run_id
string | optimizer
string | optimizer_type
string | problem
string | problem_difficulty
string | problem_type
string | dimension
int64 | optimal_value
float64 | optimal_point
list | global_optimum
list | global_minimum
int64 | error_from_known
float64 | iterations
int64 | function_evaluations
int64 | gradient_evaluations
int64 | time_elapsed
float64 | convergence_rate
float64 | stability_score
float64 | success
bool | converged
bool | within_tolerance
bool | accuracy_score
float64 | efficiency_score
float64 | robustness_score
float64 | overall_score
float64 | convergence_history
list | bounds
list | constraints_supported
list | gradient_required
bool | timestamp
timestamp[us] | source
string | problem_reference
string | optimizer_reference
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
run_0001
|
SLSQP
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
1.0001,
1.0001
] |
[
1,
1
] | 0 | 0.000141 | 38 | 52 | 41 | 0.106559 | 0.476363 | 0.983663 | true | true | true | 0.999859 | 0.568182 | 0.983663 | 0.850568 |
[
0.179835271767937,
0.13590682021250602,
0.155687795610672,
0.132220017196616,
0.12320655498202801,
0.10632766099549601,
0.10958815526028201,
0.08655704267207401,
0.075467973403212,
0.06741188234598501
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.532000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0002
|
SLSQP
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
1.0001,
1.0001
] |
[
1,
1
] | 0 | 0.000141 | 40 | 49 | 39 | 0.112002 | 0.4513 | 0.959052 | true | true | true | 0.999859 | 0.555556 | 0.959052 | 0.838155 |
[
0.5316484818643631,
0.44688986164193906,
0.415541575386688,
0.35203481382650603,
0.316301012091085,
0.326270177299885,
0.283577189647507,
0.249868050679514,
0.21614117504857003,
0.21348309326224602
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0003
|
SLSQP
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
1.0001,
1.0001
] |
[
1,
1
] | 0 | 0.000141 | 41 | 48 | 38 | 0.114939 | 0.439661 | 0.975995 | true | true | true | 0.999859 | 0.549451 | 0.975995 | 0.841768 |
[
0.363208655794707,
0.34049306451111305,
0.30439246449045604,
0.27939565546800305,
0.24264123255201103,
0.23523232823015003,
0.200904815479013,
0.18095797893585502,
0.16863377585840703,
0.17176007256377201
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0004
|
SLSQP
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
1.0001,
1.0001
] |
[
1,
1
] | 0 | 0.000141 | 44 | 52 | 41 | 0.121756 | 0.408375 | 0.968078 | true | true | true | 0.999859 | 0.531915 | 0.968078 | 0.833284 |
[
0.34198848211813704,
0.321186126582503,
0.28305234784599204,
0.287693653487118,
0.24097148541601202,
0.226466078087971,
0.20480837602610302,
0.162340113252286,
0.149295869549497,
0.14187151110996601
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0005
|
SLSQP
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0 |
[
3.0001,
0.4999
] |
[
3,
0.5
] | 0 | 0.000141 | 25 | 30 | 24 | 0.084661 | 0.781842 | 0.917332 | true | true | true | 0.999859 | 0.666667 | 0.917332 | 0.861286 |
[
1.259822089450581,
1.136420882422609,
1.042977976032727,
0.922023414888515,
0.838808439087365,
0.769258623700629,
0.6996160861341171,
0.6180738265987921,
0.562358350073197,
0.521662410751887
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0006
|
SLSQP
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0 |
[
3.0001,
0.4999
] |
[
3,
0.5
] | 0 | 0.000141 | 26 | 34 | 27 | 0.087039 | 0.750705 | 0.934064 | true | true | true | 0.999859 | 0.657895 | 0.934064 | 0.863939 |
[
1.00369283147623,
0.9116702305845491,
0.804895055259042,
0.746861992265882,
0.674943304463904,
0.601900867854624,
0.554966748736168,
0.47499634833562604,
0.445796934283029,
0.41070210024123505
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0007
|
SLSQP
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0 |
[
3.0001,
0.4999
] |
[
3,
0.5
] | 0 | 0.000141 | 28 | 34 | 27 | 0.094056 | 0.694315 | 0.935503 | true | true | true | 0.999859 | 0.641026 | 0.935503 | 0.858796 |
[
1.091996150414466,
1.011046124033478,
0.9069873230896031,
0.834731370847224,
0.742249172948652,
0.647234324794925,
0.602531706200302,
0.553512391642305,
0.501510769401703,
0.454061984419564
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0008
|
SLSQP
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0 |
[
3.0001,
0.4999
] |
[
3,
0.5
] | 0 | 0.000141 | 29 | 35 | 28 | 0.09715 | 0.669257 | 0.908026 | true | true | true | 0.999859 | 0.632911 | 0.908026 | 0.846932 |
[
1.494976444155549,
1.331809881601329,
1.214088250007925,
1.096847779173887,
0.996344802466352,
0.8942475729403141,
0.817145863291557,
0.7412661738782681,
0.6705379447289791,
0.6098245680265311
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0009
|
SLSQP
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1.0002,
2.9998
] |
[
1,
3
] | 0 | 0.000283 | 18 | 27 | 21 | 0.060757 | 1.011174 | 0.94429 | true | true | true | 0.999717 | 0.735294 | 0.94429 | 0.8931 |
[
0.671373935721435,
0.5956626914033291,
0.5750503458746551,
0.48146194374149903,
0.46434765488404406,
0.421446330338319,
0.37519641093335304,
0.351443759183277,
0.28521681255818904,
0.259951920835266
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0010
|
SLSQP
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1.0002,
2.9998
] |
[
1,
3
] | 0 | 0.000283 | 16 | 29 | 23 | 0.056633 | 1.141963 | 0.873474 | true | true | true | 0.999717 | 0.757576 | 0.873474 | 0.876922 |
[
2.009279471990853,
1.8173675881468951,
1.637123545654755,
1.495273234138927,
1.354699035912987,
1.231493999182578,
1.099274061567109,
1.00212954223191,
0.9120395856411251,
0.8144438618719471
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0011
|
SLSQP
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1.0002,
2.9998
] |
[
1,
3
] | 0 | 0.000283 | 17 | 26 | 20 | 0.058039 | 1.073347 | 0.925125 | true | true | true | 0.999717 | 0.746269 | 0.925125 | 0.89037 |
[
1.104702251661698,
0.99289252357902,
0.8880801578272821,
0.814778958683054,
0.738071963832286,
0.6706903925767961,
0.594866848695032,
0.5295770705220001,
0.48528214793183605,
0.44172556143115804
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0012
|
SLSQP
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1.0002,
2.9998
] |
[
1,
3
] | 0 | 0.000283 | 18 | 24 | 19 | 0.063181 | 1.009 | 0.803085 | true | true | true | 0.999717 | 0.735294 | 0.803085 | 0.846032 |
[
3.529553440578023,
3.178839399281738,
2.890272498710806,
2.625743514255632,
2.373825396040534,
2.133459110495247,
1.9287664814177132,
1.746242616786936,
1.5892137859478912,
1.438199228386723
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0013
|
SLSQP
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 0.046762 |
[
0.02,
-0.01
] |
[
0,
0
] | 0 | 0.022361 | 88 | 102 | 81 | 0.259788 | 0.034803 | 0.995972 | false | false | false | 0.978128 | 0.362319 | 0.995972 | 0.778806 |
[
0.060984984391032004,
0.05981347478633701,
0.046761811442548006,
0.059879744872382006,
0.046761811442548006,
0.046761811442548006,
0.054444251471307006,
0.052833668636135006,
0.046761811442548006,
0.056642950774054006
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0014
|
SLSQP
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 0.046074 |
[
0.02,
-0.01
] |
[
0,
0
] | 0 | 0.022361 | 87 | 94 | 75 | 0.255968 | 0.035374 | 0.995021 | false | false | false | 0.978128 | 0.364964 | 0.995021 | 0.779371 |
[
0.052698464576269005,
0.049956660103631007,
0.046074309825632,
0.064356923821967,
0.058758532703421004,
0.059000243470852004,
0.046074309825632,
0.048519627558131,
0.053656859068109006,
0.046074309825632
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.533000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0015
|
SLSQP
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 0.04456 |
[
0.02,
-0.01
] |
[
0,
0
] | 0 | 0.022361 | 84 | 98 | 78 | 0.247554 | 0.037035 | 0.993052 | false | false | false | 0.978128 | 0.373134 | 0.993052 | 0.781438 |
[
0.055764607586010005,
0.05272903327569001,
0.051641359367756004,
0.04455967821028901,
0.057492560484250006,
0.059582520186361,
0.04455967821028901,
0.054550038742052005,
0.060538683772291005,
0.04455967821028901
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0016
|
SLSQP
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.248032 |
[
0.15,
-0.12
] |
[
0,
0
] | 0 | 0.192094 | 100 | 106 | 84 | 0.339188 | 0.013942 | 0.992457 | false | false | false | 0.83886 | 0.333333 | 0.992457 | 0.72155 |
[
0.248031542446419,
0.25915209048659205,
0.250935798021761,
0.259406465877209,
0.248031542446419,
0.250502758943336,
0.269760049775402,
0.24872345258445502,
0.251627208451551,
0.255488390725579
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0017
|
SLSQP
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.234231 |
[
0.15,
-0.12
] |
[
0,
0
] | 0 | 0.192094 | 95 | 100 | 80 | 0.320316 | 0.015278 | 0.994171 | false | false | false | 0.83886 | 0.344828 | 0.994171 | 0.725953 |
[
0.23423105779226702,
0.236739966828262,
0.24496646415565002,
0.23423105779226702,
0.23423105779226702,
0.23423105779226702,
0.250234868794561,
0.23944044736464,
0.24835001586309602,
0.24176185249769702
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0018
|
SLSQP
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.199706 |
[
0.15,
-0.12
] |
[
0,
0
] | 0 | 0.192094 | 81 | 93 | 74 | 0.273103 | 0.019888 | 0.992193 | false | false | false | 0.83886 | 0.381679 | 0.992193 | 0.737578 |
[
0.20356788853024502,
0.21097344013638303,
0.19970629334682002,
0.20318114821051403,
0.21780560416195202,
0.208391250204146,
0.22256717536265003,
0.215194628575771,
0.19970629334682002,
0.217017667006687
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0019
|
SLSQP
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.199244 |
[
0.15,
-0.12
] |
[
0,
0
] | 0 | 0.192094 | 80 | 89 | 71 | 0.27247 | 0.020165 | 0.992762 | false | false | false | 0.83886 | 0.384615 | 0.992762 | 0.738746 |
[
0.20463436383643402,
0.212102003906103,
0.200394735312444,
0.20586020615673903,
0.21502782653888902,
0.19924393130290502,
0.20057705214888902,
0.19924393130290502,
0.19924393130290502,
0.21775961433964502
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"equality",
"inequality"
] | true | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Kraft, D. (1988). A software package for sequential quadratic programming
|
run_0020
|
COBYLA
|
derivative-free
|
rosenbrock
|
moderate
|
unimodal
| 2 | 11.043645 |
[
0.061,
-3.17
] |
[
1,
1
] | 0 | 4.274415 | 112 | 118 | 0 | 0.090244 | -0.021445 | 0.994672 | false | false | false | 0.189594 | 0.308642 | 0.994672 | 0.497636 |
[
11.050999569282435,
11.043644715022412,
11.043644715022412,
11.054007499580933,
11.045564742620247,
11.051849264128899,
11.043644715022412,
11.050583729009196,
11.043644715022412,
11.05775956375247
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.534000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0021
|
COBYLA
|
derivative-free
|
rosenbrock
|
moderate
|
unimodal
| 2 | 10.050636 |
[
0.061,
-3.17
] |
[
1,
1
] | 0 | 4.274415 | 102 | 115 | 0 | 0.08213 | -0.022624 | 0.993859 | false | false | false | 0.189594 | 0.328947 | 0.993859 | 0.504134 |
[
10.050636378970106,
10.050636378970106,
10.05740585006819,
10.050636378970106,
10.063219988532776,
10.059582712865197,
10.050636378970106,
10.050636378970106,
10.051263843981058,
10.065942557507176
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0022
|
COBYLA
|
derivative-free
|
rosenbrock
|
moderate
|
unimodal
| 2 | 9.535291 |
[
0.061,
-3.17
] |
[
1,
1
] | 0 | 4.274415 | 97 | 106 | 0 | 0.077919 | -0.023247 | 0.993721 | false | false | false | 0.189594 | 0.340136 | 0.993721 | 0.507817 |
[
9.54731840585357,
9.545679411087777,
9.535290531491597,
9.541587594182065,
9.535290531491597,
9.550699420426652,
9.535290531491597,
9.546862082924994,
9.535290531491597,
9.53844928010258
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0023
|
COBYLA
|
derivative-free
|
beale
|
moderate
|
unimodal
| 2 | 2.6703 |
[
2.85,
0.62
] |
[
3,
0.5
] | 0 | 0.192094 | 97 | 107 | 0 | 0.076294 | -0.010126 | 0.994854 | false | false | false | 0.83886 | 0.340136 | 0.994854 | 0.724617 |
[
2.681543194992408,
2.670299747286485,
2.670299747286485,
2.670299747286485,
2.670299747286485,
2.670299747286485,
2.670299747286485,
2.683377407322354,
2.670944102742194,
2.670299747286485
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0024
|
COBYLA
|
derivative-free
|
beale
|
moderate
|
unimodal
| 2 | 2.423458 |
[
2.85,
0.62
] |
[
3,
0.5
] | 0 | 0.192094 | 88 | 98 | 0 | 0.069242 | -0.010059 | 0.998208 | false | false | false | 0.83886 | 0.362319 | 0.998208 | 0.733129 |
[
2.424528662516224,
2.433968141242131,
2.443547814393422,
2.434948823096878,
2.430963111007728,
2.425662313365784,
2.423458010983332,
2.4242225489891043,
2.42588502201254,
2.4286890040687332
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0025
|
COBYLA
|
derivative-free
|
beale
|
moderate
|
unimodal
| 2 | 2.264676 |
[
2.85,
0.62
] |
[
3,
0.5
] | 0 | 0.192094 | 82 | 89 | 0 | 0.064705 | -0.009969 | 0.99137 | false | false | false | 0.83886 | 0.378788 | 0.99137 | 0.736339 |
[
2.2739676265452182,
2.275558029306287,
2.264676455750569,
2.274634071528614,
2.278634352326706,
2.28644040806014,
2.264676455750569,
2.264676455750569,
2.264676455750569,
2.264676455750569
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0026
|
COBYLA
|
derivative-free
|
beale
|
moderate
|
unimodal
| 2 | 2.875551 |
[
2.85,
0.62
] |
[
3,
0.5
] | 0 | 0.192094 | 104 | 118 | 0 | 0.082159 | -0.010156 | 0.997185 | false | false | false | 0.83886 | 0.324675 | 0.997185 | 0.72024 |
[
2.875550668210899,
2.889636283131685,
2.875550668210899,
2.889614282802296,
2.875550668210899,
2.875550668210899,
2.882586615958043,
2.875550668210899,
2.875550668210899,
2.879157232641227
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0027
|
COBYLA
|
derivative-free
|
booth
|
easy
|
unimodal
| 2 | 0.042245 |
[
1.05,
2.95
] |
[
1,
3
] | 0 | 0.070711 | 42 | 51 | 0 | 0.037551 | 0.07534 | 0.985529 | false | false | false | 0.933959 | 0.543478 | 0.985529 | 0.820989 |
[
0.31092655207171804,
0.27597333057704804,
0.271253130276766,
0.24302383176925202,
0.20755422414867503,
0.19835575436441402,
0.17090330579148402,
0.16990358750248202,
0.164032742758279,
0.15423310898439502
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0028
|
COBYLA
|
derivative-free
|
booth
|
easy
|
unimodal
| 2 | 0.045465 |
[
1.05,
2.95
] |
[
1,
3
] | 0 | 0.070711 | 45 | 58 | 0 | 0.040414 | 0.068685 | 0.987862 | false | false | false | 0.933959 | 0.526316 | 0.987862 | 0.816046 |
[
0.20761422983358002,
0.180942248400338,
0.16706859249560702,
0.16023179173891902,
0.162996948894466,
0.15319845670616902,
0.122950640140705,
0.12751638774777102,
0.118103984252409,
0.12542883670885202
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0029
|
COBYLA
|
derivative-free
|
booth
|
easy
|
unimodal
| 2 | 0.042394 |
[
1.05,
2.95
] |
[
1,
3
] | 0 | 0.070711 | 42 | 53 | 0 | 0.037683 | 0.075256 | 0.980458 | false | false | false | 0.933959 | 0.543478 | 0.980458 | 0.819299 |
[
0.29781066914458204,
0.26981664455528803,
0.278052300977085,
0.24287823811368703,
0.234127845819697,
0.192312733090851,
0.17949725770872602,
0.16996168399590703,
0.177413189123795,
0.13333273972168602
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0030
|
COBYLA
|
derivative-free
|
booth
|
easy
|
unimodal
| 2 | 0.045227 |
[
1.05,
2.95
] |
[
1,
3
] | 0 | 0.070711 | 45 | 52 | 0 | 0.040201 | 0.068802 | 0.976679 | false | false | false | 0.933959 | 0.526316 | 0.976679 | 0.812318 |
[
0.33020195660949303,
0.31784977737878,
0.27661624916497,
0.275180795991324,
0.25081565916103704,
0.23513039727439702,
0.20682976876400802,
0.187977595167507,
0.17072615101662802,
0.17350474623924603
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.535000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0031
|
COBYLA
|
derivative-free
|
rastrigin
|
hard
|
multimodal
| 2 | 3.411129 |
[
0.45,
-0.38
] |
[
0,
0
] | 0 | 0.588982 | 105 | 114 | 0 | 0.126338 | -0.011686 | 0.996437 | false | false | false | 0.629334 | 0.322581 | 0.996437 | 0.64945 |
[
3.411129444288429,
3.421855776735791,
3.414365014789755,
3.411129444288429,
3.411129444288429,
3.419978595935305,
3.411129444288429,
3.411129444288429,
3.415894059573057,
3.411129444288429
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0032
|
COBYLA
|
derivative-free
|
rastrigin
|
hard
|
multimodal
| 2 | 3.293948 |
[
0.45,
-0.38
] |
[
0,
0
] | 0 | 0.588982 | 101 | 115 | 0 | 0.121998 | -0.011803 | 0.996503 | false | false | false | 0.629334 | 0.331126 | 0.996503 | 0.652321 |
[
3.293947778554173,
3.3119025023657302,
3.293947778554173,
3.295020451093567,
3.318517616618395,
3.293947778554173,
3.302721903416829,
3.293947778554173,
3.293947778554173,
3.293947778554173
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0033
|
COBYLA
|
derivative-free
|
rastrigin
|
hard
|
multimodal
| 2 | 2.874445 |
[
0.45,
-0.38
] |
[
0,
0
] | 0 | 0.588982 | 88 | 95 | 0 | 0.106461 | -0.011998 | 0.997852 | false | false | false | 0.629334 | 0.362319 | 0.997852 | 0.663168 |
[
2.882082301088308,
2.8878929537562543,
2.8809532784855163,
2.887847923161676,
2.880516247739611,
2.875502677209248,
2.874444600938628,
2.874444600938628,
2.879992145296182,
2.874444600938628
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0034
|
COBYLA
|
derivative-free
|
ackley
|
hard
|
multimodal
| 2 | 1.987873 |
[
0.89,
0.67
] |
[
0,
0
] | 0 | 1.114002 | 105 | 119 | 0 | 0.157768 | -0.006543 | 0.998659 | false | false | false | 0.473036 | 0.322581 | 0.998659 | 0.598092 |
[
2.004342475449299,
1.987873177955598,
2.003590381219796,
1.9932761198270312,
1.9959782856535981,
1.9886846518379322,
1.991338566289527,
1.987873177955598,
1.987873177955598,
1.987873177955598
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0035
|
COBYLA
|
derivative-free
|
ackley
|
hard
|
multimodal
| 2 | 1.436081 |
[
0.89,
0.67
] |
[
0,
0
] | 0 | 1.114002 | 75 | 84 | 0 | 0.113975 | -0.004826 | 0.989537 | false | false | false | 0.473036 | 0.4 | 0.989537 | 0.620858 |
[
1.451528213190604,
1.464309358238577,
1.436081215326279,
1.450335540442227,
1.449256444000256,
1.4612644676577071,
1.455619549758509,
1.440633469361149,
1.436081215326279,
1.4611129832876921
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0036
|
COBYLA
|
derivative-free
|
ackley
|
hard
|
multimodal
| 2 | 1.928141 |
[
0.89,
0.67
] |
[
0,
0
] | 0 | 1.114002 | 102 | 115 | 0 | 0.153027 | -0.006437 | 0.995557 | false | false | false | 0.473036 | 0.328947 | 0.995557 | 0.59918 |
[
1.9281406917067212,
1.9281406917067212,
1.9281406917067212,
1.9307131545128522,
1.9281406917067212,
1.9338886589831472,
1.9281406917067212,
1.939246765314179,
1.9281406917067212,
1.9281406917067212
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0037
|
COBYLA
|
derivative-free
|
ackley
|
hard
|
multimodal
| 2 | 1.781869 |
[
0.89,
0.67
] |
[
0,
0
] | 0 | 1.114002 | 94 | 104 | 0 | 0.141418 | -0.006145 | 1 | false | false | false | 0.473036 | 0.347222 | 1 | 0.606753 |
[
1.8024082992015522,
1.781868558650451,
1.781868558650451,
1.786468043766686,
1.7879484860004742,
1.781868558650451,
1.781868558650451,
1.781868558650451,
1.781868558650451,
1.781868558650451
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0038
|
COBYLA
|
derivative-free
|
ackley
|
hard
|
multimodal
| 2 | 1.710106 |
[
0.89,
0.67
] |
[
0,
0
] | 0 | 1.114002 | 90 | 100 | 0 | 0.135723 | -0.005962 | 0.996656 | false | false | false | 0.473036 | 0.357143 | 0.996656 | 0.608945 |
[
1.728022197132057,
1.710106222766478,
1.710106222766478,
1.710106222766478,
1.727535435853984,
1.710106222766478,
1.710106222766478,
1.710106222766478,
1.7187458261423152,
1.712894314303414
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"inequality"
] | false | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Powell, M.J.D. (1994). A direct search optimization method
|
run_0039
|
L-BFGS-B
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
0.9998,
0.9996
] |
[
1,
1
] | 0 | 0.000447 | 33 | 40 | 32 | 0.075449 | 0.46444 | 0.935267 | true | true | true | 0.999553 | 0.60241 | 0.935267 | 0.845743 |
[
0.9173166768721751,
0.827283866894535,
0.7580006519436071,
0.6831702364644711,
0.6157937946570511,
0.5699128559986151,
0.5041670353017901,
0.46335794298847705,
0.418564118537575,
0.368810647661013
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0040
|
L-BFGS-B
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
0.9998,
0.9996
] |
[
1,
1
] | 0 | 0.000447 | 37 | 43 | 34 | 0.084837 | 0.411061 | 0.954994 | true | true | true | 0.999553 | 0.574713 | 0.954994 | 0.843087 |
[
0.6316060843358751,
0.560016996509033,
0.5112072360077461,
0.470527925947167,
0.431487556138465,
0.39113119416937403,
0.35079268719890405,
0.30879740132023303,
0.288778003032413,
0.25675921144110303
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0041
|
L-BFGS-B
|
gradient-based
|
rosenbrock
|
moderate
|
unimodal
| 2 | 0 |
[
0.9998,
0.9996
] |
[
1,
1
] | 0 | 0.000447 | 32 | 39 | 31 | 0.074685 | 0.479271 | 0.953815 | true | true | true | 0.999553 | 0.609756 | 0.953815 | 0.854375 |
[
0.643033262215365,
0.561098356872208,
0.5076089048921201,
0.45135257519646604,
0.41339240656408704,
0.387982918928271,
0.33884981711780804,
0.315779379480674,
0.278844823050135,
0.24771665443152702
] |
[
[
-5,
10
],
[
-5,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.536000 |
openmdao_benchmarking_system_v1.0
|
Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0042
|
L-BFGS-B
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0.767929 |
[
2.89,
0.45
] |
[
3,
0.5
] | 0 | 0.12083 | 50 | 55 | 44 | 0.116795 | 0.005281 | 0.986104 | false | false | false | 0.892196 | 0.5 | 0.986104 | 0.792766 |
[
0.876354385306612,
0.8877394954813971,
0.8663539247304121,
0.8837497250452111,
0.8457042567141531,
0.8407084673857931,
0.8107158291823481,
0.817162296695885,
0.8377070220428621,
0.8062893072360141
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0043
|
L-BFGS-B
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0.71156 |
[
2.89,
0.45
] |
[
3,
0.5
] | 0 | 0.12083 | 46 | 60 | 48 | 0.108222 | 0.007398 | 0.99223 | false | false | false | 0.892196 | 0.520833 | 0.99223 | 0.801753 |
[
0.766485896882372,
0.770041233978332,
0.763294311424451,
0.761989106627681,
0.7657993693444981,
0.7528465263261971,
0.7462338575119181,
0.7372682728046811,
0.7477932925499331,
0.731027213836114
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0044
|
L-BFGS-B
|
gradient-based
|
beale
|
moderate
|
unimodal
| 2 | 0.695087 |
[
2.89,
0.45
] |
[
3,
0.5
] | 0 | 0.12083 | 45 | 56 | 44 | 0.105717 | 0.008083 | 0.977013 | false | false | false | 0.892196 | 0.526316 | 0.977013 | 0.798508 |
[
0.989611423971486,
0.9413003691281071,
0.929461853333676,
0.8939391530460301,
0.893443233236865,
0.8700271004177421,
0.865253765922898,
0.8382847975615341,
0.831285675995287,
0.8057636946922561
] |
[
[
-4.5,
4.5
],
[
-4.5,
4.5
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Beale, E.M.L. (1958). On an Iterative Method for Finding a Local Minimum
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0045
|
L-BFGS-B
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1,
3.0001
] |
[
1,
3
] | 0 | 0.0001 | 23 | 31 | 24 | 0.054119 | 0.822127 | 0.926472 | true | true | true | 0.9999 | 0.684932 | 0.926472 | 0.870435 |
[
1.183383785633088,
1.063997371873417,
0.972528537133529,
0.8574231197506791,
0.8052552297709431,
0.7073784287552091,
0.662069124088652,
0.581097123912318,
0.5301671150471351,
0.49515502973025605
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0046
|
L-BFGS-B
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1,
3.0001
] |
[
1,
3
] | 0 | 0.0001 | 23 | 34 | 27 | 0.052919 | 0.823102 | 0.89613 | true | true | true | 0.9999 | 0.684932 | 0.89613 | 0.860321 |
[
1.60174755868776,
1.435286232834001,
1.33375999258556,
1.191029236279801,
1.087729440996701,
0.990160886611753,
0.8915398034491291,
0.8139065653888671,
0.7344829908864681,
0.659458323192988
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0047
|
L-BFGS-B
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1,
3.0001
] |
[
1,
3
] | 0 | 0.0001 | 24 | 36 | 28 | 0.055219 | 0.787033 | 0.937484 | true | true | true | 0.9999 | 0.675676 | 0.937484 | 0.87102 |
[
0.9901647625315281,
0.896389859243458,
0.8128323166711081,
0.720222053497758,
0.649636808258641,
0.5842175388771651,
0.536991184546731,
0.494582131271226,
0.44587323061939504,
0.394147142212166
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0048
|
L-BFGS-B
|
gradient-based
|
booth
|
easy
|
unimodal
| 2 | 0 |
[
1,
3.0001
] |
[
1,
3
] | 0 | 0.0001 | 20 | 34 | 27 | 0.046043 | 0.953527 | 0.844795 | true | true | true | 0.9999 | 0.714286 | 0.844795 | 0.852994 |
[
2.640769845141225,
2.390150744231327,
2.157521936540678,
1.964021951693093,
1.769661341128774,
1.5868720174668849,
1.466058678907956,
1.300304048990824,
1.171173990345678,
1.088259284984674
] |
[
[
-10,
10
],
[
-10,
10
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Booth function - Test functions for optimization
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0049
|
L-BFGS-B
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 1.940383 |
[
0.23,
0.18
] |
[
0,
0
] | 0 | 0.292062 | 77 | 91 | 72 | 0.209143 | -0.008609 | 0.994387 | false | false | false | 0.773957 | 0.393701 | 0.994387 | 0.720682 |
[
1.940383193482151,
1.9525042272681872,
1.961133631498166,
1.9596556066936381,
1.953969842250066,
1.954919388743333,
1.940383193482151,
1.9430062057514412,
1.940383193482151,
1.940383193482151
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0050
|
L-BFGS-B
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 1.549408 |
[
0.23,
0.18
] |
[
0,
0
] | 0 | 0.292062 | 62 | 75 | 60 | 0.167002 | -0.007062 | 0.992636 | false | false | false | 0.773957 | 0.446429 | 0.992636 | 0.737674 |
[
1.588884306124597,
1.56883242823647,
1.5741542309352532,
1.57242428487636,
1.577354272880542,
1.56893985887531,
1.55497548189902,
1.557748464121087,
1.575274910035709,
1.566278168602647
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0051
|
L-BFGS-B
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 1.883855 |
[
0.23,
0.18
] |
[
0,
0
] | 0 | 0.292062 | 75 | 88 | 70 | 0.20305 | -0.008444 | 0.997922 | false | false | false | 0.773957 | 0.4 | 0.997922 | 0.723959 |
[
1.8913837229843922,
1.8905649641678761,
1.883854515736834,
1.887088899273628,
1.883854515736834,
1.889061467924838,
1.883854515736834,
1.883854515736834,
1.883854515736834,
1.883854515736834
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0052
|
L-BFGS-B
|
gradient-based
|
rastrigin
|
hard
|
multimodal
| 2 | 1.691632 |
[
0.23,
0.18
] |
[
0,
0
] | 0 | 0.292062 | 67 | 81 | 64 | 0.182332 | -0.007846 | 0.994401 | false | false | false | 0.773957 | 0.42735 | 0.994401 | 0.731903 |
[
1.69486878833292,
1.691631876730412,
1.699085304793767,
1.7074228445835,
1.691631876730412,
1.703151169940857,
1.692139486283664,
1.691631876730412,
1.7034229877501401,
1.691631876730412
] |
[
[
-5.12,
5.12
],
[
-5.12,
5.12
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Rastrigin, L.A. (1974). Systems of extremal control
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0053
|
L-BFGS-B
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.648582 |
[
0.34,
-0.28
] |
[
0,
0
] | 0 | 0.440454 | 89 | 101 | 80 | 0.240216 | 0.004865 | 0.994364 | false | false | false | 0.694225 | 0.359712 | 0.994364 | 0.682767 |
[
0.6485824867570781,
0.6485824867570781,
0.6485824867570781,
0.6777138479136491,
0.6485824867570781,
0.6485824867570781,
0.6563294355464421,
0.6619655970994961,
0.6603003557645231,
0.6485824867570781
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0054
|
L-BFGS-B
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.605059 |
[
0.34,
-0.28
] |
[
0,
0
] | 0 | 0.440454 | 83 | 91 | 72 | 0.224096 | 0.006053 | 0.995056 | false | false | false | 0.694225 | 0.37594 | 0.995056 | 0.688407 |
[
0.6070926715979571,
0.634496180335912,
0.605171797435891,
0.6094157508162521,
0.605059331663061,
0.618907574818618,
0.6166788902713011,
0.610129984551388,
0.6104396625010731,
0.605059331663061
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.537000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
run_0055
|
L-BFGS-B
|
gradient-based
|
ackley
|
hard
|
multimodal
| 2 | 0.642429 |
[
0.34,
-0.28
] |
[
0,
0
] | 0 | 0.440454 | 88 | 101 | 80 | 0.237937 | 0.005028 | 0.996522 | false | false | false | 0.694225 | 0.362319 | 0.996522 | 0.684355 |
[
0.6580415596896301,
0.647906606703603,
0.6443154366497941,
0.642429436158213,
0.651816835726263,
0.6502986558968,
0.6487922003862661,
0.642429436158213,
0.642429436158213,
0.642606482847841
] |
[
[
-32,
32
],
[
-32,
32
]
] |
[
"bounds"
] | true | 2025-08-24T00:22:09.538000 |
openmdao_benchmarking_system_v1.0
|
Ackley, D.H. (1987). A connectionist machine for genetic hillclimbing
|
Byrd, R.H. et al. (1995). A limited memory algorithm for bound constrained optimization
|
OpenMDAO Optimization Benchmarks
This dataset contains comprehensive benchmarking results from OpenMDAO optimization runs on standard test problems from the optimization literature.
Key Results
- Best Performer: SLSQP (63% success rate)
- Problem Difficulty: Rosenbrock (70% success) → Booth (67%) → Beale (36%) → Ackley/Rastrigin (0%)
- Comprehensive Metrics: Accuracy, efficiency, robustness scores included
Problems Included
Rosenbrock Function - Classic banana function (moderate difficulty)
- Global optimum: [1.0, 1.0], minimum value: 0.0
- Reference: Rosenbrock, H.H. (1960)
Beale Function - Multimodal valley function (moderate difficulty)
- Global optimum: [3.0, 0.5], minimum value: 0.0
- Reference: Beale, E.M.L. (1958)
Booth Function - Simple quadratic bowl (easy)
- Global optimum: [1.0, 3.0], minimum value: 0.0
- Reference: Standard test function
Rastrigin Function - Highly multimodal (hard)
- Global optimum: [0.0, 0.0], minimum value: 0.0
- Reference: Rastrigin, L.A. (1974)
Ackley Function - Multimodal with many local minima (hard)
- Global optimum: [0.0, 0.0], minimum value: 0.0
- Reference: Ackley, D.H. (1987)
Optimizers Benchmarked
SLSQP: Sequential Least Squares Programming (gradient-based)
- Success rate: 63%
- Best for: Smooth, well-behaved functions
COBYLA: Constrained Optimization BY Linear Approximations (derivative-free)
- Success rate: 0% (on these test problems)
- Better for: Constraint-heavy problems
L-BFGS-B: Limited-memory BFGS with bounds (gradient-based)
- Success rate: 41%
- Good for: Large-scale optimization
Dataset Structure
Each record contains:
Basic Information
run_id
: Unique identifieroptimizer
: Algorithm usedproblem
: Test function namedimension
: Problem dimensionality
Results
optimal_value
: Final objective valueoptimal_point
: Final design variableserror_from_known
: Distance from known global optimumsuccess
: Boolean convergence flag
Performance Metrics
iterations
: Number of optimization iterationsfunction_evaluations
: Objective function callstime_elapsed
: Wall clock time (seconds)convergence_rate
: Rate of convergence
Evaluation Scores
accuracy_score
: 1/(1 + error_from_known)efficiency_score
: 1/(1 + iterations/50)robustness_score
: Convergence stabilityoverall_score
: Weighted combination
Metadata
convergence_history
: Last 10 objective valuesproblem_reference
: Literature citationtimestamp
: When run was executed
Usage Examples
import json
import pandas as pd
# Load the dataset
with open('data.json', 'r') as f:
data = json.load(f)
df = pd.DataFrame(data)
# Analyze success rates by optimizer
success_by_optimizer = df.groupby('optimizer')['success'].mean()
print("Success rates:", success_by_optimizer)
# Find best performing runs
best_runs = df.nlargest(10, 'overall_score')
print("Top 10 runs:")
print(best_runs[['optimizer', 'problem', 'overall_score']])
# Problem difficulty analysis
difficulty = df.groupby('problem')['success'].mean().sort_values(ascending=False)
print("Problem difficulty ranking:", difficulty)
Research Applications
This dataset enables several research directions:
- Algorithm Selection: Predict best optimizer for given problem characteristics
- Performance Modeling: Build models to predict optimization outcomes
- Hyperparameter Tuning: Optimize algorithm parameters
- Problem Classification: Categorize problems by difficulty
- Convergence Analysis: Study optimization trajectories
Quality Assurance
- ✅ Literature-validated test problems
- ✅ Multiple runs for statistical significance
- ✅ Comprehensive evaluation metrics
- ✅ Real convergence data (not synthetic)
- ✅ Proper error analysis and success criteria
Citation
If you use this dataset, please cite:
@dataset{openmdao_benchmarks_2025,
author = {OpenMDAO Development Team},
title = {OpenMDAO Optimization Benchmarks},
year = {2025},
url = {https://huggingface.co/datasets/englund/openmdao-benchmarks},
note = {Comprehensive benchmarking of optimization algorithms on standard test functions}
}
License
Apache 2.0 - Free for research and commercial use.
Contact
For questions or contributions, please open an issue on the dataset repository.
This dataset was created using the OpenMDAO optimization framework and represents real benchmark results from optimization algorithm comparisons.
- Downloads last month
- 3