\"\"\"Test\"\"\", \"\"\"\\xad\"\"\", \"\"\"test\"\"\"]] ,\t\t\t\t\t\t[[\"\"\"[UNK]\"\"\"], [], [\"\"\"[UNK]\"\"\"]] )\r\r self.assertListEqual(\r [rust_tokenizer.tokenize(_UpperCAmelCase ) for t in [\"\"\"Test\"\"\", \"\"\"\\xad\"\"\", \"\"\"test\"\"\"]] ,\t\t\t\t\t\t[[\"\"\"[UNK]\"\"\"], [], [\"\"\"[UNK]\"\"\"]] )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.tokenizer_class.from_pretrained(\"\"\"bert-base-uncased\"\"\" )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(\"\"\"sequence builders\"\"\" ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(\"\"\"multi-sequence build\"\"\" ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r assert encoded_sentence == [1_01] + text + [1_02]\r assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for tokenizer, pretrained_name, kwargs in self.tokenizers_list:\r with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tf'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.encode_plus(\r _UpperCAmelCase ,\t\t\t\t\t\treturn_attention_mask=_UpperCAmelCase ,\t\t\t\t\t\treturn_token_type_ids=_UpperCAmelCase ,\t\t\t\t\t\treturn_offsets_mapping=_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.do_lower_case if hasattr(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"do_lower_case\"\"\" ) else False\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r [\r ((0, 0), tokenizer_r.cls_token),\r ((0, 1), \"\"\"A\"\"\"),\r ((1, 2), \"\"\",\"\"\"),\r ((3, 5), \"\"\"na\"\"\"),\r ((5, 6), \"\"\"##ï\"\"\"),\r ((6, 8), \"\"\"##ve\"\"\"),\r ((9, 15), tokenizer_r.mask_token),\r ((16, 21), \"\"\"Allen\"\"\"),\r ((21, 23), \"\"\"##NL\"\"\"),\r ((23, 24), \"\"\"##P\"\"\"),\r ((25, 33), \"\"\"sentence\"\"\"),\r ((33, 34), \"\"\".\"\"\"),\r ((0, 0), tokenizer_r.sep_token),\r ]\r if not do_lower_case\r else [\r ((0, 0), tokenizer_r.cls_token),\r ((0, 1), \"\"\"a\"\"\"),\r ((1, 2), \"\"\",\"\"\"),\r ((3, 8), \"\"\"naive\"\"\"),\r ((9, 15), tokenizer_r.mask_token),\r ((16, 21), \"\"\"allen\"\"\"),\r ((21, 23), \"\"\"##nl\"\"\"),\r ((23, 24), \"\"\"##p\"\"\"),\r ((25, 33), \"\"\"sentence\"\"\"),\r ((33, 34), \"\"\".\"\"\"),\r ((0, 0), tokenizer_r.sep_token),\r ]\r )\r\r self.assertEqual(\r [e[1] for e in expected_results] ,\t\t\t\t\t\ttokenizer_r.convert_ids_to_tokens(tokens[\"\"\"input_ids\"\"\"] ) )\r self.assertEqual([e[0] for e in expected_results] ,\t\t\t\t\t\ttokens[\"\"\"offset_mapping\"\"\"] )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"的\"\"\", \"\"\"人\"\"\", \"\"\"有\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join(_UpperCAmelCase )\r for tokenizer, pretrained_name, kwargs in self.tokenizers_list:\r with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.tokenizer_class.from_pretrained(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_p.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.convert_ids_to_tokens(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_p.convert_ids_to_tokens(_UpperCAmelCase )\r\r # it is expected that each Chinese character is not preceded by \"##\"\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.tokenizer_class.from_pretrained(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_p.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_r.convert_ids_to_tokens(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer_p.convert_ids_to_tokens(_UpperCAmelCase )\r\r # it is expected that only the first Chinese character is not preceded by \"##\".\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_UpperCAmelCase )\r ]\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rimport unicodedata\rfrom shutil import copyfile\rfrom typing import Any, Dict, List, Optional, Tuple\r\rimport sentencepiece as spm\r\rfrom ...tokenization_utils import AddedToken, PreTrainedTokenizer\rfrom ...utils import SPIECE_UNDERLINE, logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{'vocab_file': 'spiece.model'}\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'vocab_file': {\r 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',\r }\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=[\"\", \"\"] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Dict[str, Any]] = None ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAddedToken(_UpperCAmelCase ,\t\t\t\t\t\tlstrip=_UpperCAmelCase ,\t\t\t\t\t\trstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) else mask_token\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{} if sp_model_kwargs is None else sp_model_kwargs\r\r super().__init__(\r do_lower_case=_UpperCAmelCase ,\t\t\t\t\t\tremove_space=_UpperCAmelCase ,\t\t\t\t\t\tkeep_accents=_UpperCAmelCase ,\t\t\t\t\t\tbos_token=_UpperCAmelCase ,\t\t\t\t\t\teos_token=_UpperCAmelCase ,\t\t\t\t\t\tunk_token=_UpperCAmelCase ,\t\t\t\t\t\tsep_token=_UpperCAmelCase ,\t\t\t\t\t\tpad_token=_UpperCAmelCase ,\t\t\t\t\t\tcls_token=_UpperCAmelCase ,\t\t\t\t\t\tmask_token=_UpperCAmelCase ,\t\t\t\t\t\tadditional_special_tokens=_UpperCAmelCase ,\t\t\t\t\t\tsp_model_kwargs=self.sp_model_kwargs ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t3\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdo_lower_case\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tremove_space\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkeep_accents\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_file\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.Load(_UpperCAmelCase )\r\r try:\r import jieba\r except ModuleNotFoundError as error:\r raise error.__class__(\r \"\"\"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. \"\"\"\r \"\"\"See https://pypi.org/project/jieba/ for installation.\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tjieba\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr.maketrans(\"\"\" \\n\"\"\" ,\t\t\t\t\t\t\"\"\"\\u2582\\u2583\"\"\" )\r\r\r @property\r # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return len(self.sp_model )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}\r vocab.update(self.added_tokens_encoder )\r return vocab\r\r\r def __getstate__( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.__dict__.copy()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r return state\r\r\r def __setstate__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\td\r\r # for backward compatibility\r if not hasattr(self ,\t\t\t\t\t\t\"\"\"sp_model_kwargs\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.Load(self.vocab_file )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.remove_space:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\" \"\"\".join(inputs.strip().split() )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.replace(\"\"\"``\"\"\" ,\t\t\t\t\t\t\"\"\"\\\"\"\"\" ).replace(\"\"\"''\"\"\" ,\t\t\t\t\t\t\"\"\"\\\"\"\"\" )\r\r if not self.keep_accents:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunicodedata.normalize(\"\"\"NFKD\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )\r if self.do_lower_case:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\toutputs.lower()\r\r return outputs\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.preprocess_text(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.encode(_UpperCAmelCase ,\t\t\t\t\t\tout_type=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for piece in pieces:\r if len(_UpperCAmelCase ) > 1 and piece[-1] == str(\"\"\",\"\"\" ) and piece[-2].isdigit():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"\"\"\" ) )\r if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:\r if len(cur_pieces[0] ) == 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcur_pieces[1:]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcur_pieces[0][1:]\r cur_pieces.append(piece[-1] )\r new_pieces.extend(_UpperCAmelCase )\r else:\r new_pieces.append(_UpperCAmelCase )\r\r return new_pieces\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.sp_model.PieceToId(_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.sp_model.IdToPiece(_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join(_UpperCAmelCase ).replace(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\" \"\"\" ).strip()\r return out_string\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.cls_token_id]\r if token_ids_a is None:\r return token_ids_a + sep + cls\r return token_ids_a + sep + token_ids_a + sep + cls\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if already_has_special_tokens:\r return super().get_special_tokens_mask(\r token_ids_a=_UpperCAmelCase ,\t\t\t\t\t\ttoken_ids_a=_UpperCAmelCase ,\t\t\t\t\t\talready_has_special_tokens=_UpperCAmelCase )\r\r if token_ids_a is not None:\r return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]\r return ([0] * len(_UpperCAmelCase )) + [1, 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[2]\r\r if token_ids_a is None:\r return len(token_ids_a + sep ) * [0] + cls_segment_id\r return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[str] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not os.path.isdir(_UpperCAmelCase ):\r logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )\r return\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(\r _UpperCAmelCase ,\t\t\t\t\t\t(filename_prefix + \"\"\"-\"\"\" if filename_prefix else \"\"\"\"\"\") + VOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r\r if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):\r copyfile(self.vocab_file ,\t\t\t\t\t\t_UpperCAmelCase )\r elif not os.path.isfile(self.vocab_file ):\r with open(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"wb\"\"\" ) as fi:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.serialized_model_proto()\r fi.write(_UpperCAmelCase )\r\r return (out_vocab_file,)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsuper()._decode(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttext.replace(\"\"\" \"\"\" ,\t\t\t\t\t\t\"\"\"\"\"\" ).replace(\"\"\"\\u2582\"\"\" ,\t\t\t\t\t\t\"\"\" \"\"\" ).replace(\"\"\"\\u2583\"\"\" ,\t\t\t\t\t\t\"\"\"\\n\"\"\" )\r return text\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152329,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if a < 0:\r raise ValueError(\"\"\"Input value must be a positive integer\"\"\"\t\t\t\t)\r elif isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r raise TypeError(\"\"\"Input value must be a 'int' type\"\"\"\t\t\t\t)\r return bin(SCREAMING_SNAKE_CASE__\t\t\t\t).count(\"\"\"1\"\"\"\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport logging\rimport os\r\rimport datasets\rimport tensorflow as tf\r\rfrom transformers import AutoTokenizer\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.getLogger(__name__)\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\targparse.ArgumentParser(\r description=\"\"\"Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.\"\"\"\t\t\t\t)\r parser.add_argument(\r \"\"\"--dataset_name\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"wikitext\"\"\"\t\t\t\t, help=\"\"\"Name of the training. Explore datasets at: hf.co/datasets.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--dataset_config\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"wikitext-103-raw-v1\"\"\"\t\t\t\t, help=\"\"\"Configuration name of the dataset.\"\"\"\t\t\t\t)\r parser.add_argument(\r \"\"\"--tokenizer_name_or_path\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"sayakpaul/unigram-tokenizer-wikitext\"\"\"\t\t\t\t, help=\"\"\"Tokenizer identifier. Can be a local filepath or a Hub identifier.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--shard_size\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=1000\t\t\t\t, help=\"\"\"Number of entries to go in a single shard.\"\"\"\t\t\t\t, )\r parser.add_argument(\"\"\"--split\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=\"\"\"train\"\"\"\t\t\t\t, choices=[\"\"\"train\"\"\", \"\"\"test\"\"\", \"\"\"validation\"\"\"]\t\t\t\t)\r parser.add_argument(\r \"\"\"--limit\"\"\"\t\t\t\t, default=SCREAMING_SNAKE_CASE__\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, help=\"\"\"Limit the number of shards (used for debugging).\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--max_length\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, default=512\t\t\t\t, help=\"\"\"Maximum sequence length. For training on TPUs, it helps to have a maximum\"\"\"\r \"\"\" sequence length that is a multiple of 8.\"\"\"\t\t\t\t, )\r parser.add_argument(\r \"\"\"--output_dir\"\"\"\t\t\t\t, default=\"\"\"tf-tpu\"\"\"\t\t\t\t, type=SCREAMING_SNAKE_CASE__\t\t\t\t, help=\"\"\"Output directory where the TFRecord shards will be saved. If the\"\"\"\r \"\"\" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord\"\"\"\r \"\"\" shards will be directly saved to a Google Cloud Storage bucket.\"\"\"\t\t\t\t, )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparser.parse_args()\r return args\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def fn(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r return tokenizer(examples[\"\"\"text\"\"\"]\t\t\t\t)\r\r return fn\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for i in range(len(tokenized_data[\"\"\"input_ids\"\"\"]\t\t\t\t)\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"input_ids\"\"\": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data[\"\"\"input_ids\"\"\"][i]\t\t\t\t)\t\t\t\t),\r \"\"\"attention_mask\"\"\": tf.train.Feature(\r intaa_list=tf.train.IntaaList(value=tokenized_data[\"\"\"attention_mask\"\"\"][i]\t\t\t\t)\t\t\t\t),\r }\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.train.Features(feature=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.train.Example(features=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\texample.SerializeToString()\r records.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return records\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdatasets.load_dataset(args.dataset_name\t\t\t\t, args.dataset_config\t\t\t\t, split=args.split\t\t\t\t)\r\r if args.limit is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, args.limit\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset.select(range(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r print(F'''Limiting the dataset to {args.limit} entries.'''\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(args.tokenizer_name_or_path\t\t\t\t)\r\r # Handle output directory creation.\r # For serializing into a Google Cloud Storage Bucket, one needs to first\r # create a bucket.\r if \"gs\" not in args.output_dir:\r if not os.path.exists(args.output_dir\t\t\t\t):\r os.makedirs(args.output_dir\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(args.output_dir\t\t\t\t, args.split\t\t\t\t)\r if not os.path.exists(SCREAMING_SNAKE_CASE__\t\t\t\t):\r os.makedirs(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(args.output_dir\t\t\t\t, args.split\t\t\t\t)\r\r # Tokenize the whole dataset at once.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenize_function(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset.map(SCREAMING_SNAKE_CASE__\t\t\t\t, batched=SCREAMING_SNAKE_CASE__\t\t\t\t, num_proc=4\t\t\t\t, remove_columns=[\"\"\"text\"\"\"]\t\t\t\t)\r\r # We need to concatenate all our texts together, and then split the result\r # into chunks of a fixed size, which we will call block_size. To do this, we\r # will use the map method again, with the option batched=True. When we use batched=True,\r # the function we pass to map() will be passed multiple inputs at once, allowing us\r # to group them into more or fewer examples than we had in the input.\r # This allows us to create our new fixed-length samples. The advantage of this\r # method is that we don't lose a whole lot of content from the dataset compared to the\r # case where we simply tokenize with a pre-defined max_length.\r\r def group_texts(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r # Concatenate all texts.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{k: sum(examples[k]\t\t\t\t, []\t\t\t\t) for k in examples.keys()}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(concatenated_examples[list(examples.keys()\t\t\t\t)[0]]\t\t\t\t)\r # We drop the small remainder, though you could add padding instead if the model supports it\r # In this, as in all things, we advise you to follow your heart 🫀\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(total_length // args.max_length) * args.max_length\r # Split by chunks of max_len.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r k: [t[i : i + args.max_length] for i in range(0\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, args.max_length\t\t\t\t)]\r for k, t in concatenated_examples.items()\r }\r return result\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdataset_tokenized.map(SCREAMING_SNAKE_CASE__\t\t\t\t, batched=SCREAMING_SNAKE_CASE__\t\t\t\t, batch_size=1000\t\t\t\t, num_proc=4\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for shard in range(0\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, args.shard_size\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgrouped_dataset[shard : shard + args.shard_size]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(dataset_snapshot[\"\"\"input_ids\"\"\"]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, F'''dataset-{shard_count}-{records_containing}.tfrecord'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_serialized_examples(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__\t\t\t\t) as out_file:\r for i in range(len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tserialized_examples[i]\r out_file.write(SCREAMING_SNAKE_CASE__\t\t\t\t)\r print(\"\"\"Wrote file {} containing {} records\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r shard_count += 1\r total_records += records_containing\r\r with open(F'''split-{args.split}-records-count.txt'''\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t) as f:\r print(F'''Total {args.split} records: {total_records}'''\t\t\t\t, file=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_args()\r main(args)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152330,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport colorsys\r\rfrom PIL import Image # type: ignore\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ty\r for step in range(SCREAMING_SNAKE_CASE__\t\t\t\t): # noqa: B007\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ta * a - b * b + x\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t2 * a * b + y\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ta_new\r\r # divergence happens for all complex number with an absolute value\r # greater than 4\r if a * a + b * b > 4:\r break\r return step / (max_step - 1)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if distance == 1:\r return (0, 0, 0)\r else:\r return (255, 255, 255)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if distance == 1:\r return (0, 0, 0)\r else:\r return tuple(round(i * 255\t\t\t\t) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE__\t\t\t\t, 1\t\t\t\t, 1\t\t\t\t)\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 800\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 600\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat = -0.6\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat = 0\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tfloat = 3.2\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 50\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tbool = True\t\t\t\t, ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tImage.new(\"\"\"RGB\"\"\"\t\t\t\t, (image_width, image_height)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timg.load()\r\r # loop through the image-coordinates\r for image_x in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r for image_y in range(SCREAMING_SNAKE_CASE__\t\t\t\t):\r # determine the figure-coordinates based on the image-coordinates\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfigure_width / image_width * image_height\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfigure_center_x + (image_x / image_width - 0.5) * figure_width\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfigure_center_y + (image_y / image_height - 0.5) * figure_height\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_distance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # color the corresponding pixel based on the selected coloring-function\r if use_distance_color_coding:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_color_coded_rgb(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_black_and_white_rgb(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return img\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r\r # colored version, full figure\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tget_image()\r\r # uncomment for colored version, different section, zoomed in\r # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,\r # figure_width = 0.8)\r\r # uncomment for black and white version, full figure\r # img = get_image(use_distance_color_coding = False)\r\r # uncomment to save the image\r # img.save(\"mandelbrot.png\")\r\r img.show()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport numpy as np\rimport torch\rfrom torch.nn import CrossEntropyLoss\rfrom transformers import AutoModelForCausalLM, AutoTokenizer\r\rimport datasets\rfrom datasets import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\\n\\nFor more information, see https://huggingface.co/docs/transformers/perplexity\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nArgs:\\n model_id (str): model used for calculating Perplexity\\n NOTE: Perplexity can only be calculated for causal language models.\\n This includes models such as gpt2, causal variations of bert,\\n causal versions of t5, and more (the full list can be found\\n in the AutoModelForCausalLM documentation here:\\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\\n\\n input_texts (list of str): input text, each separate text snippet\\n is one list entry.\\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\\n add_start_token (bool): whether to add the start token to the texts,\\n so the perplexity can include the probability of the first word. Defaults to True.\\n device (str): device to run on, defaults to \\'cuda\\' when available\\nReturns:\\n perplexity: dictionary containing the perplexity scores for the texts\\n in the input list, as well as the mean perplexity. If one of the input texts is\\n longer than the max input length of the model, then it is truncated to the\\n max length for the perplexity computation.\\nExamples:\\n Example 1:\\n >>> perplexity = datasets.load_metric(\"perplexity\")\\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\\n >>> results = perplexity.compute(model_id=\\'gpt2\\',\\n ... add_start_token=False,\\n ... input_texts=input_texts) # doctest:+ELLIPSIS\\n >>> print(list(results.keys()))\\n [\\'perplexities\\', \\'mean_perplexity\\']\\n >>> print(round(results[\"mean_perplexity\"], 2))\\n 78.22\\n >>> print(round(results[\"perplexities\"][0], 2))\\n 11.11\\n\\n Example 2:\\n >>> perplexity = datasets.load_metric(\"perplexity\")\\n >>> input_texts = datasets.load_dataset(\"wikitext\",\\n ... \"wikitext-2-raw-v1\",\\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\\n [...]\\n >>> input_texts = [s for s in input_texts if s!=\\'\\']\\n >>> results = perplexity.compute(model_id=\\'gpt2\\',\\n ... input_texts=input_texts) # doctest:+ELLIPSIS\\n >>> print(list(results.keys()))\\n [\\'perplexities\\', \\'mean_perplexity\\']\\n >>> print(round(results[\"mean_perplexity\"], 2))\\n 60.35\\n >>> print(round(results[\"perplexities\"][0], 2))\\n 81.12\\n'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"input_texts\"\"\": datasets.Value(\"\"\"string\"\"\" ),\r } ) ,\t\t\t\t\t\treference_urls=[\"\"\"https://huggingface.co/docs/transformers/perplexity\"\"\"] ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint = 16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if device is not None:\r assert device in [\"gpu\", \"cpu\", \"cuda\"], \"device should be either gpu or cpu.\"\r if device == \"gpu\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"cuda\"\"\"\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"cuda\"\"\" if torch.cuda.is_available() else \"\"\"cpu\"\"\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoModelForCausalLM.from_pretrained(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.to(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(_UpperCAmelCase )\r\r # if batch_size > 1 (which generally leads to padding being required), and\r # if there is not an already assigned pad_token, assign an existing\r # special token to also be the padding token\r if tokenizer.pad_token is None and batch_size > 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(tokenizer.special_tokens_map_extended.values() )\r # check that the model already has at least one special token defined\r assert (\r len(_UpperCAmelCase ) > 0\r ), \"If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1.\"\r # assign one of the special tokens to also be the pad token\r tokenizer.add_special_tokens({\"\"\"pad_token\"\"\": existing_special_tokens[0]} )\r\r if add_start_token:\r # leave room for token to be added:\r assert (\r tokenizer.bos_token is not None\r ), \"Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.config.max_length - 1\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel.config.max_length\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer(\r _UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase ,\t\t\t\t\t\tpadding=_UpperCAmelCase ,\t\t\t\t\t\ttruncation=_UpperCAmelCase ,\t\t\t\t\t\tmax_length=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=\"\"\"pt\"\"\" ,\t\t\t\t\t\treturn_attention_mask=_UpperCAmelCase ,\t\t\t\t\t\t).to(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencodings[\"\"\"input_ids\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencodings[\"\"\"attention_mask\"\"\"]\r\r # check that each input is long enough:\r if add_start_token:\r assert torch.all(torch.ge(attn_masks.sum(1 ) ,\t\t\t\t\t\t1 ) ), \"Each input text must be at least one token long.\"\r else:\r assert torch.all(\r torch.ge(attn_masks.sum(1 ) ,\t\t\t\t\t\t2 ) ), \"When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings.\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCrossEntropyLoss(reduction=\"\"\"none\"\"\" )\r\r for start_index in logging.tqdm(range(0 ,\t\t\t\t\t\tlen(_UpperCAmelCase ) ,\t\t\t\t\t\t_UpperCAmelCase ) ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(start_index + batch_size ,\t\t\t\t\t\tlen(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoded_texts[start_index:end_index]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattn_masks[start_index:end_index]\r\r if add_start_token:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat([bos_tokens_tensor, encoded_batch] ,\t\t\t\t\t\tdim=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.cat(\r [torch.ones(bos_tokens_tensor.size() ,\t\t\t\t\t\tdtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] ,\t\t\t\t\t\tdim=1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoded_batch\r\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ).logits\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tout_logits[..., :-1, :].contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlabels[..., 1:].contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattn_mask[..., 1:].contiguous()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.expa(\r (loss_fct(shift_logits.transpose(1 ,\t\t\t\t\t\t2 ) ,\t\t\t\t\t\t_UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )\r / shift_attention_mask_batch.sum(1 ) )\r\r ppls += perplexity_batch.tolist()\r\r return {\"perplexities\": ppls, \"mean_perplexity\": np.mean(_UpperCAmelCase )}\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152331,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\r# flake8: noqa\r# Lint as: python3\r\rfrom typing import Dict, List, Optional, Type\r\rfrom .. import config\rfrom ..utils import logging\rfrom .formatting import (\r ArrowFormatter,\r CustomFormatter,\r Formatter,\r PandasFormatter,\r PythonFormatter,\r TensorFormatter,\r format_table,\r query_table,\r)\rfrom .np_formatter import NumpyFormatter\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\ttype\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[List[str]] = None\t\t\t\t, ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\taliases if aliases is not None else []\r if format_type in _FORMAT_TYPES:\r logger.warning(\r F'''Overwriting format type \\'{format_type}\\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tformatter_cls\r for alias in set(aliases + [format_type]\t\t\t\t):\r if alias in _FORMAT_TYPES_ALIASES:\r logger.warning(\r F'''Overwriting format type alias \\'{alias}\\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tformat_type\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tException\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[List[str]] = None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\taliases if aliases is not None else []\r for alias in set(aliases + [format_type]\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunavailable_error\r\r\r# Here we define all the available formatting functions that can be used by `Dataset.set_format`\r_register_formatter(PythonFormatter, None, aliases=['python'])\r_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])\r_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])\r_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])\r_register_formatter(CustomFormatter, 'custom')\r\rif config.TORCH_AVAILABLE:\r from .torch_formatter import TorchFormatter\r\r _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')\r _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])\r\rif config.TF_AVAILABLE:\r from .tf_formatter import TFFormatter\r\r _register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')\r _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])\r\rif config.JAX_AVAILABLE:\r from .jax_formatter import JaxFormatter\r\r _register_formatter(JaxFormatter, 'jax', aliases=[])\relse:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tValueError('JAX needs to be installed to be able to return JAX arrays.')\r _register_unavailable_formatter(_jax_error, 'jax', aliases=[])\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if format_type in _FORMAT_TYPES_ALIASES:\r return _FORMAT_TYPES_ALIASES[format_type]\r else:\r return format_type\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[str]\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tget_format_type_from_alias(SCREAMING_SNAKE_CASE__\t\t\t\t)\r if format_type in _FORMAT_TYPES:\r return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__\t\t\t\t)\r if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:\r raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]\r else:\r raise ValueError(\r F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None\t\t\t\t)}, but got \\'{format_type}\\''''\t\t\t\t)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 1000000\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[i - 1 for i in range(limit + 1\t\t\t\t)]\r\r for i in range(2\t\t\t\t, limit + 1\t\t\t\t):\r if phi[i] == i - 1:\r for j in range(2 * i\t\t\t\t, limit + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r phi[j] -= phi[j] // i\r\r return sum(phi[2 : limit + 1]\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r print(solution())\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152332,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[list[int]]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def update_area_of_max_square(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t) -> int:\r # BASE CASE\r if row >= rows or col >= cols:\r return 0\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square(SCREAMING_SNAKE_CASE__\t\t\t\t, col + 1\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square(row + 1\t\t\t\t, col + 1\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square(row + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if mat[row][col]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1 + min([right, diagonal, down]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(largest_square_area[0]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return sub_problem_sol\r else:\r return 0\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[0]\r update_area_of_max_square(0\t\t\t\t, 0\t\t\t\t)\r return largest_square_area[0]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[list[int]]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def update_area_of_max_square_using_dp_array(\r SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[list[int]]\t\t\t\t) -> int:\r if row >= rows or col >= cols:\r return 0\r if dp_array[row][col] != -1:\r return dp_array[row][col]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__\t\t\t\t, col + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square_using_dp_array(row + 1\t\t\t\t, col + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tupdate_area_of_max_square_using_dp_array(row + 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if mat[row][col]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1 + min([right, diagonal, down]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(largest_square_area[0]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsub_problem_sol\r return sub_problem_sol\r else:\r return 0\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__\t\t\t\t)]\r update_area_of_max_square_using_dp_array(0\t\t\t\t, 0\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return largest_square_area[0]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[list[int]]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[[0] * (cols + 1) for _ in range(rows + 1\t\t\t\t)]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for row in range(rows - 1\t\t\t\t, -1\t\t\t\t, -1\t\t\t\t):\r for col in range(cols - 1\t\t\t\t, -1\t\t\t\t, -1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdp_array[row][col + 1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdp_array[row + 1][col + 1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdp_array[row + 1][col]\r\r if mat[row][col] == 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1 + min(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(dp_array[row][col]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r\r return largest_square_area\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tlist[list[int]]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[0] * (cols + 1)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[0] * (cols + 1)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r for row in range(rows - 1\t\t\t\t, -1\t\t\t\t, -1\t\t\t\t):\r for col in range(cols - 1\t\t\t\t, -1\t\t\t\t, -1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcurrent_row[col + 1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnext_row[col + 1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnext_row[col]\r\r if mat[row][col] == 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1 + min(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax(current_row[col]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcurrent_row\r\r return largest_square_area\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom typing import List, Union\r\rfrom ..utils import (\r add_end_docstrings,\r is_tf_available,\r is_torch_available,\r is_vision_available,\r logging,\r requires_backends,\r)\rfrom .base import PIPELINE_INIT_ARGS, Pipeline\r\r\rif is_vision_available():\r from PIL import Image\r\r from ..image_utils import load_image\r\rif is_tf_available():\r import tensorflow as tf\r\r from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r from ..tf_utils import stable_softmax\r\rif is_torch_available():\r from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\r@add_end_docstrings(lowerCamelCase_ )\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r requires_backends(self ,\t\t\t\t\t\t\"\"\"vision\"\"\" )\r self.check_model_type(\r TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING\r if self.framework == \"\"\"tf\"\"\"\r else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r if top_k is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttop_k\r return {}, {}, postprocess_params\r\r\r def __call__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, List[str], \"Image.Image\", List[\"Image.Image\"]] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return super().__call__(_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tload_image(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.image_processor(images=_UpperCAmelCase ,\t\t\t\t\t\treturn_tensors=self.framework )\r return model_inputs\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model(**_UpperCAmelCase )\r return model_outputs\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=5 ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if top_k > self.model.config.num_labels:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model.config.num_labels\r\r if self.framework == \"pt\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_outputs.logits.softmax(-1 )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprobs.topk(_UpperCAmelCase )\r elif self.framework == \"tf\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstable_softmax(model_outputs.logits ,\t\t\t\t\t\taxis=-1 )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttf.math.top_k(_UpperCAmelCase ,\t\t\t\t\t\tk=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttopk.values.numpy(), topk.indices.numpy()\r else:\r raise ValueError(f'''Unsupported framework: {self.framework}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscores.tolist()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids.tolist()\r return [{\"score\": score, \"label\": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )]\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152333,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom dataclasses import dataclass\rfrom typing import List, Optional, Union\r\rimport numpy as np\rimport torch\r\rfrom ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available\r\r@dataclass\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]\r\r\rtry:\r if not (is_transformers_available() and is_torch_available()):\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r from ...utils.dummy_torch_and_transformers_objects import * # noqa F403\relse:\r from .pipeline_text_to_video_synth import TextToVideoSDPipeline\r from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401\r from .pipeline_text_to_video_zero import TextToVideoZeroPipeline\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom math import factorial\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 20\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,\r # 2, 3,...\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tn // 2\r\r return int(factorial(SCREAMING_SNAKE_CASE__\t\t\t\t) / (factorial(SCREAMING_SNAKE_CASE__\t\t\t\t) * factorial(n - k\t\t\t\t))\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r import sys\r\r if len(sys.argv) == 1:\r print(solution(2_0))\r else:\r try:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tint(sys.argv[1])\r print(solution(n))\r except ValueError:\r print('Invalid entry - please enter a number.')\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152334,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport unittest\r\rimport numpy as np\rimport torch\rfrom transformers import CLIPTextConfig, CLIPTextModel\r\rfrom diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel\rfrom diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device\r\r\renable_full_determinism()\r\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r torch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tUNetaDModel(\r block_out_channels=(32, 64) ,\t\t\t\t\t\tlayers_per_block=2 ,\t\t\t\t\t\tsample_size=32 ,\t\t\t\t\t\tin_channels=3 ,\t\t\t\t\t\tout_channels=3 ,\t\t\t\t\t\tdown_block_types=(\"\"\"DownBlock2D\"\"\", \"\"\"AttnDownBlock2D\"\"\") ,\t\t\t\t\t\tup_block_types=(\"\"\"AttnUpBlock2D\"\"\", \"\"\"UpBlock2D\"\"\") ,\t\t\t\t\t\t)\r return model\r\r\r @property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r torch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tVQModel(\r block_out_channels=[32, 64] ,\t\t\t\t\t\tin_channels=3 ,\t\t\t\t\t\tout_channels=3 ,\t\t\t\t\t\tdown_block_types=[\"\"\"DownEncoderBlock2D\"\"\", \"\"\"DownEncoderBlock2D\"\"\"] ,\t\t\t\t\t\tup_block_types=[\"\"\"UpDecoderBlock2D\"\"\", \"\"\"UpDecoderBlock2D\"\"\"] ,\t\t\t\t\t\tlatent_channels=3 ,\t\t\t\t\t\t)\r return model\r\r\r @property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r torch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCLIPTextConfig(\r bos_token_id=0 ,\t\t\t\t\t\teos_token_id=2 ,\t\t\t\t\t\thidden_size=32 ,\t\t\t\t\t\tintermediate_size=37 ,\t\t\t\t\t\tlayer_norm_eps=1E-05 ,\t\t\t\t\t\tnum_attention_heads=4 ,\t\t\t\t\t\tnum_hidden_layers=5 ,\t\t\t\t\t\tpad_token_id=1 ,\t\t\t\t\t\tvocab_size=10_00 ,\t\t\t\t\t\t)\r return CLIPTextModel(_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_uncond_unet\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDDIMScheduler()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_vq_model\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tLDMPipeline(unet=_UpperCAmelCase ,\t\t\t\t\t\tvqvae=_UpperCAmelCase ,\t\t\t\t\t\tscheduler=_UpperCAmelCase )\r ldm.to(_UpperCAmelCase )\r ldm.set_progress_bar_config(disable=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tldm(generator=_UpperCAmelCase ,\t\t\t\t\t\tnum_inference_steps=2 ,\t\t\t\t\t\toutput_type=\"\"\"numpy\"\"\" ).images\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tldm(generator=_UpperCAmelCase ,\t\t\t\t\t\tnum_inference_steps=2 ,\t\t\t\t\t\toutput_type=\"\"\"numpy\"\"\" ,\t\t\t\t\t\treturn_dict=_UpperCAmelCase )[0]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage[0, -3:, -3:, -1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_from_tuple[0, -3:, -3:, -1]\r\r assert image.shape == (1, 64, 64, 3)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1E-2 if torch_device != \"\"\"mps\"\"\" else 3E-2\r\r assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance\r assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance\r\r@slow\r@require_torch\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tLDMPipeline.from_pretrained(\"\"\"CompVis/ldm-celebahq-256\"\"\" )\r ldm.to(_UpperCAmelCase )\r ldm.set_progress_bar_config(disable=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tldm(generator=_UpperCAmelCase ,\t\t\t\t\t\tnum_inference_steps=5 ,\t\t\t\t\t\toutput_type=\"\"\"numpy\"\"\" ).images\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage[0, -3:, -3:, -1]\r\r assert image.shape == (1, 2_56, 2_56, 3)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1E-2 if torch_device != \"\"\"mps\"\"\" else 3E-2\r\r assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport json\rimport os\rimport unittest\r\rfrom transformers import MgpstrTokenizer\rfrom transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES\rfrom transformers.testing_utils import require_tokenizers\r\rfrom ...test_tokenization_common import TokenizerTesterMixin\r\r@require_tokenizers\rclass lowerCAmelCase_ ( lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : int = MgpstrTokenizer\r lowerCAmelCase_ : List[str] = False\r lowerCAmelCase_ : Optional[int] = {}\r lowerCAmelCase_ : Any = False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().setUp()\r\r # fmt: off\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"[GO]\"\"\", \"\"\"[s]\"\"\", \"\"\"0\"\"\", \"\"\"1\"\"\", \"\"\"2\"\"\", \"\"\"3\"\"\", \"\"\"4\"\"\", \"\"\"5\"\"\", \"\"\"6\"\"\", \"\"\"7\"\"\", \"\"\"8\"\"\", \"\"\"9\"\"\", \"\"\"a\"\"\", \"\"\"b\"\"\", \"\"\"c\"\"\", \"\"\"d\"\"\", \"\"\"e\"\"\", \"\"\"f\"\"\", \"\"\"g\"\"\", \"\"\"h\"\"\", \"\"\"i\"\"\", \"\"\"j\"\"\", \"\"\"k\"\"\", \"\"\"l\"\"\", \"\"\"m\"\"\", \"\"\"n\"\"\", \"\"\"o\"\"\", \"\"\"p\"\"\", \"\"\"q\"\"\", \"\"\"r\"\"\", \"\"\"s\"\"\", \"\"\"t\"\"\", \"\"\"u\"\"\", \"\"\"v\"\"\", \"\"\"w\"\"\", \"\"\"x\"\"\", \"\"\"y\"\"\", \"\"\"z\"\"\"]\r # fmt: on\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(zip(_UpperCAmelCase ,\t\t\t\t\t\trange(len(_UpperCAmelCase ) ) ) )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(self.tmpdirname ,\t\t\t\t\t\tVOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r with open(self.vocab_file ,\t\t\t\t\t\t\"\"\"w\"\"\" ,\t\t\t\t\t\tencoding=\"\"\"utf-8\"\"\" ) as fp:\r fp.write(json.dumps(_UpperCAmelCase ) + \"\"\"\\n\"\"\" )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return MgpstrTokenizer.from_pretrained(self.tmpdirname ,\t\t\t\t\t\t**_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tester\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tester\"\"\"\r return input_text, output_text\r\r\r @unittest.skip(\"\"\"MGP-STR always lower cases letters.\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizers(do_lower_case=_UpperCAmelCase )\r for tokenizer in tokenizers:\r with self.subTest(f'''{tokenizer.__class__.__name__}''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"[SPECIAL_TOKEN]\"\"\"\r\r tokenizer.add_special_tokens({\"\"\"cls_token\"\"\": special_token} )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode([special_token] ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertEqual(len(_UpperCAmelCase ) ,\t\t\t\t\t\t1 )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.decode(_UpperCAmelCase ,\t\t\t\t\t\tskip_special_tokens=_UpperCAmelCase )\r self.assertTrue(special_token not in decoded )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_tokenizers()\r for tokenizer in tokenizers:\r with self.subTest(f'''{tokenizer.__class__.__name__}''' ):\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_input_output_texts(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.tokenize(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.convert_tokens_to_ids(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.encode(_UpperCAmelCase ,\t\t\t\t\t\tadd_special_tokens=_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.convert_ids_to_tokens(_UpperCAmelCase )\r self.assertNotEqual(len(_UpperCAmelCase ) ,\t\t\t\t\t\t0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttokenizer.decode(_UpperCAmelCase )\r self.assertIsInstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r self.assertEqual(text_a.replace(\"\"\" \"\"\" ,\t\t\t\t\t\t\"\"\"\"\"\" ) ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r @unittest.skip(\"\"\"MGP-STR tokenizer only handles one sequence.\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r\r @unittest.skip(\"\"\"inputs cannot be pretokenized in MgpstrTokenizer\"\"\" )\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152335,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport asyncio\rimport os\rimport re\rimport sys\rimport tempfile\rimport unittest\rfrom contextlib import contextmanager\rfrom copy import deepcopy\rfrom distutils.util import strtobool\rfrom enum import Enum\rfrom importlib.util import find_spec\rfrom pathlib import Path\rfrom unittest.mock import patch\r\rimport pyarrow as pa\rimport pytest\rimport requests\rfrom packaging import version\r\rfrom datasets import config\r\r\rif config.PY_VERSION < version.parse('3.8'):\r import importlib_metadata\relse:\r import importlib.metadata as importlib_metadata\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.environ[key]\r except KeyError:\r # KEY isn't set, default to `default`.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdefault\r else:\r # KEY is set, convert it to True or False.\r try:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstrtobool(SCREAMING_SNAKE_CASE__\t\t\t\t)\r except ValueError:\r # More values are supported, but let's keep the message simple.\r raise ValueError(F'''If set, {key} must be yes or no.'''\t\t\t\t)\r return _value\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_flag_from_env('RUN_SLOW', default=False)\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_flag_from_env('RUN_REMOTE', default=False)\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_flag_from_env('RUN_LOCAL', default=True)\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tparse_flag_from_env('RUN_PACKAGED', default=True)\r\r# Compression\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')\r\r# Audio\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(\r # On Windows and OS X, soundfile installs sndfile\r find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),\r reason='test requires sndfile>=0.12.1: \\'pip install \\\"soundfile>=0.12.1\\\"\\'; ',\r)\r\r# Beam\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(\r not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),\r reason='test requires apache-beam and a compatible dill version',\r)\r\r# Dill-cloudpickle compatibility\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(\r config.DILL_VERSION <= version.parse('0.3.2'),\r reason='test requires dill>0.3.2 for cloudpickle compatibility',\r)\r\r# Windows\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tpytest.mark.skipif(\r sys.platform == 'win32',\r reason='test should not be run on Windows',\r)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import faiss # noqa\r except ImportError:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires faiss\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import regex # noqa\r except ImportError:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires regex\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import elasticsearch # noqa\r except ImportError:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires elasticsearch\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import sqlalchemy # noqa\r except ImportError:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires sqlalchemy\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not config.TORCH_AVAILABLE:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires PyTorch\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not config.TF_AVAILABLE:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires TensorFlow\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not config.JAX_AVAILABLE:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires JAX\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not config.PIL_AVAILABLE:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires Pillow\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import transformers # noqa F401\r except ImportError:\r return unittest.skip(\"\"\"test requires transformers\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import tiktoken # noqa F401\r except ImportError:\r return unittest.skip(\"\"\"test requires tiktoken\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import spacy # noqa F401\r except ImportError:\r return unittest.skip(\"\"\"test requires spacy\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def _require_spacy_model(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r try:\r import spacy # noqa F401\r\r spacy.load(SCREAMING_SNAKE_CASE__\t\t\t\t)\r except ImportError:\r return unittest.skip(\"\"\"test requires spacy\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r except OSError:\r return unittest.skip(\"\"\"test requires spacy model '{}'\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\r return _require_spacy_model\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import pyspark # noqa F401\r except ImportError:\r return unittest.skip(\"\"\"test requires pyspark\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r try:\r import joblibspark # noqa F401\r except ImportError:\r return unittest.skip(\"\"\"test requires joblibspark\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not _run_slow_tests or _run_slow_tests == 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test is slow\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not _run_local_tests or _run_local_tests == 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test is local\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not _run_packaged_tests or _run_packaged_tests == 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test is packaged\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not _run_remote_tests or _run_remote_tests == 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.skip(\"\"\"test requires remote\"\"\"\t\t\t\t)(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return test_case\r\rdef _UpperCamelCase\t\t\t\t\t( *SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def decorate(cls\t:\t\t\t\t\tOptional[int]\t\t\t\t):\r for name, fn in cls.__dict__.items():\r if callable(SCREAMING_SNAKE_CASE__\t\t\t\t) and name.startswith(\"\"\"test\"\"\"\t\t\t\t):\r for decorator in decorators:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdecorator(SCREAMING_SNAKE_CASE__\t\t\t\t)\r setattr(cls\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return cls\r\r return decorate\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r pass\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : str = 0\r lowerCAmelCase_ : Dict = 1\r lowerCAmelCase_ : int = 2\r\r@contextmanager\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=OfflineSimulationMode.CONNECTION_FAILS\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=1e-16\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trequests.Session().request\r\r def timeout_request(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t):\r # Change the url to an invalid url so that the connection hangs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"https://10.255.255.1\"\"\"\r if kwargs.get(\"\"\"timeout\"\"\"\t\t\t\t) is None:\r raise RequestWouldHangIndefinitelyError(\r F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttimeout\r try:\r return online_request(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t)\r except Exception as e:\r # The following changes in the error are just here to make the offline timeout error prettier\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\turl\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\te.args[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(max_retry_error.args[0].replace(\"\"\"10.255.255.1\"\"\"\t\t\t\t, F'''OfflineMock[{url}]'''\t\t\t\t),)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(max_retry_error,)\r raise\r\r def raise_connection_error(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t):\r raise requests.ConnectionError(\"\"\"Offline mode is enabled.\"\"\"\t\t\t\t, request=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if mode is OfflineSimulationMode.CONNECTION_FAILS:\r with patch(\"\"\"requests.Session.send\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r yield\r elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:\r # inspired from https://stackoverflow.com/a/904609\r with patch(\"\"\"requests.Session.request\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r yield\r elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:\r with patch(\"\"\"datasets.config.HF_DATASETS_OFFLINE\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r yield\r else:\r raise ValueError(\"\"\"Please use a value from the OfflineSimulationMode enum.\"\"\"\t\t\t\t)\r\r@contextmanager\rdef _UpperCamelCase\t\t\t\t\t( *SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstr(Path().resolve()\t\t\t\t)\r with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE__\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t) as tmp_dir:\r try:\r os.chdir(SCREAMING_SNAKE_CASE__\t\t\t\t)\r yield\r finally:\r os.chdir(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r@contextmanager\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r import gc\r\r gc.collect()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpa.total_allocated_bytes()\r yield\r assert pa.total_allocated_bytes() - previous_allocated_memory > 0, \"Arrow memory didn't increase.\"\r\r@contextmanager\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r import gc\r\r gc.collect()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpa.total_allocated_bytes()\r yield\r assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, \"Arrow memory wasn't expected to increase.\"\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return deepcopy(SCREAMING_SNAKE_CASE__\t\t\t\t).integers(0\t\t\t\t, 100\t\t\t\t, 10\t\t\t\t).tolist() == deepcopy(SCREAMING_SNAKE_CASE__\t\t\t\t).integers(0\t\t\t\t, 100\t\t\t\t, 10\t\t\t\t).tolist()\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r import decorator\r from requests.exceptions import HTTPError\r\r def _wrapper(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, *SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t):\r try:\r return func(*SCREAMING_SNAKE_CASE__\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t)\r except HTTPError as err:\r if str(SCREAMING_SNAKE_CASE__\t\t\t\t).startswith(\"\"\"500\"\"\"\t\t\t\t) or str(SCREAMING_SNAKE_CASE__\t\t\t\t).startswith(\"\"\"502\"\"\"\t\t\t\t):\r pytest.xfail(str(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r raise err\r\r return decorator.decorator(_wrapper\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\treturncode\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstdout\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstderr\r\rasync def _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r while True:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tawait stream.readline()\r if line:\r callback(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r break\r\rasync def _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]=False\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if echo:\r print(\"\"\"\\nRunning: \"\"\"\t\t\t\t, \"\"\" \"\"\".join(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tawait asyncio.create_subprocess_exec(\r cmd[0]\t\t\t\t, *cmd[1:]\t\t\t\t, stdin=SCREAMING_SNAKE_CASE__\t\t\t\t, stdout=asyncio.subprocess.PIPE\t\t\t\t, stderr=asyncio.subprocess.PIPE\t\t\t\t, env=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r\r # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe\r # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait\r #\r # If it starts hanging, will need to switch to the following code. The problem is that no data\r # will be seen until it's done and if it hangs for example there will be no debug info.\r # out, err = await p.communicate()\r # return _RunOutput(p.returncode, out, err)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r def tee(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.decode(\"\"\"utf-8\"\"\"\t\t\t\t).rstrip()\r sink.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r if not quiet:\r print(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, file=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # XXX: the timeout doesn't seem to make any difference here\r await asyncio.wait(\r [\r _read_stream(p.stdout\t\t\t\t, lambda SCREAMING_SNAKE_CASE__\t\t\t\t: tee(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, sys.stdout\t\t\t\t, label=\"\"\"stdout:\"\"\"\t\t\t\t)\t\t\t\t),\r _read_stream(p.stderr\t\t\t\t, lambda SCREAMING_SNAKE_CASE__\t\t\t\t: tee(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, sys.stderr\t\t\t\t, label=\"\"\"stderr:\"\"\"\t\t\t\t)\t\t\t\t),\r ]\t\t\t\t, timeout=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r return _RunOutput(await p.wait()\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]=180\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=False\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=True\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tasyncio.get_event_loop()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tloop.run_until_complete(\r _stream_subprocess(SCREAMING_SNAKE_CASE__\t\t\t\t, env=SCREAMING_SNAKE_CASE__\t\t\t\t, stdin=SCREAMING_SNAKE_CASE__\t\t\t\t, timeout=SCREAMING_SNAKE_CASE__\t\t\t\t, quiet=SCREAMING_SNAKE_CASE__\t\t\t\t, echo=SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\" \"\"\".join(SCREAMING_SNAKE_CASE__\t\t\t\t)\r if result.returncode > 0:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\\n\"\"\".join(result.stderr\t\t\t\t)\r raise RuntimeError(\r F'''\\'{cmd_str}\\' failed with returncode {result.returncode}\\n\\n'''\r F'''The combined stderr from workers follows:\\n{stderr}'''\t\t\t\t)\r\r # check that the subprocess actually did run and produced some output, should the test rely on\r # the remote side to do the testing\r if not result.stdout and not result.stderr:\r raise RuntimeError(F'''\\'{cmd_str}\\' produced no output.'''\t\t\t\t)\r\r return result\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.environ.get(\"\"\"PYTEST_XDIST_WORKER\"\"\"\t\t\t\t, \"\"\"gw0\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tre.sub(r\"\"\"^gw\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, 0\t\t\t\t, re.M\t\t\t\t)\r return int(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t29500\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpytest_xdist_worker_id()\r return port + uniq_delta\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom abc import ABC, abstractmethod\rfrom typing import List, Optional\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.test()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r while not completed:\r if counter == 1:\r self.reset()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.advance()\r if not self.does_advance(_UpperCAmelCase ):\r raise Exception(\r \"\"\"Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.\"\"\" )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.update(_UpperCAmelCase )\r counter += 1\r\r if counter > 1_00_00:\r raise Exception(\"\"\"update() does not fulfill the constraint.\"\"\" )\r\r if self.remaining() != 0:\r raise Exception(\"\"\"Custom Constraint is not defined correctly.\"\"\" )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\r\r\r @abstractmethod\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r raise NotImplementedError(\r f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super(_UpperCAmelCase ,\t\t\t\t\t\tself ).__init__()\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:\r raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )\r if any((not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):\r raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttoken_ids\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(self.token_ids )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t-1 # the index of the currently fulfilled step\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.completed:\r return None\r return self.token_ids[self.fulfilled_idx + 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r if self.completed:\r return False\r\r return token_id == self.token_ids[self.fulfilled_idx + 1]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r if self.does_advance(_UpperCAmelCase ):\r self.fulfilled_idx += 1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r if self.fulfilled_idx == (self.seqlen - 1):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompleted\r else:\r # failed to make progress.\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r self.reset()\r return stepped, completed, reset\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.seqlen - (self.fulfilled_idx + 1)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPhrasalConstraint(self.token_ids )\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.seqlen\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.fulfilled_idx\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.completed\r\r return new_constraint\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[List[int]] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax([len(_UpperCAmelCase ) for one in nested_token_ids] )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r for token_ids in nested_token_ids:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\troot\r for tidx, token_id in enumerate(_UpperCAmelCase ):\r if token_id not in level:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlevel[token_id]\r\r if no_subsets and self.has_subsets(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(\r \"\"\"Each list in `nested_token_ids` can't be a complete subset of another list, but is\"\"\"\r f''' {nested_token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\troot\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie\r\r for current_token in current_seq:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstart[current_token]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(start.keys() )\r\r return next_tokens\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.next_tokens(_UpperCAmelCase )\r\r return len(_UpperCAmelCase ) == 0\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(root.values() )\r if len(_UpperCAmelCase ) == 0:\r return 1\r else:\r return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.count_leaves(_UpperCAmelCase )\r return len(_UpperCAmelCase ) != leaf_count\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[List[int]] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super(_UpperCAmelCase ,\t\t\t\t\t\tself ).__init__()\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:\r raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )\r if any(not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) for token_ids in nested_token_ids ):\r raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )\r if any(\r any((not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) or token_id < 0) for token_id in token_ids )\r for token_ids in nested_token_ids ):\r raise ValueError(\r f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDisjunctiveTrie(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnested_token_ids\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.max_height\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.next_tokens(self.current_seq )\r\r if len(_UpperCAmelCase ) == 0:\r return None\r else:\r return token_list\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.next_tokens(self.current_seq )\r\r return token_id in next_tokens\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r if self.does_advance(_UpperCAmelCase ):\r self.current_seq.append(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r self.reset()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.trie.reached_leaf(self.current_seq )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompleted\r\r return stepped, completed, reset\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.completed:\r # since this can be completed without reaching max height\r return 0\r else:\r return self.seqlen - len(self.current_seq )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDisjunctiveConstraint(self.token_ids )\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.seqlen\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.current_seq\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.completed\r\r return new_constraint\r\rclass lowerCAmelCase_ :\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Constraint] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconstraints\r\r # max # of steps required to fulfill a given constraint\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax([c.seqlen for c in constraints] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r self.init_state()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r if self.inprogress_constraint:\r # extra points for having a constraint mid-fulfilled\r add += self.max_seqlen - self.inprogress_constraint.remaining()\r\r return (len(self.complete_constraints ) * self.max_seqlen) + add\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r if self.inprogress_constraint is None:\r for constraint in self.pending_constraints: # \"pending\" == \"unfulfilled yet\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tconstraint.advance()\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.append(_UpperCAmelCase )\r elif isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.extend(_UpperCAmelCase )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.advance()\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.append(_UpperCAmelCase )\r elif isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r token_list.extend(_UpperCAmelCase )\r\r if len(_UpperCAmelCase ) == 0:\r return None\r else:\r return token_list\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.init_state()\r\r if token_ids is not None:\r for token in token_ids:\r # completes or steps **one** constraint\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.add(_UpperCAmelCase )\r\r # the entire list of constraints are fulfilled\r if self.completed:\r break\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse, False\r\r if self.completed:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r return complete, stepped\r\r if self.inprogress_constraint is not None:\r # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current\r # job, simply update the state\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.update(_UpperCAmelCase )\r if reset:\r # 1. If the next token breaks the progress, then we must restart.\r # e.g. constraint = \"I love pies\" and sequence so far is \"I love\" but `token_id` == \"books\".\r\r # But that doesn't mean we self.init_state(), since we only reset the state for this particular\r # constraint, not the full list of constraints.\r\r self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if complete:\r # 2. If the next token completes the constraint, move it to completed list, set\r # inprogress to None. If there are no pending constraints either, then this full list of constraints\r # is complete.\r\r self.complete_constraints.append(self.inprogress_constraint )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if len(self.pending_constraints ) == 0:\r # we're done!\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r\r else:\r # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list\r # of constraints?\r\r for cidx, pending_constraint in enumerate(self.pending_constraints ):\r if pending_constraint.does_advance(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpending_constraint.update(_UpperCAmelCase )\r\r if not stepped:\r raise Exception(\r \"\"\"`constraint.update(token_id)` is not yielding incremental progress, \"\"\"\r \"\"\"even though `constraint.does_advance(token_id)` is true.\"\"\" )\r\r if complete:\r self.complete_constraints.append(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r\r if not complete and stepped:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpending_constraint\r\r if complete or stepped:\r # If we made any progress at all, then it's at least not a \"pending constraint\".\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]\r )\r\r if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:\r # If there's no longer any pending after this and no inprogress either, then we must be\r # complete.\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r\r break # prevent accidentally stepping through multiple constraints with just one token.\r\r return complete, stepped\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=True ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConstraintListState(self.constraints ) # we actually never though self.constraints objects\r # throughout this process. So it's at initialization state.\r\r if stateful:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints\r ]\r if self.inprogress_constraint is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.inprogress_constraint.copy(stateful=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[constraint.copy() for constraint in self.pending_constraints]\r\r return new_state\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152336,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rimport re\rimport shutil\rimport sys\rimport tempfile\rimport unittest\r\rimport black\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tos.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))\rsys.path.append(os.path.join(git_repo_path, 'utils'))\r\rimport check_copies # noqa: E402\r\r\r# This is the reference code that will be used in the tests.\r# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t' \\\"\"\"\\n Output class for the scheduler\\'s step function output.\\n\\n Args:\\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\\n denoising loop.\\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\\n `pred_original_sample` can be used to preview progress or for guidance.\\n \\\"\"\"\\n\\n prev_sample: torch.FloatTensor\\n pred_original_sample: Optional[torch.FloatTensor] = None\\n'\r\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttempfile.mkdtemp()\r os.makedirs(os.path.join(self.diffusers_dir ,\t\t\t\t\t\t\"\"\"schedulers/\"\"\" ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.diffusers_dir\r shutil.copy(\r os.path.join(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"src/diffusers/schedulers/scheduling_ddpm.py\"\"\" ) ,\t\t\t\t\t\tos.path.join(self.diffusers_dir ,\t\t\t\t\t\t\"\"\"schedulers/scheduling_ddpm.py\"\"\" ) ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"src/diffusers\"\"\"\r shutil.rmtree(self.diffusers_dir )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcomment + f'''\\nclass {class_name}(nn.Module):\\n''' + class_code\r if overwrite_result is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcomment + f'''\\nclass {class_name}(nn.Module):\\n''' + overwrite_result\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tblack.Mode(target_versions={black.TargetVersion.PYaa} ,\t\t\t\t\t\tline_length=1_19 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tblack.format_str(_UpperCAmelCase ,\t\t\t\t\t\tmode=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(self.diffusers_dir ,\t\t\t\t\t\t\"\"\"new_code.py\"\"\" )\r with open(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"w\"\"\" ,\t\t\t\t\t\tnewline=\"\"\"\\n\"\"\" ) as f:\r f.write(_UpperCAmelCase )\r if overwrite_result is None:\r self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )\r else:\r check_copies.is_copy_consistent(f.name ,\t\t\t\t\t\toverwrite=_UpperCAmelCase )\r with open(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"r\"\"\" ) as f:\r self.assertTrue(f.read() ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcheck_copies.find_code_in_diffusers(\"\"\"schedulers.scheduling_ddpm.DDPMSchedulerOutput\"\"\" )\r self.assertEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.check_copy_consistency(\r \"\"\"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput\"\"\" ,\t\t\t\t\t\t\"\"\"DDPMSchedulerOutput\"\"\" ,\t\t\t\t\t\tREFERENCE_CODE + \"\"\"\\n\"\"\" ,\t\t\t\t\t\t)\r\r # With no empty line at the end\r self.check_copy_consistency(\r \"\"\"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput\"\"\" ,\t\t\t\t\t\t\"\"\"DDPMSchedulerOutput\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t)\r\r # Copy consistency with rename\r self.check_copy_consistency(\r \"\"\"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test\"\"\" ,\t\t\t\t\t\t\"\"\"TestSchedulerOutput\"\"\" ,\t\t\t\t\t\tre.sub(\"\"\"DDPM\"\"\" ,\t\t\t\t\t\t\"\"\"Test\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ) ,\t\t\t\t\t\t)\r\r # Copy consistency with a really long name\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason\"\"\"\r self.check_copy_consistency(\r f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,\t\t\t\t\t\tf'''{long_class_name}SchedulerOutput''' ,\t\t\t\t\t\tre.sub(\"\"\"Bert\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) ,\t\t\t\t\t\t)\r\r # Copy consistency with overwrite\r self.check_copy_consistency(\r \"\"\"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test\"\"\" ,\t\t\t\t\t\t\"\"\"TestSchedulerOutput\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\toverwrite_result=re.sub(\"\"\"DDPM\"\"\" ,\t\t\t\t\t\t\"\"\"Test\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ) ,\t\t\t\t\t\t)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport doctest\rimport logging\rimport os\rimport unittest\rfrom pathlib import Path\rfrom typing import List, Union\r\rimport transformers\rfrom transformers.testing_utils import require_tf, require_torch, slow\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.getLogger()\r\r@unittest.skip(\"\"\"Temporarily disable the doc tests.\"\"\" )\r@require_torch\r@require_tf\r@slow\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tPath ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[List[str], None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, List[str], None] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = True ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) )]\r\r if identifier is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if identifier in file]\r\r if n_identifier is not None:\r if isinstance(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ):\r for n_ in n_identifier:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if n_ not in file]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if n_identifier not in file]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tignore_files or []\r ignore_files.append(\"\"\"__init__.py\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[file for file in files if file not in ignore_files]\r\r for file in files:\r # Open all files\r print(\"\"\"Testing\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r\r if only_modules:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfile.split(\"\"\".\"\"\" )[0]\r try:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdoctest.DocTestSuite(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tunittest.TextTestRunner().run(_UpperCAmelCase )\r self.assertIs(len(result.failures ) ,\t\t\t\t\t\t0 )\r except AttributeError:\r logger.info(f'''{module_identifier} is not a module.''' )\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdoctest.testfile(str(\"\"\"..\"\"\" / directory / file ) ,\t\t\t\t\t\toptionflags=doctest.ELLIPSIS )\r self.assertIs(result.failed ,\t\t\t\t\t\t0 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"modeling\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r \"\"\"modeling_ctrl.py\"\"\",\r \"\"\"modeling_tf_ctrl.py\"\"\",\r ]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase ,\t\t\t\t\t\tignore_files=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"tokenization\"\"\"\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"configuration\"\"\"\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tidentifier=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"src/transformers\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"configuration\"\"\", \"\"\"modeling\"\"\", \"\"\"tokenization\"\"\"]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tn_identifier=_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPath(\"\"\"docs/source\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\"\"\"favicon.ico\"\"\"]\r self.analyze_directory(_UpperCAmelCase ,\t\t\t\t\t\tignore_files=_UpperCAmelCase ,\t\t\t\t\t\tonly_modules=_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152337,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport numpy as np\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tnp.array\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return 1 / (1 + np.exp(-vector\t\t\t\t))\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom datasets.utils.patching import _PatchedModuleObj, patch_submodule\r\rfrom . import _test_patching\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r import os as original_os\r from os import path as original_path\r from os import rename as original_rename\r from os.path import dirname as original_dirname\r from os.path import join as original_join\r\r assert _test_patching.os is original_os\r assert _test_patching.path is original_path\r assert _test_patching.join is original_join\r\r assert _test_patching.renamed_os is original_os\r assert _test_patching.renamed_path is original_path\r assert _test_patching.renamed_join is original_join\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r # Every way to access os.path.join must be patched, and the rest must stay untouched\r\r # check os.path.join\r assert isinstance(_test_patching.os\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert isinstance(_test_patching.os.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.os.path.join is mock\r\r # check path.join\r assert isinstance(_test_patching.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.path.join is mock\r\r # check join\r assert _test_patching.join is mock\r\r # check that the other attributes are untouched\r assert _test_patching.os.rename is original_rename\r assert _test_patching.path.dirname is original_dirname\r assert _test_patching.os.path.dirname is original_dirname\r\r # Even renamed modules or objects must be patched\r\r # check renamed_os.path.join\r assert isinstance(_test_patching.renamed_os\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert isinstance(_test_patching.renamed_os.path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.renamed_os.path.join is mock\r\r # check renamed_path.join\r assert isinstance(_test_patching.renamed_path\t\t\t\t, _PatchedModuleObj\t\t\t\t)\r assert _test_patching.renamed_path.join is mock\r\r # check renamed_join\r assert _test_patching.renamed_join is mock\r\r # check that the other attributes are untouched\r assert _test_patching.renamed_os.rename is original_rename\r assert _test_patching.renamed_path.dirname is original_dirname\r assert _test_patching.renamed_os.path.dirname is original_dirname\r\r # check that everthing is back to normal when the patch is over\r\r assert _test_patching.os is original_os\r assert _test_patching.path is original_path\r assert _test_patching.join is original_join\r\r assert _test_patching.renamed_os is original_os\r assert _test_patching.renamed_path is original_path\r assert _test_patching.renamed_join is original_join\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r assert _test_patching.open is open\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_builtin_mock__\"\"\"\r # _test_patching has \"open\" in its globals\r assert _test_patching.open is open\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"open\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.open is mock\r\r # check that everthing is back to normal when the patch is over\r\r assert _test_patching.open is open\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_missing_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"pandas.read_csv\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_missing_builtin_mock__\"\"\"\r # _test_patching doesn't have \"len\" in its globals\r assert getattr(_test_patching\t\t\t\t, \"\"\"len\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) is None\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"len\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.len is mock\r assert _test_patching.len is len\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_start_and_stop_mock__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpatch_submodule(_test_patching\t\t\t\t, \"\"\"open\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r assert _test_patching.open is open\r patch.start()\r assert _test_patching.open is mock\r patch.stop()\r assert _test_patching.open is open\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r from os import rename as original_rename\r from os.path import dirname as original_dirname\r from os.path import join as original_join\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_join__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_dirname__\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_successive_rename__\"\"\"\r assert _test_patching.os.path.join is original_join\r assert _test_patching.os.path.dirname is original_dirname\r assert _test_patching.os.rename is original_rename\r\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.rename\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.dirname\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.os.path.join is mock_join\r assert _test_patching.os.path.dirname is mock_dirname\r assert _test_patching.os.rename is mock_rename\r\r # try another order\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.rename\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.join\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.path.dirname\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r assert _test_patching.os.path.join is mock_join\r assert _test_patching.os.path.dirname is mock_dirname\r assert _test_patching.os.rename is mock_rename\r\r assert _test_patching.os.path.join is original_join\r assert _test_patching.os.path.dirname is original_dirname\r assert _test_patching.os.rename is original_rename\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"__test_patch_submodule_doesnt_exist_mock__\"\"\"\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"__module_that_doesn_exist__.__attribute_that_doesn_exist__\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r with patch_submodule(_test_patching\t\t\t\t, \"\"\"os.__attribute_that_doesn_exist__\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r pass\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152338,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\ttuple[float, float, float]\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\ttuple[float, float, float]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tPointad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tPointad\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tend_pointa[0] - end_pointa[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tend_pointa[1] - end_pointa[1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tend_pointa[2] - end_pointa[2]\r return (x, y, z)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tVectorad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tVectorad\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tab[1] * ac[2] - ab[2] * ac[1] # *i\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tab[0] * ac[1] - ab[1] * ac[0] # *k\r return (x, y, z)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tVectorad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return tuple(round(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) for x in vector\t\t\t\t) == (0, 0, 0)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tPointad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tPointad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tPointad\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 10\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcreate_vector(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcreate_vector(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return is_zero_vector(get_ad_vectors_cross(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom timeit import timeit\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'MALAYALAM': True,\r 'String': False,\r 'rotor': True,\r 'level': True,\r 'A': True,\r 'BB': True,\r 'ABC': False,\r 'amanaplanacanalpanama': True, # \"a man a plan a canal panama\"\r}\r# Ensure our test data is valid\rassert all((key == key[::-1]) is value for key, value in test_data.items())\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t) - 1\r while start_i < end_i:\r if s[start_i] == s[end_i]:\r start_i += 1\r end_i -= 1\r else:\r return False\r return True\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t) // 2\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # We need to traverse till half of the length of string\r # as we can get access of the i'th last element from\r # i'th index.\r # eg: [0,1,2,3,4,5] => 4th index can be accessed\r # with the help of 1st index (i==n-i-1)\r # where n is length of string\r return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if len(SCREAMING_SNAKE_CASE__\t\t\t\t) <= 2:\r return True\r if s[0] == s[len(SCREAMING_SNAKE_CASE__\t\t\t\t) - 1]:\r return is_palindrome_recursive(s[1:-1]\t\t\t\t)\r else:\r return False\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return s == s[::-1]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''all({name}(key) is value for key, value in test_data.items())'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tF'''from __main__ import test_data, {name}'''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t500000\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttimeit(stmt=SCREAMING_SNAKE_CASE__\t\t\t\t, setup=SCREAMING_SNAKE_CASE__\t\t\t\t, number=SCREAMING_SNAKE_CASE__\t\t\t\t)\r print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds'''\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r for key, value in test_data.items():\r assert is_palindrome(key) is is_palindrome_recursive(key)\r assert is_palindrome(key) is is_palindrome_slice(key)\r print(f\"{key:21} {value}\")\r print('a man a plan a canal panama')\r\r # finished 500,000 runs in 0.46793 seconds\r benchmark_function('is_palindrome_slice')\r # finished 500,000 runs in 0.85234 seconds\r benchmark_function('is_palindrome')\r # finished 500,000 runs in 1.32028 seconds\r benchmark_function('is_palindrome_recursive')\r # finished 500,000 runs in 2.08679 seconds\r benchmark_function('is_palindrome_traversal')\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152339,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rfrom shutil import copyfile\rfrom typing import Any, Dict, List, Optional, Tuple\r\rimport sentencepiece as spm\r\rfrom ...tokenization_utils import PreTrainedTokenizer\rfrom ...utils import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'▁'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{'vocab_file': 'sentencepiece.bpe.model'}\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'vocab_file': {\r 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',\r }\r}\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'facebook/xglm-564M': 2_0_4_8,\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES\r lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP\r lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES\r lowerCAmelCase_ : Dict = [\"\"\"input_ids\"\"\", \"\"\"attention_mask\"\"\"]\r\r\r def __init__( self\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=\"\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Dict[str, Any]] = None ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{} if sp_model_kwargs is None else sp_model_kwargs\r\r # Compatibility with the original tokenizer\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t7\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[f'''''' for i in range(self.num_madeup_words )]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.get(\"\"\"additional_special_tokens\"\"\" ,\t\t\t\t\t\t[] )\r kwargs[\"additional_special_tokens\"] += [\r word for word in madeup_words if word not in kwargs[\"additional_special_tokens\"]\r ]\r\r super().__init__(\r bos_token=_UpperCAmelCase ,\t\t\t\t\t\teos_token=_UpperCAmelCase ,\t\t\t\t\t\tunk_token=_UpperCAmelCase ,\t\t\t\t\t\tsep_token=_UpperCAmelCase ,\t\t\t\t\t\tcls_token=_UpperCAmelCase ,\t\t\t\t\t\tpad_token=_UpperCAmelCase ,\t\t\t\t\t\tsp_model_kwargs=self.sp_model_kwargs ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.Load(str(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_file\r\r # Original fairseq vocab and spm vocab must be \"aligned\":\r # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9\r # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----\r # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-'\r # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'\r\r # The first \"real\" token \",\" has position 4 in the original fairseq vocab and position 3 in the spm vocab\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1\r\r # Mimic fairseq token-to-id alignment for the first 4 token\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"\"\"\": 0, \"\"\"\"\"\": 1, \"\"\"\"\"\": 2, \"\"\"\"\"\": 3}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(self.sp_model )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{f'''''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}\r self.fairseq_tokens_to_ids.update(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{v: k for k, v in self.fairseq_tokens_to_ids.items()}\r\r\r def __getstate__( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.__dict__.copy()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.serialized_model_proto()\r return state\r\r\r def __setstate__( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\td\r\r # for backward compatibility\r if not hasattr(self ,\t\t\t\t\t\t\"\"\"sp_model_kwargs\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tspm.SentencePieceProcessor(**self.sp_model_kwargs )\r self.sp_model.LoadFromSerializedProto(self.sp_model_proto )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if token_ids_a is None:\r return [self.sep_token_id] + token_ids_a\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r return sep + token_ids_a + sep + sep + token_ids_a\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if already_has_special_tokens:\r return super().get_special_tokens_mask(\r token_ids_a=_UpperCAmelCase ,\t\t\t\t\t\ttoken_ids_a=_UpperCAmelCase ,\t\t\t\t\t\talready_has_special_tokens=_UpperCAmelCase )\r\r if token_ids_a is None:\r return [1] + ([0] * len(_UpperCAmelCase ))\r return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase ))\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[List[int]] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[self.sep_token_id]\r\r if token_ids_a is None:\r return len(sep + token_ids_a ) * [0]\r return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]\r\r\r @property\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}\r vocab.update(self.added_tokens_encoder )\r return vocab\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return self.sp_model.encode(_UpperCAmelCase ,\t\t\t\t\t\tout_type=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if token in self.fairseq_tokens_to_ids:\r return self.fairseq_tokens_to_ids[token]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.PieceToId(_UpperCAmelCase )\r\r # Need to return unknown token if the SP model returned 0\r return spm_id + self.fairseq_offset if spm_id else self.unk_token_id\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if index in self.fairseq_ids_to_tokens:\r return self.fairseq_ids_to_tokens[index]\r return self.sp_model.IdToPiece(index - self.fairseq_offset )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join(_UpperCAmelCase ).replace(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\" \"\"\" ).strip()\r return out_string\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[str] = None ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if not os.path.isdir(_UpperCAmelCase ):\r logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )\r return\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(\r _UpperCAmelCase ,\t\t\t\t\t\t(filename_prefix + \"\"\"-\"\"\" if filename_prefix else \"\"\"\"\"\") + VOCAB_FILES_NAMES[\"\"\"vocab_file\"\"\"] )\r\r if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):\r copyfile(self.vocab_file ,\t\t\t\t\t\t_UpperCAmelCase )\r elif not os.path.isfile(self.vocab_file ):\r with open(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"wb\"\"\" ) as fi:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.sp_model.serialized_model_proto()\r fi.write(_UpperCAmelCase )\r\r return (out_vocab_file,)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport datasets\r\rfrom .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n@INPROCEEDINGS{Papineni02bleu:a,\\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\\n booktitle = {},\\n year = {2002},\\n pages = {311--318}\\n}\\n@inproceedings{lin-och-2004-orange,\\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\\n author = \"Lin, Chin-Yew and\\n Och, Franz Josef\",\\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\\n month = \"aug 23{--}aug 27\",\\n year = \"2004\",\\n address = \"Geneva, Switzerland\",\\n publisher = \"COLING\",\\n url = \"https://www.aclweb.org/anthology/C04-1072\",\\n pages = \"501--507\",\\n}\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\\nQuality is considered to be the correspondence between a machine\\'s output and that of a human: \"the closer a machine translation is to a professional human translation,\\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\\nremains one of the most popular automated and inexpensive metrics.\\n\\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\\'s overall quality. Intelligibility or grammatical correctness\\nare not taken into account[citation needed].\\n\\nBLEU\\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\\nreference translations will increase the BLEU score.\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nComputes BLEU score of translated segments against one or more references.\\nArgs:\\n predictions: list of translations to score.\\n Each translation should be tokenized into a list of tokens.\\n references: list of lists of references for each translation.\\n Each reference should be tokenized into a list of tokens.\\n max_order: Maximum n-gram order to use when computing BLEU score.\\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\\nReturns:\\n \\'bleu\\': bleu score,\\n \\'precisions\\': geometric mean of n-gram precisions,\\n \\'brevity_penalty\\': brevity penalty,\\n \\'length_ratio\\': ratio of lengths,\\n \\'translation_length\\': translation_length,\\n \\'reference_length\\': reference_length\\nExamples:\\n\\n >>> predictions = [\\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\\n ... ]\\n >>> references = [\\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\\n ... ]\\n >>> bleu = datasets.load_metric(\"bleu\")\\n >>> results = bleu.compute(predictions=predictions, references=references)\\n >>> print(results[\"bleu\"])\\n 1.0\\n'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"predictions\"\"\": datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"token\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ),\r \"\"\"references\"\"\": datasets.Sequence(\r datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"token\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ) ,\t\t\t\t\t\tid=\"\"\"references\"\"\" ),\r } ) ,\t\t\t\t\t\tcodebase_urls=[\"\"\"https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py\"\"\"] ,\t\t\t\t\t\treference_urls=[\r \"\"\"https://en.wikipedia.org/wiki/BLEU\"\"\",\r \"\"\"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213\"\"\",\r ] ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcompute_bleu(\r reference_corpus=_UpperCAmelCase ,\t\t\t\t\t\ttranslation_corpus=_UpperCAmelCase ,\t\t\t\t\t\tmax_order=_UpperCAmelCase ,\t\t\t\t\t\tsmooth=_UpperCAmelCase )\r ((UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__)\t\t\t\t\t\t\t,\t(UpperCAmelCase__))\t\t\t\t\t\t\t\t=\t\t\tscore\r return {\r \"bleu\": bleu,\r \"precisions\": precisions,\r \"brevity_penalty\": bp,\r \"length_ratio\": ratio,\r \"translation_length\": translation_length,\r \"reference_length\": reference_length,\r }\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152340,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport torch\r\rfrom diffusers import DDPMScheduler\r\rfrom .test_schedulers import SchedulerCommonTest\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Any = (DDPMScheduler,)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"num_train_timesteps\"\"\": 10_00,\r \"\"\"beta_start\"\"\": 0.0001,\r \"\"\"beta_end\"\"\": 0.02,\r \"\"\"beta_schedule\"\"\": \"\"\"linear\"\"\",\r \"\"\"variance_type\"\"\": \"\"\"fixed_small\"\"\",\r \"\"\"clip_sample\"\"\": True,\r }\r\r config.update(**_UpperCAmelCase )\r return config\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for timesteps in [1, 5, 1_00, 10_00]:\r self.check_over_configs(num_train_timesteps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,\t\t\t\t\t\t[0.002, 0.02, 0.2, 2] ):\r self.check_over_configs(beta_start=_UpperCAmelCase ,\t\t\t\t\t\tbeta_end=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for schedule in [\"linear\", \"squaredcos_cap_v2\"]:\r self.check_over_configs(beta_schedule=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for variance in [\"fixed_small\", \"fixed_large\", \"other\"]:\r self.check_over_configs(variance_type=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for clip_sample in [True, False]:\r self.check_over_configs(clip_sample=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.check_over_configs(thresholding=_UpperCAmelCase )\r for threshold in [0.5, 1.0, 2.0]:\r for prediction_type in [\"epsilon\", \"sample\", \"v_prediction\"]:\r self.check_over_configs(\r thresholding=_UpperCAmelCase ,\t\t\t\t\t\tprediction_type=_UpperCAmelCase ,\t\t\t\t\t\tsample_max_value=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for prediction_type in [\"epsilon\", \"sample\", \"v_prediction\"]:\r self.check_over_configs(prediction_type=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for t in [0, 5_00, 9_99]:\r self.check_over_forward(time_step=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5\r assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5\r assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_model()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample_deter\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r\r for t in reversed(range(_UpperCAmelCase ) ):\r # 1. predict noise residual\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r # 2. predict previous mean of sample x_t-1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tgenerator=_UpperCAmelCase ).prev_sample\r\r # if t > 0:\r # noise = self.dummy_sample_deter\r # variance = scheduler.get_variance(t) ** (0.5) * noise\r #\r # sample = pred_prev_sample + variance\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpred_prev_sample\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 258.9606 ) < 1E-2\r assert abs(result_mean.item() - 0.3372 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(prediction_type=\"\"\"v_prediction\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_model()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample_deter\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r\r for t in reversed(range(_UpperCAmelCase ) ):\r # 1. predict noise residual\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r # 2. predict previous mean of sample x_t-1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tgenerator=_UpperCAmelCase ).prev_sample\r\r # if t > 0:\r # noise = self.dummy_sample_deter\r # variance = scheduler.get_variance(t) ** (0.5) * noise\r #\r # sample = pred_prev_sample + variance\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpred_prev_sample\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 202.0296 ) < 1E-2\r assert abs(result_mean.item() - 0.2631 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[1_00, 87, 50, 1, 0]\r\r scheduler.set_timesteps(timesteps=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.timesteps\r\r for i, timestep in enumerate(_UpperCAmelCase ):\r if i == len(_UpperCAmelCase ) - 1:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t-1\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttimesteps[i + 1]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.previous_timestep(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprev_t.item()\r\r self.assertEqual(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[1_00, 87, 50, 51, 0]\r\r with self.assertRaises(_UpperCAmelCase ,\t\t\t\t\t\tmsg=\"\"\"`custom_timesteps` must be in descending order.\"\"\" ):\r scheduler.set_timesteps(timesteps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[1_00, 87, 50, 1, 0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(_UpperCAmelCase )\r\r with self.assertRaises(_UpperCAmelCase ,\t\t\t\t\t\tmsg=\"\"\"Can only pass one of `num_inference_steps` or `custom_timesteps`.\"\"\" ):\r scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase ,\t\t\t\t\t\ttimesteps=_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[scheduler.config.num_train_timesteps]\r\r with self.assertRaises(\r _UpperCAmelCase ,\t\t\t\t\t\tmsg=\"\"\"`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}\"\"\" ,\t\t\t\t\t\t):\r scheduler.set_timesteps(timesteps=_UpperCAmelCase )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom dataclasses import dataclass\rfrom typing import List, Optional, Union\r\rimport numpy as np\rimport torch\r\rfrom ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available\r\r@dataclass\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]\r\r\rtry:\r if not (is_transformers_available() and is_torch_available()):\r raise OptionalDependencyNotAvailable()\rexcept OptionalDependencyNotAvailable:\r from ...utils.dummy_torch_and_transformers_objects import * # noqa F403\relse:\r from .pipeline_text_to_video_synth import TextToVideoSDPipeline\r from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401\r from .pipeline_text_to_video_zero import TextToVideoZeroPipeline\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152341,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\r\rfrom bleurt import score # From: git+https://github.com/google-research/bleurt.git\r\rimport datasets\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tdatasets.logging.get_logger(__name__)\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n@inproceedings{bleurt,\\n title={BLEURT: Learning Robust Metrics for Text Generation},\\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\\n booktitle={ACL},\\n year={2020},\\n url={https://arxiv.org/abs/2004.04696}\\n}\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\\nit for your specific application (the latter is expected to perform better).\\n\\nSee the project\\'s README at https://github.com/google-research/bleurt#readme for more information.\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nBLEURT score.\\n\\nArgs:\\n `predictions` (list of str): prediction/candidate sentences\\n `references` (list of str): reference sentences\\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\\n\\nReturns:\\n \\'scores\\': List of scores.\\nExamples:\\n\\n >>> predictions = [\"hello there\", \"general kenobi\"]\\n >>> references = [\"hello there\", \"general kenobi\"]\\n >>> bleurt = datasets.load_metric(\"bleurt\")\\n >>> results = bleurt.compute(predictions=predictions, references=references)\\n >>> print([round(v, 2) for v in results[\"scores\"]])\\n [1.03, 1.04]\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip',\r 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip',\r 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip',\r 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip',\r 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip',\r 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip',\r 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip',\r 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip',\r 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip',\r 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip',\r}\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\thomepage=\"\"\"https://github.com/google-research/bleurt\"\"\" ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"predictions\"\"\": datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ),\r \"\"\"references\"\"\": datasets.Value(\"\"\"string\"\"\" ,\t\t\t\t\t\tid=\"\"\"sequence\"\"\" ),\r } ) ,\t\t\t\t\t\tcodebase_urls=[\"\"\"https://github.com/google-research/bleurt\"\"\"] ,\t\t\t\t\t\treference_urls=[\"\"\"https://github.com/google-research/bleurt\"\"\", \"\"\"https://arxiv.org/abs/2004.04696\"\"\"] ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if self.config_name == \"default\":\r logger.warning(\r \"\"\"Using default BLEURT-Base checkpoint for sequence maximum length 128. \"\"\"\r \"\"\"You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"bleurt-base-128\"\"\"\r\r if self.config_name.lower() in CHECKPOINT_URLS:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.config_name.lower()\r\r elif self.config_name.upper() in CHECKPOINT_URLS:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.config_name.upper()\r\r else:\r raise KeyError(\r f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' )\r\r # download the model checkpoint specified by self.config_name and set up the scorer\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscore.BleurtScorer(os.path.join(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scorer.score(references=_UpperCAmelCase ,\t\t\t\t\t\tcandidates=_UpperCAmelCase )\r return {\"scores\": scores}\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport torch\rimport torch.nn as nn\rfrom transformers.modeling_utils import ModuleUtilsMixin\rfrom transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm\r\rfrom ...configuration_utils import ConfigMixin, register_to_config\rfrom ...models import ModelMixin\r\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @register_to_config\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tfloat ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tbool = False ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Embedding(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Embedding(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Dropout(p=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaConfig(\r vocab_size=_UpperCAmelCase ,\t\t\t\t\t\td_model=_UpperCAmelCase ,\t\t\t\t\t\tnum_heads=_UpperCAmelCase ,\t\t\t\t\t\td_kv=_UpperCAmelCase ,\t\t\t\t\t\td_ff=_UpperCAmelCase ,\t\t\t\t\t\tdropout_rate=_UpperCAmelCase ,\t\t\t\t\t\tfeed_forward_proj=_UpperCAmelCase ,\t\t\t\t\t\tis_decoder=_UpperCAmelCase ,\t\t\t\t\t\tis_encoder_decoder=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.ModuleList()\r for lyr_num in range(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaBlock(_UpperCAmelCase )\r self.encoders.append(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTaLayerNorm(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnn.Dropout(p=_UpperCAmelCase )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.token_embedder(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_input_tokens.shape[1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.arange(_UpperCAmelCase ,\t\t\t\t\t\tdevice=encoder_input_tokens.device )\r x += self.position_encoding(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dropout_pre(_UpperCAmelCase )\r\r # inverted the attention mask\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tencoder_input_tokens.size()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_extended_attention_mask(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r\r for lyr in self.encoders:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlyr(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.layer_norm(_UpperCAmelCase )\r\r return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152342,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport json\rfrom typing import List\r\rfrom ltp import LTP\r\rfrom transformers.models.bert.tokenization_bert import BertTokenizer\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if (\r (cp >= 0x4e00 and cp <= 0x9fff)\r or (cp >= 0x3400 and cp <= 0x4dbf) #\r or (cp >= 0x20000 and cp <= 0x2a6df) #\r or (cp >= 0x2a700 and cp <= 0x2b73f) #\r or (cp >= 0x2b740 and cp <= 0x2b81f) #\r or (cp >= 0x2b820 and cp <= 0x2ceaf) #\r or (cp >= 0xf900 and cp <= 0xfaff)\r or (cp >= 0x2f800 and cp <= 0x2fa1f) #\r ): #\r return True\r\r return False\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r for char in word:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tord(SCREAMING_SNAKE_CASE__\t\t\t\t)\r if not _is_chinese_char(SCREAMING_SNAKE_CASE__\t\t\t\t):\r return 0\r return 1\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tset()\r\r for token in tokens:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(SCREAMING_SNAKE_CASE__\t\t\t\t) > 1 and is_chinese(SCREAMING_SNAKE_CASE__\t\t\t\t)\r if chinese_word:\r word_set.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlist(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return word_list\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tset()\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if not chinese_word_set:\r return bert_tokens\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax([len(SCREAMING_SNAKE_CASE__\t\t\t\t) for w in chinese_word_set]\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbert_tokens\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r while start < end:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r if is_chinese(bert_word[start]\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmin(end - start\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r for i in range(SCREAMING_SNAKE_CASE__\t\t\t\t, 1\t\t\t\t, -1\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"\"\"\".join(bert_word[start : start + i]\t\t\t\t)\r if whole_word in chinese_word_set:\r for j in range(start + 1\t\t\t\t, start + i\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"##\"\"\" + bert_word[j]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tstart + i\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r break\r if single_word:\r start += 1\r return bert_word\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tLTP\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tBertTokenizer\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r for i in range(0\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, 100\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tltp_tokenizer.pipeline(lines[i : i + 100]\t\t\t\t, tasks=[\"\"\"cws\"\"\"]\t\t\t\t).cws\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[get_chinese_word(SCREAMING_SNAKE_CASE__\t\t\t\t) for r in res]\r ltp_res.extend(SCREAMING_SNAKE_CASE__\t\t\t\t)\r assert len(SCREAMING_SNAKE_CASE__\t\t\t\t) == len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for i in range(0\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, 100\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbert_tokenizer(lines[i : i + 100]\t\t\t\t, add_special_tokens=SCREAMING_SNAKE_CASE__\t\t\t\t, truncation=SCREAMING_SNAKE_CASE__\t\t\t\t, max_length=512\t\t\t\t)\r bert_res.extend(res[\"\"\"input_ids\"\"\"]\t\t\t\t)\r assert len(SCREAMING_SNAKE_CASE__\t\t\t\t) == len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r for id in input_ids:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE__\t\t\t\t)\r input_tokens.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tadd_sub_symbol(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r # We only save pos of chinese subwords start with ##, which mean is part of a whole word.\r for i, token in enumerate(SCREAMING_SNAKE_CASE__\t\t\t\t):\r if token[:2] == \"##\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttoken[2:]\r # save chinese tokens' pos\r if len(SCREAMING_SNAKE_CASE__\t\t\t\t) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t):\r ref_id.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r ref_ids.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r assert len(SCREAMING_SNAKE_CASE__\t\t\t\t) == len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return ref_ids\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r with open(args.file_name\t\t\t\t, \"\"\"r\"\"\"\t\t\t\t, encoding=\"\"\"utf-8\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tf.readlines()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[line.strip() for line in data if len(SCREAMING_SNAKE_CASE__\t\t\t\t) > 0 and not line.isspace()] # avoid delimiter like '\\u2029'\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tLTP(args.ltp\t\t\t\t) # faster in GPU device\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tBertTokenizer.from_pretrained(args.bert\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tprepare_ref(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r with open(args.save_path\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, encoding=\"\"\"utf-8\"\"\"\t\t\t\t) as f:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[json.dumps(SCREAMING_SNAKE_CASE__\t\t\t\t) + \"\"\"\\n\"\"\" for ref in ref_ids]\r f.writelines(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser(description='prepare_chinese_ref')\r parser.add_argument(\r '--file_name',\r required=False,\r type=str,\r default='./resources/chinese-demo.txt',\r help='file need process, same as training data in lm',\r )\r parser.add_argument(\r '--ltp',\r required=False,\r type=str,\r default='./resources/ltp',\r help='resources for LTP tokenizer, usually a path',\r )\r parser.add_argument(\r '--bert',\r required=False,\r type=str,\r default='./resources/robert',\r help='resources for Bert tokenizer',\r )\r parser.add_argument(\r '--save_path',\r required=False,\r type=str,\r default='./resources/ref.txt',\r help='path to save res',\r )\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r main(args)\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\rimport json\rimport os\r\rimport fairseq\rimport torch\rfrom fairseq.data import Dictionary\r\rfrom transformers import (\r WavaVecaConfig,\r WavaVecaCTCTokenizer,\r WavaVecaFeatureExtractor,\r WavaVecaForCTC,\r WavaVecaForPreTraining,\r WavaVecaProcessor,\r logging,\r)\rfrom transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification\r\r\rlogging.set_verbosity_info()\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'post_extract_proj': 'feature_projection.projection',\r 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',\r 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',\r 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',\r 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',\r 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',\r 'self_attn_layer_norm': 'encoder.layers.*.layer_norm',\r 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',\r 'fc2': 'encoder.layers.*.feed_forward.output_dense',\r 'final_layer_norm': 'encoder.layers.*.final_layer_norm',\r 'encoder.layer_norm': 'encoder.layer_norm',\r 'adapter_layer': 'encoder.layers.*.adapter_layer',\r 'w2v_model.layer_norm': 'feature_projection.layer_norm',\r 'quantizer.weight_proj': 'quantizer.weight_proj',\r 'quantizer.vars': 'quantizer.codevectors',\r 'project_q': 'project_q',\r 'final_proj': 'project_hid',\r 'w2v_encoder.proj': 'lm_head',\r 'mask_emb': 'masked_spec_embed',\r 'pooling_layer.linear': 'projector',\r 'pooling_layer.projection': 'classifier',\r}\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t[\r 'lm_head',\r 'quantizer.weight_proj',\r 'quantizer.codevectors',\r 'project_q',\r 'project_hid',\r 'projector',\r 'classifier',\r]\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"r\"\"\"\t\t\t\t) as file:\r for line_number, line in enumerate(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.strip()\r if line:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline.split()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tline_number\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\twords[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r return result\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r for attribute in key.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r for param_key in PARAM_MAPPING.keys():\r if full_name.endswith(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPARAM_MAPPING[full_name.split(\"\"\".\"\"\"\t\t\t\t)[-1]]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"param\"\"\"\r\r if weight_type is not None and weight_type != \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t).shape\r elif weight_type is not None and weight_type == \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_pointer\r for attribute in hf_param_name.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tshape_pointer.shape\r\r # let's reduce dimension\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue[0]\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_pointer.shape\r\r if hf_shape != value.shape:\r raise ValueError(\r F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''\r F''' {value.shape} for {full_name}'''\t\t\t\t)\r\r if weight_type == \"weight\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"weight_g\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"weight_v\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"bias\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r elif weight_type == \"param\":\r for attribute in hf_param_name.split(\"\"\".\"\"\"\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgetattr(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r\r logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.'''\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r for param_key in PARAM_MAPPING.keys():\r if full_name.endswith(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tPARAM_MAPPING[full_name.split(\"\"\".\"\"\"\t\t\t\t)[-1]]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"param\"\"\"\r\r if weight_type is not None and weight_type != \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\".\"\"\".join([key, weight_type]\t\t\t\t)\r elif weight_type is not None and weight_type == \"param\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\".\"\"\".join([key, hf_param_name]\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkey\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue if \"\"\"lm_head\"\"\" in full_key else value[0]\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'W_a': 'linear_1.weight',\r 'W_b': 'linear_2.weight',\r 'b_a': 'linear_1.bias',\r 'b_b': 'linear_2.bias',\r 'ln_W': 'norm.weight',\r 'ln_b': 'norm.bias',\r}\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]=None\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r for key, mapped_key in MAPPING.items():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"wav2vec2.\"\"\" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key\r if key in name or key.split(\"\"\"w2v_model.\"\"\"\t\t\t\t)[-1] == name.split(\"\"\".\"\"\"\t\t\t\t)[0]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r if \"*\" in mapped_key:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tname.split(SCREAMING_SNAKE_CASE__\t\t\t\t)[0].split(\"\"\".\"\"\"\t\t\t\t)[-2]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmapped_key.replace(\"\"\"*\"\"\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if \"weight_g\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight_g\"\"\"\r elif \"weight_v\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight_v\"\"\"\r elif \"bias\" in name:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"bias\"\"\"\r elif \"weight\" in name:\r # TODO: don't match quantizer.weight_proj\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"weight\"\"\"\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if hf_dict is not None:\r rename_dict(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r set_recursively(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return is_used\r return is_used\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq_model.state_dict()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thf_model.wavaveca.feature_extractor\r\r for name, value in fairseq_dict.items():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFalse\r if \"conv_layers\" in name:\r load_conv_layer(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, hf_model.config.feat_extract_norm == \"\"\"group\"\"\"\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tload_wavaveca_layer(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r if not is_used:\r unused_weights.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r logger.warning(F'''Unused weights: {unused_weights}'''\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfull_name.split(\"\"\"conv_layers.\"\"\"\t\t\t\t)[-1]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tname.split(\"\"\".\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(items[0]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(items[1]\t\t\t\t)\r\r if type_id == 0:\r if \"bias\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif \"weight\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):\r if \"bias\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r elif \"weight\" in name:\r if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:\r raise ValueError(\r F'''{full_name} has size {value.shape}, but'''\r F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.'''\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.'''\t\t\t\t)\r else:\r unused_weights.append(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r@torch.no_grad()\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]=None\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]=True\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if config_path is not None:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaConfig()\r\r if is_seq_class:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tread_txt_into_dict(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tidalabel\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaFeatureExtractor(\r feature_size=1\t\t\t\t, sampling_rate=16000\t\t\t\t, padding_value=0\t\t\t\t, do_normalize=SCREAMING_SNAKE_CASE__\t\t\t\t, return_attention_mask=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r elif is_finetuned:\r if dict_path:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tDictionary.load(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # important change bos & pad token id since CTC symbol is and\r # not as in fairseq\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.pad_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.bos_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.eos_index\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlen(target_dict.symbols\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tos.path.join(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"vocab.json\"\"\"\t\t\t\t)\r if not os.path.isdir(SCREAMING_SNAKE_CASE__\t\t\t\t):\r logger.error(\"\"\"--pytorch_dump_folder_path ({}) should be a directory\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r return\r os.makedirs(SCREAMING_SNAKE_CASE__\t\t\t\t, exist_ok=SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttarget_dict.indices\r\r # fairseq has the and switched\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t1\r with open(SCREAMING_SNAKE_CASE__\t\t\t\t, \"\"\"w\"\"\"\t\t\t\t, encoding=\"\"\"utf-8\"\"\"\t\t\t\t) as vocab_handle:\r json.dump(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaCTCTokenizer(\r SCREAMING_SNAKE_CASE__\t\t\t\t, unk_token=target_dict.unk_word\t\t\t\t, pad_token=target_dict.pad_word\t\t\t\t, bos_token=target_dict.bos_word\t\t\t\t, eos_token=target_dict.eos_word\t\t\t\t, word_delimiter_token=\"\"\"|\"\"\"\t\t\t\t, do_lower_case=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue if config.feat_extract_norm == \"\"\"layer\"\"\" else False\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaFeatureExtractor(\r feature_size=1\t\t\t\t, sampling_rate=16000\t\t\t\t, padding_value=0\t\t\t\t, do_normalize=SCREAMING_SNAKE_CASE__\t\t\t\t, return_attention_mask=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__\t\t\t\t, tokenizer=SCREAMING_SNAKE_CASE__\t\t\t\t)\r processor.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForCTC(SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tWavaVecaForPreTraining(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r if is_finetuned or is_seq_class:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.checkpoint_utils.load_model_ensemble_and_task(\r [checkpoint_path]\t\t\t\t, arg_overrides={\"\"\"data\"\"\": \"\"\"/\"\"\".join(dict_path.split(\"\"\"/\"\"\"\t\t\t\t)[:-1]\t\t\t\t)}\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\targparse.Namespace(task=\"\"\"audio_pretraining\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]\t\t\t\t, task=SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel[0].eval()\r\r recursively_load_weights(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, not is_finetuned\t\t\t\t)\r\r hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser()\r parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')\r parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')\r parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')\r parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')\r parser.add_argument(\r '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'\r )\r parser.add_argument(\r '--is_seq_class',\r action='store_true',\r help='Whether the model to convert is a fine-tuned sequence classification model or not',\r )\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tnot args.not_finetuned and not args.is_seq_class\r convert_wavaveca_checkpoint(\r args.checkpoint_path,\r args.pytorch_dump_folder_path,\r args.config_path,\r args.dict_path,\r is_finetuned,\r args.is_seq_class,\r )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152343,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport unittest\r\rimport numpy as np\rimport torch\r\rfrom diffusers import VersatileDiffusionImageVariationPipeline\rfrom diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tFalse\r\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r pass\r\r@slow\r@require_torch_gpu\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tVersatileDiffusionImageVariationPipeline.from_pretrained(\"\"\"shi-labs/versatile-diffusion\"\"\" )\r pipe.to(_UpperCAmelCase )\r pipe.set_progress_bar_config(disable=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tload_image(\r \"\"\"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.manual_seed(0 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tpipe(\r image=_UpperCAmelCase ,\t\t\t\t\t\tgenerator=_UpperCAmelCase ,\t\t\t\t\t\tguidance_scale=7.5 ,\t\t\t\t\t\tnum_inference_steps=50 ,\t\t\t\t\t\toutput_type=\"\"\"numpy\"\"\" ,\t\t\t\t\t\t).images\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage[0, 2_53:2_56, 2_53:2_56, -1]\r\r assert image.shape == (1, 5_12, 5_12, 3)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )\r\r assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport itertools\rimport os\rfrom collections import Counter, defaultdict\rfrom concurrent.futures import ThreadPoolExecutor, as_completed\r\rimport numpy as np\r\rimport datasets\r\rfrom .execute import check_correctness\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\n@misc{chen2021evaluating,\\n title={Evaluating Large Language Models Trained on Code},\\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\\\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\\\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\\\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\\\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\\\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\\\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\\\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\\\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\\\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\\\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\\\nand William Saunders and Christopher Hesse and Andrew N. Carr \\\\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\\\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\\\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\\\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\\n year={2021},\\n eprint={2107.03374},\\n archivePrefix={arXiv},\\n primaryClass={cs.LG}\\n}\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\\n(https://arxiv.org/abs/2107.03374).\\n'\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\nCalculates how good are predictions given some references, using certain scores\\nArgs:\\n predictions: list of candidates to evaluate. Each candidates should be a list\\n of strings with several code candidates to solve the problem.\\n references: a list with a test for each prediction. Each test should evaluate the\\n correctness of a code candidate.\\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\\n timeout:\\nReturns:\\n pass_at_k: dict with pass rates for each k\\n results: dict with granular results of each unittest\\nExamples:\\n >>> code_eval = datasets.load_metric(\"code_eval\")\\n >>> test_cases = [\"assert add(2,3)==5\"]\\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\\n >>> print(pass_at_k)\\n {\\'pass@1\\': 0.5, \\'pass@2\\': 1.0}\\n'\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\n################################################################################\\n !!!WARNING!!!\\n################################################################################\\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\\nAlthough it is highly unlikely that model-generated code will do something\\novertly malicious in response to this test suite, model-generated code may act\\ndestructively due to a lack of model capability or alignment.\\nUsers are strongly encouraged to sandbox this evaluation suite so that it\\ndoes not perform destructive actions on their host or network. For more\\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\\n\\nOnce you have read this disclaimer and taken appropriate precautions,\\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\\nwith:\\n\\n>>> import os\\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\\n\\n################################################################################\\\\n'\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'The MIT License\\n\\nCopyright (c) OpenAI (https://openai.com)\\n\\nPermission is hereby granted, free of charge, to any person obtaining a copy\\nof this software and associated documentation files (the \"Software\"), to deal\\nin the Software without restriction, including without limitation the rights\\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\\ncopies of the Software, and to permit persons to whom the Software is\\nfurnished to do so, subject to the following conditions:\\n\\nThe above copyright notice and this permission notice shall be included in\\nall copies or substantial portions of the Software.\\n\\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\\nTHE SOFTWARE.'\r\r@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION\t, _KWARGS_DESCRIPTION )\rclass lowerCAmelCase_ ( datasets.Metric ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return datasets.MetricInfo(\r # This is the description that will appear on the metrics page.\r description=_DESCRIPTION ,\t\t\t\t\t\tcitation=_CITATION ,\t\t\t\t\t\tinputs_description=_KWARGS_DESCRIPTION ,\t\t\t\t\t\tfeatures=datasets.Features(\r {\r \"\"\"predictions\"\"\": datasets.Sequence(datasets.Value(\"\"\"string\"\"\" ) ),\r \"\"\"references\"\"\": datasets.Value(\"\"\"string\"\"\" ),\r } ) ,\t\t\t\t\t\thomepage=\"\"\"https://github.com/openai/human-eval\"\"\" ,\t\t\t\t\t\tcodebase_urls=[\"\"\"https://github.com/openai/human-eval\"\"\"] ,\t\t\t\t\t\treference_urls=[\"\"\"https://github.com/openai/human-eval\"\"\"] ,\t\t\t\t\t\tlicense=_LICENSE ,\t\t\t\t\t\t)\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=[1, 10, 1_00] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=3.0 ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if os.getenv(\"\"\"HF_ALLOW_CODE_EVAL\"\"\" ,\t\t\t\t\t\t0 ) != \"1\":\r raise ValueError(_WARNING )\r\r if os.name == \"nt\":\r raise NotImplementedError(\"\"\"This metric is currently not supported on Windows.\"\"\" )\r\r with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tCounter()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdefaultdict(_UpperCAmelCase )\r\r for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ) ):\r for candidate in candidates:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcandidate + \"\"\"\\n\"\"\" + test_case\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(test_program, timeout, task_id, completion_id[task_id])\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\texecutor.submit(_UpperCAmelCase ,\t\t\t\t\t\t*_UpperCAmelCase )\r futures.append(_UpperCAmelCase )\r completion_id[task_id] += 1\r n_samples += 1\r\r for future in as_completed(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfuture.result()\r results[result[\"task_id\"]].append((result[\"\"\"completion_id\"\"\"], result) )\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[], []\r for result in results.values():\r result.sort()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[r[1][\"\"\"passed\"\"\"] for r in result]\r total.append(len(_UpperCAmelCase ) )\r correct.append(sum(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.array(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tk\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).mean() for k in ks if (total >= k).all()}\r\r return pass_at_k, results\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[Any]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r def estimator(SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t) -> float:\r if n - c < k:\r return 1.0\r return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1\t\t\t\t, n + 1\t\t\t\t)\t\t\t\t)\r\r if isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\titertools.repeat(SCREAMING_SNAKE_CASE__\t\t\t\t, len(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r else:\r assert len(SCREAMING_SNAKE_CASE__\t\t\t\t) == len(SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\titer(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return np.array([estimator(int(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, int(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) for n, c in zip(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)]\t\t\t\t)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152344,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport heapq\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tdict\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[]\r\r # for each node and his adjacency list add them and the rank of the node to queue\r # using heapq module the queue will be filled like a Priority Queue\r # heapq works with a min priority queue, so I used -1*len(v) to build it\r for key, value in graph.items():\r # O(log(n))\r heapq.heappush(SCREAMING_SNAKE_CASE__\t\t\t\t, [-1 * len(SCREAMING_SNAKE_CASE__\t\t\t\t), (key, value)]\t\t\t\t)\r\r # chosen_vertices = set of chosen vertices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tset()\r\r # while queue isn't empty and there are still edges\r # (queue[0][0] is the rank of the node with max rank)\r while queue and queue[0][0] != 0:\r # extract vertex with max rank from queue and add it to chosen_vertices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\theapq.heappop(SCREAMING_SNAKE_CASE__\t\t\t\t)[1][0]\r chosen_vertices.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # Remove all arcs adjacent to argmax\r for elem in queue:\r # if v haven't adjacent node, skip\r if elem[0] == 0:\r continue\r # if argmax is reachable from elem\r # remove argmax from elem's adjacent list and update his rank\r if argmax in elem[1][1]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\telem[1][1].index(SCREAMING_SNAKE_CASE__\t\t\t\t)\r del elem[1][1][index]\r elem[0] += 1\r # re-order the queue\r heapq.heapify(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return chosen_vertices\r\r\rif __name__ == \"__main__\":\r import doctest\r\r doctest.testmod()\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t{0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}\r print(f\"Minimum vertex cover:\\n{greedy_min_vertex_cover(graph)}\")\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport math\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r assert isinstance(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t) and (\r number >= 0\r ), \"'number' must been an int and positive\"\r\r if 1 < number < 4:\r # 2 and 3 are primes\r return True\r elif number < 2 or not number % 2:\r # Negatives, 0, 1 and all even numbers are not primes\r return False\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trange(3\t\t\t\t, int(math.sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t) + 1\t\t\t\t)\t\t\t\t, 2\t\t\t\t)\r return not any(not number % i for i in odd_numbers\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]=1\t\t\t\t, **SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tList[str]\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfactor * value\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvalue\r\r while not is_prime(SCREAMING_SNAKE_CASE__\t\t\t\t):\r value += 1 if not (\"desc\" in kwargs and kwargs[\"desc\"] is True) else -1\r\r if value == first_value_val:\r return next_prime(value + 1\t\t\t\t, **SCREAMING_SNAKE_CASE__\t\t\t\t)\r return value\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152345,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom __future__ import annotations\r\rfrom fractions import Fraction\rfrom math import gcd, sqrt\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(number**0.5\t\t\t\t)\r return number == sq * sq\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_den * y_den * z_den\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgcd(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r top //= hcf\r bottom //= hcf\r return top, bottom\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint = 35\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tset()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t42\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFraction(0\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t42\r\r for x_num in range(1\t\t\t\t, order + 1\t\t\t\t):\r for x_den in range(x_num + 1\t\t\t\t, order + 1\t\t\t\t):\r for y_num in range(1\t\t\t\t, order + 1\t\t\t\t):\r for y_den in range(y_num + 1\t\t\t\t, order + 1\t\t\t\t):\r # n=1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_num * y_den + x_den * y_num\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_den * y_den\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgcd(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r z_num //= hcf\r z_den //= hcf\r if 0 < z_num < z_den <= order:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tadd_three(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r unique_s.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # n=2\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num\r )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_den * x_den * y_den * y_den\r if is_sq(SCREAMING_SNAKE_CASE__\t\t\t\t) and is_sq(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgcd(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r z_num //= hcf\r z_den //= hcf\r if 0 < z_num < z_den <= order:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tadd_three(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r unique_s.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # n=-1\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_num * y_num\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_den * y_num + x_num * y_den\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgcd(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r z_num //= hcf\r z_den //= hcf\r if 0 < z_num < z_den <= order:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tadd_three(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r unique_s.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r # n=2\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tx_num * x_num * y_num * y_num\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den\r )\r if is_sq(SCREAMING_SNAKE_CASE__\t\t\t\t) and is_sq(SCREAMING_SNAKE_CASE__\t\t\t\t):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tint(sqrt(SCREAMING_SNAKE_CASE__\t\t\t\t)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgcd(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r z_num //= hcf\r z_den //= hcf\r if 0 < z_num < z_den <= order:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tadd_three(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r unique_s.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r for num, den in unique_s:\r total += Fraction(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r\r return total.denominator + total.numerator\r\r\rif __name__ == \"__main__\":\r print(f\"{solution() = }\")\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport string\rfrom math import logaa\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdocument.translate(\r str.maketrans(\"\"\"\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t, string.punctuation\t\t\t\t)\t\t\t\t).replace(\"\"\"\\n\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdocument_without_punctuation.split(\"\"\" \"\"\"\t\t\t\t) # word tokenization\r return len([word for word in tokenize_document if word.lower() == term.lower()]\t\t\t\t)\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcorpus.lower().translate(\r str.maketrans(\"\"\"\"\"\"\t\t\t\t, \"\"\"\"\"\"\t\t\t\t, string.punctuation\t\t\t\t)\t\t\t\t) # strip all punctuation and replace it with ''\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcorpus_without_punctuation.split(\"\"\"\\n\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tterm.lower()\r return (len([doc for doc in docs if term in doc]\t\t\t\t), len(SCREAMING_SNAKE_CASE__\t\t\t\t))\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple=False\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if smoothing:\r if n == 0:\r raise ValueError(\"\"\"log10(0) is undefined.\"\"\"\t\t\t\t)\r return round(1 + logaa(n / (1 + df)\t\t\t\t)\t\t\t\t, 3\t\t\t\t)\r\r if df == 0:\r raise ZeroDivisionError(\"\"\"df must be > 0\"\"\"\t\t\t\t)\r elif n == 0:\r raise ValueError(\"\"\"log10(0) is undefined.\"\"\"\t\t\t\t)\r return round(logaa(n / df\t\t\t\t)\t\t\t\t, 3\t\t\t\t)\r\r\r\r\r\r\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tint\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return round(tf * idf\t\t\t\t, 3\t\t\t\t)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152346,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom ...configuration_utils import PretrainedConfig\rfrom ...utils import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json',\r 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json',\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Any = \"\"\"markuplm\"\"\"\r\r\r def __init__( self\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=3_05_22 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=7_68 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=30_72 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=\"gelu\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=5_12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=1E-12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=2_56 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=10_24 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=2_16 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=10_01 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=50 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=\"absolute\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=None ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r super().__init__(\r pad_token_id=_UpperCAmelCase ,\t\t\t\t\t\tbos_token_id=_UpperCAmelCase ,\t\t\t\t\t\teos_token_id=_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ,\t\t\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_act\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tintermediate_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_position_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_vocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlayer_norm_eps\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tposition_embedding_type\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_cache\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tclassifier_dropout\r # additional properties\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_depth\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_xpath_tag_unit_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_xpath_subs_unit_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttag_pad_id\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsubs_pad_id\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\txpath_unit_hidden_size\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport argparse\r\rimport torch\r\rfrom transformers import BertForMaskedLM\r\r\rif __name__ == \"__main__\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\targparse.ArgumentParser(\r description=(\r 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'\r ' Distillation'\r )\r )\r parser.add_argument('--model_type', default='bert', choices=['bert'])\r parser.add_argument('--model_name', default='bert-base-uncased', type=str)\r parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)\r parser.add_argument('--vocab_transform', action='store_true')\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tparser.parse_args()\r\r if args.model_type == \"bert\":\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tBertForMaskedLM.from_pretrained(args.model_name)\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t'bert'\r else:\r raise ValueError('args.model_type should be \"bert\".')\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tmodel.state_dict()\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t{}\r\r for w in [\"word_embeddings\", \"position_embeddings\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"{prefix}.embeddings.{w}.weight\"]\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"{prefix}.embeddings.LayerNorm.{w}\"]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\t0\r for teacher_idx in [0, 2, 4, 7, 9, 1_1]:\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}\"\r ]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}\"\r ]\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}\"\r ]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[\r f\"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}\"\r ]\r std_idx += 1\r\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict['cls.predictions.decoder.weight']\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict['cls.predictions.bias']\r if args.vocab_transform:\r for w in [\"weight\", \"bias\"]:\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"cls.predictions.transform.dense.{w}\"]\r UpperCAmelCase_\t\t\t\t =\t\t\t\t\tstate_dict[f\"cls.predictions.transform.LayerNorm.{w}\"]\r\r print(f\"N layers selected for distillation: {std_idx}\")\r print(f\"Number of params transferred for distillation: {len(compressed_sd.keys())}\")\r\r print(f\"Save transferred checkpoint to {args.dump_checkpoint}.\")\r torch.save(compressed_sd, args.dump_checkpoint)\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152347,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport os\rimport tempfile\rimport unittest\r\rfrom transformers import FlaubertConfig, is_torch_available\rfrom transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device\r\rfrom ...test_configuration_common import ConfigTester\rfrom ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask\rfrom ...test_pipeline_mixin import PipelineTesterMixin\r\r\rif is_torch_available():\r import torch\r\r from transformers import (\r FlaubertForMultipleChoice,\r FlaubertForQuestionAnswering,\r FlaubertForQuestionAnsweringSimple,\r FlaubertForSequenceClassification,\r FlaubertForTokenClassification,\r FlaubertModel,\r FlaubertWithLMHeadModel,\r )\r from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=13 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=7 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=False ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=99 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=5 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0.1 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=5_12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=2 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr=3 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=4 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=\"last\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=None ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=None ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tparent\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tbatch_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tseq_length\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tis_training\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_input_lengths\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_token_type_ids\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tgelu_activation\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsinusoidal_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tcausal\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tasm\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tn_langs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tvocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tn_special\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmax_position_embeddings\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_vocab_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttype_sequence_label_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_choices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsummary_type\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tuse_proj\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscope\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.vocab_size )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\trandom_attention_mask([self.batch_size, self.seq_length] )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_input_lengths:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\r ids_tensor([self.batch_size] ,\t\t\t\t\t\tvocab_size=2 ) + self.seq_length - 2\r ) # small variation of seq_length\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_token_type_ids:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.n_langs )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tNone\r if self.use_labels:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\tself.type_sequence_label_size )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size, self.seq_length] ,\t\t\t\t\t\tself.num_labels )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\t2 ).float()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tids_tensor([self.batch_size] ,\t\t\t\t\t\tself.num_choices )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_config()\r\r return (\r config,\r input_ids,\r token_type_ids,\r input_lengths,\r sequence_labels,\r token_labels,\r is_impossible_labels,\r choice_labels,\r input_mask,\r )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r return FlaubertConfig(\r vocab_size=self.vocab_size ,\t\t\t\t\t\tn_special=self.n_special ,\t\t\t\t\t\temb_dim=self.hidden_size ,\t\t\t\t\t\tn_layers=self.num_hidden_layers ,\t\t\t\t\t\tn_heads=self.num_attention_heads ,\t\t\t\t\t\tdropout=self.hidden_dropout_prob ,\t\t\t\t\t\tattention_dropout=self.attention_probs_dropout_prob ,\t\t\t\t\t\tgelu_activation=self.gelu_activation ,\t\t\t\t\t\tsinusoidal_embeddings=self.sinusoidal_embeddings ,\t\t\t\t\t\tasm=self.asm ,\t\t\t\t\t\tcausal=self.causal ,\t\t\t\t\t\tn_langs=self.n_langs ,\t\t\t\t\t\tmax_position_embeddings=self.max_position_embeddings ,\t\t\t\t\t\tinitializer_range=self.initializer_range ,\t\t\t\t\t\tsummary_type=self.summary_type ,\t\t\t\t\t\tuse_proj=self.use_proj ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertModel(config=_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tlengths=_UpperCAmelCase ,\t\t\t\t\t\tlangs=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tlangs=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r self.parent.assertEqual(result.last_hidden_state.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.hidden_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertWithLMHeadModel(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\ttoken_type_ids=_UpperCAmelCase ,\t\t\t\t\t\tlabels=_UpperCAmelCase )\r self.parent.assertEqual(result.loss.shape ,\t\t\t\t\t\t() )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.vocab_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertForQuestionAnsweringSimple(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tstart_positions=_UpperCAmelCase ,\t\t\t\t\t\tend_positions=_UpperCAmelCase )\r self.parent.assertEqual(result.start_logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length) )\r self.parent.assertEqual(result.end_logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertForQuestionAnswering(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(\r _UpperCAmelCase ,\t\t\t\t\t\tstart_positions=_UpperCAmelCase ,\t\t\t\t\t\tend_positions=_UpperCAmelCase ,\t\t\t\t\t\tcls_index=_UpperCAmelCase ,\t\t\t\t\t\tis_impossible=_UpperCAmelCase ,\t\t\t\t\t\tp_mask=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(\r _UpperCAmelCase ,\t\t\t\t\t\tstart_positions=_UpperCAmelCase ,\t\t\t\t\t\tend_positions=_UpperCAmelCase ,\t\t\t\t\t\tcls_index=_UpperCAmelCase ,\t\t\t\t\t\tis_impossible=_UpperCAmelCase ,\t\t\t\t\t\t)\r\r ((UpperCAmelCase__)\t\t\t\t\t\t\t,\t)\t\t\t\t\t\t\t\t=\t\t\tresult_with_labels.to_tuple()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tstart_positions=_UpperCAmelCase ,\t\t\t\t\t\tend_positions=_UpperCAmelCase )\r\r ((UpperCAmelCase__)\t\t\t\t\t\t\t,\t)\t\t\t\t\t\t\t\t=\t\t\tresult_with_labels.to_tuple()\r\r self.parent.assertEqual(result_with_labels.loss.shape ,\t\t\t\t\t\t() )\r self.parent.assertEqual(result.start_top_log_probs.shape ,\t\t\t\t\t\t(self.batch_size, model.config.start_n_top) )\r self.parent.assertEqual(result.start_top_index.shape ,\t\t\t\t\t\t(self.batch_size, model.config.start_n_top) )\r self.parent.assertEqual(\r result.end_top_log_probs.shape ,\t\t\t\t\t\t(self.batch_size, model.config.start_n_top * model.config.end_n_top) )\r self.parent.assertEqual(\r result.end_top_index.shape ,\t\t\t\t\t\t(self.batch_size, model.config.start_n_top * model.config.end_n_top) )\r self.parent.assertEqual(result.cls_logits.shape ,\t\t\t\t\t\t(self.batch_size,) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertForSequenceClassification(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tlabels=_UpperCAmelCase )\r\r self.parent.assertEqual(result.loss.shape ,\t\t\t\t\t\t() )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.type_sequence_label_size) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.num_labels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertForTokenClassification(_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ,\t\t\t\t\t\tlabels=_UpperCAmelCase )\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.seq_length, self.num_labels) )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tstr ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.num_choices\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertForMultipleChoice(config=_UpperCAmelCase )\r model.to(_UpperCAmelCase )\r model.eval()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinput_ids.unsqueeze(1 ).expand(-1 ,\t\t\t\t\t\tself.num_choices ,\t\t\t\t\t\t-1 ).contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttoken_type_ids.unsqueeze(1 ).expand(-1 ,\t\t\t\t\t\tself.num_choices ,\t\t\t\t\t\t-1 ).contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinput_mask.unsqueeze(1 ).expand(-1 ,\t\t\t\t\t\tself.num_choices ,\t\t\t\t\t\t-1 ).contiguous()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(\r _UpperCAmelCase ,\t\t\t\t\t\tattention_mask=_UpperCAmelCase ,\t\t\t\t\t\ttoken_type_ids=_UpperCAmelCase ,\t\t\t\t\t\tlabels=_UpperCAmelCase ,\t\t\t\t\t\t)\r self.parent.assertEqual(result.logits.shape ,\t\t\t\t\t\t(self.batch_size, self.num_choices) )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.prepare_config_and_inputs()\r (\r (\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t(\r UpperCAmelCase__\r )\t\t\t\t\t\t\t,\t\r )\t\t\t\t\t\t\t\t=\t\t\tconfig_and_inputs\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"input_ids\"\"\": input_ids,\r \"\"\"token_type_ids\"\"\": token_type_ids,\r \"\"\"lengths\"\"\": input_lengths,\r \"\"\"attention_mask\"\"\": input_mask,\r }\r return config, inputs_dict\r\r@require_torch\rclass lowerCAmelCase_ ( lowerCamelCase_\t, lowerCamelCase_\t, unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : str = (\r (\r FlaubertModel,\r FlaubertWithLMHeadModel,\r FlaubertForQuestionAnswering,\r FlaubertForQuestionAnsweringSimple,\r FlaubertForSequenceClassification,\r FlaubertForTokenClassification,\r FlaubertForMultipleChoice,\r )\r if is_torch_available()\r else ()\r )\r lowerCAmelCase_ : Tuple = (\r {\r \"\"\"feature-extraction\"\"\": FlaubertModel,\r \"\"\"fill-mask\"\"\": FlaubertWithLMHeadModel,\r \"\"\"question-answering\"\"\": FlaubertForQuestionAnsweringSimple,\r \"\"\"text-classification\"\"\": FlaubertForSequenceClassification,\r \"\"\"token-classification\"\"\": FlaubertForTokenClassification,\r \"\"\"zero-shot\"\"\": FlaubertForSequenceClassification,\r }\r if is_torch_available()\r else {}\r )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r if (\r pipeline_test_casse_name == \"QAPipelineTests\"\r and tokenizer_name is not None\r and not tokenizer_name.endswith(\"\"\"Fast\"\"\" )\r ):\r # `QAPipelineTests` fails for a few models when the slower tokenizer are used.\r # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)\r # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer\r return True\r\r return False\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=False ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsuper()._prepare_for_class(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\treturn_labels=_UpperCAmelCase )\r\r if return_labels:\r if model_class.__name__ == \"FlaubertForQuestionAnswering\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.zeros(\r self.model_tester.batch_size ,\t\t\t\t\t\tdtype=torch.long ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.zeros(\r self.model_tester.batch_size ,\t\t\t\t\t\tdtype=torch.long ,\t\t\t\t\t\tdevice=_UpperCAmelCase )\r\r return inputs_dict\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertModelTester(self )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tConfigTester(self ,\t\t\t\t\t\tconfig_class=_UpperCAmelCase ,\t\t\t\t\t\temb_dim=37 )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r self.config_tester.run_common_tests()\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs()\r self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertModel.from_pretrained(_UpperCAmelCase )\r self.assertIsNotNone(_UpperCAmelCase )\r\r\r\r @slow\r @require_torch_gpu\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.model_tester.prepare_config_and_inputs_for_common()\r for model_class in self.all_model_classes:\r # FlauBertForMultipleChoice behaves incorrectly in JIT environments.\r if model_class == FlaubertForMultipleChoice:\r return\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tTrue\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel_class(config=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself._prepare_for_class(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.jit.trace(\r _UpperCAmelCase ,\t\t\t\t\t\t(inputs_dict[\"\"\"input_ids\"\"\"].to(\"\"\"cpu\"\"\" ), inputs_dict[\"\"\"attention_mask\"\"\"].to(\"\"\"cpu\"\"\" )) )\r\r with tempfile.TemporaryDirectory() as tmp:\r torch.jit.save(_UpperCAmelCase ,\t\t\t\t\t\tos.path.join(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"traced_model.pt\"\"\" ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.jit.load(os.path.join(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"traced_model.pt\"\"\" ) ,\t\t\t\t\t\tmap_location=_UpperCAmelCase )\r loaded(inputs_dict[\"\"\"input_ids\"\"\"].to(_UpperCAmelCase ) ,\t\t\t\t\t\tinputs_dict[\"\"\"attention_mask\"\"\"].to(_UpperCAmelCase ) )\r\r@require_torch\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r @slow\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tFlaubertModel.from_pretrained(\"\"\"flaubert/flaubert_base_cased\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase )[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.Size((1, 11, 7_68) )\r self.assertEqual(output.shape ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.tensor(\r [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )\r\r self.assertTrue(torch.allclose(output[:, :3, :3] ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\tatol=1E-4 ) )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport tempfile\r\rimport torch\r\rfrom diffusers import PNDMScheduler\r\rfrom .test_schedulers import SchedulerCommonTest\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)\r lowerCAmelCase_ : Optional[int] = ((\"\"\"num_inference_steps\"\"\", 50),)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\r \"\"\"num_train_timesteps\"\"\": 10_00,\r \"\"\"beta_start\"\"\": 0.0001,\r \"\"\"beta_end\"\"\": 0.02,\r \"\"\"beta_schedule\"\"\": \"\"\"linear\"\"\",\r }\r\r config.update(**_UpperCAmelCase )\r return config\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0 ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(_UpperCAmelCase )\r # copy over dummy past residuals\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r with tempfile.TemporaryDirectory() as tmpdirname:\r scheduler.save_config(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class.from_pretrained(_UpperCAmelCase )\r new_scheduler.set_timesteps(_UpperCAmelCase )\r # copy over dummy past residuals\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r pass\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0 ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(_UpperCAmelCase )\r\r # copy over dummy past residuals (must be after setting timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r with tempfile.TemporaryDirectory() as tmpdirname:\r scheduler.save_config(_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class.from_pretrained(_UpperCAmelCase )\r # copy over dummy past residuals\r new_scheduler.set_timesteps(_UpperCAmelCase )\r\r # copy over dummy past residual (must be after setting timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnew_scheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, \"Scheduler outputs are not identical\"\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(**_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t10\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_model()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample_deter\r scheduler.set_timesteps(_UpperCAmelCase )\r\r for i, t in enumerate(scheduler.prk_timesteps ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r for i, t in enumerate(scheduler.plms_timesteps ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmodel(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r return sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdict(self.forward_default_kwargs )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tkwargs.pop(\"\"\"num_inference_steps\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase )\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r\r if num_inference_steps is not None and hasattr(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"set_timesteps\"\"\" ):\r scheduler.set_timesteps(_UpperCAmelCase )\r elif num_inference_steps is not None and not hasattr(_UpperCAmelCase ,\t\t\t\t\t\t\"\"\"set_timesteps\"\"\" ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_inference_steps\r\r # copy over dummy past residuals (must be done after set_timesteps)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdummy_past_residuals[:]\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t0 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r self.assertEqual(output_a.shape ,\t\t\t\t\t\tsample.shape )\r self.assertEqual(output_a.shape ,\t\t\t\t\t\toutput_a.shape )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t0 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_plms(_UpperCAmelCase ,\t\t\t\t\t\t1 ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase ).prev_sample\r\r self.assertEqual(output_a.shape ,\t\t\t\t\t\tsample.shape )\r self.assertEqual(output_a.shape ,\t\t\t\t\t\toutput_a.shape )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for timesteps in [1_00, 10_00]:\r self.check_over_configs(num_train_timesteps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for steps_offset in [0, 1]:\r self.check_over_configs(steps_offset=_UpperCAmelCase )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config(steps_offset=1 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r scheduler.set_timesteps(10 )\r assert torch.equal(\r scheduler.timesteps ,\t\t\t\t\t\ttorch.LongTensor(\r [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) ,\t\t\t\t\t\t)\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for beta_start, beta_end in zip([0.0001, 0.001] ,\t\t\t\t\t\t[0.002, 0.02] ):\r self.check_over_configs(beta_start=_UpperCAmelCase ,\t\t\t\t\t\tbeta_end=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for schedule in [\"linear\", \"squaredcos_cap_v2\"]:\r self.check_over_configs(beta_schedule=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for prediction_type in [\"epsilon\", \"v_prediction\"]:\r self.check_over_configs(prediction_type=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for t in [1, 5, 10]:\r self.check_over_forward(time_step=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r for t, num_inference_steps in zip([1, 5, 10] ,\t\t\t\t\t\t[10, 50, 1_00] ):\r self.check_over_forward(num_inference_steps=_UpperCAmelCase )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[str] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t27\r\r for scheduler_class in self.scheduler_classes:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.dummy_sample\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t0.1 * sample\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r scheduler.set_timesteps(_UpperCAmelCase )\r\r # before power of 3 fix, would error on first step, so we only need to do two\r for i, t in enumerate(scheduler.prk_timesteps[:2] ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler.step_prk(_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t_UpperCAmelCase ).prev_sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r with self.assertRaises(_UpperCAmelCase ):\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.scheduler_classes[0]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.get_scheduler_config()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tscheduler_class(**_UpperCAmelCase )\r\r scheduler.step_plms(self.dummy_sample ,\t\t\t\t\t\t1 ,\t\t\t\t\t\tself.dummy_sample ).prev_sample\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 198.1318 ) < 1E-2\r assert abs(result_mean.item() - 0.2580 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(prediction_type=\"\"\"v_prediction\"\"\" )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 67.3986 ) < 1E-2\r assert abs(result_mean.item() - 0.0878 ) < 1E-3\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(set_alpha_to_one=_UpperCAmelCase ,\t\t\t\t\t\tbeta_start=0.01 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 230.0399 ) < 1E-2\r assert abs(result_mean.item() - 0.2995 ) < 1E-3\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tself.full_loop(set_alpha_to_one=_UpperCAmelCase ,\t\t\t\t\t\tbeta_start=0.01 )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.sum(torch.abs(_UpperCAmelCase ) )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.mean(torch.abs(_UpperCAmelCase ) )\r\r assert abs(result_sum.item() - 186.9482 ) < 1E-2\r assert abs(result_mean.item() - 0.2434 ) < 1E-3\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152348,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport unittest\r\rfrom transformers.testing_utils import CaptureStdout\rfrom transformers.tools.python_interpreter import evaluate\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r return x + 2\r\r\r\r\r\r\r\rclass lowerCAmelCase_ ( unittest.TestCase ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tOptional[int] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"x = 3\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 3\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3} )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"x = y\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"y\"\"\": 5}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r # evaluate returns the value of the last assignment.\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 5, \"\"\"y\"\"\": 5} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tTuple ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"y = add_two(x)\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"add_two\"\"\": add_two} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 5} )\r\r # Won't work without the tool\r with CaptureStdout() as out:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result is None\r assert \"tried to execute add_two\" in out.out\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"x = 3\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 3\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tint ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"test_dict = {'x': x, 'y': add_two(x)}\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"add_two\"\"\": add_two} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 5} )\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"test_dict\"\"\": {\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 5}} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"x = 3\\ny = 5\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r # evaluate returns the value of the last assignment.\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 5} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tUnion[str, Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"text = f'This is x: {x}.'\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r # evaluate returns the value of the last assignment.\r assert result == \"This is x: 3.\"\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"text\"\"\": \"\"\"This is x: 3.\"\"\"} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"if x <= 3:\\n y = 2\\nelse:\\n y = 5\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r # evaluate returns the value of the last assignment.\r assert result == 2\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 2} )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 8}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r # evaluate returns the value of the last assignment.\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 8, \"\"\"y\"\"\": 5} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tAny ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"test_list = [x, add_two(x)]\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"add_two\"\"\": add_two} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r self.assertListEqual(_UpperCAmelCase ,\t\t\t\t\t\t[3, 5] )\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"test_list\"\"\": [3, 5]} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"y = x\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 3\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 3} )\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tList[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"test_list = [x, add_two(x)]\\ntest_list[1]\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"add_two\"\"\": add_two} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"test_list\"\"\": [3, 5]} )\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"test_dict = {'x': x, 'y': add_two(x)}\\ntest_dict['y']\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{\"\"\"x\"\"\": 3}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"add_two\"\"\": add_two} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 5\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 3, \"\"\"test_dict\"\"\": {\"\"\"x\"\"\": 3, \"\"\"y\"\"\": 5}} )\r\r\r\r def \t\t\t\t\t\t\tSCREAMING_SNAKE_CASE__\t( self\t\t\t:\t\tDict ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"x = 0\\nfor i in range(3):\\n x = i\"\"\"\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t{}\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tevaluate(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"range\"\"\": range} ,\t\t\t\t\t\tstate=_UpperCAmelCase )\r assert result == 2\r self.assertDictEqual(_UpperCAmelCase ,\t\t\t\t\t\t{\"\"\"x\"\"\": 2, \"\"\"i\"\"\": 2} )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rfrom ...configuration_utils import PretrainedConfig\rfrom ...utils import logging\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t{\r 'google/vivit-b-16x2-kinetics400': (\r 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'\r ),\r # See all Vivit models at https://huggingface.co/models?filter=vivit\r}\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r lowerCAmelCase_ : Optional[int] = \"\"\"vivit\"\"\"\r\r\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=2_24 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=32 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tAny=[2, 16, 16] ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tint=3 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=7_68 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tDict=12 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[Any]=30_72 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=\"gelu_fast\" ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tUnion[str, Any]=0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tTuple=0.0 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tOptional[int]=0.02 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[Any]=1E-06 ,\t\t\t\t\t\t_UpperCAmelCase\t\t\t:\t\tList[str]=True ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tList[Any] ,\t\t\t\t\t\t):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_hidden_layers\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_attention_heads\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tintermediate_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_act\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\thidden_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tattention_probs_dropout_prob\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tinitializer_range\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tlayer_norm_eps\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\timage_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_frames\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttubelet_size\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnum_channels\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tqkv_bias\r\r super().__init__(**_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152349,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport warnings\r\rfrom ...utils import logging\rfrom .image_processing_deformable_detr import DeformableDetrImageProcessor\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tOptional[Any] ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tAny ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tstr ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r warnings.warn(\r \"\"\"The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.\"\"\"\r \"\"\" Please use DeformableDetrImageProcessor instead.\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t)\r super().__init__(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r"},"code_codestyle":{"kind":"number","value":346,"string":"346"},"style_context":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport warnings\r\rfrom ...utils import logging\rfrom .image_processing_deit import DeiTImageProcessor\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tlogging.get_logger(__name__)\r\rclass lowerCAmelCase_ ( lowerCamelCase_ ):\r\r\r\r\r\r\r\r '''simple docstring'''\r\r\r\r\r\r\r\r def __init__( self\t\t\t:\t\tList[str] ,\t\t\t\t\t\t*_UpperCAmelCase\t\t\t:\t\tOptional[int] ,\t\t\t\t\t\t**_UpperCAmelCase\t\t\t:\t\tOptional[Any] ):\r\r\r\r\r\r\r \"\"\"simple docstring\"\"\"\r\r\r\r\r\r\r warnings.warn(\r \"\"\"The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please\"\"\"\r \"\"\" use DeiTImageProcessor instead.\"\"\" ,\t\t\t\t\t\t_UpperCAmelCase ,\t\t\t\t\t\t)\r super().__init__(*_UpperCAmelCase ,\t\t\t\t\t\t**_UpperCAmelCase )\r"},"style_context_codestyle":{"kind":"number","value":346,"string":"346"},"label":{"kind":"number","value":1,"string":"1"}}},{"rowIdx":152350,"cells":{"code":{"kind":"string","value":"\r\r\r\r\r'''simple docstring'''\r\r\r\r\rimport datasets\rimport faiss\rimport numpy as np\rimport streamlit as st\rimport torch\rfrom elasticsearch import Elasticsearch\rfrom elia_utils import (\r embed_questions_for_retrieval,\r make_qa_sas_model,\r qa_sas_generate,\r query_es_index,\r query_qa_dense_index,\r)\r\rimport transformers\rfrom transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer\r\r\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'bart'\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\tTrue\r\r@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r if LOAD_DENSE_INDEX:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(\"\"\"yjernite/retribert-base-uncased\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoModel.from_pretrained(\"\"\"yjernite/retribert-base-uncased\"\"\"\t\t\t\t).to(\"\"\"cuda:0\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tqar_model.eval()\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(None, None)\r if MODEL_TYPE == \"bart\":\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoTokenizer.from_pretrained(\"\"\"yjernite/bart_eli5\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tAutoModelForSeqaSeqLM.from_pretrained(\"\"\"yjernite/bart_eli5\"\"\"\t\t\t\t).to(\"\"\"cuda:0\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\ttorch.load(\"\"\"seq2seq_models/eli5_bart_model_blm_2.pth\"\"\"\t\t\t\t)\r sas_model.load_state_dict(save_dict[\"\"\"model\"\"\"]\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tsas_model.eval()\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tmake_qa_sas_model(\r model_name=\"\"\"t5-small\"\"\"\t\t\t\t, from_file=\"\"\"seq2seq_models/eli5_t5_model_1024_4.pth\"\"\"\t\t\t\t, device=\"\"\"cuda:0\"\"\"\t\t\t\t)\r return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)\r\r@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r if LOAD_DENSE_INDEX:\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfaiss.StandardGpuResources()\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdatasets.load_dataset(path=\"\"\"wiki_snippets\"\"\"\t\t\t\t, name=\"\"\"wiki40b_en_100_0\"\"\"\t\t\t\t)[\"\"\"train\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.memmap(\r \"\"\"wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat\"\"\"\t\t\t\t, dtype=\"\"\"float32\"\"\"\t\t\t\t, mode=\"\"\"r\"\"\"\t\t\t\t, shape=(wikiaab_passages.num_rows, 128)\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfaiss.IndexFlatIP(128\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfaiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE__\t\t\t\t, 1\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE__\t\t\t\t) # TODO fix for larger GPU\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(None, None)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tElasticsearch([{\"\"\"host\"\"\": \"\"\"localhost\"\"\", \"\"\"port\"\"\": \"\"\"9200\"\"\"}]\t\t\t\t)\r return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)\r\r@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( ):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tdatasets.load_dataset(\"\"\"eli5\"\"\"\t\t\t\t, name=\"\"\"LFQA_reddit\"\"\"\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\telia[\"\"\"train_eli5\"\"\"]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tnp.memmap(\r \"\"\"eli5_questions_reps.dat\"\"\"\t\t\t\t, dtype=\"\"\"float32\"\"\"\t\t\t\t, mode=\"\"\"r\"\"\"\t\t\t\t, shape=(elia_train.num_rows, 128)\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tfaiss.IndexFlatIP(128\t\t\t\t)\r eli5_train_q_index.add(SCREAMING_SNAKE_CASE__\t\t\t\t)\r return (elia_train, eli5_train_q_index)\r\r\rUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_\t\t\t\t =\t\t\t\t\tload_indexes()\rUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_\t\t\t\t =\t\t\t\t\tload_models()\rUpperCAmelCase_ ,\t\t\t\t\t\tUpperCAmelCase_\t\t\t\t =\t\t\t\t\tload_train_data()\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=10\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tembed_questions_for_retrieval([question]\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\teli5_train_q_index.search(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[elia_train[int(SCREAMING_SNAKE_CASE__\t\t\t\t)] for i in I[0]]\r return nn_examples\r\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny=\"wiki40b\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=\"dense\"\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=10\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r if source == \"none\":\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t(\"\"\" \"\"\".join([\"\"\"\"\"\" for _ in range(11\t\t\t\t)]\t\t\t\t).strip(), [])\r else:\r if method == \"dense\":\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tquery_qa_dense_index(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r else:\r UpperCAmelCase__\t\t\t\t\t\t\t,\tUpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tquery_es_index(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, index_name=\"\"\"english_wiki40b_snippets_100w\"\"\"\t\t\t\t, n_results=SCREAMING_SNAKE_CASE__\t\t\t\t, )\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t[\r (res[\"\"\"article_title\"\"\"], res[\"\"\"section_title\"\"\"].strip(), res[\"\"\"score\"\"\"], res[\"\"\"passage_text\"\"\"]) for res in hit_lst\r ]\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\t\"\"\"question: {} context: {}\"\"\".format(SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t)\r return question_doc, support_list\r\r@st.cache(\r hash_funcs={\r torch.Tensor: (lambda SCREAMING_SNAKE_CASE__\t\t\t\t: None),\r transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE__\t\t\t\t: None),\r }\t\t\t\t)\rdef _UpperCamelCase\t\t\t\t\t( SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tTuple\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tUnion[str, Any]=64\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tOptional[int]=256\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tDict=False\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tAny=2\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=0.95\t\t\t\t, SCREAMING_SNAKE_CASE__\t:\t\t\t\t\tstr=0.8\t\t\t\t):\r '''simple docstring'''\r\r\r\r\r\r with torch.no_grad():\r UpperCAmelCase__\t\t\t\t\t\t\t\t=\t\t\tqa_sas_generate(\r SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, SCREAMING_SNAKE_CASE__\t\t\t\t, num_answers=1\t\t\t\t, num_beams=SCREAMING_SNAKE_CASE__\t\t\t\t, min_len=SCREAMING_SNAKE_CASE__\t\t\t\t, max_len=SCREAMING_SNAKE_CASE__\t\t\t\t, do_sample=SCREAMING_SNAKE_CASE__\t\t\t\t, temp=SCREAMING_SNAKE_CASE__\t\t\t\t, top_p=SCREAMING_SNAKE_CASE__\t\t\t\t, top_k=SCREAMING_SNAKE_CASE__\t\t\t\t, max_input_length=1024\t\t\t\t, device=\"\"\"cuda:0\"\"\"\t\t\t\t, )[0]\r return (answer, support_list)\r\r\rst.title('Long Form Question Answering with ELI5')\r\r# Start sidebar\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'
'\rUpperCAmelCase_\t\t\t\t =\t\t\t\t\t'\\n\\n
\\n \\n \\n \\n \\n %s\\n \\n \\n