| ```python | |
| from PIL import Image | |
| import torch | |
| from muse import PipelineMuse, MaskGiTUViT | |
| from datasets import Dataset, Features | |
| from datasets import Image as ImageFeature | |
| from datasets import Value, load_dataset | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = PipelineMuse.from_pretrained( | |
| transformer_path="valhalla/research-run", | |
| text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc", | |
| vae_path="openMUSE/vqgan-f16-8192-laion", | |
| ).to(device) | |
| # pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device) | |
| pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/muse-research-run", subfolder="ema_model").to(device) | |
| pipe.tokenizer.pad_token_id = 49407 | |
| if device == "cuda": | |
| pipe.transformer.enable_xformers_memory_efficient_attention() | |
| pipe.text_encoder.to(torch.float16) | |
| pipe.transformer.to(torch.float16) | |
| import PIL | |
| def main(): | |
| print("Loading dataset...") | |
| parti_prompts = load_dataset("nateraw/parti-prompts", split="train") | |
| print("Loading pipeline...") | |
| seed = 0 | |
| device = "cuda" | |
| torch.manual_seed(0) | |
| ckpt_id = "openMUSE/muse-256" | |
| scale = 10 | |
| print("Running inference...") | |
| main_dict = {} | |
| for i in range(len(parti_prompts)): | |
| sample = parti_prompts[i] | |
| prompt = sample["Prompt"] | |
| image = pipe( | |
| prompt, | |
| timesteps=16, | |
| negative_text=None, | |
| guidance_scale=scale, | |
| temperature=(2, 0), | |
| orig_size=(256, 256), | |
| crop_coords=(0, 0), | |
| aesthetic_score=6, | |
| use_fp16=device == "cuda", | |
| transformer_seq_len=256, | |
| use_tqdm=False, | |
| )[0] | |
| image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) | |
| img_path = f"/home/patrick/muse_images/muse_256_{i}.png" | |
| image.save(img_path) | |
| main_dict.update( | |
| { | |
| prompt: { | |
| "img_path": img_path, | |
| "Category": sample["Category"], | |
| "Challenge": sample["Challenge"], | |
| "Note": sample["Note"], | |
| "model_name": ckpt_id, | |
| "seed": seed, | |
| } | |
| } | |
| ) | |
| def generation_fn(): | |
| for prompt in main_dict: | |
| prompt_entry = main_dict[prompt] | |
| yield { | |
| "Prompt": prompt, | |
| "Category": prompt_entry["Category"], | |
| "Challenge": prompt_entry["Challenge"], | |
| "Note": prompt_entry["Note"], | |
| "images": {"path": prompt_entry["img_path"]}, | |
| "model_name": prompt_entry["model_name"], | |
| "seed": prompt_entry["seed"], | |
| } | |
| print("Preparing HF dataset...") | |
| ds = Dataset.from_generator( | |
| generation_fn, | |
| features=Features( | |
| Prompt=Value("string"), | |
| Category=Value("string"), | |
| Challenge=Value("string"), | |
| Note=Value("string"), | |
| images=ImageFeature(), | |
| model_name=Value("string"), | |
| seed=Value("int64"), | |
| ), | |
| ) | |
| ds_id = "diffusers-parti-prompts/muse256" | |
| ds.push_to_hub(ds_id) | |
| if __name__ == "__main__": | |
| main() | |
| ``` |